
Fiber Path Optimization of a Symmetric Laminate

with a Cutout for Thermal Buckling, using a Novel

Finite Element Algorithm

Avinkrishnan A. Vijayachandran,∗ Pınar Acar, † Veera Sundararaghavan‡

University of Michigan, Ann Arbor, 48109, MI, USA

Anthony M. Waas §

University of Washington, Seattle, WA 98195-2400, USA

Automated fiber placement (AFP) technology has pushed for the need to explore non-
conventional fiber paths in laminated composites. This paper investigates optimal spatially
varying fiber paths in a symmetric linear orthotropic laminate which could increase the
critical buckling temperature under uniform applied thermal loads. The key idea here is
to achieve gains in buckling performance, yet focus on manufacturability of the obtained
optimal fiber path. The subject of this study is a four layer symmetric orthotropic lami-
nated plate, with a central circular cutout that is clamped on all the edges. A novel Finite
Element algorithm is proposed which imposes a condition on the definition of discrete fiber
angles within each element. The main objectives of the proposed finite element approach
are to maintain continuity of the fiber paths, and to use a computationally efficient model
by reducing the number of optimization variables.

Nomenclature

T (m) Fiber angle within any finite element ’m’
T qi,p Initial fiber angle for the ’pth’ quadrant in the ’qth’ layer

n Number of elements in cycloidal direction
dθ Variation in the fiber angle across finite elements
zq Lamina thickness for the ’qth’ layer
Q, Q̄ Constitutive matrices in the global and fiber axes respectively
C Upper-bound averages along thickness, of the constitutive matrices in the fiber axis
D Finite element material matrix
h Thickness of the lamina
u, v, w Displacements in x, y, z directions
∆Tcr Critical buckling temperature
α Coefficients of thermal expansion
B1, B2 1st and 2nd order derivatives of shape (interpolation) functions
Kb,Kg Elastic and geometric stiffnesses

I. Introduction

Effects of cutouts on strength and buckling of thin plates and thin walled cylindrical shells have been
presented by various researchers. Kirsch1 in 1898, first proposed the exact closed-form analytical solutions for
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the stress concentrations around cutouts in an infinite isotropic lamina under uniaxial tension. Mansfield2

proposed methods to restore the stress state of an isotropic plate with a cutout to that of one without,
thereby reducing any stress concentrations that could cause fracture. Pipes et. al3 presented a study
on notched strength of composite materials where as Tang4 proposed studies on interlaminar stresses in
orthotropic plates with a cutout, under tension. Ahn and Waas5 provided experimental results and a
novel mechanism based modeling approach to predict the compressive notched strength of laminates under
uniaxial and biaxial loading. Senocak and Waas6,7 revisited the problem of a uniaxial tensile loaded plate
with a cutout in the case of an orthotropic laminate and proposed methods to essentially nullify the stress
concentrations around the cutouts, by duly considering the bending-stretching coupling and using stiffeners
modeled as one dimensional 4-DOF beams. Acar et.al ,8 presented an algorithm for optimal steered fiber
paths to reduce stress concentrations around cutouts in a symmetric laminate. Lin et.al9 presented buckling
models for laminated plates with holes and Topal et.al10 studied the maximization of buckling loads for
laminated plates with cutouts. Ounis et.al11 performed a finite element based study to analyze thermal
buckling of laminated composites. A method to minimize the thermal expansion of laminates is presented
by Rangarajan et. al .12 Hyer and Lee13 studied a problem on the buckling resistance of composite plates with
central circular holes in the case of curvilinear fibers and proposed a solution based on modeling individual
fiber orientations within each finite element, where the fiber orientations are allowed to vary spatially within
the lamina. Gurdal and Olmedo14 presented an optimization of spatially varying fiber paths for solution to
a plane elasticity problem using variable stiffness concept.

The subject of interest in this paper is to derive optimal spatially varying fiber paths and layer thicknesses
for a 4-layer symmetric orthotropic composite laminate with the central circular cutout, to improve the
thermal buckling performance. The square plate is clamped on all the edges and is under uniform thermal
loads. A novel finite element algorithm is proposed which ensures that the variation in fiber angles across
adjacent finite elements pick discrete values, and thus maintain a constant fiber angle within each element,
making it easy to obtain a smooth fiber path. This model can easily be reproduced for a laminate with as
many layers following the same procedure. The problem formulation accounts for this fiber path definition
to solve the critical buckling temperature. The multi-objective optimization is performed to identify the
fiber path that maximizes the critical buckling temperature and minimizes the mass of the laminate. The
organization of the paper is as follows: Section II introduces the composite plate thermal buckling problem.
In Section III, the proposed meshing algorithm for fiber continuity and finite element methodology for the
solution are discussed. The finite element solution is verified in Section IV . Section V provides information
about the optimization problem and optimum results. Section VI concludes the paper with a discussion of
future extensions of this study.

II. Problem Definition

The present work comprises thermal buckling of a clamped plate under the effect of thermal axial loads.
The plate is modeled as a symmetric 4-layer composite laminate. The problem is separated into two parts -
first part explains the algorithm and Finite Element procedure, where as the second explains the optimization
problem setup. The loading and geometry are symmetric as the entire plate is under a uniform thermal load,
inducing axial compressive and shear loads on the plate, described as Nx, Ny and Nxy in Figure 1. Even
though the symmetry of the loading and geometry suggests the use of symmetry boundary conditions to
obtain the pre-buckling stresses by analyzing only one quarter of the plate; it needs to be noted that the
buckling modes need not be symmetric. By using symmetry boundary conditions, only the symmetric modes
can be obtained. Therefore, the full plate model is modeled to obtain all the buckling modes. The critical
buckling temperature is then solved for the 1st buckling mode.

III. Meshing Algorithm

The proposed finite element meshing method has multiple features. First, it always ensures continuity of
the fiber paths across element boundaries. Second, it is computationally efficient since only four optimization
variables per layer of the laminate are used to define the fiber path. Moreover, it could easily be scaled for
any number of plies in any symmetric or asymmetric laminate. The algorithm explains how discrete fiber
angles are computed for each finite element ensuring inter-element continuity of the fiber angle. This is
essential to end up with a manufacturable design using AFP technology.
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Figure 1. Clamped Plate with a Cutout under Uniform Heating

A. Algorithm for Discrete Fiber Angles

This section discusses the algorithm to compute a discrete fiber angle, T (m), for each finite element under
prescribed conditions of fiber path continuity. The direction of m (where 0 < m ≤ n, n being the total
number of elements in cycloidal direction) represents the count of the finite element along each row. The
plate is divided into 4 sub-domains (quadrants) to ensure fiber path continuity (Figure 2). In the context
of spatially varying fiber paths, symmetry in the laminate is described by the same spatial variation of fiber
paths in the layers symmetric with respect to the centerplane. In this specific case, Layer-1 is the same as
Layer-4, and Layer-2 is the same as Layer-3. Detailed below is the formulation of the algorithm for the plate.

Figure 2. Finite Element Mesh for Quarter Plate (2888 Plate Elements)

For the elements located in the pth quadrant and in the qth layer, T qi,p and T qf,p represent initial and final
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fiber angles respectively (e.g. T 1
i,1and T 1

f,1 are initial and final fiber angles for the 1st quadrant in Layer-1).

Hence the change in fiber angle is defined across each finite element along the direction ′m′ for Layer-1, dθ1
1,

as follows:

dθ1
1 =

T 1
f,1 − T 1

i,1

n− 1
(1)

To elaborate, for any qth layer, T qi,1, T qi,2, T qi,3 and T qi,4 are the ’initial’ fiber angles of quadrants 1, 2, 3, 4. Then
the final fiber angles for these quadrants are noted as T qf,1 = T qi,2, T qf,2 = T qi,3, T qf,3 = T qi,4 and T qf,4 = T qi,1,
which merely means that the final fiber angle of each quadrant becomes the initial fiber angle of the next
quadrant to ensure continuity of fiber angles. Hence, the discrete variation in angle in each quadrant dθqp for

each pth quadrant for the qth layer is obtained as:

dθqp =
T qf,p − T

q
i,p

n− 1
(2)

This would mean that the only condition imposed on each T qi,p during optimization, on its range is
(0o ≤ T qi,1, T

q
i,2, T

q
i,3, T

q
i,4 < 180o), which constrains the fiber angle inside each element, T (m). By means

of constraining the value of dθqp and thereby imposing a specific T (m) for each element, m, the essence
of the solution is captured; viz; to enforce continuity of the fiber angle, making it easily adaptable for
manufacturing. Fiber angle in each element in the pth quadrant, for the qth layer as it moves along direction
′m′ in Figure 2 is given by the expression:

Tp(m)q = T qi,p + (m− 1)dθqp (3)

where m (0 < m ≤ n) represents element number in the chosen cycloidal direction in Figure 2 and n
being the maximum number of elements in this direction. As would be discussed in the next section, the fiber
angle T (m) specified for each element under restrictions arising from dθ would be used in the finite element
formulation by effectively computing the finite element material matrix, D, using plane stress constitutive
matrix, Q̄, averaged over the thickness to obtain an upper bound matrix C . Q̄ is obtained by rotating the
constitutive matrix Q by a fiber angle T (m) for each element.

B. Finite Element Model

When heated uniformly, the thermal expansion of the restricted plates will result in uniformly distributed
in-plane normal and shear forces (Figure 1). The constitutive matrix, Q, of each finite element depends
on the particular fiber angle within that finite element. The regular finite element procedure starts with
the computation of the constitutive matrix in the global frame, Qij (where i, j = 1, 2, 3, 4, 5, 6). However,
the problem needs to be assembled and solved in the material frame. This means that material matrix in
material frame, Q̄ij , can be computed for each finite element with the transformation through an angle,
T (m). The stress-strain relation in the global frame for a general three dimensional orthotropic material is:

σxx

σyy

σzz

σzx

σyz

τxy


=



Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66





εxx

εyy

εzz

γzx

γyz

γxy


where the stiffness coefficients are functions of the orthotropic material properties E11, E22, ν12, ν23 and
G23. The material and thermal properties used in this work correspond to that of IM7/8551-715,16 and is
detailed in Table 1. Note that extension and shear are uncoupled.

To assemble the global stiffness matrices [Kb] and [Kg], the stiffness of each finite element is to be
calculated in the respective material coordinate systems and then assembled. For each finite element, a
transformation matrix [L] = f(T(m)) is calculated as:
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Parameter Value

Exx 162.0 GPa

Eyy 8.34 GPa

Gxy 2.07 GPa

Gyz 2.07 GPa

νxy 0.339

νyz 0.509

αxx −0.48 µm
moC

αyy 22.3 µm
moC

Table 1. Material and Thermal Properties of IM7/8551-7

[L] =



1 0 0 0 0 0

0 c2p s2
p 2cpsp 0 0

0 s2
p c2p −2cpsp 0 0

0 −cpsp cpsp c2p − s2
p 0 0

0 0 0 0 cp −sp
0 0 0 0 sp cp


where cp= cos(T (m)) and sp= sin(T (m)) for each element ′m′. Rotated constitutive matrix in the material
frame for each element ′m′, Q̄ij(m) is obtained as

Q̄ij = [L]T [Q][L]

Since the Finite element formulation is basically dealing with a multi-layer structure in this case and each
Finite element was previously defined through the thickness of the whole structure, the material matrix
should be averaged along the thickness of each particular element (Figure 3) to obtain an upperbound
averaged material matrix C. This averaging along the thickness indicates the upper bound approach to
compute Q̄ij with the assumption of strain continuity through the thickness of the element. If z1 and z2

are the thicknesses of the 1st (and 4th) layers and the 2nd (and 3rd) layers respectively, then Q̄ij elements

of the multi-layer structure can be obtained as an upper bound average,17 ¯Qij,avg =
z1Q̄1

ij+z2Q̄2
ij

z1+z2
(where

i, j = 1, 2, 3, 4, 5, 6) for any element of averaged ¯Qavg matrix:

[
C
]

=
[

¯Qavg

]
=



¯Q11,avg
¯Q12,avg

¯Q13,avg 0 0 0
¯Q12,avg

¯Q22,avg
¯Q23,avg 0 0 0

¯Q13,avg
¯Q23,avg

¯Q33,avg 0 0 0

0 0 0 ¯Q44,avg 0 0

0 0 0 0 ¯Q55,avg 0

0 0 0 0 0 ¯Q66,avg


where C is the elastic stiffness matrix of each particular element. The flexural rigidities, D, can be

obtained from the elastic stiffness matrix, using plane stress assumptions, by the relation:18 D11 D12 D13

D21 D22 D23

D31 D32 D33

 =
h3

12
× (

 C11 C12 C16

C21 C22 C26

C61 C62 C66

−

 C13 C14 C15

C23 C24 C25

C63 C64 C65



×(

 C33 C34 C35

C43 C44 C45

C53 C54 C55

)−1 ×

 C31 C32 C36

C41 C42 C46

C51 C52 C56

)
(4)
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The general classical buckling equations for a rectangular laminated plate with dimensions a × b × h
(length in x-direction × length in y-direction × height) subjected to uniform temperature rise are:

A11
∂2u0

∂x2
+ 2A16

∂2u0

∂x∂y
+A66

∂2u0

∂y2
+A16

∂2v0

∂x2
+ (A12 +A66)

∂2v0

∂x∂y
+A26

∂2v0

∂y2
= 0 (5)

A16
∂2u0

∂x2
+ (A12 +A66)

∂2u0

∂x∂y
+A26

∂2u0

∂y2
+A66

∂2v0

∂x2
+ 2A26

∂2v0

∂x∂y
+A22

∂2v0

∂y2
= 0 (6)

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3
+D22

∂4w

∂y4

+Nx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
= 0 (7)

where, the first two equations govern the in-plane resultant loads (u0 and v0 are the in-plane displacements
at mid plane), and the last equation governs the out-of-plane buckling deflection, w = w(x, y). Nx, Ny are
the in-plane resultant normal loads in the x and y directions respectively, and Nxy is the in-plane shear
resultant. D11, D12, D16, D22, D26, D66 are the flexural rigidities of the plate. The flexural rigidities are
obtained from the material constitutive law for each particular finite element.

The boundary conditions for the case of a square plate (side lengths a× a) with clamped sides are:

w = 0,
∂w

∂x
= 0 at x = −a

2
,
a

2

w = 0,
∂w

∂y
= 0 at y = −a

2
,
a

2
(8)

u0, v0 = 0, at x, y = −a
2
,
a

2
(9)

The critical increase in temperature at buckling, ∆Tcr , is related to the in-plane resultant loads, and
homogenized (thickness averaged) values of thermal expansion, ᾱxx, ᾱyy, ᾱxy, by the following equation: Nx

Ny

Nxy

 =
12∆Tcr
h2

 D11 D12 D13

D21 D22 D23

D31 D32 D33


 ᾱxx

ᾱyy

ᾱxy

 (10)

A quarter plate was first analyzed using the Finite Element algorithm with the assumption of symmetric
buckling modes. The plate was modeled using 2888 plate elements. Each plate element has 4 nodes and 5
degrees of freedom: u, v, w, dwdx and dw

dy . The general finite element formulation for this buckling problem is

based on both the conventional element flexural stiffness matrix, [kb], and geometric element stiffness matrix,
[kg], that takes account of the in-plane load resultants. The formulations for [kb] and [kg] are given in Eq.
11.

[kb] =

∫ ∫ ∫
V

BT2 DB2dV , [kg] =

∫ ∫ ∫
V

BT1 PB1dV (11)

where B1 and B2 are the matrices consisting of the first and second derivatives of the shape functions of
the plate element respectively. The flexural rigidity, D, is defined in Eq. 4. The matrix, P , incorporates the
in-plane load resultants, Nx, Ny and Nxy. Based on this formulation, the element stiffness matrix for the
buckling problem is given below:

[k] = [kb]± [kg] (12)

where the sign of the geometric stiffness matrix, [kg] depends on the type of in-plane loads. It is positive
if the in-plane loads are tensile, and it is negative if the in-plane loads are compressive. At buckling, the
condition given below is satisfied;
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det([Kb]± λ[Kg]) = 0 (13)

where [Kb] and [Kg] are global flexural and geometric stiffness matrices respectively. Eq. 13 shows
that the solution finally leads to an eigenvalue problem. The ∆Tcr value that satisfies the critical buckling
condition is the critical increase in temperature.

IV. Verification of Finite Element Methodology

Verification of the finite element approach of this work consists of three steps: fringe contour comparison
for an isotropic plate problem, stress distribution verification for a unidirectional orthotropic composite
laminate, and buckling solution for a benchmark orthotropic plate problem.

A. Fringe Contour Comparison

The developed finite element methodology is initially verified by comparing the fringe contours for a tension
problem where an isotropic plate with a central cutout is subjected to remote tensile loading in the y-direction
(Figure 3). This case has been selected since the fringe contours of the theoretical solution are available in
literature19 and the problem geometry is similar to the buckling problem of interest in this work. The fringe
contours plotted for the finite element solution match well with the theoretical result as shown in Figure 4,
providing a degree of confidence in mesh selection.

Figure 3. Problem Definition for Fringe Contour Comparison

B. Stress Distribution Verification for a Unidirectional Orthotropic Laminate

The second check on the finite element mesh quality is to verify the predicted stress concentration factor
(SCF) of a 4-layer unidirectional orthotropic laminate, with a stacking sequence of [45/0]s, to the theoretical
solution. This problem has the same geometry with the problem of interest in this work, a plate with a
central cutout, but in this case the plate is under the effect of tensile loads acting on the horizontal direction.
A detailed explanation about the problem and solution methodology can be found in the earlier work of the
authors.8 The maximum SCF value of the finite element solution was found to be at the cutout boundary,
and it is 6.27. This value is close to the theoretical value, 5.96.20
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Figure 4. Fringe Contour Comparison

C. Benchmark Problem for Thermal Buckling of an Orthotropic Plate

Utilizing the finite element method, the critical increase in temperature was computed for symmetric buckling
of a clamped symmetrically laminated plate under uniform heating. However, no analytical solution exists
for the corresponding buckling problem. To verify the obtained buckling solution, a similar but simpler
case of a specially orthotropic plate, which has a known analytical solution18 was employed. A rectangular
orthotropic plate with principal directions parallel to the sides is compressed by uniformly distributed edge
axial load, Px (Figure 5).

Figure 5. Benchmark Buckling Problem Definition for an Orthotropic Plate

The buckling problem for such a plate with four simply supported sides is given by Lekhnistkii.18 The
buckling equation is:

D11
∂4w

∂x4
+ 2D33

∂4w

∂x2∂y2
+D22

∂4w

∂y4
+Nx

∂2w

∂x2
+Ny

∂2w

∂y2
= 0 (14)

The solution of the form:

w = Amnsin(
mπx

a
)sin(

nπy

b
) (15)
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is sought, where Amn are constant coefficients, m and n are integers. The following boundary conditions
are utilized:

w = 0,
∂w2

∂x2
+ νy

∂w2

∂y2
= 0 at x = 0, a

w = 0,
∂w2

∂y2
+ νx

∂w2

∂x2
= 0 at y = 0, b (16)

where νx and νy are the Poisson’s ratios. By requiring that Eq. 15 be a solution of Eq. 14, the following
solution is btained:

Nx(
m

a
)4 +Ny(

n

b
)4 = π2[D11

m

a
+ 2D33

mn

ab
+D22

n

b
] (17)

The formulation is performed for the case of proportional loading where forces Nx and Ny may vary
(general case), but must maintain a constant ratio β.

Nx = λ, Ny = λβ (18)

The critical value of λ is found from the formula:

λ =
π2
√
D11D22

b2
·

√
D11

D22
(mc )2 + 2D33√

D11D22
n2 +

√
D22

D11
( cm )2n4

1 + β( cm )2n2
(19)

where c is the ratio between the lengths of the sides of the plate (c = a
b ). The problem then consists of

seeking the values of m and n which give the smallest λ and hence the critical buckling load, λcr. Based
on the solution of the critical buckling load, the expression can be formulated for the critical increase in
temperature using the coefficient of thermal expansion tensor (α):

∆Tcr =
λ

12
h2 (D11 · αx +D12 · αy +D13 · αxy)

(20)

By modifying the boundary conditions in the original calculations (from clamped to simply supported
for an orthotropic plate), the results are compared to the analytical solution and found to be a very close
match. Sample comparisons are shown below. The default orthotropic rectangular plate has dimensions
(a× b× h) of 0.1 m× 0.4 m× 0.004 m. Its flexural rigidities are D11 = 8.0× 1010, D12 = D21 = 2.0× 109,
D22 = 4.0 × 1010, D33 = 1.2 × 1011, and its coefficients of thermal expansion are αx = 9.0 × 10−6 and
αy = 1.2×10−6. Only one property is varied at a time, and the average percentage error between the results
is 0.0314%. The analytical and computational critical increases in temperature are presented below.

V. Optimization of Fiber Path

The optimization problem deals with multiple objectives since the goals are defined to find the fiber path
and layer thicknesses that maximize the critical increase in buckling temperature, ∆Tcr, and minimize the
mass of the structure as well. The fiber path depends on 4 independent variables for each layer: T qi,1, T qi,2, T qi,3
and T qi,4. All T qf,p values have T qi,p equivalents, and dθqp can also be computed in terms of them. Considering
the fact that the problem of interest includes a 4-layer symmetric laminate - 2 independent layers, the number
of optimization parameters relevant to fiber path distribution is 8. The remaining optimization variables
are the thicknesses of these independent 2 layers (z1 and z2) since the area is constant for every layer, and
therefore the total mass varies with respect to the thicknesses. A multi-objective optimization problem is
defined since proposing only one objective which is related to buckling may cause designs which are not cost
efficient. In order to eliminate this possibility, minimization of the plate mass is defined as the second design
objective. Since the distribution constraints were already imposed to the problem through meshing and
methodology, no additional design constraints are defined for the optimization problem. The mathematical
formulation of the optimization problem is given in Equation 21.

max f1 = ∆Tcr, min f2 = m(z1, z2)
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D11 (Nm) Analytical ∆Tcr (K) Computed ∆Tcr (K)

7.0× 1010 192.9 193.2

8.0× 1010 187.4 187.4

9.0× 1010 183.2 183.2

D12 (Nm) Analytical ∆Tcr (K) Computed ∆Tcr (K)

1.5× 109 188.9 188.9

2.0× 109 187.4 187.4

2.5× 109 186.0 185.9

αx (K−1) Analytical ∆Tcr (K) Computed ∆Tcr (K)

8.0× 10−6 209.0 209.0

9.0× 10−6 187.4 187.4

10× 10−6 169.9 169.8

b (m) Analytical ∆Tcr (K) Computed ∆Tcr (K)

0.3 211.1 211.2

0.4 187.4 187.4

0.5 171.3 171.2

Table 2. Comparison of results for a simply supported rectangular orthotropic plate

s = (T 1
i1 , T

1
i2 , T

1
i3 , T

1
i4 , T

2
i1 , T

2
i2 , T

2
i3 , T

2
i4 , z1, z2)

0o ≤ T 1
i1 , T

1
i2 , T

1
i3 , T

1
i4 , T

2
i1 , T

2
i2 , T

2
i3 , T

2
i4 < 180o

0.1 mm ≤ z1, z2 ≤ 1 mm (21)

In this formulation, the first line shows the objective functions where m shows the mass of the plate. The
set of optimization variables is defined in the second line. The upper and lower limits of the optimization
variables are given in the last two lines. Since the problem of interest here is a non-linear multi-objective
optimization problem, a genetic algorithm that is also capable of working with multiple objectives is im-
plemented. Considering the large computational time requirement for a finite element buckling solution,
an efficient optimization algorithm needs to be chosen. For this purpose, Non-Dominated Sorting Genetic
Algorithm (NSGA-II), which is known to be one of the fastest genetic algorithms, was implemented. The
sampling was performed with Incremental Space Filter (ISF) with 10 Design of Experiments (DoE). The
optimization algorithm provided 150 total designs since it used 15 function evaluations for each DoE. The
summary of the optimization workflow is illustrated in Figure 6.

The parameters of the optimum design are shown in Table 3. The optimum design performance is
compared to selected random designs in Table 4. These random designs have the same layer thickness values
with the optimum design. However, their layers are defined as unidirectional laminae. The comparison
indicates that the optimum design has provided a significant increase in the thermal buckling performance
of the composite structure having the same mass. The fiber path distributions of the optimum design for
Layer-1 and Layer-2 are illustrated in Figure 7 and Figure 8 respectively.

VI. Conclusion

A computationally efficient and novel finite element approach to identify optimum steered fiber paths
that can be manufactured using AFP technology is presented in this work. The meshing algorithm using
discrete fiber angle values within each element as control variables for each independent layer is developed
so as to obtain continuous fiber paths, as well as to reduce the computational time. The specific problem
discussed here addresses investigating optimal steered fiber paths for an orthotropic symmetric laminate
under uniform thermal loads, in order to maximize the critical buckling temperature. The plate has a
cutout at its center and is clamped on all sides. A full plate model is developed to include symmetric and
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Figure 6. Optimization Workflow

Figure 7. Optimum Fiber Path (Layer-1 and Layer-4)

asymmetric buckling modes. The laminate is modeled in four separate quadrants, using finite elements,
ensuring continuity of displacements and fiber angles across the quadrants. A verification of the algorithm
is provided by three specific cases- a fringe contour comparison for an isotropic plate that is available in
literature, an orthotropic plate tension problem using unidirectional plies and a bench mark buckling problem
for orthotropic laminates with unidirectional plies. After the verification of the solution methodology, the
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Parameter Optimum Value

T 1
i1

5.5571o

T 1
i2

179.99o

T 1
i3

2.7640o

T 1
i4

1.9010o

T 2
i1

2.2260o

T 2
i2

6.0188o

T 2
i3

89.9840o

T 2
i4

1.9855o

z1 0.10085 mm

z2 0.10120 mm

∆Tcr 205.75oC

Table 3. Optimum Design Parameters

Design T 1
i1

T 1
i2

T 1
i3

T 1
i4

T 2
i1

T 2
i2

T 2
i3

T 2
i4

∆Tcr

Random-1 45o 45o 45o 45o 0o 0o 0o 0o 151.68oC

Random-2 90o 90o 90o 90o 135o 135o 135o 135o 121.42oC

Optimum 5.5571o 179.99o 2.7640o 1.9010o 2.2260o 6.0188o 89.9840o 1.9855o 205.75oC

Table 4. Performance Comparison for Optimum Design

Figure 8. Optimum Fiber Path (Layer-2 and Layer-3)
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global optimization is performed using a genetic algorithm using the defined objective functions and the
optimization parameters. The optimum design is selected among all feasible solutions and it provides a very
significant increase in the thermal buckling capacity.
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