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Projection-based reduced-order modeling has been used successfully to develop efficient
models of fluid flows. However, a majority of the applications are limited to small pertur-
bations about a nominal flow condition and do not typically address strong nonlinearities.
In the present work, we assess the viability of reduced-order modeling to the problem of
unstart in high-speed engine inlets. A complicating factor in this application is the pres-
ence of strong shock waves. Models based on a linearized flow assumption fail to capture
the large shock motions associated with unstart. Projection-based, Proper Orthogonal
Decomposition (POD) models can - in theory - account for such nonlinearities, but at a
very high cost. Advances have been made recently in developing techniques to further
accelerate projection-based models. One such method, the Discrete Empirical Interpola-
tion Method (DEIM), is applied in this study to two nozzle flow cases: a fully-expanded
nozzle and a nozzle with a normal shock present. In both examples, the model is based
on a quasi-one-dimensional inviscid flow assumption. This study highlights the lack of ro-
bustness of the DEIM and proposes an alternative acceleration method based on L2-norm
minimization. For both test cases, instances are found where DEIM is unstable but L2-
norm minimization is not, motivating further work in nonlinear acceleration techniques
employing optimization, including L2-norm minimization and compressed sensing.

I. Introduction

Supersonic and hypersonic air-breathing engines are susceptible to a phenomenon referred to as unstart.
Unstart can be instigated by occurrence of thermal choking, flow separation or imperfect stoichiometry and
is characterized by a breakdown of supersonic flow in the system. During unstart of a high-speed inlet,
the shock system inside the inlet propagates forward and become dislodged. Unstart leads to a sudden loss
in thrust and a redistribution of external aerodynamic forces, causing drastic changes in vehicle dynamics.
Engine unstart is a common issue in many air-breathing systems and much energy and resources have been
expended to better understand and prevent it.1

With the ever-increasing demand for safe, efficient and versatile aircraft, designers seek to model more
complex phenomena, such as engine unstart, in the early vehicle design stages. Computationally inexpensive
models are required at the preliminary design stage of high-speed vehicles that are robust with respect to
unstart and for control design during unstart. Flow complexity, however, presents a major challenge in
modeling high-speed inlets. High-speed inlet flows are characterized by shock wave-boundary-layer interac-
tions, large shock motion, three-dimensional flow and high turbulence.2 Modeling these flow phenomena is
computationally intensive.

Recent efforts at the Air Force Research Lab at Wright Patterson AFB have focused on design and
control-oriented modeling of hypersonic vehicles. The Bolender-Doman model employs physics-based, low-
fidelity models to simulate a generic waverider-type hypersonic aircraft.3 The Bolender-Doman model is
a first-principles reduced-fidelity model. Since the vehicle is slender, conventional piston theory was used
to compute aerodynamic forces. The engine flow was assumed to be one-dimensional, the bow shock was
assumed to be two-dimensional, and any shock waves downstream of the bow shock were ignored. Researchers
have improved the Bolender-Doman model in order to avoid some of the assumptions that were made
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originally.4–7 In particular, the Bolender-Doman model is modified to compute both the engine unstart and
the ram-scram transition boundaries for a trimmed waverider vehicle.6

A major assumption in the Bolender-Doman model and its derivatives is the use of steady models. Any
dynamics associated with unstart are only quasi-steady. As a result, the unstart limits on the flight envelope
predict only the beginning stages of unstart based on a perceived safe shock train location.8 In reality,
an unstart can occur even before this designated safe-zone if the dynamics perturbing the shock location
(i.e. gusts, vehicle acceleration, fuel throttling) are severe. An unsteady model capable of simulating strong
shocks undergoing large oscillations is required. This research applies the recent developments in reduced-
order modeling of compressible flows9,10 to several example cases to better understand the challenges in
reduced-order representations of strong shock waves undergoing large shock motions.

This present work focuses on POD/Galerkin projection-based reduced-order modeling of fully-nonlinear
flows using the Discrete Empirical Interpolation Method11 (DEIM) and L2-Norm Minimization for acceler-
ation. Projection-based ROMs are briefly discussed in Section II. One limiting factor in employing conven-
tional POD/Galerkin projection is the presence of nonlinear residual terms, which must still be computed
at every grid point during each time iteration, negating any computational speed-up. To circumvent this
limitation, the residual terms are estimated using only a small sample of grid points. DEIM and L2-Norm
Minimization are both methods of estimating the full residual and are detailed in Section III. Both DEIM
and L2-Norm Minimization are then applied to an unsteady, fully-expanded nozzle flow in Section IV and
an unsteady nozzle flow with a normal shock in Section V. Stability aspects of DEIM and L2-Norm Min-
imization will be discussed in particular. Finally, this paper ends with a brief summary of POD/Galerkin
projection-based ROMs and how L2-Norm Minimization can be utilized to improve stability over DEIM for
nonlinear acceleration.

II. Projection-Based Reduced-Order Modeling

Different approaches exist to obtain unsteady reduced-order models. One class of modeling is empirical
based where system identification techniques are used to relate the system input to some observed output.
For example, in Ref. 12 Hutzel et al. model the unsteady leading edge location of a shock-train assuming a
nonlinear model structure and then vary the back pressure during experiments to obtain a model. Another
approach is physics-based, reduced fidelity modeling where the fundamental conservation equations are
solved, but certain assumptions are made in order to reduce the complexity of the problem (as in the
Bolender-Doman model described earlier). Early attempts at reduced-fidelity modeling of unsteady inlets
employ the normal shock relations and model acoustic waves which perturb the flow and simulate shock
motion.13 Another popular approach is to use linearized Euler/Navier-Stokes equations.14,15 Linearized
models however, apply only to one design point; for the purpose of this research, a nonlinear model capable
of simulating the inlet over a range of conditions is desired.

POD/Galerkin projection-based model reduction techniques can capture both linear and nonlinear models
of compressible flows with unsteady shock motion.9,10 In the POD/Galerkin projection method, proper
orthogonal decomposition is used to form a reduced-order basis. Holmes et al. discuss POD in detail in Ref.
16. When velocity flow variables are of primary interest, the reduced-order POD-modes are optimal in the
sense that, using an L2 inner product, the modes capture the greatest amount of average kinetic energy of
the flow. However, for flow variables important in highly compressible flow (i.e. density and temperature),
the L2 inner product makes little physical sense and alternative inner products have been proposed.17 After
the POD bases are formed, a Galerkin projection is preformed where the governing equations are projected
onto the POD bases forming a set of coupled, nonlinear ordinary differential equations in time.

The first step in projection-based reduced-order modeling is to develop a reduced basis which can ap-
proximately reproduce the full-order solution. Proper orthogonal decomposition is a popular method to
develop this basis and is employed here. Consider a general form of the unsteady, quasi-one-dimensional
Euler equations:

∂U(x, t)

∂t
= R(U(x, t)) (1)

where U = [ρ, ρu, ρet]
T and R, the residual vector, is a nonlinear function of U :

R = −∂F (x, t)

∂x
+Q(x, t) (2)
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where F is the flux vector (F = [ρu, ρu2 + p, ρhtu]T ) and Q is the source vector (Q = [0, pdA/dx, 0]T ).
For the full-order model, the order of the system, N , is defined as the number of grid cells, NC , times

the number of conservation variables (three in this case: U1 = ρ, U2 = ρu, U3 = ρet). Snapshots of the flow
solution are compiled into a matrix S on which a singular value decomposition is then performed to generate
the POD reduced-order bases: φj , j = 1, 2, ..,ML where ML is the number of basis vectors the reduced-order
model is truncated to.10,16 Each of the φj basis vectors is a N × 1 column vector. The bases containing
the ML largest energies, where ML � N , are selected for the reduced-order model. The remaining basis
vectors (those containing the small energies) are neglected. The POD basis vectors are used to approximate
the full-order solution as:

U(x, t) =

ML∑
j=1

aj(t)φj(x) (3)

where aj(t) are the POD coefficients which vary with time only; the POD basis vectors φj(x) account for
the spatial dependence. A set of ML ordinary differential equations for aj(t) is obtained by projecting the
governing equations onto the POD bases as follows:

([
∂

∂t
−R]

ML∑
i=1

ai(t)φi(x), φj) = 0; j = 1, 2, ...ML (4)

where (·,·) is the L2 inner product. The result, after performing the inner product and multiplying by ΦT ,
is a set of ML ordinary differential equations of the form:

∂

∂t
a(t)ML×1 = ΦT

ML×NR(Φa(t))N×1 (5)

where Φ is the matrix form of the POD basis vectors: ΦN×ML
= [φ1N×1

, φ2N×1
, ..., φMLN×1

].

III. Acceleration of Nonlinear Flows

When the residual term, R(x, t), is nonlinear, Eq. (5) requires a full function evaluation at each time step;
therefore, while the number of equations to solve has been significantly reduced (from N equations to ML

equations), the actually computational time has not. One approach to reduce the amount of computations
is to calculate only a sample of the residual terms and, using an appropriate basis for the residual space, use
these sample residuals to reconstruct the full residual. The discrete empirical interpolation method11 is one
such approach. Another method, based of optimization techniques and referred to as L2-Norm Minimization,
is proposed. Both of these methods are discussed in the current section.

A. Discrete Empirical Interpolation Method

In the discrete empirical interpolation method, the residual term is represented as a linear combination of
POD basis vectors, similar to Eq. (3), only using the residual space instead of the solution space to form
the reduced bases:

RN×1 = ΨN×ML
cML×1 (6)

where Ψ is the matrix containing the reduced bases of the residual space, c is the vector of POD coefficients
and ML is the number of POD bases selected. Premultiplying Eq. (6) by PT (where P is a N ×ML matrix
with values of one at the ML sample point locations and zero everywhere else) and solving for the POD
coefficients, c, results in the following equation for the full residual:

RN×1 = DN×ML
R̂ML×1 (7)

where R(t) is the full residual, R̂(t) is the residual sampled at ML points and the matrix D is precomputed
as:

DN×ML
= ΨN×ML

(PT Ψ)−1
ML×ML

(8)

Knowing which points to sample is critical; the discrete empirical interpolation method provides an
algorithm for selecting the sample points.11 The DEIM algorithm selects the residual sampling locations
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based solely on the residual basis vectors Ψ. This is one of DEIM’s limitations; selecting alternative sampling
locations requires selecting different bases. Another limitation of DEIM is that, once the basis vectors have
been selected to form the reduced-order model, the sampling locations are then fixed in time.

B. L2-Norm Minimization

The DEIM has been shown to be very effective in many problems, but can be problematic in flows with
discontinuities as it matches the residual at every sampling location, and thus it has a tendency to overfit.
We propose L2-Norm Minimization as an alternative technique. In L2-Norm Minimization, selection of the
sampling point locations is arbitrary. After the residuals are calculated at the selected sampling locations,
optimization techniques are used to reconstruct the full residual. Unlike DEIM, the number of sampling
points, L, does not depend on the number of basis vectors, ML. In L2-Norm Minimization, the following
system of equations is solved:

(PΨ)L×ML
bML×1 = R̂L×1 (9)

where R̂ is the vector of residuals calculated at L sample locations, P is an L×N matrix of zeros everywhere
except for points corresponding to the sampling locations where the value in the matrix is one and ML is
the number of POD basis vectors. Equation (9) is solved for the coefficients, b, in an L2-norm sense:

min
b=(b1,...,bML

)

∥∥∥(PΨ)b− R̂
∥∥∥2 (10)

Note that this method has similarities to the Gappy POD,18 especially if the same sample locations
are chosen. However, we use a Levenberg-Marquardt algorithm to solve the above equation thus numerical
results will be different for nonlinear problems. Once the b coefficients are computed, they will be used to
calculate the full residual as:

RN×1 = ΨN×ML
bML×1 (11)

IV. Perfectly-Expanded Nozzle Flow

In order to illustrate the POD/Galerkin projection-based reduced-order modeling technique, and to assess
the method’s stability and effectiveness when applied to fully-nonlinear flows, flow through a converging-
diverging nozzle is analyzed. Also assessed are the DEIM and L2-Norm Minimization acceleration techniques.
The nozzle contour, shown in Fig. 1, is based on the experimental nozzle in Ref. 19.

−0.1 −0.05 0 0.05 0.1
0

0.002

0.004

0.006

0.008

0.01

x, m

a
re

a
, 

m
2

Nozzle Contour

Figure 1: Nozzle area distribution (nozzle throat at x = 0).

The full-order solution is obtained by solving Eq. (1) using the finite volume technique. The numerical
flux is evaluated using kinetic flux vector splitting20 and a multi-stage Runge-Kutta is used for temporal
discretization. To simulate a perfectly expanded nozzle, a supersonic outflow boundary condition is imposed
along with a subsonic inflow boundary condition with specified inlet stagnation pressure pt,i. The simulations
in this section are performed on a grid of 100 evenly spaced cells. To obtain unsteady solutions in time, the
inlet stagnation pressure is gradually increased from 5 atm to 10 atm over 0.01 seconds.

The conservation variables from the unsteady full-order solution are compiled into a snapshot matrix S
every 100 iterations from the initial time until a new steady-state is reached. An SVD is then preformed on
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the snapshot matrix, the results of which can be seen in Fig. 2a. Note that the first mode is dominant; the
singular value of the first mode is four orders of magnitude larger than the second mode, implying that the
modes with smaller energy content are negligible. The basis vectors of the first three modes are shown in
Fig. 2b.
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Figure 2: (a) Singular values of snapshot matrix for the unsteady ramp increase from pt,i =
5 to 10 atm over 0.01 seconds. (b) First three basis vectors (φ1, φ2, φ3) as a function of x for
each of the three conservation variables (U1, U2, U3) for the unsteady ramp increase from pt,i
= 5 to 10 atm over 0.01 seconds.

Figure 3 displays the solution to Eq. (5) for the POD coefficients, aj , j = 1, ...,ML, versus time using three
basis vectors (ML = 3) with an increased time step (CFL = 40). Also shown in Fig. 3 are the corresponding
POD coefficients required to reproduce the exact solution from the full-order model for comparison. The
magnitudes of the POD coefficients confirm that the first mode is indeed dominant. While there is a
noticeable error in the second and third modes when compared to the full-order solution, only a small error
is observed in the first mode. Figure 4 shows pressure (reconstructed from the reduced-order model POD
coefficients using Eq. (3)) versus time at four locations in the nozzle. Pressure from the full-order solution
is also shown in the figure. Note that the error in the second and third modes observed in Fig. 3 does not
manifest itself in the pressure values reconstructed from the POD coefficients. The same is true for the other
two primitive variables ρ and u.
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Figure 3: POD coefficients (a1, a2, a3) versus time from the reduced-order model (using three
basis vectors and increasing CFL to 40) along with the corresponding POD coefficients required
to reproduce the full-order solution for comparison.
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Figure 4: Pressure (reconstructed from the reduced-order model POD coefficients) versus time
at four locations in the nozzle along with pressure from the full-order solution for comparison.
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One reason why POD/Galerkin projection-based reduced-order modeling is effective in decreasing the
computational time required to perform an unsteady simulation, is the ability to increase the time step to
a point where it would otherwise become unstable in the full-order model. Equation (5), the reduced-order
system, models the POD coefficients in time and has different stability properties compared to Eq. (1) for
the full-order system which models the conservation variables. The results in Figs. 3 and 4, for example, are
obtained at a CFL of 40 whereas the corresponding full-order model was obtained using a CFL of 2.5, the
maximum stable value for the four-stage RK method used. The resulting speed-up factor in this case is 17.
The reason why the increased time step is possible is that the small scale modes, where instabilities often
first manifest themselves, are neglected. There is still a limit to the increased time step; looking at Fig. 3
closely reveals spurious oscillations in the third mode which eventually subside. The instability can clearly
be seen, however, in Fig. 5 where the CFL is increased to 80.

0 0.005 0.01 0.015 0.02 0.025 0.03
−25

−20

−15

−10

a
1

ROM Coefficients vs Time, M
L

= 3

a
L

from FOM

a
L

from ROM

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.5

0

0.5

a
2

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.5

0

0.5

a
3

time, sec

Figure 5: POD coefficients (a1, a2, a3) versus time from the reduced-order model (using three
basis vectors and increasing CFL to 80) along with the corresponding POD coefficients required
to reproduce the full-order solution for comparison.

As mentioned earlier, another method to achieve computational speed-up is to, instead of relying on
increasing the time step, employ a nonlinear acceleration technique such as DEIM described in Part A of
Section III or L2-Norm Minimization described in Part B of Section III. The first step is to form a reduced
basis for the residual space. The residuals from the full-order solution are compiled into a snapshot matrix
and, after performing an SVD and retaining the first ML modes, the residual POD bases are obtained: ψ1,
ψ2, ..., ψML

. Using the DEIM sample point selection algorithm, ML sampling location are selected. Note
that according to the DEIM algorithm, the number of sampling locations must be identical to the number
of basis vectors used.

While achieving acceleration through residual sampling can be successful, the technique is not always
robust. Figure 6a shows the eigenvalues of the Jacobian matrix dR(U)/dU for the reduced-order model using
six basis vectors. The eigenvalues plotted in Fig. 6a all have negative real parts, suggesting a stable solution
for the reduced-order model without acceleration. The eigenvalues in Figure 6a are also nearly identical to
the eigenvalues for the full-order model. However, Fig. 6b shows the eigenvalues of the Jacobian matrix with
DEIM employed for acceleration, again using six basis vectors. Note that most of the eigenvalues collapse
to zero because the full residual term depends only on a few sampled residuals. Furthermore, the maximum
real part of the eigenvalues is positive and the solution goes unstable. On the other hand, Fig. 7 shows the
eigenvalues of the Jacobian matrix with L2-Norm Minimization employed for acceleration instead of DEIM.
Note that, while most of the eigenvalues still collapse to zero, the nonzero eigenvalues all have negative real
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parts and a stable soltion is obtained.
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(b) Acceleration using DEIM.

Figure 6: Eigenvalues of the Jacobian matrix dR(U)/dU from the reduced-order model (a)
without acceleration and (b) employing DEIM for acceleration. (ML = 6 for both cases.)
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Figure 7: Eigenvalues of the Jacobian matrix dR(U)/dU from the reduced-order model employ-
ing L2-Norm Minimization for acceleration and using six basis vectors.

To gain further insight into the stability of the reduced-order model, the global eigenvectors are compared
for the different models. The global eigenvectors for the full-order model are identical to the global eigenvec-
tors for the reduced-order model. Figure 8 compares the global eigenvectors of the ROM employing DEIM
and L2-Norm Minimization to the global eigenvectors of the ROM without acceleration. Note that there is
some improvement, particularly for the eigenvector corresponding to U2, using L2-Norm Minimization over
the conventional DEIM approach to acceleration.
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Figure 8: Global eigenvectors of the reduced-order model without acceleration compared
to the reduced-order model employing DEIM acceleration in the left column and L2-Norm
Minimization acceleration in the right column.

V. Normal Shock in Diverging Section

In this section, nozzle flow with a subsonic boundary condition at both the inlet and exit (resulting in a
normal shock in the diverging section of the nozzle) is studied. Flow is established in the nozzle at an initial
pressure ratio (pe/pt,i) of 0.87. The inlet stagnation pressure pt,i is maintained at a constant value of 10 atm
while the exit static pressure pe is slowly decreased to a final pressure ratio of 0.85 over 0.01 seconds. The
simulations in this section are performed on a grid of 1000 evenly spaced cells. The initial and final solutions
are shown in Fig. 9.

Following the same procedure as before for developing the reduced-order model, the conservation variables
U1,2,3 from the unsteady, full-order model are compiled into a snapshot matrix and an SVD is performed.
The singular values are shown in Fig. 10a. As was the case for the fully-expanded nozzle example in the
previous section, the first singular value is dominant. However, the drop-off in the singular values is not as
significant, indicating that more bases are required to reconstruct a flowfield with shocks. Figure 10b shows
the first four basis vectors resulting from the SVD.
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Figure 9: Solution to case with normal shock in diverging section of the nozzle. Initial solution
is at pe/pt,i = 0.87 and the final solution is at pe/pt,i = 0.85
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Figure 10: (a) Singular values of snapshot matrix for the case of a ramp decrease in pe/pt,i
from 0.87 to 0.85 over 0.01 seconds. (b) First four basis vectors (φ1, φ2, φ3, φ4) as a function
of x for each of the three conservation variables (U1, U2, U3) in the case of a ramp decrease in
pe/pt,i from 0.87 to 0.85.

In the reduced-order model, Eq. (5) is solved for the POD coeffiecients aj , j = 1, ...,ML versus time
using 40 basis vectors (significantly more compared to the fully-expanded nozzle example, where three basis
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vectors was sufficient). The first four POD coefficients versus time are shown in Fig. 11. Figure 12 shows
the corresponding solution in time reconstructed from the POD coefficients in Fig. 11 and the basis vectors
in Fig. 10b using Eq. (3). By keeping only the first 40 modes, the CFL number can be increased from 2.5
to 8 in this case resulting in a speed-up factor of approximatly 2.4.
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Figure 11: First four POD coefficients (a1,2,3,4) versus time from the reduced-order model
(using 40 basis vectors and increasing CFL to 8) along with the corresponding POD coefficients
required to reproduce the full-order solution for comparison.
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Figure 12: Pressure (reconstructed from the reduced-order model POD coefficients) versus
time at four locations in the nozzle for ML = 40. Also displayed for comparison is the pressure
from the full-order solution.

To further increase the speed-up factor, nonlinear acceleration utilizing DEIM and L2-Norm Minimization
is again applied. The residuals from the unsteady, full-order model are compiled into a snapshot matrix
and a singular value decomposition is performed on the matrix. For this example, demonstrating nonlinear
acceleration, 27 basis vectors are used. Using the first 27 modes from the residual space, the DEIM algorithm
selects the 27 sampling locations seen in Fig. 13. Note that the sampling point locations are clustered around
the shock region. To implement the DEIM technique, Eqs. (7) and (8) are used to reconstruct the full residual
from the residuals calculated at the sampling locations, the results of which are shown in Fig. 13a at four
different times for the energy-equation residual. Using DEIM acceleration, the speed-up factor compared
to the full-order model is approximately 4.3. The methods in Section III for estimating the residual using
L2-Norm Minimization (Eqs. (9) and (11)) are also applied to this case and the energy-equation residual at
the same four times as the DEIM case is shown in Fig. 13b for comparison.
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(a) Residual reconstruction using DEIM.
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Figure 13: Comparison of the fully computed energy-equation residual R3 to the residual
calculated from (a) DEIM and (b) L2-Norm Minimization. The 27 sample point locations are
calculated using the DEIM algorithm and are the same for both cases.

While the conventional nonlinear acceleration technique using DEIM shows promise for further decreasing
the computational time of ROMs, stability remains an issue. To investigate the stability of the ROM
using acceleration, the eigenvalues of the Jacobian matrix dR(U)/dU are plotted for different reduced-
order modeling techniques, each of which contain the same number of basis vectors. Figure 14a shows the
eigenvalues for the reduced-order model without acceleration and using 28 basis vectors. Note that all the
eigenvalues have negative real parts. The eigenvalues of the full-order model are nearly identical to those
of the reduced-order model in Fig. 14a; both the full-order model and the reduced-order model without
acceleration are stable. When DEIM acceleration is applied however, most of the eigenvalues collapse to
zero and the real part of some eigenvalues become positive as seen in Fig. 14b. The model is unstable
using DEIM acceleration with 28 basis vectors. However, as was the case in the previous example of a
fully-expanded nozzle, using L2-Norm Minimization instead of DEIM stabilizes the reduced-order model.
The eigenvalues of the Jacobian matrix for the ROM using L2-Norm Minimization are shown in Fig. 15 and
all the eigenvalues have real parts less than or equal to zero.
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(b) Acceleration using DEIM.

Figure 14: Eigenvalues of the Jacobian matrix dR(U)/dU from the reduced-order model (a)
without acceleration and (b) employing DEIM for acceleration. (ML = 28 for both cases.)
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Figure 15: Eigenvalues of the Jacobian matrix dR(U)/dU from the reduced-order model em-
ploying L2-Norm Minimization for acceleration and using 28 basis vectors.

Again, to further assess the stability of the reduced-order model, the global eigenvectors are compared for
the different models. The global eigenvectors for the full-order model are identical to the global eigenvectors
for the reduced-order model without acceleration. Figure 16 compares the global eigenvectors of the ROM
employing DEIM and L2-Norm Minimization to the global eigenvectors of the ROM without acceleration.
Note that there is significant improvement for eigenvectors corresponding to all three conservation variables
using L2-Norm Minimization over the conventional DEIM approach.
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Figure 16: Global eigenvectors of the reduced-order model without acceleration compared
to the reduced-order model employing DEIM acceleration in the left column and L2-Norm
Minimization acceleration in the right column.

VI. Conclusion

Preventing, or at least managing, engine unstart in high-speed, air-breathing propulsion systems remains
an immense challenge. As engineers seek to model more complex phenomena, such as engine unstart, in earlier
design stages, improved modeling techniques are required. POD/Galerkin projection-based reduced-order
models have been successfully applied to linearized flow problems. Engine unstart, however, is characterized
by large shock motion and is highly nonlinear. To assess the performance and stability of POD/Galerkin
projection-based reduced-order models when applied to nonlinear flows, two nonlinear flow problems were
studied: (1) a fully-expanded nozzle flow where the inlet stagnation pressure is increase from 5 to 10 atm
over 0.01 seconds and (2) a nozzle flow with a shock in diverging section where the nozzle pressure ratio
is decreased from 0.85 to 0.87 over 0.01 seconds. In both examples, the POD/Galerkin projection-based
reduced order model produced stable results with some degree of computational speed-up. However, the
degree of speed up was significantly smaller in the case with a shock wave. The discontinuity requires a large
number of basis vectors which limits the allowed time step increase, reducing the computational speed-up.

The nonlinear governing equations usually require a full function evaluation of the residual terms at each
time step. To circumvent this constraint, the Discrete Empirical Interpolation Method (DEIM), a nonlinear
acceleration technique, was applied in both cases. The DEIM was found to have poor stability characteristics
in a number of test runs and thus an alternate acceleration technique based on L2-Norm Minimization was
proposed. The L2-Norm minimization is similar - in principle - to the Gappy POD technique.

For both problems, instances were found where the reduced-order model employing the conventional
DEIM technique was unstable but became stable, with minimal trade-off in accuracy, when L2-Norm Mini-
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mization was instead applied. The eigenvalues of the Jacobian matrix for the reduced-order model employing
DEIM and L2-Norm Minimization were plotted and showed further evidence for the latter’s improved sta-
bility over DEIM. The improvement in stability can be attributed to the smoother residual field that is not
fit to every sample point. With the reduced order-model employing L2-Norm Minimization, up to an order
of magnitude cost reduction over the full-order model was achievable even for problems with strong moving
shocks. Continuing research is being directed towards optimal selection of sample points for acceleration
and in exploring the utility of compressed sensing approaches.
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