
Progress Towards the Application of the

Recovery-Based Discontinuous Galerkin Method to

Practical Flow Physics Problems

Philip E. Johnson∗ & Eric Johnsen†

Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109

Recent progress in the development of the Recovery-Based Discontinuous Galerkin
method of Van Leer and Lo is reported. The method is shown to be competent for bound-
ary value problems that involve second order derivatives, including shear terms, such as
the viscous terms of the Navier-Stokes equations. As expected, the method’s high order of
accuracy yields superior results in terms of error versus computational time.

I. Introduction

Since being paired with the explicit Runge-Kutta time integration method by Cockburn & Shu,1 the
Discontinuous Galerkin (DG) method has proven to be well-suited for time-dependent hyperbolic systems

of equations, such as the Euler equations for compressible inviscid flow. The method exbihits excellent
parallel efficiency, can be naturally extended to arbitrarily high order of accuracy, and is compatible with
complicated mesh geometry. However, the method is not naturally compatible with parabolic/elliptic PDE,
and this deficiency has been a barrier to its widespread application for general convection-diffusion systems,
such as the Navier-Stokes equations of fluid dynamics. Many modifications to the general DG method have
been proposed to remedy this deficiency, but these methods typically exhibit certain undesireable features,
such as very tight stability constraints and ambiguously defined numerical parameters.

A unique scheme among these modifications is the Recovery-based DG (RDG) method of Van Leer & No-
mura,2 explored in detail by Lo.3 Compared to other DG modifications for handling parabolic/elliptic PDE
behavior, RDG is characterized by extremely high order of accuracy, high computational cost per iteration,
and a specialized boundary treatment to maintain high order accuracy. The general concept of Recovery
has assisted in the development of similar schemes, for example the reconstruction-based DG method of Luo
et al.4 Additionally, Recovery DG has been shown to competent in Direct Numerical Simulation (DNS) of
compressible turbulence with periodic boundary conditions by Johnsen et al.5,6. However, the Recovery-
based DG method as developed by Lo and Van Leer, despite its promise, has been sparsely applied to real
flow physics problems.

Our particular interest is using Recovery DG for DNS of unsteady turbulent shock-wave/boundary-layer
interaction (SWBLI). This problem is well-described in a review by Clemens.7 There are many challenges
associated with this particular flow physics problem, and a Recovery-based DG approach may work well.
However, the method is untested with regard to the prescription of realistic boundary conditions. Thus,
boundary procedures for the RDG method have recently been the focus of our research efforts.

This paper has multiple objectives. The first is to explain the RDG1x+ and RDG1x++CO schemes,
which are the most versatile versions of the various Recovery-based schemes described by Lo.3 Next, the
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full boundary recovery procedure is reviewed, with emphasis on our findings regarding the difficulties of
shear-diffusion systems as opposed to pure (Laplacian) diffusion systems. Then, the scheme is compared
with the Local DG (LDG) method of Cockburn and Shu,8 which is representative of the mixed-formulation
approaches typically used for diffusion systems.

II. Standard DG for Transient Hyperbolic PDE

For the sake of clarity, we refer to the established DG method for handling hyperbolic PDE, outlined by
Cockburn & Shu,1 as standard DG. It is briefly described here in semi-discrete form for a time-dependent
problem in two spatial dimensions to provide context for the description of RDG. We restrict ourselves
to quadrilateral elements, using a tensor product solution basis. Consider the scalar convection-diffusion
equation, shown below as a conservation law.

∂u

∂t
+∇·~F −∇ · ~G = 0 (1a)

~F =

[
vxu

vyu

]
~G = D∇u (1b)

D =

[
µ λµ

λµ µ

]
∇u =

[
∂u
∂x
∂u
∂y

]
(1c)

In this form, µ is the diffusion coefficient, λ is a shear diffusion factor, vx is the advection velocity in the
x direction, and vy is the advection velocity in the y direction. We refer to D as the diffusion tensor.

Let the physical domain Ω of the problem be partitioned by a set of finite elements, each denoted by Ωe,
such that Ω = ∪Ωe. Additionally, let each edge of each element ∂Ωe be either shared with another element,
as an interface, or coincident with a boundary of the physical domain. In the case of the DG method, it is
convenient to map every element in physical space to some reference element. In our particular case, a unit
square is used with reference coordinates ξ and η, as shown below.

Ωe Ωref

ξ

η

J
J
J
J
J
J

-

-

6

Figure 1. The reference element.

We use a polynomial expansion inside each element to represent the numerical solution. Let V h be a
finite solution space of polynomials; the natural choice on quadrilateral elements is a tensor product basis
built from one-dimensional polynomials. The approximate solution uh within each element is represented as
a linear combination of local degrees of freedom (DOF), denoted û, and the shape functions in the solution
space. In this work, we assume that the order of each element is the same, and that each element is mapped
to the reference element, specifically the unit square. The formal representation is shown below, with p
representing the degree of the one-dimensional shape functions used to form the tensor product V h and K
being the degrees of freedom per element.
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V h = {φm(ξ, η), (ξ, η) ∈ [0, 1]× [0, 1]} (2a)

uhe (ξ, η, t) =

K∑
m=1

ûme (t)φm(ξ, η) (2b)

In the system shown above, K = (p + 1)2 is the dimension of the solution space V h, and ξ and η are
reference coordinates within the local finite element Ωe. Each finite element has its own vector of time-
dependent solution weights ûe, and this element-specific vector contains K entries. From now on, the time
argument is dropped from the cell DOF, and the spatial arguments are dropped from the shape functions
for cleanliness. In order to satisfy the conservation law, we satisfy the weak form, shown below, for K test
functions φk in each element.∫

Ωe

∂uhe
∂t

φkdA = −
∫
∂Ωe

φk(Ĥconv(u
−, u+) · ~n−)ds+

∫
Ωe

~F(uhe ) · ∇φkdA

+

∫
∂Ωe

φk(Ĥdiff (u−, u+,∇u−,∇u+) · ~n−)ds−
∫

Ωe

~G(uhe ,∇uhe ) · ∇φkdA
(3)

Along the edges of the local element, Ωe, the approximate solution is multi-valued because either another
element shares the edge, or the edge is a member of the boundary of the physical domain. The job of the Ĥ
operators is to return a single flux vector, either ~F in the case of Ĥconv or ~G in the case of Ĥdiff , given the
two approximations u+ from the neighboring cell (or boundary) and u− from the local cell, Ωe. The unit
normal vector ~n− points outward from the local element Ωe.

For purely hyperbolic PDE, such as the time-dependent Euler equations, the standard method achieves
2p + 1 order of accuracy in the L2 norm of the cell-averaged error when the solution is smooth. For the
convection-diffusion system shown above, if the diffusion coefficient µ is nonzero, the method underperforms
compared to the purely hyperbolic case.

DG performs poorly for parabolic PDE because of two issues. First, information is lost when taking a
gradient of the polynomial approximation uh. Thus, the approximate gradient ∇uh is of lower quality than
the approximation uh itself, and the accuracy of the method suffers. The second difficulty is specifying a
value for Ĥdiff along the element boundaries. For conservation, this value needs to be the same along the

edge for both of the neighboring elements. The most natural choice, taking ~G(avg(u−, u+), avg(∇u−,∇u+)),
performs very poorly, and an alternate approach in necessary.

Multiple methods have been proposed for addressing the two issues discussed above, two popular can-
didates being the Local DG (LDG) method of Cockburn & Shu8 and the BR2 scheme of Bassi & Rebay.9

These schemes fit under the umbrella of mixed formulation methods,10 which are built from the motivation
of substituting a high-quality approximation σh, constructed directly in the space V h, for the gradient ∇uh.
A thorough review of mixed formulation methods and related penalty methods can be found in the 2001
analysis of Douglas et al.10

Van Leer’s Recovery philosophy takes a different approach than the mixed formulation methods, instead
building a high-order continuous and differentiable solution f , the recovered solution, across each interface
in order to populate the viscous interface term Ĥdiff . The details of the method, further developed by Lo,3

are given in the next section. The basic philosophy of the method has been applied in the formation of two
new algorithms that we are aware of, namely Borrel & Ryan’s Elastoplast DG method11 and the Enhanced-
Stability Recovery (ESR) scheme of Ferrero et al.,12 but this paper will focus on the evolved forms of RDG
developed by Lo, which preserve extremely high order of accuracy.

III. The Recovery and Enhancement Schemes for Nonlinear Shear-Diffusion

For the purely diffusive case of Equation (1), that is, setting the advection speeds to zero, RDG1x++CO
on a Cartesian grid achieves 3p+ 1 order of accuracy for odd p and 3p+ 2 order of accuracy for even p, with
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the error taken in the cell-averaged L2 norm. The stated order of accuracy is based both on Fourier analysis
and numerical experimenation. The cheaper RDG1x+ scheme achieves this advertised order of accuracy
only for the specific case of a diagonal diffusivity tensor on Cartesian elements. Both of these schemes use
Recovery to remove ambiguity from the numerical solution at each element interface, as explained in this
section. This section is exclusively a review of methods designed by Lo.3 It exists to orient the reader before
the boundary procedures are described in a later section; when Neumann or Dirichlet boundary conditions
are involved, as opposed to the case of periodic boundaries, special care must be taken to maintain the
method’s high order of accuracy.

A B

C

D

E

-
6

r

s

Figure 2. Neighboring elements.

To describe Recovery, we continue with the assumption of quadrilateral elements. Consider elements
A,B,C,D,and E, as shown above, on the interior of the computational grid. The philosophy of Recovery is to
define a unique, continuous, and differentiable polynomial solution across each element edge. For example,
the interface that separates element A and element B will be populated by some recovered solution fAB . On
each interface, we make use of a set of interface coordinates, with r running in the face-normal direction and
s in the face-tangential direction. Similarly, each of the other three edges that border element A will have
an associated recovered solution and unique coordinate system.

To perform recovery, we construct a polynomial approximation f for uh over the union of two adjacent
elements, such that f gives a high-quality approximation over the interface shared by the elements. Over the
union of two elements ΩA and ΩB , we have K solution weights defining uhA in ΩA and K solution weights
defining uhB in ΩB . This information is combined to form a polynomial expansion, f , which approximates the
solution over ΩA∪ΩB as a polynomial expansion using 2K solution weights. Let f be written as a polynomial
expansion of functions in the space W . Like V h, W is a tensor product basis, but while limited to order p in
the face-tangential direction, s, it posesses very high polynomial order in the face-normal direction, r. The
interface reference coordinates r and s can be normalized according to user preference.

W = {ψn(r, s)} (4a)

f(r, s) =

2K∑
n=1

f̂nψn(r, s) (4b)

As an example of the space W , in the p1 case, each element contains 4 DOF. Thus, the recovered solution
contains 8 degrees of freedom. However, while the DG solution basis V h is bilinear in each element, the
recovered function is built on a tensor product basis that is quartic in the face-normal direction but only
linear in the face-tangential direction.

The recovered function, f , is weakly equivalent to uh over each of the two elements that share the
interface. Its DOF f̂ must be set based on the approximate solutions uhA and uhB . There are 2K degrees of
freedom for every function f , and they are constrained as shown below.
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∫
ΩA

fφkdxdy =

∫
ΩA

uhAφ
kdxdy ∀k ∈ {1..K} (5a)∫

ΩB

fφkdxdy =

∫
ΩB

uhBφ
kdxdy ∀k ∈ {1..K} (5b)

By rewriting Equation (5) in terms of the vector of recovery weights f̂ and the two adjacent vectors of
solution weights ûA and ûB, we obtain a matrix-vector system that yields f̂ once ûA and ûB are known.

We emphasize here that the recovered function is obtained via the DG solution coefficients û. Obtaining
the recovery weights f̂ across each interface is the first step in populating Equation (3), given the DG
solution û at some time t. A schematic of the process is given in Figure 3. For this particular example,
a p2 discretization in two dimensions is used, with 9 DOF per element. The DG solution shown is weakly
equivalent to the exact solution over each element, but introduces a discontinity at the interface. The
recovered function, fAB , uses the DG solution in each element to create a smooth, high-order solution
approximation over ΩA ∪ ΩB .

Figure 3. The Recovery process in 2D, p2 discretization.

Once the primary recovery weights throughout the physical domain are known, they are used to populate
the primary recovered solution along every interface. In the case of RDG1x+, ~G(f,∇f) is substituted for

Ĥdiff in Equation (3) to populate the surface terms. In the case of the more versatile (and more expensive)

scheme RDG-1x++CO scheme, there are more operations to be completed before populating Ĥdiff .
For both of the schemes, the primary recovered solution is used to assist in the process deemed solution

enhancement by Van Leer and Lo. A thorough summary is given by Lo.3 Whereas recovery is used to
populate a solution approximation along element interfaces, solution enhancement is used to replace the
DG solution uhe over each element with an enhanced solution, uene . Specifically, where the DG solution uh

consists of K DOF per element, the enhanced solution uen makes use of K + 4(p + 1) DOF per element,
where p is again the one-dimensional order of V h. For example, considering again the p1 case, K = 4,
and the enhanced solution contains 12 DOF. Like the DG solution, the enhanced solution is a polynomial
expansion, as shown below.
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V en = {φmen(ξ, η) , (ξ, η) ∈ [0, 1]× [0, 1]} (6a)

uene (ξ, η) =

Ken∑
m=1

ûen,me φmen(ξ, η) , Ken = (p+ 1)2 + 4(p+ 1) (6b)

We provide an illustration for clarity here, again assuming a p1 discretization. Suppose that the basis
functions φ ∈ V h are constructed as a tensor product of 1D monomials. The enhanced basis, V en, will
inherit all members of V h, and it will contain extra shape functions that are used to improve the accuracy
of the approximate solution. Regardless of p, the enhanced solution basis will contain 2 extra columns of
shape functions in the ξ direction and 2 extra rows in the η direction, as shown below.

V h V en

ξη

1 ξ

η -

1

η

η2

η3

ξ

ξη

ξη2

ξη3

ξ2

ξ2η

ξ3

ξ3η

Figure 4. Basis construction for uh and uen.

The organization of the enhanced basis is based on how we wish to constrain the enhanced solution
over each element. For the case of a quadrilateral, the Ken DOFs in each element’s enhanced solution uen

are constrained as follows. For the quadrilateral element, let {τ0, τ1, τ2, τ3} be the set of the four edges
that border Ωe. Each edge is populated by a primary recovered solution f . We take Lk(sq) to be some
appropriately chosen 1-dimensional shape function taken at coordinate sq along a given interface τq. An
example of an appropriate shape function would be a simple monomial. These constraints force uene to be
weakly equivalent to uhe over the element interior and weakly equivalent to the appropriate recovered function
f over each of the four bordering edges.

∫
Ωe

uene φ
kdxdy =

∫
Ωe

uheφ
kdxdy ∀φk ∈ V h (7a)∫

τq

uene L
k
s(sq)dsq =

∫
τq

fqL
k
s(sq)dsq ∀k ∈ {1..p+ 1} ∀q ∈ {1..4} (7b)

The system of Equation (7) gives K constraints based on the approximate solution uhe of the local element,
and each of the four interfaces contribute p+ 1 unique constraints. As with the primary recovery constraints
of Equation (5), this system can be written as a linear matrix-vector equation that yields the Ken DOF ûen

e

given the K DOF ûh
e and the 2K DOF f̂q along each of the four relevant interfaces. The enhanced solution

is then used to populate ~G(uen,∇uen) over the interior of the local element.
The difference between the RDG1x+ and RDG1x++CO schemes is that for the latter, recovery is actually

performed twice per interface in the effort to populate Equation (3). The second iteration of recovery is
necessary because the primary recovered solution across each interface is a polynomial of only order p in
the interface-tangential direction, which means that RDG1x+ cannot accurately calculate Ĥdiff unless D
is purely diagonal and the elements are Cartesian. RDG1x++CO remedies this shortcoming.
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We now describe the final piece of the more versatile RDG1x++CO scheme. Consider the space V en;
the interface traces of uen produce a high-quality gradient approximation in all directions, thanks to the
extra shape functions in V en compared to V h. After primary recovery and solution enhancement have
been performed, RDG1x++CO performs recovery on the enhanced solution uen in order to produce the
secondary recovered function, fen, across each interface. When a second iteration of recovery is performed
using the enhanced solutions uen, the secondary recovered solution fen inherits the high order of uen in the
face-tangential direction, enabling the method to maintain the greater than 3p order of accuracy, even in the
case of a non-diagonal diffusion tensor. The interface flux Ĥdiff is then populated using ~G(fen,∇fen).

There is an important peculiarity to the secondary recovery. The CO in the scheme is short for Carte-
sian Optimization. Without Cartesian Optimization, the secondary recovery would consist of setting 2Ken

degrees of freedom for the solution fen across each interface, using Ken DOF from each of elements that
share the interface.

Instead, each secondary recovered solution fen contains 2(p + 1)(p + 3) DOF; we ignore some of the
DOF in the enhanced solution uen of each element. For example, in the p1 case, where uen has 12 DOF per
element, we could define a 24 DOF enhanced recovery function fen across each interface. Instead, Cartesian
Optimization retains only 16 DOF in the secondary recovered function on each interface. The details of this
procedure, which relies heavily on careful designation of the test functions for the secondary recovery, are
given by Lo.3 Compared to perfoming a recovery iteration with the full spectrum of the 2Ken available DOF,
which we would designate RDG1x++, the Cartesian Optimization procedure yields less computational work
per interface and a larger Von Neumann number for numerical stability, while maintaining greater than 3p
order of accuracy on quadrilateral elements.

IV. Observations

The main advantage of recovery is that where conventional DG schemes for diffusion achieve 2p order of
accuracy in the cell-averaged L2 error norm, Recovery achieves greater than 3p order of accuracy. However,
this increased accuracy comes at a cost, the sources of which include the following three chracteristics. First,
the recovery and enhancmcement procedures rely on more matrix-vector multiplications than are present
in mixed formulation methods. Second, for a given approximation order p, due to the higher degree of the
recovered and enhanced solutions, RDG requires higher-resolution numerical quadrature than conventional
DG schemes in order to achieve the advertised order of accuracy. Third, the second recovery iteration of
RDG1x++CO results in a non-compact stencil, which could be a hindrance in massively parallel simulations.

Our preliminary work in moving the scheme to non-Cartesian quadrilateral elements has uncovered
another issue. For non-uniform elements, in addition to populating a mass matrix for every element, RDG
requires that each element have access to a unique matrix for the enhancement procedure, in addition to
the individual matrices necessary to solve for the weights of the recovered solutions across the interfaces.
The memory usage of our code for Recovery on skewed quadrilaterals is consequently severe compared to
mixed formulation approaches. Additionally, the numerical stability of the scheme is sensitive to the matrix
conditions numbers of the enhancement and recovery matrices, so a prudent choice of basis functions is
crucial. Our preferred method is to use Legendre polynomials to build the recovery and enhancement solution
spaces. These challenges must be kept in mind as Recovery DG is applied to large scientific computing
problems.

V. Boundary Procedure

Consider an element, ΩA, that shares at least one interface with a Dirichlet boundary, ∂ΩD. We refer to
ΩA as the boundary element. The intersection ∂ΩA∪∂ΩD is the boundary interface, and will be labeled τD.
Also, let ΩB be the element that touches ΩA opposite the boundary interface. For example, if the physical
domain is a square with Dirichlet boundaries and ΩA touches the left-side boundary of Ω, then ΩB is the
element immediately to the right of ΩA. The element ΩB is known as the interior element. The situation is
shown below, with the recovery reference coordinates r and s originating on τD.
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Figure 5. The Boundary Environment

We summarize the full boundary procedure of Lo3 before presenting our findings. For the boundary
interface of ΩA, in addition to weak equivalence relations over ΩA and ΩB , the recovered function fAD must
be weakly equivalent to the prescribed Dirichlet condition CD(s) along the boundary. As with Recovery over
an interior interface, the recovered function f along the boundary interface will be a polynomial expansion
with 2K DOF. These degrees of freedom are constrained by weak equivalence relations as shown below.

∫
ΩA

fφkdxdy =

∫
ΩA

uhAφ
kdxdy ∀k ∈ {1..K} (8a)∫

ΩB

fβkdxdy =

∫
ΩB

uhBβ
kdxdy ∀k ∈ {1..K − (p+ 1)} (8b)∫

τD

fLk(s)ds =

∫
τD

CD(s)Lk(s)ds ∀k ∈ {1..p+ 1} (8c)

In this case, the functions βk are carefully chosen from the DG basis V h such that the resulting matrix-
vector system is invertible. As with the solution enhancement section, Lk represents some 1D test function
along the boundary interface. This procedure maintains high order of accuracy for the solution derivatives
normal to the boundary, but not their derivatives in the tangential direction; if the tangential derivative
along a boundary is needed, which could be the case for the Navier-Stokes equations, then the method
underperforms. We have worked to remedy this shortcoming.

Let the preceding boundary procedure be known as the F∅ procedure. The F stands for full boundary
procedure, and the ∅ is used to show that no special treatment is made for tangential derivatives along the
boundary. It is possible to perform secondary recovery along a boundary using a similar approach to that
shown in Equation (8), forcing equivalence with the enhanced cell solutions uen rather than uh; this method
is abbreviated FF, standing for full primary recovery, then full secondary recovery along the boundary. It
yields an enhanced recovery solution, fenAD, that is of high polynomial degree in both the boundary-normal
and boundary-tangential directions.

The FF procedure was our first attempt to remedy the shortcoming of the F∅ procedure. Our conclusion is
that FF is difficult to implement and not worth the effort. Experimentation has shown two outstanding issues
with this approach. First, it lowers the maximimum allowable timestep for stable explicit time integration.
Second, it does not, in general, maintain the greater than 3p order of accuracy of RDG.

Our newly-developed scheme to combat this issue is the FM scheme, for full primary recovery along the
boundary, and a mixed approach for populating the gradient information. It consists of three steps:

1 : Perform full primary boundary recovery procedure to obtain fAD.

2 : Perform cell solution enhancement to obtain uenA .

3 : Along τD, use fAD for the boundary-normal derivative and uenA for the boundary-tangential derivative.
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The performance of the three schemes is now demonstrated with a test. Again, we make use of Equa-
tion (1), but set advection speeds to zero. The remaining parameters, and the manufactured solution, are
shown in Equation (9). The spatial domain is the unit square, partitioned by uniform square elements.
Each simulation runs from t = 0 to t = 2k−2

w . Based on the manufactured solution, space-time dependent
Dirichlet conditions are enforced along boundaries. For each of the three boundary schemes discussed, the
test problem is solved on a series of succesively finer meshes, each characterized by the uniform element edge
length ∆x. Our measurement of error is the L2 norm of the cell-averaged error in u.

µ = 1 +
u2

10
, λ = 0.25 , kw = 2π , vx = vy = 0 (9a)

u = e−kw
2t(sin(kw(x− y)) + sin(kwx)sin(kwy)) (9b)

The requirement for a scheme to pass this test is that it achieves Recovery’s advertised 3p + 1 order of
accuracy for even p and 3p+ 2 order of accuracy for odd p. In addition to reporting the grid resolution and
simulation error for each case, we report the base 10 logarithms of these two quantities. Then, the order of
accuracy (abbreviated OOA) is calculated and reported between every two data points.

As shown in Table 1, Table 2, and Table 3, where the other two schemes fail, the FM scheme achieves
8th order accuracy in the p2 case and 10th order accuracy in the p3 case. Thus, our DG scheme is working
just as well near the boundaries as it is over the domain interior, and the FM scheme passes this test. We
have no authoritative explanation for the failure of the FF scheme.

Table 1. Performance of F∅ scheme.

∆x p Error log ∆x log Error OOA

1.047 2 6.08E − 6 +0.02 −5.22

0.785 2 2.20E − 6 −0.11 −5.66 3.54

0.524 2 5.07E − 7 −0.28 −6.30 3.61

0.393 2 1.74E − 7 −0.41 −6.76 3.73

0.262 2 3.70E − 8 −0.58 −7.43 3.81

2.094 3 9.67E − 6 +0.32 −5.02

1.571 3 2.73E − 6 +0.20 −5.56 4.40

1.047 3 3.19E − 7 +0.02 −6.50 5.29

0.785 3 6.34E − 8 −0.11 −7.20 5.62

0.524 3 6.22E − 9 −0.28 −8.21 5.73

0.393 3 1.19E − 9 −0.41 −8.92 5.74
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Table 2. Performance of FF scheme.

∆x p Error log ∆x log Error OOA

1.047 2 1.22E − 7 +0.02 −6.92

0.785 2 1.97E − 8 −0.11 −7.71 6.33

0.524 2 1.87E − 9 −0.28 −8.73 5.80

0.393 2 3.76E − 10 −0.41 −9.43 5.59

0.262 2 4.02E − 11 −0.58 −10.4 5.51

2.094 3 5.92E − 7 +0.32 −6.23

1.571 3 5.20E − 8 +0.20 −7.28 8.46

1.047 3 1.39E − 9 +0.02 −8.86 8.93

0.785 3 2.35E − 10 −0.11 −9.63 6.19

0.524 3 1.93E − 11 −0.28 −10.7 6.16

0.393 3 3.31E − 12 −0.41 −11.5 6.13

Table 3. Performance of FM scheme.

∆x p Error log ∆x log Error OOA

1.047 2 1.10E − 7 +0.02 −6.96

0.785 2 1.23E − 8 −0.11 −7.91 7.64

0.524 2 5.37E − 10 −0.28 −9.27 7.72

0.393 2 5.81E − 11 −0.41 −10.2 7.73

0.262 2 2.59E − 12 −0.58 −11.6 7.67

2.094 3 5.88E − 7 +0.32 −6.23

1.571 3 5.31E − 8 +0.20 −7.28 8.35

1.047 3 3.04E − 10 +0.02 −9.52 12.7

0.785 3 1.24E − 11 −0.11 −10.9 11.1

0.524 3 2.30E − 13 −0.28 −12.6 9.84

VI. Performance Comparison with LDG

We now present a quantitative comparison between RDG-1x++CO and the well-known LDG scheme.
This test will compare the two schemes in terms of both numerical error and computation time, accounting
for the increased cost and the increased order of accuracy of Recovery. The governing equation is again
Equation (1), with the advection speeds set to zero to obtain a purely parabolic PDE. The remaining
parameters are shown below in Equation (10). The domain for this simulation is a square, (x, y) ∈ [0, 2π]×
[0, 2π]. We use a uniform mesh of square elements, each with edge length ∆x. The solution is marched from
the initial condition at t = 0 to t = 2k−2

w . The familiar heat equation, free of shear terms, is solved with
time-dependent Dirichlet boundary conditions, in accordance with the solution shown below.

µ = 1 , λ = 0 , kw = 1.2 , vx = vy = 0 (10a)

u = e−kw
2µt(sin(kwx) + sin(kwy)) (10b)

The Recovery result here makes use of the FM scheme developed in the previous section. For this
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particular case, the F∅ scheme would be appropriate. However, we make use of the more costly FM scheme
to present a comparison between two schemes that would be appropriate for the viscous terms of the Navier-
Stokes equations, not just the simple heat quation.

Table 4 gives some scheme configuration parameters. Explicit Runge-Kutta (RK) time integration is used
for all schemes. We use different order RK schemes based on the method and the solution order p, in order
to both minimize computation time and ensure that the time integration scheme is of sufficient order to
preserve each scheme’s spatial order of accuracy. The exception to this rule is the p2 case with Recovery. For
this particular test, Recovery behaves erratically when paired with the RK4 scheme, but achieves the desired
order of accuracy when we switch to RK5. The cause for this behavior is presently under investigation.
Using the cell-averaged L2 error norm, the order of accuracy of LDG is 2p, such that it is 2nd order accurate
in the p1 case and 4th order accurate in the p2 case. RDG is 4th order accurate in the p1 case and 8th order
accurate in the p2 case.

For each configuration, the maximum Von Neumann number for numerical stability is determined exper-
imentally and reported in Table 4. The increment ∆t is recalculated every time step based on the maximum
diffusion coefficient µ found in the time-dependent approximate solution uh. For square elements, we define
the VNN as shown below.

V NN =
2µmax∆t

∆x2 (11)

Table 4. Configuration

Method p RK order VNN

LDG 1 2 1
19

LDG 2 2 1
74

RDG 1 2 1
8

RDG 2 5 1
10

The Von Neumann numbers must not be viewed here as a direct comparison of the stability of the schemes;
for the p2 case, Recovery is paired with RK5 instead of RK2, which influences the maximum allowable ∆t
for numerical stability. If Recovery were paired with RK2 instead of RK5, the maximum allowable VNN
would be expected to drop below its present value, based on the stability regions of the RK5 and RK2 time
integration routines.

The measure of error is the L2 norm of the cell-averaged error in u. Figure 6 shows the error in the
element-averaged L2 norm vs. the work load for each simulation. All computations are performed on
a single processor. To calculate work load, we take the total run time of a simulation and subtract the
post-processing and initialization times. The run times are then non-dimensionalized by the time taken
for the p2 Recovery case to run on the coarsest of the meshes, which is approximately 4.1 seconds. This
nondimensionalized run time is reported as the work load. Several runs are presented in each configuration,
with different mesh resolutions ∆x; our coarsest mesh uses 144 total elements (12 in each direction), and
the finest mesh uses 16, 384 elements (128 in each direction).

This test indicates that for a given amount of computational time, a high-order Recovery scheme gives
superior results for a scalar parabolic PDE, whether the discretization is with p1 or p2 elements. Future work
will include attempting to extend this behavior to the full Navier-Stokes equations with realistic boundary
conditions. Additionally, the performance of recovery on non-uniform meshes must be explored in detail.
We have obtained excellent results when applying Recovery on skewed quadrilateral grids with periodic
boundary conditions, but the method’s performance has not yet been measured for Dirichlet/Neumann
boundary conditions.
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Figure 6. Comparison of Local DG and Recovery DG for heat equation problem.

VII. Conclusion

In this study, we have presented a method to maintain Recovery DG’s high-order accuracy for shear-
diffusion problems under the application of Dirichlet boundary conditions. We discovered that great care
must be taken to avoid compromising the scheme’s high order of accuracy. Additionally, we have compared
the scheme with the popular Local DG method in terms of accuracy versus computational cost. Recovery
DG has been shown to perform comparatively well in this regard, as is to be expected from a high-order
method.

Some work remains before Recovery DG can be proficiently applied to general flow physics problems. The
main issue is the fact that when paired with standard DG for advection-diffusion systems, the full scheme will
be limited to 2p+1 order of accuracy. This issue can be addressed by a reduced order Recovery scheme, which
would lower the cost of Recovery while bringing its order of accuracy near that of the standard advection
scheme. Alternatively, one could attempt to improve the order of accuracy with which the advective terms
are captured through a reconstruction/enhancement scheme, pushing the full scheme’s order of accuracy
past 2p+ 1.

Additionally, it is still not clear how to generalize RDG1x+ and RDG1x++CO to non-quadrilateral
elements while retaining greater than 3p order of accuracy. These issues are to be addressed in future
studies.
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