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This paper studies the scaling of airplane dynamic response to stochastic wind gusts, with focus on the relationship

between airplane size and airspeed variations. The results have applications in the design and control of small-scale

aircraft for robustness with respect to turbulence. Using linearized equations of motion and the Dryden model of

gusts, the paper presents analytical and numerical scaling laws for the phugoid natural frequency and damping ratio,

and the variances of the airspeed and flight-path angle. The results show that small aircraft are more susceptible to

high frequency gusts, that the phugoid damping ratio does not depend directly on airplane size, that the airspeed and

flight-path angle variances can be parameterized by the ratio of the phugoid natural frequency to a characteristic

turbulence frequency, and that the coefficient of variation of the airspeed decreases with increasing airplane size.

Numerical examples validate the results using models of 11 different airplanes, particularly the NASA Generic

TransportModel, a hypothetical transport aircraft similar to a Boeing 757, and the NASAT2 subscale jet transport,

an operational 5.5% scale model of the Generic Transport Model.

Nomenclature

A = state matrix of Eq. (14)
Ap = state matrix of Eq. (21)
Avwx = submatrix of Aw corresponding to the

longitudinal velocity component
Aw = state matrix of the gusts’ coloring filter
B = input matrix of Eq. (14)
Bvwx = submatrix of Bw corresponding to the

longitudinal velocity component
CD = drag coefficient
CL = lift coefficient
CPOL = output matrix used to compute P in the

open-loop case
Cvwx = submatrix of Cw corresponding to the

longitudinal velocity component
Cw = output matrix of the gusts’ coloring filter,

�CTwv CTwω �T
Cwv = terms of Cw that correspond to δvw
c = control-input vector
�c = wing chord length
D = covariance matrix of the noise input d�t�
d�t� = white noise with distributionN �0; D� that

drives the gusts’ coloring filter
E = disturbance input matrix of Eq. (14)
Ep = disturbance input matrix of Eq. (21)
Ew = input matrix of the gusts’ coloring filter
e = Oswald efficiency factor
Fa = sum of the forces acting on the airplane that

depend on the relative wind linear and
angular velocities (i.e., aerodynamic forces)

FD = magnitude of the force of drag
Fg = gravitational force acting on the airplane
FL = magnitude of the force of lift

F0 = sum of the forces acting on the airplane that neither
depend on the relative wind nor are gravitational

H× = skew-symmetric matrix formed from h, see Eq. (9)
h = angular momentum of the airplane
I = moment of inertia matrix of the airplane
Lu = characteristic length in the longitudinal turbulence

power spectral density
Ma = sum of the moments acting on the airplane that

depend on the relative wind linear and angular
velocities (i.e., aerodynamic moments)

M0 = sum of the moments acting on the airplane that
do not depend on the relative wind

m = mass of the airplane
N = airplane length scale factor, in which the scale

model’s length is N times the full size airplane’s
N �μ;Σ� = normal distribution with mean μ and covariance

matrix Σ
P = covariance matrix of � δvTc δ vTw�T
POL = covariance matrix of the state vector in Eq. (14)
r = position vector
S = wing planform area
V = airspeed, magnitude of vc
Vc× = skew-symmetric matrix formed from vc, see Eq. (9)
vc = center of mass velocity of the airplane, � u v w �T
vw = velocity of the wind relative to the inertial reference

frame, � vwx vwy vwz �T
x = state vector of Eq. (14)
xp = state vector of Eq. (21)
γ = flight-path angle
δa = perturbations of the aileron control input
δc = perturbations of c, � δa δe δr �T
δe = perturbations of the elevator control input
δr = perturbations of the rudder control input

δvc = perturbation of vc after perturbing wind
δvw = perturbation of the wind velocity

δvwx = longitudinal component of the wind disturbance
δϵ = perturbation of ϵ after perturbing wind
δω = perturbation of ω after perturbing wind

δωw = perturbation of the wind angular velocity

E = nonlinear function expressing _ϵ as a function
of ω and ϵ

ϵ = vector comprising the roll and pitch Euler
angles, �ϕ θ �T

ζp = damping ratio of the phugoid mode
κ = relative frequency of the airplane phugoid

mode to the turbulence
ξvwx = state variable of the gusts’ coloring filter

corresponding to the longitudinal velocity component
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ξw = state vector of the gusts’ coloring filter
ρ = air density
ρA∕C = density of the airplane
σu = intensity of the longitudinal turbulence
Φ = matrix transforming the angular velocity into

the Euler rates
Ω× = skew-symmetric matrix formed from ω, see Eq. (9)
ω = angular velocity of the airplane around its center

of mass, �p q r �T
ωnp = natural frequency of the phugoid mode
ωw = angular velocity of the wind relative to the inertial

reference frame, �pw qw rw �T
1n = identity matrix of dimension n

I. Introduction

T URBULENCE is a common factor in airplane accidents. In a
review of over 4000 reports onweather-related accidents between

1992 and 2001, 509, or 12%, listed weather-related turbulence as a
cause or contributing factor [1]. Turbulence contributes to accidents in
a variety of ways, including upsets or flight envelope departures that
lead to loss of control, substantial damage to aircraft, and injuries to
crew and passengers that are sometimes fatal. However, the effects of
turbulence on aircraft differ greatly based on aircraft size. This can be
seen by normalizing the number of turbulence-related accidents
between 1992 and 2001 from the same report [1] by the total number of
hours flown by air carriers and general aviation aircraft. Because the
2001 flight hours are readily available for air carriers [2] and general
aviation aircraft [3], but the hours for the entire 10-year period are not,
10 times the 2001 flight hours are used for the normalization. Air
carriers have a turbulence-related accident rate of 1.25 × 10−5

turbulence-related accidents per flight hour, whereas general aviation
aircraft and air taxis have a rate of 1.41 × 10−3 turbulence-related
accidents per flight hour, two orders of magnitude larger. While other
factors besides size undoubtedly factor into this much higher
turbulence-related accident rate among light aircraft, for example,
pilot proficiency and underreporting of general aviation flight hours,
this paper shows how aircraft performance might explain this
difference.
Figure 1 shows that the airspeed coefficient of variation for an

airplane in moderate turbulence decreases with increasing airplane
size, measured in this example by wingspan. The coefficient of
variation is the standard deviation divided by the mean, a normalized
measure of uncertainty in the airspeed. The airplane dynamically
scaled for this example is the Lockheed C-5A. Also marked on the
figure are the coefficients of variation for 10 other aircraft of various
sizes. The figure is described in detail in Sec. V, but the result is
intuitive: the fractional change in airspeed due to turbulence is larger
for small aircraft.
In addition to general aviation aircraft, a growing fleet of

unmanned aircraft systems can benefit from modeling of gust effects
on small aircraft. By early 2010, the U.S. military had acquired more
than 6100 unmanned aircraft that each weighed 20 lb or less [4].
Moreover, the U.S. military classifies unmanned aerial vehicles over

5000 lb as large [5], whereas the Federal Aviation Administration’s
(FAA) wake-turbulence classifications designate airplanes lighter
than 41,000 lb as small [6]. Many of these aircraft use autopilots that
rely on mathematical models of the airplane’s dynamics and
performance. The aim of this work was to provide new insight and
modeling for airplane dynamic response to stochastic gusts in an
effort to make airplanes, especially small airplanes, more robust to
turbulence. This aim was accomplished by providing scaling laws
for the airplane phugoid mode and for airspeed variations due
to gusts.
The present work is a continuation of recent efforts by the authors

to analyze the dynamic response of airplanes to turbulence [7–9]. In
the prior work [8], the authors present a technique to quantify and
visualize the change in airplane performance due to turbulence based
on steady flight envelope adjustments. In the present work, the
authors analyze how that change in performance scales with airplane
size. The modeling required for this analysis primarily draws on two
fields: airplane dynamics and wind gust modeling. Detailed
discussions of airplane nonlinear and linearized dynamic equations,
as well as reduced-order models for these equations, can be found
in standard textbooks [10–13]. Some texts also include short
sections on modeling gusts [10,12–14]. Additional work models the
effect of wind gusts [15,16] and wind shear [17,18] on aircraft
dynamics.
Within the field of flight dynamics, standard scaling laws exist for

airplane parameters and performance variables [19–21]. These
scaling laws have been used in applications such as system
identification of small-scale helicopters [22], development of
dynamically scaled aircraft [23], and prediction of the performance of
low-Reynolds-number flyers [24]. These scaling laws are derived
from the general field of dimensional analysis [25,26], with
analogous applications for ships [27], supernovas [28], and in fluid
mechanics more generally [29].
Several publications give detailed discussions ofwind gustmodels

and their power spectral densities, specifically the Dryden and von
Kármán models [30,31]. In this literature, it is common to model
gusts as stationary random processes defined by given power spectral
densities. When modeling wind gusts in this manner, engineers are
modeling a type of gust that is continuously varying over long
portions of the aircraft’s trajectory. Clear air turbulence is a type of
gust that can be classified and modeled in this way. Analogous
models have been developed for road roughness [32] and rough seas
[33,34]. The Drydenmodel has a rational power spectral density, and
the von Kármán model has an irrational power spectral density but
matches experimental observations more closely than the Dryden
model. These two models have standardized forms used by the
FAA and the U.S. Department of Defense for design and simulation
[31,35]. This paper uses thesewindmodels as inputs to the linearized
aircraft dynamics to analyze aircraft performance in this type of
gust.
In addition to modeling gusts, researchers have also studied the

effects of gusts on aircraft. Several good overviews of the field exist
[15,30,36,37]. Among the results published in this field, Hoblit
provides techniques, dimensionless parameters, and examples from a
set of charts to characterize uncertainty in the normal load factor due
to gust loads using a short period approximation of the linearized
airplane dynamic equations [30]. This paper studies uncertainty in
the airspeed using a phugoid approximation of the linearized airplane
dynamic equations, providing analytical solutions and showing that,
in this formulation, one fewer dimensionless parameters are needed
to characterize the effects of gusts.
This paper expands upon the scaling laws presented in the

literature and applies them to airplane flight through turbulence.
Using a phugoid approximation of airplane dynamics, this paper
presents three scaling laws: for the phugoid mode, for the airspeed
and flight-path angle variances, and for the airspeed coefficient of
variation. The phugoid mode analysis shows that smaller airplanes
are more sensitive to higher-frequency gusts. The scaling of the
airspeed and flight-path angle variances includes analytical solutions
for both variances, and shows that they can be parameterized using
a new nondimensional parameter: the ratio of the phugoid modeFig. 1 Dynamically scaled airspeed coefficient of variation vs wingspan.

RICHARDSON ETAL. 1555

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
24

10
 



natural frequency to the turbulence corner frequency. This non-
dimensional parameter is itself the ratio of two nondimensional
parameters suggested by Hoblit, meaning that this formulation of the
gust response requires one fewer nondimensional parameters than
the formulation posed by Hoblit [30]. The airspeed coefficient of
variation analysis shows that the normalized uncertainty in the
airspeed decreases with increasing airplane size, and thus the paper
presents a mathematical model showing how smaller airplanes have
larger gust response. The paper validates the analytical results using
stability derivative models of the NASA Generic Transport Model
(GTM) andT2, and compares the results from these two airplanes to a
variety of other airplanes.
The paper is divided into seven sections, including the Introduction

and Conclusions. Section II summarizes a linearized model for
airplane dynamic response to turbulence. Section III summarizes the
scaling laws presented in the literature. Section IV summarizes a
phugoid approximation of the model in Sec. II, and shows how this
phugoid model’s natural frequency and damping ratio depend on
airplane size. Section IV also derives an analytical solution for the
airspeed and flight-path angle variances in the phugoid model in
terms of a new nondimensional parameter. Section V provides
numerical examples of the models from Secs. II and IV that
dynamically scale a full-size transport airplane, the GTM, in
comparison with its scale model, the T2. Section V also shows how
the T2 and scaled GTM compare to a variety of other airplanes, and
compares different choices of length scale factor. Section VI shows
examples of flight envelope reductions due to turbulence for aNavion
and an Aerosonde and comments on the applicability of the scaling
laws to these envelopes.

II. Linearized Equations of Motion

The linearization starts with the nonlinear airplane dynamic
equations [11]:

m� _vc �Ω×vc� � Fa�vc − vw;ω − ωw; c� � Fg � F0 (1)

_h�Ω×h � Ma�vc − vw;ω − ωw; c� �M0 (2)

_ϵ � E�ω; ϵ� (3)

in which all the vectors are expressed in the body frame

h � Iω (4)

E�ω; ϵ� � Φ�ϵ�ω (5)

Φ�ϵ� �
�
1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ

�
(6)

and

I �
Z
Volume

ρA∕C�r��krk213 − rrT� dV �

0
@ Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

1
A
(7)

The yaw Euler angle does not affect any of the other variables, so its
dynamics are omitted. Ω× is a skew-symmetric matrix replacing the
cross product of a pair of vectors expressed in an orthonormal
coordinate system with the inner product of a matrix and a vector, as
in the identity:

a × b � A×b � BT×a (8)

A×�a� �
 

0 −a3 a2
a3 0 −a1
−a2 a1 0

!
(9)

The subscript× indicates that thesematrices replaced cross products.
These airplane dynamic equations require a number of assump-

tions. They assume that Earth is flat and that a point onEarth’s surface
can be the origin of an inertial reference frame. They assume that the
airplane’s weight and moment of inertia do not change over time or
with altitude. These are standard assumptions justifiable for airplane
flight over tens of minutes. They also assume that the airplane is a
rigid body, ignoring structural dynamics, also a standard assumption
in guidance and control of airplanes.
This paper focuses on the dynamic response of the airplane towind

velocity perturbations. The authors presented in previous work a
detailed linearization of the airplane dynamic equations driven by
turbulence [8,9]. Similar linearizations are available in standard
textbooks [14]. After linearizing Eqs. (1–3) with respect to control
inputs and wind disturbances and collecting the system of equations
into state-space form

0
BB@
δ _vc

δ _ω

δ_ϵ

1
CCA �

0
BBB@
−Ω× � 1

m
∂Fa
∂v Vc× � 1

m
∂Fa
∂ω

1
m

∂Fg
∂ϵ

I−1 ∂Ma

∂v I−1
�
H× −Ω×I� ∂Ma

∂ω

�
0

0 Φ ∂E
∂ϵ

1
CCCA
0
BB@
δvc

δω

δϵ

1
CCA

�

0
BB@

1
m

∂Fa
∂c

I−1 ∂Ma

∂c

0

1
CCAδc−

0
BBB@

1
m

∂Fa
∂v

1
m

∂Fa
∂ω

I−1 ∂Ma

∂v I−1 ∂Ma

∂ω

0 0

1
CCCA
�
δvw

δωw

�
(10)

a linear time invariant (LTI) system with control input and wind
velocity perturbations as the input, and linear and angular velocity
perturbations and Euler angle perturbations as the state. The partial
derivatives, which are all of the form of a derivative of a vector with
respect to another vector, are used as shorthand for Jacobianmatrices.
All of the quantities in the state and disturbance matrices, including
the derivatives, are evaluated at the steady-flight reference condition
around which the aircraft is perturbed.
Note the following about Eq. (10):
1) Thewind perturbations are not assumed to be randomprocesses.

These equations could also be used to study an airplane’s impulse
response, the response to pulses approximating discrete gusts, or the
step response to wind shear.
2) The forces andmoments have not been perturbedwith respect to

linear or angular acceleration; hence, those effects are assumed to be
negligible.
3) To linearize the forces, a small angle of attack is assumed. This

assumption is consistent with McClamroch’s steady-flight analysis
[38]. In the numerical examples of Sec. V, the angle of attack is
typically of the order 1 deg.
4) Stability-derivative values typically come from wind-tunnel

testing and may change with flight state. They are not readily
available for many aircraft. Nelson [11] explains how to compute
these stability derivatives and tabulates their values for several
aircraft.
Through modal analysis, various reduced-order models can be

developed for the LTI system inEq. (10). Themost common reduced-
order models split the state vector and inputs into longitudinal and
lateral components, which are decoupled for many reference
conditions. Further reduction to model specific aircraft modes is
possible, usually involving changes of variables and ignoring some
coupling. The phugoid reduced-order model presented by Stengel
[13] is summarized and applied in Sec. IV.
For the wind disturbance in Eq. (10) to represent turbulence, δvw

and δωw are modeled as stationary random processes. Such an input
is consistent with turbulence found in clear air or storms, but not with
wind shear or discrete gusts. Engineers typically use the Dryden and
von Kármán models of stochastic gusts [30,31]. Both models define
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gusts in terms of their power spectral densities, and in both cases, the
random processes are colored.
Define the spectral density of � δvTw δωTw �T and assume that it has

a rational spectral factorization. This assumption is valid for the
Dryden model but can only be approximated for the von Kármán
model [30]. Once the spectral density has been factorized, the wind
velocity perturbations are modeled as the output of a coloring filter
driven by Gaussian white noise d�t� with zero mean and covariance
matrix D. Denote a realization of the filter in state-space form as

_ξw � Awξw � Ewd�t� (11)

�
δvw
δωw

�
� Cwξw �

�
Cwv
Cwω

�
ξw (12)

d�t� ∼N �0; D� (13)

Examples of such filters, like the one used later from the MATLAB
documentation [39], have been derived from the power spectral
densities of theDryden or vonKármánmodel given in theMIL-STD-
1797A [31]. The parameters for the power spectral densities and
filters depend on the altitude and relative orientation of the airplane
with respect to the wind. This paper takes into account the altitude
dependence but does not adjust the parameters based on airplane
attitude, because all of the examples are for steady level longitudinal
flight at small angles of attack and zero sideslip. The MIL-STD-
1797A gives criteria based on airplane stability derivatives to judge
when the angular velocity components of the gusts will be
nonnegligible [31].

Appending the gust filter to Eq. (10)

0
BB@
δ _vc
δ _ω
δ_ϵ
_ξw

1
CCA �

0
BBB@
−Ω× � 1

m
∂Fa
∂v Vc× � 1

m
∂Fa
∂ω

1
m

∂Fg
∂ϵ − 1

m

�
∂Fa
∂v Cwv �

∂Fa
∂ω Cwω

�
I−1 ∂Ma

∂v I−1
�
H× −Ω×I � ∂Ma

∂ω

�
0 −I−1

�
∂Ma

∂v Cwv �
∂Ma

∂ω Cwω

�
0 Φ ∂E

∂ϵ 0

0 0 0 Aw

1
CCCA
0
BB@
δvc
δω
δϵ
ξw

1
CCA�

0
BBB@

1
m

∂Fa
∂c

I−1 ∂Ma

∂c
0

0

1
CCCAδc�

0
BB@

0

0

0

Bw

1
CCAd�t� (14)

or more compactly

_x � Ax� Bδc� Ed�t� (15)

The system given by Eq. (14) is linear and driven by zero-mean,
Gaussian white noise. In applications with asymptotically stable
dynamics, the perturbations δvc and δω are also zero-mean,
Gaussian, stationary random processes. For a white noise input to
Eq. (14), the steady-state covariance POL of this open-loop system’s
state is given by the solution of the Lyapunov equation:

APOL � POLA
T � EDET � 0 (16)

For POL to be finite, unique, and positive definite, two conditions
must hold. First, A must be asymptotically stable. Second, �A;Ec�
must be controllable, in which, because EDET is positive
semidefinite, it can be factorized as EcE

T
c . Both of these conditions

hold in the GTM and T2 examples of Sec. V. For cases with unstable
dynamics, feedback control can be implemented, and a Lyapunov
equation can be formed for the closed-loop system [8].
For the applications considered later, only the covariance of

the airplane and wind linear velocities matter. Thus, choose
� δvTc δvTw �T as the output of the LTI system, corresponding to the
output matrix:

CPOL �
�
Crv 0

0 Cwv

�
(17)

The output’s covariance matrix is

P � CPOLPOLC
T
POL (18)

The authors’ previouswork [8] shows how to compute the variance of
the true airspeed, angle of attack, and normal load factor from this
covariance matrix. It also shows how to compute safety margins and
flight envelopes for steady-flight maneuvers performed in turbulence
based on the covariance matrix. This paper frames results in terms of
the variance of the true airspeed V. Because the paper assumes the
referencewind velocity is zero, the true airspeed is also themagnitude
of the center of mass velocity vc.
Solving the full Lyapunov equation, Eq. (16), analytically is

cumbersome. Numerical solutions requireO�n2�memory andO�n3�
computations, in which n is the dimension of the state matrix [40]. In
later sections, analytical solutions are considered for an analogous
Lyapunov equation derived for a reduced-order model of these
dynamics.

III. Dynamic Scaling

To compare aircraft of different sizes, the aircraft should be
dynamically scaled according to established similitude requirements
and scaling laws. Wolowicz et al. [20] present a comprehensive
review of similitude requirements for scale models of aircraft. Their
review describes similarity of geometry, angle of attack, Reynolds
number, Froude number, and Mach number, and lists other

similarities that may be important in applications. For geometric
similarity, a set of power law relations serves as scaling laws [19,22]:

Length: lm � Nlf (19a)

Area: Sm � N2Sf (19b)

Mass: mm � N3mf (19c)

Inertia: Im � N5If (19d)

Speed: vm �
����
N
p

vf (19e)

Angular rate: ωm �
1����
N
p ωf (19f)

in which the subscriptsm and f stand formodel and full size, andN is
the length scale factor,meaning a quantity such as themodel aircraft’s
wingspan will be N times the wingspan of the full-size aircraft.
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In the work of Burk and Wilson [19] and Jordan et al. [23,41],
scaling is used to design small-scale model airplanes upon which
experiments are conducted that give insight into the performance of
the full-size airplane. On the other hand, in Shyy et al. [24] and
Tennekes [42], scaling laws presented at the beginning of the book
are meant to explain how parameters and performance variables can
be expected to vary over aircraft and birds of different sizes. This
paper uses scaling in a manner similar to Shyy et al. [24] and
Tennekes [42], although birds are not considered. The contributions
of this paper center on deriving other scaling laws from those
mentioned previously and drawing conclusions about how aircraft
performance is a function of aircraft size. As such, the scale factor N
is often referred to in this paper as ameasure of aircraft size relative to
some arbitrary baseline aircraft.
The scaling relationshipsmentioned previously also depend on the

density of the air, because, in many cases, a model and full-size
aircraft do not operate at the same altitude. Rather than include the
density explicitly in the scaling lawsmentioned previously, this paper
assumes that smaller aircraft operate at lower altitudes than their
larger counterparts, or

ρ � ρ�a�N��; dρ

dN
< 0 (20)

where here, a is the altitude. Equation (20) says that the air density
decreases with increasing N over the range of length scales for fixed
wing flight. In the figures in Sec. V, however, the air density is held
constant for the dynamic scaling, that is, each curve compares scaled
aircraft at a particular altitude. On a related note, the turbulence
parameters in the Dryden model vary with altitude. For fixed
probability of exceedance, the most severe turbulence generally
occurs at roughly 5000 ft above the ground [31].
Note that some of the models of aerodynamic forces and moments

in airplane flight assume a large Reynolds number. As the length
scale becomes sufficiently small, this assumption ceases to hold. This
paper only considers length scales relevant for fixed wing flight at
high Reynolds number. A detailed analysis of aerodynamics at
Reynolds numbers of 105 and below is available in Shyy et al. [24].

IV. Turbulence in the Phugoid Model

A. Phugoid Model

The phugoid model described by Stengel [13] is a model order
reduction that captures the airspeed and flight-path angle dynamics of
the linearized dynamics presented in Sec. II. As described in detail in
the authors’ previous work, the airspeed statistics can be used to
compute safety margins and envelopes for steady-flight maneuvers
performed in turbulence [8], hence the interest in the phugoid
approximation. In particular, the airspeed statistics can be used to
identify steady-flight states close to the stall and propulsion
boundaries of the steady flight envelope, including the flight ceiling,
that are unlikely to be maintainable and prone to loss of control in
turbulence. The phugoid equations of motion are

�
δ _V
δ_γ

�
�
�
− 1
m

∂FD
∂V −g cos γ

1
mV

∂FL
∂V

g sin γ
V

��
δV
δγ

�
� 1

m

� ∂FD
∂V

− 1
V
∂FL
∂V

�
δvwx

(21)

or more compactly

δ _xp � Apδxp � Epδvwx (22)

Fromhere, the discussion is limited to level reference conditions (i.e.,
γ � 0). The characteristic equation for this system is

s2 � 1

m

∂FD
∂V

s� g

mV

∂FL
∂V
� 0 (23)

From the coefficients of the characteristic equation, the natural
frequency and damping ratio are

ωnp �
�����������������
g

mV

∂FL
∂V

r
(24)

ζp �
1

2 mωnp

∂FD
∂V

(25)

Qualitatively, the frequency response of both the airspeed and the
flight-path angle to a wind disturbance has a flat or upward sloping
low frequency response, a resonant peak at ωnp if ζp < 0, and a high
frequency response that falls off with frequency. Figure 2 shows the
Bode magnitude plot for the GTM’s phugoid approximation.
For the forces of lift and drag

FL �
1

2
ρSCLV

2 (26)

FD �
1

2
ρSCDV

2 (27)

∂FL
∂V
� ρSCLV �

1

2
ρSV2

∂CL
∂V

(28)

∂FD
∂V
� ρSCDV �

1

2
ρSV2

∂CD
∂V

(29)

Set ∂CL∕∂V � ∂CD∕∂V � 0 for subsonic flight, as it is, for example,
in all of the stability derivative models presented in the appendix of
Nelson [11]. Substituting these expressions into the natural
frequency and damping ratio

ωnp �
���������������
gρSCL
m

r
(30)

ζp �
CDV

2

�������������
ρS

mgCL

s
(31)

Substituting the scaling laws in Eqs. (19a–19f) gives a scaling law for
the phugoid mode.
Scaling Law 1: Phugoid Mode

ωnp ∝
�����������
ρ�N�
N

r
(32)

ζp ∝
�����������
ρ�N�

p
(33)

Fig. 2 Bode magnitude plot for the GTM.
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The natural frequency decreases with increasing airplane size. Its
N−1∕2 dependence is consistent with the angular rate scaling law of
Eq. (19f). It has an additional dependence through the air density that
also decreaseswith increasing size. The damping ratio decreaseswith
increasing N, but only due to the higher flight altitude of larger
aircraft. Because of these relationships, small aircraft are more
sensitive to high frequency gusts than large aircraft. Similarly, the
resonant peak of small aircraft is at a higher frequency than that of
large aircraft and is smaller due to increased air density at low
altitude.

B. Covariance of the Phugoid Model

The phugoid model is driven by gusts along the same direction as
the velocity vector. At altitudes above 2000 ft, the Dryden turbulence
model provides the power spectral density and coloring filter transfer
function for turbulence along the aircraft longitudinal axis [39]. For
small angles of attack and sideslip, the gust components along the
wind and body frame x axes are approximately equal. Appending a
state variable of the coloring filter to Eq. (22)

�
δ _xp
_ξvwx

�
�
�
Ap EpCvwx
0 Avwx

��
δxp
ξvwx

�
�
�

0

Bxw

�
n�t� (34)

As with Eq. (16), a Lyapunov equation can provide this LTI system’s
state variables’ covariance. Solving the Lyapunov equation
analytically and substituting in Eqs. (28) and (29), as well as the
coloring filter matrices, yield analytical expressions for the airspeed
and flight-path angle variances. Relating them to the scaling laws
already presented leads to a scaling law for these variances.
Scaling Law 2: Airspeed and Flight-Path-Angle Variances

σ2V �
�
σ2u
π

�
2ζpκ � κ∕2ζp � κ2

1� 2ζpκ � κ2
(35)

σ2γ �
�

σ2u
V2π

��
CL
CD

�
2 2ζpκ

1� 2ζpκ � κ2
(36)

κ ≜
ωnp
ωturb

(37)

ωturb ≜
V

Lu
(38)

After substituting in the scaling laws for ωnp and V

κ ∝
1

N
(39)

The frequency ωturb is the corner frequency of the longitudinal
turbulence power spectral density. Thus, κ is the relative frequency of
the airplane phugoid mode to the turbulence corner frequency. To
understand why the turbulence’s corner frequency depends on the
airplane’s airspeed, recall that the Dryden and von Kármán models
assume a spatially varying turbulence velocity field frozen in time.
The temporal frequency content of the stochastic gusts depends on
how fast the airplane travels through the spatially varying field.
Figures 3 and 4 show how σ2V and σ

2
γ depend on κ and ζp. The other

parameters, namely CL∕CD, σ2u, and σ2u∕V2, are kept fixed at the
GTM’s values for steady level longitudinal flight at Mach 0.8 and
35,000 ft in moderate turbulence. The airplane and turbulence model
parameters are described in detail in Sec. V and Appendix A. The
range of values for κ starts at the GTM’s value at the small end and
increases until the length scale factor N � 0.01 in Eq. (39). Both σ2V
and σ2γ have peaks near the low end of this range of κ. The range of
values for ζp starts at the order of magnitude of the GTM and T2 and
goes up three orders of magnitude. This range of ζp allows us to
speculate about the effects on the variances of feedback control to
improve phugoid damping. Increasing ζp causes a decrease in σ2V ,
except for combinations of low values of κ and high values of ζp. It
also causes an increase in σ2γ .
To investigate the peaks of both varianceswith respect to κ, take the

derivatives of σ2V and σ
2
γ with respect to κ, and set them equal to zero.

The peaks of σ2V and σ2γ occur, respectively, at

κ � 2ζp �
�����������������
1� 8ζ2p

q
(40)

κ � 1 (41)

The peaks indicate resonance between the turbulence and the aircraft
taking place at these relative frequencies. For the airspeed variance,
that resonance depends on the phugoid damping, but for the flight-
path angle variance, the phugoid damping does not matter.

C. Comparison with Hoblit Parameters

In work analogous to the preceding results, Hoblit studies the
uncertainty in the normal load factor due to gust loads using a short
period approximation to the linearized airplane dynamics [30].
Hoblit focuses on the root-mean-square normal load factor in the
short period approximation instead of the variance of the airspeed and
flight-path angle in the phugoid approximation. He identifies four
dimensionless parameters that characterize the response. In this
paper, the authors call them

δsp
Lw
;

�c

δsp
;

ωspδsp
vt

; ζsp

in which Lw is the characteristic length of vertical gusts, �c is the
airplane chord length, fsp is the short period natural frequency, ζsp is
the short period damping ratio, and

Fig. 3 Airspeed variance vs relative frequency of phugoid mode to

turbulence at different phugoid damping ratios.

Fig. 4 Flight path angle variance vs relative frequency of phugoidmode

to turbulence at different phugoid damping ratios.
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δsp ≜
2m

ρSCLα

(42)

a characteristic airplane length.
Hoblit’s dimensionless parameter �c∕δsp describes unsteady effects

[30]. This paper does not study its effect in the phugoid
approximation, although Table B1 in Appendix B quotes its value for
the various airplanes used in the upcoming examples to show that
unsteady effects should be small. Equations (35) and (36) show that,
as in the short period approximation, the phugoid damping ratio can
be used as one of the dimensionless parameters to describe the
response. As for Hoblit’s other two dimensionless parameters, note
that dividing them gives the dimensionless parameter fspLw∕vt, a
short period analog of κ defined in Eq. (37). Thus, in this paper’s
formulation of the gust response, these two dimensionless parameters
of Hoblit only appear as a ratio, reducing the number of
dimensionless parameters needed to characterize the response. As
described by Szirtes and Rózsa, the number of curves and charts
necessary to characterize a dependent variable in terms of a set of
independent variables, not to mention the effort that goes into
creating and using such charts, grows exponentially with the number
of independent variables [26]. Thus, a reduction from four
dimensionless parameters to three is a marked improvement.

V. Comparison of Scaled Airplane Dynamic Response

This section gives numerical examples of the results from the
previous section. The numerical examples are based on the Dryden
turbulence model and stability derivative models of two NASA
airplanes. Some of the examples also include nine other airplanes.
Appendix A discusses the parameters for the airplanes and the
turbulence.
The first NASA airplane this paper uses is theGTM, a hypothetical

airplane similar to a Boeing 757 used in computer simulations of

transport aircraft [43]. The reference condition for the chosen
parameters is steady level longitudinal flight at Mach 0.8 and an
altitude of 35,000 ft. The secondNASA airplane this paper uses is the
T2 subscale jet transport, a 5.5% dynamically scaled model of the
GTM in operational use by NASA. Hence, N � 0.05 in Eq. (19a)
when the GTM is the full-scale aircraft and the T2 is the model.
Jordan et al. [23] describe the design and construction of the T2.Most
of the needed aircraft parameters for the T2 are tabulated in Morelli
and Cunningham [44] and correspond to steady level longitudinal
flight at roughly 132 ft∕s and an altitude of 1400 ft.

A. Figure Format

Figures 5–7 show numerical examples of the dynamic scaling of
different performance variables described in Sec. IV. In each of
the figures, the values of the variables investigated are plotted
by dynamically scaling the value for the GTM in steady level

a) Linear frequency scale

b) Logarithmic frequency scale

Fig. 5 Phugoid natural frequency versus length scale factor.

Fig. 6 Airspeed variance vs scale factor.

a) Linear scale

b) Logarithmic scale
Fig. 7 Coefficient of variation of the airspeed vs length scale factor.
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longitudinal flight in moderate turbulence at two altitudes using the
scaling laws in Eqs. (19a–19f). The two altitudes chosen are 35,000
and 1400 ft, typical cruise altitudes of the GTM and T2, respectively.
The length scale factor N is the wingspan relative to the GTM’s
wingspan.
A choice ofMach 0.8 for theGTMat 1400 ft is neither practical nor

a good comparison to the cruising T2. For the curve corresponding to
1400 ft, the GTM airspeed has been adjusted as follows. Assume that
Mach 0.8 at 35,000 ft, or 782 ft∕s, corresponds to the airspeed for
minimum thrust vmt for the GTM. According to McClamroch [38],
the airspeed for minimum thrust in a jet aircraft is also the airspeed
that minimizes the rate of fuel consumption and only depends on
altitude via the air density. They are related as vmt�a� ∝ ρ−1∕2�a�, in
whicha is again the altitude. Thus, the airspeed forminimum thrust at
1400 ft is related to the air densities at 1400 and 35,000 ft and the
airspeed for minimum thrust at 35,000 ft as

vmt�1400 ft� �

���������������������������
ρ�35; 000 ft�
ρ�1400 ft�

s
vmt�35; 000 ft� (43)

Carrying out the computation, the GTM’s airspeed for minimum
thrust at 1400 ft is 446 ft∕s. This airspeed is used as the reference
airspeed for the GTM in the curve showing dynamic scaling at
1400 ft.
Along with the dynamic scaling curves, points are marked for the

values of the GTM at 35,000 ft, and the T2 at 1400 ft. The dynamic
scaling curves are plotted using the analytical solutions from Sec. IV,
whereas the points for the GTM and T2 are computed by forming the
respective state-space models and using a numerical Lyapunov
solver. Two points are marked for each aircraft, one computed using
the phugoid approximation of Eq. (34), and one computed using the
full linearized model of Eq. (14).

B. Scaling of the Phugoid Mode

Equations (32) and (33) give scaling laws for the phugoid natural
frequency and damping ratio, respectively. Figure 5 plots the phugoid
natural frequency ωnp vs the scale factor N on both linear and
logarithmic scales. The curves show how the GTM phugoid natural
frequency scales dynamically based on Eq. (32) at 35,000 and
1400 ft. Because the phugoid natural frequency is related to the scale
factor through a power law, the curves are straight lines when plotted
on the logarithmic scale. The points marked show good agreement
between the phugoid approximation and the full linearization’s
phugoid natural frequency. The T2’s phugoid approximation and full
linearization also have similar phugoid natural frequencies. The T2’s
phugoid natural frequency is below that predicted by dynamically
scaling the GTM, with the T2 phugoid natural frequency about 15%
below the predicted value. However, it is well above the GTM’s
phugoid natural frequency at 35,000 ft. Any errormust come from the
difference in airspeed or coefficients of lift and drag, because the
other airplane parameters match well, and the altitude and turbulence
parameters are the same for both.
Equation (33) shows that the phugoid damping ratio only depends

on the length scale factor through the air density. Without a model of
how the air density varies with length scale factor, the phugoid
damping ratio cannot be plotted vs the length scale factor. Instead,
Table 1 shows the phugoid damping ratio for the GTM and T2

computed using the phugoid approximation and the full linearization.
The GTM and T2 phugoid damping ratios are all of the same order of
magnitude, with the phugoid approximations matching best. The
natural frequency values in Table 1 correspond to the four points
marked in Fig. 5.

C. Scaling of the Airspeed Variance

In Eq. (35), the variance of the airspeed depends on the airplane
length scale factor through κ. Figure 6 shows how σ2V varies with the
airplane length scale factor. At both altitudes, σ2V is small for small
and large airplanes and has a peak in between. The scaled GTM, the
phugoid approximation of the T2, and the full linearization of the T2
are all close in variance. However, the difference for the GTM
between the airspeed variance in the phugoid approximation and the
full linearization is substantial. Validating these dynamic scaling
curves from the phugoid model against the full linearization is left as
future work.
To get a better sense of the magnitude of these variances, they

should be normalized. A common way to measure uncertainty in a
randomvariable is to compute its coefficient of variation, the standard
deviation divided by the mean. Because Eq. (34) is an LTI system
driven by zero-mean white noise, the airspeed perturbations will also
have zeromean. Themean airspeedwill therefore equal the reference
airspeed of the linearization.
Scaling Law 3: Airspeed Coefficient of Variation: The coefficient

of variation for the airspeed is σV∕V. Figure 7 plots the airspeed

coefficient of variation vs the scale factor.
Figure 7 shows that, after normalizing by the airspeed, the

uncertainty in the airspeed decreases monotonically with increasing
airplane size. The figure also shows that the disagreement in airspeed
variance between the phugoid approximation and the full linearization
lessens after normalization. Figure 7b plots the relationship on a
logarithmic scale. The airspeed variance in the numerator of the
coefficient of variation scales as shown in Fig. 6, whereas the airspeed
in the denominator scales as the power law inEq. (19e),V ∝ N1∕2. The
result is that the airspeed coefficient of variation scaling law is not a
power law and not a straight line on the logarithmic scale. It exhibits the
airspeed’s strong dependence on the length scale factor, but is adjusted
because of the dependence of σV on the length scale factor.
The T2’s coefficient of variation from the phugoid approximation

is about 16%below thevalue for the scaledGTMbut iswell above the
GTM’s coefficient of variation at 35,000 ft. A later example shows
better agreement when the airspeed of the scaled GTM is used for the
T2 instead of the airspeed from the parameter source.
To consider how the dynamically scaled GTM compares to the

other types of airplanes, consider again Fig. 1 from the Introduction,
variations of which are presented in Fig. 8. Figure 8 shows values for
the airspeed variance and coefficient of variation for a variety of
aircraft, all computed at 1400 ft using the phugoid approximation.
The solid curve represents the dynamically scaled, analytically
determined GTM value. The dashed curve represents the
dynamically scaled, analytically determined C-5A value. The
numerically determined GTM and C-5A values are marked with the
symbol × on the curves. All of the other plotted points correspond to
numerically determined values for the indicated airplanes. The
coefficient of variation is plotted on both linear and logarithmic
scales. The dash–dot line corresponds to a least-squares fit of the
various coefficients of variation to a power law.
Both the airspeed variance and coefficient of variation depend on

the reference airspeed. The speed scaling law in Eq. (19e) suggests a
simple relationship between airspeeds at different airplane sizes. In
reality, aircraft can operate at a wide range of airspeeds, and design
considerations other than length scale, such as weight and engine
performance, play an important role in determining airspeed.
Compare, for example, theNavion general aviation aircraft and the

A-4D fighter. The Navion’s wingspan is 33.4 ft, and the A-4D’s is
27.5 ft. We estimate that, at an altitude of 1400 ft, the Navion’s
airspeed for minimum fuel consumption is 100 ft∕s, and the A-4D’s
is 402 ft∕s. Scaling theGTMdown to the size of theA-4D,we expect
an airspeed for minimum fuel consumption of 209 ft∕s. To eliminate

Table 1 Phugoid eigenvalue, damping ratio, and natural

frequency for the GTM and T2a

Airplane Model Eigenvalue ζp ωnp, rad∕s
GTM Phugoid −0.00257� 0.0583i 0.0440 0.0583
GTM 6 DOF −0.00185� 0.0766i 0.0241 0.0766
T2 Phugoid −0.0193� 0.346i 0.0558 0.346
T2 6 DOF −0.0283� 0.307i 0.0918 0.309

aComputed using the phugoid approximation and the full 6 degree-of-

freedom (DOF) linearization.
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this variability, the scaled GTM’s airspeed is used for all of the
airplanes in Fig. 8. The T2’s airspeed is also adjusted in this manner,
improving agreement between the T2 and the scaled GTM compared
to the previous examples.Airplaneweight exhibits similar variability,
but the figures do not account for deviations of airplane weight from
the scaling laws.
In Fig. 8, the length scale factor again corresponds to the relative

wingspan. While studying the figures, note the following:
1) The T2matches the scaled GTM’s curves well, better than in the

previous examples, in which the airspeed from the source of the T2’s
parameters was used.
2) Neither fighter matches the scaled transports well.
3) Both the GTM and the T2 appear to be unusually sensitive to

gusts for aircraft at their wingspans.
4) The Navion’s airspeed variance is lower than the scaled GTM’s

and the scaled C-5A’s.
5) The rest of the aircraft follow the trend of the dynamically scaled

C-5A.
The poor agreement between the scaling law and the fighters is

expected for the reasons described earlier related to performance of

the fighters compared to performance of transport aircraft of their
size.Moreover, scaling bywingspan assumes that the various aircraft
have geometrically similar planforms. This assumption is reasonable
among the transports but not between the transports and the fighters.
The fighters, the Navion, and the Convair 880 have less airspeed
variation than the scaled C-5A, whereas the GTM and the T2 have
more; all of these deviations from the scaled C-5A can be explained
by comparing the airplanes’ phugoid damping ratios.
Table B1 in Appendix B lists, for each airplane in Fig. 8, the values

of κ, the GTM’s scaled value of κ, and ζp. While the scaled GTM’s κ
does not predict the values of κ for the other airplanes well, the trends
match. As for the phugoid damping ratio, according to Eq. (33), it
should be the same for all airplanes at fixed altitude, but it clearly
varies between the different aircraft types. For every airplane in
Fig. 8, the damping ratio relative to the C-5A’s determines whether
the airspeed variance and coefficient of variation are above or below
the C-5A’s dynamically scaled value. Moreover, the GTM and the F-
104, which have the lowest and highest damping ratios, respectively,
are the biggest outliers. Thus, the dependence of the airspeed variance
on ζp and the difference between the various airplanes’ values for ζp
limit the accuracy of the scaling laws.
As before, the derived GTM and C-5A airspeed coefficients of

variation do not scale as power laws. This is caused by the non-power
law scaling of the airspeed variance and is evident in Fig. 8c, inwhich
their curves are not straight lines. The straight line in Fig. 8c, which is
the least-squares fit of the various coefficients of variation to a power
law, shows that σV∕V ∝ N−0.58.
That the exponent is close to −1∕2 is not surprising, since

V ∝ N1∕2. As mentioned earlier, the coefficient of variation exhibits
the scaling of the airspeed adjusted for the scaling of the airspeed
variance. The power law fit is a good match for the smallest aircraft,
and slightly overpredicts the coefficients of variation of the largest
aircraft, which is the case in the upcoming examples as well.

D. Other Length-Scale Factors

Relative wingspan is one of many potential length scale factors to
use for these scaling laws. This section compares scaling based on
relative wingspan with scaling based on relative wing loading and
relative weight.
In some applications, the wing loading mg∕S is the preferred

length scale factor, as in Tennekes’s great flight diagram [42]. In fact,
the wing loading is very relevant to this problem because Eqs. (30)
and (31) show that the phugoid natural frequency and damping ratio
can be written in terms of wing loading. While wing loading is not a
length, the scaling laws in Eqs. (19b) and (19c) show that it should
scale proportional to length.
Figure 9 shows the same scaling laws as Fig. 8, except with the

length scale factor and the chosen airspeeds corresponding to relative
wing loading. Note that, even though the T2 is designed as a 5.5%
dynamically scaled model of the GTM, its relative wing loading
actually corresponds to a length scale factor of 8.7%. Also note that
the T2’s reference airspeed from the source of the parameters [44] and
the scaled GTM’s airspeed based on relative wing loading differ by
less than 3%. Therefore, the T2’s airspeed variance and coefficient of
variation do not change significantly from the examples earlier that
use the airspeed given in the T2 parameters’ source.
From the plots, the trends shown in the previous examples are

apparent, with the F-104 and the GTM still being outliers and the
smallest airplanes having the largest airspeed coefficients of
variation. With the exception of the F-104, all of the aircraft’s
variances and coefficients of variation are bounded by those of
the dynamically scaled GTM and C-5A. However, neither the
dynamically scaled GTM nor the dynamically scaled C-5A captures
the precise values of the other aircraft, especially for the variance,
when compared with using the relative wingspan as the length scale
factor. Once again, the power law fit of the coefficient of variation
leaves the C-5A as an outlier and has an exponent close to −1∕2.
Another preferred length scale factor is the cube root of the

airplane mass,
����
m3
p

, as in Liu [21]. As with wing loading, the cube
root of the mass is not a length, but scales proportional to length, as

a) Airspeed variance

b) Airspeed coefficient of variation, Linear scale

c) Airspeed coefficient of variation, Logarithmic scale

-
-

-

-

-

-

-

-

-

Fig. 8 Airspeed variance and coefficient of variation versus wingspan

scale factor for the phugoid approximation of various airplanes.
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seen in Eq. (19c). Also, like the wing loading, the mass features
prominently in the phugoid approximation, suggesting it should also
be a more relevant length scale than wingspan. Scaling with the
relative mass also weakens the assumption of similar planforms
among the aircraft.
Figure 10 shows the same scaling laws as Figs. 8 and 9, exceptwith

the length scale factor and the chosen airspeeds corresponding to the
cube root of the relative mass. Using this length scale factor, the
trends and major outliers remain the same. For the airspeed variance,
the scaled C-5A and the other aircraft show better agreement than
when scaled by wing loading, but relativewingspan still provides the
best fit and agreement related to the damping ratio. As with the other
two choices of scale factor, the power law fit of the coefficient of
variation leaves the C-5A as an outlier and has an exponent close to
−1∕2. Scaling based on relative weight results in better agreement
between the airspeed coefficient of variation scaling law and
numerical solution compared to scaling based on relative wing
loading, but it is not clear if it is an improvement over scaling based on
relative wingspan. Overall, the scaling laws in this paper are good
predictors of the statistics of airspeed variations due to turbulence in

the phugoid approximation, particularly the airspeed coefficient of
variation. Furthermore, the examples suggest that relative wingspan
is a better measure of length scale than wing loading for this set of
scaling laws.

VI. Scaling of Flight Envelopes

The authors’ previouswork relied on airspeed statistics to compute
safety margins for steady-flight maneuvers performed in turbulence.
It also proposed flight envelopes to visualize these safetymargins [8].
The authors introduced an extension of steady flight called stationary
flight, flight in which the linear- and angular velocity vectors are
stationary random processes. Section II notes that, in Eq. (14), the
linear- and angular velocity perturbations are zero-mean, stationary,
Gaussian random processes. Therefore, modeling turbulence
response in this manner means that steady-flight maneuvers
performed in turbulence result in stationary flight. Section II also
notes that the covariance matrix of the airplane and wind linear

-

-

-

-
-

-

-

-

a) Airspeed variance

b) Airspeed coefficient of variation, Linear scale

c) Airspeed coefficient of variation, Logarithmic scale

-

Fig. 9 Airspeed variance and coefficient of variation versus wing

loading scale factor for the phugoid approximation of various airplanes.

-

-

-

-

-

-

-

-

a) Airspeed variance

b) Airspeed coefficient of variation, Linear scale

c) Airspeed coefficient of variation, Logarithmic scale

Fig. 10 Airspeed variance and coefficient of variation versus cub-root-

of-the-mass scale factor for the phugoid approximation of various

airplanes.
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velocities can be computed using a Lyapunov equation, so the
variance of the true airspeed can be computed.
Staying within the steady flight envelope improves safety of flight

because airplanes are generally designed to fly stably or stabilizably
when flying steadily, and may be prone to loss of control outside of
the steady flight envelope. In the previouswork, the authors proposed
shifting the steady flight envelope boundaries inward proportional to
the standard deviation of the airspeed. The authors call the resulting
envelope a stationary flight envelope. For a shift of three standard
deviations and aGaussian true airspeed distribution, flyingwithin the
stationary flight envelope guarantees that 99.87% of true airspeed
fluctuations remain within the steady flight envelope.
For level longitudinal flight using the full linearization of Sec. II,

linearizing the Navion around a flight state of 102 ft∕s at an altitude
of 16,500 ft, and the Aerosonde around a flight state of 83 ft∕s at an
altitude of 4950 ft gives true airspeed coefficients of variation of 3.8
and 5.8%, respectively. Each of these flight states is near the stall
speed for the respective airplane. Figure 11 shows the level
longitudinal steady and stationary flight envelopes for the two
airplanes. The Navion’s envelope is reproduced from the authors’
previous work [8]. For both airplanes, flight states close to the flight
envelope boundaries become prone to flight envelope excursions in
turbulence, with excursions across the stall boundary being the most
dangerous. However, the adjustment to the steady flight envelope to
form the stationary flight envelope results in a more substantial
envelope reduction for the Aerosonde than the Navion. The higher
coefficient of variation and the more substantial flight envelope
reduction of the Aerosonde compared to the Navion are consistent
with the scaling laws of the previous section, even though the present
example does not control for altitude or airspeed. The authors intend
for the turbulence response models and scaling laws developed in
this paper to improve understanding of airplane performance in

turbulence and aid analyses such as the flight envelopes of Fig. 11
when airplane parameters are not available.

VII. Conclusions

Using a phugoid approximation of the linearized airplane dynamic
equations, this paper derives scaling laws for the phugoid mode
natural frequency and damping ratio, as well as expressions for the
airspeed and flight-path angle variances. It also gives numerical
examples of the results of the phugoid analysis, and compares them to
stability derivativemodels of theNASAGTMand T2. The numerical
results include plots showing how the airspeed coefficient of varia-
tion scales with airplane size and compare the T2 and dynamically
scaled GTM to a variety of other airplanes.
Using two metrics, the results show that small airplanes are more

susceptible to turbulence than large airplanes. First, the scaling of the
phugoid natural frequency shows that the dynamics of large airplanes
filter out more high frequency gusts than the dynamics of small
airplanes. Second, the coefficient of variation for airspeed decreases
as airplanes get larger, showing that variations in airspeed due to
turbulence, when expressed as a fraction of the nominal airspeed, are
smaller for large airplanes. These results, which from a qualitative
standpoint are intuitive reemphasize the need to make autopilots on
small airplanes robust to turbulence and provide a quantitative basis
to compare gust responses of airplanes of different sizes. As small-
scale aircraft become more prevalent in military and commercial
applications, these scaling laws can serve as useful tools to predict
and improve airplane performance in gusts.

Appendix A: Parameters for the Numerical Example

This paper’s numerical examples usemodels of theNASAGeneric
Transport Model (GTM) and T2 transport aircraft. The GTM
parameters primarily come from a GTM simulator developed at
NASA Ames Research Center. The model is described in an internal
NASA report [43] and applied in Nguyen et al. [45]. The simulator
contains tables of stability derivatives parameterized by Mach
number and angle of attack. Nguyen et al. [45,46] use the GTM to
study damaged, asymmetric transport aircraft, but this paper uses the
parameters for the intact GTM. The parameters selected correspond
to Mach 0.8 with an angle of attack of 2 deg. The simulator does not
specify an altitude for the parameters, so the authors assume they are
valid at 35,000 ft. TheGTM is similar to theBoeing 757, so thisMach
number and altitude are chosen based on Boeing 757 specifications
posted on the American Airlines website [47], and the angle of attack
is chosen based on a Boeing article about commercial-jet angles of
attack [48].
Stability derivatives for the NASAT2 Subscale Jet Transport are

given in the appendix ofMorelli and Cunningham [44]. According to
the flight test results, the stability derivatives correspond to a nominal
flight condition of level longitudinal flight with an airspeed of
roughly 132 m∕s at 1400 ft with an angle of attack of 4.5 deg.Morelli
andCunningham [44] do not givevalues for the reference coefficients
of lift or drag, CL0

and CD0
. These coefficients are estimated for this

paper using standard equations for steady level longitudinal flight
performance given in McClamroch [38]. Specifically, the following
two expressions for the coefficient of lift are equated and solved
for CL0

:

CL �
2mg

ρSV2
(A1)

CL � CL0
� CLα

α (A2)

For the reference drag coefficient, the GTM’s airspeed for minimum
thrust at 1400 ft computed in Eq. (43) is scaled using Eq. (19e) to the
corresponding T2 airspeed for minimum thrust vmt. Carrying out the
computation, vmt � 104 ft∕s for the T2 at 1400 ft altitude. This
airspeed is related to the reference drag coefficient as

a) Navion. Adapted from [8]

b) Aerosonde
Fig. 11 Steady and stationary flight envelopes.
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vmt �
�����������������������������

2mg

ρ
���������������������
CD0

πeSb2
q

vuut (A3)

These relationships lead to the values

CL0
� 0.129; CD0

� 0.0252 (A4)

Figures 1 and 8–10 include results for several other aircraft. Beard
and McLain [49] provide the Aerosonde model. Teper [50] provides
the F-104, A-4D, and Ryan Navion models. Heffley and Jewell [51]
provide the Lockheed Jetstar, Convair 880, Boeing 747, and C-5A
models. MacDonald et al. [52] provide the de Havilland Canada
Buffalomodel. TheAerosondemodel does not give a reference flight
state. A reference airspeed of 60 kt is chosen as its cruise airspeed
based on the manufacturer’s specifications [53]. The C-5A model
used is for sea level at Mach 0.45. The Buffalo model used is for sea
level at 215 ft∕s. The remaining aircraft models are reproduced in
Appendix B of Nelson [11], and this paper uses the sea level flight
states listed in that text. For all of thesemodels, except the Aerosonde
and the Buffalo,CL,CD,CLα

, and α are given for the reference flight
state of the model, but this paper requires CD0

. CD0
is computed for

each aircraft from the drag polar in McClamroch [38]:

CD � CD0
� SC2

L

πeb2
(A5)

For all of the aircraft, the analysis required a value for the Oswald
efficiency factor e to compute the coefficient for induced drag in the
drag polar. This parameter is rarely provided, although the Buffalo
model specifies 0.75. This paper uses the value 0.8 for all of the other
aircraft. For the air density, this paper uses the U.S. Standard
Atmosphere calculator provided inMcClamroch [38]. For the Dryden
gusts, this paper adheres to the MIL-STD-1797A specifications [31]
and the filters given in the MATLAB documentation [39]. The
turbulence intensity and scale length vary with altitude. Because the
high-altitude turbulence intensity must be read off of a plot, the authors
used some discretion in choosing values. For moderate turbulence, the
authors use σu � 5 ft∕s at 35,000 ft and σu � 9 ft∕s at 2000 ft. The
U.S. Standard Atmosphere model uses altitude above mean sea level,
whereas the turbulence models use altitude above ground level. For
convenience, this paper assumes that the ground is at sea level.

Appendix B: Relevance of Unsteady Effects

Hoblit shows that, in the short period approximation, the
dimensionless parameter �c∕δsp is a measure of the importance of
unsteady effects in turbulence response [30]. δsp is defined in Eq. (42)
for the short period approximation. Here, the authors posit a phugoid
analog of δsp:

δp ≜
2m

ρSCL
(B1)

based on the way the lift coefficient enters the two approximations.
Table B1 shows the values of the relevant nondimensional

parameters for the 11 airplane models used in Fig. 8. The last column
ofTableB1 lists thevalues for �c∕δp. Hoblit [30] shows that, for values
of �c∕δsp ≤ 0.010, the gust response does not change significantly due
to unsteady effects. Because each of the airplanes listed in Table B1
has a value for �c∕δp that is less than 0.010, unsteady effects are not
expected for any combination of airplane and flight state considered
in this paper.
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