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In this study we present the experimental results of stereo particle image velocimetry conducted in
the corner of a Mach 2.75 low aspect ratio rectangular channel flow. Data is recorded at multiple
cross-section planes and analyzed to study the formation of corner vortices and their effects on the
structure of the mean flow field. Results show that several vortex elements exist instantaneously in
the corner, however they do not conform to the time-averaged secondary flow structure proposed by
previous studies. Decomposing the flow into a large and small scale components, along with condi-
tional averaging, makes it possible to capture and describe the properties of, the large scale corner
vortices which are similar to the description of corner vortex pair proposed by previous studies. A
conditional definition of corner vortex pair in instantaneous fields is introduced which facilitates the
statistical study of their properties.

Nomenclature

x = Streamwise flow direction
y = Side-wall normal direction
z = Bottom-wall normal direction
U = Ensemble-average streamwise flow velocity component
V = Ensemble-average flow velocity in y-direction
W = Ensemble-average flow velocity in z-direction
u = Instantaneous velocity in x-direction
v = Instantaneous velocity in y-direction
w = Instantaneous velocity in z-direction
t = Wall tangential direction
n = Wall normal direction
δ99 = 99 % boundary layer thickness
ωRR = Rigid rotation vorticity
ω = Conventional vorticity
Subscripts:
x,y,z = Derivative in respective direction
w = Quantity evaluated at the wall
∞ = Quantity evaluated in freestream
L,S = Large and Small scale quantity
Superscripts:
′ = Fluctuation quantity
+ = Inner wall scale
Other:
ψ, 〈ψ〉 = Ensemble average of property ψ
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I. Introduction

Flows along a streamwise corner are quite common in aerospace applications. Such flows are commonly found along
the wing-body junction of an aircraft and rectangular air intake ducts of aircrafts. These flows often give rise to
secondary transverse flow perpendicular to the streamwise direction of the bulk flow. Secondary flows play a role
in convection of mass, momentum, vorticity and energy from the primary flow into the corner and from the corner
into the primary flow [1]. Due to this, the secondary flows often influence the structure of the primary and thus
deviate from a canonical structure. This may reduce the effective area available for the flow inside the duct thereby
affecting the performance of the aircraft or induce external separations along the wing-body junction causing loss
of lift. Corner flows are characterized by regions of low momentum fluid near the junction of the walls forming
the corner. These regions are particularly susceptible to separation especially in sensitive flows involving complex
phenomena like shock-boundary layer interactions. It is thus required to understand the characteristics of such a flow.
The aim of this work is to study supersonic turbulent corner flows that would exist in the air intake of a supersonic
aircraft and attempt to understand the structure and the driving properties of the flow. As is evident from previous
research on shock-boundary layer interactions [2, 3], strong incipient separation is fairly a common place in such type
of flows. These incipient separation bubbles are primarily caused by the interaction of spatially unsteady structures
which are a result of unsteady flowfields.

Previous studies on the structure of corner flows [4, 5] have primarily used intrusive techniques such as Preston/pitot
tubes and hot wire in order to study the secondary flows in the corners of ducted supersonic flows. They have es-
tablished that secondary flows comprise, on a mean sense, of two counter rotating vortices forcing the fluid towards
the corner. These previous works have attempted to explain the source of these vortices as the result of anisotropic
gradients in the Reynolds stress that exist as the corner is approached. However, the use of these intrusive techniques
may substantially modify the flow in low aspect ratio rectangular channels, and thus present a mean picture of the flow
field that might be a distorted representation of the instantaneous flow phenomena taking place in the corner. Thus,
there is a need for non-intrusive measurements to study the evolution of corner vortices in such flows.

This study primarily attempts to understand the instantaneous turbulent flow field formed in the corner of a supersonic
(Mach 2.75) duct flow which would be ubiquitous in supersonic rectangular air intake systems using particle image
velocimetry measurements. The measurements specifically focus on the turbulent structure of the boundary layers
developing along orthogonal walls as they merge in the corner.

II. Previous Research on Supersonic Corner Flows

The fluid flow which exists at the intersection of two walls is characterized by secondary motion, which are defined as
flow motions due to velocity components normal to the principal flow direction. Ridha [6] published a review article
describing many of the theoretical studies of the corner flow boundary layer that have been conducted. Rubin [7]
initially developed an analytical model to describe the laminar corner flow. He divided the flow cross-section into 4
parts: boundary layers along the two walls forming the corner, the corner overlap between the boundary layers and
the core flow. The terms of the Navier-Stokes (N-S) and boundary layer equations were then expanded into an infinite
series and the constants matched up to second degree in order to match the values of various components of velocity
that asymptote towards the core flow and in the boundary layer overlap region. He thus obtained a numerical solution
describing the flow in corner region.

Prandtl in 1952 formally divided the secondary flows into two categories: secondary flows of the first and second kinds,
which have been further explained by Bradshaw [8]. Secondary flows of the first kind originate because of mean flow
skewing (i.e., due to the tilting and stretching term in the vorticity equation), and are relatively well understood.
However, much is to be known about secondary flows of the second kind, which are a result of anisotropic variations
of Reynolds stresses [1, 6]. The streamwise corner flows which exist at the intersection of two surfaces intersecting in
the principal flow direction fall into the second kind.

It is believed that secondary corner flows are characterized by streamwise vortices that arise due to the production of
vorticity by Reynolds stresses. The pair of streamwise vortices that would exist in ideal symmetric flow conditions
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is shown in Figure 1. Perkins [9] explains the formation of these vorticies from the (steady) x-vorticity conservation
equation written after the Reynolds decomposition and averaging is performed; thus taking into account the Reynolds
stresses, the vorticity equation can be written as:

U
∂ωx
∂x

+ V
∂ωx
∂y

+W
∂ωx
∂z

= ν∇2ωx + ωx
∂U

∂x
+ P1 + P2 + P3 + P4 (1)

where the terms on the left-hand-side represent the convection of the streamwise component of vorticity (ωx). The
first two terms on the right-hand-side are the viscous diffusion and vortex stretching, respectively. The third term is

P1 = ωy
∂U

∂y
+ ωz

∂U

∂z
(2)

and describes the production of streamwise vorticity by skewing of the mean flow field and thus represents the sec-
ondary flow of the first kind. The fourth terms is

P2 =
∂

∂x

(
∂u′v′

∂z
− ∂u′w′

∂y

)
(3)

and describes the formation of vorticity due to streamwise gradients of the primary Reynolds shear stress gradients.
This term is often ignored from most of the studies due to assumption of zero pressure gradients; whether this term is
important in flows with strong pressure gradients (e.g., in locations where a shock wave induced pressure gradient is
present) is currently not known. The fourth term in the vorticity equation is

P3 =
∂2

∂y∂z

(
v′2 − w′2

)
(4)

and represents the formation of vorticity due to anisotropy in direct turbulent stresses. This term is believed to be
the prominent quantity that leads to creation of streamwise vortices in a corner. Unlike the isotropic nature of the
turbulence in the undisturbed boundary layers away from the corner, the kinetic energy is distributed unequally along
different directions in the corner region, which leads P3 to take non-zero values. The final term in the vorticity
equation is

P4 =

(
∂2

∂z2
− ∂2

∂y2

)
v′w′ (5)

and depicts the formation of streamwise vorticity due to gradients in the secondary stress v′w′. Together P2, P3 and
P4 represent the quantities responsible for the development and sustenance of the secondary flow of the second kind.
These terms are important in corner flows.

Gessner [1] experimentally evaluated the terms in the energy and vorticity balance equations using pressure taps and
hot wire measurements. His results suggest that the transverse secondary flow is initiated as a direct result of the
primary turbulent stress gradients normal to the corner bisector and that the anisotropy of the stresses does not play
a major role in the secondary flow generation as suggested by Perkins[9]. He suggests that the variations in the
curvature of iso-contours of the axial velocity that occur in the flow undergoing laminar-to-turbulent transition result
into turbulent stress gradients along the iso-contour which necessitate the development of a secondary flow from the
concave to the convex side of the iso-contour. Brundrett and Baines [10] conducted experimental investigation using
hot-wire measurements in order to characterize regions of vorticity creation and diffusion. Their results suggest that
the diffusion of vorticity peaks near the wall while the production of vorticity is associated with the region near the
corner bisector; however, it is zero on the corner bisector itself while being of opposing signs on either side of it.
They suggest that it is because of this distribution that the vortices have a tendency to convect towards the walls.
The zone of peak vorticity production is characterized by a vortex on each side of the corner bisector with opposite
signs. It was found that the vorticity production is independent of the Reynolds number, but the vortex diffusion is not.
They suggested this to be the reason for the secondary flow to be pushed towards the wall as the Reynolds number
is increased. Kornilov and Kharitonov [11] studied the structure of the corner flows in asymmetric configurations
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featuring unequal boundary layer thicknesses on the walls forming corners. One of their most important findings was
that the vortex located towards the thicker boundary layer is stronger and larger than that towards the thinner boundary
layer.

The unstable nature of these flows have been reported by various stability studies conducted by Alizard et al. [12],
Zamir [13] and Balachandar and Malik [14]. As a result of this unstable nature it is highly likely that any intrusive
form of measurement would lead to a disturbed flow, thus yielding false measurements of the corner flow properties,
especially in supersonic flow wherein the effect of shock wave / flow interaction resulting from the probe can propagate
upstream through the viscous region and change the characteristics of the incoming flow as it has been explained by
Chapman et al. [15] and reported by Kornilov [16]. Because of this, it is necessary to characterize the flow using
non-invasive experimental techniques, such as the particle image velocimetry (PIV) technique. Motivated by this
observation, Park et al.[17] conducted PIV measurements in the corner flow in a plane oriented along the corner
bisector in the streamwise direction. They majorly focused on capturing the developing boundary layer on this plane.
Their findings are in agreement with the theoretical studies in that the velocity distributions were found to follow
self-similar profiles and that the corner velocity profiles correspond to the Blasius branch of the theoretical solutions.
However in order to fully understand the secondary flows, it is necessary to obtain non-intrusive high resolution
measurements in the plane where such secondary flows are observed. Uruba et al. [18] conducted POD analyses to
elucidate the most energetic modes of secondary flows in the rectangular corner.

This work builds on these earlier efforts, and aims to provide additional insights into the behavior of vorticies in
the corner region. Additionally, this study proposes a systematic way to define the corner vortex pair in instantaneous
turbulent vector fields where the identification of the vortex pair is masked by a forest of small-scale vortices associated
with the underlying turbulent flow of the boundary layer.Thus, this paper will majorly be focused on analyzing the
instantaneous structure of the corner flow from a set of instantaneous PIV measurements that focus into the turbulent
boundary layers merging at the corner.

III. Experimental Setup

A. Wind Tunnel setup

The experiments presented here were carried out at the Michigan Glass Wind Tunnel (GWT) facility. A schematic
diagram of the configuration used in the study is shown in Figure 2. It is a low aspect ratio suction supersonic wind
tunnel 57.2mm× 69.3mm (2.25in× 2.75in) in cross-section currently configured to operate nominally at Mach 2.75
with stagnation pressure and temperature of 98.1kPa and 294K, respectively. The effective (measured) Mach number
is approximately 2.72. The tunnel is composed of a one-sided two-dimensional converging-diverging nozzle followed
by a constant area test section. This design was selected to produce an equilibrium flat plate boundary layer [19] in
an attempt to minimize pressure gradients history effects and Görtler vortices on the boundary layer developing on
the bottom-wall (floor) of the wind tunnel. Since our previous work has focused on a 3D SBLI configuration and this
work is an effort to better understand it, we use the same coordinate system of our previous SBLI work [3, 20, 21, 22].
In particular, the origin of the coordinate system is centered at the location of the leading edge of the full-span 6o

shock generator wedge (which is about 481.5mm downstream of the nozzle throat) used in our previous work on
3D SBLI. However, in this work the shock generator has been removed. The unit Reynolds number of the flow is
8.9× 106/m with an incoming boundary layer thickness (δ99) of 10mm measured at x = 75.5mm and y = 28.6mm
(i.e., on the vertical midplane of the test section) in an empty tunnel [19]. The pressure gradient parameter defined as
β = δ

(ρU2)
∂P
∂x was calculated from side-wall static pressure measurements conducted in the empty tunnel at half the

tunnel height. The value of this parameter was found to be 5 × 10−4 for this experiment. A complete summary of
the experimental conditions along with their respective uncertainties is provided in Table 1. Optical access to the test
section is provided from both sides of the wind tunnel by glass windows that run along the whole length of the wind
tunnel, including the nozzle throat region.
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B. Stereo Particle Image Velocimetry (SPIV)

SPIV measurements were performed. Two interline transfer CCD cameras (LaVision Flowmaster) recording at 3.33 Hz
with a resolution of 1280×1024 pixel were used for the imaging. The cameras were placed in a stereoscopic, forward-
scattering configuration oriented at 33o with respect to the measurement plane. The cameras feature a minimum
interframe time delay of about 500 ns. The double-pulse illumination of the flow is provided by a pair of low repetition
rate, frequency-doubled Nd:YAG lasers producing an output of 532 nm beam with a total energy of 200 mJ/pulse. The
lasers are triggered at 10 Hz with a time delay of 650 ns in between the two pulses and pulse duration of 10 ns. The
delay is measured with a ThorLabs DT10A/M photodiode that has a 1 ns response time and a LeCroy Waverunner
6030 350 MHz digital oscilloscope and then ensured by adjusting the time delay between the trigger signals. In order
to optimize the particle dropout and volumetric effects, laser sheet thickness is set using expanding-collimating optics
to approximately 4 times the out of plane displacement of a particle within the measurement domain as suggested by
Adrian and Westerweel [23]. The beam width was measured to be 1.45± 0.25mm which is approximately 3.6 times
the particle displacement (approx. 400µm) in 650 ns at the free-stream speed.

Particle seeding of the flow was generated by a TDA-4B portable Laskin nozzle aerosol. The generator consists of
an array of six Laskin nozzles that create poly-dispersed sub-micron particles using Poly-Alpha Olefin (PAO) oil with
density of 819kg/m3. The LaVision DaVis 8 software is used for the acquisition of the measurement and processing
of the data. The three-component velocity fields are reduced from the particle images using Davis 8. A multi-pass with
reducing interrogation window size is used. Two passes were conducted using an interrogation window size of 64x64
pixels with a 50% overlap. The final size of the interrogation windows after two further passes was 32x32 pixels with
an overlap of 75%, which corresponds to a projected physical size of about 0.47 mm x 0.47 mm and a vector spacing
of about 0.15 mm x 0.15mm spanning a physical region of 17 mm x 17 mm. Post processing within multiple passes
included deleting a vector if its correlation value was less than 0.8 as well as removing groups with less than 4 vectors.
Post processing was also conducted once all the passes were completed by removing vectors with a peak ratio (Q)
less than 1.2. Laser sheets were oriented perpendicular to the flow, spanning a fraction the cross-section of the tunnel.
Multiple such images (about 1000 instances at each measurement location) were recorded to construct statistics of
various flow properties.

The data (each snapshot/instantaneous field) was further validated in Matlab using the criterion proposed by Nogueira
et al. [24]. The missing data was then interpolated using a fourth order differential equation for interpolating data
[25]. The method leaves all known values intact. The data was lowpass filtered using a Gaussian filter with a standard
deviation corresponding to 2.5 vector spacing and a kernel size of 5 × 5 points, which in physical space corresponds
to size of 0.75mm× 0.75mm. All of the SPIV data was analyzed using PIVMAT [26] modified to use a least-square
finite difference scheme for computing derivatives except at the edges where forward and/or backward differencing
was used.

Measurements on transverse vertical (TV) planes are performed on the lower right corner (as one looks downstream)
of the duct cross-section at three streamwise direction: (TV1) -100 mm, (TV2) -50 mm and (TV3) 75 mm with respect
to the location where we have positioned the leading edge of a shock generator in our previous work [27, 3].

IV. Flow field scale decomposition and definition of corner flow properties

Before we present the results of this study we provide a few initial definitions of quantities to be used in the analysis
section that follows. These quantities are introduced to better capture the corner flow structure. In particular, to more
effectively describe the instantaneous flowfield, it is decomposed into two components separating the “large” and
“small” scale contribution to the structure of the corner vortex. Then, the average corner flow structure is reconstructed
from conditionally interrogating the decomposed flowfield.

A. Flow field scale decomposition

The instantaneous three-component velocity field is decomposed using two decompositions of motion. First, a scale-
dependent decomposition of motion into a large and small scale contribution is applied. Then, the resulting flow fields
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are additionally decomposed into a fluctuating and ensemble-average components using the Reynolds decomposition
of motion. In this latter decomposition, we assume that the flow is not far from behaving like an incompressible flow
within the boundary layer, |∂p/∂x| << 1 and that the flow is statistically stationary.

Let u = ûi + vĵ + wk̂ be the three-component velocity field in the domain. The flow can be decomposed into a
large-scale and a small-scale contribution as

u = uL + uS (6)

where we refer to uL as the velocity field of the large scales and uS is the velocity field of the small scales. More
specifically, the large/small scale decomposition is conducted by defining a (filtered) velocity field over a scale Ω:

uL(x, t) =

˝
Ω
h(s)u(x + s, t)ds˝

Ω
h(s)ds

(7)

where h(s) is an appropriate low pass filtering kernel function (e.g., a top-hat filer). In this paper the filtering kernel
function is a top hat filter spanning a square of 25×25 data nodes or approximately 0.5 δ×0.5 δ locally. A discussion
on the choice of this filtering kernel size and its implications for what presented in this work is given subsequently.
The small scale contribution is then defined as:

uS(x, t) = u(x, t)− uL(x, t) (8)

This decomposition can be extended to average fields due to the linearity of the averaging and field decomposition
processes. Additionally, we invoke the Reynolds decomposition where the velocity field is decomposed as the sum of
an average field and an instantaneous fluctuation component

u = U + u′ (9)

Finally, we can combine the two decompositions due to the linearity of each step. Thus we can write

u = (UL + u′L) + (US + u′S) (10)

Substituting in the continuity equation, under the incompressible assumption, we have

∇ · (uL + uS) = 0 (11)

from which it also follows
∇ · (UL + US) = 0 (12)

and thus
∇ · (u′L + u′S) = 0 (13)

We then apply this decomposition of motion to the momentum equation, from which we can derive a corresponding
form of the three-component vorticity equation in terms of the propose decomposition of scales. In index notation, the
resulting (approximate) vorticity equation can be written as:

Ui
∂

∂xi
ωj = ωi

∂

∂xi
Uj +

∂

∂xi
(ω′iu

′
j − ω′ju′i) + ν

∂2

∂x2
i

ωj (14)

In particular, because in this study we are primarily interested in analyzing vortical features organized along the
streamwise direction, the corresponding x−component of the vorticity equation 14 becomes:[

U
∂ωx
∂x

+ V
∂ωx
∂y

+W
∂ωx
∂z

]
=

[
ωx
∂U

∂x
+ ωy

∂U

∂y
+ ωz

∂U

∂z

]
+

[
∂

∂y

(
ω′yu

′ − ω′xv′
)

+
∂

∂z

(
ω′zu

′ − ω′xw′
)]

+

+ν

(
∂2ωx
∂x2

+
∂2ωx
∂y2

+
∂2ωx
∂z2

)
(15)
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where the different terms of equation 15 can be recognized and grouped into P1, P2, P3 and P4 defined previously
in equation 1.

The vortex tilting term is

P1 = ωy
∂U

∂y
+ ωz

∂U

∂z

For the case of small adverse pressure gradient (|β| << 1), it can be approximated by noting that

|∂V/∂x| & |∂W/∂x| << |∂U/∂y| & |∂U/∂z|

The approximations are justified by invoking the boundary layer approximation and the observation from our mea-
surements that the streamwise changes in v and w across different streamwise measurement locations remains small
even as the corner is approached [28]. One implication of this approximation is that the vorticity components in a
plane perpendicular to the flow direction can be approximated as

ωy '
∂U

∂z

and
ωz ' −

∂U

∂y

which would implies that P1 ' 0, i.e., the mean vorticity and shear would not contribute to the reorganization of
existing vorticity into the streamwise direction to form the corner vortex pair.

The different terms of the approximate equation 15, which is still written in terms of the ensemble-average quantities,
can then be decomposed using the scale decomposition proposed above. Thus, the following form of the terms on the
right-hand-side of equation 15 can be obtained:

P1 = (ωLy
+ ωSy

)
∂(UL + US)

∂y
+ (ωLz

+ ωSz
)
∂(UL + US)

∂z
(16)

P2 =
∂

∂x

[
∂[(u′L + u′S)(v′L + v′S)]

∂z
−
∂[(u′L + u′S)(w′L + w′S)]

∂y

]
(17)

P3 =
∂2

∂y∂z

[
(v′L + v′S)(v′L + v′S)− (w′L + w′S)(w′L + w′S)

]
(18)

P4 =

(
∂2

∂z2
− ∂2

∂y2

)[
(v′L + v′S)(w′L + w′S)

]
(19)

The terms analyzed in detail in this work are P3 and P4, which can be decomposed into a large scale (P3L, P4L), a
small scale (P3S , P4S) and an interscale (P3LS , P4LS) contribution as

P3L =
∂2

∂y∂z

[
(v′2L )− (w′2L )

]
(20)

P3S =
∂2

∂y∂z

[
(v′2S )− (w′2S )

]
(21)

P3LS = 2
∂2

∂y∂z

[
(v′Lv

′
S)− (w′Lw

′
S)
]

(22)

P4L =

(
∂2

∂z2
− ∂2

∂y2

)[
v′Lw

′
L

]
(23)

P4S =

(
∂2

∂z2
− ∂2

∂y2

)[
v′Sw

′
S

]
(24)

P4LS =

(
∂2

∂z2
− ∂2

∂y2

)[
(v′Lw

′
S + v′Sw

′
L)
]

(25)
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B. Definition of Corner Vortex

To anticipate one of the observations presented subsequently, the instantaneous velocity field in the corner is char-
acterized by multiple small-scale vortices embedded in a large-scale component that is part of the corner flow. The
scale decomposition helps to differentiate between the two components. Thus, to avoid ambiguities, we here attempt
at formally and mathematically defining the corner vortex pair. This definition will then be used to extract what are
here defined the corner vortex pair from each instantaneous image and perform a conditional statistical analysis of its
properties.

The instantaneous velocity vector fields (full and scale decomposed fields) obtained from SPIV planes were decom-
posed into rigid rotation vorticity, pure straining and pure shear using Triple Decomposition of Motion (TDM) [29, 30].
Rigid rotation vorticity (ωRR) is an alternative vortex identification scheme and provide similar information of other
methods, but the added benefit that the sign is preserved and can be linked directly to vorticity. Since we apply the
definitions on the large scale component field (uL), we here define the method based on this component and the
corresponding ωRRL

extracted from uL. (ω is here used to indicate the streamwise component of a vorticity since
in our measurements we only have access to the streamwise component.) The planar projection of an instantaneous
vortex tube (ϕ) referred to as vortex henceforth is defined as the area enclosed (A) by an iso-contour closed loop
(|ωRRL

| = 10). The centroid of the iso-contour closed loop defines the vortex center (ỹ, z̃) for TV planes. This was
then used to define a corner vortex as follows.

Suppose an instantaneous vector field m is characterized by a set φ of n distinct vortices, φ = [ϕ1, ϕ2, ..., ϕk, ...ϕn],
an ordered set α of corresponding areas φ = [A1, A2, ..., Ak, ...An] and a set of corresponding ordered pairs of
vortex center co-ordinates V C = [(ỹ1, z̃1), (ỹ2, z̃2), ..., (ỹk, z̃k), ...(ỹn, z̃n)]. The negative corner vortex (Φ−) of the
instantaneous vector field m is defined as follows:

Φ− :=

{
ϕk | ϕk ∈ φ,

˛
Ak

ωRRL
dAk < 0,

˛
Ak

ωRRL
dAk =

= min

[˛
An

ωRRL
dAn | ϕn ∈ φ

]
, ỹk ≤ δ, z̃k ≤ 1.5δ, z̃k > Kỹk

} (26)

where K is the aspect ratio of the wind tunnel defined by (K = zT /yT ) and dAk is the differential area element in the
area enclosed by the the vortex tube boundary of kth vortex. Similarly the positive corner vortex (Φ+) of vector field
m is defined as:

Φ+ :=

{
ϕk | ϕk ∈ φ,

˛
Ak

ωRRL
dAk > 0,

˛
Ak

ωRRL
dAk =

= max

[˛
An

ωRRL
dAn | ϕn ∈ φ

]
, ỹk ≤ 1.5δ, z̃k ≤ δ, z̃k < Kỹk

} (27)

If no vortices satisfying the above definitions are found in an instantaneous field, that field is discarded from further
statistical analyses. The characteristic length λ of a corner vortex Φ is defined as

λ :=
√
AΦ (28)

where AΦ is the area of corner vortex Φ.

An example of instantaneous rigid rotation vorticity field is shown in Figure 3. The black solid line z = Ky represents
the diagonal of the wind tunnel rectangular channel. Thus the center belonging to the negative corner vortex must
lie above this line as per the definition 26 while the center belonging to the positive corner vortex must lie below
it (definition 27). The vertical dashed red line (y = 1.5δ) and horizontal red dashed line (z = δ) are the vertical
and horizontal bounds below z = Ky that bound the region of existence of the positive corner vortex. Similarly the
vertical blue dashed line (y = δ) and horizontal blue dashed line (z = 1.5δ) are the vertical and horizontal bounds
above z = Ky for the region of existence of negative corner vortex. Thus the vortex marked Φ− forms the negative
corner vortex with center (ỹ−, z̃−) and the vortex marked Φ+ forms the positive corner vortex with center (ỹ+, z̃+) as
these are the strongest and largest of the vortices lying in their respective domains.
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If r+ = (ỹ+, z̃+) and r− = (ỹ−, z̃−) represent the position vectors of the positive and negative corner vortex centers
for the given instantaneous vector field m, the corner vortex separation distance (γ) is defined by

γ = |r+ − r−| (29)

The position vector of center of circulation rcen for the corner vortex pair Φ+ and Φ− is defined as

rcen =
r+(
¸
A+
|ωRR+L

|dA+) + r−(
¸
A−
|ωRR−L

|dA−)

(
¸
A+
|ωRR+L

|dA+) + (
¸
A−
|ωRR−L

|dA−)
(30)

The corner bisector angle θbis is then defined as

θbis = arg(rcen) (31)

V. Analyses, Results and Discussions

A. General instantaneous flow characteristics

An example of instantaneous velocity fields from each of the three dataset locations is shown in Figure 4. The in
plane velocity fields are shown as vectors (vĵ + wk̂) while the out of plane velocity component (u) is shown by color
contours. The y = 0 line represents the side-wall and the z = 0 line represents the bottom-wall. The flow near the
corners is turbulent and characterized by eddies which will be clearer in the vorticity fields in subsequent sections. We
can observe that at x = −100mm location, high momentum flow dominates most of the interrogation region as shown
in Figure 4a. As we proceed downstream, we can see from Figure 4b and Figure 4c that a low momentum layer is
formed near the walls. A strong secondary flow is observed in Figure 4c away from the side-wall at a height of about
10mm from the bottom-wall which convects the low momentum side-wall boundary layer fluid towards the core flow.

B. Mean primary flow field

The mean flow fields obtained from uncorrelated sequence of images obtained at the same locations are shown in
Figure 5. Figure 5a shows the streamwise velocity contours of the most upstream data-plane with the streamwise flow
being out of the plane. It can be seen that the boundary layer thickness, defined by the 99 % iso-contour line, is fairly
uniform without any curvature indicating that the flow is fairly symmetric relative to the corner at this location. Also
the close proximity of the sonic line to the side-wall indicates that the flow is mostly supersonic throughout the cross-
section of the tunnel at x = −100mm. The sonic line was computed using the local speed and assuming a calorifically
perfect gas with unit Prandtl number and a T∞/Tw value of 0.37 for Mach 2.75 by interpolating the experimental
values compiled by Spina et al. [31].

It can be seen from Figure 5b (plane at x = −50mm) that the side-wall 99 % boundary layer thickness has started to
thicken towards the bottom-wall before it merges with the bottom-wall boundary layer. On the contrary, the boundary
layer on the bottom-wall remains fairly undisturbed. The sonic line now extends along the entire walls of the tunnel.
Also a fair portion of the flow is subsonic at the corner. It can be observed that the subsonic flow is biased towards the
side-wall rather than the bottom-wall, probably due to the one-sided nature of the nozzle.

Further downstream at TV3 (x = 75mm), it is to be noted that boundary layer flow now occupies nearly the entire
domain of interrogation. Low momentum region (yellow zone of the contour) can be seen bulging out (at a height of
about 10mm from the bottom-wall) from the side-wall towards the core flow indicating a momentum transport due to
secondary flow. At the same time a high momentum region (red zone of the contour) can be seen penetrating towards
the corner. This effect of curvature of iso-tach (constant velocity) lines has been observed by Gessner et al. [1, 5],
Brundrett and Baines [10] and associated with underlying vortical momentum transport by Perkins [9]. It is to be noted
that the sonic line in this case tends to conform to both the walls unlike TV2 possibly indicating spatial unsteadiness
of the secondary flows responsible for subsonic momentum transport, which would be masked by averaging.
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Another important conclusion that can be drawn from Figure 5 is that the observed flow field is asymmetric unlike
the symmetric/anti-symmetric flow fields about the corner bisector discussed in previous studies [1, 4, 5, 10, 9]. The
primary reason for this irregularity is suspected to be the one sided nozzle and the low aspect ratio characteristic of the
wind tunnel.

Figure 6 shows the velocity profiles of average streamwise velocity U perpendicular to the bottom and side-walls.
As is expected the flow at the most upstream location TV1 sports a near canonical mean velocity profile (see also
[28]) without any visible inflection points and seems to be similar to that of an attached flow (see y = 5mm and
z = 5mm in Figure 6a and Figure 6b). At the downstream location x = −50mm, it can be seen from Figure 6c and
Figure 6d that the velocity profile now sports an inflection point near the corner (y = 5mm and z = 5mm). Also the
velocity profile at the location of TV2 near the corner y = 5mm and z = 5mm sports a velocity defect compared to
the profiles away from the corner as seen in Figure 6c and Figure 6d. The mean flow profile at the downstream TV3
location shows similar characteristics to the flow at TV2 location with a relatively higher velocity defect in the profile
at y = 5mm. Further downstream at x = 75mm where the secondary flow (see section C) is relatively well developed,
it starts affecting the mean primary flow which can be seen in the velocity profiles. The streamwise velocity profile at
y = 5mm (Figure 6e is seen to have a minimum point at about z = 8mm indicating that momentum transport occurs).

C. Mean secondary flow field

Contour plots of the transverse (in-plane) velocity components are shown in Figure 7 and Figure 8. Although the
streamwise velocity field at x = −100mm is fairly uniform, a study of the transverse velocity field reveals the presence
of a weak secondary flow in proximity of the corner as is seen in Figure 7a and Figure 8a. The V-component at these
locations is directed towards the corner in the immediate vicinity of the corner and then reverses direction away from
corner along the side-wall and bottom-wall. As we proceed downstream the magnitude of this negative V-region
initially increases at x = −50mm and then decreases at x = 75mm, however the size of the region increases as seen
from Figure 7c respectively, indicating a possible increase in spatial unsteadiness of secondary flows at these locations.

D. Large and small scale velocity fields

As can be seen from the original fields the flow near the walls is turbulent and characterized by small scale eddies. The
vector fields are decomposed into large scale and small scale fields by the use of a spatial averaging filter spanning
(24× 24 pixels) which is equivalent to a characteristic length of 3.65mm or δ99/2 at the location of TV1.

Instantaneous vector fields at the large scales obtained by decomposing the instantaneous flow field shown in Figure 4
are shown in Figure 9. The large scale swirling motion is more discernible from the in plane vector fields as compared
to the original fields (Figure 4). We can observe that as we go downstream the swirling motion in the instantaneous
field is stronger and larger. The background contour of the streamwise velocity component is smoother but similar to
the original field. The large scale flow at the most downstream location (TV4) is observed to be dominated by a strong
negative vortex which seems to be responsible for the momentum transport in the corner. A bulge of low momentum
region is observed stretching away from the side-wall towards the core flow from the location where this vortex is
drawing low momentum fluid from the near side-wall fluid flow. The instantaneous small scale velocity fields (Figure
10) associated with the described instant showed no discernible structure, but are characterized by a forest of small
scale vortices. At this time, analyses of the small scale fields is omitted.

Mean flow fields at different scales were obtained by averaging multiple uncorrelated instances at the corresponding
scales. The mean large scale velocity fields are shown in Figure 11. The mean large scale fields follow the same
general trend as the mean complete fields in Figure 5, however they are characterized by a thicker subsonic region
which is an artifact of spatial filtering near the wall used in decomposition. Mean small scale velocity fields are shown
in Figure 12. Comparing the amplitudes in Figures 11 and 12, it can be observed that the small scale fields are at
a much lower amplitude (less than 10%) as compared to the large scale velocity fields. The streamwise momentum
transport due to large scale secondary flows is however much more pronounced in the small scale velocity fields.
Pockets of negative streamwise small scale velocity component can be observed in Figures 12a and 12b along the
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side-wall at about z = 5mm and along the bottom-wall at about y = 10mm. These are the locations from where
the secondary flows draw the lower momentum fluid from near the walls towards the core flow. Further downstream
(Figure 12c) at the location of TV3 (x = 75mm) the regions of negative streamwise small scale velocities move away
from the corner with the pocket of negative streamwise velocity along the side-wall growing in size and strength. A
strand of positive streamwise velocity is observed in between the regions of streamwise negative velocity extending
away from the corner. This region corresponds to the momentum transport due to the large scale secondary flows from
the core towards the corner.

The mean large scale in plane velocity (VL,WL) fields have a similar structure with slightly weaker magnitudes with
respect to the complete fields (Figures 7 and 8). The mean small scale in plane velocity fields show no discernible
structure and are characterized by velocity amplitudes to the order of about 0.01U∞, which is within the uncertainty
of the measurements.

E. Vortex fields

Because the flow in the corner is dominated by heavy shear and strain, traditional Cauchy Stokes’ decomposition
of motion into symmetric part (shear) and anti-symmetric (vorticity) is insufficient. The shear and strain mask the
vorticity associated with vortex tubes and makes identifying the corner vortices difficult. Thus, a planar surrogate
of Triple Decomposition of Motion (TDM) developed by Kolar [29] was used to determine only the part of vorticity
associated with rigid-body rotation (ωRR), which makes identifying the vortex cores clearer.

1. Intantaneous vortex fields

Figure 13 shows the instantaneous rigid rotation vortex fields obtained from the instantaneous velocity fields shown in
Figure 4. As we can see no large scale distinctive corner vortex system discussed in the previous studies [4, 5, 1, 10, 9]
is observed in instantaneous fields. Instead, the flow within boundary layer near the corner is dominated by a forest of
vortices or vortex tubes if a complete 3D picture is considered. The vortices tend to spread away from the walls as we
proceed downstream due to boundary layer growth.

Applying TDM to the large scale velocity fields presents a clear picture of the large scale vortices present in the corner.
The large scale instantaneous rigid rotation vorticity fields are shown in Figure 14. The rigid rotation vorticity field
is now dominated by a few large scale vortices, the locations and direction of which resemble those described in the
previous studies (Section II). In the downstream planes of TV2 and TV3 where the secondary flow is relatively well
developed, a pair of anti-symmetric vortices are observed that convect the high momentum fluid from the core flow
towards the corner. In TV2 (Figure 14b) a large scale negative vortex belonging to the corner system as defined in
Section B is observed near the side-wall centered at about z = 6mm along with a positive corner vortex centered at
about y = 12mm along the bottom-wall. A similar layout can be observed in the TV3 plane, however the instance
presented shows a weaker positive corner vortex unlike the instance showed in Figure 3 showing a typical corner rigid
rotation vorticity field at TV3. Small scale rigid vorticity fields are comprised of a forest of smaller vortex cores similar
to the rigid rotation vorticity fields shown in Figure 13.

2. Mean vortex fields

Rigid rotation vorticity fields obtained from the complete mean flow fields of Figure 5 are given in Figure 15. It can
be observed that an anti-symmetric (with respect to sign) vortex system can be found conforming to the side-wall
(negative vortex) and the bottom-wall (positive vortex). Although this system has signs consistent with a canonical
corner vortex system, its location is fairly displaced from the corner. Moreover this system is geometrically asymmet-
ric, which may be due to the asymmetric nature of the wind tunnel. At the most upstream location of TV1, we can
observe from Figure 15a that a negative vortex exists along the side-wall at about z = 4mm while traces of positive
vortex exist along the bottom-wall around y = 6mm. As we proceed downstream to x = −50mm, it can be seen from
Figure 15b there is a slight increase in the strengths of the negative and positive vortices which remain fairly at the
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same location. At the location of x = 75mm the traces of negative vortex can be seen at about z = 5mm (15c) while
there exist only a few weak traces of the positive corner vortex. The general lack of strong corner vortices identified
by the averaging process is attributed to the unsteady nature of the vortex system that washes out the mean structure
of the vortex pair.

An alternative way to evaluate the average location of vortices is to compute the mean value of the instantaneous rigid
rotation vorticity fields (i.e., by averaging fields like that of Figure 14 rather than computing ωRR from the mean fields
of Figure 11 to obtain the fields of Figure 15). Fields obtained in this way are shown in Figure 16, but do not match
the vorticity fields computed from the mean flow (the TDM does not commute). We can observe from Figure 16a that
an anti-symmetric (both in sign as well as geometry) vortex system is likely to exist in the corner, but its structure thus
identified is not consistent with the canonical corner vortex pair. In fact the distribution of ωRR is not concentrated
in a well defined region, but it spreads over the entire corner region, although symmetry in the sign (negative above
and positive below the corner bisector) is maintained. We attribute this property to an inherent unsteadiness of the
corner vortex system. Marching downstream, it can be seen from Figure 16b that the anti-symmetric vortex system
has increased in size since the corner region occupied by ωRR has increased.

Mean vorticity field obtained by averaging rigid rotation fields of large scale velocity fields are shown in Figure 17.
The scale decomposition allow us to more clearly identify the existence of the corner vortex system. Distinct negative
and positive zones of vorticity associated with the corner system can be observed. In TV1 and TV2 (Figures 17a
& 17b) there exists a region of mean negative vorticity near the corner along the side-wall at about z = 3mm and
the positive vorticity associated with the corner system is found along the bottom-wall in the range y = 5 − 10mm.
Further downstream at TV3 (Figure 17c), it can be observed that the negative vorticity region associated with the corner
vortex system has grown in size which may indicate constrained spatial unsteadiness while the region associated with
the positive corner vortex has significantly decreased in size which may be due to increased unsteadiness.

3. Conditional sampling and corner vortex statistics

Centers of the corner vortices were determined as per described in section B for each instantaneous vector field after
the scale decomposition was applied. Conditional averaging of instantaneous (large scale) vector fields was conducted
in a two step process. First, an average field was constructed in a reference frame shifted to the center of the negative
or positive corner vortex; thus generating two mean fields, one as seen from the center of the negative corner vortex
and the other from the center of the positive corner vortex. Then, the resulting field was shifted back to the original
frame of reference by the average position of each of the two vortexes in the pair. These conditionally averaged vector
fields are shown in Figures 18, 19 and 20 for the three planes. The conditionally averaged fields provide a relative
measure of how the flow looks like around the corner vortex, its scaling and the average strength.

Figure 18a shows the average vector field in the vicinity of the negative corner vortex at x = −100 mm. The
rigid rotation vorticity and conventional vorticity fields associated with the vector field in Figure 18a are shown in
Figures 18b and 18c. The circular motion created by the negative corner vortex is well observed in the vector field.
The mean position of the vortex center at this location as observed from the instantaneous vector field statistics is
(ȳn, z̄n) = (2.63, 4.64)mm. Similar properties of the positive and negative corner vortex can be measured at different
data plane locations and are tabulated in Table 2. Note also that the process of conditionally averaging for the detection
of the positive or negative vortex reinforces only the intended vortex, the resulting conditionally averaged field still
maintain a signature, albeit weak, of the opposite vortex. As we proceed downstream we can see (Figure 19 and 20)
that both the corner vortices move away from the corner while their scales remain more or less constant with a slight
increasing trend in the streamwise direction which is also evident from Table 2.

The probability density functions (PDF) of the location of corner vortex centers are shown in Figure 21. The most
probable location of the positive corner vortex lies between the bottom-wall and z = 5mm. It moves away from
the corner along the bottom-wall in the downstream direction. The negative corner vortex has a high probability of
residing in the range of z = 0 − 5mm along the side-wall at the first two locations (TV1 and TV2), while at TV3 it
appears to become spatially unstable with a larger standard deviation. The PDFs of the corner bisector angle (θbis) and
the corner vortex separation distance (γ) are shown in Figure 22. It is worth noting that both the PDFs remain more or
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less the same at all three streamwise locations. The mean angle of corner bisector stays at about 40◦, which is a value
approximately equal to tan−1(yT /zT ), which is the angle of the diagonal of the rectangular cross-section of the test
section. The mean distance between the corner vortex pair stays constant roughly at 6.7mm.

F. Strain rates and vortex-induced momentum transport

In-plane strain rate components associated with the streamwise velocity are shown in Figure 23. The in-plane stream-
wise velocity gradients associated with the large scale fields follow a qualitatively similar but smoother pattern of
what shown in Figure 23. The in-plane streamwise velocity gradient contour plots are superimposed by iso-contour
lines of ωRRL

, with black lines representing the positive vorticity while white lines representing the negative vorticity.
It can be observed that in all three locations the regions of high positive ∂U/∂z are confined near the bottom-wall
and the thickness of these regions decreases towards the corner. A region of negative ∂U/∂z can be observed near
the side-wall (z = 2 − 5mm in TV1 and TV2 and around z = 4 − 10mm in TV3) in the same region where the
thickness of the region of positive ∂U/∂z along the bottom-wall starts to drop. It can be observed that mean large
scale negative corner vortex (white iso-contour lines) is seen to reside in this negative region. The negative corner
vortex convects lower momentum fluid away from the side-wall creating a decrease in the U−velocity as we traverse
the positive z−direction from the bottom-wall near the side-wall. This effect is observed as a dip in the U(z) profiles
of Figure 6e near the side-wall (y = 2.5 &5mm) and this produces a negative ∂U/∂z observed at the location of
the negative vortex in Figure 23h. A similar effect is observed with the positive corner vortex near the bottom-wall.
Since the ∂U/∂y field is positive at the location where ∂U/∂z is negative and vice versa, the product of ∂U/∂y and
∂U/∂z would identify the regions where momentum deficits occurs, refer to Figures 23c, 23f & 23i. To further explain
this observation, consider as an example the case of TV3 where the secondary flows are most developed, and which
presents the case of strongest vortex-induced momentum transport among the three planes. With reference to any ver-
tical line near the side-wall (y = 0− 5mm) in Figure 23i, the U−velocity profile (Figure 6e) increases with z until the
region with negative (blue) (∂U/∂y)(∂U/∂z) is encountered, then it decreases until the end of the region of negative
(∂U/∂y)(∂U/∂z). The deficit in the streamwise momentum is highest at the end of the blue region and at the start of
the positive (green/red) (∂U/∂y)(∂U/∂z) region which is located at about z = 8mm along the line y = 2.5mm. It
can thus be observed from Figure 6e that the streamwise velocity profile reaches a minimum at about z = 8mm and
this identifies the location where momentum transport away from the wall due to the vortex is the strongest.

G. Vorticity Production Fields

As described in section A, the vorticity production terms are decomposed into large, small and interscales. Most of
the vorticity production takes place in the large scales and interscale while the small scale production although of
comparable magnitude lacks structure and appears random. Thus only the large and inter-scale vorticity production
terms will be presented.

The vorticity production fields associated with large scale anisotropy are shown in Figure 24. It is observed that at
TV1 (x = −100mm) the field appears unstructured and weak as compared to the downstream planes where vorticity
production takes place around the regions of high turbulence fluctuations. Vorticity production due to interscale
anisotropy is stronger than that in the large scales and follows similar trend as can be observed in Figure 25.

The vorticity production caused by the cross diagonal components of large scale turbulence are shown in Figure 26. It
can be observed that these fields are of the same orders of magnitude as the P3L fields and are also primarily driven
by the sites of higher values of turbulent fluctuations. It is worth noting that the anisotropic vorticity production fields
and the fields of vorticity production due to cross diagonal turbulence terms are orthogonal to each other which was
also observed by Brundrett and Baines[10]. Similar to the P3 fields the contribution from the interscale terms is an
order of magnitude higher than the large scale terms.
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VI. Conclusions

A Mach 2.75 supersonic turbulent corner flow was experimentally investigated using stereo PIV. Three SPIV data
planes orthogonal to the channel walls and the principal flow direction separated by a few boundary layer thicknesses
were recorded. The data obtained was used for computing various parameters in order to provide an insight to the
turbulent structures which would be characteristic of such a flow field. It was found that,

• No form of symmetry was evident from observing either instantaneous, mean velocity fields or vorticity fields
obtained from mean velocity fields in the original form. Decomposing the vector fields into large and small
scales revealed a skewed symmetry, skewed possibly due to the nature of the nozzle or the aspect ratio of the
tunnel.

• The instantaneous flow fields consisted of a forest of vortices. Decomposing the velocity field into large and
small scales made it possible to define the corner vortices and study their behavior in the streamwise direction.
The average form of the corner vortices was made clear using conditional sampling.

• A statistical analysis revealed that the corner vortices move away from the corner while maintaining a similar
probability density function of the inter-vortical distance and the corner bisector angle. The mean corner bisector
angle at all the locations was found to be approximately equal to the characteristic angle of the channel aspect
ratio. The mean characteristic scaling of the corner vortices was found to be of the same order of magnitude at
all three locations with a slight tendency to increase downstream.

• The instantaneous vortex filaments possibly become increasingly unstable downstream as the Reynolds number
increases. This is evident from decreasing amplitudes and increasing scales of mean vorticity structures ob-
served in mean vorticity fields as well as the increasing standard deviations in the probable corner vortex center
locations in vortex center location PDF fields.

• The effect of vortical momentum transport was observed in the iso-tach lines of streamwise velocity and the in
plane strain rates associated with the streamwise velocity component.

• Gradients of large and inter-scale turbulence moments were found to be the major contributors to vorticity
production with inter-scale turbulent moments contributing the most. The vorticity production fields due to
turbulence anisotropy and the cross diagonal turbulence components were found to be orthogonal to each other
which corroborates results of Brundrett and Baines[10].
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Tables

Mach number M1
∞ 2.71± 0.1 Static Temperature T 3

∞ 119± 1K

Mach number M2
∞ 2.72± 0.03 Test section height4 69.3± 0.2mm

Free Stream velocity U3
∞ 593± 21m/s Test section width4 57.2± 0.1mm

Stagnation Pressure P 4
0 98.1± 1kPa Throat height4 18.4± 0.1mm

Stagnation Temperature T 4
0 294± 2K Throat to origin distance4 481.5± 1mm

Wall Static Pressure P (x = −85mm)4 4.15± 0.6kPa

1 Computed from a direct measure of stagnation and static pressure assuming isentropic expansion (κ = 1.4).
2 Computed from a direct measure of the ratio of stagnation pressure and test section pitot pressure (κ = 1.4).
3 Uncertainty estimated from error propagation rule.
4 Uncertainty includes both measurement accuracy and day-to-day variability.

Table 1. Experimental conditions and their variabilities.

x (mm) location (ȳp, z̄p) mm (ȳn, z̄n) mm λ̄p mm λ̄n mm

-100 (TV1) (8.42, 3.76) (2.63, 4.64) 3.09 2.58

-50 (TV2) (8.93, 4.01) (2.57, 4.92) 3.1 2.74

75 (TV4) (9.61, 5.16) (4.26, 5.67) 3.86 3.05

Table 2. Corner vortex properties at various streamwise locations.
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Figures

Figure 1. Proposed canonical flow structure(from Davis and Gessner [4]).
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Figure 2. Wind tunnel schematic diagram (not to scale).
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Figure 3. An instantaneous image in TV3 showing the vortex center detection and the pair of corner vortices as per definition. The
region bounded by blue dashed lines and the solid black line is the domain of existence for the negative corner vortex. Similarly the region
bounded by red dashed lines and the solid black line is the domain of existence for the positive corner vortex.
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Figure 4. Single instance of velocity field from 4a: TV1 (x = −100mm), 4b: TV2 (x = −50mm) and 4c: TV3 (x = 75mm). In plane
velocity components are represented by vectors while the out of plane component is shown by the contour map.
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Figure 5. Mean velocity field on 5a: TV1 (x = −100mm); 5b: TV2 (x = −50mm); and 5c: TV3 (x = 75mm). In-plane velocity
components are represented by vectors while the out-of-plane component is shown by the contour map. The white dashed line represents
the δ99 and the solid black line represents the contour of sonic velocity.
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Figure 6. Mean streamwise velocity component profiles from 6a: U(z) on TV1; 6b: U(y) on TV1; 6c: U(z) on TV2; 6d: U(y) on TV2;
6e: U(z) on TV3; 6f: U(y) on TV3.
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Figure 7. Mean V velocity components on different TV planes: 7a: TV1 (x = −100mm), 7b: TV2 (x = −50mm) and 7c: TV3
(x = 75mm).
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Figure 8. Mean W velocity components on different TV planes: 8a: TV1 (x = −100mm), 8b: TV2 (x = −50mm) and 8c: TV3
(x = 75mm).

y [mm] 

0 5 10 15

z 
[m

m
] 

0

5

10

15

u
L
 [

m
/s

]

0

100

200

300

400

500

600

a)
y [mm] 

0 5 10 15

z 
[m

m
] 

0

5

10

15

u
L
 [

m
/s

]

0

100

200

300

400

500

600

b)
y [mm] 

0 5 10 15

z 
[m

m
] 

0

5

10

15

u
L
 [

m
/s

]

0

100

200

300

400

500

600

c)

Figure 9. Instantaneous large scale velocity vector fields obtained by decomposing instantaneous fields in Figure 4 at 9a: TV1 (x =
−100mm), 9b: TV2 (x = −50mm) and 9c: TV3 (x = 75mm).
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Figure 10. Instantaneous small scale velocity vector fields obtained by decomposing instantaneous fields in Figure 4 at 10a: TV1 (x =
−100mm), 10b: TV2 (x = −50mm) and 10c: TV3 (x = 75mm).
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Figure 11. Mean large scale velocity vector fields from 11a: TV1 (x = −100mm), 11b: TV2 (x = −50mm) and 11c: TV3 (x = 75mm).
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Figure 12. Mean small scale velocity vector fields from 12a: TV1 (x = −100mm), 12b: TV2 (x = −50mm) and 12c: TV3 (x = 75mm).
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Figure 13. Instantaneous rigid rotation vorticity field of instantaneous vector fields shown in Figure 4 from 13a: TV1 (x = −100mm),
13b: TV2 (x = −50mm) & 13c: TV3 (x = 75mm).
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Figure 14. Instantaneous rigid rotation vorticity field obtained using TDM on instantaneous large scale vector fields shown in Figure 9 at
14a: TV1 (x = −100mm), 14b: TV2 (x = −50mm) & 14c: TV3 (x = 75mm).
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Figure 15. Rigid rotation vorticity field of mean vector fields shown in Figure 5 at 15a: TV1 (x = −100mm), 15b: TV2 (x = −50mm) &
15c: TV3 (x = 75mm).
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Figure 16. Ensemble average of instantaneous rigid rotation vorticity fields at 16a: TV1 (x = −100mm), 16b: TV2 (x = −50mm) & 16c:
TV3 (x = 75mm).
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Figure 17. Ensemble average of instantaneous rigid rotation vorticity fields obtained from large scale instantaneous vector fields at 17a:
TV1 (x = −100mm), 17b: TV2 (x = −50mm) & 17c: TV3 (x = 75mm).
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Figure 18. 18a: Mean flow field obtained by conditional averaging of large scale flow field at TV1 by shifting origin to negative corner
vortex center, 18b:TDM of 18a, 18c: Mean vorticity of 18a, 18d: Mean flow field obtained by conditional averaging of flow field by shifting
origin to positive corner vortex center, 18e:TDM of 18d, 18f: Mean vorticity of 18d.
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Figure 19. 19a: Mean flow field obtained by conditional averaging of large scale flow field at TV2 by shifting origin to negative corner
vortex center, 19b:TDM of 19a, 19c: Mean vorticity of 19a, 19d: Mean flow field obtained by conditional averaging of flow field by shifting
origin to positive corner vortex center, 19e:TDM of 19d, 19f: Mean vorticity of 19d.
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Figure 20. 20a: Mean flow field obtained by conditional averaging of large scale flow field at TV3 by shifting origin to negative corner
vortex center, 20b:TDM of 20a, 20c: Mean vorticity of 20a, 20d: Mean flow field obtained by conditional averaging of flow field by shifting
origin to positive corner vortex center, 20e:TDM of 20d, 20f: Mean vorticity of 20d.
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Figure 21. PDF of locations of corner vortex centers; 21a: Positive corner vortex center location at TV1, 21b: Negative corner vortex
center location at TV1, 21c: Positive corner vortex center location at TV2, 21d: Negative corner vortex center location at TV2, 21e: Positive
corner vortex center location at TV3 & 21f: Negative corner vortex center location at TV3.
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Figure 22. Probability density functions of 22a: Corner bisector angle & 22b: Corner vortex separation distance.
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Figure 23. Mean streamwise velocity in plane gradients and the product of the velocity gradients superimposed with contour lines of mean
rigid rotation vorticity at large scales, white:negative vorticity, black: positive vorticity at 23a, 23b & 23c: TV1; 23d, 23e & 23f: TV2 &
23g, 23h & 23i: TV3.
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Figure 24. Large scale vorticity production P3L fields at 24a: TV1, 24b: TV2 and 24c: TV3.
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Figure 25. Interscale vorticity production P3LS fields at 25a: TV1, 25b: TV2 and 25c: TV3.
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Figure 26. Large scale vorticity production P4L fields at 26a: TV1, 26b: TV2 and 26c: TV3.
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Figure 27. Interscale vorticity production P4LS fields at 27a: TV1, 27b: TV2 and 27c: TV3.
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