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Data from high fidelity computational simulations and experimental measurements is
used to quantify errors in the functional form of turbulence closure models. A Bayesian
formalism is adopted to infer a full-field of discrepancy that provides otherwise inaccessible
modeling information. The utility of the approach is demonstrated by applying it to a
number of problems including channel flow, shock-boundary layer interactions, and flows
with curvature and separation. In all these cases, the posterior model correlates well with
the data. Furthermore, it is shown that even if limited data (such as surface pressures)
is used, the accuracy of the inferred solution is improved over the entire computational
domain. By directly addressing the connection between physical data and model discrep-
ancies, the field inversion approach enhances the value of computational and experimental
data for model improvement. Based on the results, it could be argued that some of the
criticism of eddy viscosity models that is usually attributed to the isotropic stress-strain
relationship is partially a result of poor functional forms within the model rather than the
limiting nature of the Boussinesq assumption itself. Models should rather be assessed by
evaluating the type and variability of corrections that will be required in a diverse set of
problems. The information from the inversion procedure can be used by the modeler as a
guiding tool to design more accurate model forms, or serve as input to machine learning
algorithms to directly replace deficient modeling terms.

I. Introduction

Near-wall turbulence modeling in both a RANS and hybrid RANS-LES context is recognized to be the
pacing item in applied computational fluid dynamics.1 Despite their widespread use, near-wall turbulence
models lack accuracy in a number of flows, especially those involving pressure gradients, separation, curva-
ture, etc. While there are several encouraging recent efforts exploring advanced second,2 third3 and even
fourth4 moment closures for complex flows, the predictive capability of turbulence models has not improved
significantly over the past two decades.

As part of a NASA-funded initiative, the authors are engaged in a broad program of turbulence mod-
eling5–9 with a focus on the innovative use of data to improve closure models. Since RANS models involve
empiricism, it can be well-argued that these models have always been data-driven. At the same time,
tremendous advances in computing power and measurement resolution have provided datasets containing
complete information in problems of reduced scope or partial information in regimes of interest. Despite the
availability of such high quality DNS, LES and PIV data, the improvement in closure models has not been
significant.

The key impediment to improving closure models from higher fidelity data is the issue of model discrep-
ancy. The role of model discrepancy can be illustrated by the example of a typical turbulence closure model.
Since turbulence models are formulated to provide first and second moments, secondary variables such as the
dissipation rate typically assume different values in closure models compared to their values in the real-world
or in higher-fidelity simulations. Thus, approaches that attempt to extract a priori information from DNS
may not be very useful in a predictive setting, since the extracted information will be inconsistent with
the information processed by the model. Further, even if individual terms in the closure equations
are modeled accurately, small discrepancies can lead to poor results. For instance, Poroseva and Murman10

observed that even if some terms in a second moment closure are extracted directly from DNS, the overall
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prediction was not satisfactory. It is thus the balance between every term in the model equation that is
important. To obtain useful data-driven models, one should pursue methods that produce information
within the context of the model.

At this stage, it would be convenient to categorize modeling errors into those resulting from a) the
model structure (such as the choice of an algebraic Reynolds stress model or k − ε model), b) the chosen
functional forms within the model structure, and c) parameters in the chosen functional form. Much of
the data-driven approaches that have been applied in turbulence modeling have involved the calibration of
a set of model parameters. Yarlanki et al.,11 Kato and Obayashi,12 and Edeling et al.13 apply modern
data-assimilation techniques to infer model parameters. These techniques provide insight into the variability
of model outputs, but are limited in scope since the functional form of the model is frozen, thus restricting
the scope and generality of the calibration. Other attempts have approached the problem from the viewpoint
of characterizing structural errors. Dow and Wang14 infer the error in the coefficient of the eddy viscosity
relationship by assuming it to be a Gaussian random field. Cheung et al.15 employ Bayesian model averaging
to calibrate turbulence models. Emory et al.16 inject realizable perturbations to the Reynolds stresses
computed by eddy viscosity models to obtain uncertainty bounds on the predictions. Ling and Templeton17

employ machine learning techniques directly on high and low-fidelity data to identify regions in which high
turbulence modeling uncertainty may be present.

In this work, a more comprehensive approach towards extracting modeling information from data is
pursued, with the goal of ultimately improving our qualitative and quantitative understanding of model
errors. In contrast to inferring calibration parameters, the functional form of the model discrepancy is
targeted. This information can be used by the modeler as a guiding tool to design parametric model forms,
or serve as input to machine learning algorithms to supplement models.5,7, 9

The rest of the paper is organized as follows: Section II introduces the inversion framework and method-
ology for functional error and uncertainty quantification and sections III – VI present the application of the
inversion framework to four different turbulence modeling scenarios. The summary and future perspectives
are provided in section VII.

II. Methodology

The proposed method can be adapted for near-wall modeling in LES, or for improving closures in general.
Our focus in this paper is on a subset of RANS-based turbulence models. The examples are intended to
demonstrate how useful modeling information can be derived from data. A key challenge is the accurate
formulation of source terms in the transport equations as they have to be modified to represent important
phenomena such as streamline curvature, relaminarization, etc. It is pertinent to recognize that modifying
the source terms does indeed change the balance of the entire model. Further, because of the underlying
transport equation, a change in the source term affects the solution domain in a non-local sense.

Without a loss of generality, the applications considered in this work involve steady flows, and thus
the inferred functional forms are of a spatial nature. A spatially-varying function β(x) is introduced as a
multiplier of a source term S(U(x)) a, typically the production term, the destruction term, or the balance
between the two terms. The multiplication by β(x) is equivalent to adding a new discrepancy term δ(x) =
(β(x) − 1)S(U(x)) in the transport equation. The multiplication to the source rather than a stand-alone
correction function, δ(x) presents several advantages to the inversion process as β(x) is, by definition, non-
dimensional and has a simple prior value of unity. This structure is also favorable to the conditioning of
the inverse problem. Note that the inference of β(x) is not physically restrictive. As an example, if β(x)
is a multiplier of the production term and the production is zero, the turbulence model is not relevant in
the region. Alternately, functions βp(x) and βd(x) can be used to multiply production and destruction,
respectively.

Once β(x) is introduced into the solution, the next step involves inference. Given data from a higher
fidelity simulation or experiment, β(x) can be estimated by solving an inverse problem as described in the
following section.

Solution of individual inverse problems can be considered to be a step towards the larger goal of improving
predictive capabilities using a data–driven framework.7 The inferred function β(x) can be mapped to β(η),
where η may include quantities such as mean velocity gradients, turbulent time scales, etc. By considering a
sufficiently diverse set of inverse problems, the form of β(η) can be generalized, for instance, using a machine

aU(x) are the Reynolds averaged flow variables
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learning algorithm. The inverse solution can, by itself, be used by a modeler to understand and correct for
deficiencies in existing models.

II.A. Bayesian Inversion

Inverse problems can be used to extract causal relationships from data. While inverse problem can be
formulated in a deterministic setting, we are also interested in characterizing the impact of uncertainties in
the data, model inadequacies and existing knowledge, on the inferred outputs. These statistical measures
can be used to quantify the confidence on the inferred model, and by extension, can be further propagated
in predictive modeling.

The Bayesian approach18 provides a formalism to quantify the posterior probability distribution q(β|d),
given a prior distribution (p(β)), data vector, d, and a likelihood function, h(d|β). The Bayes theorem
states that,

q(β|d) =
h(d|β)p(β)

c
, (1)

where c =

∫
h(d|β)p(β)dβ. In the current form, the solution to equation 1 is intractable using a sampling

based method because of the infinite dimensional nature of β. The problem is made finite-dimensional by
re-defining it such that value of β is inferred at every discrete location in the computational domain of the
RANS grid b. If β and h(d|β) are assumed to be Gaussian, the Maximum a posteriori (MAP) estimate19

can be computed by solving the following deterministic minimization problem:

βMAP = argmin
β

J(β) = argmin
β

1

2

[
FTC−1obsF + (β − βprior)

TC−1prior(β − βprior)
]
, (2)

where F is a vector with ith element,

fi = di,RANS − di,benchmark,

di is the ith data point. d can be any flow dependent quantity such as pressure, skin-friction, velocity etc.
Cobs and Cprior are the observational and the prior covariance matrices. βprior is the prior mean of the
parameters (and also corresponds to the base model).

Turbulence models constitute complex non-linear systems, and thus the posterior distribution cannot
be expected to be perfectly Gaussian. To promote tractability in the already high-dimensional setting, the
posterior covariance is approximated by linearizing the estimate about the MAP point. This leads to a
definition of the covariance in terms of the inverse of the Hessian of the objective function, J(β),

Cposterior =

[
d2J(β)

dβdβ

]−1∣∣∣∣∣
βMAP

. (3)

The posterior distribution β can be obtained by first performing a Cholesky decomposition of the formc

RTR = Cposterior, (4)

and generating realizations using

β = βMAP + RT s, (5)

where s is a vector of the same size as β and contains normally distributed random numbers with zero
mean and unit standard deviation. The realizations of the posterior β are used to construct the posterior
realizations of various flow quantities by solving the RANS equations for each realization of β. The prior
realizations are constructed in the similar manner using Cprior.

It is well-recognized that the posterior distribution is sensitive to the assumptions on the prior and
likelihood and the structure of the observational covariance matrix, Cobs. Some of the implications of these

bNote that is still a very high-dimensional problem.
cR is an upper triangular matrix
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assumptions are discussed in a companion work by Parish & Duraisamy.5 In the scope of the present work,
however, a Gaussian assumption is pursued as it is basic and results in reduced complexity.

As mentioned previously, the posterior distribution is approximated by the inverse of the Hessian (Eq.3).
In the examples presented in this work, computations of the exact Hessian are extremely expensive and
ill-conditioned as the dimensions scale linearly with the number of the unknowns (in this case, the number
of mesh points). Therefore, a Gauss-Newton approximation is employed, the details of which is presented in
Ref. 5.

II.B. Flow and Adjoint Solver

The unstructured compressible finite volume solver JOE20–22 is used to solve the RANS equations. A cell-
centered, second order accurate spatial discretization is employed, with a backward Euler implicit scheme
to march towards steady state. The inversion procedure requires gradients with respect to every grid point,
thus necessitating a discrete adjoint23 procedure. The partial derivatives required in the adjoint procedure
are computed efficiently using automatic differentiation via the ADOL-C framework.24

The following sections demonstrate the application of the inference in a number of turbulence modeling
situations.

III. Turbulent Channel Flow using k-ω

The first case to be considered is a fully developed planar turbulent channel flow. This canonical problem
has been heavily utilized to calibrate model parameters throughout the history of turbulence modeling,
although most models do not account for the variability due to Reynolds number. The question of choosing
the right combination of length and time scales is still an outstanding one in modeling. Rich Direct Numerical
Simulation (DNS) datasets25–27 exist for such flows. These datasets are, in our opinion, under-utilized for
modeling purposes. In the current work, the functional form of discrepancies in the Wilcox k − ω model28

is extracted using DNS data for a wide range of Reynolds numbers.

α? σ? γ α σ

0.09 0.6 13/25 0.09 0.5

Table 1: Wilcox k − ω model constants.

III.A. Bayesian Inversion Setup

The Reynolds-averaged momentum equation for a fully developed, incompressible and steady channel flow
is given by,

∂

∂y

[
µ
∂u

∂y
− ρu′v′

]
− ∂p

∂x
= 0, (6)

where, u represents the mean streamwise velocity and the Reynolds stress −u′v′ is modelled as νt
∂u

∂y
in

eddy viscosity models. In the Wilcox k − ω model, νt =
k

ω
, where k and ω satisfy the following transport

equations,

νt

(
∂U

∂y

)2

− α?kω +
∂

∂y

[(
ν + σ?

k

ω

)
∂k

∂y

]
= 0 (7)

γ

(
∂U

∂y

)2

− αω2 +
∂

∂y

[(
ν + σ

k

ω

)
∂ω

∂y

]
= 0. (8)

Table 1 contains the values of the model constants. In this work, a correction function β(y) is introduced as
a multiplier to the production term in the ω equation (equation 8). The system is solved on a geometrically
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graded mesh consisting of 201 points with the first grid point placed well into the viscous sublayer at
y+ ≈ 0.05. Inversion is performed for set of five different Reynolds numbers, Reτ ∈ [180, 550, 950, 2000, 4200].
The ensemble averaged velocity –at every grid point– from the DNS solution26 is used as the benchmark
data. A diagonal observational covariance with standard deviation, σobs, of 10−8 is used. The very low value
represents a high degree of confidence on the DNS data. A diagonal prior covariance with σprior = 0.5 is
used, which corresponds to a nearly uninformative prior. The MAP solution is obtained as described in the
previous section. The posterior and prior distributions are constructed using 10000 realizations.

(a) Non dimensionalized velocity, U+. Mean is shown with the
solid line; shaded region represents the 95% confidence interval.

(b) Correction function, β. Mean is shown with the solid line;
shaded region represents the 95% confidence interval.

(c) Non dimensionalised Reynolds stress.
(d) y+

dU+

dy+

Figure 1: The prior, the posterior and the DNS solution for Reτ = 550 with k − ω model.

III.B. Results

Figure 1 shows the prior, posterior and DNS values for flow properties at Reτ = 550. The posterior velocity
profile is almost identical to the DNS profile with the standard deviation collapsing to a very low value. The
accuracy of the posterior can be further verified from Figure 1d, which shows the variation of y+du+/dy+,
and further highlights the differences. As turbulent production is negligible for y+ < 1, the posterior solution
is not affected by β(y) and hence β(y) remains unchanged from its prior value. Correspondingly, there is
also no reduction in uncertainty in the viscous sublayer for y+ < 2. Outside of the sublayer, β(y) changes to
match the specified benchmark velocity profile and a drastic reduction in the posterior standard deviation
is noticeable.
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Figure 2 shows the inferred function, β, for all Reynolds numbers. In every case, β in the overlap and
the log-layer scales with wall units. In the outer region, β scales with wall height. This is a physically
reasonable variation and represents the systematic nature of modeling deficiency. The large variation in
β around y+ = 25 shows the inability of the underlying model to provide the correct time scale near the
interface of the overlap region and the log–layer. It is particularly revealing that the nature of the required
correction is almost universal (with second-order viscous corrections) for y+ < 50, a fact that can be used
to develop improved models.

(a) (b)

Figure 2: The inferred correction function, βMAP , for Reτ ∈ [180, 550, 950, 2000, 4200] with k − ω model.

IV. Turbulent Channel Flow using Stress− ω

The next two cases are extensions of the previous case, employ the Wilcox Stress− ω28 second-moment
closure model. Reynolds stress-based models have the potential to better represent the turbulence evolution
and are inherently advantageous owing to the exact representation of production and convective processes
and their ability to represent anisotropic effects. However, the inexact pressure strain correlation and the
assumption of local isotropy while calculating turbulent dissipation can result in large errors. The associated
numerical stiffness also presents robustness issues. In second moment closure models, the scale equation is
often blamed for the poor performance of the model. In the following, we infer the correction function for
the stress−ω model. The model is adapted in two different ways: (1) by introducing a source term in the ω
transport equation, and, (2) by introducing source terms in the Reynolds stress equations. For the inference,
the following objective function is used,

J(β) =
100w2

u

σ2
obs

FTuFu +
w2
R11

σ2
obs

FTR11
FR11

+
w2
R12

σ2
obs

FTR12
FR12

+
w2
R22

σ2
obs

FTR22
FR22

+
w2
R33

σ2
obs

FTR33
FR33

+
(β − βprior)

T (β − βprior)

σ2
prior

,

where w’s are the weights taken to be the reciprocal of the averaged value. F’s are the error vectors for the
5 flow quantities. A higher weight velocity term is required to infer accurate velocity, which is our primary
objective, while minimizing the error in the Reynolds stresses. The numerical setup and the variances are
identical to those in the previous case. The results of the inversion are presented in the following sections. The
statistical distribution could not be obtained because of the numerical stiffness of the governing equations,
hence only the maximum aposteriori estimate is presented.
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(a) Mean velocity
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(b) Mean velocity
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DNS
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(c) Reynolds Stresses
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β

(d) Multiplier function β

Figure 3: The prior, posterior and the DNS solution for Reτ = 550 with Stress− ω model and modified ω
transport equation.
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100 101 102 103

y+

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

β
Reτ=180

Reτ=550

Reτ=950

Reτ=2000

Reτ=4200

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

y

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

β

Reτ=180

Reτ=550

Reτ=950

Reτ=2000

Reτ=4200

(b)

Figure 4: The inferred function β(y) for Reτ ∈ [180, 550, 950, 2000, 4200] with Stress−ω model and modified
ω transport equation.

IV.A. Modifying the ω transport equation

A source term is introduced by multiplying a correction function, β(y), to the dissipation term of the
transport equation for ω, in a manner similar to that in the previous section. Figure 3 shows the results of
the inversion process. Clearly, the inversion is able to infer a function β(y) which results in a better estimate
of the velocity. However, the normal Reynolds stresses do not show significant improvements, while some
even degrade. This points to the inherent deficiencies in the transport equation for the Reynolds stresses
which arise from the inexact pressure strain term and the assumption of the isotropy of the dissipation term.
The form of the correction function is similar to that in the previous case with a significant disparity near
y+ of 12 and y+ of 120, which implicates a prevailing discrepancy in the turbulence models in those regions.
Figure 4 shows the inferred function for a set of Reynolds numbers, which delineate a trend in the correction
for y+ < 50. The inability of the current case to predict correct Reynolds stresses is addressed in the next
case by adding additional source terms in the Reynolds stress equations.

IV.B. Modifying the Reynolds stress transport equations

In this case, the dissipation term in the normal stress(Rii) transport equation is multiplied by a function
βii(y). In the R12 equation, a function β12 is introduced as a multiplier of the pressure strain and the
turbulent transport term. It should be noted that by multiplying by β we are introducing an additional
source term. Figure 5 shows the results of the inversion process. All the five posterior quantities used in
the objective function are in close agreement with the DNS solution. Again, significant discrepancies are
obsered in all the transport equations near y+ of 12. The anisotropic nature of the dissipation is reflected in
the trends of the function βii. These trends can be utilized to correct for anisotropy and to build a better
pressure strain correlation term. Figure 6 highlights that the discordance in the correction function for a set
of Reynolds numbers in the near wall region follows the previously observed trend. Also, the anisotropy in
the spanwise direction can be observed to be sensitive to the Reynolds number.

V. Turbulent Flow With Curvature

Turbulent flows over curved surfaces are subjected to streamwise pressure gradients and additional mean
strain. Curvature acts to stabilize (or destabilize) the flow via the diverging (or impinging) inviscid core.29–31

The flow field is complicated by the presence of complex small-scale vortical structures.32 Linear eddy
viscosity closures have to be explicitly sensitized to capture curvature effects.33–35 In this section, the
inversion procedure is applied to boundary layer flows subject to (a) convex and (b) concave curvature. A
comparison of the posterior solution with the analytically-sensitized rotational correction (SARC) model of
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Figure 5: The prior, posterior and the DNS solution for Reτ = 550 with Stress−ω model and modified Rij
transport equations.
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Figure 6: The inferred function for Reτ ∈ [180, 550, 950, 2000, 4200] with Stress−ω model and modified Rij
transport equations.

Spalart36 is also presented.

V.A. Flow Conditions

The benchmark data is obtained from a Large Eddy Simulation.37,38 In the LES, an inlet boundary layer
with Reθ of 2000 is generated using the recycling-rescaling procedure.37 The inlet boundary layer thickness,
δ0, is 0.04 grid units and the inlet size is 4δ0. The recycling and outflow sections were of length 5δ0 and 7δ0,
respectively. The LES solution is performed over 13 flow-through times and statistics are computed from the
last 9 flow-through times. The grid inlet in the RANS is extended to minimize the effects of the inlet profile,
such that Reθ = 1500 at the new grid entrance and it ensures Reθ = 2000 near the original grid entrance.
The extended mesh consists of 473 points in the streamwise direction and 111 points in the wall-normal
direction. The upper wall is assigned an inviscid slip boundary condition while the lower wall is given an
adiabatic no-slip boundary condition. The inlet velocity, density, and eddy viscosity profiles are obtained
from a precursor zero pressure gradient flat plate simulation. The pressure at the inlet is extrapolated
from interior. At the outlet, pressure is interpolated from the exterior and the rest of the quantities are
extrapolated.

V.B. Bayesian Inversion Setup

A correction function β(x, y) is multiplied to the production term of the Spalart–Allmaras (SA) model in
the form

Dν̃t
Dt

= β(x, y)P (ν̃t,U)−D(ν̃t,U) + T (ν̃t,U). (9)

The coefficient of friction (Cf ) at the lower wall, from the LES solution, is used as the benchmark data for
inversion. The variation in pressure for this case is small, therefore comparing pressure from our compressible
RANS to the incompressible LES is prone to error. Hence, pressure-related quantities are not used for
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Figure 7: The prior, posterior, SARC and LES coefficient of friction (Cf ) at the lower wall for the convex
channel with SA model. Shaded region represents the 95% confidence interval.

(a) Inferred Correction Term(δMAP ) (b) SARC

Figure 8: Contour plot showing the inferred correction term (δMAP ) and the SARC correction term for the
convex channel.
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Figure 9: The prior, posterior, SARC and LES stream–wise velocity at various locations for the convex
channel with SA model. s⊥ refers to the perpendicular distance from the lower wall. Refer Fig. 7 for the
legend.

benchmarking. A diagonal prior covariance with a standard deviation, σprior = 1 is used. A diagonal
observation covariance with standard deviation, σobs, of 10−6 is used. This corresponds to a standard
deviation of around 0.03% on LES Cf , and represents a high degree of confidence in the LES. The posterior
covariance and realizations are computed as detailed in section II.A. The flow solver is evaluated for 4000
realizations of β to obtain both the prior and the posterior realizations.

V.C. Results

Figure 7 shows the prior and the posterior Cf with 95% confidence intervals alongside LES and SARC
results for the convex channel. The LES data points lie within the bounds or close to the posterior Cf , while
the SARC model is not very accurate for this case. The confidence level in the posterior solution is seen to be
very high. Figure 8 shows the inferred MAP correction term, δMAP , and the analytically-defined correction
term from the corresponding SARC model. Qualitatively, the correction term is similar for both models,
but the magnitudes are locally different. The trend in the correction is consistent with the expectation that
the convex curvature reduces turbulence intensity. The quantitative nature of the results should provide
valuable information to the modeler.

Figure 9 shows the variation of the streamwise velocity with respect to the distance from the wall at
various streamwise locations. The posterior velocity is seen to correlate well with the LES solution compared
to the prior and the SARC prediction. The results suggest that the SARC model requires improvements in
the log layer.

Figure 10 shows the skin-friction predictions for a channel with concave curvature. The posterior Cf is
close to the LES solution except in a small region downstream. It is to be noted that linear eddy viscosity-
based models may be deficient in their ability to perform better. The correction term in Figure 11 is
consistent with the increase in turbulent production in a concave boundary layer.

Figure 12 shows the streamwise velocity profiles. Clearly, the posterior velocity prediction is closer to
the LES velocity profile compared to the prior. The SARC model appears to perform reasonably well in this
case.

As observed in both the concave and convex cases, while the posterior Cf matches the LES extremely
well, the velocity profiles show some degree of variability. This is because Cf is a local quantity and a
small local change in the velocity profile may be enough to match Cf . Nevertheless, the improvement in the
posterior velocity profiles adds more credibility to the inversion procedure.
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Figure 10: The prior, posterior, SARC and LES coefficient of friction (Cf ) at the lower wall for the concave
channel with SA model. Shaded region represents the 95% confidence interval.

(a) Inferred Correction Term(δMAP ) (b) SARC Correction Term

Figure 11: Contour plot showing the inferred correction term (δMAP ) and the SARC correction term for the
concave channel.
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Figure 12: The prior, posterior, SARC and LES wall parallel velocity (Uθ) at various stream wise locations
for the concave channel with SA model. s⊥ refers to the perpendicular distance from the lower wall. Refer
Fig. 10 for the legend

VI. Oblique Shock Turbulent Boundary Layer Interaction (OSTBLI)

The next test problem considers the interaction of an oblique shock with a spatially evolving turbulent
boundary layer. Shock boundary layer interactions have been studied extensively39–41 over the years. Knight
& Degrez42 present an extensive survey for this case and found RANS models to be inaccurate, except for
very weak interactions. This behavior is attributed to the inability of RANS models to respond to a sharp
pressure rise and the use of a single turbulent scale in an inherently multi–scale environment. We use the
Bayesian formulation to infer an improved time-scale estimate for use within a k − ω model solution.

The flow conditions attempt to emulate the benchmark setup in Morgan et. al,43 which employs a well-
resolved Large Eddy Simulation. The incoming boundary layer has a free-stream Mach number of 2.28, an
inlet momentum thickness Reynolds number of 1500, and a thickness of 0.87 grid units. The undisturbed
shock is aligned at an angle of 8◦ to the freestream. The inlet boundary layer is generated using a precursor
flat plate simulation. Rankine-Hugoniot conditions are used to obtain the shock jump conditions, which are
then forced at the inlet plane.

Similar to the previous case, a correction function β(x,y) is multiplied to the production term of the
ω equation. The coefficient of pressure (Cp) at the lower wall, from the LES solution,43 is used as the
benchmark data for inversion. A diagonal prior covariance with a standard deviation, σprior = 1 is used. This
corresponds to a nearly uninformative prior. The selection of the prior can indeed be guided by additional
insights gained during the inversion process. A diagonal observation covariance with standard deviation,
σobs, of 10−6 is used. The posterior covariance and realizations are computed as detailed in section II.A.
The flow solver is evaluated for 1000 realizations of β to obtain both the prior and the posterior realizations.

VI.A. Results

Fig. 13 compares the pressure and friction coefficients using the prior, the posterior model, and the LES. The
posterior Cp tracks the LES consistently. As evident in the Cf plot, location and length of the separation
bubble is more accurately predicted with the posterior model. In contrast with the previous case, the posterior
variance has increased for this problem. The Gaussian assumption of the probability distributions is less
accurate for this case because of the increased non-linearity. The inadequacy of the Gaussian assumption
was verified from the skewed probability distribution of the likelihood function.

Figs. 14a,b show the streamwise-velocity, density profiles along various streamwise locations for the prior
and the posterior model. Both of these quantities show strikingly good agreement with data, given the data
used for inversion was just the surface pressure, showcasing the ability of the inverse approach to predict
the complete flow field using very limited information. These quantities are compared in contour form in
Figs. 15- 18. Figure 14c,d compare the Reynolds shear stress and turbulent kinetic energy (TKE). The fact
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that the velocity field, pressure, density, TKE and Reynolds stress correlate well with the LES suggests that
the improvements are physically realizable and offers the promise of model improvement.
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Figure 13: Pressure and friction coefficient for the LES, prior and the posterior k−ω model. Shaded region
represents the 95% confidence interval.
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(d) Turbulent kinetic energy (TKE)

Figure 14: Flow quantities at various streamwise locations with k − ω model. Shaded region represents the
95% confidence interval.

VII. High Angle of Attack Flow over S809 Airfoil

The next case involves the S809 airfoil, which is extensively used in the blades of horizontal axis wind
turbines (HAWTs). At a Reynolds number of 2 million, Somers44 observed a laminar separation bubble
near mid-chord for angles of attack α between 0 and 5 degrees, which leads to transition to turbulence. A
further increase in the angle of attack moves the transition point towards the leading edge. At α = 9.22◦, the
transition point is close to the leading edge, and turbulent separation occurs near the trailing edge. Beyond
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Figure 15: X-velocity contours near the interaction region with k−ω model. The contours are superimposed
with the LES velocity (black) for comparison. The full flow field is well predicted with the inferred MAP
k − ω model.
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Figure 16: Density contours near the interaction region with k − ωmodel. The contours are superimposed
with the LES density (black) for comparison.
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Figure 17: Turbulent kinetic energy (TKE) contours near the interaction region with k − ω model. The
contours are superimposed with the LES TKE (black) for comparison.
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Figure 18: Reynolds shear stress contours near the interaction region with k − ω model. The contours are
superimposed with the LES Reynolds shear stress (black) for comparison.

this point, the flow separates near mid chord. At the design Reynolds number, RANS based models are
fairly accurate for flows at low angles of attack (≤ 9◦). Beyond this regime, the presence of a large region
of turbulent separation with an adverse pressure gradient renders RANS inaccurate. Previous work45–47

indicates consistent failure of the RANS models beyond the point of separation. In this work, Bayesian
inversion is applied to quantify discrepancies in the one equation Spalart–Allmaras (SA) model by utilizing
the experimentally acquired pressure data.

VII.A. Flow Conditions

A Mach number of 0.2 and a Reynolds number of 2 million is used to match the experimental Reynolds
number by Somers.44 A C-grid with 291 points in the wrap–around direction and 111 points in the wall
perpendicular direction is used. This corresponds to 200 grid points on the airfoil surface. The far field
boundaries are at least 35 chord lengths away from the airfoil surface. Characteristic based freestream
boundary conditions are used for the flow variables at the far–field and the eddy viscosity is set to the fully
turbulent value, νt,∞/ν∞ = 3.

VII.B. Bayesian Inversion Setup

As in the case of curved channel flow, a multiplicative correction function β(x,y) is introduced into the
production term. Experimental coefficient of pressure (Cp) is used as the benchmark for inversion. The
experimental data is extracted from the report by Somers.44 The data extraction is prone to error, especially
near the leading edge, where the pressure changes rapidly. The effect of this error is minimized by utilizing
only the suction-side pressure taps, starting from 0.05c to 0.8c, for the inversion. A diagonal prior with a
standard deviation, σprior = 1.0 and a diagonal observational covariance with standard deviation, σobs =
10−2 are used. This corresponds to a maximum error of 0.2% in the Cp. Note that σobs should ideally be
derived from the experimental data. However the experimental error is unavailable for this case, and the
posterior results were confirmed to be insensitive to small changes in the prior covariance. The optimization
process is identical to the previous cases. The prior and the posterior model are constructed using 1000
realizations of β.

α = 9.22◦ α = 12.2◦ α = 14.24◦

Experiment 1.010 1.007 1.083

Prior SA (% error in mean) 1.166± 0.005(15%) 1.411± 0.017(40%) 1.453± 0.039(34%)

Posterior SA (% error in mean) 1.051± 0.005(4%) 1.028± 0.004(2%) 1.140± 0.004(5%)

Table 2: Comparison of prior, posterior and experimental lift coefficients for α = 9.22◦, 12.2◦, 14.24◦ with
SA model.
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(a) α = 9.22◦ (b) α = 9.22◦

(c) α = 12.20◦ (d) α = 12.20◦

(e) α = 14.24◦ (f) α = 14.24◦

Figure 19: The inferred correction multiplier, β(x,y)MAP (left) and prior/posterior pressure coefficient
(right) with SA model. Shaded region represents the 95% confidence interval. Error bars for the experimental
results are not provided in the original document.44
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VII.C. Results

Figure 19 shows the inferred field βMAP for all the cases. Turbulent production is reduced on the suction
side. The tendency of the inferred field is to significantly reduce the production of eddy viscosity starting in
an extremely thin region close to the leading edge and continuing into the edge of the boundary layer and
into the separated shear layer. This reduction is consistent with the transitioning and separating boundary
layer and may be used to construct a transition model and a model for adverse pressure gradients. Figure 19
shows that the experimental Cp is well-matched by the inversion, and the posterior variance in Cp is reduced
significantly. Though the results are not shown here, it was confirmed that solely by using the pressure data
at the three most upstream locations on the suction side, the posterior pressure distribution could be
improved to the level in Figure 19 over the complete airfoil surface.

Figure 20 compares the near-wall streamlines for the base SA model and the MAP, showing the large
differences in the prior and the posterior separation bubble. For α = 12.20◦ and 14.24◦, the posterior model
predicts the separation at 0.50c± 0.01c (which represents a 68% confidence interval) and 0.48c, respectively,
compared to the prior predictions of 0.73c±0.04c and 0.56c±0.02c respectively. The predictions are consistent
with the experiments, where the separation is observed near the mid chord for these angles. For α = 9.22◦,
turbulent separation is observed in the experiment but not in the prior SA model. The posterior, however,
predicts the separation at 0.71c±0.01c. Table 2 compares the prior and the posterior lift coefficient (Cl) with
the experiment. For α = 14.24◦, the error in the Cl is reduced from 34% to 5% and the trend is preserved
for other angles of attack. The inferred field βMAP is thus a good starting point for model improvements.

VIII. Summary and Perspectives

A data-driven approach was presented with the objective of quantifying functional errors and uncertainties
in turbulence closure models. Bayesian inversion techniques were adapted to extract field variables (source
terms) that are consistent with their use in closure equations. The problem is made finite-dimensional by re-
defining it such that the distribution of the unknown functions is sought at every point in the computational
domain of the RANS grid. With the additional assumption of a Gaussian distribution, the inversion is
reduced to the solution of a deterministic optimization problem to compute the maximum a posteriori
estimate and sampling to obtain the posterior variabilities.

A number of problems are studied, including one-dimensional channel flows, boundary layers with curva-
ture, airfoil flows, and oblique shock-turbulent boundary layer interactions. In all of these cases, given a few
data points (typically wall-pressure or skin-friction), complete realizations of the closure model are obtained.
For the one-dimensional channel flow, the posterior model suggests a universal time-scale correction in the
near wall region. For flows with curvature, the entire flowfield is improved by matching the skin-friction
at the wall and the corrections to turbulence production were compared to existing analytical methods.
The entire flow field is well-predicted in the oblique shock-turbulent boundary layer interaction problem by
matching the surface pressure. The point of separation and lift is more accurately predicted for the S809
airfoil by matching the experimental surface pressure at a few points on the suction side.

Having extracted pertinent data, it remains to use it to improve models. As a first step, a larger, and more
diverse set of problems will have to be considered. In this process, care has to be devoted to the choice of
the objective function. For instance, the coefficient of pressure is found to be a more global benchmark when
compared to the friction and leads to a model that is closer to reality. Friction, a highly localized quantity,
may lead to a degree of over–fitting by adjusting the model in a small near-wall region in many problems.
The inferred functions can be used to assess the structural form of the model and make improvements. As
an alternate step, machine learning algorithms5,6, 17 may also be directly used to reconstruct model terms.

Based on the posterior results in this paper, it could also be argued that some of the criticism of eddy
viscosity models that is usually attributed to the isotropic stress-strain relationship is partially a result of
poor functional forms within the model rather than the limiting nature of the Boussinesq assumption itself.
Models should be assessed by evaluating the type and variability of corrections that will be required in a
diverse set of problems. Another indicator of the robustness of a model structure and its improvement via
field inversion is to inspect the posterior distributions of variables other than those that were used in the
inversion.

We note that additional work may be required to assess the role of numerical errorsd, sensitivity to error

dIn this work, all the RANS results (prior to inversion) were grid-converged
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Figure 20: X-velocity contour along with the streamlines near the surface of the airfoil with SA model.
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in the data, impact of the Gaussian assumption, etc. Efficiencies can be gained by decomposing the inferred
functions in terms of a priori bases and estimating coefficients of basis functions.
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