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High-fidelity computational modeling and optimization of complex engineering systems has the po-
tential to enable engineers to produce more efficient designs with fewer unforeseen design modifica-
tions late in the design process. For transonic wing design, aerodynamic shape optimization has the
potential produce high- performance, low-drag designs. Typically, optimizations attempt to improve
the performance at a small number of representative operating conditions. However, the performance
improvement may be obtained at the expense of reduced robustness or performance in other aspects
of the design. In this paper we present a separation-based constraint formulation that can be used
to constrain undesirable buffet-onset behavior in an aerodynamic shape optimization. A series of op-
timizations based on the AIAA Aerodynamic Design Optimization Discussion Group wing-body-tail
case are presented to demonstrate the need for buffet-onset constraints, and the effectiveness of the
proposed approach. Both single-point and multipoint optimizations without separation constraints
are found to be vulnerable to buffeting, while the optimizations with the proposed approach success-
fully move the buffet boundary to make the designs feasible.

I. Introduction
Numerical optimization has the potential to be a powerful tool that can complement more traditional design

methodologies. Optimization using high-fidelity, physics-based simulations, such as Computational Fluid Dynam-
ics (CFD) and Computational Structural Mechanics (CSM), is especially promising. By capturing the relevant physics
of the underlying system, performance improvements predicted by numerical simulations are more likely to be realized
in the real world. Effective optimization algorithms, however, invariably exploit any shortcomings in the numerical
models and violate important constraints not included in the optimization problem formulation.

One critical aspect of transonic wing design that is not usually considered in aerodynamic shape optimization is
the behavior of the design near buffet. As the Mach number or lift coefficient increases, shocks on the wing gradually
increase in strength. Interactions of the shocks with the boundary layer cause flow separation, and eventually this
leads to unsteady separated flow and oscillation of the shocks. This phenomena leads to an aerodynamically-induced
vibration of the airframe. Federal Aviation Administration (FAR) and Civil Aviation Authority (CAA) regulations
stipulate that a 1.3 g margin must exist between a regular operation cruise condition and buffet onset. This corresponds
approximately to a 40◦ bank angle for a steady-state turn.

To quantify the buffet-onset in aerodynamic shape optimization, we develop a new prediction method based on
the amount of separated flow present on the wing. We then use this method to enforce a constraint on the amount of
separated flow near the buffet onset boundary, which ensures that the optimized design has a sufficient buffet margin,
while simultaneously improving the performance at the design operating conditions.

This paper is organized as follows. First, we outline the key aspects of the computational methods used in this
work, then we describe the separation constraint formulation, and how it is used to enforce the buffet onset constraint.
Then, we present a sequence of numerical aerodynamic optimization studies based on the AIAA Aerodynamic De-
sign Optimization Discussion Group (ADODG) wing-body-tail case to evaluate the effects of including buffet onset
constraints in a transonic wing aerodynamic shape optimization.

II. Computational Methods
The aerodynamic analysis code used in this work is part of the MACH (MDO of Aircraft Configurations with High

fidelity) framework. This framework was developed to perform aerodynamic and aerostructural design optimization
studies of both conventional and unconventional aircraft configurations [1, 2].
∗Research Investigator, AIAA Member
†Professor, AIAA Associate Fellow

1 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

12
94

 

 54th AIAA Aerospace Sciences Meeting 

 4-8 January 2016, San Diego, California, USA 

 10.2514/6.2016-1294 

 Copyright © 2016 by The authors. 

 Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2016-1294&domain=pdf&date_stamp=2016-01-02


1. CFD Solver
The aerodynamic flow solver in MACH is SUMad, which solves the Reynolds-averaged Navier–Stokes (RANS) equa-
tions in either steady, unsteady or time spectral modes [3, 4]. SUMad employs the finite-volume method on structured,
body fitted, multiblock grids. The discretization scheme uses central fluxes with artificial dissipation and the Spalart–
Allmaras (SA) turbulence model [5]. A matrix dissipation scheme is used except where explicitly noted. A fully
coupled Newton–Krylov method is used to solve the mean flow and turbulence equations simultaneously. A discrete
adjoint method is implemented using a combination of reverse mode automatic differentiation and analytic methods
for the efficient computation of the gradients of functions of interest. More details on the CFD adjoint implementation
are provided by Lyu et al. [6].

2. Geometric Parametrization
In this work we use an free-form deformation (FFD) volume approach that we have used extensively in the past
for aerodynamic [7, 8, 9, 10, 11, 12] and aerostructural optimization studies [1, 13, 2, 14]. The FFD approach can be
visualized as embedding the spatial coordinates defining a geometry inside a flexible volume. The parametric locations
(u, v, w) corresponding to the baseline geometry are found using a Newton search algorithm. Once the baseline
geometry has been embedded, perturbations made to the FFD volume propagate within the embedded geometry via
the evaluation of the nodes at their parametric locations.

3. Mesh Movement
The FFD approach previously described applies deformations only to the surface mesh, that is, the part of the volume
mesh that lies on the physical surface. A separate operation is then required to propagate surface perturbations to
the remainder of the volume mesh. The mesh movement algorithm used in this work is an efficient analytic inverse
distance method similar to the one described by Luke et al. [15]. Updating the mesh for a new configuration is fast,
typically requiring less than 0.1% of the time required for a CFD solution. Sensitivities required for the adjoint method
are provided from a combination of reverse-mode automatic differentiation and analytic methods.

4. Optimization Algorithm
The high computational cost of RANS-based optimization demands an optimization algorithm requiring a low number
of function calls. We use SNOPT (sparse nonlinear optimizer) [16] through the Python interface pyOpt [17]. SNOPT is
a gradient-based optimizer that implements a sequential quadratic programming method; it is capable of solving large-
scale nonlinear optimization problems with thousands of constraints and design variables. SNOPT uses an augmented
Lagrangian merit function, and the Hessian of the Lagrangian is approximated using a quasi-Newton method. We have
successfully employed the SNOPT algorithm to solve a wide variety of aerodynamic and aerostructural optimization
problems [2, 14, 18, 10, 7].

III. Buffet Onset Prediction
In transonic flow, at sufficiently high lift coefficients and Mach numbers, instabilities in the shock-boundary layer

interaction cause oscillations in the shock position that result in an unsteady flow field. Pure aerodynamic buffeting
can be observed even on an idealized rigid wing. As a real flexible aircraft approaches the buffet boundary, these small
aerodynamic oscillations grow in magnitude and induce increasingly large structural vibrations. Eventually, these
oscillations may become large enough to cause structural failure or loss of control, especially if the control surfaces
are affected.

Current Joint Aviation Requirements (JAR) stipulate that commercial transport aircraft must maintain at least a
1.3 g margin from the cruise operating condition to buffet onset. This buffet margin may also be considered the
maneuvering margin for the aircraft: A 1.3 g turn corresponds to an approximately 40◦ bank angle.

Flight testing certification of new aircraft involves, among many other things, mapping out the flight envelope up to
and through the buffet boundary. In practice, for aircraft certification purposes, the buffet boundary is determined when
the peak-to-peak acceleration amplitude reaches n = 0.25 at the pilot’s seat. Such a definition is not conducive for
inclusion in a conceptual or preliminary design optimization. There are, however, a multitude of other techniques that
have been developed over the years to correlate data, typically from wind tunnel experiments, with buffet predictions
from a flight testing program. These techniques include correlations with RMS signal strength of wind tunnel model
strain gauges, trailing edge pressure divergence, axial force break, pitching moment break, and lift curve break [19].
The last two methods can also be readily applied to the integrated force and moment values obtained from a CFD
analysis. One particular way of implementing the lift curve break method is the ∆α = 0.1 method. Using this
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method, the “linear” portion of the lift curve is offset toward the right by a value of 0.1◦ , and the intersection of this
line with the actual lift curve is used to estimate the buffet onset point, as illustrated in Fig. 1.

α

CL
∆α = 0.1◦

Lift curve
Buffet onset

Figure 1: Estimating the buffet boundary with the ∆α = 0.1 method.

The physical mechanism that causes the loss of lift and the subsequent lowering of the lift curve slope is the initial
appearance of shock-induced flow separation. An example showing the typical progression for a transport aircraft
wing at high angles of attack at fixed Mach number is shown in Fig. 2. The red surface in the first row shows the
regions where the local surface flow is in the negative streamwise (negative x-axis) direction. Alternatively, this is
equivalent to the region where the skin friction coefficient, Cfx , is negative.

Figure 2: Progression of separated flow for the baseline CRM configuration at M = 0.85 with increasing angle of
attack. The red surface denotes flow in the negative stream-wise direction. The orange isosurface is the Lovely–Haines
shock sensor [20]. The last row shows the separation sensor integrand value from Eqn. (1).

We have consistently observed that the appearance of this negative skin friction region correlates with the buffet
onset boundary as predicted by the ∆α = 0.1 method. This is not surprising, since the appearance of separated
flow is the primary cause for the flattening of the lift curve slope. However, the exclusive use of global aerodynamic
coefficients—such as CL and CM—in determining buffet onset is not strictly necessary for CFD-based shape opti-
mization, as we have the full 3D flow field readily available. To that end, we propose using a separation sensor as a
predictor for buffet onset. In its simplest form, the sensor is the integral of the wing surface area where the skin friction
is negative. This is equivalent to performing a weighted area integration of the sensor value shown in the bottom row
of Fig. 2.

Since our goal is to use this function as a constraint in an optimization, the discontinuity of the function as Vx
crosses through zero is problematic. To address this issue, we use a smooth Heaviside function to blend the disconti-
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nuity, which yields the following equation for the proposed separation sensor:

Sep =
1

Aref

∫∫
S

1.0

1.0 + e−2k(χ−λ) dS ,

where χ = −~V · ~Vfreestream,

(1)

In the this equation, k and λ are free parameters, where k determines the sharpness of the transition, and λ is an
additional parameter that can be used to shift the smoothing function to the left or right. For our cell-centered solver,
the values for ~V are taken from the state variables at the cell center immediately adjacent to the wall, since the velocities
at the wall are zero when enforcing the no-slip condition. Both ~V and ~Vfreestream are normalized to a unit magnitude,
ensuring that the dot product is between −1 and 1. Since the integral in Eq. (1) amounts to an area, we normalize the
sensor value by the aircraft reference area. Smooth Heaviside functions for λ = −0.1, 0, 1.0 and k = 10 are shown
in Fig. 3. The last row of Fig. 2 shows the value of χ on the wing surface at M = 0.85. The effect of the smooth
Heaviside function is to smear out the sensor value around the separated flow region.

Angle (
o
)

S
e

n
s

o
r 

v
a

lu
e

0 30 60 90 120 150 180
0

0.5

1

=0.1

=0

=0.1

Figure 3: With k = 10, the majority of the smooth variation occurs over ±15◦.

To demonstrate the utility of the separation sensor-based method for predicting buffet onset, we compute the buffet
boundary for the baseline CRM configuration [21] at a flight altitude of 37,000 ft over a range of Mach numbers
between 0.8 and 0.9 using the ∆α = 0.1 method, as well as with the separation sensor criterion. The separation
criterion requires the specification of a cutoff value. For this work, we have determined this value by comparing the
resulting buffet boundary with the ∆α = 0.1 method. The results for Sep = 4.0% show the best agreement, and the
overall shape of the buffet boundary is well matched, as shown Fig. 4.

Some of the discrepancy between the two methods can be explained by analyzing the lift curve slopes for the
baseline configuration and one of the optimized configurations presented later in Section V. The “linear” part of the
lift curve slope is taken from the first two analysis points at the lowest CL values. Figure 5a graphically shows the
∆α = 0.1 method for the baseline configuration. The lift curves are roughly linear, but there is a significant increase
in the lift curve slope over the intermediate range of Mach numbers, which flattens the actual lift curve relative to
the linear approximation. Therefore, at the higher lift coefficients, the buffet onset is slightly over-predicted when
using the ∆α = 0.1 method, since a much larger reduction in lift curve slope is necessary to intersect with the linear
approximation. For one of the optimized configurations, shown in Case 5b, the effect is much more pronounced. At
the higher Mach numbers (> 0.88), the slope for the lift curve slope is much closer to the buffet onset location and
this effect is not seen. The result is an under-prediction of the buffet onset when compared to the separation based
method. The differences in Fig. 4 are consistent with this effect. Additionally, the separation based approach varies
more smoothly with respect to Mach number, which is beneficial for gradient-based design optimization.

Figure 6 demonstrates graphically how the separation sensor approach is used to predict the buffet onset boundary.
For each α sweep at a fixed Mach number, the intersection of the separation value with the specified cutoff value
determines the boundary. With nearly 100% fully attached flow on the wing upper surface, the sensor value is close
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Mach

C
L

0.8 0.82 0.84 0.86 0.88 0.9
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

=0.1 method

Separation ( =0.1, 4% cutoff)

Figure 4: Comparison between the ∆α = 0.1 method and the proposed separation sensor method.
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0.7

0.8

0.9
Mach: 0.805 0.82 0.835 0.85 0.865 0.88 0.895

2
o

Baseline

(a) Small variation in lift curve slopes for baseline configuration

C
L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Mach: 0.805 0.82 0.835 0.85 0.865 0.88 0.895

2
o

Case 5.1

(b) Highly variable lift curve slopes for Case 5.1 optimized configuration,
especially over the Mach number range from 0.82 to 0.86.

Figure 5: Lift curves for baseline and one optimized configuration for Mach 0.8–0.9. Successive lift curves are offset
by 0.5°for visualization purposes.

to zero and then rapidly increases as shock-induced flow separation becomes more severe. The high slope of the
separation sensor curve means the predicted CL value for buffet is not particularly sensitive to the selected cutoff
value.

The CRM configuration has been extensively tested in various wind tunnels around the world. The results of
one such dynamic test are described by Balakrishna and Acheson [22]. In this experiment, the CRM wind tunnel
model was instrumented with a wing-root strain gauge. High-speed measurements of the strain gauge allows for the
determination of the buffet onset boundary directly by measuring the increase in signal amplitude caused the by the
separated flow. Specifically, a buffet coefficient CB is determined based on the area of the wing-root strain spectrum,
normalized by the value at zero degrees angle of attack. It is assumed that there is no significant amount of separated
flow at zero angle of attack, and that any increase in the value CB as the angle of attack increases can be attributed to
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Figure 6: Separation sensor value for α sweeps at a range of Mach numbers. The cutoff value indicates the estimated
buffet boundary.

the development of flow separation. Thus, the buffet coefficient is defined as [22],

CB (α) =

∫ fmax

0
Sα (f) df∫ fmax

0
S0 (f) df

(2)

Figure 7, reproduced from Figure 4 Balakrishna and Acheson [22], shows the evolution of CB for two Mach
numbers: a high subsonic Mach number (0.70) and a transonic Mach number (0.85). We overlaid lines at the α values
that yield the separation sensor value of 4% using our method, with λ = −0.1. We can see that the separation sensor
method correlates well with the increase of CB . This indicates we are correctly predicting the buffet onset on the
wing.

Figure 8 shows the surface distribution of Cp and χ for the two flow conditions. Due to the differing freestream
Mach number, the types of separation and the corresponding separation locations are quite different. For theM = 0.70
case, there is a separation bubble just aft of the small leading edge sonic region, while for the M = 0.85 case, the
separated flow appears near the mid chord position at the foot of a strong normal shock. While more experimental
comparison is required, it appears that the separation sensor does adequately predict buffet onset for both high subsonic
and transonic flow conditions.

IV. Aerodynamic Shape Optimization with Buffet Onset
We now demonstrate the need for considering buffet onset criteria, and the effectiveness of the proposed approach

for transonic aerodynamic shape optimization by solving a series of aerodynamic design optimization problems based
on the AIAA ADODG Case 5 benchmark [23].

1. Baseline Geometry
The baseline geometry defined in the ADODG Case 5 is taken directly from the 4th Drag Prediction Workshop “Wing-
Body-Tail iH = 0” configuration [24]. The main reference parameters for this baseline configuration are listed in
Table 1.

2. Computational Grids
We generated a sequence of four CFD meshes for the CRM wing-body-tail configuration using the meshing software
ICEMCFD. There are two grid families: the “1 series” and the “0.5 series”. Each “0.5 series” mesh has approximately
2.5 times more cells than the corresponding coarser “1 series” mesh below it, and has approximately 3.3 times fewer
cells than the next finer “1 series” mesh above it. The two coarsest grids—L2 and L1.5—are used for optimization,
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Figure 7: Buffet coefficient (CB) obtained from wind tunnel data [22]. Vertical lines are the separation sensor predicted
buffet onset location.

Quantity Value

Reference area 594 720.0 in2

Reference chord 275.8 in
Moment reference (1325.90 , 0, 177.95) in
Reynolds number (M = 0.85) 43× 106

Table 1: Reference quantities for CRM full configuration [24].

while the two finest grids—L1 and L0.5—are used only for post-optimization verification purposes. The mesh char-
acteristics are summarized in Table 2. A comparison of the surface mesh resolution of the four meshes is shown in
Fig. 9. Grid convergence studies for the baseline mesh and all optimized configurations are presented in Section 3.

Mesh level Chordwise Spanwise y+
max Total Baseline

Cells Cells Cells CD (counts)

L0.5 224 144 ∼ 0.5 14 233 600 231.15
L1 168 108 ∼ 0.7 5 921 536 234.87
L1.5 112 72 ∼ 1.1 1 779 200 249.47
L2 84 54 ∼ 1.7 740 192 269.76

Table 2: Mesh characteristics and trimmed drag coefficient for baseline configuration.

3. Optimization Problem Statement
A sequence of seven design optimizations are solved to study the aerodynamic shape optimization of the ADODG full
CRM configuration, and to demonstrate the effectiveness of the proposed approach in satisfying buffet requirements.
These cases—numbered 5.1 through 5.7—are summarized in Table 3. Only Cases 5.1 and 5.2 are currently specified
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Figure 8: Cp and χ surface distribution for the two experimental buffet onset conditions. In both cases, the separation
(red) appears behind the shock (orange).

Figure 9: Spatial resolution for each mesh size.

by the ADODG [23]. We added the other cases (Cases 5.3 through 5.7) to further study the effects of including
buffet onset conditions on the optimized geometries. The objective of all optimizations (except for Case 5.7, which
will be discussed separately) is to reduce the weighted drag coefficient at the N defined operating conditions. The
optimization problem statement can be written as:
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minimize
∑N
i=1WiCDi Quantity

with respect to Wing cross sectional shape 240
Wing twist 9
Angle of attack (αi) N
Tail rotation angle (ηi) N

subject to CLi
− C∗

Li
= 0.0 N

CMyi
= 0.0 N

tj ≥ tjCRM 750
Sepi ≤ 0.04 N

Only Cases 5.4, 5.5, and 5.7 use the separation constraint, where the constraint is applied only to the last two
operating conditions. In practice, the adjoint for CD is not evaluated for the buffet onset conditions, and conversely
the separation sensor adjoint is not evaluated for the normal operating conditions. This results in a total of three adjoint
solutions required for each flight condition, which is desirable from a load balancing perspective. The constraints that
the wing thickness may not be less than the baseline configuration at any location is particularly restrictive. Essentially,
only changes in the wing camber line are available to the optimizer, since it highly desirable in transonic flow to make
the wing as thin as possible [25]. The thickness constraints ensure that the wing does not become excessively thin,
since this would result in a significant structural weight increase.

The ADODG specification for Case 5 requires the parameterization not to modify the planform, and any shape
modification must be made only in the vertical direction. Additionally, twist rotation is permitted for the wing, as
well as a solid-body rotation of the horizontal tail for trimming the aircraft. We use the FFD approach described in
Section II. The FFD volume and the associated geometric design variables are shown in Fig. 10.

Figure 10: Shape and twist modification are permitted for the wing, and the horizontal tail can rotate.

V. Results
1. Multilevel Approach
To reduce the overall computational cost of performing the optimizations, we employ the multilevel optimization
approach described previously by the authors [10, 25]. Optimizations are first carried out on the coarsest mesh (L2),
and the resulting optimum design becomes the starting design for the next finner mesh (L1.5), and so on. In this work,
only the first two grid levels are used for optimization. Because of the lower cost of optimizing on the coarse grid, we
can afford to do more iterations on this grid. For this approach to be effective, the coarse grid must capture the main
characteristics of the flow.

A comparison between the baseline and optimized designs for Case 5.1 is shown in Fig. 11. The first row shows
the baseline and optimized designs using the L2 grid. The second row shows the L1 optimization using the L2
optimized shape as the starting point. Color-coded slices of the airfoil shapes and the corresponding Cp distributions
are shown for four spanwise locations at the bottom of the figure. We see that the coarse optimization (using the L2
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Table 3: Operating conditions for each optimization. Red diamonds denote separation constrained points. Operating
conditions for Case 5.7 are determined by the optimization process itself. Zero weight values mean the flight condition
is considered only in the constraints.

Case Point Weights (Ti) Mach CL Re M–CL plot

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

5.1 1 1 0.85 0.500 43.00× 106

5.2 1 1
3 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1
3 0.85 0.650 43.00× 106

3 1
3 0.89 0.456 45.00× 106

5.3 1 2
3 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1
6 0.85 0.650 43.00× 106

3 1
6 0.89 0.456 45.00× 106

5.4 1 1 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 0 0.85 0.650 43.00× 106

3 0 0.89 0.456 45.00× 106

5.5 1 1
5 0.845 0.490 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.72 1
5 0.845 0.445 42.75× 106

3 1
5 0.845 0.408 42.75× 106

4 1
5 0.835 0.467 42.24× 106

5 1
5 0.855 0.418 43.25× 106

6 0 0.85 0.650 43.00× 106

7 0 0.89 0.456 45.00× 106

5.6 1 1
5 0.845 0.490 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1
5 0.845 0.445 42.75× 106

3 1
5 0.845 0.408 42.75× 106

4 1
5 0.835 0.467 42.24× 106

5 1
5 0.855 0.418 43.25× 106

5.7 1 1
5 0.845 0.520 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.72 1
5 0.845 0.475 42.75× 106

3 1
5 0.845 0.438 42.75× 106

4 1
5 0.835 0.497 42.24× 106

5 1
5 0.855 0.448 43.25× 106

6 0 0.85 0.690 43.00× 106

7 0 0.89 0.469 45.00× 106

grid) successfully eliminates the shock on the upper wing surface, resulting in parallel isobars. Even without further
optimization, almost all of the drag improvement predicted by the coarse grid is realized on the fine grid. Comparing
the orange and black lines on the Cp distributions, we see that the only significant difference is the appearance of a
weak shock on the refined grid. The fine optimization further improves the design, eliminating this shock and lowering
the drag even further. This behavior is consistent with our previous results, where we used three uniformly-refined
grid levels [10]. We employ this multilevel approach for all the optimizations in this paper.
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Figure 11: The coarse-grid optimum is a good starting point for the fine-grid optimization.

2. Optimization Results
In this section we present the main results for each of the CRM aerodynamic shape optimizations. Figure 12 shows
the evolution of the SNOPT merit function and optimality. The merit function is used in the augmented Lagrangian
formulation, and the optimality is a measure of how well the Karush–Kuhn–Tucker (KKT) conditions are satisfied [16].

The optimality tolerance was set to 1.0 × 10−5, which is achieved for most optimizations. The L2 optimizations
are limited to 150 iterations, while the L1.5 optimization are limited to a further 50 iterations. Case 5.7 uses a different
objective function and is a maximization instead of a minimization. Generally, the finer optimizations with the L1.5
mesh was able to achieve the same convergence tolerance as the coarse L2 mesh.

Figures 13 and 14 show a summary of the key features of the two ADODG optimizations (Cases 5.1 and 5.2). The
baseline configuration results are shown in red, while the optimized results are shown in blue. The planform view of
the wing and fuselage shows the Cp contours of the baseline geometry (left) and the optimized geometry (right) at the
nominal operating condition (M = 0.85, CL = 0.5). Just below the planform view, the front view also shows the Cp
contours and adds a visualization of the shock surface [26]. Below this, we plot the spanwise lift, twist, and thickness-
to-chord ratio (t/c) distributions. A reference elliptic lift distribution is shown in gray. The right side of the figure
displays the cross-sectional shapes and Cp distributions at the five spanwise locations indicated in the planform view.
Finally, the bottom right plot shows the drag divergence behavior for three lift coefficients: CL = (0.45, 0.50, 0.55).

Case 5.1 is similar to the wing-alone optimization previously presented by the authors [10]. The case is referred
to as “aerodynamic shape optimization without thickness reduction” in the reference. In that case, the wing-alone
configuration was optimized at the same Mach number and lift coefficient, but at much lower wind-tunnel Reynolds
number of 5×106. Otherwise, the two optimization optimizations are comparable. The previous work indicated that a
10.5 drag count reduction was possible for the CRM wing-alone configuration. This compares well with the 8.6 count
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Figure 12: Merit function and optimality evolution for each optimization case.

reduction we obtain in full wing-body-tail configuration studied herein. The cross-sectional plots of the airfoils at
various spanwise sections show how little the shape is modified to obtain the substantial change in performance. The
drag divergence curves highlight the single-point design nature of the optimized configuration. A drag dip is present
at the on-design condition, but the performance is worse at most other Mach numbers and lift coefficients.

Case 5.2 adds two additional equally-weighted operating conditions near the buffet onset boundary. Unlike
Case 5.1, for which we obtain a shock-free wing, Case 5.2 results in double shocks at the nominal operating condition.
In this case, the drag at the nominal operating condition actually increased by 2.8 counts. The drag divergence curves
indicate a significant drag penalty across the lower Mach numbers but it does have a much higher drag divergence
Mach number than the baseline design.

While drag coefficient divergence curves yield useful insights into optimized designs, it is particularly instructive
to examine the 2D analogue in the form ofML/D contours. In the context of transonic transport wing design,ML/D
is a better measure of performance, since it includes the benefit that flying faster has on the overall aircraft efficiency.
This overall performance can be approximated by the Breguet range equation:

R =
Ma

c

L

D
ln

(
W1

W2

)
(3)

where L/D is the lift-to-drag ratio, a is the speed of sound, c is the thrust-specific fuel consumption, and W1 and W2

are the initial and final cruise weights, respectively. For a purely aerodynamic optimization, only L and D vary if we
assume a constant c and weight ratio W1/W2, so we are left with ML/D.

The detailed procedure for generating contour plots is detailed in Appendix A.The contour plots are generated us-
ing the L1.5 grid, and we ignore the additional drag associated with the nacelle, pylon and vertical stabilizer. However,
the estimated additional drag from these components happens to be about the same as the spurious drag for this mesh,
and thus the resulting ML/D values are realistic. Contour plots for all seven optimizations including the baseline
design are shown in Fig. 15.

The contours in each figure extend up to the buffet onset prediction curve shown in red. The orange curve shows
the buffet onset prediction using the ∆α = 0.1 method described in Section III. There are several regions where
the orange curves are missing data, which is due to the failure of finding an intersection between the two lift curves.
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Figure 13: High performance is achieved for the single point design at the nominal operating condition.

Overall, the separation sensor method continues to compare well with the ∆α = 0.1 method despite the large changes
in the buffet onset boundary.

The blue curve represents the 1.3 g to buffet boundary and is computed directly from the red buffet onset curve.
Only operating conditions below the 1.3 g curve can be considered for normal operation. The absolute maximum
ML/D value for each configuration is shown in pink. Two specific contours for the optimization configuration (one
for the baseline configuration) are highlighted: the contour of 99% (ML/D)max for the particular design is shown in
blue and the contour of 99% (ML/D)max of the baseline configuration is shown in red. The motivation for plotting
these 99% contours is that airliners typically fly between the Mach number yielding maximum range (approximated
by the maximum ML/D value in the figures) and a higher Mach number that yields a 1% fuel-burn penalty, but also
decreases in the flight time. The area enclosed by both of these contours is used to quantify the design’s robustness
in these figures. The areas are scaled by a factor of 1002 such that the area of the rectangle measuring 0.01 in M and
0.01 in CL has an area of 1.0.

The design operating conditions listed in Table 3 are shown as diamonds. The operating conditions considered for
the objective function are shown in black, while the buffet onset constraint conditions are shown in red.

There are two additional regions that are highlighted in black and orange. We refer to these as integration regions.
They are constructed as follows: The Mach range is from 0.83 to 0.86, which corresponds to the typical range of
operating Mach numbers for an aircraft like the CRM. The upper line corresponds to the 1.3 g buffet boundary, which is
equivalent to specifying the maximum altitude the aircraft may fly for a particular weight. The bottom line corresponds
to the reduced CL for a 4 000 ft decrease in altitude. To put it in another way, the integration region contains all
operating conditions within 4 000 ft of the buffet-constrained ceiling and at all normal operating Mach numbers. It
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Figure 14: Performance is sacrificed across a large range of Mach numbers to obtain a small amount of improvement
at the highest Mach numbers.

is likely that the aircraft spends the vast majority of cruising flight inside this region. The black integration region
corresponds to the baseline design, while the orange regions are adjusted to reflected the actual 1.3 g buffet onset
boundary for each design. Additionally, the upper edge of the black region gives an indication of how the buffet onset
boundary has changed for each design relative to the baseline configuration for the specific Mach range of integration.

Figure 16 displays a different visualization of the data already shown in Fig. 15. Here, we plot the percentage
change of each design relative to the baseline configuration. Note that the plot region is limited to flight conditions
below the buffet boundary corresponding to each design. The color of the boundary indicates which is one active: The
black boundary indicates the baseline buffet boundary is active, meaning the optimized design boundary is higher than
the baseline. The orange boundary means the optimized boundary is active, and thus lower than the baseline buffet
boundary. The integration region for each configuration is also shown in orange.

The contour plots give a much more complete understanding of the optimized designs. Unsurprisingly, the single
point optimization—Case 5.1—was able to produce the highest ML/D value, which is almost exactly matched to
the design operating condition. However, without a way to constrain the buffet onset boundary, the (ML/D)max is
now above the 1.3 g boundary, which means that this high performance point cannot be achieved in practice because
it falls outside the normal flight envelope. The 99% (ML/D)max contour (blue) is small, indicating a highly localized
point-design. Despite the highest ML/D value, the average ML/D in its own integration region (orange) is 4.6%
worse than the baseline design.

For Case 5.2, the addition of operating conditions at the edge of the buffet onset envelope has the effect of sub-
stantially improving the buffet boundary over the entire range of Mach numbers. This case resulted in the most robust
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buffet onset behavior of all cases. However, the (ML/D)max has barely improved over the baseline design (17.18 vs.
17.13). Worse, as in Case 5.1, the high performance region lies almost entirely outside the 1.3 g buffet onset boundary,
rendering the high performance region unattainable. Even for this case, the ML/D average in the integration region
is slightly worse (−0.5%) than the baseline design. Note that the increased performance afforded by the higher buffet
boundary is only possible if the baseline aircraft is buffet limited in altitude over the specific range of Mach numbers,
as opposed to thrust limited. If the aircraft were thrust limited over the integration range, the obtainable performance
would be the value obtained by integration of the black integration region.

In Case 5.3, we attempt to improve upon Case 5.2 by reducing the weighting factor for the near-buffet conditions.
For this case, the nominal operating condition has weight of 2/3, while the remaining two points have weights of 1/6
each. The adjusted weightings yield a much more useful design. This is the first case where a significant portion of
99% (ML/D)max contour falls within the integration region. Additionally, the design is robust, as evidenced by the
larger area enclosed by the blue contour when compared to the baseline design. As with the two previous cases, the
increased performance is only possible if the aircraft is able to operate at higher altitudes. The other issue with this
case is that the specific weightings were arbitrarily picked. These particular weights yielded acceptable results, but
there is no guarantee these weight values would work well for another configuration or optimization problem.

Case 5.4 is the first optimization to use the separation sensor directly as an optimization constraint. Case 5.4
retains the same operating conditions as Cases 5.2 and 5.3, but instead of having the drag from the flight conditions
near the buffet boundary contribute to the drag objective function, it uses the buffet onset flight conditions to compute
the separation sensor and constrain its value. Note that there is a slight discrepancy between the operating conditions
(red diamonds) and the buffet onset boundary itself. The reason is that the buffet onset conditions are analyzed using
the JST scalar dissipation scheme, which results in a solution with more dissipation. The scalar scheme provides the
increased robustness necessary for optimization, which is unnecessary for the contour plot evaluations. The more
dissipative scalar scheme slightly under-predicts the area of separated flow, and thus the buffet boundary is lower
when analyzed with the matrix scheme for the contour plot. Overall, the performance of this design is similar to that
of the single-point optimization (Case 5.1). Most of the high performance region lies outside the integration region.
However, the performance reduction is not as pronounced as with Case 5.1, with a 1.6% performance reduction in the
original integration region and almost zero for the on-design integration region. However, there is a small improvement
in the buffet onset boundary.

After analyzing the results from Cases 5.1–5.4, we noticed that the nominal design point was always located
towards the upper side or even completely outside the integration region. It is perhaps no surprise that all optimization
discussed thus far failed to improve the performance in the baseline integration region. To address this issue, we
formulated a multipoint optimization, Case 5.5. Previous optimizations performed by the authors on the CRM wing
along configuration have shown that five operating conditions arranged as a cross in M–CL space results is highly
robust designs [25]. Since our goal is to improve the performance in the original integration region, we distribute five
operating conditions as follows. The nominal Mach number is reduced to 0.845 for the first three operating conditions.
The first point lies on the 1.3 g buffet onset boundary, while the second two points are at CL values corresponding to
2 000 and 4 000 ft below. The two remaining points are 2 000 ft lower than the buffet onset boundary at ±0.01 Mach
number. The buffet onset conditions are taken at M = 0.85, CL = 0.65 and M = 0.89, CL = 0.41. The later
point is taken from the baseline design buffet onset boundary. The overall performance of this case is superior to
all previously discussed cases. The performance in the baseline integration region has now increased by 1.2%, the
performance of the updated integration region increase by 2.0%. The design is very robust, as shown by area inside
the 99% (ML/D)max contour. Further, the maximum performance point is located inside the operating envelope.

Next we developed Case 5.6, which is designed to investigate the effect of removing the buffet onset conditions
present in Case 5.5. We wish to answer the question: Is a multipoint optimization near the design operating condition
sufficient to ensure a robust buffet onset envelope? Unsurprisingly, without the buffet onset constraints, the 1.3 g onset
boundary dropped slightly over the integration envelope, pushing the integration region into a lower performance
region. The average ML/D for the integration region is 16.88, only 0.6% higher than the baseline configuration. This
is much smaller than the 2.0% improvement obtained in Case 5.5.

For the last case, Case 5.7, we formulate a different design optimization problem. We wish to remove the require-
ment of specifying “design” lift coefficients and let the optimization itself determine the ideal on-design condition.
All cases presented thus far are lift-constrained drag minimizations with fixed operating conditions. The fixed operat-
ing conditions also include fixing the CL for the buffet onset locations. In the formulation of Case 5.7, we want the
optimization to adjust the single nominal operating condition directly. The remaining operating conditions are then
explicitly linked to this design CL. More specifically, the high CL buffet onset conditions must have 1.35 times the
lift of the nominal cruise Mach. The high Mach buffet case must have the same physical lift as the nominal operating
condition at M = 0.89. Finally, the remaining operating conditions move vertically in sync with the changing design
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CL. The modified optimization formulation is as follows:
maximize

∑N
i=1WiMiLi/Di Quantity

with respect to Wing cross sectional shape 240
Wing twist 9
Angle of attack (αi) N
Tail rotation angle (ηi) N
Design CL 1

subject to CLi
− C∗

Li
= 0.0 N

CMyi
= 0.0 N

tj ≥ tjCRM 750
Sepi ≤ 0.04 N

Note that operating conditions (diamonds) shown in Fig. 15 are the optimized values. The optimization increased
the nominal design CL from the initial value of 0.490 (the same value as used in Cases 5.5 and 5.6) and increased it
to 0.520, an increase of 0.03 in CL. This increase is only possible due to a corresponding increase in the buffet onset
boundary. The previous optimizations, especially Case 5.2, showed that there can be a significant penalty in cruise
drag for a higher buffet boundary. For Case 5.7, we have given the optimizer sufficient information to make this
trade-off optimal. This results in a slightly higher average performance than Case 5.5 (17.13 vs. 17.11), as well as a
higher buffet onset boundary. The design is also highly robust, exhibiting the largest 99% (ML/D)max contour of all
cases.

Further insight into the differences between the optimized designs can be inferred from Fig. 16. It is particularly
interesting to see that there is a region between M = 0.86 and M = 0.88 at low CL that is universally worse on all
optimized designs. This is particularly noticeable on the single-point type designs (Cases 5.1 and 5.4). This effect
is the least evident in Case 5.5, where there is an improvement over almost the entire contour region. Compared to
Case 5.7, the higher buffet onset performance appears to be correlated with the reduced low CL performance. The
performance reduction at lower lift coefficients in Case 5.7 is limited to less than 2%, which is acceptable given the
performance increase at the higher lift coefficients.

3. Grid Convergence
We perform grid convergence studies for the baseline geometry as well as all the optimized configurations. For the grid
convergence study, we take the optimized geometry from the L1.5 mesh and apply it to the each of the four meshes
in sequence. The drag convergence for each mesh configuration is shown in Fig. 17a. The drag coefficient, when
plotted against the grid factor

(
N

−2/3
cells

)
is approximately linear, indicating second order convergence. However, the

finest analyzed mesh (L0.5) does not fall directly on the line, indicating a more highly resolved mesh is necessary to
determine a grid-converged value. However, for aerodynamic shape optimization, we are generally more concerned
about the change in drag coefficient resulting from a design change as opposed to the grid converged value. Figure 17b
shows the change in drag coefficient for each configuration on each mesh level. There is remarkably little variation
across each mesh level. This can be attributed to the fact that the spurious drag remains roughly constant for a given
mesh, independent of the design modifications. The maximum variation between the improvement on the L1.5 mesh—
the finest mesh for which optimization was performed—and the L0.5 mesh is 0.63 counts (in Case 5.6). Given the
much larger computational cost of performing optimization with the L1 or L0.5 meshes, and the small difference
in predicted drag improvement when using these finer meshes, using the L1.5 mesh for our optimizations is a good
choice.

4. Computational Cost
Multipoint three-dimensional RANS-based aerodynamic shape optimizations are costly from a computational per-
spective, and we make every effort to reduce the total cost of the optimizations. Table 4 lists the total CPU cost, in
processor hours, required to generate the results presented in this paper. All the computations were performed on
nodes with two 4-core E5540 CPUs running at 2.53GHz with 16 GB of RAM per node. The nodes are connected
with QDR InfiniBand. All L2 and L1.5 meshes were run on 64 cores, while the L1 and L0.5 meshes for the grid
convergence study used 128 cores.

Approximately 63% of the total computational time was expended in the optimizations, and the remainder of
the time was used for post-processing. The ML/D contour plots are particularly costly, since each plot requires
approximately 400–500 individual CFD evaluations.
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Table 4: Computational cost breakdown in CPU hours.

Case L2 optimization L1.5 optimization Contour Grid convergence Total

Baseline – – 1 346 817 2 162
5.1 289 611 1 270 1 009 3 179
5.2 2 378 2 394 1 795 1 121 7 688
5.3 1 290 2 505 1 750 910 6 457
5.4 1 507 2 602 1 384 1 024 6 518
5.5 2,090 3 506 1 392 830 7 369
5.6 1,111 1 803 1 147 610 4 673
5.7 4,136 6 623 1 800 696 13 255

Total 12 802 19 567 11 886 7 019 51 303

VI. Conclusions
A new formulation for the prediction of buffet onset is presented. The method uses the integration of a separation

sensor along with a cut-off value to estimate when buffet first occurs, and can be directly evaluated of with only one
CFD solution. The method is shown to compare well with the ∆α = 0.1 method for the CRM configuration, as well as
for various optimized designs. A comparison with root bending moment data obtained from wind tunnel experiments
also shows good predictive capabilities. The separation sensor method is particularly well suited for formulating a
constraint in gradient-based optimization, as it is easy to implement in a discrete adjoint optimization framework, and
the resulting function (although highly nonlinear) is smooth.

To demonstrate the effectiveness of the propose approach, we presented a series of seven optimizations of the CRM
wing-body-tail configuration. All optimizations are performed with respect to 216 shape variables, 9 twist variables,
and tail rotation angle subject to lift, pitching moment, volume, thickness, and separation constraints. A two-level
sequential optimization approach is employed to reduce the overall computational cost required.

At the nominal operating condition of M = 0.85, CL = 0.5, the single-point optimization (Case 5.1) reduced the
drag coefficient from 249.5 counts to 240.9 counts, a reduction of 3.4%. For a more complete comparison between
the optimized designs, we plotted contours of ML/D in the M–CL space. This is a highly visual and intuitive way
of comparing the performance and robustness of optimized configurations.

In Case 5.2, we added two operating conditions near buffet onset conditions. The performance at these points
increased substantially, and this design produced a high buffet onset boundary. However, the overall performance as
measured by a typical operating envelope was lower than the baseline. Weighting the nominal cruise point (Case 5.3)
more than the off-design condition improves the performance, but requires knowledge of how to choose the appropriate
weights, which may be case dependent.

In Case 5.4, we introduced the use of the separation sensor for controlling the buffet onset boundary directly. While
this is effective, the overall performance of the optimized design was lacking, and the performance was lower than the
weighted points approach in Case 5.3.

The remaining cases used five main operating conditions to produce more robust designs. Case 5.5 showed per-
formance improvement over nearly the entire transonic range, while simultaneously improving part of the buffet onset
boundary. Case 5.6 removed the buffet onset conditions, demonstrating that a multipoint optimization with all condi-
tions near the on-design condition is not sufficient, as a the buffet onset boundary encroached in the cruise performance
region, reducing the average usable improvement from 2.0% for Case 5.5 to only 0.6%. Finally, in Case 5.7, we per-
formed an ML/D maximization with automatic determination of the operating CL, which improved the average
performance over Case 5.5, while pushing the buffet onset boundary beyond the operational envelope.
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Figure 15: Contours of ML/D for the baseline and each optimized configuration.
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Figure 16: Percent difference in ML/D between the baseline design and the optimized configuration.
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Figure 17: Grid convergence study for baseline and all optimized configurations.
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A. Contour Plot Generation
The generation of the contour plots shown in Fig. 15 warrants further explanation. These contours are not simple α sweeps, as

it is necessary to determine the tail angle that gives CM = 0 at each point. Once flight condition in the contour is trimmed, the trim
drag penalty is included in the computed drag coefficient. Naively performing a secant search to determine the tail angle at each
point would require at least three CFD solutions. Since each contour plot requires approximately 400 trim-converged solutions, we
seek an alternative approach to reduce the computational cost as much as possible. One way to achieve this is to reuse previously
evaluated points to continually update the 2×2 Jacobian of the residual, F = [CL−C∗L, CM ], with respect to [α, η], where α is the
angle of attack, and η is the tail rotation angle. With an accurate Jacobian, we can use Newton’s method to simultaneous determine
the new α and η required to produce a trimmed solution at a new CL. The full procedure is listed in Algorithm 2. An auxiliary
function for computing the residual for a given (α, η) is given in Algorithm 1. In practice, only one sub iteration is necessary for
most points, since the CL and CM functions are not highly nonlinear functions of α and η over most of contour region. Generally,
additional sub-iterations are only necessary as buffet is approached, due to the more rapid variation in the lift curve slope. For
example, the contour for the baseline configuration required 430 function evaluations to produce 356 converged trim-CL solutions,
an increase of only 20%. Note that we only check for the convergence ofCM , since it is not critical that the lift coefficients precisely
match the specified target. Once all the raw data is generated, CL, CD , CM and separation sensor values are interpolated using an
Akima spline [27] to produce a regular M–CL grid. This regular grid is then used for further computations, such as the difference
plots shown in Fig. 16, the drag divergence curves in Figs. 13 and 14, as well as the for the extraction of particular contours and the
computation of the average performance over specific integration regions.

Algorithm 1 Trim-CL function
1: function F (x, C∗L)
2: Set α = x[0] and η = x[1]
3: Solve CFD problem
4: return F = [CL − C∗L, CM ]T

5: end function
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Algorithm 2 Algorithm to compute trimmed-CL contours
1: Given: CLmin , [M1, ...,MN ], ∆C∗L, α0, η0, ∆α, ∆η, Sepmax, maxSubIter, tol
2: Set M = M1

3: F0 = F ([α0, η0]T , CLmin )

4: F1 = F ([α0 + ∆α, η0]T , CLmin )

5: F2 = F ([α0, η0 + ∆η]T , CLmin )

6: J =
[
F1−F0

∆α
F2−F0

∆η

]
. Initial finite-difference Jacobian approximation

7: Jsave = J

8: xsave = [α0, η0]T

9: for k ← 1, N do . Loop over N sequential Mach numbers
10: set M = Mk

11: J = Jsave . Restore Jacobian for lowest CL
12: xn = xsave . Restore x for lowest CL
13: ∆CL = ∆C∗L . Restore target CL increment
14: C∗L = CLmin . Set the target CL to the lowest desired CL
15: Fn = F (xn, C

∗
L) . Evaluate current point

16: continue = True
17: iα = 0

18: while continue do . α increment loop
19: for j ← 1,maxSubIter do . Sub-iteration loop
20: dx = J−1Fn . Newton’s method for update
21: xn+1 = xn − dx . New (α, η) solution
22: Fn+1 = F (xn+1, C

∗
L) . Solve CFD for the new x

23: dF = Fn+1 − Fn
24: J = J + dF−Jdx

‖dx‖2 dxT . Update Jacobian using Broyden’s method
25: xn = xn+1 . Set xn for next sub iteration
26: if iα = 0 then . Store J and xn+1 for the next Mach number on the lowest CL
27: Jsave = J

28: xsave = xn
29: end if
30: Evaluate separation sensor, Sep
31: if Sep > 0.01 then
32: ∆CL = 0.01 . Reduce the target ∆CL as buffet is approached
33: end if
34: if abs(Fn[1]) < tol or j = maxSubIter then . Only check convergence for moment
35: C∗L = C∗L + ∆CL . Update the next target CL
36: Fn = [Fn+1[0]− C∗L, Fn+1[1] . Set the function value for the next CL
37: Break sub-iteration loop
38: else
39: Fn = Fn+1 . Continue to refine the current target CL
40: end if
41: end for
42: iα = iα + 1

43: if Sep > Sepmax then
44: continue=False . Reached buffet onset, so proceed to next Mach number
45: end if
46: end while
47: end for
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