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Schlieren movies and pressure measurements are collected to analyze the response of a
shock train due to downstream pressure forcing. The shock train is generated in a Mach
2.0 ducted flow and controlled by a downstream butterfly valve. Cyclic opening and closing
of the valve leads to an oscillatory motion of the shock train and subsequent oscillations
in back pressure measured at the end of the duct. Different cases of forcing frequency are
studied. In all of the cases there is a clear hysteresis effect that causes the shock train
to travel along a different path for the upstream and downstream movements. Increasing
the forcing frequency leads to a smaller difference between limiting values of the back
pressure and shock train position during the oscillatory process. However, when properly
normalized the different cases follow the same path and thus only depend on the history of
back pressure. Finally, the shock speed is decomposed into low frequency (bulk) and high
frequency components. The magnitude of the high frequency component is larger but does
not show the oscillatory motion of the shock train. The extrema values of the bulk speed
are independent of forcing frequency but the time history of speed during a cycle is not.

Nomenclature

t Time
x Coordinate in the streamwise direction
y Coordinate in the transverse direction
z Coordinate in the vertical direction
pb Back pressure (measured at x=1011 mm)
Θ1 Initial valve angle
Θ2 Final valve angle

Θ̇ Rate of change of control valve angle
∆t Duration of time spent at each valve angle
Ω Forcing frequency = 1/(2∆t)
τx Time delay between the signals of valve angle and shock train position
τp Time delay between the signals of valve angle and back pressure
Tx Rise time of shock train position signal
Tp Rise time of back pressure signal
xI x-location of the leading shock intersection point
uI Velocity of the leading shock in the shock train
UI Bulk velocity of the leading shock (uI lowpass filtered at 50 Hz)

Symbols
X? Average initial value before back pressure forcing (t < ∆t)
X± Maximum/minimum value for a given case
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I. Introduction

A shock train is a sequence of shock and compression waves that gradually decelerates a supersonic flow.
The resulting shock pattern is highly three-dimensional with multiple shock-wave boundary-layer interactions
(SBLI). Shock trains are extremely relevant in air-breathing propulsion systems because they are the critical
elements in isolators of high-speed air-breathing engines, such as ramjet and scramjets. In these engines, the
flow captured by the inlet passes through the shock train where it is slowed down and compressed before
entering the combustor. If the isolator is long enough, a mixing region will exist where shocks are not
present but pressure continuously rises due to mixing between the supersonic and subsonic regions of the
core flow. The entire region from the beginning of the shock train to the end of the mixing region is known
as a pseudo-shock.1

In an actual engine, the pressure rise in the combustor sustains the shock train. However, if the back
pressure is too large for the shock system to compensate for, then the shock system propagates upstream
until it is disgorged from the inlet. This transient process is known as inlet unstart. When the shock train is
ejected, a bow shock forms outside of the inlet leading to flow spillage and reduced mass flow rate through the
engine. As a consequence, there is loss of engine thrust, significantly increased loads, and intense oscillatory
flow.2–4

During the typical operation of a high-speed air-breathing engine within the flight envelope, the combus-
tor undergoes different transient combustion processes. For example, the initial ignition process and changes
in fueling scheme (e.g., fueling rate, position, etc.) may be experienced as the vehicle follows the desired
trajectory. These transient combustion phenomena induce changes in the combustor pressure and subse-
quently alter the shock train in the isolator such that the incoming flow conditions can be processed by the
shock train to match the new combustor conditions. It is therefore important to understand the dynamics of
shock trains when perturbed by downstream forcing, such as the pressure rise from the combustor, in order
to better predict and prevent unstart, and offer insight for engine control.

Shock trains exhibit complicated dynamics even when the boundary conditions are held nominally con-
stant. The shock train position is inherently unsteady and the position fluctuations become more significant
as the inflow Mach number is increased. Previous studies at higher Mach numbers have shown that the posi-
tion fluctuations can be over a tunnel height away from the average location.5–7 In addition, the movement
of the shock train is coupled with pressure oscillations, which may generate detrimental noise or fluctuating
wall loads. The mechanism behind these fluctuations is still unknown. Some theorized sources include tur-
bulent fluctuations in the incoming flow,8 upstream propagating disturbances from the diffuser,9 fluctuations
in boundary layer thickness,10 and the unsteadiness resulting from the interaction with the boundary layer
within the shock train itself.10 A similar large-scale, low-frequency unsteadiness has been observed in many
single SBLI experiments but the source of the unsteadiness is still open to debate.11,12 However, for the
shock train, the multiple separation regions can interact in complex ways. The dynamics we observe at
steady-state may contribute to the motion of the shock train when a downstream forcing is applied.

The majority of computational studies only consider steady-state shock trains because most solvers use
time-averaged physics and the addition of time-dependency greatly increases the complexity and cost of the
analysis. Nonetheless, Hoeger et. al have used a 2-D transient computational model with back pressure
as a time-dependent input to predict the location of a normal shock train in a Mach 1.8 inflow.13 They
found that when a large instantaneous back pressure is applied, the shock train first propagates upstream
(against the incoming flow) with speeds up to 300 m/s. The shock train overshoots and then travels back
downstream to its final rest position at up to 20 m/s. Decreasing the magnitude of the back pressure change
reduces the shock train’s speed and the amount of overshoot. In comparison, when the back pressure change
is applied more gradually (at 8,500 kPa/s) the computational model predicts a maximum speed of 110 m/s
as the shock rain travels monotonically upstream to the same rest location with no overshoot. The final
location of the shock train agreed well schlieren images from an experimental setup where the back pressure
was controlled by a downstream ramp (with a non-linear change in back pressure of about 50 kPa over 0.036
seconds).

Experimentally, downstream forcing has been applied primarily to determine optimal methods for de-
tecting the shock train leading edge using wall pressure measurements.14–16 This information can be used to
develop active control methods or determine the effectiveness of passive methods. Such studies on stabilizing
and controlling the shock train position have used devices including suction slots,17 vortex generators,18 and
mass injection.19 In these cases the back pressure steadily increases and the flow remains started.

Another way of examining the effects of downstream forcing is by increasing the back pressure until
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inlet unstart occurs. Wagner et al.2 initiate unstart in their experiment by deflecting a downstream flap.
An interesting result they found is that the unstart process is seemingly independent of the flap deflection
speed. The generated shock train was initially pushed upstream at roughly 26 m/s by the severe boundary
layer separation from the flap body. Further upstream movement through the isolator was seen to be highly
associated with separation induced by the shock system originating from the inlet. For this reason, other inlet-
isolator models have shown a different progression of the shock train during unstart because of differences
in geometry.3,4, 20 Similar results have been obtained with unstart was induced by mass addition.21

The goal of the current paper is to determine the details of how the shock train reacts to forcing introduced
by a fluctuating back pressure. We want to understand how the following aspects impact the dynamics of
the shock train: boundary layer thickness, magnitude of back pressure change, and the rate of change of
back pressure. These parameters are different ways of modeling simple pressure disturbances that could
be generated by a combustor. Ultimately, we want to better understand how the shock train responds to
disturbances such that we can better predict, prevent and control unstart. Shock trains are complex systems,
so the experiments described in this paper are designed to simplify the problem in order to better identify
the underlying physics.

II. Experimental Setup

The current experiments are performed in a suction type wind tunnel at the University of Michigan.5,22–24

A schematic diagram of the wind tunnel with relevant instrumentation is shown in figure 1. Air enters the
wind tunnel intake and then conditioned by a flow conditioning section. The supersonic flow is generated by
a one-sided converging-diverging nozzle that produces a nominal freestream Mach number of 2.0 and a unit
Reynolds number of 1.4×107/m.

The test section has a constant-area, rectangular cross-section measuring 57.2 mm × 69.8 mm (width ×
height). Location a© in figure 1 marks the start of the constant area cross-section and is the position where
the inflow conditions are defined and measured. A summary of the inflow conditions is presented in table 1.
Finally, a right-handed coordinate system is used for this work. The x-direction is oriented streamwise with
x = 0 at the throat. The z-direction is normal to the bottom-wall. The origin is located on the lower right
corner of the duct cross-section as one looks downstream.

A shock train is produced by partially closing a butterfly control valve (VAT series 612) separating the
diffuser from the vacuum chamber. The reduced area for airflow increases the back pressure and a shock
structure forms in the test section to match the pressure increase. The back pressure, pb, is measured just
upstream of the diffuser using a MKS 626C Baratron capacitance manometer (see location b© in figure 1).
The accuracy of the manometer is 0.25% of the reading and the response time is about 0.2 ms. Downstream
forcing is introduced by periodically changing the valve angle and thus changing the back pressure. For the
conditions of this experiment, the resulting shock train transitions from a normal shock train at higher back
pressures (i.e., for longer shock trains) to an oblique shock train at lower back pressures (i.e., for short shock
trains).5

In this paper we consider five cases of forcing. In all of the cases, a shock train is first stabilized in the
test section by partially closing the control valve to an initial angle Θ1. Then, a change in back pressure is

Nominal Mach number 2.0

Flow speed, m/s 517

Unit Reynolds number, m−1 1.4×107

Stagnation pressure, kPa 99.7

Stagnation temperature, K 294

Static pressure, kPa 11.91

Static temperature, K 160

Density, kg/m3 0.28

Viscosity, N-s/m2 1.11×10-5

Table 1. Summary of test section free stream inflow conditions.
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generated by further closing the valve at a constant rate Θ̇ to a temporary angle Θ2, waiting for a designated
time ∆t, and then opening the valve back to the initial position Θ1 for a time ∆t. This opening/closing
process is repeated at a frequency Ω for several cycles over a total testing time of duration of about 2.75
seconds. In response to the cyclic operation of the control valve, the leading shock in the shock train oscillates
between two positions in the test section. Note that the shock train is longer while at the upstream location
(higher back pressure). This process is shown schematically in figure 2.

For all cases considered in the study, the rate of change of the control valve angle is maintained to the
same value of Θ̇ = 300◦ s−1, while the forcing frequency Ω is increased from about 0.5 Hz to 3.5 Hz. Table
2 summarizes the different cases considered in the study. The cases are distinguished by a letter A - E.
Because the total test time was nearly the same for all cases (approximately 2.75 seconds), cases A-E have
an increasing number of cycles with the same initial and final valve angles. Quantitative analysis of the
resulting back pressure time history forcing the shock train will be reported in the discussion section below.

Case A B C D E

Θ1, deg. 63.00 63.00 63.00 63.00 63.00

Θ2, deg. 62.37 62.37 62.37 62.37 62.37

∆t, s 0.85 0.40 0.24 0.18 0.14

Ω, Hz 0.59 1.25 2.08 2.78 3.57

Table 2. Test conditions.

Schlieren imaging is used to track the location of the leading shock in the shock train and determine its
speed. Borosilicate glass side-walls provide optical access along the full length of the wind tunnel. A folded
z-type schlieren setup with a horizontal knife-edge was used to capture vertical gradients in the flow. The
light source was fabricated in-house and uses a Luminus SBR-70 LED for continuous illumination.

Schlieren images are recorded with a Phantom v711 camera at a rate of 25 kHz with an exposure time
of 1 µs. The image resolution is about 3.9 pixel/mm. The camera’s spatial resolution limitations restrict
the field of view to a portion of the full shock train system. Figure 3 shows a representative schlieren image
of the instantaneous shock train system generated with a constant back pressure.5,25 The indicated inset
describes the relative size of the imaging region used in these experiments. The region captures the center
portion of the duct, about ±20 mm around the duct midplane, with a total length of 130 mm.

The individual instantaneous schlieren snapshots are processed using a shock detection algorithm to
automatically detect the streamwise position of the Mach stem triple point of the leading shock in the
system. We define this position xI , following the convention set in our previous work.5,25 Thus, we are able
to obtain temporal data of the leading shock streamwise position sampled at 25 kHz. An 11-point Gaussian
filter with a 1/e full-width size of 85 µs is used to smooth the data prior to data analysis.

III. Results

A. Description of the shock train forcing scheme

The method of forcing described in the previous section creates a pressure disruption which interacts with
two systems. The change in valve angle sends pressure waves upstream through the diffuser which ultimately
effects the shock train. Thus, the diffuser and test section systems are impacted by the valve angle and have
coupled responses. Within the test section we measure two responses: the back pressure measured at the
end of the test section (point b©) and the shock location at the beginning of the system (measured location
xI). As an example, we will discuss figure 4 which compares the time traces of valve angle, shock position,
and back pressure for case A (the lowest forcing frequency case). In this case, there are three distinct regions
of time where all of the signals are nominally constant and the system is at rest: t < 0.85, 1.15 < t < 1.70,
and 2.00 < t < 2.55 seconds.

For t < 0.85 the valve angle is at Θ = Θ1 and the shock system is located at a downstream rest
position. The shock position is nominally constant but small fluctuations are evident in the time trace due
to an inherent unsteadiness in the shock train system. Our previous studies5 with this experimental setup
have shown that with a nominally constant back pressure the position fluctuations can reach up to 25 mm
away from the mean position. However, 98% of the position fluctuations are within 9.5 mm of the average
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location. Similarly, the back pressure is not a constant value while the system is at rest because the shock
train generates turbulence and pressure fluctuations that are read by the manometer. These small back
pressure fluctuations become more prominent when the shock train is located further downstream, closer
to the back pressure measurement point. An example instantaneous schlieren snapshot taken during this
period of time is shown in figure 6(a). Only the leading shock is within the field of view. The Mach stem
can be clearly identified between two large lambda feet allowing the x-location of the triple point (marked
as xI in the figure) to be found.

At t = 0.85 in figure 4 the valve angle changes and downstream pressure disturbances push the shock
train to a new location. As expected, the valve angle is positively correlated with shock position and
negatively correlated with back pressure. Thus, a decrease in valve angle (valve is more closed) leads to a
decrease in position (shock train moves upstream) and increase in back pressure. Notice that as the leading
shock transitions to an upstream position the time trace still contains small fluctuations due to the system’s
inherent unsteadiness. This high-frequency component is superimposed onto the bulk motion of the shock
train. Therefore, there are some instances in time when the shock train momentarily travels downstream
during the transition process to an upstream rest position. However, there is no evidence of overshoot as the
shock train reaches its next rest position. Thus, once the leading shock reaches its average rest position the
only variation in position is due to the system’s inherent unsteadiness. Figure 6(b) is an example schlieren
snapshot of the shock train progressing through the field of view. Flow is from left to right, while the shock
train propagates from right to left.

Consider a small portion of the time trace in figure 5. This zoomed in section shows a clear time delay
between the change in valve angle and response of the shock train system. For the first transition of case A
(shown in the figure) the time delay of the shock position (τx) is 20 ms and the time delay of the back pressure
(τp) is 37 ms. This indicates that the upstream part of the shock train responds before the downstream
section. While we discuss the upstream shock position and downstream back pressure responses separately
it is important to remember that the shock train is a highly interconnected system and may react to the
changing valve angle in a complex manner. We will discuss this further in section B.

In addition, figure 5 demonstrates that shock train is sensitive to the valve angle and responds slowly
to forcing. The relative change in valve angle is substantially smaller than the resulting change in back
pressure and shock position. Less than a 1 degree change in valve angle leads to a large change of 3 kPa in
back pressure and an 80 mm movement of the leading shock. Since the change in valve angle is very small,
the transition occurs in less than 2.1 ms at the constant rate of Θ̇ = 300◦s−1. The time scale over which
the system responds is substantially longer. For case A, the rise time for the shock position (Tx) and back
pressure (Tp) are approximately 200 and 300 ms, respectively.

Return to the full time trace in figure 4. When 1.15 < t < 1.70 the valve angle is at Θ = Θ2 and the
shock system is at rest, located at a upstream position. Our previous work has shown that the fluctuation
component due to the shock train’s inherent unsteadiness is statistically the same at the upstream location
as the original downstream location.5 An example schlieren snapshot of the shock train during this region of
time can be seen in figure 6(c). Notice that the shock train has become longer and thus the second shock in
the system is now visible within the schlieren field of view. Finally, the transition process repeats in reverse
to complete the cycle. The valve angle returns to Θ = Θ1 and the shock train position and back pressure
adjust to match the new downstream boundary condition.

We gain additional insight on the system by examining the shock train speed. The speed of the leading
shock in the shock train, uI , is calculated from the time-history measurement of the shock position as the
central difference of between positions. The time trace of the shock speed for case A is shown in figure 7(a).
The shock train position can fluctuate with speeds up to 15 m/s due to the inherent unsteadiness of the
system. Contrary to the shock position, the time trace of shock speed does not reveal a clear oscillatory
behavior that would be expected as a result of the forcing. Thus, the magnitude of the high-frequency
speed fluctuation component must be higher than the bulk propagation speed of the shock train during the
cyclic forcing. In other words the response of the shock train is slower than the fluctuations due to inherent
unsteadiness. To emphasize the different frequency components, we decompose the shock propagation speed
as:

uI(t) = UI(t) + u′I(t)

where UI and u′I are the bulk (low frequency) and fluctuation (high frequency) components, respectively. In
practice, the bulk propagation speed is found by low-pass filtering the original data with a cutoff frequency
of 50 Hz. The time trace of the bulk propagation speed for case A is shown in figure 7(b). As the shock train
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moves upstream and downstream the subsequent bulk shock speeds are negative and positive, respectively.
Another potentially important variable is the rate of change in back pressure. During the transition

periods in all of the cases there is a continuous smooth variation in back pressure at a variable rate (dpb/dt).
We compute this value from the time-history measurement of the back pressure as the central difference
between values. An example time trace for case A is shown in figure 8. The back pressure rate of change is
positive and then negative for the upstream and downstream movements, respectively. The maximum rate
of change of pb occurs roughly midway in the back pressure transition.

Thus far we have only considered the responses to a change in valve angle for case A. The higher forcing
frequency cases show similar trends and will be discussed more thoroughly in the next section.

B. Effects of forcing frequency on shock train response

Given this underlying knowledge of the shock train responses to the changing valve angle we now consider
the effects of increasing forcing frequency while maintaining the same initial and final valve angles. Figures
9(a) and 9(b) show the back pressure and leading shock position time traces, respectively, for all of the cases.
Both variables are normalized by their respective average values at the rest point before any downstream
pressure forcing, p?b and x?I . The starred quantities are calculated by taking the average of the value between
0 < t < ∆t. As expected from the discussion above, the back pressure increases and the shock location
decreases (i.e., it moves upstream to a smaller x) with decreasing valve angle.

On closer inspection of figure 9, we find that the oscillation frequency of back pressure and leading shock
position match the forcing frequency for all of the cases. However, as forcing frequency is increased the back
pressure and shock position time histories never reach a stationary value over the period, unlike the valve
angle time history. Thus, the response signals more closely resemble a sine wave at higher forcing frequencies.
Especially evident in figure 9(a), is a difference in back pressure between the beginning and end of the first
cycle even though the valve angles are the same. After this initial yield in back pressure the extrema values
are approximately constant from cycle to cycle. Thus, there is a back pressure yield within the first cycle
and then a limit cycle is reached.

As a first method of comparing different cases of forcing frequency, we define the maximum and minimum
back pressures for each individual case as p+b and p−b , respectively. These are calculated by averaging extrema
values across all of the limit cycles for a given case. Figure 10(a) shows the maximum (p+b ) and minimum
(p−b ) back pressure values normalized by p?b for case C on the back pressure time trace. Note that p−b is
noticeably higher than p?b .

In a similar fashion, we define the maximum and minimum shock position for each case as x+I and x−I ,
respectively. Figure 10(b) shows the maximum (x+I ) and minimum (x−I ) values normalized by x?I for case C
on the time trace of leading shock position. While there was a drastic yield in back pressure, figure 10(b) does
not show much difference between x?I and x+I . Thus, in all the cycles the leading shock oscillates between
the same two positions.

Figures 11(a) and 11(b) compare the maximum and minimum values for back pressure and leading
shock position, respectively, for the different cases of forcing frequency. As forcing frequency increases the
maximum achieved back pressure decreases and the minimum achieved back pressure increases. In other
words, the overall change in back pressure during the cycle is reduced. From case A to case E the change in
back pressure of a cycle is reduced by approximately 60%. Figure 11(b) shows a similar trend in the average
values of x+I and x−I . Increasing the forcing frequency decreases x+I and increases x−I such that the shock
train travels less distance. the shock train in case E travels 30% less distance than the shock train in case
A. At this point we cannot determine if this reduction in shock train motion is due to a slow response time
of the shock train relative to the forcing frequency or the resulting reduction of back pressure change.

Finally, we repeat the above analysis for the time rate of change of back pressure and bulk speed of
the leading shock (i.e. the first derivatives of the variables considered above). Figure 12(a) shows how
the maximum ([dpb/dt]

+) and minimum ([dpb/dt]
−) rates of change in back pressure change with forcing

frequency. There is only a 20% reduction in the maximum back pressure rate of change from case A to E. A
slightly larger reduction of 30% is evident in the magnitude of the minimum rate of change from case A to E.
For a given case the magnitudes of extrema are approximately the same. The average rate of change across
all of the cases is 15 kPa/s and the extrema in the rate of change occurs roughly midway in the transition.

Next, consider the plot of maximum (U+
I ) and minimum (U−I ) bulk speed versus forcing frequency in

figure 12(b). Unlike the other variables, the extrema in bulk speed appears to be independent of forcing
frequency. The average value of U+

I across all cases is 0.80 m/s while the average value of U−I is only -0.67
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m/s. The difference in magnitudes indicates that the shock train propagates faster when moving downstream,
i.e. in the direction of the bulk fluid flow.

As discussed in the previous section there is a time delay between the valve angle changing and the
response of the system. We compute the time delay for each cycle by identifying the point at which the
signal’s derivative is 20% of its extrema value. For example, the time delay of the leading shock position
is defined as the time difference between the change in valve angle and the time at which the bulk speed
reaches 20% of the maximum or minimum value for the cycle (approximately 0.15 m/s). Analogously, the
time delay for back pressure occurs when dpb/dt reaches 20% of the maximum/minimum (approximately 3
kPa/s).

The average time delay across all of the cycles is plotted versus the forcing frequency of each case in
figure 13(a). The delay of the leading shock (τx) is in blue and the delay of the back pressure (τp) is in red.
The error bars are due to the slow sampling rate (pb is measured at 50 Hz and xI is low pass filtered at 50
Hz to compute the bulk speed). There is a slight increase in delay time of the leading shock with increased
forcing frequency. However, this result is unclear given the potential errors. A stronger trend of increasing
time delay with increased forcing frequency is evident in the curve for back pressure. In all of the cases the
time delay of back pressure is larger than the delay of leading shock position. Thus, the upstream response
of the shock train occurs before the downstream response.

We have already found the first point in a cycle where the signal’s derivative is 20% of the maxi-
mum/minimum. The rise time is the time between this point and the next point at which the derivative is
20% of the extrema value and the second derivative has the opposite sign. Figure 13(b) shows how the rise
time of the leading shock (blue curve) and back pressure (red curve) change with forcing frequency. Once
again, the error bars are due to the 50 Hz sampling rate of the derivatives (UI and dpb/dt). The back pres-
sure clearly has a longer rise time than the leading shock position at low forcing frequencies. However, the
difference between Tx and Tp decreases at higher Ω. The black, dashed line represents half of the cycle time
for a given Ω. As forcing frequency increases the rise times decrease and approach the dashed curve. Thus,
higher forcing frequencies limit the time during which the system can respond. At lower forcing frequencies
the rise times diverge from the dashed line. In addition, there is more variation in rise time of different
cycles for lower frequency cases. For example, some cycles in case B show a quick initial response (where
the derivative of the signal is high) but then slow down at the end of the transition and gradually reach the
final resting point. Thus, the rise times are consistently defined but potentially underestimate the true rise
time of the signal at lower forcing frequencies.

C. Shock train trajectory

In the previous section we saw a yield in the back pressure during the first cycle despite returning the valve to
the same angle. To better differentiate between the affects of changing back pressure and forcing frequency,
we have compiled the trajectory of the leading shock of the shock train as the back pressure oscillates.

Figure 14(a) is a plot of the normalized location of the leading shock versus normalized back pressure for
case A. At the beginning of the cycle pb ' p?b and xI ' x?I . The downstream forcing from the change in valve
angle causes the shock train to travel in a counter-clockwise loop. There is a clear hysteresis effect during the
cyclic motion that causes the shock train to travel along different paths during the upstream and downstream
moving portion of the cycle. Also note that the leading shock system does not monotonically travel upstream,
but instead a fluctuation component is superimposed to the bulk component. The superimposed fluctuation
is qualitatively similar to that observed in the quasi-steady state studies where the shock fluctuated about
a mean position at a given constant back pressure.5

The shock train trajectory for case C is shown in figure 14(b). Case C has multiple cycles and each cycle
is marked by a different color. The back pressure yield is clearly evident because the first cycle starts at a
different location than the remaining cycles. However, within the limit cycle there are only minor differences
between the motion of the shock train from cycle to cycle, which are due to the instantaneous shock position
fluctuations superimposed on to the bulk motion of the shock. Thus, within the limit cycle the back pressure
and shock train position follow a consistent path. The same is true for the other cases with multiple cycles.

In figure 15 the trajectories of the leading shock during the first and second cycles are compared across
all of the cases. Notice that in the first cycle (figure 15(a)) the shock train position does not make a closed
loop because the back pressure does not recover to its initial value. The cycle plotted in figure 15(b) is a
closed loop because the back pressure and shock position recover to approximately the same values at the
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beginning of the cycle. Also notice that the loop becomes smaller with increased forcing frequency because
of the increased yield in back pressure and subsequent drop in distance traveled by the leading shock.

Since the yield in back pressure increases with forcing frequency we re-normalize the plots to better
compare the trajectory of different cases. In figure 16 the shock position and back pressure are normalized
by the maximum and minimum values of the case (see section B). Therefore, a value of zero signifies
that the variable is equal to its minimum value, while a value of one signifies the variable is equal to its
maximum value. Figures 16(a) and 16(b) show the normalized shock trajectories for the first and second
cycle, respectively, for all of the cases. The normalized shock trajectories for different cases now follow a
similar path. In the first cycle the major differences between cases occurs before the limit cycle is reached.
The remaining differences between cases and cycles appear to be due to the small fluctuation component
superimposed to the bulk shock motion. This result indicates that, within the limited forcing frequency
range of the current study, the shock train trajectory is independent of the forcing frequency and simply
depends on the history of the back pressure.

The average shock train trajectory in the limit cycle is computed by averaging the overlapping trajectories
for all of the cases and for all of the cycles after the first loop. The solid, black line in figure 17 is the resulting
average curve. We note that the average trajectory closely follows the path of a fifth order polynomial. For
the upstream movement of the shock train the polynomial fit is:

xI − x−I
x+I − x

−
I

= −4.06P 5 + 13.03P 4 − 15.62P 3 + 9.11P 2 − 3.21P + 0.85

where P is the normalized back pressure value P = (pb−p−b )/(p+b −p
−
b ). In a similar manner, the polynomial

fit for the downstream motion of the shock train is:

xI − x−I
x+I − x

−
I

= −5.64P 5 + 9.97P 4 − 5.33P 3 + 0.11P 2 + 0.18P + 0.89

The collapsed normalized trajectory indicates that the path of the shock train is independent of forcing
frequency and instead depends on the history of the back pressure.

The trajectory of the shock train can also be studied using the derivatives of the measured responses.
Figures 18(a)–(c) are plots of the bulk speed versus the time rate of change of back pressure for cases A, C,
and E, respectively. There are clear differences in the shock speed cycle as forcing frequency is increased.

In figure 18(a) the single cycle for case A is plotted. The cycle begins at (0, 0), which is a rest position
where the shock speed and back pressure derivatives are close to zero. The scatter between these points
is due to the inherent unsteadiness of the system. Following the change in valve angle, the back pressure
rate increases and the speed of the shock rapidly increases in the negative direction (i.e. moves upstream).
Arrows 1 and 2 in the figure mark the counter-clockwise loop in the trajectory that occurs after the first
change in valve angle. The peak negative speed is reached when the back pressure rate of change is about 15
kPa/s. Then, the speed decreases as the shock train gradually moves upstream until the next rest position.
At the upstream rest position the trajectory has again stabilized at the point (0, 0). When the valve angle
changes for a second time, the shock train responds by traveling a similar, counterclockwise path (see arrows
3 and 4) in the other quadrant of the figure, thus forming a tilted figure-eight pattern. In this case, the
shock train returns to its rest position after every change in valve angle.

The effects of increased forcing frequency start to become evident in figure 18(b). In case C, the direction
of the speed’s loop is the same (counter-clockwise) but the center of the figure-eight is less defined. There
are less points at the rest locations because the shock train is oscillating faster. Finally, in case E (figure
18(c)) the speed cycle now looks like a circle instead of a figure-eight. The points at (0, 0) occur before any
back pressure forcing (t < ∆t). Following the numbered arrows, the trajectory makes a counter-clockwise
loop without ever returning to the point (0, 0). This means that the leading shock changes direction (i.e.
the trajectory crosses the x-axis) before the limiting value of back pressure is achieved (i.e. the trajectory
crosses the y-axis). Thus, in this case the shock train is never truly at rest when there is downstream forcing
introduced by the valve. Cases B and D were not plotted but there is a clear transition between cases with
rest points and cases without rest points from case A - E (i.e. increasing forcing frequency). We conjecture
that the changes in the speed cycle from case to case are due to the limits in the temporal response of the
shock train system.
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IV. Conclusions

The properties of an oscillating shock train due to downstream pressure forcing are studied. Forcing is
introduced by changing the angle of a downstream control valve. In response, the shock train is pushed to
a new location in the duct, effectively changing the length of the shock train and the downstream pressure
(pb) measured at the end of the duct. Five cases of forcing are considered to observe the effects of increasing
forcing frequency. These different cases are used to model different ways the back pressure could change in
an actual combustor, thus inducing shock train propagation in the isolator. Some of the key results are as
follows:

1. Within the first cycle of the response there is a yield in back pressure (i.e. the back pressure does not
return to its original value even though the valve returns to its initial angle). After this yield a limit
cycle is reached and all remaining oscillations occur between the same back pressure values. Increasing
forcing frequency will increase the amount of back pressure yield.

2. There is no yield in the leading shock position and thus, the shock train oscillates between the same two
points throughout all of the cycles. However, the shock train travels less distance due to the decrease
in back pressure change at higher forcing frequencies.

3. The shock train’s bulk speed (generally less than 1 m/s) is less than the speed of the high-frequency
fluctuation component (up to 15 m/s). The bulk speed extrema values are independent of forcing
frequency. However, the leading shock tends to travel faster in the downstream direction (with the
bulk fluid flow).

4. The leading shock in the shock train responds to the valve’s forcing before the back pressure. Thus,
the upstream portion of the system responds first. There is a slight increase in the delay times with
increased forcing frequency.

5. At low forcing frequencies the back pressure has a longer rise time than the leading shock position’s
response. The response times approach half of a cycle time at higher forcing frequencies meaning the
response of the system is limited by the downstream forcing.

6. There is a hysteresis effect during the shock train’s cyclic motion that causes the leading shock to
travel along different paths during the upstream and downstream moving portion of the cycle. When
normalized by the maximum and minimum back pressures and shock positions of the limit cycle all of
the cases follow the same trajectory. Deviations from this average path are due to the shock train’s
high-frequency fluctuation component. A collapsed trajectory for all cases of forcing frequency indicates
that the motion of the leading shock is determined by the history of the back pressure.
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Figure 1. Schematic diagram of the wind tunnel.
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Figure 2. Schematic diagram of the shock train forcing scheme.
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Figure 3. Image of a typical shock train with inset indicating the relative schlieren field of view.
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Figure 4. Valve angle (black line), back pressure (blue line), and leading shock position (red line) versus time
for case A.
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Figure 5. Valve angle (black line), back pressure (blue line), and leading shock position (red line) versus time
for a portion of the run time of case A.
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t = 2.5 s
(c)

Figure 6. Instantaneous schlieren images: (a) downstream rest location Θ = Θ1; (b) shock train moving
upstream; (c) upstream rest location Θ = Θ2.
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Figure 7. Time trace of speed components for case A: (a) total speed; and (b) bulk speed.
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Figure 8. Time trace of the rate of change of back pressure for case A.
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Figure 9. Time traces of cases A-E: (a) back pressure; and (b) leading shock position.
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Figure 10. Case C time traces pointing out the maximum and minimum values calculated by averaging the
extrema values across all of the cycles: (a) back pressure (b) leading shock position.
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Figure 11. Normalized maximum and minimum values versus forcing frequency: (a) shock location; and (b)
back pressure.
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Figure 12. Maximum and minimum values versus forcing frequency: (a) rate of change of back pressure; and
(b) shock speed.
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Figure 13. Comparison of cases A-E: (a) delay times; and (b) rise times.
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Figure 14. Normalized shock position versus normalized back pressure to demonstrate hysteresis: (a) case A;
and (b) case C.
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Figure 15. Plots of normalized shock position versus normalized back pressure for cases A-E: (a) the first
cycle; and (b) the second cycle.
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Figure 16. Shock position versus back pressure (normalized with the maximum and minimum values): (a) the
first cycle for cases A-E; and (b) the second cycle of cases B-E.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(pb − p−b )/(p
+
b − p−b )

(x
I
−

x
− I
)/
(x

+ I
−

x
− I
)

Average cycle
Polynomial fit

Figure 17. Average trajectory of the limit cycle across all of the cases (black line) and corresponding 4th order
polynomial fit of the shock train trajectory (red line).
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Figure 18. Bulk velocity component versus the back pressure rate of change: (a) case A; (b) case C; and (c)
case E.
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