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We use scaling analysis and direct numerical simulation (DNS) to investigate
the decay of initially isotropic turbulence in rectangular boxes with solid no-slip
walls and of different aspect ratios. The problem under consideration is initialized
with an initially isotropic turbulent field, from which volumes of different aspect
ratios are extracted and along whose boundaries solid walls are placed. Depending
on the aspect ratio, we observe different rates of kinetic energy decay. Using simple
theoretical arguments, we develop a scaling law for the kinetic energy with respect
to time based on dissipation at the wall, in which the relevant length scale is the
volume to surface ratio. We verify this scaling using the DNS results.

I. Introduction

The injection and subsequent mixing of a fluid in a turbulent flow inside a closed container
is a basic fluid mechanics problems that is a critical component of a wide variety of applications.
Examples include internal combustion engines,1 reciprocating piston systems to compress gases13

and the dispersion of a contaminant or tracer in a vessel or another enclosed volume, e.g., pollutants
in a tunnel whose gas volume is changing due to traffic.2 In many such situations, one of the
main goals is to characterize and control the mixing of these fluids. The confinement gives rise
to anisotropy and introduces at least one additional length scale (the cube root of the volume);
furthermore, the conditions of interest for common applications are often at moderate Reynolds
numbers, such that classical high-Reynolds-number scalings cannot be used.

The foundations of this classical turbulence theory was laid out by Kolmogorov over fifty
years ago.6–8 At sufficiently high Reynolds numbers, small-scale turbulent motions are statistically
isotropic at scales much smaller than the largest eddies. The scaling of the smallest (Kolmogorov)
scale goes as

η =
ν3/4

ǫ1/4
, (1)

where ν is the fluid viscosity and ǫ is the kinetic energy dissipation rate (per unit mass). Further-
more, intermediate lengths Λ have a unique form independent from viscosity, such that the velocity

∗Assistant Professor, Mechanical Engineering Department, AIAA Member.
†Post-Doctoral Scholar, Department of Mechanical Science and Engineering, AIAA Member.
‡Professor, Mechanical Engineering Department.

1 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

30
81

 

 45th AIAA Fluid Dynamics Conference 

 22-26 June 2015, Dallas, TX 

 10.2514/6.2015-3081 

 Copyright © 2015 by Eric Johnsen, Pooya Movahed and David R. 

 Dowling. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA AVIATION Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2015-3081&domain=pdf&date_stamp=2015-06-18


scales as follows:
urms ∼ (ǫΛ)1/3, (2)

where urms is the root-mean-square velocity. The hypotheses underlying the theory center around
the idea of an energy cascade: kinetic energy available at the large scales is transferred through a
cascade process with negligible energy losses to the small scales, where viscous motions dissipate
the energy. Relatively simple scaling laws then relate energy, length scales and fluid properties.
However, this theory is applicable only to incompressible, homogeneous, isotropic turbulence at
sufficiently high Reynolds number that the largest and smallest scales of motion are significantly
different in size. Furthermore, recent findings suggest that this scaling may not be as widely
applicable as initially thought.14

In this paper, we use scaling analysis and direct numerical simulation to seek to determine the
length and time scales that govern the evolution of turbulence when it is confined with no mean
shear and when the Reynolds number is not high enough to ensure adequate scale separation for
high-Reynolds number scaling. We describe our numerical approach in §II and the problem of
decaying isotropic turbulence in §III. The scaling analysis and simulations results are presented in
§IV, followed by a comment on acoustical effects in §V.

II. Approach

The compressible Navier-Stokes equations with Fourier heat conduction govern the problem un-
der consideration. We use a high-order accurate time- and space-explicit finite difference approach
in our simulations.10 The time marching is handled by a third-order explicit strong-stability-
preserving Runge-Kutta for time marching. A sixth-order central scheme is used to compute the
convective fluxes in split form based on that of Blaisdell et al.3 and the approach of Ducros4 is
implemented, which satisfies summation by parts in periodic domains and is discretely conserva-
tive. This approach minimizes unphysical pile-up of energy at high wavenumbers due to potential
aliasing errors. No artificial dissipation is necessary since the mesh resolutions are sufficiently high
to resolve the flow10, 11 and achieve converged results, thus justifying the term direct numerical
simulation. The diffusive terms are discretized in non-conservative form, resulting in better accu-
racy, robustness, spectral representation of diffusive effects at high wavenumbers, and preventing
odd-even decoupling.12 This approach has been used to investigate late-time mixing following
the Richtmyer-Meshkov instability10 and turbulent multi-material mixing.11 The code is written
in FORTRAN 90 and parallelized using MPI, including the use of the HDF library for parallel
I/O.10, 11 The code has been verified and validated; weak and strong parallel scaling studies were
performed on NSF XSEDE machines with excellent results.

III. Decaying isotropic turbulence

Preliminary investigations into the phenomenology of Kolmogorov’s homogoneous, isotropic
turbulence, decaying isotropic turbulence in a single fluid can be conducted using direct numerical
simulation.5, 9 The initial conditions consist of a random solenoidal velocity field inside a triple
periodic box of size 2π × 2π × 2π that satisfies a Batchelor spectrum

E (k) ∼ k4 exp

(

−
2k2

k20

)

, (3)

where k0 is the most energetic wavenumber and λ0 = 2/k0 is the initial Taylor microscale. The
density and pressure fields are initially uniform. The turbulent Mach number and Taylor-scale
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Figure 1. Schematic of the confined turbulence problem under consideration.

Reynolds number are defined as

Mt =

√

〈uiui〉

〈c〉
, Reλ =

〈ρ〉urmsλ

〈µ〉
, (4)

where the rms velocity and Taylor microscale are given by:

urms =

√

〈uiui〉

3
, λ2 =

〈

u2i
〉

〈

(

∂ui

∂xi

)2
〉 (5)

Here, c is the sound speed and 〈·〉 denotes spatial averages over the whole domain. An important
time scale of the problem is the eddy turn-over time based on the initial properties, τ = λ0/urms,0.
The approach discussed in detail in Johnsen et al.5 is used to generate the initial random field on
the finest grid. For a given k0, the velocity field is generated on the finest mesh (N3 = 5123) and
spectrally filtered to coarser grids (N3 = 2563 here).

IV. Confined turbulence: Theory and simulations

The problem of freely decaying isotropic turbulence has been the subject of intensive research
during the past few decades due to its canonical nature and importance for modeling purposes.
While the assumptions of isotropy and periodic boundary conditions simplify the analysis, large-
scale anisotropy (e.g., caused by rotation, shear, acceleration or walls) is in practice present in most
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Figure 2. Kinetic energy vs. time for direct numerical simulations of confined turbulence in a box of
different aspect ratios.

turbulent flows and affects the local flow dynamics across different scales. Integral quantities (such
as the kinetic energy) are also expected to be affected.

We investigate the role of wall confinement and viscous dissipation on the decay rate of an
initially isotropic field for confining volumes of different aspect ratios. The problem set-up is shown
schematically in Fig. 1. We first generate an isotropic velocity field in a cube of size L × L ×H,
with H = L and periodic boundary conditions to start, and let this random field evolve into
an equilibrium turbulent state until t/τ = 5. Next, using this field at t/τ = 5 as an “initial
condition”, we change the domain size to H 6= L (values of 3L/2, L/2, L/4, L/8, 3L/32 and L/16
are considered) by retaining only that volume from the original, make all boundaries no-slip walls
by setting to zero the velocity along all walls, and let the turbulence evolve. We expect the walls
to restrict the initial field to this new, confined geometry and also provide an additional viscous
dissipation mechanism.

Fig. 2 shows the time evolution of kinetic energy per unit volume for different aspect ratios. As
explained in §V, the kinetic energy profiles were filtered to remove fluctuations caused by acoustic
waves generated by the initial conditions. Clearly, the kinetic energy decreases at different rates
for different aspect ratios. We further note that a Kolmogorov scaling of the type

dK

dt
∼

K3/2

l
, (6)

where K is the kinetic energy per unit mass based on urms and l is the integral scale, does not
completely describe the problem either (Fig. 3): although the initial behavior is constant and could
likely be scaled by the aspect ratio, departures from the theory occur at different times and rates,
depending on the aspect ratio.

This change in confining volume introduces an additional length scale to the problem, which
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Figure 3. Kinetic energy scaled according to Eq. 10 vs. time for direct numerical simulations of
confined turbulence in a box of different aspect ratios.

we expect can be used to scale the relevant physical variables. In particular, the volume to surface
ratio, X = V/S, is a likely candidate for this additional length scale. Given the wall shear stress

τw ∼ µ
u

V/S
, (7)

the wall dissipation per unit mass can be expressed as:

uτwS

ρV
=

νu2

X2
∼

K

X2
, (8)

where u is the rms velocity, τw the wall shear stress, ρ the density and ν the kinematic viscosity.
Following this argument, the kinetic energy no longer obeys Eq. 6. We hypothesize that in the
present problem the energy dissipation is dominated by Eq. 8, such that the kinetic energy rate
dissipates as follows:

−
dK

dt
∼

νK

(V/S)2
, (9)

such that

K = Kr exp

(

−c
ν(t− tr)

(V/S)2

)

, (10)

where Kr is some reference kinetic energy at time tr. Using this solution, we rescale the kinetic
energy rate from Fig. 3 as follows:

K3/2/(V/S)

−dK
dt

ν

K
1/2
r (V/S)

=
1

C
exp

(

C

2

νtr
(V/S)2

)

exp

(

−
C

2

νt

(V/S)2

)

, (11)
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Figure 4. Kinetic energy (scaled according to Eq. 12 vs. time for direct numerical simulations of
confined turbulence in a box of different aspect ratios.

or
K3/2/(V/S)

−dK
dt

ν

K
1/2
o L

= C1 exp

(

−C2

νt

(V/S)2

)

, (12)

where Ko is the initial kinetic energy and C, C1 and C2 are constants to be determined empirically.
We use direct numerical simulations to consider confining volumes of different aspect ratios by

adjusting the initial field and verify this scaling and determine the constants. In particular, we plot
the quantity on the left-hand-side of Eq. 12 vs. time scaled as shown on the right-hand-side of the
same equation in Fig. 4. We clearly observe collapse of the data, thus validating the theoretical
argument embodied in Eq. 10. From the DNS, we can estimate the constants to be C1 ≈ 0.001 and
C2 ≈ 1.7.

For a qualitative representation of the flow, Figs. 5 and 6 show velocity fields corresponding
decaying confined turbulence in an L × L × 3L/4 volume, and Figs. 7 and 8 in an L × L × L/8
volume, at early and late times. As time evolves, the Reynolds number decreases, leading to more
organized and coherent features; at moderate times, the shape of the confining volume still affects
the flow. At very late times, the flow consists of a single vortex. The different rates of decay of the
turbulence for the different aspect ratios is manifest, as is the “squishing” efffect of the confining
volume. It is interesting to note that a turbulent scaling still describes the flow physics at such late
times.

V. Turbulence and acoustic waves

In the present problem, the initial field is not in acoustic equilibrium since the density and
pressure are not initialized in the same fashion as the velocity. Thus, acoustic waves are produced
initially, which are not damped very fast. The trace of these acoustic waves can be found by
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considering the raw kinetic energy curves (Fig. 9). A plot of the total energy per unit mass is
smooth, while the kinetic energy exhibits oscillations of constant period. Energy is exchanged
acoustically between kinetic and potential as the acoustic waves generated at the beginning of the
simulation reflect between the walls. Although not shown here, the period of these oscillations
is the time that it takes for one such wave to traverse the box in the shortest dimension. Since
these waves are acoustic, they do not get significantly damped and persist until the very end of the
simulation.

VI. Conclusions

We used direct numerical simulation (DNS) to investigate confined turbulence — the decay
of initially isotropic turbulence in boxes of different aspect ratios with no-slip walls. The flow is
initialized with the same random field, from which volumes with desired aspect ratios are extracted.
This ensures that the initial kinetic energy per unit mass is the same for all volumes. We developed
a scaling for the kinetic energy based on the wall dissipation, in which the appropriate length scale
is the volume divided by the surface area. This scaling fully describes the problem and was verified
using the DNS results. We further showed that acoustic waves generated early in the simulation
are present until late times. In the future, we will study in greater detail mixing and changes in
the geometry.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation Grant number OCI-1053575.
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Figure 5. Velocity vector fields (colored by magnitude) of decaying confined turbulence for a L×L×3L/4
volume for t/τ = 0, 5, 15, 25, 35, 45.
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Figure 6. Velocity vector fields (colored by magnitude) of decaying confined turbulence for a L×L×3L/4
volume for t/τ = 95, 195, 295, 395, 495, 595.
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Figure 7. Velocity vector fields (colored by magnitude) of decaying confined turbulence for a L×L×L/8
volume for t/τ = 0, 5, 15, 25, 35, 45.
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Figure 8. Velocity vector fields (colored by magnitude) of decaying confined turbulence for a L×L×L/8
volume for t/τ = 65, 95, 115, 145, 195, 245.
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Figure 9. Total and kinetic energy (per unit volume) vs. time.
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