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A strain-based geometrically nonlinear finite element beam formulation for structural dynamic and aeroelastic

analysis of slender beams and wings has been successfully applied to study the coupled nonlinear aeroelasticity and

flight dynamics of different, very flexible aircraft. To improve the ability to use such aeroelastic framework in control

design, a modal-based approach is developed in this paper to solve the strain-based nonlinear beam equations with a

reduced number of degrees of freedom. The modal approach is applied to study geometrically nonlinear static and

transient problems of constrained and free slender beams, subject to external structural or aerodynamic excitations.

Accuracy and performance of the new formulation are compared with the direct nonlinear finite element procedure.

Nomenclature

A = amplitude of oscillation
a0 = local aerodynamic frame, with a0y axis aligned

with zero lift line of airfoil
a1 = local aerodynamic frame, with a1y axis aligned

with airfoil motion velocity
B = body reference frame
BF, BM = influence matrices for distributed forces and

moments
b = positions and orientations of B frame, as time

integral of β
bc = semichord of airfoil, m
CFF, CFB,
CBF, CBB

= components of generalized damping matrix

�CFF, �CFB,
�CBF, �CBB

= components of generalized damping matrix in
modal equations

CBa1 = rotation matrix from a1 frame to B frame
CGB = rotation matrix from B frame to G frame
c = chord length, m
d = distance of midchord in front of beam reference

axis, m
F1, F2, F3 = influence matrices in inflow equations with

independent variables
�F1F, �F2F = flexible components of influence matrices F1

and F2 in the modal equations
Faero,Maero = nodal aerodynamic forces and moments
Fdist, Fpt = distributed and point forces
G = global (inertial) reference frame
g = gravity acceleration column matrix, m∕s2
Hhb = matrix consisting of influence from Jacobian Jhb

and body angular velocities ωB
h = absolute positions and rotations of beam nodes

J = Jacobian matrix
KFF = components of the generalized stiffness matrix
�KFF = components of the generalized stiffnessmatrix in

modal equations
L = beam length or wingspan, m
lmc,
mmc, dmc

= aerodynamic loads on an airfoil about its
midchord

lra, mra, dra = aerodynamic loads on an airfoil about its beam
reference axis

M, C, K = discretemass, damping, and stiffnessmatrices of
whole system

MFF, MFB,
MBF,MBB

= components of generalized mass matrix

�MFF, �MFB,
�MBF, �MBB

= components of generalizedmassmatrix inmodal
equations

Mdist,Mpt = distributed and point moments
m = mass per span, kg∕m
N = influence matrix for gravity force
PB = inertia position of B frame, resolved in G frame
pB, θB = position and orientation of B frame, as time

integral of vB and ωB, respectively
pw = position of w frame with respect to B frame
RB, RF = rigid-body and flexible components of general-

ized load vector
�RB, �RF = rigid-body and flexible components of general-

ized load vector in modal equations
s = beam curvilinear coordinate, m
t = time, s
Wext,Wint = external and internal virtual works, respectively
w = local beam reference frame defined at each node

along beam reference line
_y, _z = airfoil translational velocity components re-

solved in a0 frame, m∕s
_α = airfoil angular velocity about a0x axis, rad∕s
β = body velocities, with translational and angular

components, resolved in B frame
ε = total elastic strain variable of aircraft, as a

column matrix
εe = element elastic strain variable
ε0 = initial (prescribed) elastic strain value
ζ = quaternions defining orientation of B frame
η = modal coordinates
θ = rotations of beam nodes, rad
λ = inflow states, m∕s
λ0 = inflow velocities, m∕s
vB, ωB = linear and angular velocities ofB frame, resolved

in B frame itself
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ρ = air density, kg∕m3

Φ = (strain) normal mode shape
ΦC, ΦF, ΦB = complete, flexible (strain), and rigid-body com-

ponents of the strain-based mode shape,
respectively

Ωζ�β� = coefficient matrix of quaternion equations, a
function of body angular velocities

Subscripts

B = reference to B frame
BB, BF = components of a matrix with respect to body/

flexible differential equations of motion
F = reference to flexible degrees of freedom
FB, FF = components of a matrix with respect to flexible/

body differential equations of motion
hb = h with respect to motion of B frame
hε = h with respect to strain ε
pb = nodal position with respect to motion ofB frame
pε = nodal position with respect to strain ε
θb = nodal rotation with respect to motion of B frame
θε = nodal rotation with respect to strain ε

I. Introduction

I N STUDIES of very flexible aircraft (e.g., gliders and high-
altitude long-endurance aircraft), the slender wings of these

vehicles can be modeled as beams by taking advantage of their
structure slenderness. However, the high flexibility associated with
them brings some special requirements to the beam formulation
applied to the analysis. From previous investigations [1], the slender
wings of very flexible aircraft may undergo large motions, although
still under small strain, under normal operating loads, exhibiting
geometrically nonlinear behavior. The structural dynamic and
aeroelastic characteristics of the aircraftmay change significantly due
to large deflections of their flexible wings. In addition, very flexible
aircraft usually see coupling between the low-frequency elastic
modes of their slender wings and the rigid-body motions of the
complete aircraft [1–5]. Therefore, the coupled effects between the
large deflection due to the wing flexibility and the aeroelastic/flight
dynamic characteristics of the complete aircraft must be properly
accounted for in a nonlinear aeroelastic solution. For this purpose, a
beam formulation that is able to capture the geometrically nonlinear
wing deformation is required to serve as the basis of the nonlinear
structural dynamic and aeroelastic analysis of very flexible aircraft.
There have been different geometrically nonlinear formulations

established for slender beams. One may classify the formulations
based on the solution methodology, namely, the displacement-based
formulation (e.g., [6]), the mixed-form formulation (e.g., [7–9]), and
the strain-based (or stress-based) formulation (e.g., [10,11]). Their
differences lie in the definition of independent variables to represent
the displacement field and the treatment of the beam reference line’s
rotation in the solution. A brief description of the three types of beam
formulations was provided by Su and Cesnik [12], whereas a
comprehensive discussion on the three types of formulations for the
structural, aeroelastic, and flight dynamic analysis of very flexible
aircraft was done by Palacios et al. [13]. They compared the solutions
in terms of their numerical efficiency and simplicity for integrated
flight dynamic analysis with full aircraft flexibility.
A complete treatment of the strain-based geometrically nonlinear

beam formulation was introduced by Su and Cesnik [12]. The strain-
based formulation defines the extensional strain, bending, and twist
curvatures of the beam reference line as the independent degrees of
freedom, whereas transverse shears are not explicitly included in
them. Unlike some strain-based formulations presented in the
literature (e.g., [10]), which enforce the beam equilibrium equation
and strain-displacement kinematics simultaneously with Lagrange
multipliers, the formulation introduced in [12] solves these equations
iteratively. Thus, the derived governing equation is the classic formof
a second-order differential equation, which simplifies the solution
process. For that, the force and displacement boundary conditions are

considered in a differentway than in [10]. These improvements in this
formulation make it more flexible in modeling arbitrary beam
configurations under different loading conditions. Besides the
aforementioned advantages, the strain-based formulation brings
additional benefits to control studies since the curvatures are the
variables that can be directly measured by the strain sensors. This
formulation may also demonstrate great computational efficiency
due to the reduction in degrees of freedom for the same complex
deformation when compared to the displacement-based or mixed-
form formulations. Lastly, the strain-based formulation is efficient in
solving geometrically nonlinear static problems, as it features a
constant stiffness matrix (for statically determinate beams). This
advantage, however, does not hold in nonlinear transient solutions,
where the inertia and damping of the system need to be updated
according to the instantaneous beam deformation states.
Different solution techniques have been applied to solve the devel-

opedgeometrically nonlinear beam formulation.Acommonapproach is
to use thewell-developed finite elementmethod.Numerous applications
of the finite element method can be found in the literature. The strain-
based beam formulation introduced in [12]was also solved by using this
approach. Generally, finite element solutions may converge to the exact
solution as the mesh is refined. However, the dimension of the problem
maydramatically increasewith the refinement of themesh,which brings
higher computational cost for the solution. Since a fast solution is always
desired in the nonlinear structural dynamic and aeroservoelastic analysis
of very flexible aircraft, other solution techniques have also been
developed and applied in studies.
In addition to the finite element method, the modal approach is

another popular technique that iswidely used in engineering analysis.
One of its important advantages is its significant reduction in the
dimension of the problem. Moreover, normal modes in the modal
analysis may decouple the system matrices and further simplify
the problem. One may also find significant characteristics of the
vibrational behaviors by using modal approaches. Because of the
advantages of modal approaches, they have been applied in various
studies to solve the beam dynamics and aeroelasticity of very flexible
wings and aircraft. Tang and Dowell [14–16] performed both
experimental and numerical studies on the nonlinear flutter boundary,
gust response, and limit-cycle oscillations of a slender cantilever
beam. In their analytical study, general mode shape functions were
applied to solve the nonlinear beam equations in terms of generalized
coordinates. Patil and Althoff [17] presented a Galerkin approach for
the solution of the nonlinear beam equations. In this study, themixed-
form intrinsic geometrically nonlinear beam equations of motion
including the kinematic equations and boundary conditions [9] were
weighted by appropriate function to represent the rate of change of
internal energies and the work done by external forces. In their
numeric analysis about a slender beam, they demonstrated the
advantage of the Galerkin method over the finite element method in
terms of the convergence speed and accuracy. Palacios [18] applied
nonlinear normal modes method to solve the mixed-form intrinsic
nonlinear beam equations. The nonlinearmodal equations in intrinsic
coordinates were obtained from integrals involving only products of
the mode shapes and known sectional properties. The nonlinear
normal modes were sought through an asymptotic approximation to
the invariant manifolds that defines them in the space of intrinsic
modal coordinates. Dynamics of isotropic and anisotropic beams
were solved with this method.
The strain-based nonlinear beam formulation [12] has been

employed by the Shearer andCesnik [3], Su and Cesnik [4,5], Cesnik
and Brown [19], and Cesnik and Su [20] for solving aeroelastic
problems. Common in these applications is that the beam formulation
was solved in a finite element approach. In this paper, a modal
solution of the strain-based beam formulation is introduced, which
can potentially facilitate future control studies, where a low number
of degrees of freedom is highly desirable. As the beam dynamics
derived in [12] are represented by the strain (curvature) and its time
derivatives, the normalmodes used in this paper are strainmodes. The
numerical study demonstrates the accuracy and reduction of the
problem size in the modal solution approach. However, because of
the nature of the strain-based beam formulation, there is a tradeoff
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between those advantages and the computational cost of the solution
when using the modal approach.

II. Theoretical Formulation

The finite element solution of the strain-based geometrically
nonlinear beam formulation has been discussed by Su and Cesnik
[12]. An introduction of the derivation of the finite element equations
of motion with the modal transformation is presented here for
completeness.

A. System Frames

As shown in Fig. 1a, a fixed global (inertial) frame G is first
defined. A body frame B�t� is then built in the global frame to
describe the vehicle position and orientation, with Bx�t� pointing to
the right wing, By�t� pointing forward, and Bz�t� being the cross
product of Bx�t� and By�t�. The position and orientation b and the
time derivatives, _b and �b, of the B frame can be defined as

b �
�
pB

θB

�
_b � β �

�
_pB

_θB

�
�
�
vB

ωB

�

�b � _β �
�

�pB

�θB

�
�
�

_vB

_ωB

�
(1)

where pB and θB are body position and orientation, both resolved in
the body frameB. Note that the origin of the body frame is arbitrary in
the vehicle, and it does not have to be the location of the vehicle’s
center of gravity.
Within the body frame, a local beam frame w is built at each node

along the beam reference line (Fig. 1b), which is used to define
the nodal position and orientation. Vectors wx�s; t�, wy�s; t�, and
wz�s; t� are bases of the beam frame for which the directions are
pointing along the beam reference axis, toward the leading edge (LE)
or the front direction, and normal to the beam surface, respectively,
resolved in the body frame. The curvilinear beam coordinate is s.

B. Elements with Constant Strains

In [12], a nonlinear beam element was introduced to model the
elastic deformation of slender beams. Strain degrees (curvatures) of
the beam reference linewere considered as the independent variables
in the solution. The strain-based formulation allows simple shape
functions for the element. Constant-value functions are used here.
Thus, the strain variable of an element is denoted as

εTe � f εx κx κy κz g (2)

where εx is the extensional strain; and κx, κy, and κz are the twist of the
beam reference line, bending about the localwy axis and the localwz

axis, respectively. The total strain variable of the complete aircraft is
obtained by assembling the elemental strains:

εT � f εTe1 εTe2 εTe3 : : : g (3)

Transverse shear strains are not explicitly included in this equation.
However, shear strain effects are included in the constitutive relation
[21]. Complex geometrically nonlinear deformations can be
represented by such a constant strain distribution over each element.
To represent the quadratic nodal displacement field that will be
recovered from the constant strain, the element is defined with three
equally spaced nodes. Some of the functions, such as inertia and
distributed load, are assumed to vary linearly between the three nodes
of each element. Thevalues of these functions over the element can be
obtained from its nodal values using linear Lagrange interpolation
functions.

C. Nodal Displacement and Jacobians

The position and orientation of each node along the beam are
defined by a column matrix consisting of 12 components, denoted as

h�s�T � f �pB � pw�s��T wx�s�T wy�s�T wz�s�T g (4)

where pw is the position of the w frame resolved in the body frame.
The derivatives and variations of the dependent variable h are related
with those of the independent ones as

δh � Jhεδε� Jhbδb _h � Jhε _ε� Jhb _b � Jhε _ε� Jhbβ

dh � Jhεdε� Jhbdb �h � Jhε �ε� _Jhε _ε� Jhb _β� _Jhbβ (5)

where

Jhε ≡
∂h
∂ε

Jhb ≡
∂h
∂b

(6)

are the transformation Jacobians obtained from the beam kinematics.
The other necessary Jacobian matrices, including Jpε, Jθε, Jpb, and
Jθb, which relate the nodal positions and rotations to the independent
variables, can be derived from Jhε and Jhb [3,12].

D. Finite Element Equations of Motion

The equations of motion of the system are derived by following
the principle of virtual work extended to dynamic systems
(equivalent to Hamilton’s principle). The total virtual work done on a
beam is found by integrating the products of all internal and external
forces and the corresponding virtual displacements over the volume,
which is given as

G
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(s

1
,t)

Undeformed shape
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O

a) Global and body frame defining the rigid-body motion of 
aircraft  

b) Flexible lifting-surface frames within body frame 

Fig. 1 Basic beam reference frames.
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δW �
Z
V
δuT�x; y; z�f�x; y; z� dV (7)

where f represents general forces acting on a differential volume.
This may include internal elastic forces, inertial forces, gravity
forces, external distributed forces andmoments, external point forces
and moments, etc. The corresponding virtual displacement is δu.
When beam cross-sectional properties are known, the integration of
Eq. (7) over the beamvolume is simplified to the integration along the
beam coordinate s. This integration is first numerically performed
over each beam element, followed by the assemblage of the element
quantities to obtain the total virtual work on the whole beam. This
paper gives a brief overview of the equations of motion, and the
detailed derivation process can be found in [4,12]. The virtual work
due to internal and external loads is given by

δWint�−δhTM �h−δhTMHhbβ−δhTM _Jhbβ−δεTC_ε−δεTK�ε−ε0�
δWext�−δhTNg�δpTwB

FFdist�δθTBMMdist�δpTwF
pt�δθTMpt

(8)

The dependent variables (h, pw, and θ) can be replaced by the
independent variable by applying the Jacobians [see Eq. (6)] and their
subsets. Therefore, the total virtual work on a beam can be written as

δW�δWint�δWext�−fδεT δbT g

0
@"JThεMJhε JThεMJhb

JThMJhε J
T
hbMJhb

#(
�ε

_β

)

�
"
JThεM

_Jhε 0

JThbM
_Jhε 0

#(
_ε

β

)
�
"
0 JThεMHhb

0 JThbMHhb

#�
_ε

β

�

�
"
0 2JThεM

_Jhb

0 2JThbM
_Jhb

#(
_ε

β

)
�
"
C 0

0 0

#(
_ε

β

)
�
"
K 0

0 0

#� ε
b

�
−
�
Kε0

0

�1A

�fδεT δbT g

0
@−

"
JThε

JThb

#
Ng�

"
JTpε

JTpb

#
BFFdist�

"
JTθε

JTθb

#
BMMdist

�
"
JTpε

JTpb

#
Fpt�

"
JTθε

JTθb

#
Mpt

1
A (9)

Following the same process described in [4], the elastic equations of
motion are eventually derived as

�
MFF MFB

MBF MBB

��
�ε

_β

�
�
�
CFF CFB

CBF CBB

��
_ε

β

�

�
�
KFF 0

0 0

��
ε

b

�
�
�
RF

RB

�
(10)

where the generalized inertia, damping, and stiffness matrices are

MFF�ε�� JThεMJhε MFB�ε�� JThεMJhb
MBF�ε�� JThbMJhε MBB�ε�� JThbMJhb

CFF�ε; _ε;β��C�JThεM _Jhε CFB�ε; _ε;β�� JThεMHhb�2JThεM _Jhb

CBF�ε; _ε;β�� JThbM _Jhε CBB�ε; _ε;β�� JThbMHhb�2JThbM _Jhb

KFF�K (11)

and the generalized force vector is

�
RF

RB

�
�
�
KFFε

0

0

�
−
�
JThε

JThb

�
Ng�

� JTpε
JTpb

�
BFFdist

�
�
JTθε

JTθb

�
BMMdist �

� JTpε
JTpb

�
Fpt �

�
JTθε

JTθb

�
Mpt (12)

N, BF, and BM are the influence matrices for the gravity force,
distributed forces, and distributed moments, respectively, which
come from the numerical integration. The generalized force vector
involves the effects from initial strains ε0, gravity fields g, distributed
forces Fdist, distributed moments Mdist, point forces Fpt, and point
momentsMpt. The aerodynamic forces and moments are considered
as distributed loads.

E. Unsteady Aerodynamics

The distributed loads Fdist and Mdist in Eq. (12) are divided into
aerodynamic loads and user-supplied loads. The unsteady
aerodynamic loads used in the current study are based on the two
dimensional (2-D) finite-state inflow theory provided in [22]. The
theory calculates aerodynamic loads on a thin airfoil section
undergoing large motions in an incompressible inviscid subsonic
flow. The lift, moment, and drag of a thin 2-D airfoil section about its
midchord are given by

lmc� πρ∞b
2
c�− �z� _y _α−d �α��2πρ∞bc _y

2

�
−
_z

_y
�
�
1

2
bc−d

�
_α

_y
−
λ0
_y

�

mmc� πρ∞b
2
c

�
−
1

8
b2c �α− _y _z−d _y _α− _yλ0

�
dmc�−2πρ∞bc� _z2�d2 _α2�λ20�2d _z _α�2_zλ0�2d _αλ0� (13)

where bc is the semichord, and d is the distance of the midchord in
front of the reference axis. The quantity −_z∕ _y is the angle of attack
that consists of the contributions from both the pitching angle and the
unsteady plunging motion of the airfoil. The different velocity
components are shown in Fig. 2.
The inflow parameter λ0 accounts for induced flow due to free

vorticity, which is the summation of the inflow states λ as described in
[22] and given by

_λ � F1

�
�ε

_β

�
� F2

�
_ε

β

�
� F3λ

� �F1F F1B �
�
�ε

_β

�
� �F2F F2B �

�
_ε

β

�
� F3λ (14)

The aerodynamic loads about the midchord (as defined previously)
will be transferred to the wing elastic axis and rotated into the body
frame for the solution of the equations of motion. To transfer the
loads, one may use

lra � lmc mra � mmc � dlmc dra � dmc (15)

Furthermore, the aerodynamic loads are rotated as

Faero � CBa1
(

0

dra
lra

)
Maero � CBa1

(
mra

0

0

)
(16)

where CBa1 is the transformation matrix from the local aerodynamic
frame to the body frame. This matrix is determined by using the

w
z w

y

a
0z

a
0y

a
1z

a
1y

l
mc

d
mc m

mc

B
y

B
z

O

ra

V

y

z

bc bc

d

Fig. 2 Airfoil coordinate systems and velocity components.
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instantaneous nodal orientations and has to be updated from the
kinematics at each solution step and substep. Note that the finite-span
corrections are also included in the force distribution and may come
from a computational fluid dynamics solution of the problem or
experimental data if available.

F. Equations of Motion with Rigid-Body Degrees of Freedom

For a beamwith free rigid-body motions, one may need additional
equations to describe the propagation of its body reference frame.
This is particularly important in the coupled nonlinear aeroelastic and
flight dynamic analysis. The complete system equations of motion
are obtained by augmenting the equations of rigid-body motion and
elastic deformations with the inflow equations, which can be
represented as

�
MFF�ε� MFB�ε�
MBF�ε� MBB�ε�

��
�ε

_β

�
�
�
CFF�_ε;ε;β� CFB�_ε;ε;β�
CBF�_ε;ε;β� CBB�_ε;ε;β�

��
_ε

β

�

�
�
KFF 0

0 0

�� ε
b

�
�
�
RF��ε; _ε;ε; _β;β;λ;ζ�
RB��ε; _ε;ε; _β;β;λ;ζ�

�

_ζ�−
1

2
Ωζ�β�ζ _PB��CGB�ζ� 0 �β _λ�F1

�
�ε

_β

�
�F2

�
_ε

β

�
�F3λ

(17)

where ζ are the quaternions describing the orientation of the body
frame B, PB is the inertial position of the B frame, and CGB is the
rotation matrix from the body frame to the global frame G [3].

G. Modal Solution of the Equations of Motion

The strain field along the beam coordinate s is approximated by the
combination of linear normal modes:

ε�s; t� � Φ�s�η�t� (18)

whereΦ is the matrix of linear normal strain modes of the beam, and
η is the corresponding column matrix of the generalized modal
coordinate. To obtain the normal modes in strain, one may first
assume the modes in the classic displacement form and then derive
the mode shapes in strain by taking additional spatial derivatives.
This is only applicable for simple beam configurations. A more
convenient approach is to use the strain-based finite element equation
[Eq. (10)] and perform an eigenvalue analysis with the stiffness and
inertiamatrices. As the stiffnessmatrix inEq. (10) is singular, one can
find six zero eigenvalues, which correspond to the free–free rigid-
body modes. The remaining eigenvalues are the frequencies for the
coupled elastic and rigid-body modes. For the eigenvectors of these
coupled modes, they generally take the following form:

ΦC �
�
ΦF

ΦB

�
(19)

where ΦF and ΦB are the elastic and six-by-one rigid-body compo-
nents of the modes, respectively. Since the modal approximation
in Eq. (18) only requires the elastic deformation, the rigid-body
component of these modes is removed, i.e.,

Φ�s� � ΦF (20)

After all, if a cantilever beam is to be solved, one only needs to take
the elastic portion of the stiffness and inertial matrices (i.e., KFF and
MFF) into the eigenvalue analysis, which yields the modes that
satisfy the cantilever boundary condition. One more note about the
normal modes is that they are not necessarily obtained about the
undeformed shape.One can find normalmodes about a geometrically
nonlinear deformation. In doing so, the Jacobianmatrix fromEq. (11)
should be evaluated about the nonlinear deformation, resulting in
a different inertia matrix than the undeformed shape. However, the
stiffness matrix remains the same.

After the normal modes are obtained, a modal transformation on
the equations of motion [Eq. (17)] can be performed based on
Eq. (18), i.e.,

�MFF �η� �MFB
_β� �CFF _η� �CFBβ� �KFFη � �RF�η; _η; �η; β; _β�

�MBF �η� �MBB
_β� �CBF _η� �CBBβ � �RB�η; _η; �η; β; _β�

_ζ � −
1

2
Ωζ�β�ζ _PB � �CGB�ζ� 0 �β

_λ � � �F1F F1B �
�
�η

_β

�
� � �F2F F2B �

�
_η

β

�
� F3λ (21)

where

�MFF�ΦTMFFΦ �MFB�ΦTMFB
�MBF�MBFΦ �MBB�MBB

�CFF�ΦTCFFΦ �CFB�ΦTCFB �CBF�CBFΦ �CBB�CBB
�KFF�ΦTKFFΦ
�F1F�F1FΦ �F2F�F2FΦ (22)

The load vector becomes

(
�RF

�RB

)
�
(
ΦTKFFΦη0

0

)
−

"
ΦTJThε

JThb

#
Ng�

"
ΦTJTpε

JTpb

#
BFFdist

�
"
ΦTJTθε

JTθb

#
BMMdist �

"
ΦTJTpε

JTpb

#
Fpt �

"
ΦTJTθε

JTθb

#
Mpt (23)

Finally, the modal solution can be performed based on Eqs. (21–23).
Note that the generalized inertia matrix �M, damping matrix �C, and
force �R are all nonlinear and dependent on the Jacobians Jhε, Jpε,
and Jθε, which are updated at each time step with subiterations
in the numerical integration based on the instantaneous strain vector
ε converted from the modal coordinates η. This means that the
kinematic solution must be performed at each time step. It proved to
be a time-consuming process, which will compromise the computa-
tional efficiency gained by reducing the dimension of the problem.

III. Numerical Results

The strain-based geometrically nonlinear beam formulation has
been implemented in the numerical framework named the University
of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/
NAST). Different solutions can be performed with the finite element
approach [3–5,12,19,20], including the geometrically nonlinear
static solution, nonlinear transient solution with forced excitations,
linearmodal solution, stability (flutter) analysis, etc. According to the
formulation introduced in the previous section, the nonlinear static
and transient solutions are implemented with the modal approach.
Then, these two types of analyseswill be carried out to study different
geometrically nonlinear behaviors of slender beams with different
load conditions. In addition, some verification results are provided
with respect to displacement-based MSC.Nastran solutions [23].

A. Transient Solution of a Slender Cantilever Beam

Consider a slender cantilever isotropic beam (Fig. 3), for which the
geometric and physical properties are listed in Table 1. As shown, a
sinusoidal vertical (dead) force is applied at the tip, given by

F�t� �
�

0 �t < 0�
AF sin ωFt �t ≥ 0� (24)

with AF � 30 N, and ωF � 20 rad∕s. The gravity force is not
included in this particular case. The beam is solved in UM/NAST
and MSC.Nastran with the beam discretized into 20 elements. The
CBEAM element is selected in the MSC.Nastran model. For the
modal solutions in UM/NAST, only the flatwise bending modes are
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considered, since the excitation is only in the vertical plane zx. The
flatwise bending modes and frequencies are obtained from the
eigenproblem defined by the finite element approach. Table 2
summarizes the frequencies of the first five flatwise bending modes.
Figure 4 compares the normalized axial and vertical tip displace-

ment results (as the percentage of the beam span) from the different
solutions. Basically, by selecting the first bending mode of the beam,
one can almost recover (light dashed line in the plot) the finite
element solutions from both MSC.Nastran and UM/NAST, except
for the discrepancies at some peak values (about 1.4% relative
difference). Additionally, this can be overcome by adding more
modes in the solution. With two and three bending modes, the
maximum relative errors are about 0.3% (twomodes) and 0.1% (three
modes), respectively. Figure 5 illustrates the maximum vertical
displacements of the nodes along the beam span. Results from
different solutions are compared. One can only observe a very slight
difference between the finite element method (FEM) (solid line) and
the one-mode (square markers) results, whereas the two-mode and
three-mode results are almost sitting on top of the FEM result.
Table 3 lists the problem size (in number of degrees of freedom)

and CPU time (normalized with respect to the time of the finite
element solution) of the four solutions. It is evident that the complex-
ity of the modal solutions is significantly reduced compared to the
finite element solution. In addition, modal solutions are more
efficient than the finite element solution, with over 24% reduction on
CPU time. However, when varying the number of modes involved in
the modal solutions, one cannot see prominent changes in the
computing time, due to the added cost for the kinematic solutions
from the modal amplitudes, as discussed before.

B. Transient Response of Slender Beam with Rigid-Body Motion
(Free Boundary Condition)

The cantilever beam is now extended to a span of 6 m, whereas the
cross-sectional properties are kept unchanged. There is no rigid-body
constraint applied to the beam. Sinusoidal vertical forces governed
by Eq. (24) are applied at the locations indicated in Fig. 6, with the
amplitudes of F0 to F4 being 44, −34, −34, 12, and 12 N,
respectively. The frequencies of these excitations are all 5 Hz. The
loads are so defined such that their summation at any time is zero.
Transient response of the beam with such loading and boundary
conditions is obtainedwith both finite element andmodal approaches
in UM/NAST, where the time step used is 0.0025 s.

The beam is first divided into 24 elements in UM/NAST to
generate the modes with the rigid-body motions (Fig. 7). Note that
there are six zero-frequency rigid-body modes associated with the
beam, but they are not used in themodal solution. Even for the plots in
Fig. 7, only the elastic components of the modes are shown and
applied in the modal solution (Eq. 18). In addition, only the
symmetric flatwise bending modes are considered due to the specific
loading condition defined for the beam.

x

z F

1 m

Fig. 3 Cantilever beam with tip load.

Table 1 Properties of the cantilever isotropic beam

Property Value Unit

Span L 1.00 m
Mass per span m 0.10 kg∕m
Rotational moment of inertia 1.30 × 10−4 kg · m
Flat bending moment of inertia 5.00 × 10−6 kg · m
Edge bending moment of inertia 1.25 × 10−4 kg · m
Extensional rigidity 1.00 × 106 N
Torsional rigidity 80.0 N · m2

Flat bending rigidity 50.0 N · m2

Edge bending rigidity 1.25 × 103 N · m2

Table 2 Natural modes and
frequencies of the cantilever isotropic

beam

Number Mode Frequency, Hz

1 First flat bend 12.5
2 Second flat bend 78.7
3 Third flat bend 2.21 × 102

4 Fourth flat bend 4.37 × 102

5 Fifth flat bend 7.31 × 102

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

Time, s

T
ip

 d
is

pl
ac

em
en

t (
ax

ia
l),

 %

MSC.Nastran
UM/NAST FEM
3 modes
2 modes
1 mode

0 0.5 1 1.5 2
−30

−20

−10

0

10

20

30

Time, s

T
ip

 d
is

pl
ac

em
en

t (
ve

rt
ic

al
),

 %

b) Vertical displacement a) Axial displacement

Fig. 4 Tip displacement of the cantilever beam, normalized with respect to beam span.
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Fig. 5 Maximum vertical displacement of nodes along the beam,
normalized with respect to beam span.
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Figure 8 shows the vertical displacements at the stations at two
thirds of the span (points A andB, see Fig. 6) and the tip (points C and
D, see Fig. 6) of the beam.With the loads defined for the beam, nodal
displacements lie in the vertical plane determined by the loads.
Obviously, with only the first flatwise bending mode, it is not
sufficient to accurately model the beam deformation. The loading is
so applied to excite the second flatwise bending mode. Therefore, at
least two modes are required to represent the beammotion. One may
compare the modal solutions with two and three modes versus the
finite element results. The two-mode modal solution still deviates
from the finite element solution at some peak values, whereas the

solution with three modes converges well to the finite element
solution. This can also be observed from the maximum vertical
displacements of nodes along the beam span (Fig. 9).
As no rigid-body constraint is applied to the beam, it is also of

interest to analyze its rigid-body motion. Since under large
deformations the c.g. of the structure will be varying with deforma-
tion, it is convenient to select a point that will become the origin
of the body-fixed reference frame about which the rigid-body
motions are defined. There is not a unique choice, and even the c.g. of
the undeformed configuration can be selected. For this particular
example, the beam middle point was selected about which the rigid-
body motion of the beam is defined. Figure 10 plots the vertical
displacement and velocity of that reference point. The results indicate
that the selection of the modes does impact the solution of the rigid-
body motion.
Table 4 compares the problem size and CPU time of the different

solutions for this flexible beam. The complexity of the problem to be
solved is reduced in modal solutions. Again, due to the recovery of
kinematics at each time step and subiterations within one time step,
the time used for modal solutions (with two and three modes) is not
significantly reduced compared to the finite element method. The

Table 3 Problem size and normalized
computing time of different solutions for the

cantilever beam case

Solution Dimension CPU time

FEM 80 1
Modal: one mode 1 0.744
Modal: two modes 2 0.756
Modal: three modes 3 0.758

3 m

3 m

2 m

2 m

0F 1F

3F

2F

4F

x

y

z

O

B

A

C

D

Fig. 6 Flexible beam with multipoint excitations and free boundary
condition.

Fig. 7 First three symmetric flatwise bending modes of the free flexible beam.
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Fig. 8 Beam vertical displacements due to elastic deformation, normalized with respect to beam half-span.
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Fig. 9 Maximum vertical displacement of nodes along the beam,
normalized with respect to beam half-span.
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large reduction in the CPU time of the modal solution with one mode
is due to the fact that fewer subiterations are required to converge at
each time step than the other two cases.

C. Description of a Highly Flexible Wing

In [1], a highly flexible high-aspect-ratio wing was used for
aeroelastic analyses. The physical and geometrical properties of the
wing are given in Table 5. The natural frequencies and linear flutter
speed‡ of this model were calculated in [1]. Natural modes are
calculated for the undeformed beam using the finite element
approach in the current formulation. The first few natural frequencies
are listed in Table 6. An eight-mixed-based finite element
discretization was used in [1], whereas 10 and 20 strain-based
elements are employed in the current discretization for convergence
studies. These results are all compared with analytical solutions. As
can be observed, the current formulation gives accurate numerical
predictions on the fundamental frequencies of the slender beamwhen
compared to the analytical solutions.
Using the strain-based formulation, the linear flutter result at the

20,000 m altitude without gravity effects is obtained and compared
withwhat was presented in [1] (see Table 7). The current strain-based
formulation predicts identical linear results as in [1]. In addition, the
nonlinear flutter boundary (root pitch angle � 2 deg) is also
calculated with this cantilever wing (see Table 7). The flutter mode is
a coupled second flatwise bending and first torsion, whereas the in-
plane bending component in the flutter mode is not significant (see
Fig. 11). Note that the flutter boundaries are obtained using the
approach introduced in [4], where the finite element solution of the
system equations was involved. In the coming sections, simulations
are performed to study the static deformation and postflutter behavior
of the flexible cantilever wing by using the modal analysis.

D. Static Aeroelastic Solution of the Highly Flexible Wing

To assess the convergence of the static modal solutions for the
aeroelastic problem, a series of calculations are performed to obtain
the static deformations of the flexible wing with different numbers of
modes. The freestream velocity is 25 m∕s (greater than its nonlinear
flutter boundary), and the root pitch angle is 2 deg (the same as the
one used for the nonlinear flutter calculation). Figures 12a, 13a, and
14a exemplify the convergence trend when more modes are involved
in the calculation, where the solid lines in the plots represent the
results of the finite element solution with 20 elements (the reference
solution). In the modal solutions, the modes are selected from the list
in Table 6 with 20-element discretization. As one can observe from
the plots, the modal solution including the first three modes is
sufficiently accurate since the relative errors of the tip displacements

in the three directions are all less than 2%. A more accurate solution
can be obtained with seven modes included, where the relative error
of the tip displacements is within 0.5%.
Another set of static modal solutions is conducted using the mode

shapes about a beam deformed shape. Particularly, the deformation
under loads generated from a 25 m∕s freestream velocity is obtained
(using FEM), aboutwhich another set ofmode shapes is obtained (see
the Appendix for the plots of these modes). Based on this new set of
modes, the static deformation could be approximated again and
compared to the finite element results. From these, it can be found
that the convergence of the solution using modes about the deformed
shape is faster than the one using the undeformed shape. To reach the
same 0.5% relative error, only five modes are required in the solution
(see Figs. 12b, 13b, and 14b).

E. Limit-Cycle Oscillation of the Highly Flexible Wing

In this section, the transient response of the highly flexible wing is
analyzed. Thewing is first brought to its nonlinear static deformation
with the freestream velocity of 25 m∕s, calculated in the previous
section. The deformed shape serves as the initial condition for the
transient simulations. Both 20-finite-element and modal simulation
cases (see Table 8) are solved.Note that themodes used for themodal
solutions are selected from the list of Table 6, which are obtained
about the undeformed state. As the freestream velocity is higher than
the flutter boundary (23.3 m∕s), the wing is expected to self-excite.
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Fig. 10 Middle-point (body frame) vertical displacement and velocity, with displacement normalized with respect to beam half-span and velocity

normalized with respect to its maximum value (7.12 m∕s).

Table 4 Problem size and normalized computing
time of different solutions for the free flexible beam

case

Dimension
Solution Elastic Rigid body CPU time

FEM 96 6 1
Modal: one mode 1 6 0.626
Modal: two modes 2 6 0.913
Modal: three modes 3 6 0.939

Table 5 Properties of a highly flexible wing (after [1])

Property Value Unit

Span L 16 m
Chord c 1 m
Beam reference axis (from LE) 50% chord m
Cross-sectional c.g. (from LE) 50% chord m
Mass per span m 0.75 kg∕m
Rotational moment of inertia 0.1 kg · m
Torsional rigidity 1.00 × 104 N · m2

Flat bending rigidity 2.00 × 104 N · m2

Edge bending rigidity 4.00 × 106 N · m2

‡“Linear flutter” means the instability of the numerical system is found
based on the undeformed wing configuration; it is not the actual wing flutter
boundary due to geometrically nonlinear effects.
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The amplitude of the wing oscillation would increase until it reaches
the limit-cycle oscillation (LCO).
Figure 15a shows the time history (from 0 to 100 s) of the tip

vertical displacement. Note that the quantities are normalized by the
wingspan. For clarity purposes, profile contours for cases 3 to 5 are
provided in this plot (Fig. 15a), such that the reference finite element
results can be clearly observed. Figures 15b and 15c give the transient
response when the LCO is still developing, whereas Fig. 15d
exemplifies the steady state of the LCO. A phase-plane plot of the
wingtipmotion is provided in Fig. 16. In addition, one can take the 20
periods of the wingtip displacement after 85 s, when the LCO is set,
and perform a fast Fourier transform (FFT) to obtain the frequency
components of the response, which are plotted in Fig. 17. From
Figs. 16 and 17, one can basically see a one-frequency LCO of this
aeroelastic system.

Table 6 Natural modes and frequencies of the highly flexible wing (in hertz) about its
undeformed shape

Number Mode Ref. [1]
Strain-based beam
(10 elements)

Strain-based beam
(20 elements)

Analytical
solution

1 First flat bend 0.358 0.358 0.357 0.357
2 Second flat bend 2.33 2.27 2.25 2.24
3 First torsion 4.96 4.95 4.94 4.94
4 First edge bend 5.05 5.06 5.05 5.05
5 Third flat bend 7.01 6.53 6.33 6.26
6 Fourth flat bend – 13.3 12.5 12.3
7 Second torsion – 15.0 14.9 14.8
8 Fifth flat bend – 23.2 21.0 20.3
9 Third torsion – 25.3 24.9 24.7
10 Second edge bend – 32.2 31.8 31.6

Table 7 Flutter boundary of the highly flexible wing

Ref. [1] Current (linear) Current (nonlinear)

Velocity, m∕s 32.2 32.2 23.3
Frequency, Hz 3.60 3.60 1.61

Fig. 11 Flutter mode of the flexible wing (left: axonometric view; right:
front view).
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a) Calculation using modes about the undeformed shape  b) Calculation using modes about the deformed state with 
25 m/s freestream velocity  

Fig. 12 Change of the steady-state tip axial displacement with number of modes.
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a) Calculation using modes about the undeformed shape  b) Calculation using modes about the deformed state with 
25 m/s freestream velocity  

Fig. 13 Change of the steady-state tip lateral displacement with number of modes.
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As shown in the figures, with the selection of the first four modes
(case 2: the one with larger oscillation amplitude), it is possible to
predict the instability of the aeroelastic system. The transient
response eventually develops into an LCO. However, its magnitude
(Fig. 15), phase (Fig. 16), and frequency (Fig. 17) do not agree with
the reference finite element simulation at all, as a completely different
LCO behavior is predicted. Note that it was already sufficient to use
only the first four modes to provide converged static solutions (see
Figs. 12–14). Therefore, it is necessary to include more modes in the
transient analysis to converge the solution. That is how the study is
performed in this work, as cases 3 to 5 are carried out with 7, 9, and 15
modes, respectively. Obviously, the convergence gets better with
more modes involved; and with 15 modes, the modal analysis results
agree with those from the finite element analysis. From this analysis,
one can conclude that more modes in modal transient analysis is
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Fig. 14 Change of the steady-state tip vertical displacement with number of modes.
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Fig. 15 LCO of the highly flexible wing: solution with normal modes about the undeformed shape.

Table 8 Transient analysis

cases of the highly flexible wing with
normal modes about the

undeformed shape

Case number Description

1 FEM
2 Modes 1–4
3 Modes 1–7
4 Modes 1–9
5 Modes 1–15
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needed than the static solution, as expected for this aeroelastic
problem.
Table 9 still compares the problem size and the CPU time for the

different solutions of the aeroelastic problem. In the simulations, the
wing is divided into 20 stations, on each of which the inflow velocity
is calculated with the expansion of six inflow states. Therefore, the

total number of aerodynamic states is 120. The current study does not
vary the number of strips in the aerodynamic calculation. Further
parametric study can be performed to evaluate the impact of different
numbers of aerodynamic strips and states in the aeroelastic solution.
From the comparison of the CPU time, all solutions are at comparable
times, with the modal solutions taking longer than the direct FEM
one. This is due to the fact that nodal orientations are recovered in the
intermediate steps of the time integrations, in addition to the
Jacobians required in the simulations with only structural loads. The
nodal orientations are used to determine the local aerodynamic
frames (by usingCBa1), such that the velocity components and angles
of attack are obtained.
Similar to the static analysis, the normalmodes about the deformed

shape can also be used as the reference modes in the transient
analysis. Now, the normal modes are determined about the beam
deformed shape under 25 m∕s freestream. Different modal analysis
cases are compared to the finite element solution (see Table 10).
Again, the time history of the wingtip vertical displacement, the
phase-plane plot of the wingtip motion, and the FFT results of the
wingtip displacement are plotted in Figs. 18–20, respectively.
Figure 18a plots the time history of the vertical displacement for

the wingtip. Profile contours for cases 3 to 5 are provided in this plot,
such that the reference finite element results can be clearly observed.
Different stages in the time history are also illustrated in Figs. 18b–
18d. It can be observed that, with only four modes (case 2,
nonoscillatory), the simulation starts from a different initial (static)
condition and does not predict instability at all. A minimum of five
modes is required to capture the instability of the system. Figure 19
exemplifies the motion of wingtip with the phase-plane plot. One can
clearly see that case 2 behaves differently from all the other cases,
which reduces to a point in the phase-plane plot, and no oscillation is
observed. From Figs. 18b, 18c, and 19a, the phase difference of the
other cases can be observed at the transient stages of the simulations,
when the limit-cycle oscillation is still developing.However, after the
LCO is set up (Figs. 18d and 19b), the phase difference is reduced and
maintains constant. In addition, the magnitude of the oscillations
(displacement and velocity) from themodal solutions (cases 3 to 5) is
very close to what the finite element solution predicts. From the plot
of Fig. 20, the frequency components of the responses in cases 3 to 5
are almost the same as the finite element solution. Therefore, the
solution with five modes (case 3, dark dashed–dotted line) is already
good enough compared to the finite element result. It has some phase
differences from the FEM results, but the magnitude and frequency
match well. With more modes included, the convergence quality is
slightly, but not significantly, improved. Overall, the simulations
using the modes about the deformed shape converge faster compared
to the simulations using the normal modes about the undeformed
shape. Note that selection of the first five modes about the deformed
shape also gave nicely converged static solutions. As the solution
time of using the modes about the deformed configuration is
comparable to the one about the undeformed shape, the comparison
of the CPU times of these cases is not discussed here.
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Fig. 17 FFT of the tip oscillation of the highly flexible wing (20 periods
after 85 s): amplitude normalized by wingspan.
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Fig. 16 Phase-plane plot of the wingtip motion, displacement normalized by wing span, and velocity normalized by the maximum value from the FEM
solution (6.27 m∕s).

Table 9 Problem size and normalized computing
time of different transient solutions of the highly

flexible wing with normal modes about the
undeformed shape

Dimension

Solution Elastic Aerodynamic CPU time

Case 1 80 120 1
Case 2 4 120 1.065
Case 3 7 120 1.084
Case 4 9 120 1.100
Case 5 15 120 1.152

Table 10 Transient analysis

cases of the highly flexible wing with
normal modes about the deformed

shape

Case number Description

1 FEM
2 Modes 1–4
3 Modes 1–5
4 Modes 1–7
5 Modes 1–9
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IV. Conclusions

This paper discussed a modal solution to the strain-based
geometrically nonlinear beam formulation. The original strain-based
geometrically nonlinear beam formulation is able to capture the arbi-
trarily large displacements of slender structures. The theory defines
beam extension strain and bending/twist curvatures as independent
states, which makes no approximation to the deformation of beam
reference line. Therefore, this formulation is geometrically exact and
can accurately model the composite beam deformation. The strain-
based formulation features fewer degrees of freedom than the
displacement-based and the mix-form formulations to represent the
same deformation complexity. In addition, this formulation solves
directly for the beam curvatures that are the variables measured by
typical sensors in control studies (e.g., strain gauges).
The linear normal modes in strain are used to approximate the

strain distribution (also displacement distribution through the recov-
ery of kinematics) along the beam. As one can observe from the
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Fig. 18 LCO of the highly flexible wing: solution with normal modes about the deformed shape.
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Fig. 20 FFT of tip displacement of the highly flexible wing (20 periods
after 85 s): amplitude normalized by wingspan.
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Fig. 19 Phase-plane plot of the wingtip motion, displacement normalized by wingspan, and velocity normalized by the maximum value from the FEM
solution (6.27 m∕s).
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numerical studies, themajor advantage of themodal approximation is
the simplicity of the model because of the further reduction of the
problem size when compared to the direct finite element form.
Another advantage of the strain-basedmodal solution is its simplicity
in finding the geometrically nonlinear static solution. With a few
modes involved, one can find out the accurate static solution.
Moreover, the generalized modal stiffness matrix is constant, which
means it does not need to be updated over iterations to find the
converged nonlinear static state. This makes this solution approach
very suitable for the trim solution of very flexible aircraft, where the
solution is fundamentally static and geometrically nonlinear.
Nonlinear transient analyses were also performed for various

beams with prescribed or aerodynamic loads. From the numerical
studies, it is verified that the use of normal modes about a
geometrically nonlinear deformed shape may improve the
convergence of the solution: that is, fewer modes are required to
reach the converged solution. This is also of importance in the
nonlinear aeroelastic analysis of very flexible aircraft. For that, the
geometrically nonlinear trim state should be used as the position
about which to extract the normal modes. Transient analysis may be
accurately performed by properly choosing few selected modes.
Although it was expected that employing a modal representation

for the structural solution would result in lower computational times,
the reduction of computational times was not substantial. The
computational advantage of the new solution was sacrificed due to
the requirement of recovering wing displacement and rotation from
kinematics for every aeroelastic time step. Clearly, a better way to
handle the intermediate wing displacement/rotation in the time
integration is highly desirable to improve the computational
efficiency of the overall aeroelastic solution.

Appendix: Normal Modes of the Highly Flexible Wing
about Deformed Shape

Listed in Figs. A1–A10 are the first 10 modes obtained for the
cantileverwing about its deformed shape as the result of aerodynamic
loading generated from a 25 m∕s freestream flow. Note that all the
torsional modes are coupled with some edgewise and flatwise
bending components, which are not legible among the plots.

Fig. A1 First mode (first flat bending, 0.358 Hz).

Fig. A2 Second mode (first torsion, 1.49 Hz).

Fig. A3 Third mode (second flat bending, 2.22 Hz).

Fig. A4 Fourth mode (third flat bending, 6.20 Hz).

Fig. A5 Fifth mode (second torsion, 6.94 Hz).

Fig. A6 Sixth mode (fourth flat bending, 12.4 Hz).

Fig. A7 Seventh mode (third torsion, 17.4 Hz).

Fig. A10 Tenth mode (sixth flat bending, 31.6 Hz).

Fig. A9 Ninth mode (fourth torsion, 28.8 Hz).

Fig. A8 Eighth mode (fifth flat bending, 20.8 Hz).
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