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A structural dynamics code for modeling extreme events such as shock and detona-
tion waves in Polymer-Bonded Explosives (PBXs)is presented. PBXs are multi-component
solid-state composite consisting of energetic crystals and metal particles embedded in a
polymeric binder and are used for conventional munitions. A stable efficient solution strat-
egy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve
PBXs behavior under extreme shock loading. Equations of state for the solid unreacted
material and gaseous reaction products are implemented using a pressure mixture rule
governed by pressure based reaction rates. The FE model is verified using analytical solu-
tions for Sod shock and ZND strong detonation models. Numerical results for PBXs under
shock loading are presented using a continuum model and a first-order multiscale model.

I. Introduction

Energetic composite materials are used as propellants, explosives and fuel cell components. The rapid
energy release (detonation) of these materials involve tightly coupled nonlinear interactions between chem-
istry and mechanics. During detonation, a shock wave is sustained by the rapid chemical energy heat release
from the energetic material. These waves have extreme features; they travel at typical speeds of several
thousand meters per second and the peak pressures can reach about 100 GPa.1 Laboratory experiments
are seldom equipped to handle these events, where safety and performance are paramount. Therefore, there
is significant interest in engineering the microstructures of these energetic composites for targeted shock
sensitivity and energy output. Literature in this area indicate the importance of composite features, for
example, smaller energetic particles have lesser run time to detonation2 and the time to detonation increases
with the strength and content of the matrix (binder) material.3 The first step in understanding the effects
of the microstructure is to develop a reliable computational model for PBXs at the meso-scale.

The evolution of the solid state composite during detonation can be computed by solving the reactive
Euler equations, a non-linear set of hyperbolic equations. In such equations, discontinuities (shocks) arise
from continuous initial conditions, that can be found by solving a weak form of the PDE. Classical formula-
tions of solid dynamics based on displacement approach are unsuitable for this problem due to locking issues
at extreme mesh distortions and numerical errors in the velocity of propagation of waves. This problem
has been largely addressed in the fluid dynamics community using Riemann solvers, albeit mostly in the
context of Eulerian finite volume methods.4–9 In the context of standard finite element methods, various
stabilized methods such as Petrov Galerkin (PG) methods, Galerkin/least-squares (GLS) methods and the
Taylor-Galerkin (TG) methods, have been developed to address the issue. In the PG and GLS methods,
a stabilization term with a coefficient is added to the weak form to act as an artificial diffusion, however,
the choice of the coefficient is semi-empirical and may lead to overdamping.10,11 The basic TG algorithm
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was proposed by Donea,12 Baker et al13 and Löhner et al14 for first-order systems of hyperbolic equations in
which Taylor expansion in time precedes the Galerkin space discretization. TG finite element schemes are
especially attractive since the scheme has no free parameter, in fact, the diffusion arises from an improved
Taylor approximation to the time derivative of the fields. While TG algorithms have been successfully ap-
plied in areas such as pollutant transport, shallow water problems and fluid dynamics,15–17 there do not
exist a prior study of the technique for reactive euler equations.

A variety of different reaction-rate equations are used in reactive-burn models. Arrhenuis reactive-burn
models use reaction schemes that are tuned to experimental data and chemical data such as heats of for-
mation. Reaction kinetics of PBXs involve three general steps (i) endothermic dissociation (ii) formation of
reactive intermediates and (iii) exothermic recombination. Intermediate species only exist for a few nanosec-
onds and are extremely difficult to measure experimentally. Hence, reaction kinetics are often approximated
in a one step form4 of solid reactant state to gaseous product state, although other schemes have been
proposed with three-step,18 four-step19 or multi-step reactions.20 These schemes typically require thermal
and pressure equilibrium. The Ignition and Growth model21 is a pressure-dependent model formulated to
represent the ignition of hotspots and the growth of reaction from hotspots into the surrounding explosive
and are based on empirical parameters. This model requires pressure equilibrium for the solid unreacted
explosive and the reacted products. A simplified version of the Ignition and Growth model is the JWL++
model.22 The JWL++ model uses a mixture rule for the total pressure and has found that it is equivalent
to enforcing pressure equilibrium.

The equation of state needs to be represented for each of the reaction states. A variety of equations of
state (EOS) have been used to represent explosives, the popular ones being the Jones-Wilkins-Lee (JWL)
form,21 the Murnaghan form22 and Gruneisen form.5 The Gruneisen from with a linear shock velocity
versus particle velocity Hugoniot has been employed in several studies.5,23,24 For the gaseous reaction
products, the by far the most popular equation of state is the JWL form that was developed by measuring
the expansion velocity of metal casings surrounding HMX.25 This work uses the Murnaghan equation of
state for the unreacted solid and the C-form JWL equation of state for the reacted detonation products.
In this paper, computational modeling of reactive Euler equations is presented using the TG approach as
applied to detonation of PBXs in 1D and 2D.

II. Governing Equations

A. Euler Equations

The 1-D reactive Euler equations are given by the following vector equations. Here, ρ is the density, ρu is the
momentum and ρE is the total energy per unit volume. The subscripts x and t denote partial derivatives.
Diffusion, viscosity and radiation effects are neglected.

Ut + Fx = S (1)

with

U =


ρ

ρu

ρE

ρλ

 F =


ρu

ρu2 + p

(ρE + p)u

ρuλ

 S =


0

0

0

ρR(p, λ)

 (2)

The Euler equations are written in the quasi-linear form with jacobian matrices A = ∂F/∂U . The flux
vectors are rewritten as

F = AU. (3)

The transport equation for the burn fraction λ is governed by the source term modeling the reaction rate
R(p, λ). For a solid unreacted material λ = 0 and for the completely reacted products λ = 1. The reaction
rate is given by the Ignition and Growth form in the following equation. Here, I is the ignition parameter and
G is the growth parameter. The relative volume η = ρ/ρ0 where ρ0 is the reference density. The empirical
parameters for this model are taken from Ref.21

R(p, λ) = I(1− λ)xηr +G(1− λ)xλypz (4)
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III. Numerical Scheme

A. One-step Taylor Galerkin Scheme

The 1-D reactive Euler equations given by Eq.1 are solved using a one-step Taylor Galerkin scheme. This
widely used time-stepping algorithm is second-order accurate, explicit and analogous to the Lax-Wendroff
method. Taking a Taylor series expansion of U

Un+1 = Un + ∆tUnt +
1

2
∆t2Untt +O(∆t3) (5)

where ∆t is the time step, tn+1 is the current time and tn is the previous time. The first term of the RHS
of Eq.5 is the state vector U from Eq.2. The second term is found from rearranging Eq.1; i.e.

Ut = −Fx + S (6)

The third term from the Taylor expansion is found by differentiating Eq.6 with respect to time. Now Eq.5
is written as

Un+1 = Un + ∆t(S − Fx)n +
1

2
∆t2[St − (AS −A2Ux)x]n (7)

The rate of the source term St is found by finite differences on S from Eq.2; i.e. St = (Sn − Sn−1)/∆t. The
associated variational form is given as follows after integration by parts of the spatial terms

∫ L

0

W
Un+1 − Un

∆t
dx =

∫ L

0

W Sn dx+

∫ L

0

Wx F
n dx+

1

2
∆t

∫ L

0

W Snt dx

+
1

2
∆t

∫ L

0

Wx(AS −A2Ux)ndx−
[
W · (Fn +

1

2
∆t(AS −A2Ux)n)

]x=L
x=0

(8)

Modifying the boundary term based on the relation Fnt = FuU
n
t = A(S − Fx)n = (AS −A2Ux)n,

∫ L

0

W
Un+1 − Un

∆t
dx =

∫ L

0

W Sn dx+

∫ L

0

Wx F
n dx+

1

2
∆t

∫ L

0

W Snt dx

+
1

2
∆t

∫ L

0

Wx(AS −A2Ux)ndx−
[
W · (Fn +

1

2
∆tFnt )

]x=L
x=0

(9)

In this work, flux representation depends on the compressibility of the fluid. In regions of compression where
∂u/∂x < 0 a group representation, shown in equation 10 is used, and the classical flux representation is used
otherwise.

Fi =

ELM∑
k=1

Wk(x, y)Fi(Uk), i = 1, 2. (10)

B. Numerical Treatment of Shocks

A high-resolution scheme is used for the numerical treatment of shocks.26 This scheme is used for the
purpose of adding minimal numerical dissipation and to give non-oscillatory solutions in the presence of
steep solution gradients. Numerical dissipation is applied in the neighborhood of a discontinuity where
the diffusion coefficient is calculated based on the local behavior of the solution. After Galerkin spatial
discretization the following algebraic equation is obtained

M(Un+1 − Un) = ∆tBn (11)

where M is the mass matrix and B is the force vector. The consistent mass matrix M acting on Un+1 is
replaced by the diagonal matrix ML, obtained by row sum. Now Eq.11 becomes

MLUn+1 = MUn + ∆tBn (12)
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which can be rewritten as
MLUn+1 = MLUn + (M −ML)Un + ∆tBn (13)

where the term (M −ML)Un represents added dissipation. This term is multiplied by the parameter d,
where 0 ≤ d ≤ 1; for maximum dissipation d = 1. Now the system is written as

MLUn+1 = MLUn + d(M −ML)Un + ∆tBn (14)

For a value of d > 0 the system adds dissipation to the entire system; i.e. global smoothing. By controlling
d locally, in the presence of shocks, we can perform local smoothing. The following two stage procedure
is used where the first stage corresponds to the first-order Taylor-Galerkin scheme (Eq.11) and the second
introduces dissipation

M(U∗ − Un) = ∆tBn (15)

ML(Un+1 − U∗) = d(M −ML)U∗ (16)

Locally, at a node “i” the right hand side of Eq.16 is∑
j

dijMij(U
∗
j − U∗

i ) (17)

where nodes “j” are connected to node “i”. To detect the presence of shocks dij is constructed by considering
the second derivative of pressure.

dij = min[χmax(di, dj), 1] (18)

where

di = |pj − 2pi+ pi−
pj + 2pi+ pi−

|,

dj = |pj+ − 2pj + pi

pj+ + 2pj + pi
| (19)

and

pi− = pj − 2(xj − xi) · [∇p]i,
pj+ = pi− 2(xj − xi) · [∇p]j. (20)

IV. Numerical Results for SOD Shock and ZND

To test the stability and accuracy of the scheme described above, the classical fluid dynamics shock tube
problem is solved. The test consists of two fluids at differing pressures separated by a membrane. Once the
membrane is removed a rarefaction wave, contact discontinuity and shock wave is formed. The the solution
for an ideal gas is obtained analytically using Riemann invariants and is compared with numerical results
on Figures 1-3. The numerical results on Figures 1-3 show good agreement with the exact solution and
the distinct characteristics of the test are captured. To verify that the numerical scheme described above is
accurate for reactive flow, the ZND detonation model is tested. The model produces a von Neumann spike
that propagates at a constant speed. Numerical results are compared with the exact solution on Figures 4
and 5 and are in good agreement.

V. Continuum model of Polymer-Bonded Explosives

It is necessary to represent the pressure of both the unreacted material and the reaction products of
PBXs; however, is is also necessary to model the material when it is at neither extreme (ie 0 < λ < 1). This
work follows the JWL++ model. The Murnaghan equation is used for unreacted equation of state and is
given by

p = ps =
1

nκ

(
1

(ρ0/ρ)n
− 1

)
(21)
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Figure 1. Shock tube density for ideal gas.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

V
el

oc
ity

x

 

 

Numerical
Exact

Figure 2. Shock tube velocity for ideal gas.
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Figure 3. Shock tube pressure for ideal
gas.
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Figure 4. ZND mass fraction profile.
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Figure 5. ZND mass fraction profile.

The parameters n and κ are derived from the linear shock relationship between shock velocity US and particle
velocity up. This Hugoniot data is available for a number of explosives. A JWL in the C-term form is used
for the EOS of the fully reacted detonation products.

p = pg = Ae−R1ρ0/ρ +Be−R2ρ0/ρ +
C

(ρ0/ρ)1+ω
(22)

For the intermediate state, a pressure mixture rule is used to find the total pressure

p = (1− λ)ps + λpg (23)

The burn fraction λ is governed by equation 4. All parameters for the equations of state are taken from
experiments in Ref.27 for the explosive PBX 9404. To initiate the detonation wave in PBX 9404, the
Hugoniot for the solid λ = 0 and the reaction products λ = 1 are computed on Figure 6. Thermodynamics
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theory states that the material must be shocked to the Von Neumann pressure pV N in order to have a
self-sustaining wave. The pressure then drops down the Rayleigh-line to the Chapman-Jouget pressure pCJ
the point tangent to the Hugoniot of the reaction products. The Von Neumman pressure was calculated by
finding the intersection between the solid Hugoniot and the Rayleigh-line.

0.35 0.4 0.45 0.5 0.55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ν (cm3/g)

P
 (

M
ba

r)

 

 

λ = 0
λ = 1
Rayliegh Line
P

CJ
 = 0.37002 Mbar

P
VN

 = 0.48242 Mbar

Figure 6. Hugoniot for PBX 9404.

Using the numerical scheme described in the sections above, detonation of PBX 9404 is performed. In
the left side of the domain, the material is pressurized to the calculated Von Neumman pressure pV N =
0.482Mbar while the left side of the domain is left at ambient conditions where pressure is zero. A uniform
mesh of 200 linear elements for a domain of 2.5cm is used. The duration of the simulation is t = 2µs with
∆t = 5e−4µs. Results for density, velocity, burn fraction and pressure vs. distance at time-steps of 0.2µs
are shown on Figures 7-10. All solutions show a self-sustaining wave propagate through the domain. Figure
7 shows density drop initially from the Von Neumman specific volume. This region begins to expand below
the value of the reference density. Velocity, shown in Figure 8, is initially zero and increases to peak values
around 3km/s. The burn fraction λ is initially set to a pure solid as shown in Figure 9. As time increases the
reaction occurs and the solid is burnt and completely reacted. There is an observable time disparity between
the rate of reaction and shock speed. The pressure plotted in Figure 10 initially drops from the initial
pressure pV N . As the reaction initiates pressure recovers to pV N and a self-sustaining detonation progresses
through the domain. However the value calculated at the peak of the pressure profile p = 0.475Mbar is
under the calculated Von Neumman pressure. This can be attributed to the numerical scheme used to damp
spurious oscillations near the shock front. The same experiment for the shocked PBX 9404 is performed
in two-dimensions. A radial symmetric detonation waved is used with the initial discontinuity located at
r = 0.5cm. The combustion front is a quarter circle that expands as the system evolves. A uniform mesh with
a 200X200 quadrilateral elements is used with ∆t = 5e−4µs and no-slip boundary conditions. Numerical
results for density and pressure are shown on Figures 11,12 and 13, 14 respectively. The detonation profile
maintains a symmetric spherical shape through the experiment and is in good agreement with the 1D case.

VI. First-Order Multiscale Modeling of Polymer-Bonded Explosives

The 1-D reactive Euler equations are updated to include multiscale state variables for HMX and binder.
The transport equation for burn fractions λH,B , where H denotes HMX and B denotes binder, are governed
by the source term modeling the reaction rate RH,B(p, λH,B). For a solid unreacted material λH,B = 0 and
for the completely reacted products λH,B = 1. Burn fractions for both HMX and binder are governed by
the simple Growth model shown in Eq.25. Here, GH,B is the growth parameter and bH,B is the pressure
exponent. The empirical parameters for this model are taken from Ref.21
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Figure 7. Density for PBX9404 at time-
steps of 0.2µs.
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Figure 8. Velocity for PBX9404 at time-
steps of 0.2µs.
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Figure 9. Burn fraction for PBX9404 at
time-steps of 0.2µs.
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Figure 10. Pressure for PBX9404 at
time-steps of 0.2µs.

U =



ρ

ρu

ρE

ρλH

ρλB


F =



ρu

ρu2 + p

(ρE + p)u

ρuλH

ρuλB


S =



0

0

0

ρRH

ρRB


(24)

RH,B = GH,B(1− λH,B)pbH,B (25)

The total pressure of the composite p, is determined by calculating pressures for both HMX and binder.
Using the JWL++ model,22 the Murnaghan equation is used for unreacted equation of state for both HMX
and binder (pS(H,B)) and is given by Eq.21. A JWL in the C-term form is used for the EOS of the fully
reacted detonation products for both HMX and binder (pG(H,B)) and is given by Eq.22. Parameters for
HMX and for binder are taken from Ref.28 For the intermediate state a pressure mixture rule is used to find
the total pressure.

pH,B = (1− λH,B)pS,(H,B) + λH,BpG,(H,B) (26)
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Figure 11. Density for PBX9404 at t =
1µs.
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Figure 12. Density waterfall plot for
PBX9404 at t = 1µs.
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Figure 13. Pressure for PBX9404 at t =
1µs.
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Figure 14. Pressure waterfall plot for
PBX9404 at t = 1µs.

The total mass is comprised of both HMX ρH and binder ρB . Here, NH represents the mass fraction of the
energetic material HMX and NB represents the mass fraction of binder.

ρ = ρNH + ρNB = ρH + ρB (27)

Now that the densities of HMX and binder are known, they are passed to the equations of state (Eq. 21,22)
and the total pressures for both HMX pH and binder pB are calculated from Eq. 23. The total pressure
of the composite is calculated by the following equation and is based on the mass fractions of each species.
This methodology is described on Figure. 15.

p = pHNH + pBNB (28)

VII. Numerical Results

For the following experiment, the continuum model uses a homogeneous medium described in Section V
while the multiscale model has 5% binder explicitly modeled (NH = 0.95 and NB = 0.05). Hugonoit data
calculated for PBX9501 is shown on Figures 6 and 17. These figures compare the pressures calculated using
the multiscale model described above(black plot) and a continuum model(red plot). Figure 16 shows the
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𝜌, 𝜌𝑢, 𝜌𝐸, 𝜌𝜆𝐻 , 𝜌𝜆𝐵 

 

𝜌 = 𝜌𝑁𝐻 + 𝜌𝑁𝐵 

𝑝 , 𝜕𝑝 /𝜕𝑈𝑖 

𝑆𝑜𝑢𝑟𝑐𝑒: 𝑆 
𝑆𝑜𝑢𝑟𝑐𝑒 𝑅𝑎𝑡𝑒: 𝑆𝑡  
𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛:  𝐴  

𝑇 − 𝐺 

Δ𝑡 

𝜌𝐻 𝜌𝐵 
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𝑝𝐵 = (1 − 𝜆𝐵)𝑝𝐵𝑆+𝜆𝐵𝑝𝐵𝐺   𝑝 = 𝑝𝐻𝑁𝐻 + 𝑝𝐵𝑁𝐵   

Figure 15. Multiscale modeling methodology.

Hugonoit and Figure 17 shows the Rayleigh line. By taking the microstructure of PBX 9501 into account,
the Hugonoit has shifted corresponding to a reduction in Von Neumman pressure from pV N = 0.59Mbar to
pV N = 0.57Mbar. The Rayleigh lines shown on Figure 17 differ by 3% leading to a differing shock wave
speed. Both models are initiated with their corresponding Von Neumman points with numerical results for
pressure shown on Figure 18 and Figure 19. The growth parameter and pressure exponent and equal for
these results; i.e. GH = GB and bH = bG. Both models are under the calculated Von Neumman pressure
due to damping scheme described above. The pressures are directly compared at t = 1µs on Figure 20. It is
clear from the plot that the multiscale model detonation wave travels at a faster speed than the continuum
model wave speed.

VIII. Conclusion

Direct numerical simulation of shock propagation through PBXs was performed. Numerical result were
obtained using a one-step second-order Taylor-Galerkin scheme. The numerical scheme was tested and
agreed with exact solutions for SOD shock tube problem and the ZND detonation model. A Pressure-
based reaction scheme based on the Ignition and Growth model was used with the Murnaghan and JWL
equations of state for unreacted solid and fully reacted product respectively. The total pressure was found
using an analytic mixture rule. Detonation of PBX 9404 was performed and all solutions showed a self-
sustaining wave propagate through the domain. The peak pressure compared well with the Von Neumman
pressure calculated from the Hugonoit and was under predicted due to damping. Initial work into multiscale
modeling was presented and showed that modeling the microstructure leads to differences in Hugoniot data
which corresponds to differing detonation wave speeds. Future work will include full order multiscale model
with the microstructure explicitly modeled.
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Figure 16. Hugonoit for continuum and
multiscale model.
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Figure 17. Rayleigh line for continuum
and multiscale model.
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Figure 18. Numerical pressure results for
continuum model.
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Figure 19. Numerical pressure results for
multiscale model.
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