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A recently developed modal-based method that captures the geometric nonlinear ef-

fects that arise in the regime of large deformations of wing-like structures is applied to

the modeling of a highly flexible beam structure and a 3D wingbox configuration. The

method features quadratic and cubic stiffness terms and calculates the nodal deformation

field not only by normal modes but also by additional mode components up to fourth or-

der. Thus, both a nonlinear force-displacement relationship and a geometrically nonlinear

displacement field are accounted for. Static and dynamic results for the two configurations

are presented together with results from a commercial finite element solver and from the

UM/NAST aeroelastic solver from the University of Michigan. The numerical study high-

lights the capability of the method to capture the nonlinear effects and demonstrates its

power to model a 3D wingbox structure made of shell elements with anisotropic material

characteristics.

I. Introduction

T
here is a significant interest in the development of future passenger transport aircraft with lower emis-
sions and higher fuel efficiency. One of the key design features that supports achieving such goals is

longer span wings, where induced drag is reduced. As the span increases along with the wing’s aspect ratio,
it leads to higher flexibility. This geometric effect becomes inevitable as light, high performance structural
construction is used. An increased structural flexibility is advantageous when dealing with external dis-
turbances, such as gust encounters, due to the reduced rigid body acceleration. However, it brings several
challenges related to the modeling, analysis, and design and it becomes inevitable that the geometrically
nonlinear structural nature of the vehicle be taken into account in the earliest phases of design.1

Industry-standard aeroelastic simulation frameworks are typically based on a modal description of the
airframe where eigenvectors and corresponding eigenvalues in the frequency range of interest are used to
calculate structural deformations in a linear way. These have limited if any applicability for the problem
of geometrically nonlinear aeroelasticity, where the emphasis turns to time-domain solutions and coupled
aeroelasticity/flight dynamics analysis (due to the coupled nature of the rigid body and elastic response of the
aircraft). Geometrically-exact beam-based formulations coupled with appropriate unsteady aerodynamics
make the state of the art in solution frameworks for this type of problem.2 On the other hand, beam
formulations may not be sufficient to model complex structural details of transport aircraft wings and
the use of nonlinear FE codes for aeroelastic simulations can become very costly, especially for dynamic
simulations.

A recently developed method (refered to as Enhanced Modal Approach) extends the classical modal
approach towards large deformations.3 This method uses a higher order strain energy formulation to consider
nonlinear force-displacement relationships and higher-order mode components for the reconstruction of a
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geometrically nonlinear displacement field. Both enhancements are derived by Taylor series expansions;
a series of static, nonlinear structural simulations of the structure considered is necessary to identify the
higher-order components. Once these components are determined, static and dynamic simulations with the
method can be done with a computational effort which is only slightly increased compared to the classical
modal approach.

The ability to model complex, highly flexible 3D FEM structures statically and dynamically is seen as
the ultimate goal of the enhanced modal approach. A model of this type is shown in Fig. 1 as a motivating
example. A step by step approach must be followed to achieve this goal. Thus the method proposed is
applied to different structural test cases with increasing complexity to identify possible issues and improve
the method gradually.

X

Y
Z

node clamped

A-set nodes

Stringer

Figure 1. 3D FEM model of a transport aircraft wing built with spars, ribs, stringers, and skins as a motivating test
case for future application of the method proposed.

This work presents applications of the method to a beam type structure and a more complex, slender 3D
wingbox modeled by shell elements made from fiber reinforced material with anisotropic characteristics.

Methods for the reduced order modeling (ROM) of nonlinear structures have been adressed by several
authors. Mignolet and co-workers have given detailed descriptions for the derivation of static and dynamic
nonlinear structural governing equations including quadratic and cubic stiffness coefficients. The field of
application ranges from plate structures to curved beams and the modeling of a complex UAV wing.4, 5, 6

Kuether and Allen describe methods based on nonlinear normal modes (NNMs) to simplify large, complex
structures. NNMs basically describe the resonant frequency and response of a structure as a function of
response amplitude or energy.7, 8 Two substructuring methods that can be used in conjunction with detailed
finite element models are presented by Kuether,7 where the second one is based on creating a reduced
order model of a structure by applying a series of static loads to a nonlinear FE model. Quadratic and
cubic stiffness terms are used to consider nonlinear force displacement behaviour and coupling of individual
modes.

As will be shown, the kinematically nonlinear displacement field present in large deformations of wing-like
structures can be reconstructed by shape functions of higher order. The method of quadratic components was
successfully applied by Segalman and Dohrmann to improve the kinematical and dynamical description of
rotating structures (beams) undergoing large displacements.9, 10 This method is also used by van Zyl for the
calculation of T-Tail flutter.11, 12 In the approach presented, the concept of higher-order modes is further
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developed to better reconstruct nonlinear, large displacements. Higher-order stiffness coefficients derived
here from a higher-order strain energy formulation are used to represent a nonlinear force-displacement
behaviour.

II. Derivation of the Enhanced Modal Approach

The derivation of the enhanced modal approach is given in detail in Ref.3 and recapitulated in a more
compact form in the following.

Compared to the classical modal approach, the proposed method is based upon considering a nonlinear
force-displacement relationship by quadratic and cubic stiffness terms and a geometrically nonlinear dis-
placement field based on higher-order mode components up to fourth order. Furthermore, the generalized
forces are dependent on the state of deformation and the nodal force field applied.

II.A. Static formulation: Higher-order strain energy

The total potential energy of an elastic body U consists of the sum of the total strain energy U and the
potential energy of the applied loads V . This statement is expressed as:13

π = U + V . (1)

Assuming linear elastic material behaviour (Hooke’s law), and neglecting the influence of temperature, the
total strain energy U in the body is given as (here and what follows, the Einstein notation is used):

U =
1

2

∫

V

τijǫij dv (i, j = 1, 2, 3) , (2)

where τij and ǫij are the stress and strain component pairs, respectively. The work done by the applied
loads V can be expressed as:

V =

∫

V

Bi ui dv +

∫

S

T
(ν)
i ui ds , (3)

where Bi represents the components of the applied body forces, ui the components of the displacement field,

and T
(ν)
i denotes the traction vector applied on the body surface.

Introducing a variation of both the total strain energy and the external work yields:

δπ = δ(U + V ) =

∫

V

τij δǫij dv −

∫

V

Bi δui dv −

∫

S

T
(ν)
i δui ds . (4)

Invoking the Principle of Minimum Total Potential Energy, i.e., δπ = 0, yields the variation of the total
strain energy equals the negative variation of the external work:

δU = −δV . (5)

Now the total strain energy, Eq.(2), is assumed to be a nonlinear and continuously differentiable function of
a scalar value qi of a number of generalized cordinates, m, and expanded in a Taylor series up to the fourth
order centered at zero (since the internal energy is zero for zero deformation):

U(q) =
1

2!

m
∑

i=1

m
∑

j=1

∂2U

∂qi ∂qj
qi qj

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂3U

∂qi ∂qj ∂qk
qi qj qk

+
1

4!

m
∑

i=1

m
∑

j=1

m
∑

k=1

m
∑

l=1

∂4U

∂qi ∂qj ∂qk ∂ql
qi qj qk ql + h.o.t. (6)
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Using Castigliano’s first theorem and applying a differentiation with respect to q centered at zero yields
a governing equation of the structure as a function of q.13 This governing equation comprises quadratic and
cubic stiffness dependencies and thus accounts for a nonlinear force-deformation behaviour:

∂U

∂qp
=

m
∑

i=1

∂2U

∂qi ∂qp
qi

+
1

2!

m
∑

i=1

m
∑

j=1

∂3U

∂qi ∂qj ∂qp
qi qj

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂4U

∂qi ∂qj ∂qk ∂qp
qi qj qk + h.o.t. (7)

Introducing the definitions pGn for the partial derivatives in Eq.(7), the following equation in the pseudo-
generalized coordinates is obtained and used as the basis for the method:

pGi
1 qi + pGij

2 qiqj + pGijk
3 qiqjqk = Qp (p = 1, . . . ,m) (8)

Here the summation convention is used again. The idea of the proposed method is to take the pGn stiffness
matrices as generalized stiffnesses and the q as generalized coordinates. The stiffness parameters Gn can be
determined by polynomial fitting or numerical differentiation.3

II.B. Static formulation: Higher-order deformation reconstruction

The second extension is the reconstruction of the geometrically nonlinear displacement field. As mentioned
above, the nonlinear static FE analysis excites nonlinear terms in the strain energy, but also a nonlinear
displacement field.

In this work, the nodal deformation field is expanded in a Taylor series centered at zero (similar to the
strain energy) which is truncated after the fourth term:

u(q) =
m
∑

i=1

∂u

∂qi
qi (9)

+
1

2!

m
∑

i=1

m
∑

j=1

∂2u

∂qi∂qj
qi qj (10)

+
1

3!

m
∑

i=1

m
∑

j=1

m
∑

k=1

∂3u

∂qi∂qj∂qk
qi qj qk (11)

+
1

4!

m
∑

i=1

m
∑

j=1

m
∑

k=1

m
∑

l=1

∂4u

∂qi∂qj∂qk∂ql
qi qj qkql + h.o.t. (12)

Partial differentiation of the displacement field defined in this way with respect to the generalized coordinates
and substitution similar as above for the strain energy yields:

pΦ =
∂u

∂qp
= pΦ0 +

pΦi
1 qi +

pΦij
2 qiqj +

pΦijk
3 qiqjqk (13)

The term pΦ0 can be seen as the equivalent of the structure’s normal modes.

II.B.1. The generalized forces and the final governing equation

Considering Eq.(8), the forcing term of the structure’s governing equation consists of the generalized forceQp.
Applying the principle of virtual work and the Taylor series expansion of the higher order mode components
results in an extension of the generalized forces. For simplicity, the approach described by van Zyl is followed
here and only the linear and the quadratic mode shape components are considered for the virtual work:12

δV = δuTf , (14)
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where f denotes an arbitrary nodal force field. Expansion of the virtual physical displacements δu using the
linear and the quadratic mode shapes yields:

δV = δqTp

(

pΦ0
T + pΦi

1

T
qi

)

f . (15)

Thus the generalized forces are given as:

Qp = pΦ0
T
f + pΦi

1

T
f qi . (16)

Combining Eq.(8) and (16) yields:

(pGi
1 −

pΦi
1

T
f ) qi +

pGij
2 qi qj +

pGijk
3 qi qj qk = pΦ0

T
f . (17)

Eq.(17) is the static governing equation of the enhanced modal approach. Compared to the classical modal
approach, it can be seen that the pGi

1 term is amended by the product of the transpose of the quadratic mode
component matrix and the force field. This additional stiffness parameter is proportional to the force field
applied to the structure and induces a coupling of the otherwise (in the linear sense) uncoupled eigenvectors.

Following the solution of Eq.(17), the nodal deformation field is reconstructed as function of the gener-
alized coordinates q:

u(q) = pΦ0 qp +
pΦi

1 qpqi +
pΦij

2 qpqiqj +
pΦijk

3 qpqiqjqk , (18)

where the sum is taken again over repeated indices.

II.C. Dynamic formulation

The dynamic formulation is obtained by adding inertia terms to Eq.(17). The governing equation is then
given as (neglecting velocity-dependent damping forces for simplicity):

M q̈i +
(

pGi
1 −

pΦi
1

T
f
)

qi +
pGij

2 qi qj +
pGijk

3 qi qj qk = pΦ0
T
f , (19)

with M denoting the generalized mass matrix.

III. Numerical Studies

The results of selected static and dynamic simulations obtained with the method described are presented
in the following sections. Furthermore, the test case presented here was modeled with University of Michi-
gan’s UM/NAST solver. This toolbox provides excellent reference data in terms of nonlinear structural
dynamics and coupled aeroelastic simulations.14

III.A. Cantilever Beam Test Case

The first test case consists of a highly flexible beam model with a length of 16 meters. It is discretized by 32
beam finite elements and 33 nodes. The moments of inertia vary quadratically along the beam axis to obtain
bending deformations with constant curvature. The layout of the model is shown in Fig. 2. Displacement of
node 33 (outermost node) is used to show the behaviour of the beam and the method for dynamic loadings.
For all simulations with the proposed method, only seven selected mode shapes were used. Thus the higher

BEAM element #1 (Node1−Node2)

y

z

x

(0.35, 0., 0.)Node 1 (clamped)
(0.35, 16., 0.)

Node 33

Figure 2. 16m beam FE model, 33 Nodes, clamping at Node 1

order stiffness matrices and mode components (G and Φ, respectively) were calculated for these modes. The
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selected modes were found to be sufficient to obtain convergence in terms of the static deformation field;
also the computational effort is reduced when considering less modes especially for the dynamic simulations.
The values of pGi

1 and pΦi
1 reconstructed with the method summarized here and described in Ref. 3 are

very close to the corresponding values from the natural eigenvalues of the beam. Table 1 lists the types and
frequencies of the 10 lowest mode shapes of the beam model obtained from the finite element modal analysis.
Additionally, the eigenvalues from the reconstruction method are given for the seven selected modes. The
second, third, and fourth in-plane bending mode were omitted.

Table 1. Eigenvalues of the ten lowest modes of the beam model; values were obtained from a FE analysis and from a
polynomial reconstruction method.

Mode Type of mode Eigenvalue FE analysis [Hz] Eigenvalue reconstructed [Hz]

1 first bending 0.595 0.595

2 first bending in-plane 1.190 1.190

3 second bending 2.705 2.705

4 second bending in-plane 5.407 -

5 third bending 6.956 6.956

6 fourth bending 13.358 13.358

7 third bending in-plane 13.893 -

8 fifth bending 21.908 21.908

9 fourth bending in-plane 26.651 -

10 first torsion 27.132 27.132

III.B. Static simulations and validation of the beam test case with nonlinear data from
UM/NAST

A constant tip force in the z direction was applied at the outermost node of the beam with assumed values
between 500 N and 3000 N to simulate a constant static loading. The results of this test case are presented
in Fig. 3. No follower forces and no gravity have been considered in the static solutions. In a full nonlinear
solution sequence (considering incremental loads), the force applied to the beam is increased stepwise and
equilibrium is ensured in every step until the specified load is applied. In the solution sequence used for
the enhanced modal approach, the specified value of the force is applied always onto the undeformed initial
configuration of the beam. The values were chosen to excite deformations of the beam beyond the limit of
structural linearity. This can be seen in terms of the displacement of the beam in z and in y directions. The
linear FE solution yields too large displacements in the z direction and of course omits the displacement
in the y direction completely. The results of the new method are in good agreement with the nonlinear
reference data from UM/NAST, and the displacement in the z and in the y directions are captured well up
to the tip force of 2500 N. Differences between the enhanced modal approach and the nonlinear reference
data become larger starting at the tip force of 3000 N. For this force, the bending deformation in the z
direction reaches a value of 25% of the span of the beam. An interesting point is that the nonlinear deforma-
tion fields are “on top” of the linear one but with the foreshortening effect keeping the beam length constant.

III.C. Dynamic simulations and validation of the beam test case with nonlinear data from
UM/NAST

The dynamic validation of the method was done applying a harmonically oscillating force onto the outermost
node of the beam. Again, no structural damping, no follower forces, and no gravity were considered. The
initial conditions for the generalized displacements and the generalized velocities were set to zero. The results
are shown in Fig. 4. Despite a good overall agreement between the UM/NAST results and the results of
the proposed method, differences occur both for the deformation in the z and in the y direction. It must be
mentioned that the results of the proposed method were calculated including only five bending modes.
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y, m

z,
 m

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10FE Linear
Proposed Method
UM/NAST nonlinear
Undeformed Beam

Fz

12 13 14 15 16

2.5

3

3.5

4

4.5

y,
 m

-0
.8

-0
.4

0

Figure 3. Comparison of the static displacement fields obtained by different methods for forces with values of 500,
1000, 1500, 2000, 2500, and 3000 N applied along the z direction at the end of the beam.

III.D. Static and dynamic aeroelastic simulations and validation with UM/NAST results

For the enhanced modal approach, a vortex-lattice solver was used that provides the aerodynamic forces. The
solver is part of the in-house aeroelastic toolbox Eques and implemented such that the aerodynamic panels
can undergo any kind of translation and rotation due to elastic deformations. The force transfer from the
aerodynamic panels onto the structural grid is done via the transposed of a coupling matrix.15 Transforming
aerodynamic forces into equivalent forces on the beam’s nodes requires the calculation of forces and moments.
In this case, another approach was used to avoid the calculation of moments. A so-called coupling model
was built which uses rigid-bar elements that are connected to a beam node at one side each. The other end
of the rigid-bar elements are used as coupling points to where the aerodynamic forces are transferred.

The coupling approach described and part of the vortex-lattice grid are depicted in Fig. 5. To obtain
deformations of the coupled aeroelastic system ranging from the linear to the nonlinear regime, the root angle
of attack (AoA) was varied within the range of one to five degrees in steps of one degree. UM/NAST uses
a strip-theory aerodynamic model. However, UM/NAST enables the correction of the static force produced
by each strip by considering a weighting factor that accounts for wingtip effects. The correction factors
for UM/NAST were taken from the lift distribution given by the vortex-lattice solver for the rigid wing.
This correction method results in identical aerodynamic forces for the vortex-lattice and the UM/NAST
aerodynamic solvers for the undeformed wing.

Results of the static coupling simulations are shown in Fig. 6 in terms of the bending deformations of
the beam. For this test case, results from Nastran SOL144 solution sequence (static aeroelastic) are also
presented. The level of difficulty is increased for these simulations compared to the static simulations with a
constant force in the z direction, since the forces on the nodes now have contributions along the y direction as
well. The bending deformation from the proposed method agrees well with the results from UM/NAST. At
higher angles of attack, the difference between the linear and the nonlinear solutions becomes larger and the
beam tends to have a reduced deformation in the UM/NAST results. This can be seen as realistic, since the
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Time t, s

z,
 m

0 5 10 15 20-4

-2

0

2

4 FE Linear
Proposed Method
UM/NAST nonlinear

y,
 m

-0.6

-0.4

-0.2

0

Figure 4. Comparison of the unsteady displacement field obtained by different methods for a sinusoidal tip force applied
at the end of the beam. Force amplitude = 2000 N, frequency = 1.0 Hz.

X

Y

Z

VL panel

Coupling point

RBE2 element

Beam structure
Node 33

Figure 5. Depiction of the coupling approach: Aerodynamic forces are transformed onto the structure’s coupling points
and then transferred implicitly to the beam’s nodes via rigid-bar elements.

forces are always applied onto the undeformed structure (in the linear and the enhanced modal approach),
but the enhanced modal approach considers the “in-plane” force due to the quadratic mode component.

The unsteady version of the VL solver, named UVL in the following, uses a wake-stepping method to
account for the unsteady circulation on body and wake panels.16 An implicit BDF scheme is applied to
march the solution forward in time. The timestepsize for all unsteady simulations was set to 0.001s, which
was found to be sufficiently small for a good resolution of the gust in terms of aerodynamic forces. Unsteady
reference solutions were obtained by Nastran’s SOL146 sequence. This frequency domain method allows
the specification of gusts with prescribed disturbance velocities in the z direction and corresponding gust
gradients. An inverse Fourier transformation is applied to the frequency domain results within Nastran to
obtain time domain results in terms of displacements of selected structural nodes. Results of the dynamic
coupled simulations are presented in Fig. 7 as function of time for the z, the y, and the x displacements
at the end of the beam. The gust disturbance velocity in the z direction, Ug, and the gust gradient, Hg,
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y, m

z,
 m

0 4 8 12 16

0

0.5

1

1.5

2

2.5

3

3.5

Nastran SOL144
VL+FE Linear
VL+Proposed Method
UM/NAST nonlinear
Undeformed Beam

AoA=1°

2°

3°

4°

5°

12 13 14 15 16
1.5

2

2.5

3

3.5

Figure 6. Comparison of static coupling results calculated by different methods.

were chosen to excite deformations in the nonlinear regime. Here, Ug was set to 20m/s and Hg to 5m,
which yields a maximum displacement of about 22% of the span of the wing. From an aerodynamic point of
view, this gust disturbance velocity is extremely large, but no stall effects were taken into account to obtain
high unsteady aerodynamic forces for high structural excitation. Larger differences are obtained between the
three solution methods. The proposed method yields less displacement in the z and in the y directions at the
wing tip. Both the displacement in the y and in the x directions are not considered by the Nastran solution.
The gust leads to a strong excitation of in-plane displacements (in the x direction), which are considered by
UM/NAST and the UVL in combination with the proposed method. Higher order oscillations are part of
the UM/NAST solution in that direction of deformation, but not in the solution of the proposed method.
This can be explained with the fact that only the first and no higher in-plane bending modes were used in
the modal basis for the proposed method.

III.E. High aspect ratio composite wingbox test case

The second test case consists of a 20-m span, generic wingbox configuration with a sweep angle of 1.8
degrees composed of quadrilateral shell elements. This three-dimensional wingbox resembles a real aircraft
wing much more realistically and is built from three spars, ribs, as well as upper and lower skins. Anisotropic
materials (CFRP) are used for all elements of the wing by means of Nastran MAT2 cards. Furthermore,
the thicknesses of the shell elements are reduced along the wingspan to obtain even curvature in bending
deformation for typical aerodynamic loadings. No additional discrete mass elements were used for this test
case. The density of all materials is 2700 kg/m3, the total mass of the wingbox is 489 kg. The model
contains 1950 nodes, 2005 elements, and 254 different anisotropic materials. It was generated using the
in-house model generator ModGen which generates parametrized structural and aerodynamic models to be
used with Nastran’s structural and aeroelastic solution sequences.17 The outer shape of the wingbox is
defined by a NACA 4415 airfoil at the wing’s root and a NACA4412 airfoil at the wing’s tip. The model is
shown in explosion view with selected details in Fig. 8.

Higher-order stiffness terms and mode components were calculated for eight modes. The pGi
1 and pΦi

1

terms were reconstructed with the method described in Ref. 3. The reconstructed values are close to the
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Figure 7. Comparison of 1-cos gust encounter simulation results calculated by different methods.

corresponding natural eigenvalues of the structure but with larger differences compared to the beam test
case. Table 2 lists the types and frequencies of the eight selected mode shapes of the wingbox model obtained
from the finite element modal analysis and from the reconstruction method, the corresponding mode shapes
are plotted in Fig. 9.

Table 2. Eigenvalues of eight selected modes of the generic wingbox model; values were obtained from a FE analysis
and from a polynomial reconstruction method.

Mode Type of mode Eigenvalue FE analysis [Hz] Eigenvalue reconstructed [Hz]

1 first bending 0.884 0.880

2 first bending in-plane 3.218 3.135

3 second bending 3.602 3.575

4 third bending 8.755 8.677

5 fourth bending 16.18 16.109

6 fifth bending 25.543 25.612

7 first torsion 28.302 28.386

8 sixth bending 36.171 37.411

III.F. Static simulations and validations with nonlinear Nastran results

First, a constant force in the z direction was applied at the outermost rib’s nodes (at y=20m) with assumed
values between 1000 N and 7000 N to simulate a static tip loading. The results are presented in Fig. 10.
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Figure 8. Layout of the wingbox made from CFRP shell elements and material thicknesses.

X

Y

Z

Figure 9. Selected normal mode shapes of the wing box test case (corresponding eigenvalues are given in Table 2).

Again, no follower forces and no gravity have been considered and the force is applied always onto the
undeformed initial configuration of the wingbox. In this case, the values were chosen to excite deformations
of the wing beyond the limit of structural linearity (up to almost 30% of the span), as can be seen in terms
of the displacement in z and in y directions. As for the beam test case, the linear FE solution yields too
large displacements in the z direction and completely omits the displacement in the y direction. The results
of the enhanced modal approach are in fair agreement with the nonlinear reference data from Nastran also
for this test case. Differences between the nonlinear Nastran solution and the proposed method become
large for the last two force fields. This shows the limit of this method and demonstrates that the method
should be seen as an enhancement of the linear solution, roughly in the deformation regime between 10%
and 20% of the span for this test case. It must be mentioned that the upper skins of the wingbox (the skins
under compression) next to the wingroot start buckling if higher loadings (in the z direction) are applied.
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Figure 10. Comparison of the static displacement fields obtained by different methods for tip forces with values from
1000 to 7000 N applied along the z direction at the outermost rib’s nodes of the wingbox.

This behaviour can be simulated by the full nonlinear Nastran solution only since no nonlinear structural
solutions including buckling were used for the calculation of the higher-order stiffness and mode components.

The next test uses constant forces at each FE node in the z direction with an elliptical distribution along
the wingspan. The objective is to resemble a loading which is typically obtained from aerodynamic forces.
The magnitudes were again chosen to show the limits of the proposed method. The results of the simulations
are presented in Fig. 11. As for the first test of the wingbox, the nonlinear reference solution from Nastran
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Figure 11. Comparison of the static displacement fields obtained by different methods for different elliptical force fields
applied along the z direction at each node of the wingbox.

and the enhanced modal approach solution show a fair agreement regarding the displacements in the z and
in y directions. The limit for the proposed method is shown to be at about 20% deformation with respect
to the span of the wingbox.

A more interesting comparison is given if the elliptical force field is tilted around the local x-axis and thus
has a component in y direction. The proposed method is able to consider this force field due to the quadratic
mode components and the deformation and force dependent linear stiffness term, cf. Eq.(17). The result of
this comparison is presented in Fig. 12, where the forces in the z direction are tilted in ±45 degrees but the
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magnitudes are kept the same. Overall displacements in the z direction are reduced for both the positive and
the negative tilt angles. The linear FE solution shows large differences to the respective nonlinear results,
though, because the in-plane component of the force field (in the y direction) has no effect since it acts in
the local axial direction of the structure.
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Figure 12. Comparison of the static displacement fields obtained by different methods for different elliptical force fields
with components in z and y direction applied at each node of the wingbox. Forces are tilted from positive z direction
by the angle given in the legend.

III.G. Static aeroelastic simulations and validation with results from MSC Nastran

Static coupling simulations were done to evaluate the potential of the method presented in terms of large
deformations excited by aerodynamic forces. Here, nonlinear aerodynamic forces with respect to structural
deformations are considered. In contrast to the doublet-lattice method, which is one of the most commonly
used aerodynamic methods in aeroelasticity, the vortex-lattice aerodynamic model allows unlimited rotations
and translations of the aerodynamic panels and calculates aerodynamic loads based on the current panel
geometry. The wing is uncambered (for easier comparison with Nastran) and discretized with 64 spanwise
panels and 16 chordwise panels. Its aspect ratio is 25. No specific coupling model was built for the wingbox,
but all FE nodes were used to calculate a coupling matrix for force transfer and deformation interpolation.

Aeroelastic results for validation of the method were calculated using Nastran SOL144. A wing with
the same geometry and equal panel discretization as the VL-grid was built for Nastran. For the transfer of
forces and the interpolation of displacements, a SPLINE1 method was used. Since Nastran uses a vortex-
lattice method for static aeroelasticity and the spline definitions are similar for both methods, the results are
expected to be identical in the linear regime (small deformations). The VL model and a sample aerodynamic
solution in terms of the pressure coefficient difference is shown in Fig. 13.

The first aeroelastic comparison is shown in Fig. 14 in terms of the deformations as function of the
root angle of attack. Both the VL solver and the Nastran solution (SOL144) are based on incompressible
aerodynamics (the Mach number in Nastran is therefore set to zero in the corresponding aerodynamic card).
The dynamic pressure is 3750 Pa. Both the Nastran and the VL solution in combination with a linear
structural solution yield comparable results —if not exactly the same —for all angles of attack applied. The
difference is most likely to come from the solution process. The VL aeroelastic solution is a static coupling
process in which aerodynamic forces and structural deformations are converged iteratively. However, two
effects are involved that act against each other. First, the increase in the panel area due to the linear
structural solution, shown in Fig. 15, and second, the tilting of the aerodynamic lifting forces which results
in a component in the y direction. The deformations of the nonlinear solution, which was obtained by static
coupling of the VL solver with Nastran’s SOL400 sequence, and the deformations of the proposed method
show good agreement. Differences become significant starting at tip deflections of about 25%.
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Figure 13. Vortex Lattice aerodynamic model of the wingbox with ∆Cp distribution (incompressible solution, dynamic
pressure=3750Pa, AoA=1deg).
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Figure 14. Comparison of static coupling results calculated by different methods.

Structural loads will be discussed in addition to deformations to evaluate the proposed method from a
sizing point of view. This will answer the question of how deformations influence structural loads. Therefore,
the forces and moments at the wing root with components in x, y, and z directions are compared as function
of the angle of attack at the wing root in Fig. 16. Large differences between the two linear and the two
nonlinear solutions are obtained for the shear force Fz at the wing root. The proposed method is in good
agreement with the nonlinear reference solution, although it yields slightly higher loads (which can be taken
as conservative). The Nastran SOL144 results show no forces in x and y directions due to the calculation of
the aerodynamic forces. The VL solution calculates the induced drag, though. The loads Fx agree between
the three VL solutions, but the forces from the VL and linear FE solution in the y direction show large
difference. This can be explained with the increase in the surface area, as shown in Fig. 15. As expected,
good agreement is given between the moments at the wing root around the y and z axes. It must be
mentioned that Fx is negative and thus Mz is positive due to the fact that in the body fixed system, the lift
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Figure 16. Summed forces in x, y, and z directions, moments at x, y, and z axes at the wing root as function of angle
of attack.

force has a (positive) component in x direction. The moment around the y axis is negative due to the slight
sweep back of the wing. Most important is the comparison of the wing root bending moment Mx. Here, the
VL and linear structural solution yields a much higher bending moment compared to the nonlinear and even
to the Nastran solution. The tilting of the aerodynamic force vectors, as is considered by the VL solution,
keeps them perpendicular to the wing’s panels and thus leads to higher bending moments along the wing
span and at the root. However, the increase in panel area additionally increases this bending moment. The
aerodynamic forces from the Nastran solution only have a component in the z direction, thus lowering the
bending moment Mx even if the panel area is increased. The bending moment from the nonlinear Nastran
solution and the proposed method are in fair agreement, again the enhanced modal approach yields larger
values. The most important conclusion from the loads point of view is that an aerodynamically nonlinear
solution in terms of displacements (such as the one obtained from the VL method) should not be used in
combination with a linear structural solution. This overestimates the bending moment Mx as discussed
above.

III.H. Dynamic aeroelastic simulations and validation with results from MSC Nastran

Results and validations of different dynamic solution methods are presented in the following for the same
model. Unsteadiness is introduced by means of unsteady boundary conditions, in this case by a vertical
disturbance velocity that superimposes the steady uniform flow field.

The first unsteady test case consists of a 1-cos type gust encounter. The wing is initially at rest, i.e., no
steady state deformation is used as initial condition. This is realized in the unsteady VL solution by simply
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setting the angle of attack to zero degree (the wing’s airfoil is uncambered). The uniform flow velocity is set
to 50m/s, the gust disturbance velocity is 14m/s, and the gust gradient 14m. It must be mentioned that
no stall effects are modeled in the UVL solver. The maximum of the time dependent angle of attack during
the gust encounter reaches comparatively high values due to the high gust velocities (which were chosen
to excite large deformations). This would eventually lead to flow separation from an aerodynamic point of
view, but this effect is neglected here. The results of three different methods (Nastran SOL146, UVL and FE
linear, and UVL and proposed method) are compared in terms of the time dependent displacements of four
selected structural nodes. These nodes are located at y=5m, 10m, 15m, and 20m on the upper surface of
the wing, as shown in Fig. 17. Unfortunately, no fully nonlinear results are available for this comparison. It
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Figure 17. Points on the wing’s upper surface for which time dependent displacements will be presented.

is intended to couple the UVL solver to Nastran SOL400 in the future. Results of the first unsteady test case
are presented in Fig. 18. As can be seen, the Nastran and the linear UVL with the linear structural solution
are in good agreement with slightly higher deformations in the z direction for the UVL results, similar as for
the static coupling results. The motion of the wing is governed by low frequency structural modes in these
results. The proposed method yields lower deformations in the z direction and shows displacements in the y
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Figure 18. Displacements of four structural nodes as function of time of 1-cos type gust encounter. Results from gust
with disturbance velocity of 14m/s, and gust gradient of 14m.
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direction, as expected. Deformations of this test case reach about 28% for the linear solutions, the proposed
method reaches about 26% with respect to the span of the wing. The time dependent motion of the nodes
is generally in good agreement among the three results, besides the differences in the displacements due to
the different kinematical relationships.

The second unsteady test case uses the same vertical gust velocity as before, but the gust gradient is
reduced to 9m. The goal is to excite higher frequency components in the solution. The results are given
in Fig. 19. Nodal deformations are lower for this test case as expected, the maximum tip deflection is
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Figure 19. Displacements of four structural nodes as function of time of 1-cos type gust encounter. Results from gust
with disturbance velocity of 14m/s, and gust gradient of 9m.

about 19% of span. The difference between the linear solutions is very small, and the proposed method
yields slightly less displacements in the z direction but accounts for the foreshortening effect. A closer look
at the time dependent generalized coordinates gives insight into the contribution of the individual modes
to the unsteady deformation of the structure. Fig. 20 shows that the first bending mode has the largest
contribution, followed by the second and the third bending modes. It is interesting to mention that the UVL
solver considers induced drag and thus excites the first in-plane bending mode (mode two in Fig. 20) as the
gust passes the wing which is only barely damped.

Another test case to demonstrate the power of the enhanced modal approach is given by the simulation
of a lateral gust, i.e., the gust disturbance velocity is in the positive or negative y direction. This test case is
comparable to the steady structural test case in which the force field originally along the z direction has been
tilted to get components in the y direction, cf. Fig. 12. The gust of the next test case is again of 1-cos shape,
its velocity is 14m/s in the positive y direction, and the gust gradient is 9m. Unfortunately, no reference
solution from Nastran is available for this test case, since the wing has no dihedral in the unloaded state and
a steady trim solution is not considered in the unsteady solution sequence. The VL solution starts from an
initial trim solution which was generated by setting the angle of attack to a certain value. This trim solution
serves as initial condition for the unsteady solutions (linear and nonlinear), and because the wing now has a
surface projection in the y direction, the lateral gust acts on the displaced panels and excites aerodynamic
forces, mainly in the y direction. Fig. 20 shows the results of the UVL solver coupled with the linear and
the enhanced modal approach solutions. It can be seen that both solutions correctly simulate an unsteady

17 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

17
08

 



time, s

q i

0 1 2 3 4 5
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

FE linear M 1
FE linear M 2
FE linear M 3
FE linear M 4
FE linear M 5
FE linear M 6
FE linear M 7
FE linear M 8
Proposed method M 1
Proposed method M 2
Proposed method M 3
Proposed method M 4
Proposed method M 5
Proposed method M 6
Proposed method M 7
Proposed method M 8

q i

0.2 0.4 0.6 0.8

-0.8

-0.4

0

0.4

Figure 20. Modal participation factors (generalized coordinates) as function of time for the second unsteady test case.
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Figure 21. Displacements of four structural nodes as function of time of a lateral 1-cos type gust encounter. Results
from gust with disturbance velocity of 14m/s in the positive y direction, and gust gradient of 9m.

displacement in the z direction which reduces the initial trim displacements. The proposed method yields
lower displacements in the z direction and considers displacements in the y direction.

The next test case uses the same initial conditions and setup, but the lateral gust directs in the negative
y direction. The results are presented in Fig. 20. Here, the deformations are increased because the additional
gust load leads to higher lifting forces on the wing. Again, the displacements in the y direction are captured
by the enhanced modal approach only.
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Figure 22. Displacements of four structural nodes as function of time of a lateral 1-cos type gust encounter. Results
from gust with disturbance velocity of 14m/s in the negative y direction, and gust gradient of 9m.

IV. Conclusion and Outlook

A method was presented that enhances the classical modal approach used in structural dynamics and
aeroelastic applications towards large geometric deformations. Nonlinearities in the force-displacement re-
lationships and in the geometrically nonlinear deformation field are accounted for. Therefore, the classical
modal approach governing equations are enhanced with terms of higher order for the stiffness and the recon-
struction of the displacement field in physical coordinates from modal space. Based on these terms, nonlinear
static and dynamic governing equations were obtained in which the generalized stiffnesses are depending on
the forces applied to the structure. It was shown that the quadratic component of the higher order modes
are needed to account for in-plane loadings, which are present in typical aerodynamic forces when lifting
panels undergo large rotations. In this work, the method was successfully applied to a beam type model
and a more complex wingbox made from composite shell elements. Static and dynamic results showed that
the proposed method can acceptably reflect the geometrically nonlinear deformation field at large bending
deformations up to values of approximately 25% of the wing’s semi-span. However, it must be mentioned
that the linear FEM yields good results in terms of deformations up to about 10% tip displacement for the
test cases presented. Static and dynamic aeroelastic simulations show that the proposed method surpasses
the linear modal approach by considering lateral forces in the solution which arise from rotated lifting panels.
From the structural loads point of view, it was shown that a geometrically nonlinear aerodynamic method
(such as the VL method) should not be used in combination with a linear structural solution in the regime
of large deformations, since bending moments will be noticeably overestimated. In this case, a linear aero-
dynamic method in combination with a linear structural solution (Nastran SOL144) yields better results
when compared to the nonlinear reference solution. The next step for the improvement and validation of
the method proposed will be the static and dynamic modeling of the complex jet transport aircraft wingbox
shown in Fig. 1.
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