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This article describes a simple low-order model for the lift produced by rapidly accelerating and
pitching flat plate wings. The model is informed by experiments performed as part of NATO’s AVT-202
technical team. The overall agreement of the model with the forces measured as part of this effort is
reasonable, however, the main value of the model is to identify a number of contributions to the lift
force and classifying these as either circulatory or non-circulatory. Thus the relative effects of viscosity
and kinematic accelerations are identified which helps the understanding of unsteady low-Re flows.

I. Introduction

The work reported here was performed under the umbrella of NATO’s RTO task group AVT-202 ’Advances
in Fundamental Unsteady Low Reynolds Number Flows’. An overview of the task group and results by various
members of the group are presented in a number of companion papers at the same conference. One of
the aims of the task group was to identify the contributions to unsteady lift due to circulatory and non-
circulatory effect. To this aim, several basic canonical test cases were studied. Here, the results from a subset
of these tests (see Figure 1) are used to develop a very simple analytical method to predict the lift generated
by a flat plate wing in an unsteady flow. Two types of unsteady flow are considered, a flat plate accelerating
from rest at a constant angle of incidence and a flat plate pitching in a steady free-stream. In both cases,
the steady state angle of incidence is 45◦. The flow is treated as 2-dimensional on the assumption that end
effects are small for rapid unsteady motions of plates with aspect ratios of the order 4 or above.

By devising a low-order model and comparing its predictions to the experimentally observed force
histories it is possible to identify the most significant contributions to lift and to separate circulatory from
non-circulatory effects.
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Flow

Figure 1: The two fundamental AVT-202 test cases: Acceleration from rest (’sliding wing’) and pitching in a
constant freestream (’pitching wing’).

A. Low-order modelling of unsteady lift

At the start we accept without proof that the unsteady force exerted by an object onto the surrounding fluid
(and thus the opposite reaction force experienced by the object) is equal to the rate of change of momentum
in the surrounding fluid. To quantify this force it is necessary to integrate the momentum across the whole
flowfield (stretching to infinity) and then calculate the time derivative a:

F =
d
dt

"
∞

−∞

ρu(x, t)dA (1)

where u is the unsteady velocity field, x is the location vector, t is time and A is an area element (dxdy).
Thus, if it were possible to accurately determine the velocity field everywhere at several instances in time
one could determine the force experienced by an object i.e. lift and drag. In reality however, there are
considerable practical difficulties to this approach.

In any case, it is helpful to break the overall force into several contributions due to inertial and vortex
effects as this can reveal interesting insights and can provide guidance for future designs.

1. Inertial effects: Virtual mass

Returning to Eq. 1 we can make some further observations for situations where the unsteady flow around
an object is self-similar. By this we mean a flowfield where the streamline pattern is independent of time
although the magnitude of local velocity may scale with a time-varying free-stream U∞(t):

u(x, t) = U∞(t)k(x) (2)

Here k(x) is some function relating the local velocity to the (variable) free stream. Note that k is constant
in time. Thus, the force experienced by the object can be expressed as follows:

F = ρ

"
∞

−∞

k(x)dA︸            ︷︷            ︸
I

dU∞(t)
dt︸  ︷︷  ︸
II

(3)

The force is therefore the product of a time-invariant area integral of k (Term I) and the acceleration of
the free-stream (Term II). Note that the first term (Term I) has the unit of mass and is constant throughout
the motion. Thus the force is proportional to the acceleration.

A good way to illustrate this force contribution is to consider the inviscid flow around a flat plate at 90◦

angle of incidence, as seen in Figure 2.
In steady flow there is no drag force. However, in unsteady flow the surface pressures on the windward

side are increased, while the pressures at the rear are decreased, giving a net force. This force can be derived
from unsteady potential flow results:

F =
ρc2π

4
V̇ (4)

where c is the chord of the plate and V the plate-normal velocity of the fluid.
This force is exactly equivalent to the inertia of a circular body of fluid with diameter c undergoing the

same motion as the plate. Therefore, this force is often referred to as an ’added’ mass force (or ’virtual’ mass

aThe pressure is assumed uniform at the integration boundary (∞). Vector quantities are in bold.
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2. LITERATURE REVIEW
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Figure 2.17. Potential flow streamlines for a plate moving normal to its chord

Therefore the lift is created only if the plate is under acceleration and the amount of fluid

being accelerated (added mass) is equal to the mass of a fluid cylinder with a diameter of

c: m0 = ⇢c2⇡/4.

2.3.2.2 The Wagner E↵ect and the Wagner Function

The Wagner function, k1(s), describes the growth of lift about an aerofoil starting impul-

sively from rest at a small fixed angle of attack (Garrick, 1938). Based on the physical

assumption that the velocity at the trailing edge is always finite, Wagner (1925) derived

the lift as a function of chords travelled, s, for a two-dimensional aerofoil:

CL = (2⇡ sin↵)k1(s). (2.4)

Figure 2.18, drawn by Wagner (1925), compares the growth of lift with the growth of

circulation. Half of the final lift is assumed at once and the lift then gradually approaches

its asymptote, in agreement with the results of steady flows, k1(s ! 1) ! 1. The

circulation, however, rises steadily from zero. Later authors (Beckwith & Babinsky, 2009;

Jones & Babinsky, 2009) have drawn curves with lift starting from zero, assuming that lift

is directly proportional to circulation, based on the classical Kutta-Joukowski theorem,

Lift per unit length = �⇢U�. (2.5)

Although for steady flows the existence of lift is due to the presence of the circula-

26

Figure 2: Potential flow around a flat plate at 90◦ angle of incidence.

force). For a plate accelerating at an angle of incidence different from 90◦, only the velocity component
normal to the plate contributes to this force (by the principle of superposition).

There are more rigorous derivations of virtual mass which show that, even in a viscous (incompressible)
flowfield, featuring separations and vortices, the inertial response to an acceleration is correctly captured
by the above approach.1 This is because the inertial force is transmitted through pressure waves (moving
at infinite speed in incompressible flow) which affect the whole flowfield in the same manner for potential
or real viscous flows.

In the unsteady flowfields discussed below (which are not inviscid) we will therefore determine the
virtual mass contribution by considering the plate-normal velocity at mid-chord. The force magnitude
can then be calculated from the added mass force experienced by a flat plate at 90◦ angle of incidence in
unsteady potential flow, with the same plate-normal acceleration.

2. Vortex lift (circulatory force)

In a real flowfield viscosity can not be neglected. We thus postulate that the total unsteady force is the sum
of the added mass force and a circulatory force contribution.

The simplest model for a circulatory force is to consider the relationship between forces and vortices.
The flow shown in Figure 3 features a pair of equal, opposite-strength vortices. Such a flowfield has net
momentum. Thus the generation of a pair of vortices in a quiescent fluid requires a force to introduce this
momentum. According to Lamb2 the magnitude of this momentum is:

J = ρΓd (5)

where J is the impulse (momentum), d the distance between the vortex centres and Γ is the vortex
circulation. Since force equals the rate of change of momentum, the chain rule dictates that:

F = ρ(Γḋ + Γ̇d) (6)

(where dot signifies time derivatives). The direction of this force is normal to the line connecting the
two vortices.

This shows that unsteady vortex lift has two contributions, one determined by the strength of the vortices
and the growth in distance between them (this term reduces to L = ρUΓ in steady flow) and another which
is directly related to the growth rate of circulation.

We consider a flat plate wing in unsteady flow as being the source of such a vortex force through the
generation of either a bound circulation or a leading edge vortex (LEV) and a corresponding starting or
trailing edge vortex (TEV). For now the bound vortex and/or the LEV are effectively combined into a single
vortex, here labelled LEV for simplicity. Setting x as the streamwise co-ordinate, lift is the y-component
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8. LEADING-EDGE VORTEX DYNAMICS
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(a) Line integral convolution of the flow around an impulsively started
flat-plate dominated by leading- and trailing-edge vortices

x/c

y
/
c

ên

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Potential flow streamlines for a vortex pair with unit normal vector,
ên, perpendicular to the line joining the vortices

Figure 8.5. Vortex representation.

138

Figure 3: Potential flow streamlines around a stationary counter-rotating vortex pair. This flow has net
momentum.

of this force. Knowledge of the strengths and positions of the two vortices (LEV and TEV) allows us to
compute the circulatory lift force and express it in coefficient form (where ui are the x-components of vortex
velocities, and xi are the x-components of vortex locations):

cl,circ = −
2

U2
∞c

[
(uLEV − uTEV)ΓLEV + (xLEV − xTEV)Γ̇LEV

]
(7)

Note that the lift coefficient in Eq. 7 is non-dimensionalised by a free stream velocity U∞. Apart from
the choice of U∞ and the direction of the lift force this result is independent of the co-ordinate system.

In situations were there is both bound circulation and a LEV it is suggested that we ’lump together’ both
vortices by calculating the total circulation and a centroid location (comparable to a centre of gravity). Note
that the position of the centroid can move relative to the plate (if the LEV moves away from the wing). The
same principle is applied if multiple LEVs are shed from a wing and the totality of vorticity shed from the
trailing edge is also assumed to be concentrated in just a single TEV. Thus, there are only two vortices in the
flow and these must be of equal and opposite strength according to Kelvins theorem. In reality, as the LEV
changes strength, a vortex sheet is shed from the trailing edge, which may not always merge with the TEV
(and even if it does this will take time) and thus the above flow is a relatively crude approximationb.

However, some of the above can be taken into account by replacing the distance (xLEV − xTEV) in the
second term of Eq. 7 with the chord length c. The reasoning for this is that whenever the LEV circulation
changes, vorticity is shed from the trailing edge, thus approximately one chord length away from the LEV
location. At high angles of incidence, this should be adjusted to c · cosα, to reflect the horizontally projected
distance.

Although rather basic, this model is helpful in understanding the physics of circulatory lift generated
in an unsteady wing flow. For example, it illustrates clearly that a detached LEV can contribute to wing lift
under two conditions: A) while it continues to strengthen, regardless of its position, and B) while it moves
relative to the TEV (drifiting away from the wing at a slower speed than the TEV). Generally, after the
LEV is ’shed’ it stops growing in strength and moves away from the wing at an ever increasing rate (thus
reducing its force contribution) until it ultimately drifts at free stream velocity at which point no further
force is produced.

We now proceed to develop very simple models for the unsteady lift force produced by pitching and
surging wings. In each case it is assumed that the total force is composed of an added mass contribution
and a circulatory force. The added mass contribution is calculated from the potential flow around a flat

bAssuming that the vortex sheet moves away with U∞, the first term of the above equation remains correct.
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plate normal to the flow and the circulatory contribution is derived from the two vortex model discussed
above.

II. Surging Wing

A. Non-circulatory force

Following on from the above we express the plate-normal velocity as:

V = Usinα (8)

Thus, from above, the added mass force (which is perpendicular to the plate) is:

F =
ρc2π

4
U̇sinα (9)

The component in lift direction

L = Fcosα =
ρc2π

4
U̇sinα · cosα (10)

can also be expressed as coefficient:

CL,non−circ =
πcU̇
4U2 sin2α (11)

It is generally more useful to normalise the force coefficients in the surging case with the eventual
free-stream velocity U∞.

B. Circulatory force

To determine the circulatory force contribution we make use of Pitt-Ford’s observation that the bound
circulation in surging flat plates tends to vanish early on in the motion.3 Thus we assume that all circulation
in the flow is concentrated in two vortices: an LEV (that need not be attached to the plate) and a TEV.

To accurately calculate the circulatory force it is necessary to predict or measure the strength and location
of the LEV as a function of time. For impulsively started thin airfoils at moderate angles of incidence, Wagner
calculated the growth of bound circulation and lift as shown in Figure 4.4 It can be seen that the bound
circulation grows from an initial value of zero to asymptotically reach the steady state value after many
chord lengths of travel. The exact Wagner function is iterative but a close fit explicit formula is:

Γ(t)
Γ∞

= 0.914 − 0.3151exp
( s/c

0.1824

)
− 0.5986exp

( s/c
2.0282

)
(12)

In contrast, the lift starts at a finite value (equivalent to half of the steady state result). The reason for this
apparent discrepancy is explained by Eq. 6: While bound circulation is growing the total lift is composed
not only of the traditional ρUΓ but also of an unsteady contribution proportional to the growth rate of
bound circulation, Γ̇. In Wagner’s calculations this has a finite non-zero value at t=0, causing the lift force
observed at the start of the motion.

Although Wagner’s calculations were derived for the bound circulation on an airfoil at small angles of
incidence, his prediction of the circulation growth has been found to also describe the growth of a LEV
in surging flat plate wings at high alpha,3 as seen in Figure 5. Here, the measured LEV circulation fits
reasonably well with a Wagner curve (Eq. 12), except during the early part of the motion. One explanation
for the discrepancy is that the experimental data was obtained on a wing that accelerated for a given
time (equivalent to one chord length of travel) whereas Wagners function was determined for a theoretical
instantaneous start.
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Figure 4: Wagner’s force prediction (starting at 0.5) and Wagner’s bound circulation (starting from 0).
Reproduced from Wagner’s original figure.4
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Figure 5: LEV circulation for surging flat plates at 15◦ and 45◦ angle of incidence.3

Thus, the agreement can be improved during the acceleration phase by scaling the Wagner function ac-
cording to the actual plate velocity, i.e. reducing the predicted circulation by U(t)/U∞ during the acceleration
phase to give:

Γ(t)
Γ∞

=
U(t)
U∞

[
0.914 − 0.3151exp

( s/c
0.1824

)
− 0.5986exp

( s/c
2.0282

)]
(13)

In order to apply this ’modified Wagner’ prediction to a LEV it is necessary to define the ultimate steady-
state LEV circulation, Γ∞. Here, it is suggested to simply use a value equivalent to cL = 2πα because it has
been found to match the experimental data reasonably well. Note that this assumption does not imply that
the plate actually achieves the equivalent value of lift, because the LEV does not remain attached to the
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plate. Instead the LEV moves downstream which reduces the relative velocity between the LEV and the
TEV and thus limits the lift according to Eq. 7.
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Figure 6: LEV and TEV distance from wing leading edge for fast surge case.

We also need an estimate of the LEV motion relative to the plate (or the TEV). Figure 6 shows some
sample data from the AVT202 fast pitch and surge cases where the distance between the LEV/TEV cores
and the wing leading edge r are plotted against reduced time (equivalent to distance travelled by the wing).
The free-stream velocity is marked by a solid line. It can be seen that the LEV trajectory converges onto a
’drift’ velocity, which is roughly half of the free-stream. In contrast, the TEV exhibits different behaviour for
surging and pitching wings but eventually both cases also converge to a common TEV trajectory moving
away from the wing at free-stream speed. Thus, we can roughly estimate the relative drift velocity between
the LEV and the TEV to be half of the free stream velocity. A long-term adjustment to this might also be
considered because this can not hold indefinitely as the relative velocity has to vanish once the LEV has
completely detached from the wing.

To summarise, we propose to estimate the unsteady force in the surge case as follows:

1. Add three contributions from virtual mass, vortex growth Γ̇LEV and relative LEV/TEV motion.

2. Determine the virtual mass from Eq. 11. This force occurs during the accelerating portion of the cycle.

3. Estimate the two circulatory contributions by assuming that ΓLEV grows according to the speed-
adjusted Wagner function (Eq. 13) with a steady state value equivalent to 2πα.

4. Estimate the LEV trajectory by assuming that the distance between the LEV and TEV grows at 50% of
U∞.

5. Estimate the distance between two vortices used in the Γ̇LEV term to equate to c · cosα (to a first
approximation).

6. In each case, non-dimensionalise the result by the asymptotic U∞.

At large angles of incidence it is necessary to carefully consider the directions of the various forces and
include a trigonometric term. The vortex lift acts in a direction normal to the line connecting LEV and
TEV, while the non-circulatory force acts normal to the plate (which has already been taken account in the
equations shown earlier).

Figure 7 shows schematically how the different forces contribute to the overall unsteady lift production
in the surging wing. Figure 8 compares the theoretical model with data from the AVT-202 technical team,
showing a reasonable agreement between theory and experiment. The acquisition of the experimental data
is described in the complimentary session paper ’Low Reynolds Number Acceleration of Flat Plate Wings at High
Incidence.’5
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Figure 7: Schematic diagram showing the different force contributions for a surging plate.
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Figure 8: Comparison of AVT-202 technical team surge case data with surging theoretical model.

III. Pitching Wing

In pitching wings the resulting lift force can be broken down into three contributions: an inertial added
mass term, a vortex lift term and an additional contribution due to pitch rate (which has the same effect as
a bound vortex, as discussed below).
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Figure 9: Coordinate system for a wing pitching about a point P.

Using the coordinate system shown in Figure 9 we obtain the normal velocity at mid-chord:

V =
( c

2
− xp

)
α̇ (14)

A. Non-circulatory force

The non-circulatory forces only occur at the start and end of the pitching motion (assuming that most of the
pitch is at constant rotational speed) and their magnitude depends on the ’sharpness’ of acceleration at either
end of the pitch. We assume the added mass potential flow to be a superposition of a rotation about the
mid-chord and a plunge (normal to the plate) with the speed V. The former does not generate a force (but a
moment about the mid-chord). The added mass contribution can be computed from the flow of a plate at
90◦ angle of incidence and the mid-chord normal acceleration. Thus the magnitude of the non-circulatory
force depends on the hinge location xp. Rotations about the leading and trailing edges produce spikes of
equal opposite magnitudes at the start and end of the motion while rotation about the centre experiences
no non-circulatory force. This has been shown to be correct in AVT-202 experiments.6

Using the above expression for V and the previously stated equation for the added mass force we obtain
for the non-circulatory contribution to lift:

CL,non−circ =
πc2

4U2

(
1 − 2

xp

c

)
α̈ (15)

Note that this applies at zero angle of incidence, i.e. at the start of the pitch. At the end of the pitch
(when the second spike appears), the force vector is rotated by αend, thus the second spike lift magnitude is
reduced:

CL,non−circ = cos(αend) ·
πc2

4U2

(
1 − 2

xp

c

)
α̈ (16)

B. Vortex Lift

The growth of the LEV and TEV and their movement relative to each other generate a lift force that can be
computed using the same model as discussed for the surging wing.

The strengths of the overall circulation is once again assumed to follow a modified Wagner function.
Here, the modification arises from the fact that during the pitch motion the actual angle of incidence of the
wing is below the final steady- state value. Thus, the angle-of-incidence modified Wagner function can be
expressed as:

Γ(t)
Γ∞

=
α(t)
α∞

[
0.914 − 0.3151exp

( s/c
0.1824

)
− 0.5986exp

( s/c
2.0282

)]
(17)
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Figure 10: LEV and TEV distance from wing leading edge for fast pitch case.

which implies that the asymptotic circulation Γ∞ is proportional to the angle of incidence.
By reference to Figure 10, it is once again assumed that the relative velocity between the LEV and TEV

is around half of the freestream. Similar to previous arguments, it is also suggested to use c · cosα as the
relative LEV-TEV distance for the circulation production term in Eq. 7.

C. Virtual quasi-steady angle of incidence

Depending on the location of the pitch axis, the pitching motion can introduce an additional normal velocity
at the mid-chord which increases the effective angle of incidence by approx. V/U∞. Assuming that this
generates lift according to 2πα there is therefore an additional lift contribution ofc:

CL,2 =
2π
U∞

( c
2
− xp

)
α̇ (18)

However, if we continue to assume that bound circulation is vanishingly small then the lift contribution
due to this additional effective angle of incidence should be included in the vortex lift. We therefore propose
to include this additional incidence in the correction of the Wagner function. In practice it is found that the
inclusion of this additional incidence has a small effect.

D. Additional circulatory force (’Magnus Force’)

The physical action of pitching the wing introduces a real geometric rotation into the fluid. This can be
interpreted as a further bound circulation (not included in the LEV). The existence of this bound circulation
(and the additional lift it generates) can be explained in two ways: Either a virtual camber caused by pitch
(consider the motion of the TE relative to the LE while the fluid travels along the chord), as seen in Figure 11,
or an additional circulation due to the plate rotation.

Applying unsteady thin airfoil theory to a pitching plate (see Figure 11) gives the following result for
lift coefficient:

cl = 2π
(
α +

cα̇
2U∞

(
3
2
−

2xp

c

))
(19)

This includes the steady contribution of 2πα and the virtual quasi-steady angle of incidence discussed
above. After removing both we are left with the virtual camber contribution:

cl,circ =
πc

2U∞
α̇ (20)

cThis result is also given by Theodorsen.7
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Figure 11: Virtual camber caused by a pitching wing. Adapted from Leishman.8

The same result is obtained if we assume that the pitching motion introduces an additional bound
circulation:

Γ =
πc2

4
α̇ (21)

which generates lift according to the Magnus effect.
The total lift is once again the sum of the various contributions discussed above. Figure 12 shows

schematically how the different contributions affect the overall lift force. Figure 13 compares the pitch data
from the AVT-202 technical team with the model, demonstrating that the model captures the key features
of the force history.

'Virtual camber' contribution

Pitch phase Constant speed phase

Contribution from growth of LEV

Contribution from relative LEV-TEV motion

s/c

Force

Added mass 'spikes' 
(dependent on 'sharpness' of acceleration)

Figure 12: Schematic diagram showing the different force contributions for a pitching plate.
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Figure 13: Comparison of AVT-202 technical team pitch case data with pitching theoretical model.

IV. Conclusions

A simple low-order model is proposed to predict the unsteady lift force generated during the early part
of an unsteadily accelerating and pitching wing. The model is valid for motions where the unsteady portion
occurs over a relatively small number of chord-lengths of travel and it is expected to be capable of estimating
the forces during the unsteady part of the motion as well as for a few chord lengths of travel beyond reaching
steady state. The data used to inform this model has been generated as part of a NATO technical research
team (AVT-202) where surging and pitching flat plates with a steady state angle of incidence of 45◦ where
investigated in incompressible flow at a range of Reynolds numbers.

The main aim of this model is not to accurately predict the lift force but to identify a number of viscous
and inviscid force production mechanisms so as to help the understanding of unsteady low Reynolds
number flows. In particular, the model identifies various circulatory and non-circulatory forces which
illuminates the connection between unsteady force production and wing kinematics.

For very fast motions it is seen that the instantaneous force during the acceleration phase is dominated
by a virtual mass term (or added mass) which can be predicted relatively easily from wing kinematics. For
less fast motions (and at other times in the cycle) there are a number of circulatory forces whose contribution
depends on the strengths and relative locations of various vortices in the flow. By combining all vortices
into a single representative leading edge vortex (LEV) and its trailing edge counterpart (TEV) a reasonably
good estimate of the effective lift force can be obtained. For pitching wings there is an additional force
contribution due to the plate rotation which can be interpreted either as a Magnus force or a virtual camber.
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