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In this paper, we present an application of the interface-centered binary
projection method to improve the order of accuracy of the discretization
of the advection terms by the Discontinuous Galerkin method. We present
our multi-gpu parallel implementation and perform weak and strong scaling
of our code. We apply the dg method to the multifluid Euler equations.
We present numerical simulations of two multiphase problems applicable to
many engineering fields. Simulations of a shock interacting with a drop of
water in air are compared to experimental data. We show good agreement
between the simulations and the experiments. Finally, we investigate the
dynamics of a supersonic water drop impacting a wall. Large negative
pressures and high tensions inside the drop resulting from the impact can
lead to possible cavitation erosion of the wall.

I. Introduction

T
he Discontinuous Galerkin (dg) method is a numerical method for partial differential
equations in which the solution is discretized in a computational cell through an expansion

in terms of polynomial basis functions. This approach combines advantages of the finite
element and the finite volume (fv) methods. In addition to being high-order accurate, the
dg method is a compact-stencil scheme, so it is highly scalable on parallel architectures,
and implementable on unstructured grids. The discontinuity in basis functions representing
the solution naturally provides a means to introduce dissipation where needed. As with
the fv methods, physical fluxes between neighboring cells are calculated using Riemann
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solvers. The dg approach exhibits superconvergence properties for the advection terms,
at a rate of 2p + 1, where p is the polynomial order.1,2 Cockburn and Shu popularized
the Runge-Kutta Discontinuous Galerkin (rkdg)for time-dependent convection-dominated
problems.3–7 Shocks and discontinuities can accurately be captured using limiters to dampen
the oscillations that are caused by high-order interpolation across a discontinuity.4,8–13

Because of the discontinuous representation of the solution at the cell interfaces, the dg
method is not naturally amenable to discretizing second order derivatives, which appear, for
example, in the diffusion terms of the Navier-Stokes equations. Past approaches to resolving
this issue have involved interior penalty methods for elliptic and parabolic equations14–16

and rewriting the second order terms as a system of first order derivatives.17,18 The draw-
back is that there is no consistent approach and the methods require tunable parameters.
The Recovery discontinuous Galerkin (rdg) method was developed to provide a unified and
consistent framework for discretizing second order derivatives.19–21 The method removes the
discontinuity at the interface by recovering the underlying high-order polynomial spanning
neighboring cells. This is done by matching polynomial moments in cells that share in-
terfaces. The rdg method is stable, works in multiple dimensions, and can be applied to
non-linear diffusion operators. It also exhibits superconvergent properties at a rate of 3p+2.
However, using the rdg method leads to a mismatch in the convergence properties of the
advection terms (2p+ 1) and the diffusion terms (3p+ 2). Improving the order of accuracy
of the discretization of the advection term is therefore necessary.

Simulating interfaces in compressible multiphase flows is challenging because of large den-
sity and pressure ratios, as well as spurious oscillations due to discontinuities and numerical
discretization.22–24 Our current approach involves interface capturing, in which, in analogy
to shock capturing, the discontinuity is regularized over a few grid points. This approach is
a logical framework for diffusion. It is conservative and avoids the reinitialization problems
of interface tracking methods. We have developed a high-order accurate dg method for
multiphase flows which prevents spurious pressure oscillations.13,25 Our present focus lies
in the investigation of the dynamics of individual drops interacting with shocks and high
speed flows. Our previous dg work combined with the improvements to the dg advection
discretization will enable the investigations of high speed multiphase flows relevant to fuel
injection problems, plasma deposition manufacturing, and turbomachinery.26,27

In Section II the present paper builds on previous research28 to fix the order of accuracy
mismatch between the advection and diffusion discretizations by increasing the discretization
order of accuracy of the advection terms. In Section IV we apply this method to the multifluid
Euler equations to investigate the dynamics of a shock interacting with a water drop and a
supersonic drop hitting a wall.

II. Accuracy Improvements for the Advection Term of the
Discontinuous Galerkin Method

Systematic approaches to exploring improvements to the dg scheme have previously been
presented.28 This previous work has shown that an improved dg scheme for advection called
interface-centered reconstruction with binary projection, denoted icb, exhibits a 3p+1 order
of accuracy and has reasonable stability properties. We recall the scheme here and apply it
to the Euler equations.
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We consider without loss of generality the one-dimensional hyperbolic equation

∂u

∂t
+
∂F

∂x
= 0 (1)

for the conserved variable u, where F (t, x, u) is the flux. In the dg scheme, the solution u
is expanded in each cell of the domain Ωj in terms of p+ 1 basis functions φn(x), uj(t, x) ≈
uh(t, x) =

∑p
n=0 un(t)φn(x). The flux at an arbitrary interface j + 1/2 is evaluated using a

Riemann solver which involves the left and right values of u at that interface, uL and uR,
which are provided by the polynomial representation of uj and uj+1. The cells j − 1, j, and
j + 1 represent the computational stencil of the dg method used to evolve the solution in
time. This compact stencil is one of the method’s defining properties. We wish to keep the
stencil compact when improving the dg method. Improvements to the basic dg advection
scheme rely on increasing the polynomial order of the numerical representations uj and uj+1

to calculate ûj+1/2,L(x) and ûj+1/2,R(x), from which uL and uR are evaluated.
The central idea of the icb scheme is as follows. The reconstruction of ûj+1/2,L(x) is

biased towards the left, cell j, meaning that the enhanced representation can contain more
moments of uj than uj+1,∫ xj+1/2

xj−1/2

φjnûj+1/2,L dx =

∫ xj+1/2

xj−1/2

φjnuj dx n = 0, . . . , p (2a)∫ xj+3/2

xj+1/2

φj+1
n ûj+1/2,L dx =

∫ xj+3/2

xj+1/2

φj+1
n uj+1 dx n ∈ N (2b)

whereN is a subset of {0, . . . , p}, the set of indexes of the moments of the original polynomial.
A similar set of equations can be derived for ûj+1/2,R(x), which is then biased towards cell
j+ 1. This binary reconstruction scheme achieves a 3p+ 1 order of accuracy if N contains p
original moments. This implies that there are p+ 1 subsets N formed with combinations of
the set {0, 1, . . . , p}, leading to p + 1 reconstructions schemes that exhibit 3p + 1 accuracy.
We denote the schemes of this type by icb#1[#2] where #1 is the original polynomial order
p and #2 is the subset N .

II.A. Von Neumann Stability Analysis

To study the stability of our dg enhancement scheme, we analyze the scalar linear advection
equation 1, where F (t, x, u) = au and a > 0. The dg update equations are:

d

dt

∫
Ωj

vjuj dx = −a
∫

Ωj

vj
∂uj
∂x

dx,

and, using integration by parts,

d

dt

∫
Ωj

vjuj dx = −a[vjuj]
xj+1/2
xj−1/2

+ a

∫
Ωj

∂vj
∂x

uj dx,

where vj is a test function in Ωj. By using the solution basis functions as the test functions,
expanding u(t, x) on the solution basis, and using an upwind flux (without loss of generality),
we rewrite the update equations as a linear system for the solution coefficients:

∆x

a

d

dt
uj = M(T )uj
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where T represents the translation of the solution by one cell: Tuj = uj+1 and T−1uj = uj−1.

The Fourier transform of M(T ), M̂(β), is obtained by subsituting T for its transform eiβ.

Calculations of the eigenvalues of M̂(β) and their respective Taylor-series expansions are
used to compare with the exact differential operator, λe = −iβ, and establish the stability
and order of accuracy of the numerical scheme.

For p = 1, we can construct two enhancement schemes, icb1[0] and icb1[0], to enhance
the cell interface values. Von Neumann analysis of the resulting schemes showthat both
schemes are stable (<(λi) ≤ 0 ∀ i = 0, . . . , p), Figure 3, and exhibit fourth order accuracy.

−10 −8 −6 −4 −2 0
ℜ(λ )

−8

−6

−4

−2

0

2

4

6

8
ℑ(λ )

Figure 1: Loci of eigenvalues of the enhanced schemes for p = 1 in the complex plane. Red
squares: icb1[0]; green diamonds: icb1[0].

For p = 2, there are three optimal enhancement schemes, icb2[0, 1], icb2[1, 2], and
icb2[0, 2]. These schemes lead to seventh order accuracy (as opposed to fifth order accuracy
for standard dg). However, as illustrated in Figure 2b, the real part of the eigenvalues are
positive for some values of β. This incursion into the real positive half of the complex
plane can lead to numerical instabilities if the time-marching scheme is inadequate. These
incursion are small enough (their maximum value is 0.00073) to be covered by a standard
Runge-Kutta 4 time integration scheme. However, this implies the existence of a lower bound
on the CFL number to ensure that the scheme remains stable. For very small CFL numbers,
these incursions will eventually lie outside the region of stability of the time-integration
scheme.

For p = 2, instead of using two moments from neighboring cells to enhance the interface,
we can suboptimal sets consisting of using only one moment of the neighboring cell: icb2[0],
icb2[1], and icb2[2]. These suboptimal schemes are stable and exhibit sixth order accuracy.

In conclusion, Von Neumann analysis of our enhanced shows that, for the one-dimensional
scalar advection equation and for various suboptimal choices of the setN , the scheme exhibits
improved convergence and is stable. Using one moment from the neighboring cell for the
enhancement scheme leads to a stable and 2p+2 order of accuracy scheme. We are currently
working on stabilizing the icb schemes which use the optimal number of moments from the
neighboring cells.
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(b) Zoom of left figure

Figure 2: Loci of eigenvalues of the enhanced schemes for p = 2 in the complex plane. Red
squares: icb2[0, 1]; green diamonds: icb2[1, 2]; blue circles: icb2[1, 2].

−10 −8 −6 −4 −2 0
ℜ(λ )
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8
ℑ(λ )

Figure 3: Loci of eigenvalues of the enhanced schemes for p = 2 in the complex plane. Red
squares: icb2[0]; green diamonds: icb2[1]; blue circles: icb2[2].
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III. Multi-GPU Implementation of the Discontinuous Galerkin
Method

Our highly parallel implementation of the dg method on graphics processing units (gpus)
uses the Message Passing Interface for multi-gpu parallelism to achieve high speedup. The
domain is partitioned and the problem is initialized on each cpu. Each subdomain ini-
tialization is then sent to a gpu using the cuda programming language. During the time
integration, the gpus perform the dg computations in their respective subdomains. At each
time step of the time integration scheme the gpus communicate their ghost cells to their host
cpu, which then exchange ghost cell data with the other cpus using mpi. This multi-step
approach is robust and easily portable to many clusters.

Using the Extreme Science and Engineering Discovery Environment (xsede)29 and the
Stampede cluster at the University of Texas, we perform weak and strong scaling analysis of
our multi-gpu code. We consider a two-dimensional vortex advection problem on a periodic
domain and use solution expansions using three basis functions (p = 2) in each direction.

The weak scaling study uses resolutions of 322, 642, and 1282 cells per gpu, Figure
4a. The strong scaling study uses 2562 and 5122 cells in the domain, which corresponds
to 589,824 and 2,359,296 total degrees of freedom, Figure 4b. The results scale well with
increasing number of gpus, especially if the significant increase in data movement is taken
into account. In contrast to a single-gpu simulation, multi-gpu computations require data
movement to and from the gpu and the host cpu and in between host cpus. Current high-
performance computing clusters such as Stampede only have one gpu per node. Because
node-to-node communications are slow this significantly increases communication time.

100 101 102

# gpus
0.0

0.2

0.4

0.6

322

642

1282

t [µs/DoF]

(a) Weak scaling

100 101 102

# gpus

100

101

102

ideal

2562

5122

t [s]

(b) Strong scaling.

Figure 4: Multi-gpu parallel scaling results using dg method for the two-dimensional vortex
advection problem.

IV. Numerical Simulations of Multiphase Flows

To simulate multiphase problems which are relevant to fuel injection, plasma deposition,
raindrops impacting high speed vehicles, and turbomachinery,26,27 we solve the 2d multifluid

6 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

30
45

 



Euler equations (i, j = 1, 2):

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (3a)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + pδij) = 0, (3b)

∂E

∂t
+

∂

∂xj
[uj(E + p)] = 0, (3c)

where ρ is the density, ui is the velocity, E = ρe+ 1
2
ρuiui is the total energy, e is the internal

energy, p is the pressure and δij is the Kronecker delta. The stiffened equation of state closes
the system by relating the internal energy to the pressure

ρe =
p+ γp∞
γ − 1

(4)

where γ is the ratio of specific heats and p∞ is the stiffened constant. To avoid spurious
pressure oscillations we solve two additional advection equations for the material properties

∂

∂t

(
1

γ − 1

)
+ uj

∂

∂xj

(
1

γ − 1

)
= 0, (5a)

∂

∂t

(
γp∞
γ − 1

)
+ uj

∂

∂xj

(
γ
p∞
γ − 1

)
= 0. (5b)

We use a third order Discontinuous Galerkin method to discretize these equations spa-
tially. For the time integration we use the standard explicit fourth-order Runge-Kutta
method with a Courant condition of 0.5. For all the problems in this paper we use the
Roe Riemann solver and Lagrange basis functions. A modified hierarchical reconstruction
procedure that prevents spurious pressure oscillations13 was used to limit the solution at
shock and discontinuities. For the mesh generation and post-processing visualization we use
Gmsh.30 Simulations of the multilayered Richtmyer-Meshkov and Rayleigh-Taylor instabili-
ties31 and experiments of blast-wave-driven shear flows in high-energy-density regimes32 have
previously been performed with our code. In this section we will first investigate a strong
shock impacting a drop of water in air and the subsequent drop deformation in the resulting
supersonic flow. We then study a supersonic drop impacting a wall.

IV.A. 2D Shock Drop Interaction

In this problem, an initial 2d water drop of radius r0 is stationary in air, Figure 5a. A
March 2.5 shock coming from the left impinges on the drop. This setup is similar to past
experiments and simulations of a shock interacting with a water column.33,34 The simulation
domain size is 23r0 in the x-direction and 16r0 in the y-direction. The drop is initially located
at (x, y) = (0, 0). The mesh is refined around the drop and the grid is stretched from 2r0

above and below the centerline to the edge of the domain to allow for high resolution of the
drop dynamics while maintaining a reasonable computational runtime. The entire domain
contains approximately 5 million degrees of freedom. Each simulation was performed in
parallel on eight gpus for approximately 24 hours. The properties of the air are ρair =
1.1765kg/m3, γair = 1.4, and p∞,air = 0Pa. Those for water are ρwater = 996kg/m3, γwater = 5.5,
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and p∞,water = 492115000Pa.35 All materials are initially at atmospheric pressure. The non-
dimensional time is defined as t = T us

2r0
, where T is the physical time and us is the post-shock

air velocity. Density is non-dimensionalized by ρair, velocity by cair, and pressure by ρairc
2
air,

where cair is the speed of sound in air.
As the shock impinges on the drop, it creates a supersonic flow around the drop. The

initial shock is deflected by the drop and the reflected shock evolves into a bow shock, Figure
6a. Baroclinic vorticity generated at the drop surface by the passage of the shock creates a
wake downstream of the drop which forms into a reentrant flow at later times, Figure 6b.
This flow causes a decrease in the drop width and an increase in the height, Figure 6c. The
strong coupling between the wave dynamics and the deforming geometry causes a series of
compressions which steepen into shocks in the wake of the drop, Figures 6c and 6d.

We compare our simulation results to the experiments of the same setup33 in Figure
7 . There is good qualitative agreement with the experiments as the shape and wake of
the drop in both the simulation and experiment look similar. The dark region upstream of
the drop in the experimental pictures is most likely due to the experimental visualization
technique which might be capturing evaporation effects or might be distorted by edge effects
from the walls holding the water column. Experimental measurements of the drop width
are accurately described by the simulation, Figure 8. There is very good agreement early
in time and this agreement improves as the mesh is refined. Late time discrepancies can be
explained by 3d effects and transport phenomena such as evaporation which are not modeled
in the simulations.

shock

Air

Water

(a) Shock impinging on a drop of water in air.

Air

Water
u

Wall

(b) Supersonic drop hitting a
wall.

Figure 5: Problem setups for the multiphase flows.

IV.B. Supersonic Drop Impact

A drop located 4r0 from a wall is moving at Mach 1.5 in initially quiescent air towards the
wall, Figure 5b. The domain size is 13r0 in the x-direction and 26r0 in the y-direction. The
mesh is refined around the bubble and along its trajectory towards the wall. Grid stretching
is applied far from the drop and wall to minimize boundary effects and reduce computational
cost. The non-dimensional time is defined as t = T cair

r0
.

As the drop travels through the air it creates a bow shock. The box shock impinges on
the wall and is reflected back towards the drop, Figure 9a. Soon after the drop hits the
wall, generating a large pressure at the wall through the water hammer effect, Figure 9b.
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(a) t = 5.4 (b) t = 20.7

(c) t = 26.55 (d) t = 33.75

Figure 6: Mach number contours for a 2.5 shock Mach number.

The shock from the wall traverses the drop and is reflected at the back of the drop as a
rarefaction inside the drop, Figure 9c. This reflected rarefaction wave at the back of the
drop causes a large pressure decrease and high tension inside the drop. Measurements of
the pressure at the wall at three different location along the wall (h = 0 (drop centerline),
h = 1r0, and h = 2r0) show the first pressure rise due to the bow shock, Figure 10. The large
pressure jump due to water hammer effect when the drop hits the wall follows soon after.
High negative wall pressures later in time are caused by the reflected rarefaction. These
large tensions are a possible mechanism for cavitation in the drop and subsequent erosion of
the wall.

V. Conclusions

In this paper, we recalled an improved advection scheme for the dg method. This im-
provement addresses the mismatch between the 3p+ 1 order of accuracy of the rdg method
applied to diffusive terms and the 2p + 1 order of accuracy of the standard advection dg
method. We applied this novel scheme to the Euler equations. We developed a unique
framework which enables the use of a superconvergent dg method with a consistent order of
accuracy for both the diffusion and advection terms. Using the high-order dg method com-
bined with a non-oscillatory reconstruction procedure, we solved two multiphase problems
of relevance to many engineering applications. We showed very good qualitative and quan-
titative agreements between simulation results and past experiments.33 The reentrant flow
in the wake of the drop caused by baroclinic vorticity deposition induces a decrease in the
drop width and an increase in its height. Simulations results of a supersonic drop hitting a
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(a) t = 3.137 (b) t = 6.335 (c) t = 12.578

(d) t = 15.919 (e) t = 25.544 (f) t = 30.885

Figure 7: Comparison of experimental results33 (top) and simulated density (bottom) at a
1.18 shock Mach number.

0 10 20 30 40
t [−]

0.0

0.2

0.4

0.6

0.8

1.0

w
[−

] 50

100

125

Figure 8: Comparison of the normalized drop width as a function of time between simulations
and experiments at a 1.18 shock Mach number. Solid red: 50; dashed green: 100; dot-dashed
blue: 125 cells per radius. Black squares: experimental results.33
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(a) t = 2 (b) t = 2.5

(c) t = 3.3

Figure 9: Simulation results of non-dimensional density (top half) and pressure (bottom
half) for a Mach 2.5 drop hitting a wall.
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Figure 10: Pressure at the wall at three different locations.
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wall indicate that large negative pressures and high tensions could lead to cavitation erosion
at the wall. For this latter problem, future work will include investigating the effect of the
initial drop location on the wall pressure jump, bow shock interaction effects, and modeling
air bubbles inside the drop.

Acknowledgements

This research was supported in part by the DOE/NNSA under the predictive Science
Academic Alliance Program by Grant No. DEFC52-08NA28616, by ONR grant N00014-12-1-
0751 under Dr. Ki-Han Kim, by NSF grant CBET 1253157, through computational resources
and services provided by Advanced Research Computing at the University of Michigan, Ann
Arbor, and used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number ACI-1053575.

References

1Adjerid, S., Devine, K. D., Flaherty, J. E., and Krivodonova, L., “A posteriori error estimation for
discontinuous Galerkin solutions of hyperbolic problems,” Comput. Methods Appl. Mech. Engrg., Vol. 191,
No. 11-12, 2002, pp. 1097–1112.

2Adjerid, S. and Massey, T. C., “Superconvergence of discontinuous Galerkin solutions for a nonlinear
scalar hyperbolic problem,” Comput. Methods Appl. Mech. Engrg., Vol. 195, No. 25-28, May 2006, pp. 3331–
3346.

3Cockburn, B., Lin, G., and Shu, C.-W., “TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws III: One-dimensional systems,” J. Comput. Phys., Vol. 84, No. 1,
1989, pp. 90–113.

4Cockburn, B. and Shu, C.-W., “TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws II: General framework,” Math. Comput., Vol. 52, No. 186, 1989,
pp. 411–435.

5Cockburn, B., Hou, and Shu, C.-W., “The Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws IV: The multidimensional case,” Math. Comput., Vol. 54, No. 190,
1990, pp. 545–581.

6Cockburn, B. and Shu, C.-W., “The local discontinuous Galerkin method for time-dependent
convection-diffusion systems,” SIAM J. Numer. Anal., Vol. 35, No. 6, 1997, pp. 2440–2463.

7Cockburn, B. and Shu, C.-W., “The Runge-Kutta discontinuous Galerkin method for conservation
laws V: Multidimensional systems,” J. Comput. Phys., Vol. 141, No. 2, 1997, pp. 199–224.

8Biswas, R., Devine, K. D., and Flaherty, J. E., “Parallel, adaptive finite element methods for conser-
vation laws,” Appl. Numer. Math., Vol. 14, No. 1-3, April 1994, pp. 255–283.

9Krivodonova, L., “Limiters for high-order discontinuous Galerkin methods,” J. Comput. Phys.,
Vol. 226, No. 1, Sept. 2007, pp. 879–896.

10Kuzmin, D., “A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin meth-
ods,” J. Comput. Appl. Math., Vol. 233, No. 12, April 2010, pp. 3077–3085.

11Liu, Y., Shu, C.-W., Tadmor, E., and Zhang, M., “Central discontinuous Galerkin methods on over-
lapping cells with a nonoscillatory hierarchical reconstruction,” SIAM J. Numer. Anal., Vol. 45, No. 6, 2007,
pp. 2442.

12Xu, Z., Liu, Y., and Shu, C.-W., “Hierarchical reconstruction for discontinuous Galerkin methods
on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells,” J. Comput.
Phys., Vol. 228, No. 6, April 2009, pp. 2194–2212.

13Henry de Frahan, M. T., Varadan, S., and Johnsen, E., “A new limiting procedure for discontinuous

12 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

30
45

 

http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2FS0045-7825%2801%2900318-8&citationId=p_1
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.jcp.2008.11.025&citationId=p_12
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.jcp.2007.05.011&citationId=p_9
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.cma.2005.06.017&citationId=p_2
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1137%2FS0036142997316712&citationId=p_6
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.jcp.2014.09.030&citationId=p_13
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2F0021-9991%2889%2990183-6&citationId=p_3
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.cam.2009.05.028&citationId=p_10
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1006%2Fjcph.1998.5892&citationId=p_7
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1137%2F060666974&citationId=p_11
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2F0168-9274%2894%2990029-9&citationId=p_8


Galerkin methods applied to compressible multiphase flows with shocks and interfaces,” J. Comput. Phys.,
Vol. 280, No. 0, 2015, pp. 489 – 509.

14Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., “Unified analysis of discontinuous Galerkin
methods for elliptic problems,” SIAM Journal on Numerical Analysis, Vol. 39, No. 5, 2002, pp. 1749–1779.

15Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A., “Discontinuous Galerkin approximations
for elliptic problems,” Numerical Methods for Partial Differential Equations, Vol. 16, No. 4, 2000, pp. 365–
378.

16Douglas, J. and Dupont, T., “Interior penalty procedures for elliptic and parabolic Galerkin methods,”
Computing methods in applied sciences, 1976, pp. 207–216.

17Bassi, F. and Rebay, S., “A High-Order Accurate Discontinuous Finite Element Method for the Nu-
merical Solution of the Compressible NavierStokes Equations,” J. Comput. Phys., Vol. 131, No. 2, 1997,
pp. 267–279.

18Peraire, J. and Persson, P.-O., “The Compact Discontinuous Galerkin (CDG) Method for Elliptic
Problems,” SIAM J. Sci. Comput., Vol. 30, No. 4, 2007, pp. 25.

19Lo, M. and van Leer, B., “Recovery-Based Discontinuous Galerkin for Navier-Stokes Viscous Terms,”
AIAA paper , , No. June, 2011, pp. AIAA–2011–3406.

20van Leer, B. and Lo, M., “Unification of Discontinuous Galerkin Methods for Advection and Diffusion
1 Introduction : history of RDG,” New Horizons, , No. January, 2009, pp. 1–12.

21van Leer, B. and Lo, M., “A Discontinuous Galerkin Method for Diffusion Based on Recovery,” Fluid
Dynamics, , No. June, 2007.

22Johnsen, E. and Colonius, T., “Implementation of WENO schemes in compressible multicomponent
flow problems,” J. Comput. Phys., Vol. 219, No. 2, Dec. 2006, pp. 715–732.

23Johnsen, E., “On the treatment of contact discontinuities using WENO schemes,” J. Comput. Phys.,
Vol. 230, 2011, pp. 8665–8668.

24Movahed, P. and Johnsen, E., “A solution-adaptive method for efficient compressible multifluid simula-
tions, with application to the Richtmyer-Meshkov instability,” J. Comput. Phys., Vol. 239, 2013, pp. 166–186.

25Henry de Frahan, M. T. and Johnsen, E., “Discontinuous Galerkin method for multifluid Euler equa-
tions,” 21st AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and As-
tronautics, 2013.

26Haller, K. K., Ventikos, Y., Poulikakos, D., and Monkewitz, P., “Computational study of high-speed
liquid droplet impact,” J. Appl. Phys., Vol. 92, No. 5, 2002, pp. 2821–2828.

27Haller, K. K., Poulikakos, D., Ventikos, Y., and Monkewitz, P., “Shock wave formation in droplet
impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region,” J.
Fluid Mech., Vol. 490, 9 2003, pp. 1–14.

28Khieu, L. and Johnsen, E., “Analysis of Improved Advection Schemes for Discontinuous Galerkin
Methods,” 2014.

29Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S.,
Lifka, D., Peterson, G. D., Roskies, R., Scott, J. R., and Wilkens-Diehr, N., “XSEDE: Accelerating Scientific
Discovery,” Computing in Science and Engineering , Vol. 16, No. 5, 2014, pp. 62–74.

30Geuzaine, C. and Remacle, J.-F., “Gmsh: A 3-D finite element mesh generator with built-in pre- and
post-processing facilities,” Int. J. Numer. Methods Eng., Vol. 79, No. 11, Sept. 2009, pp. 1309–1331.

31Henry de Frahan, M. T. and Johnsen, E., “Numerical simulations of a shock interacting with successive
interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer-Meshkov and Rayleigh-
Taylor instabilities,” Shock Waves, 2014.

32Di Stefano, C. A., Malamud, G., Henry de Frahan, M. T., Kuranz, C. C., Shimony, A., Klein, S. R.,
Drake, R. P., Johnsen, E., Shvarts, D., Smalyuk, V. A., and Martinez, D., “Observation and modeling
of mixing-layer development in high-energy-density, blast-wave-driven shear flow,” Phys. Plasmas, Vol. 21,
No. 5, May 2014, pp. 056306.

33Igra, D. and Takayama, K., “Experimental Investigation of Two Cylindrical Water Columns Subjected
to Planar Shock Wave Loading,” J. Fluids Eng., Vol. 125, No. 2, 2003, pp. 325.

34Meng, J. and Colonius, T., “Droplet Breakup in High-Speed Gas Flows,” 8th Int. Conf. Multiph. Flow ,
No. 2011, ICMF, Jeju, Korea, 2013.

13 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

30
45

 

http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1002%2Fnme.2579&citationId=p_30
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1002%2F1098-2426%28200007%2916%3A4%3C365%3A%3AAID-NUM2%3E3.0.CO%3B2-Y&citationId=p_15
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&system=10.2514%2F6.2011-3406&citationId=p_19
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.jcp.2011.08.017&citationId=p_23
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1017%2FS0022112003005093&citationId=p_27
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1007%2FBFb0120591&citationId=p_16
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.jcp.2013.01.016&citationId=p_24
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&system=10.2514%2F6.2014-3221&citationId=p_28
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1063%2F1.4872223&citationId=p_32
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1006%2Fjcph.1996.5572&citationId=p_17
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&system=10.2514%2F6.2013-2595&citationId=p_25
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1137%2FS0036142901384162&citationId=p_14
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1109%2FMCSE.2014.80&citationId=p_29
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1115%2F1.1538628&citationId=p_33
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1016%2Fj.jcp.2006.04.018&citationId=p_22
http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1063%2F1.1495533&citationId=p_26


35Cocchi, J. P., Saurel, R., and Loraud, J. C., “Treatment of interface problems with Godunov-type
schemes,” Shock Waves, Vol. 5, No. 6, May 1996, pp. 347–357.

14 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

30
45

 

http://arc.aiaa.org/action/showLinks?doi=10.2514%2F6.2015-3045&crossref=10.1007%2FBF02434010&citationId=p_35

