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A solution method for a special class of deterministic drift counteraction optimal control
(DDCOC) problems is presented. The objective is to find a control law that maximizes the
time until a deterministic nonlinear discrete-time system violates prescribed constraints.
One of the system’s states is monotonically decreasing in time, decreasing by a constant rate
each time a control action is applied. This, for example, may model the propellant mass
of spacecraft propulsion systems that operate with a constant mass flow. The method is
applied to attitude control of an axisymmetric spacecraft during a translational thrusting
maneuver with a fixed thrust vector misalignment. The spacecraft’s mass and inertia
properties are time-varying due to the mass flow required for the orbital maneuver. Given
fuel constraints for the attitude control system, the objective is to counteract the parasitic
moment resulting from the thrust vector misalignment and to maximize the time during
which the orientation of the spacecraft’s symmetry axis stays within a prescribed cone.
Simulation results are presented including a robustness analysis of the DDCOC law with
respect to uncertainties in the thrust vector misalignment.

Nomenclature

a Acceleration, m/sec2

â Axis of inertial reference frame

b̂ Body-fixed axis
c Constant, sec/m2

d Thrust vector displacement, m
f, F Force, N
G Allowed set for (x,m)

G̃ Allowed set for x

J Performance functional, or moment of inertia, kgm2

k Incremental time step
l Length, m
m Mass, propellant state, kg
M Moment, Nm
p Number of control inputs
r Position, distance, m
t Time, sec
T End of considered time horizon [0, T ], sec
u Control vector
U Set of admissible controls
v Velocity, m/sec
V Cost-to-go function
x State vector
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α Maximum control input
β Thrust vector misdirection, deg
∆t Sampling time, sec
θ Attitude parameter
ρ Density, kg/m3

τ First instant at which (x,m) /∈ G
ω Angular velocity, 1/sec
Subscript
A Inertial reference frame
B Body-fixed frame
c Center of mass
B General rigid body or spacecraft
e Main engine
f Fuel
k Time instant
ox Oxidizer
p Payload
R Moment of inertia component about symmetry axis
t Thrust from main engine
T Moment of inertia component about principal axes 1 and 2
z Body-fixed point

I. Introduction

The framework of drift counteraction optimal control (DCOC) may be used to find a control law that
maximizes the time or total yield until a system violates prescribed constraints. The systems typically
considered for DCOC are driven by a large disturbance with limited resources available for counteracting the
disturbance. DCOC has been previously considered for stochastic systems1–3 leading to stochastic DCOC
(SDCOC) and recently for deterministic systems (DDCOC) as well.4 Both SDCOC and DDCOC are based
on dynamic programming (DP) and the solution can be computed (off-line) by the usual DP numerical
algorithms such as value iteration.2,5 Problems similar to DCOC are discussed, for example, by Bertsekas6

or by Blanchini and Miani7 who use set bounding methods. Their approaches are based on DP as well. In
contrast to previous work, DCOC assumes that the disturbance acting on the system is sufficiently large
such that the system will violate prescribed constraints at an unknown finite time.

The computational effort to solve the DCOC problem using conventional DP algorithms increases expo-
nentially with the dimension of the system. This is also known as the curse of dimensionality which may be
dealt with using approximate dynamic programming (ADP) techniques.8,9 The ADP is based on a priori
assumptions about the optimal control or value function.

In this paper a new solution method is presented for a special class of problems which allows to generate
DCOC-based control laws faster than common DP algorithms. Moreover, the DCOC framework is applied
to a time-varying system of higher order than in previous work. The systems that are considered have a
state m which is monotonically nonincreasing in time, where m decreases by a constant rate each time a
control action is applied.

The example application in this paper is an attitude control problem for an axisymmetric spacecraft.
The system is time-varying and has five continuous states. Four states are used to describe the rotational
dynamics of the spacecraft and its orientation. The fifth state m describes the available propellant mass for
the attitude control system.

The spacecraft is performing a longitudinal thrusting maneuver to change its orbit. The accuracy of
such orbital maneuvers depends on the orientation of the spacecraft during the thrusting period. Due to
imperfections and varying mass properties the thrust vector may be misaligned relative to the spacecraft’s
center of mass. This creates a disturbance moment trying to rotate the spacecraft. There are principally two
approaches for active closed-loop control of the spacecraft’s attitude during thrusting maneuvers: fixed thrust
and thrust vector control.10 Thrust vector control is achieved using gimbaled engines or thrust deflection
devices. Fixed thrust systems are less complex than thrust vector control systems. However, they require
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sufficient control authority to counteract the parasitic moment resulting from the thrust vector misalignment.
For the example in this paper we assume a fixed thrust system with attitude control thrusters. The DDCOC
law is used to maximizes the time that the spacecraft’s symmetry axis stays inside a prescribed cone given
limited amount of propellant for attitude control. The DDCOC law takes into account the time-varying mass
and inertia properties of the spacecraft resulting from the propellant consumption required for the orbital
maneuver.

The structure of the paper is as follows. The general DDCOC problem is described in Section 2. Section
3 presents the novel approach to solve the DDCOC problem. The spacecraft attitude control example is
discussed in Section 4. This includes a robustness analysis of the DDCOC law with respect to uncertainties
in the thrust vector misalignment. The rotational dynamics of a spacecraft with time-varying mass and
inertia properties are derived in the Appendix. Section 5 provides a brief conclusion and a discussion of
future work.

II. DDCOC Problem Formulation

We consider a class of time-varying nonlinear discrete-time systems of the form

xk+1 = f(xk, uk, tk),

mk+1 = mk − c
p∑
i=1

|uk,i| = mk − c ‖uk‖1 ,
(1)

where ‖·‖1 denotes the 1-norm and k ∈ Z≥0. The time is denoted by tk ≥ 0 which satisfies tk+1 = tk + ∆t,
where ∆t is the sampling time of the discrete-time system. The states of the system are xk ∈ Rn−1 and
mk ∈ R. The parameter c > 0 is a real constant. The control input is uk = [uk,1, uk,2, ..., uk,p]

T ∈ U ⊂ Rp,
where

uk,i ∈ {−α, 0, α} , i = 1, 2, ..., p, α ∈ R. (2)

The function f in Eq. (1) can be any nonlinear function mapping from Rn−1 × U × R≥0 into Rn−1. The
objective is to find a control law u : G×R≥0 → U such that the following performance criterion is maximized

J =

τx0,m0,t0,u(G)−1∑
k=0

1 = τx0,m0,t0,u(G), (3)

where τx0,m0,t0,u(G) is the first instant at which the system exits a specified compact set G given the initial
condition x0,m0, t0, and the control law u. The set G ⊂ Rn is defined as

G =
{

(x,m) : x ∈ G̃,m ≥ mmin

}
, (4)

with G̃ ⊂ Rn−1 and mmin ∈ R. The optimal control policy u∗ satisfies the sufficient conditions stated in the
following theorem.

Theorem 1. Suppose there exists a non-negative function V : Rn−1×R×R≥0 → R≥0 that is bounded from
above satisfying, for all x ∈ Rn−1, m ∈ R, and t ≥ 0,

V (x,m, t)− V (f(x, u∗(x,m, t), t),m− c ‖u∗(x,m, t)‖1 , t+ ∆t) = 1, if (x,m) ∈ G,
V (x,m, t)− V (f(x, u(x,m, t), t),m− c ‖u(x,m, t)‖1 , t+ ∆t) ≥ 1, if (x,m) ∈ G, u 6= u∗,

V (x,m, t) = 0, if (x,m) /∈ G.
(5)

Then the control policy u∗ maximizes Eq. (3). Furthermore, V (x0,m0, t0) = τx0,m0,t0,u
∗
(G) and V (xk,mk, tk) =

τx0,m0,t0,u
∗
(G)− k, k ∈ Z≥0.

Proof. The proof for time-varying systems is similar to the proof for time-invariant systems by Zidek and
Kolmanovsky.4 Using any sub-optimal control policy u, it follows from (5) that, for all t ≥ 0,

V (x,m, t)− V (xτ ,mτ , tτ ) ≥ τ, (6)
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where τ = τx,m,t,u(G). Since V (xτ ,mτ , tτ ) = 0, it follows from Eq. (6) that

V (x,m, t) ≥ τ. (7)

Defining τ∗ = τx,m,t,u
∗
(G) and using the optimal control law u∗ as well as the fact that V (xτ∗ ,mτ∗ , tτ∗) = 0,

it can be shown that
V (x,m, t) = τ∗. (8)

Comparing Eq. (7) and (8), it follows that τ∗ ≥ τ or τx,m,t,u
∗
(G) ≥ τx,m,t,u(G).

Conditions under which we can expect the existence of a function V satisfying the requirements stated in
Theorem 1 were presented by Zidek and Kolmanovsky.4 For example, it is sufficient that for all (x,m) ∈ G
and t ≥ 0, τx,m,t,u(G) is finite for any control policy u.

III. Solving the DDCOC Problem

According to (5), the optimal control law is given by

u∗(x,m, t) ∈ argmax
u∈U

V (f(x, u, t),m− c ‖u‖1 , t+ ∆t). (9)

Therefore, the solution of the DDCOC problem is the function V that satisfies (5). This function is also
referred to as the cost-to-go function or value function. An exact solution for V may be obtained using the
value iteration algorithm2 or a variant of it.4 However, these algorithms become computationally intractable
for higher-dimensional systems.

Remark 1. If the maximizer in Eq. (9) is not unique we select a maximizer that requires the least control
effort in the sense that ‖u‖1 is minimal.

A. Computing Optimal Control

A solution method different from value iterations is developed for systems given by Eq. (1) based on the
following idea. According to Eq. (1) and (2) the state m decreases by multiples of a constant value cα each
time a non-zero control action is applied. Therefore, we discretize m by mmin + qcα, q ∈ Z≥0, yielding the
following grid

m ∈Mdis = {mmin,mmin + cα,mmin + 2cα,mmin + 3cα, ...} . (10)

Then, assuming that V (x0,mmin, t0) is known, V (x0,mmin + cα, t0) is obtained by finding the state and
time on the zero-control trajectory (u = 0) at which it is optimal to apply a control action. This is done
by traversing the zero-control trajectory emanating from x0 at time t0 until the constraints are violated. At
each point of this zero-control trajectory we compute

Vk−1 = max
u∈U
{V (f(xk−1, u, tk−1),mmin, tk−1 + ∆t)}+ k, (11)

where k ∈ Z+ increases incrementally at each time instant. Then V (x0,mmin +cα, t0) = maxk∈Z≥0
Vk. After

V (x0,mmin + cα, t0) is computed, V (x0,mmin + 2cα, t0) can be obtained following the same idea. The same
applies to V (x0,mmin + 3cα, t0) and so on. It can be shown that the resulting V satisfies the sufficient
conditions for optimality stated in (5).

For numerical implementation of this algorithm, the spaces of the state vector x and of the time t have
to be discretized in addition to discretizing the state m, see Eq. (10). Moreover, since V (x,m, t) = 0 for
x /∈ G̃, we only consider x ∈ G̃. The discretized state space for x is denoted by G̃dis ⊂ G̃ and the discretized
time is denoted by Tdis ⊂ [0, T ], where T is the end of the considered time horizon.

The algorithm is based on the knowledge of V (x,mmin, t). Computing V (x,mmin, t) is straightforward by
noting that a non-zero control action would violate the constraints given by Eq. (4) since m = mmin. Thus,
we traverse the zero-control trajectory starting from x ∈ G̃, where V (x,mmin, t) is the number of steps k
until x /∈ G̃. This procedure is summarized in Algorithm 1.

The new approach computes the DDCOC solution significantly faster than conventional DP algorithms
if τx,mmin,t,0(G) or V (x,mmin, t), respectively, are sufficiently small for all x ∈ G̃dis and t ∈ Tdis. This is the
case when the disturbance acting on the system is large or the constraints given by G̃ are tight.
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Algorithm 1 Compute V (x,mmin, t)

1: x0 = x, t0 = t
2: k = 0
3: while xk ∈ G̃ and tk ≤ T do
4: xk+1 = f(xk, 0, tk)
5: tk+1 = tk + ∆t
6: k = k + 1
7: end while
8: return V (x,mmin, t) = k

As outlined above, knowing V (x,mmin, t) for all x ∈ G̃dis and t ∈ Tdis allows to compute V (x,mmin +
qcα, t) for all q ∈ Z+. However, care needs to be taken because multi-input systems with u ∈ U ⊂ Rp are
considered. For example, if q < p it is not possible to apply a control with ui 6= 0 for all i = 1, 2, ..., p because
this would violate the constraint m ≥ mmin. Therefore, the following set is defined

Uq =

{
u ∈ U :

p∑
i=1

|ui| ≤ qα

}
, q ∈ Z+. (12)

Thus, the maximizer in Eq. (9) is selected from the set Uq instead of U . With the optimality conditions
in (5) and the ideas outlined before, we can now state Algorithm 2 to compute V (x,mmin + qcα, t) for all
q ∈ Z+.

Algorithm 2 Compute V (x,mmin + qcα, t), q ∈ Z+

1: x0 = x, t0 = t
2: k = 1, V̂max = −1
3: while xk−1 ∈ G̃ and tk−1 ≤ T do

4: V̂ = max
u∈Uq

{
V

(
f(xk−1, u, tk−1),mmin + c

[
qα−

p∑
i=1

|ui|

]
, tk−1 + ∆t

)}
+ k

5: if V̂ ≥ V̂max then
6: V̂max = V̂
7: end if
8: xk = f(xk−1, 0, tk−1)
9: tk = tk−1 + ∆t

10: k = k + 1
11: end while
12: return V (x,mmin + qcα, t) = V̂max

The procedure described by Algorithm 2 is based on recursion, i.e., knowledge of V (x,mmin+(q−1)cα, t),
V (x,mmin + (q − 2)cα, t), ..., and V (x,mmin, t) is required to compute V (x,mmin + qcα, t). In contrast to
Algorithm 1 where we initialize k = 0, Algorithm 2 initializes k = 1 which takes into account the additional
step for switching from the zero-control trajectory to a different trajectory. The function V is computed
at the discrete points x ∈ G̃dis, m ∈ Mdis, and t ∈ Tdis. We use linear interpolation to evaluate V at{
x ∈ G̃ : x /∈ G̃dis

}
and t /∈ Tdis. Besides the increased computational efficiency as demonstrated by our

ability to handle larger dimensional problems than possible with the conventional value iterations, another
advantage of the new method versus the conventional DP algorithms is that convergence is not an issue.
This is based on the requirement stated earlier that the system leaves the set G in a finite number of steps
for all points in G and t ≥ 0, i.e., τx,m,t,u(G) is finite for any control policy u. Consequently, it is guaranteed
that there are no infinite loops in Algorithms 1 and 2. In fact, it is possible to exactly determine the total
number of computational steps of the procedure.

B. Simplification of the Solution Approach

The solution approach outlined before can be simplified which also improves the computational performance.
We use an assumption that for each initial state x0 ∈ G̃ and time t0 ≥ 0 there exists q∗ ∈ Z+, u′ ∈ Uq∗ , and
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k′ ∈ Z+ such that

V (x0,mmin + (q∗ + n)cα, t0) = V

(
f (xk′−1, u

′, tk′−1) ,mmin + c

[
(q∗ + n)α−

p∑
i=1

|u′i|

]
, tk′−1 + ∆t

)
+ k′,

(13)
for all n ∈ Z≥0. In other words, for a sufficiently high initial mass m0 ≥ mmin + q∗cα, the optimal control
policy always applies the control action u′ = u∗(xk′−1,m0, tk′−1) at the same state xk′−1 and time tk′−1
after traversing the zero-control trajectory, starting from x0 at time t0, for k′− 1 steps. Note that q∗ as well
as u′, k′, xk′−1, and tk′−1 may be functions of x0 and t0.

In order to explain the underlying idea behind this simplified approach, the set D ⊂ G̃ is defined as

D =
{
x ∈ G̃ : V (x,m, t)→∞ for m→∞ and all t ≥ 0

}
, (14)

The set D contains all points x ∈ G̃ for which there exists a control policy u such that the exit time τx,m,t,u(G)
goes to infinity for the case of unlimited control resources (m → ∞). It is intuitive to assume that for all

x ∈ D, if m → ∞, there exists a trajectory, denoted by x∗∞ =
{
x∗∞,k ∈ G̃, k ∈ Z≥0

}
with x = x∗∞,0, that

requires the least control effort compared to any other trajectory that remains in G̃ for all times. Then, based
on Remark 1, for a sufficiently high but finite initial mass it seems advantageous to stay on the trajectory
x∗∞ for as long as possible. Consequently, for each initial x0 ∈ D and time t0, the optimal control policy
always applies the control action u′ at the same state xk′−1 = x∗∞,k′−1 and time tk′−1 independent of the

initial mass m0 if m0 is sufficiently high. In addition to x0 ∈ D, Eq. (13) also holds for all x0 ∈ G̃ ∩ DC,
where DC denotes the complement of D. Note that in general V (x0,mmin, t0) ≤ V (x0,mmin + cα, t0) ≤
V (x0,mmin + 2cα, t0) ≤ V (x0,mmin + 3cα, t0) ≤ .... Since x0 ∈ G̃∩DC, the exit time τx0,m0,t0,u(G) is finite
for any control policy u. Thus, the sequence V (x0,mmin + (q∗ + n)cα, t0) has to be bounded from above.
This and V being integer-valued due to the performance criterion used herein, see Eq. (3), imply that there
exists q∗ ∈ Z+ such that V (x0,mmin + q∗cα, t0) = V (x0,mmin + (q∗ + n)cα, t0) for all n ∈ Z≥0.

An important implication of Eq. (13) is that for m0 = mmin + (q∗+ n)cα, n ≥ Z+, Algorithm 2 becomes
unnecessary. By knowing u′ and k′ for each x0 and t0, the function value V (x0,mmin + (q∗ + n)cα, t0)
is obtained according to Eq. (13). In contrast, Algorithm 2 has to compute V̂ (step 4 in Algorithm 2)
at each state on the zero-control trajectory. Thus, by using Eq. (13), the computational time to obtain
V (x0,mmin + qcα, t0) for q ≥ q∗ decreases to a fraction of the computational time of Algorithm 2.

It seems, however, impossible to determine q∗ for each individual x0 and t0. For a numerical implemen-
tation it is practical to assume a q∗ which is an upper bound for all x0 ∈ G̃dis and t0 ∈ Tdis. For the example
in Section 4 we set q∗ = 8 for all x0 ∈ G̃dis and t0 ∈ Tdis. This value is chosen because, using the simplified
approach with Eq. (13), there are no practical differences between the computed value functions for q∗ ≥ 8.
Moreover, with q∗ = 8 for all x0 ∈ G̃dis and t0 ∈ Tdis, the value function obtained with Eq. (13) is the
same (within numerical accuracy) as the value function obtained by Algorithm 2 and we verified that both
value functions satisfy (5) for all x0 ∈ G̃dis and t0 ∈ Tdis. Besides the example in Section 4, the simplified
method using Eq. (13) was also verified for a two-dimensional mass-spring system with disturbance which is
not shown in this paper.

IV. Example: Spacecraft Attitude Control

A. Model Formulation

The general rotational dynamics of a rigid body with time-varying mass and inertia properties are derived
in the Appendix. Eq. (39) in the Appendix states the governing equation for a rigid body B with center
of mass c using a body-fixed point z. The specific spacecraft model for this example is outlined in Fig. 1.
A cylindrical spacecraft with four sections is considered. The first section comprises the main engine with
evenly distributed mass me. The engine is followed by the tanks of the oxidizer (ox) and the fuel (f). Both
the oxidizer and the fuel have initial masses mox,0 and mf,0, respectively, which decrease at constant mass
flow rates ṁox and ṁf , respectively. We neglect the slosh dynamics in the tanks. The fourth section of the
rocket is the payload with evenly distributed mass mp.
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The governing equations are resolved in the body-fixed principal frame FB with mutually perpendicular
frame vectors (b̂1, b̂2, b̂3), where b̂3 is the symmetry axis of the spacecraft. As shown in Fig. 1, there is a thrust

force ~Ft acting on the spacecraft that is misdirected by an angle β relative to the symmetry axis. Moreover,
the thrust force is displaced relative to the point z by a radial distance d1 and longitudinal distance d2. As
derived in the Appendix, the equations describing the rotational dynamics of the spacecraft are

ω̇1 =
u1 +M1 +

(
2r3(t)v3(t)mB(t) + r23(t)ṁB − J̇T(t)

)
ω1 +

(
JT(t)− JR(t)− r23(t)mB(t)

)
ω2ω3 − r3(t)f2

JT(t)− r23(t)mB(t)
,

(15)

ω̇2 =
u2 +M2 +

(
2r3(t)v3(t)mB(t) + r23(t)ṁB − J̇T(t)

)
ω2 +

(
JR(t)− JT(t) + r23(t)mB(t)

)
ω1ω3 + r3(t)f1

JT(t)− r23(t)mB(t)
,

(16)

where ω1 and ω2 are the spacecraft’s angular velocity vector projections on its body-fixed axes b̂1 and b̂2,
respectively. The angular velocity projection ω3 = ω3(t) on the symmetry axis b̂3 can be obtained explicitly
as a function of time, see Eq. (56). The time-dependent parameters r3(t) and v3(t) are the position and
velocity of the center of mass c relative to point z. The respective equations are given by Eq. (46) and
(47). Eq. (41) describes the time-varying mass of the spacecraft mB(t). The time-varying components of the
moment of inertia JR(t), JT(t), and its derivative J̇T(t) are given by Eq. (49), (50), and (52), respectively.

The external force acting along the b̂1-axis is f1 and likewise f2 is acting along the b̂2-axis. The external
moments around the two body-fixed axes are M1 and M2 (M3 = 0 is assumed). There are two control inputs

u1 ∈ {−α, 0, α} and u2 ∈ {−α, 0, α} which are the control moments around the b̂1- and b̂2-axis, respectively.

Payload 

E 
n 
g 
i 
n 
e 

Ox. Fuel 

L:1.2  R:1.4 
B:1.9  T:1.7 

Figure 1. Example axisymmetric spacecraft.

In order to describe the attitude kinematics we use a parametrization introduced by Tsiotras and
Longuski.11 The orientation of the 3-axis of the inertial reference frame FA, denoted by â3, expressed
in the body-fixed frame FB is described by the two variables θ1 and θ2

θ1 =
b

1 + c
, θ2 = − a

1 + c
, (17)

where a, b, and c are the components of â3 expressed in the body-fixed frame, i.e., â3 = ab̂1 + bb̂2 + cb̂3.
Note that θ1 is the real part and θ2 is the imaginary part of a complex variable θ which results from the
stereographic projection σ : S2 \ {0, 0,−1} → C, where S2 denotes the surface of the unit sphere in R3.
Using θ1 and θ2 for attitude representation, the kinematic equations are given by11
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θ̇1 = ω3θ2 + ω2θ1θ2 +
ω1

2

(
1 + θ21 − θ22

)
, (18)

θ̇2 = −ω3θ1 + ω1θ1θ2 +
ω2

2

(
1 + θ22 − θ21

)
. (19)

The available propellant mass for the spacecraft’s attitude control system is denoted bym. The differential
equation describing m is as follows

ṁ = −c (|u1|+ |u2|) , (20)

where c > 0 is a constant. In summary, the time-dependent system is described by five states: x =
[ω1, ω2, θ1, θ2]

T
and m. There are two control inputs u1 and u2. The governing equations are given by

Eq. (15), (16), (18), (19), and (20). The continuous-time model is converted into a discrete-time formulation
as stated in Eq. (1) using Euler’s forward method

xk+1 = xk +
[
ω̇1(tk), ω̇2(tk), θ̇1(tk), θ̇2(tk)

]T
∆t,

mk+1 = mk + ṁ(tk)∆t,
(21)

where a sampling time of ∆t = 0.3 sec is used for this example.

B. Model Parameters

The engine characteristics of the spacecraft are similar to the A-4 engine12 which uses Hydrazine as fuel and
Dinitrogen Tetroxide as the oxidizer. The engine generates a thrust of Ft = 33, 360 N with Isp = 320 sec
and oxidizer and fuel mass flow rates of ṁox = 5.8 kg/sec and ṁf = 4.83 kg/sec, respectively.12 With an
engine mass of me = 117 kg, initial fuel and oxidizer masses of mf,0 = 2273 kg and mox,0 = 2727 kg, and
a payload mass of mp = 8, 000 kg, the total wet mass of the spacecraft is mB,0 = 13, 117 kg. The burn
time for the orbital maneuver is T = 200 sec. Note that this maneuver generates an increase in velocity of
∆v = 0.56 km/sec. For this example, a nominal thrust vector misalignment of β = 0.1 deg and d1 = 2 mm
are assumed. Moreover, d2 = 1 m is chosen according to Fig. 1. Therefore, the components of the external
moment relative to point z are

M1 = d1Ft cos(β) = 66.72 Nm, M2 = d2Ft sin(β) = 58.22 Nm, M3 = 0. (22)

The components of the external force acting on the spacecraft are

f1 = −Ft sin(β) = −58.22 N, f2 = 0 Nm, f3 = Ft cos(β) = 33, 359.9 N. (23)

The attitude control system for the axes b̂1 and b̂2 comprises eight R-4D thrusters.13 Each thruster can
generate a force of 490 N with an Isp of 312 sec. With an effective lever of 2.86 m, each pair of R-4D thrusters

generates a moment of 1,401 Nm about the respective axis (b̂1 or b̂2) relative to point z. Thus, the control
inputs u1 and u2 take values from the set {−1401, 0, 1401} Nm. The constant c in Eq. (20) that describes
the propellant consumption of the attitude control system is c = 2/Isp/g/2.86 m = 2.285 × 10−4 sec/m2.
The remaining parameters of the spacecraft are summarized in the following table.

Table 1. Parameters of the example spacecraft.

lp = 3 m lox,0 = 0.96 m le = 1.75 m lf,0 = 1.15 m

re = 0.8 m rp = 1.5 m ρox = 1456 kg/m3 ρf = 1013 kg/m3

C. Set G and State Space Discretization

The allowed set G is given by

G =

{
(x,m) ∈ R4 × R :

√
θ21 + θ22 ≤ θlimit, m ≥ 0

}
. (24)
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The first part of G, referred to as G̃ thus far, describes the allowed orientation of the spacecraft’s symmetry
axis. It defines a cone, where a half angle of 0.5 deg is chosen here. This corresponds to θlimit = 0.004363
according to Eq. (17). The minimum propellant mass for the attitude control system is mmin = 0.

In order to discretize the state and time space for the numerical simulations the following function is
defined which is similar to Matlab’s linspace

grid(x0, x1, n) =

{
x0, x0 +

x1 − x0
n− 1

, x0 + 2
x1 − x0
n− 1

, ..., x1

}
, x0, x1 ∈ R, x0 < x1, n ∈ Z+. (25)

This function creates a grid of n points with equidistant spacing. The following nominal discretization is
used for this example

G̃dis =
{
x ∈ G̃ : ω1, ω2 ∈ grid(−0.86 deg/sec, 0.86 deg/sec, 29), θ1, θ2 ∈ grid(−0.004363, 0.004363, 17)

}
,

Tdis = grid(0, 200 sec, 40),

Mdis = grid(0, 15.27 kg, 160).
(26)

The chosen grid for m provides enough resources to feed the attitude control system during the 200 sec
maneuver. Besides the solution for the nominal discretization, we also investigate the influence of different
discretization choices on the solution in the next section.

D. Results

Algorithms 1 and 2 are used to compute V at the points of the discretized state and time spaces given by
Eq. (26). With q∗ = 8, we use the simplified approach from Section 3-B and Eq. (13) instead of Algorithm
2 if m ≥ 0.77 kg. Note that V = 0 at all points that do not satisfy x ∈ G̃. Therefore, those points are
not considered by Algorithms 1 and 2. Moreover, we initially check if for each grid point (x0,m0, t0) there
exists a control u0 ∈ U such that (x1(u0),m1(u0)) ∈ G. If not we set V = 1 and the point is not considered
by Algorithm 1 and 2. The method is implemented as a C program. All simulations were run on a desktop
computer with an Intel Core i7-3770 processor and 15.8 GB usable memory.

According to Theorem 1 and (5), the value function V has to decrease by one at each time instant when
using the optimal control policy. Since the sampling time is ∆t = 0.3 sec, the slope of V versus the time
is -10/3 when using the optimal control policy. Therefore, the following criterion is introduced to asses the
difference of the numerical solution to the optimal solution

∆V/∆t0.3 = 0.3

(
V (xτ−1,mτ−1, tτ−1)− 1− V (x0,m0, t0)

tτ

)
= −0.3

V (x0,m0, t0)

tτ
, (27)

where τ = τx0,m0,t0,u(G) is the time instant at which the system leaves the set G for the first time and
∆V/∆t0.3 = −1 for the optimal solution. We stress that ∆V/∆t0.3 = −1 is a necessary condition for
optimality. A computational time of 439 sec was required to solve the DDCOC problem numerically and
compute V on the nominal grid G̃dis×Tdis×Mdis. Fig. 2 shows the simulation results for an initial condition
of ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg, and t0 = 0. The spacecraft stays inside the prescribed set G
during the entire maneuver time of 200 sec. This can be seen in Fig. 2 (c) which shows the trajectory of the
attitude parameters in the complex plane including the boundary θlimit (red circle) and in Fig. 2 (d) which
shows the propellant mass. The remaining propellant mass at the end is 0.67239 kg.

The cost-to-go function is linearly decreasing in time as seen in Fig. 2 (f). The criterion from Eq. (27) is
∆V/∆t0.3 = −0.9954 which suggests that the numerical solution is as close as 0.46 % to being optimal (based
on necessary conditions). The control input is plotted in Fig. 2 (e). Both u1 and u2 show a similar pattern,
where a short non-zero control pulse is followed by a longer coasting period. The pulses of u2 are more
frequent because the disturbance moment (due to f1) about the b̂2-axis is larger than the disturbance about

the b̂1-axis. The control moments are mainly applied in the direction opposite to the external disturbance.
However, there are a few deviations from this direction for both u1 and u2. This may be due to inaccuracies
caused by linear interpolation which is required to compute V between the grid points. Furthermore, this
may be the reason why the numerical solution is 0.46 % away from satisfying the necessary condition for
optimality, ∆V/∆t0.3 = −1. A denser grid can slightly improve the result as shown below. However, a
denser grid also increases the computational time. Therefore, the nominal grid provides a good compromise
for the trade-off between computational performance and accuracy of the solution.
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0 50 100 150 200
0

100

200

300

400

500

600

700

V

time (sec)

(f) Cost-to-go function V vs. time

Figure 2. Example spacecraft attitude control for nominal disturbance, Eq.(22) and (23), nominal grid,
Eq. (26), and initial condition ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg.
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Figure 3. Example spacecraft attitude control for nominal disturbance, Eq. (22) and (23), nominal grid,
Eq. (26), and initial condition ω0,1 = ω0,2 = 0, θ0,1 = −0.00305, θ0,2 = 0.00305, m0 = 15.27 kg.

Fig. 3 shows the simulation results for a different initial condition (using the same value function V
as before). Instead of θ0,1 = θ0,2 = 0, it is now θ0,1 = −0.00305 and θ0,2 = 0.00305 which is close to
the boundary of the allowed cone. By comparing Fig. 3 with Fig. 2 it can be seen that after an initial
reorientation the system behaves nearly identical to the case where θ0,1 = θ0,2 = 0. This suggests that,
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provided there is sufficient propellant mass, the DDCOC law steers the system from any initial condition to
a certain region in the state space where it is most efficient to stay. In this case the remaining propellant
mass for the attitude control system is 0.7684 kg. The slope of the cost-to-go function versus the time is
again close to satisfying the necessary condition for optimality, where ∆V/∆t0.3 = −0.9958.

Note that for both initial condition cases the initial value of the cost-to-go function is approximately
V (t = 0) = 667 which means that tτx0,m0,t0,u(G) = 200.1 sec even though there is propellant left at the end.
This is due to the discretization of the time with a maximum time of 200 sec as shown by Eq. (26). For
numerical reasons we set V = 0 for all points with t > 200 sec. Thus, increasing the maximum time in Tdis
would increase V (t = 0) which, however, would not significantly affect m(t = 200 sec) and the simulation
results for the example 200 sec maneuver.

The influence of the state and time space discretization is investigated by defining two additional dis-
cretizations. In contrast to the nominal discretization in Eq. (26) with nω = 29 grid points for ω1 and ω2,
nθ = 17 grid points for θ1 and θ2, and nt = 40 grid points for the time, we define a dense discretization with
nω = 32, nθ = 20, and nt = 45 as well as a sparse discretization with nω = 25, nθ = 14, and nt = 36. Table
2 compares the remaining mass at t = 200 sec, the criterion ∆V/∆t0.3, and the computational time for the
three discretizations sparse, nominal, and dense. The computational time increases exponentially with the
density of the discretization. The sparse grid requires 183 sec of computational time in contrast to the dense
grid with 909 sec. However, the accuracy of the solution improves with the grid density. The sparse grid
generates a solution which is 1.4 % away from being optimal, whereas the solution of the dense grid is as
close as 0.12 % to being optimal (based on necessary conditions). This is also reflected in the remaining mass
after 200 sec. The solution of the sparse grid has no propellant left after 200 sec (however not violating the
constraints). Both the solutions for the nominal and the dense grid have 0.67239 kg propellant left at the end
which is because they are closer to the optimal solution than the sparse grid solution (compare ∆V/∆t0.3).

Table 2. Influence of state and time space discretization on the simulation results for nominal disturbance,
Eq.(22) and (23), and an initial condition of ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg.

Discretization m(t = 200 sec) ∆V/∆t0.3 Computational time

sparse nω = 25, nθ = 14, nt = 36 0.0 kg -0.986 183 sec

nominal nω = 29, nθ = 17, nt = 40 0.67239 kg -0.9954 439 sec

dense nω = 32, nθ = 20, nt = 45 0.67239 kg -0.9988 909 sec

E. Robustness Analysis

The results in the previous section were obtained with exact knowledge of the disturbances f1, f2, M1, and
M2. In this section the robustness of the solution is analyzed with respect to uncertainties in the disturbances.
We use the nominal cost-to-go function obtained for the disturbance values in Eq. (22) and (23) and the
discretization in Eq. (26). However, the actual values of the disturbances are increased/decreased from the
nominal case by 10 %, 25 %, and 50 %.

Table 3 shows the differences in the solution for the initial condition case ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0,
m0 = 15.27. It can be seen that there are no significant differences in the solutions for a 10 % uncertainty
in the disturbances. The solutions for the 10 % uncertainty case have the same ∆V/∆t0.3 = −0.9954 as the
nominal solution. For a 25 % uncertainty, however, the solutions start to deviate from the nominal solution.
Increasing the disturbances by 25 % from the nominal values results in ∆V/∆t0.3 = −1.031 which is 3.1 %
away from being optimal. Moreover, the constraints are violated before the end of the 200 sec maneuver.
Likewise, a 25 % increase from the nominal disturbance values yields ∆V/∆t0.3 = −1.0742 and constraint
violation at 185.4 sec. An uncertainty of 50 % in the disturbances results in ∆V/∆t0.3 = −1.2186 (21.86 %
away from being optimal) and ∆V/∆t0.3 = −1.3025 (30.25 % away from being optimal), respectively.

An interesting case is when the actual disturbances are zero (f1 = f2 = M1 = M2 = 0). For this case
and the particular initial condition it would be intuitive not to apply any control action. However, the
DDCOC law is based on the nominal disturbance values and tries to steer the system to a supposedly more
efficient region. This is certainly not optimal in this case and the constraints are violated after 145.8 sec
with ∆V/∆t0.3 = −1.3647.
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Table 3. Robustness analysis of the DDCOC law with respect to uncertainties in the disturbances for an initial
condition of ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg. The DDCOC law for the simulations is based on the
nominal V .

Disturbances tτx0,m0,t0,u(G) m(tτx0,m0,t0,u(G)) or m(t = 200 sec) ∆V/∆t0.3

nominal > 200 sec 0.67239 kg -0.9954

10 % increase from nominal > 200 sec 0.76845 kg -0.9954

10 % decrease from nominal > 200 sec 0.76845 kg -0.9954

25 % increase from nominal 193.2 sec 0.0 kg -1.031

25 % decrease from nominal 185.4 sec 0.0 kg -1.0742

50 % increase from nominal 163.5 sec 0.0 kg -1.2186

50 % decrease from nominal 153 sec 0.0 kg -1.3025

zero disturbances 145.8 sec 0.0 kg -1.3647

F. Example Control Surface Plots
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(a) u1 vs. ω1 and ω2 for θ1 = θ2 = 0, m = 15.27 kg, t = 0
fixed.
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(b) u2 vs. ω1 and ω2 for θ1 = θ2 = 0, m = 15.27 kg, t = 0
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(c) u1 vs. ω1 and ω2 for θ1 = −0.00305, θ2 = 0.00305, m =
15.27 kg, t = 100 sec fixed.
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(d) u2 vs. ω1 and ω2 for θ1 = −0.00305, θ2 = 0.00305, m =
15.27 kg, t = 100 sec fixed.

Figure 4. Example control surface plots.

Fig. 4 shows example control surface plots of u1 and u2 versus ω1 and ω2 for two different settings of θ1, θ2,
m, and t. Fig. 4 (a) and (b) visualize u1 and u2 for a fixed θ1 = θ2 = 0, m = 15.27 kg, and t = 0. The
general trend is as expected, i.e., if ω1 < 0 then u1 > 0 and vice versa as well as if ω2 < 0 then u2 > 0 and
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vice versa. However, there are several deviations from this trend that are not immediately intuitive. Fig. 4
(c) and (d) visualize u1 and u2 for a fixed θ1 = −0.00305, θ2 = 0.00305, m = 15.27 kg, and t = 100 sec. In
contrast to the previous case, the spacecraft’s symmetry axis is not in the center of the allowed cone. Thus,
a general trend as in Fig. 4 (a) and (b) can not be observed.

V. Conclusion and Future Work

A novel approach to solve deterministic drift counteraction optimal control (DDCOC) problems for a
special class of nonlinear systems was presented. In contrast to previous work which used conventional dy-
namic programming algorithms to solve the DDCOC problem, the method is computationally more efficient
and allows for higher-dimensional systems. Moreover, obtaining the optimal solution is guaranteed since
convergence is not an issue. The approach was applied to an attitude control problem for an axisymmetric
spacecraft with thrust vector misalignment imposing substantial disturbances on the system. The spacecraft
was modeled with five states, two control inputs, and time-varying mass and inertia properties due to the
main engine’s propellant flow. The objective for the DDCOC policy was to control the spacecraft such that
its symmetry axis stays within a prescribed cone for as long as possible given limited amount of fuel for
the attitude control system. It was shown that the proposed method could successfully solve the DDCOC
problem. Moreover, the DDCOC policy appeared to be robust against uncertainties in the disturbances of
up to 25 %. In addition, the trade-off between solution accuracy and computational time due to the state
and time space discretization was shown.

Future work will focus on computationally more efficient discretizations of the state and time space.
Furthermore, the method will be extended to drift counteraction optimal control for stochastic systems.

Appendix. Rotational Dynamics of a Rigid Body with Time-Varying
Mass/Inertia Properties

The notations for the derivation in this section are adopted from.14 The position of a point x relative
to a point y is described by the physical vector ~rx/y. The physical vector ~rx/y resolved in the frame FA

is denoted by ~rx/y|A. The time derivative of ~rx/y with respect to the frame FA is denoted by
A•
~r x/y. The

velocity of a point x relative to a point y with respect to the frame FA is ~vx/y/A =
A•
~r x/y. Likewise, the

acceleration of a point x relative to a point y with respect to the frame FA is ~ax/y/A =
A••
~r x/y.

Let B be a rigid body and w and z are points. Then the following relation holds between the moment
on B relative to z and the moment on B relative to w

~MB/z = ~MB/w − ~rz/w × ~fB, (28)

where ~fB denotes the total force acting on B. Now w is assumed to be an unforced particle (a particle that
has no force applied on it14). Then

~MB/w =
A•
~HB/w/A, (29)

where ~HB/w/A denotes the angular momentum of B relative to w with respect to the frame FA. Substituting
Eq. (28) into Eq. (29) yields

~MB/z =
A•
~HB/w/A −~rz/w × ~fB. (30)

By denoting the center of mass of the body B by c, it is straightforward to show that

~HB/w/A = ~HB/z/A + ~rc/z ×mB~vz/w/A + ~rz/w ×mB~vc/w/A, (31)

where mB is the time-varying total mass of the body B. The time derivative of Eq. (31) with respect to
frame FA yields

A•
~HB/w/A=

A•
~HB/z/A +mB

(
~vc/z/A × ~vz/w/A + ~vz/w/A × ~vc/w/A + ~rz/w × ~ac/w/A + ~rc/z × ~az/w/A

)
+ ṁB

(
~rc/z × ~vz/w/A + ~rz/w × ~vc/w/A

)
,

(32)
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with ṁB = dmB/dt. The velocity cross products in the second term on the right-hand side in Eq. (32) can
be simplified as follows

~vc/z/A × ~vz/w/A + ~vz/w/A × ~vc/w/A = ~vc/z/A × ~vz/w/A + ~vw/c/A × ~vz/w/A
=
(
~vc/z/A + ~vw/c/A

)
× ~vz/w/A

=
(
~vc/w/A + ~vw/z/A + ~vw/c/A

)
× ~vz/w/A

= −~vz/w/A × ~vz/w/A = 0.

(33)

Therefore, Eq. (32) becomes

A•
~HB/w/A=

A•
~HB/z/A +mB

(
~rz/w × ~ac/w/A + ~rc/z × ~az/w/A

)
+ ṁB

(
~rc/z × ~vz/w/A + ~rz/w × ~vc/w/A

)
. (34)

Substituting Eq. (34) into Eq. (30) yields

~MB/z =
A•
~HB/z/A +mB~rc/z × ~az/w/A + ṁB~rc/z × ~vz/w/A + ~rz/w ×

(
mB~ac/w/A + ṁB~vc/w/A − ~fB

)
. (35)

Since c is the center of mass of the body B, the translational momentum of B relative to w with respect to

frame FA is ~pB/w/A = mB~vc/w/A.14 Thus,
A•
~p B/w/A= mB~ac/w/A + ṁB~vc/w/A. Furthermore,

A•
~p B/w/A= ~fB

since FA is an inertial frame and w is an unforced particle. Consequently, the last term on the right-hand
side in Eq. (35) is zero and Eq. (35) becomes

~MB/z =
A•
~HB/z/A +~rc/z ×

(
mB~az/w/A + ṁB~vz/w/A

)
. (36)

Using the transport theorem and introducing the body-fixed frame FB with mutually perpendicular frame
vectors (b̂1, b̂2, b̂3), Eq. (36) becomes

~MB/z =
B•
~HB/z/A +~ωB/A × ~HB/z/A + ~rc/z ×

[
mB

(
~az/c/B + 2~ωB/A × ~vz/c/B + ~αB/A × ~rz/c

+ ~ωB/A × (~ωB/A × ~rz/c) + ~ac/w/B

)
+ ṁB

(
~vz/c/B + ~ωB/A × ~rz/c + ~vc/w/A

) ]
,

(37)

where ~ωB/A and ~αB/A :=
A•
~ω B/A=

B•
~ω B/A are the physical angular velocity and angular acceleration vectors,

respectively, of frame FB relative to frame FA. Again using the fact that mB~ac/w/A + ṁB~vc/w/A = ~fB,
Eq. (37) may be rewritten as follows

~MB/z =
B•
~HB/z/A +~ωB/A × ~HB/z/A + ~rc/z ×

[
mB

(
~az/c/B + 2~ωB/A × ~vz/c/B + ~αB/A × ~rz/c

+ ~ωB/A × (~ωB/A × ~rz/c)
)

+ ṁB
(
~vz/c/B + ~ωB/A × ~rz/c

)
+ ~fB

]
.

(38)

~HB/z/A may be expressed using the physical inertia matrix ~IB/z of the body B relative to the point z:
~HB/z/A = ~IB/z~ωB/A. Therefore, Eq. (38) becomes

~MB/z =
B•
~I B/z ~ωB/A + ~IB/z~αB/A + ~ωB/A ×

(
~IB/z~ωB/A

)
− ~rc/z ×

[
mB

(
~ac/z/B + 2~ωB/A × ~vc/z/B

+ ~αB/A × ~rc/z + ~ωB/A × (~ωB/A × ~rc/z)
)

+ ṁB
(
~vc/z/B + ~ωB/A × ~rc/z

)
− ~fB

]
.

(39)

This equation describes the general angular motion of a rigid body B with center of mass c and time-
varying mass and inertia properties. Eq. (39) is now resolved in the body-fixed frame FB for the example
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axisymmetric spacecraft in Fig. 1. FB is assumed to be the principal frame as well. The inertia matrix of
the axisymmetric spacecraft B relative to the body-fixed point z is expressed in frame FB as

Jz := ~IB/z|B =

 JT 0 0

0 JT 0

0 0 JR

 . (40)

The angular velocity vector is resolved in FB as ~ωB/A|B = [ω1, ω2, ω3]
T

, where ω1, ω2, and ω3 are the an-

gular velocity vector projections on the principal axes of B. Likewise, ~αB/A|B = [ω̇1, ω̇2, ω̇3]
T

, ~MB/z|B =

[M1,M2,M3]
T

, ~fB|B = [f1, f2, f3]
T

, ~ac/z/B|B = [a1, a2, a3]
T

, ~vc/z/B|B = [v1, v2, v3]
T

, and ~rc/z|B = [r1, r2, r3]
T

.
We assume that the spacecraft’s mass changes with a constant rate

mB(t) = mB,0 − (ṁox + ṁf)t, (41)

where mB,0, ṁox, and ṁf are constant scalars. Note that ṁox and ṁf are the mass flow rates of the oxidizer
and fuel, respectively. In analogy to Eq. (41), the time-varying masses of the fuel and oxidizer are

mf(t) = mf,0 − ṁft, (42)

mox(t) = mox,0 − ṁoxt, (43)

where mf,0 and mox,0 are the initial fuel and oxidizer masses. The time-varying lengths of the remaining
fuel lf and oxidizer lox (see Fig. 1) are

lf(t) = lf,0 − l̇ft, (44)

lox(t) = lox,0 − l̇oxt, (45)

where l̇f = ṁf/(πr
2
eρf) and l̇ox = ṁox/(πr

2
eρox) are constant scalars. Here, ρf and ρox are the fuel’s and

oxidizer’s density, respectively. The parameter re is the radius of the engine and tank section of the spacecraft
as shown in Fig. 1. It is assumed that the center of mass is always on the symmetry axis (b̂3-axis as shown
in Fig. 1). Therefore, the first and second component of ~rz/c|B, ~vz/c/B|B, and ~az/c/B|B are zero: r1 = r2 = 0,
v1 = v2 = 0, and a1 = a2 = 0. Using Eq. (41) to Eq. (45), the distance between the center of mass c and
point z is given by

r3(t) =
Cr3 +mox(t)

(
le + lox(t)

2

)
+mf(t)

(
le + lox,0 + lf (t)

2

)
mB(t)

, (46)

where Cr3 = mele/2 +mp(le + lox,0 + lf,0 + lp/2) is a constant scalar. me and mp denote the masses of the
engine and the payload, respectively. The velocity of the center of mass c relative to point z with respect to
frame FB is given by v3 = ṙ3 reading

v3(t) =
Cv3 −mox(t) l̇ox2 − ṁox

lox(t)
2 −mf(t)

l̇f
2 − ṁf

lf (t)
2 + r3(t)(ṁox + ṁf)

mB(t)
, (47)

where Cv3 = −ṁoxle − ṁf(le + lox,0) is a constant scalar. Likewise, the acceleration of the center of mass c
relative to point z with respect to frame FB is given by a3 = v̇3 = r̈3 which yields

a3(t) =
Ca3 + 2v3(t)(ṁox + ṁf)

mB(t)
, (48)

where Ca3 = ṁox l̇ox + ṁf l̇f is a constant scalar. The time-dependent components of the inertia matrix in

Eq. (40) follow from the parallel axis theorem. The principal moment of inertia about the b̂3-axis relative to
point z is given by

JR(t) =
1

2

(
CJR + r2e [mox(t) +mf(t)]

)
, (49)

where CJR = r2eme + r2pmp is a constant scalar. The parameter rp is the radius of the payload section. The

principal moment of inertia about the b̂1- and b̂2 axis is

JT(t) = CJT +mox(t)

(
r2

4
+
l2ox(t)

12
+

[
le +

lox(t)

2

]2)
+mf(t)

(
r2

4
+
l2f (t)

12
+

[
le + lox,0 +

lf(t)

2

]2)
, (50)
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where CJT = me

(
r2e
4 +

l2e
3

)
+mp

(
r2p
4 +

l2p
12 +

[
le + lox,0 + lf,0 +

lp
2

]2)
is a constant scalar. The time deriva-

tives with respect to frame FB of the principal moment of inertia are given by

J̇R = −r
2
e

2
(ṁox + ṁf) , (51)

J̇T(t) =CJ̇T −
(
le +

lox(t)

3

)(
ṁoxlox(t) +mox(t)l̇ox

)
−
(
le + lox,0 +

lf(t)

3

)(
ṁoxlf(t) +mf(t)l̇f

)
− mox(t)lox(t)l̇ox +mf(t)lf(t)l̇f

3
,

(52)

where CJ̇T = −ṁox

(
r2e/4 + l2e

)
− ṁf

(
r2e/4 + (le + lox,0)2

)
is a constant scalar. Note that J̇R in Eq. (51)

is a constant scalar. The equations of motion for the example axisymmetric spacecraft with time-varying
mass/inertia properties follow from Eq. (39), yielding

ω̇1 =
M1 +

(
2r3(t)v3(t)mB(t) + r23(t)ṁB − J̇T(t)

)
ω1 +

(
JT(t)− JR(t)− r23(t)mB(t)

)
ω2ω3 − r3(t)f2

JT(t)− r23(t)mB(t)
, (53)

ω̇2 =
M2 +

(
2r3(t)v3(t)mB(t) + r23(t)ṁB − J̇T(t)

)
ω2 +

(
JR(t)− JT(t) + r23(t)mB(t)

)
ω1ω3 + r3(t)f1

JT(t)− r23(t)mB(t)
, (54)

ω̇3 =
M3 − ω3J̇R
JR(t)

, (55)

where ṁB = ṁox + ṁf is a constant scalar. Note that we explicitly state the time dependence of mB, r3, v3,
JR, JT, and J̇T in Eq. (53) to Eq. (55). It is self-evident that the state variables ω1, ω2, and ω3 as well as
ω̇1, ω̇2, and ω̇3 are time-dependent too. The same may be true for the components of the moment M1, M2,
and M3 as well as for the components of the total force f1, f2, and f3.

In the following we assume that M3 = 0. Then the solution for ω3 is readily obtained since Eq. (55) is
decoupled from Eq. (53) and (54)

ω3(t) =
ω3,0JR,0

JR,0 + J̇Rt
, (56)

where J̇R is given by Eq. (51), JR,0 = JR(t = 0) =
(
r2e (mox,0 +mf,0) + CJR

)
/2 is the initial principal angular

momentum about the symmetry axis, and ω3,0 is the initial angular velocity about the symmetry axis. The
number of differential equations describing the system may be reduced by substituting Eq. (56) into Eq. (53)
and (54).
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