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In this paper a norm-constrained unscented Kalman filter that enforces a state norm-
constraint is presented. This filter is an extension of the norm-constrained Kalman filter
presented by Zanetti et al. The proposed norm-constrained Kalman Filter is used to es-
timate the pose of a High Area-to-Mass Ratio (HAMR) space-debris object. In much of
the literature, the pose and other properties of space-debris objects are estimated assum-
ing that the debris object being observed is a cuboid or some other convex multifaceted
object. However, the literature also makes the case that a portion of the HAMR objects
found near the Geosynchronous orbit (GEO) belt are fragments of multi-layered insulation
(MLI) blankets that have separated from their parent satellites. These objects are slender
and are appropriately modeled as thin plates. In this paper, simulated estimation results
are presented demonstrating that the tumbling motion of these plate-like objects cannot
be reasonably captured by light curve observations from a single observation site. How-
ever, by combining together measurements from multiple observation sites, estimation of
these tumbling motions is possible. This observation further motivates the development
of projects like DARPA’s OrbitOutlook program to add more diverse locations for sensors
and implement a central database to collect this data.

I. Introduction

With events such as the collision of a Cosmos satellite and an Iridium satellite in 2009, and the break up
of the Fengyun 1C satellite in 2007, there has been a renewed interest in improving the space debris catalog
in order to avoid collisions with operational space assets.1 Through observational surveys, a particular
class of High Area-to-Mass Ratio (HAMR) objects near the Geosynchronous Earth orbit (GEO) belt and
in Geosynchronous transfer orbits (GTO) have been found and are of concern.2 These space objects (SOs)
are in high Earth orbits and as such the effect of atmospheric drag is insufficient to naturally de-orbit these
objects, making them a continual collision threat to assets in the GEO belt. Furthermore, the high area-
to-mass ratio of these objects make their orbits subject to large perturbations due to the effects of solar
radiation pressure (SRP).

Propagating estimates of the orbital trajectory of these SOs within reasonable limits of uncertainty is
necessary if infrequent observations over long periods of time are to be correlated and the SOs are to be
cataloged.1 A complicating factor in the propagation of estimates of the states of these SOs is the coupling
of the attitude and orbital dynamics through the SRP. The coupled attitude and orbital dynamics of these
debris makes estimating the attitude of these objects desirable in order to improve the propagation of
estimates of these objects’ orbital trajectory. Unfortunately, objects in high-altitude orbits are too small and
faint for optical sensors to provide high enough resolutions to infer their attitude based on feature detection.
However, the temporal brightness of these objects can be readily measured. Since these objects are not
self illuminating, but rather reflect light from the Sun, their apparent brightness will be dependent on their
shape and attitude allowing for these characteristics to be inferred through observation of their brightness.3

These measurements of changes in brightness over time are called light curves.
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To use light curves to estimate the attitude of these space-debris objects, a measurement model is required
to compare the propagated estimate of the state of the space object to an actual measurement. Since these
objects are reflecting light from the Sun, their brightness can be modeled using bidirectional reflectance
distribution functions (BRDFs).4,5 In Ref. 4, it was shown that light curves can be used to infer the attitude
and reflectance properties of a SO via an unscented Kalman filter (UKF). In Ref. 5, it was demonstrated
that combining light curve and angles measurements of the SO (its azimuth and elevation relative to the
observation site) allowed for the object’s mass and albedo areas to be estimated using a UKF. In Ref. 3,
a Multiple-Model estimation framework was implemented to determine the attitude and position of a SO
with uncertain knowledge of the SO’s shape. Holzinger et al.6 present a particle filter to track actively
maneuvering satellites with shape uncertainty using light curves by incorporating uncertainty in angular
velocities as process noise to account for maneuvering dynamics. Efforts have been made to estimate optical
parameters of SOs as well as SOs’ attitudes from real measurements. For example, in Ref. 7, measurements
from the AMOS telescope in Hawaii were used to estimate the surface albedo and specular reflectance of
spherical satellites and droplets of sodium potassium alloy in orbit. In Ref. 8, the angular speed and axis
of rotation of two disposed upper stages of rockets of cylindrical shape were estimated using real optical
measurements.

It is believed that the source of some of the uncorrelated HAMR objects near the GEO belt is space
debris in the form of damaged satellites and multilayer insulation (MLI) blankets broken off from satellites
in GEO.2 Currently, efforts to propagate these observed objects between measurements over long time spans
so that they can be cataloged have had limited success.9,10 To this end, work has been done to develop
higher-fidelity dynamics models that capture the motions of MLI debris. In Ref. 10, the attitude of HAMR
objects assumed to be flat rigid plates were simulated in the presence of SRP and third-body gravitational
perturbations. Using this model, simulated light curve measurements were made and compared to actual
observations made with an optical telescope. Further work has been done to incorporate the effects of Earth
shadowing11 and self shadowing.12 In Ref. 13, a semi-coupled approach to propagating the attitude and
orbital trajectory of a flat plate in a high altitude orbit is outlined yielding computational savings when
compared to propagating the fully coupled dynamics for long time scales.

If these HAMR space-debris objects are best modeled as plates rather than fully three-dimensional
objects, then estimating their attitude using light curves will become more difficult since a plate only has
two surfaces reflecting light resulting in a less rich light curve dataset than would be seen from a multifaceted
three-dimensional object as studied in the literature.3,4, 6, 14 As a result, the convergence of a state estimator
such as an unscented Kalman filter (UKF), will require initial conditions relatively close to the true state.
However, in this paper, it is shown that a larger error in the initial guess of the UKF can still lead to
convergence to the true state if concurrent measurements from multiple observation sites are combined.
The current state of the Space Surveillance Network makes this data gathering scenario difficult, however
with the development of programs such as DARPA’s OrbitOutlook,15 a network with more diverse locations
for sensors and a central database for the collection of data can enable greater success in the tracking of
these HAMR objects. A previous study by Piergentili et al.16 demonstrating improved orbit determination
through estimating the object’s position and velocity using angles measurements from two observation sites
further supports the advantages of a diverse network of sensors for tracking space debris.

Estimating the pose of a space object involves estimating both its position and its attitude. When
estimating attitude, the use of a four-parameter quaternion is often employed instead of a three-term pa-
rameterization, since three-term parameterizations suffer from singularities in the relationship between their
time-rate-of-change and angular velocity. Using a quaternion complicates the application of techniques de-
rived from the Kalman filter if it is desired to enforce the quaternion norm constraint. One way to account
for the quaternion norm constraint is to use a multiplicative scheme in which local small changes in attitude
are calculated using a three-term parameterization that is then used to update the global attitude esti-
mate through quaternion multiplication.17,18 Alternatively, the quaternion can be estimated directly using
methods that modify the Kalman filter framework to enforce the state constraint. Two popular approaches
for addressing equality state constraints within the Kalman filter framework are the pseudomeasurement
method and the projection method. The pseudomeasurement method modifies the Kalman filter by consid-
ering the constraint to be a perfect noiseless measurement.19–21 This modification however can cause the
measurement noise covariance to be singular and lead to numerical problems during implementation.22 The
projection method presented in Ref. 23 enforces linear equality constraints by projecting the unconstrained
solution to the Kalman filter onto a constraint surface. This work was extended to accommodate nonlinear
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equality constraints in Ref. 24. In Ref. 25, the projection method is applied to the UKF. Further information
concerning these methods can be found in Ref. 22. In this paper the method presented by Zanetti et al. in
Ref. 26 is modified to be used in the UKF. This method modifies the Kalman gain matrix using a Lagrange
multiplier to enforce the norm-constraint as a constrained optimization problem in the correction step.

This paper is organized as follows. In Section II, the Kalman filter and unscented Kalman filter are
reviewed. In Section III, the method for deriving the norm-constrained EKF presented in Ref. 26 is outlined
and modified for use in the UKF. Finally, in Section IV the dynamics and measurement models for the
space-debris tracking problem are described and simulation and state estimation results are presented.

II. Preliminaries: Kalman Filter and Unscented Kalman Filter

Consider the linear system

xk = Fk−1xk−1 + Γw,k−1wk−1,

yk = Hkxk + Γn,knk,

where xk is the system’s state at time k, wk is the Gaussian process noise with zero mean and covariance
Qk, yk is the measurement at time k, and nk is the Gaussian measurement noise with zero mean and covari-
ance Rk. The Kalman filter applied to this system has a prediction-correction structure (Ref. 27, p. 318-320):

Prediction:
x̂k|k−1 = Fk−1x̂k−1|k−1,

Pxx
k|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)T}

= Fk−1P
xx
k−1|k−1F

T
k−1 + Γw,k−1Qk−1Γ

T
w,k−1,

Correction:
ŷk|k−1 = Hkx̂k|k−1,

Pxy
k|k−1 = E{(xk − x̂k|k−1)(yk − ŷk|k−1)T}

= Pxx
k|k−1H

T
k ,

Pyy
k|k−1 = E{(yk − ŷk|k−1)(yk − ŷk|k−1)T}

= HkP
xx
k|k−1H

T
k + Γn,kRkΓ

T
n,k,

Kk = Pxy
k|k−1(Pyy

k|k−1)−1,

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1),

Pxx
k|k = E{(xk − x̂k|k)(xk − x̂k|k)T}

= Pxx
k|k−1 −Pxy

k|k−1(Pyy
k|k−1)−1(Pxy

k|k−1)T

= Pxx
k|k−1 −KkP

yy
k|k−1K

T
k ,

where E {·} denotes the expectation. The Kalman filter is optimal in that the Kalman gain matrix Kk

minimizes the objective function Jk where

Jk = trace(Pxx
k|k). (1)

To simplify notation, let x̂k = x̂k|k, x̂−k = x̂k|k−1, ŷ−k = ŷk|k−1, P−k = Pxx
k|k−1, and Pk = Pxx

k|k.
Consider the the nonlinear system

xk = fk−1(xk−1,wk−1),

yk = hk(xk,nk).

The Kalman filter can be modified in one of several ways in order to estimate the states of this nonlinear
system. Two popular methods include linearizing the dynamics and measurement equations, arriving at the
Extended Kalman Filter (EKF), or the statistics can be approximated using the unscented transformation
arriving at the unscented Kalman filter (UKF) (Ref. 27, p. 433).
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In the prediction and correction steps, the unscented Kalman filter generates a set of sigma points Zi
using the Cholesky decomposition and combines these sigma points to calculate the means and covariances
(Ref. 28, p. 89). The UKF also has a prediction-correction structure:

Prediction:

z =

[
x̂k−1

0

]
, Y =

[
Pk−1 0

0 Qk−1

]
,

SST = Y,

Z0 = z,

Zi = z +
√
L+ κ coliS i = 1, . . . , L,

Zi+L = z−
√
L+ κ coliS,

Zi =

[
Xi,k−1

Wi,k−1

]
, X−i,k = fk−1(Xi,k−1,Wi,k−1) i = 0, . . . , 2L,

x̂−k =
1

L+ κ

(
κX−0,k +

1

2

2L∑
i=1

X−i,k

)
,

P−k =
1

L+ κ

(
κ(X−0,k − x̂−k )(X−0,k − x̂−k )T +

1

2

2L∑
i=1

(X−i,k − x̂−k )(X−i,k − x̂−k )T

)
,

Correction:

z =

[
x̂−k
0

]
, Y =

[
P−k 0

0 Rk

]
,

SST = Y,

Z0 = z,

Zi = z +
√
L+ κ coliS i = 1, . . . , L,

Zi+L = z−
√
L+ κ coliS,

Zi =

[
X−i,k
Ni,k

]
, Y−i,k = hk(X−i,k,Ni,k) i = 0, . . . , 2L,

ŷ−k =
1

L+ κ

(
κY−0,k +

1

2

2L∑
i=1

Y−i,k

)
,

Uk =
1

L+ κ

(
κ(X−0,k − x̂−k )(Y−0,k − ŷ−k )T +

1

2

2L∑
i=1

(X−i,k − x̂−k )(Y−i,k − ŷ−k )T

)
, (2)

Vk =
1

L+ κ

(
κ(Y−0,k − ŷ−k )(Y−0,k − ŷ−k )T +

1

2

2L∑
i=1

(Y−i,k − ŷ−k )(Y−i,k − ŷ−k )T

)
, (3)

Pyy
k|k−1 ≈ Vk,

Pxy
k|k−1 ≈ Uk,

Kk = UkV
−1
k , (4)

4 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

18
56

 



x̂k = x̂−k + Kk(yk − ŷ−k ),

Pk = P−k −KkVkK
T
k

= P−k −KkU
T
k −UkK

T
k + KkVkK

T
k . (5)

III. Norm-constrained UKF

Consider the case where the system’s state satisfies the norm-constraint

xT
kxk − `2 = 0.

It is then desired that the posterior state estimate also satisfy the constraint

x̂T
k x̂k − `2 = 0,

(x̂−k + Kkρk)T(x̂−k + Kkρk)− `2 = 0,

(x̂−k )Tx̂−k + 2(x̂−k )TKkρk + ρTkKT
kKkρk − `2 = 0, (6)

where ρk = yk−hk(x̂−k ,0) is the innovation. To enforce this constraint, the same approach taken by Zanetti
et al. in Ref. 26 will be taken, where the objective function in Eq. (1) is augmented with a Lagrange multiplier
resulting in the optimization problem

Ĵ∗k = min
Kk

{Ĵk} where Ĵk = trace(Pk) + λk(x̂T
k x̂k − `2). (7)

Expressing Pk in terms of Kk yields

Pk = E [(xk − x̂k)(xk − x̂k)T]

= E{[(xk − x̂−k )−Kkρk][(xk − x̂−k )−Kkρk]T}
= E [(xk − x̂−k )(xk − x̂−k )T −Kkρk(xk − x̂−k )T − (xk − x̂−k )ρTkKT

k + Kkρkρ
T
kKT

k ]

= P−k −Kk(Pxy
k|k−1)T −Pxy

k|k−1K
T
k + KkP

yy
k|k−1K

T
k . (8)

Substituting Eqs. (6) and (8) into Eq. (7) yields

Ĵk = tr[P−k −Kk(Pxy
k|k−1)T −Pxy

k|k−1K
T
k + KkP

yy
k|k−1K

T
k ]

+ λk[(x̂−k )Tx̂−k + 2(x̂−k )TKkρk + ρTkKT
kKkρk − `2].

To find the optimal Kk that minimizes Ĵk, the derivative of Ĵk with respect to Kk is taken and set equal to
zero:

∂Ĵk
∂Kk

= −2Pxy
k|k−1 + 2KkP

yy
k|k−1 + 2λkx̂

−
k ρ

T
k + 2λkKkρkρ

T
k = 0.

Solving for Kk yields
Kk = (Pxy

k|k−1 − λkx̂
−
k ρ

T
k )(Pyy

k|k−1 + λkKkρkρ
T
k )−1.

Using the matrix inversion lemma results in

Kk = Pxy
k|k−1(Pyy

k|k−1)−1 −
λkP

xy
k|k−1(Pyy

k|k−1)−1ρkρ
T
k (Pyy

k|k−1)−1

1 + λkρTk (Pyy
k|k−1)−1ρk

− λkx̂−k ρTk (Pyy
k|k−1)−1

+
λ2
kx̂
−
k ρ

T
k (Pyy

k|k−1)−1ρkρ
T
k (Pyy

k|k−1)−1

1 + λkρTk (Pyy
k|k−1)−1ρk

. (9)

Substituting Eq. (9) into Eq. (6) results in a quadratic equation in λk

aλ2
k + bλk + c = 0,
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where a = −ρ2
k`

2, b = −2ρk`
2,

c = ρTk (Pyy
k|k−1)−1(Pxy

k|k−1)TPxy
k|k−1(Pyy

k|k−1)−1ρk + 2(x̂−k )TPxy
k|k−1(Pyy

k|k−1)−1ρk + (x̂−k )Tx̂−k − `2

= (x̂−k + Pxy
k|k−1(Pyy

k|k−1)−1ρk)T(x̂−k + Pxy
k|k−1(Pyy

k|k−1)−1ρk)− `2,

and ρk = ρTk (Pyy
k|k−1)−1ρk. This equation has two roots:

λk =
−b±

√
b2 − 4ac

2a
=

2ρk`
2 ±

√
4ρ2
k`

4 + 4ρ2
k`

2c

−2ρ2
k`

2
=

1±
√

1 + c/`2

−ρk

= − 1

ρk
±
[
−
‖x̂−k + Pxy

k|k−1(Pyy
k|k−1)−1ρk‖

ρk`

]
.

To minimize the objective function, the negative root is chosen:

λk = − 1

ρk
−
[
−
‖x̂−k + Pxy

k|k−1(Pyy
k|k−1)−1ρk‖

ρk`

]

= − 1

ρk
+
‖x̂−k + Pxy

k|k−1(Pyy
k|k−1)−1ρk‖

ρk`
.

Recognizing that K̃k = Pxy
k|k−1(Pyy

k|k−1)−1 is the unconstrained Kalman gain matrix, and denoting

x̃k = x̂−k + K̃kρk, (10)

we can express the Lagrange multiplier as

λk = − 1

ρk
+
‖x̂−k + K̃kρk‖

ρk`
= − 1

ρk
+
‖x̃k‖
ρk`

. (11)

Substituting Eq. (11) into Eq. (9) yields the optimal gain matrix

K∗k = K̃k +
1

ρk

(
`

‖x̃k‖
− 1

)
x̃kρ

T
k (Pyy

k|k−1)−1. (12)

Using this gain matrix, the corrected state and covariance matrix are then given by

x̂k = x̂−k + K∗kρk,

Pk = P−k −K∗k(Pxy
k|k−1)T −Pxy

k|k−1(K∗k)T + K∗kP
yy
k|k−1(K∗k)T.

Making the substitutions Pxy
k|k−1 = P−k HT

k and Pyy
k|k−1 = HkP

−
k HT

k + Rk arrives at the norm-constrained

Kalman filter as presented in Ref. 26. However if the substitutions Pxy
k|k−1 = Uk and Pyy

k|k−1 = Vk are made,

where Uk and Vk are defined in Eq. (2) and Eq. (3), then a norm-constrained UKF is obtained.
Now consider the case where only part of the state is constrained with x̂k = [x̂T

1,k x̂T
2,k]T, such that x̂1,k

satisfies a norm constraint and x̂2,k is unconstrained. The Kalman gain and covariance matrices can then
be partitioned:

Kk =

[
K1,k

K2,k

]
, Uk =

[
U1,k

U2,k

]
, Pk =

[
P11,k P12,k

P21,k P22,k

]
.

These partitioned matrices can then be substituted into the updated covariance of Eq. (5), arriving at

Pk =

[
P−11,k P−12,k

P−21,k P−22,k

]
−
[
K1,k

K2,k

] [
UT

1,k UT
2,k

]
−
[
U1,k

U2,k

] [
KT

1,k KT
2,k

]
+

[
K1,k

K2,k

]
Vk

[
KT

1,k KT
2,k

]
.

The partitions of the updated covariance are then

P11,k = P−11,k −K1,kU
T
1,k −U1,kK

T
1,k + K1,kVkK

T
1,k,
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P12,k = P−12,k −K1,kU
T
2,k −U1,kK

T
2,k + K1,kVkK

T
2,k,

P21,k = PT
12,k,

P22,k = P−22,k −K2,kU
T
2,k −U2,kK

T
2,k + K2,kVkK

T
2,k.

It is apparent that P11,k and P22,k are dependent on their respective partitions of the Kalman gain matrix,
K1,k and K2,k. Since the objective function of the minimum covariance filter is dependent on the trace of
Pk,

Jk = trace{Pk} = trace{P11,k}+ trace{P22,k}.
Furthermore, since P11,k is only dependent on K1,k and P22,k is only dependent on K2,k, then minimizing
Jk with respect to Kk allows for each partition of Kk to be calculated independently. Consequently K1,k

will be given by Eq. (12) and K2,k will be given by Eq. (4).

IV. Application to Flat Plate Space-Debris Object Tracking

A. Dynamics Model

Fa

Fb

r−→
BA

A

B

Figure 1. ECI and body-fixed frames.

n−→

v−→

ℓ−→

Obs.

Sun

n−→

x
y

Figure 2. Surface reflection geometry.

It is desired to apply the norm-constrained UKF to estimate the pose of a HAMR space object. In
order to accomplish this objective, dynamics and measurement models are needed. To describe the state of a
space object in orbit, two frames are defined, the Earth Centered Inertial (ECI) frame Fa and the body-fixed
frame Fb as illustrated in Fig. 1. In the present, only the subproblem of estimating the pose of the debris
object without estimating the material properties and mass is considered. Consequently, the object’s state
is described by

xk =
[
(rBAa,k )T (v

BA/a
a,k )T (qbak )T (ωbab,k)T

]T
,

which includes the object’s position rBAa,k relative to the center of the Earth and resolved in Fa, the object’s

velocity v
BA/a
a,k relative to the center of the Earth with respect to Fa and resolved in Fa, the attitude of the

object’s body-fixed frame Fb relative to the Fa described using a quaternion qbak = [(εbak )T ηbak ]T, and the
angular velocity ωbab,k of the object’s body-fixed frame relative to Fa resolved in Fb. For HAMR objects in
high-altitude orbits near the GEO belt, the dominant perturbation force is due to the SRP. As a result the
translational dynamics are taken to be

m a−→
BA/a = f−→

g + f−→
SRP + f−→

d, (13)

where m is the object’s mass, a−→
BA/a is the acceleration of the object relative to Earth’s center with respect

to Fa, f−→
g is the force acting on the object due to gravity including J2 perturbations (Ref. 29, p. 150, 164),
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f−→
SRP is the force due to the effect of the SRP, and f−→

d is a disturbance force to account for unmodeled

dynamics. The force due to the SRP acting on an object with N facets is given by

f−→
SRP = −

N∑
i=1

ΦSun,totAi max{0, (−̀→ · n−→i)}
(d/d0)2c

[
2

(
Cd,i

3
+ Cs,i(−̀→ · n−→i)

)
n−→i + (1− Cs,i)−̀→

]
,

where ΦSun,tot = 1367 [W/m2] is the total solar flux over all wavelengths at 1 [AU] from the Sun, Ai is the
area of the ith surface, −̀→ is the direction of the Sun as illustrated in Fig. 2, n−→i is the normal of the ith

surface, (d/d0) is the ratio of the distance of the Earth from the Sun to 1 [AU], c is the speed of light, Cd,i
is the diffuse reflectance of the ith facet, and Cs,i is the specular reflectance at normal incidence of the ith

facet (Ref. 30, p. 582). The direction of the Sun, −̀→, can be found using the algorithm described in (Ref. 30,

p. 279).
The attitude dynamics is governed by Euler’s equation

Jbω̇
ba
b + (ωbab )×Jbω

ba
b = τ SRP

b + τ d
b , (14)

where Jb is the object’s inertia matrix resolved in the body-fixed frame Fb, and (·)× is the cross operator
(Ref. 31, p. 526). The moment on the space object due to the SRP effects resolved in the object’s body
frame is

τ SRP
b =

N∑
i=1

(rCBb,i )×fSRP
b,i ,

where rCBb,i is the position the center of the ith surface relative to the body’s center of mass, and fSRP
b,i is the

force due to the SRP on the ith surface.3 The term τ d
b is a disturbance torque to account for unmodeled

dynamics. The attitude kinematics is given by

q̇ba = Ξωbab , Ξ = 1
2

[
ηbaI3×3 + (εba)T

−(εba)T

]
,

where the quaternion is partitioned as qba = [(εba)T ηba]T. The quaternion also satisfies the norm-constraint
(qbak )Tqbak = 1.

B. Measurement Model

Fa

r−→
BA

Fs

r−→
BS

r−→
SA

e−→

n−→
u−→

Fb

α
εS

Figure 3. Observation site and up-East-North frame for angles measurements.

Measurements are taken from optical telescopes located at observation sites on Earth. These measure-
ments include azimuth and elevation angles, which provide information on the object’s orbit, and a brightness
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magnitude, which gives information on the object’s attitude. To determine the angles measurements, the
position of the observation site in the ECI frame needs to be determined. The position of the observation
site in the ECI frame is given by

rSAa =

‖ r−→
SA‖ cos(φ) cos(λ)

‖ r−→
SA‖ sin(φ) cos(λ)

‖ r−→
SA‖ sin(λ)

 ,
where ‖ r−→

SA‖ is the distance of the observation site from the origin of the ECI frame, φ is the sidereal time
of the observer, and λ is the geodetic latitude of the observer. The local up-East-North frame Fs is attached
to the observation site as shown in Fig. 3. The position of the space object relative to the observation site
resolved in the ECI frame is given by

rBSa = rBAa − rSAa .

This position is resolved in frame Fs through the following matrix multiplication

rBSs =

rBSs,1rBSs,2
rBSs,3

 =

cos(−λ) 0 − sin(−λ)

0 1 0

sin(−λ) 0 cos(−λ)


 cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1

 rBSa .

The azimuth angle α and the elevation angle ε are then given by

α = atan2(rBSs,2 , r
BS
s,3 ), ε = sin−1

(
rBSs,1
‖rBSs ‖

)
.

The brightness magnitude measurements are modeled using BRDFs. BRDFs describe the scattering of
incident light reflected off a surface in the direction of the viewer v−→ as illustrated in Fig. 2. For this
application v−→ is the direction of the observation site relative to the space object, given by

v−→ = − r−→
BS/‖ r−→

BS‖.

BRDFs are typically composed of two components: a specular-like component, Rspec, and a diffuse-like
component, Rdiff, such that

Rtotal = Rspec +Rdiff.

For this study, the Ashikhmin-Shirley (AS) BRDF9,32 is used. The specular term of the AS BRDF is given
by

Rspec =

√
(nu + 1)(nv + 1)

8π

( n−→ · h−→)nu cos2 β+nv sin2 β

( h−→ · v−→) max[( n−→ · −̀→), ( n−→ · v−→)]
FFresnel,

where h−→ is the bisector between −̀→ and v−→, nu and nv are anisotropic exponential factors, β is the angle
between h−→ and local surface vectors used to define the anisotropic reflection behaviour, and FFresnel is the
Fresnel reflectance. The AS BRDF approximates FFresnel using Schlick’s approximation:

FFresnel = Cs + (1− Cs)
(

1− ( v−→ · h−→)
)5

.

The diffuse component is given by

Rdiff =
28Cd
23π

(1− Cs)
(

1−
(

1−
n−→ · −̀→

2

)5
)(

1−
(

1−
n−→ · v−→

2

)5
)
.

Using this BRDF, the power of the visible light reflected off a surface of the space object toward the
observation site is given by

Fobs,i = Rtotal,i

ΦSun,visAi max{0, ( n−→i · −̀→)}max{0, ( n−→i · v−→)}
‖ r−→

BS‖2 ,
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where ΦSun,vis = 455 [W/m2] is the power per square meter of visible light striking the surface,3 Ai, is the
area of the ith facet, and the maximums of the dot-products or zeros account for instances when the surface
is not reflecting Sunlight in the direction of the observer.3 The apparent brightness magnitude measured at
the observation site is then given by3

mapp = −26.7− 2.5 log10

(
N∑
i=1

Fobs,i

ΦSun,vis

)
,

where the apparent magnitude of the Sun is −26.7.

C. Simulation and Estimation Results

1. Measurements from One Observation Site

With the dynamics and measurement models defined in Sections IV.A and IV.B, the norm-constrained UKF
was implemented to estimate the position, velocity, attitude represented by a quaternion, and the angular
velocity of a simulated tumbling rigid plate representing debris in a high altitude orbit. In this simulation,
the observation site was taken to be at Maui HI at 20.71◦ N latitude, 156.26◦ W longitude, and 3058.6
[m] altitude. Measurements were taken every 10 [s] for one hour starting at 04:00.0 Mar 16, 2010 UTC.
Measurements were corrupted by zero-mean Gaussian noise with standard deviations 0.1 magnitude for the
brightness measurements and 1 arc-second for each of the angles measurements.3,7 The plate properties are
outlined in Table 1 and the initial state of the plate in the simulation was given by

rBAa,0 =

−18 127.2

31 776.3

21 128.0

 [km], v
BA/a
a,0 =

−2.6707

−1.5263

0.0073

 [km/s], qba0 =


0.3271

−0.6374

0.5737

−0.3970

 , ωbab,0 =

−0.01091

−0.00851

−0.00688

 [rad/s].

For this simulation, the disturbance forces and moments described in Eq. (13) and Eq. (14) were taken to be
zero mean Gaussian processes. The disturbance force components had variance σ2

f = (1 × 10−6)2 [N2] and

the disturbance torque components had variance σ2
τ = (1 × 10−8)2 [(N ·m)2]. Both the disturbance forces

and moments were taken to have characteristic length-scales of 20 [s], and were modeled using the method
outlined in Refs. 33 and 34. Using these parameters, the plate’s dynamics were simulated in MATLAB using
a built-in variable step ordinary differential equation solver. The simulated plate’s states were then used to
calculate simulated measurements that were subsequently corrupted with zero-mean Gaussian noise. These
simulated measurements are shown in Fig. 4.

Property Symbol Value

Length a 5 [m]

Width b 2 [m]

Area-to-Mass Ratio 1/ρ 26.3 [m2/kg]

Specular Reflectance at Normal Incidence Cs 0.60

Diffuse Reflectance Cd 0.26

AS BRDF Exponential Factor nu = nv 10

Table 1. Plate Properties

In addition to these measurements, an initial estimate, x̂0, and initial state-error covariance, P0, is also
required for the UKF. For this study, the initial estimate used for the estimation of the state of the plate
had a prescribed deviation from the simulated true state. These initial errors are included in Table 2 and
the initial variances are given in Table 3. Finally the Qk and Rk matrices used to account for process and
measurement noise in the UKF were taken to be

Qk =

[
I3×3 × (1× 10−6)2 [N2] 0

0 I3×3 × (1× 10−7)2 [(N ·m)2]

]
,
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Rk =

[
(0.1)2 0

0 I2×2 × (1)2 [(arc-sec)2]

]
.

These values constitute Case 1. The norm-constrained UKF of Section III was implemented with the weight-
ing factor κ = 3 and where the states were partitioned such that the quaternion states were norm-constrained
and the rest of the states were unconstrained. To improve the norm-constrained UKF’s performance, an
iterated correction step was implemented as described in Ref. 35. For Case 1, the resulting state estimate
errors are shown in Fig. 5 and a visualization of the attitude estimate at different times is shown in Fig. 8.
From Fig. 5, it can be seen that the state estimates obtained from the UKF remained within the estimated
3σ error bounds calculated from Pk. Also, from Fig. 8 it can be seen that the attitude estimate converged to
the true attitude using 20 minutes worth of observations and tracked the attitude well for the duration of the
observations. It should be noted that although the position error remained bounded, the filter performance
was coarse and did not significantly improve over the duration of the observations.

Now consider Case 2, where the stringent initial error and initial variance on the angular velocity were
relaxed with δωbab = 13×1× 100 [deg/h] and σ2

ω = (200)2 [(deg/h)2]. The UKF failed to converge to the true
state as illustrated in Fig. 6 and as visualized for the attitude states in Fig. 9. This fragility can be in part
ascribed to the lack of information available to the UKF through the light curve measurements. Essentially
a single datum point in the form of a brightness magnitude measurement was being used to infer an attitude
with three degrees of freedom. Even though the system’s dynamics can be used to weave these measurements
together to gain more information in the form of light curves, this information is insufficient for the case of a
plate, since only one surface is available to reflect the Sunlight at a given time. This contrasts previous work
that involved three dimensional structures, since such structures had more facets from which information
could be revealed in the measured light curves.

2. Measurements from Multiple Observation Sites

If data were available from multiple observation sites, then the state estimate of the plate’s motions for a less
confident initial angular velocity estimate could be recovered for Case 2. This is illustrated in Fig. 7 where in
addition to measurements from Maui HI, synchronized measurements were also taken from Sorroco NM and
Las Campanas Chile. The location of these additional observation sites are included in Table 4. From Fig. 7
and Fig. 10, it is apparent that the UKF estimates remained within the estimated 3σ bounds again and
converged to the true state more quickly and with smaller covariances after one hour of observations. This
added robustness further motivates the need for establishing a central framework through which observations
from multiple telescope in varied locations can be combined to provide more data on space-debris objects.15

V. Conclusions

In this study, an unscented Kalman filter that enforces a state equality norm constraint was presented.
This was accomplished by modifying the minimum variance estimation problem to be a constrained optimiza-
tion problem with a Lagrange multiplier as outlined by Zanetti et al.26 This norm-constrained unscented
Kalman filter was then applied to a space-debris tracking problem with the objective of estimating the pose
of a flat plate in a high-altitude orbit using light curve and angles measurements in simulation. It was
found that by fusing synchronized measurements from multiple Earth-based observation sites, the ability of
the norm-constrained UKF to converge to the true state of the plate’s pose was improved whereas taking
observations from a single observation site would lead to divergent state estimates. This serves as further
motivation for establishing a more diverse Space Surveillance Network with a central measurement database
as proposed by programs such as DARPA’s OrbitOutlook project.
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Property Symbol Value

Initial position error δrBAa 13×1 × 1 [km]

Initial velocity error δv
BA/a
a 13×1 × 0.001 [km/s]

Initial attitude error δqba
[
(11×3 × sin(40◦/2)) cos(40◦/2)

]T
Initial angular velocity error δωbab 13×1 × 50.0 [deg/h]

Table 2. Initial errors in the state estimate.

Property Symbol Value

Initial position variances σ2
r 12 [km2]

Initial velocity variances σ2
v (0.001)2 [(km/s)2]

Initial attitude variances σ2
θ (0.5)2

Initial angular velocity variances σ2
ω (70.0)2 [(deg/h)2]

Table 3. Initial variances for state estimation with the norm-constrained UKF.

Location Latitude Longitude Altitude

Maui HI 20.71◦ N 156.26◦ W 3058.6 [m]

Sorroco NM 33.82◦ N 106.66◦ W 1510.2 [m]

Las Campanas Chile 29.01◦ S 70.69◦ W 2515.8 [m]

Table 4. Observation site locations.
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Figure 4. Simulated observations of the space-debris plate from the Maui HI observation site.
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Figure 5. (Case 1) Estimation errors for tracking the plate from a single observation site. 3σ bounds are the
red dashed lines. It can be seen that the state estimation errors remain within the estimated 3σ bounds.
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Figure 6. (Case 2) Estimation error for tracking the plate from a single observation site. It can be seen that
the attitude estimates become divergent for a less confident initial guess of the angular velocity.
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Figure 7. (Case 2) Estimation error for tracking the plate from three observation sites. It can be seen that the
position estimate is noticeably improved in comparison to estimates from a single site. The attitude estimates
are also convergent.
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(a) t = 0 min (b) t = 20 min (c) t = 40 min (d) t = 60 min

Figure 8. (Case 1) Attitude estimate visualization for a single observation site. The red outline corresponds
to the norm-constrained UKF state estimate of the quaternion representation of the attitude. It can be seen
that by the 20 min. time step, the attitude estimate has converged to the true state.

(a) t = 0 min (b) t = 20 min (c) t = 40 min (d) t = 60 min

Figure 9. (Case 2) Attitude estimate visualization for a single observation site. The red outline corresponds
to the norm-constrained UKF state estimate of the quaternion representation of the attitude. It can be seen
that the attitude estimate does not converge to the true estimate.

(a) t = 0 min (b) t = 20 min (c) t = 40 min (d) t = 60 min

Figure 10. (Case 2) Attitude estimate visualization for measurements from three observation sites. The
red outline corresponds to the norm-constrained UKF state estimate of the quaternion representation of the
attitude. It can be seen that the attitude estimate does converge to the true estimate.
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