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This paper presents the results obtained with an adaptive finite-element solver for the Fifth Drag Prediction

Workshop. The discontinuous Galerkin finite-element method is used for the spatial discretization of the Reynolds-

averaged Navier–Stokes equations with a modified version of the Spalart–Allmaras turbulence model. Drag

convergence is sought via mesh adaptation driven by an adjoint-weighted residual method. Results are presented for

the drag polar of the NACA 0012 airfoil under subsonic flow conditions and for the Common ResearchModel wing–

body geometry under transonic flow conditions and fixed lift. The angle of attack that yields the desired lift is obtained

via a Newton solve using the lift adjoint.

Nomenclature

b�i� = benefit function
c�i� = cost function
C = convective flux
CD = coefficient of drag
CL = coefficient of lift
Cp = coefficient of pressure
D = diffusive flux
E = mass-specific total energy
fadapt = fraction of elements to adapt
J = output of interest
M = mass matrix
M = Mach number
m�i� = merit function
q = geometric polynomial order
R�·� = discrete residual operator
R�·; ·� = weak form of the residual
Re = Reynolds number
S = source term for Spalart–Allmaras model
TH = computational mesh
U = discrete state
u = state vector
uH;p = elementwise polynomial representation of the state
us = state component s
VH;p = space of p-order polynomials with support over

elements of TH

~ν = working variable for Spalart–Allmaras model
vi = ith component of velocity
wH;p = vector of weight functions
α = angle of attack
εtol = trimming tolerance
ηκH = elemental adaptive indicator
κH = element of computational mesh
κSA = scaling factor for discrete Spalart–Allmaras equation
μ∞ = freestream laminar dynamic viscosity

ρ = density
Ψ = discrete adjoint state
ψ = adjoint state vector
ψH;p = elementwise polynomial representation of the adjoint

I. Introduction

T HE use of computational fluid dynamics (CFD) tools in
engineering analysis and design has steadily increased in the

past several decades. With the evolution of algorithms and the
substantial enhancement of computational power, CFD tools now
provide the ability to explore new configurations and test flow
conditions that may be otherwise difficult to produce experimentally.
As the range of applications becomes wider and the number of
simulations increases, requirements of high accuracy and robustness
present challenges for the CFD development community [1].
One application of CFD that demands high accuracy is drag

prediction for a large transport aircraft: seemingly small variations
in drag can significantly impact the aircraft’s payload [2,3].
Aerodynamic flow over an aircraft, as for many other cases, exhibits
features with unknown spatial distribution, and the range of these
features’ length scales can easily span six orders of magnitude.
Furthermore, flows can exhibit singularities that pose additional
challenges for the prediction of drag and other outputs. The trivial
solution to these problems is to globally refine the mesh. However,
this strategy is generally inefficient due to its refinement of
unnecessary regions and the resulting very large grid sizes.
AIAA organizes drag and lift prediction workshops (DPW and

HLPW, respectively) with the purpose of assessing the capability
of state-of-the-art computational methods and turbulence modeling
for predicting forces and moments on relevant geometries in the
aeronautical industry. In these workshops, starting meshes are
generated based on industry’s best practices, andmesh independence
is generally sought via uniform-refinement studies. Nevertheless, the
spread of results can be significant [4–7].
Solution-based adaptivemethods present an attractive opportunity

for accurate calculations on affordable grid sizes. Thesemethods rely
on the definition of an adaptive indicator, which localizes the regions
of the computational domain that need mesh modification through
refinement, coarsening, or node movement. An effective indicator is
obtained through adjoint-based error estimation methods, which
have already been demonstrated for many complex problems,
including those in aerospace applications [8]. The goal of these
methods is to provide confidence measures in the form of error bars
for scalar outputs of engineering interest. In addition, one can use
the error contributions of different elements or volumes of the
computational mesh as an adaptive indicator that specifically targets
errors in the outputs of interest [9–14].
Adaptivemechanics can include bothmesh size, h refinement, and

approximation order,p increment. Choosing the correctmechanics is
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important for efficient prediction of an output, and we employ a
systematic cost/benefit approach to make this decision [15].
Increasing p requires high-order capability, and one candidate
discretization that has gained popularity in aerodynamic applications
is the discontinuous Galerkin (DG) method. Its popularity is due in
part to its suitability for high-order discretizations of convection-
dominated problems on unstructured meshes. In addition, DG’s
finite-element formulation naturally supports output error estimation
and handles meshes with hanging nodes, both of which are important
for this work.
The structure of this paper is as follows. Section II describes the

flow solver and the discretization method. Section III outlines the
output error estimation process that drives the mesh adaptation
described in Sec. IV. Results are presented in Sec. V, and conclusions
and future work are discussed in Sec. VI.

II. Solver Description

For our simulations, we use the XFlow code, a high-order DG
finite-element solver for general equation sets with Message Passing
Interface-based, distributed-memory parallel capabilities. XFlow
serves as a platform for development in research areas such as error
estimation, mesh adaptation, and solver algorithms [15–17]. In the
case of this work, the equations are Reynolds-averaged Navier–
Stokes (RANS) with a modified version of the Spalart–Allmaras
(SA) [18,19] turbulence model.
The RANS–SA equations are written in their compact,

conservative form as

∂tus � ∂iCis�u� − ∂iDis�u;∇u� � Ss�u� (1)

where i ∈ �1; : : : ; dim� indexes the spatial dimensions, and s indexes
the equations of conservation of mass, momentum, energy, and
turbulent viscosity. Accordingly, the state vector is denoted
by u � �ρ; ρvi; ρE; ρ ~ν�T.
The DG spatial discretization of the flow equations approximates

the solution in a space VH;p of piecewise polynomials of degree p
with local support on each element κH ∈ TH , where TH is the set of
elements resulting from a subdivision of the spatial domain. The
resulting weak form reads

�∂tuH;p;wH;p� � R�uH;p;wH;p� � 0 ∀ wH;p ∈ VH;p (2)

where �·; ·� denotes an inner product, and the semilinear form
R�uH;p;wH;p� includes source, convective, and diffusive terms.
In a DG approximation, the state can be discontinuous between

elements, just like in a finite-volume method. The Riemann flux

involved in the convective term at element interfaces is approximated
with Roe’s [20] solver in which the SA working variable ~ν is
transported as a conserved scalar ρ~ν. The diffusion term is discretized
using the second form of Bassi and Rebay [21], and the SA source
term is discretized according to Oliver’s [19] modifications to the
original SA model [18]. These modifications ensure stability of the
model at negative ~ν and they are specifically suited for discontinuous
Galerkin discretizations.
For problems with shocks, we use a modified version of Persson

and Peraire’s [22] shock-capturing scheme that uses a switch based
on a regularity estimate of the density approximation; this involves
the current pth-order solution and its projection onto VH;p−1. These
modifications are described in [23].
The discrete system is obtained by expanding the components the

state and the test functions in terms of basis functions ϕH;p�x�, where
VH;p � spanfϕH;p�x�g. The resulting discrete system reads

M
dU

dt
� −R�U� (3)

Themassmatrix is block diagonal, and it consists of volume integrals
of basis function products on each element in the mesh.
We use the constrained pseudotransient continuation [23] method

for marching Eq. (3) in time. This method incorporates physical
realizability constraints in the solution path and thus improves the
robustness of the DG solver. At each pseudotransient continuation
step, a linear system is solved to yield a state update direction ΔU.
The coefficient matrix in this linear system is the residual Jacobian
regularized by a matrix with the same footprint as the mass matrix in
Eq. (3). In this work, we solve the linear systems using the
generalized minimal residual method [24] (GMRES) with an
element-line Jacobi preconditioner [3].
Most practical cases in the aeronautical industry are in the

Reynolds number regime of 106 → 107. In this regime, the SA
working variable ~ν typically spans several orders of magnitude.
Therefore, it is also desirable to choose an appropriate scale for ρ~ν.
The scale used in this work is

�ρ~ν� 0 � ρ~ν

κSAμ∞
(4)

where �ρ~ν� 0 is the scaled conservedvariable that is stored and evolved
by the solver. Essentially, we are nondimensionalizing ρ~ν by a factor
larger than the laminar viscosity, and themotivation for this scaling is
tomake the conserved variable �ρ~ν� 0 on the order of unity, on parwith
the other variables, in relevant regions of the computational domain.
To exemplify the effect of κSA, we show in Fig. 1 the residual

history for two flows at Re � 6.5 × 106, one subsonic and one
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a) M∞= 0.3, Re = 6.5 × 106, α = 2.31 deg b) M∞= 0.734, Re = 6.5 × 106, α = 2.79 deg
Fig. 1 Residual convergence for an RAE 2822 airfoil, using p � 1 for different ~ν scaling factors (κSA).
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transonic. In the transonic case, we use the modified version of
Persson and Peraire’s [22] shock-capturing scheme mentioned in
Sec. II. We solve the linear system in each nonlinear iteration to
relative tolerances of 10−3 and 10−4, respectively. For each case, we
use three scaling factors, κSA � 1, 100, and 1000, andwe see that κSA
significantly affects the convergence history. Note that the initial
residual residual norm for κSA � 1 is higher than for κSA � 100 and
1000. Furthermore, when the residual norm for κSA � 1 drops to a
similar order of magnitude as the initial residuals for κSA � 100 and
1000, a secondary transient starts and the residual climbs again. The
larger values of κSA ameliorate this secondary transient, which is also
discussed by Burgess and Mavriplis [25].
By choosing an appropriate scale for the SA equation, wemake the

discrete residual for the SA equation similar in magnitude to the
individual discrete residuals corresponding to the other conservation
equations. Therefore, when we solve the linear systems for the state
update direction to a finite tolerance, we evolve the solution to each of
individual conservation equations together. This is desirable for
implicit methods that make use of line searches, which is the case of
pseudotransient continuation.
Tables 1 and 2 show the force coefficients, themaximumvalues for

representative conserved quantities, and solution cost metrics. First,
we analyze the effect of κSA on solution cost. The average cost of the
linear solves, measured by the number of GMRES iterations per
nonlinear step, is not significantly affected by the SA scaling. The
reason for this cost being approximately constant across κSA is
because the linear solves are not exact at each nonlinear step. Given
that this cost is roughly constant, the overall solution cost is mainly
dictated by the number of nonlinear steps. Note that the total number
of nonlinear iterations in Fig. 1 correlates with the total number of
GMRES iterations and with the total CPU time.
We now analyze the effect of SA scaling on the solution. In the

fully subsonic case, the scaling has virtually no effect on the results,
while in the transonic case, κSA has a slight effect on the force
coefficients. This effect is due to the highly nonlinear nature of the
shock-capturing scheme, which makes the output computations
acutely sensitive to residuals. The difference in drag and lift in this
case between κSA � 100 and κSA � 1000 is on the order of the
residual tolerance.
We see from these two results that κSA > 1 can be beneficial for the

solver, and we have found that κSA ≈ 100 → 1000 works well for
Reynolds numbers in the range 106 → 107. Determining a general
guideline for setting κSA at other Reynolds numbers is a subject of
ongoing work.

III. Output Error Estimation

Output-based error estimation techniques identify all areas of the
domain that are important for the accurate prediction of an
engineering output. The resulting estimates properly account for
error propagation effects that are inherent to hyperbolic problems,
and they can be used to ascribe confidence levels to outputs or to drive
adaptation. A key component of output error estimation is the
solution of an adjoint equation for the output of interest. In a
continuous setting, an adjoint, ψ ∈ V, is a Green’s function that
relates residual source perturbations to a scalar output of interest,
J�u�, where V is an appropriate function space. Specifically, given a
variational formulation of a partial differential equation, determine u
such that

R�u;w� � 0; ∀ w ∈ V (5)

the adjointψ ∈ V is the sensitivity of J to an infinitesimal source term
added to the left-hand side of the original PDE. ψ satisfies a linear
equation:

R 0�u��w;ψ� � J 0�u��w� � 0; ∀ w ∈ V (6)

where the primes denote Fréchét linearization with respect to the
arguments in square brackets. Details on the derivation of the adjoint
equation can be found in many sources, including the review in [8].
Specifically, in the present work, we employ the discrete adjoint
method, in which the system is derived systematically from the
discretized primal system [26,27].
An adjoint solution can be used to estimate the numerical error in

the corresponding output of interest. The resulting adjoint-weighted
residual method is based on the observation that a solution uH;p in a
finite-dimensional approximation spacewill generally not satisfy the
original PDE. The adjoint ψ ∈ V translates the residual perturbation
to an output perturbation via

δJ � J�uH;p� − J�u� ≈ −R�uH;p;ψ� (7)

This expression is based on a linear analysis, and hence for nonlinear
problems and finite-size perturbations, the result is approximate.
Although the continuous solution u is not required directly, the

continuous adjoint ψ must be approximated to make the error

Table 1 Results for case in Fig. 1a solution costs normalized with κSA � 1

Quantity κSA � 1 κSA � 100 κSA � 1000

CD 1.2238 × 10−2 1.2238 × 10−2 1.2238 × 10−2

CL 4.5079 × 10−1 4.5079 × 10−1 4.5079 × 10−1

�ρvx�max 1.25222 1.25222 1.25222
�ρ~ν� 0max 9.64975 × 102 9.64975 9.64974 × 10−1

GMRES iterations per nonlinear iteration 1.0 (13.5) 1.023 1.1054
Total GMRES iterations 1.0 (648 iterations) 0.9799 0.8982
Total CPU time 1.0 (197 s) 0.9728 0.8804

Table 2 Results for case in Fig. 1b: solution costs normalized with κSA � 1

Quantity κSA � 1 κSA � 100 κSA � 1000

CD 1.9730 × 10−2 1.9755 × 10−2 1.9755 × 10−2

CL 7.3054 × 10−1 7.3164 × 10−1 7.3164 × 10−1

�ρvx�max 1.11406 1.11178 1.11178
�ρ~ν� 0max 1.66004 × 103 1.63789 × 101 1.63789
GMRES iterations per nonlinear iteration 1.0 (23.9) 1.035 1.089
Total GMRES iterations 1.0 (3253 iterations) 0.6394 0.7925
Total CPU time 1.0 (745 s) 0.6481 0.7103

1286 CEZE AND FIDKOWSKI

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
26

22
 



estimate in Eq. (7) computable. In practice, ψh;p
�

is solved
approximately or exactly on a finer finite-dimensional space
Vh;p

�
VH;p [28–30]. This finer space can be obtained through mesh

subdivision and/or approximation order increase [19,31,32], denoted
here by changes in the superscript H and p, respectively.
The adjoint-weighted residual evaluation in Eq. (7) can be

localized to yield an adaptive indicator consisting of the relative
contribution of each element to the total output error. In this work,
the finer space is obtained by approximation order increment,
VH;p�1VH;p, and ψH;p�1 is approximated by injecting ψH;p into
VH;p�1 and applying element block Jacobi smoothing iterations. Via
experimentation with a variety of flow problems, we found that five
block Jacobi iterations are generally enough to provide good error
estimates while maintaing the computational cost affordable.
The output perturbation in Eq. (7) is approximated as

δJ ≈ −
X

κH∈TH
RκH �IH;p�1H;p �uH;p�; ~ψH;p�1 − I

H;p�1
H;p �ψH;p�� (8)

where IH;p�1H;p �·� is an injection operator fromp top� 1 in the coarse
mesh TH; ~ψH;p�1 is the approximated fine-space adjoint; and RκH

corresponds to the elemental residual as defined in Eq. (2). Note, the
difference between the coarse-space and fine-space adjoints is not
strictly necessary due to Galerkin orthogonality [8]. However, when
the primal residual is not fully converged tomachine precision levels,
the use of the adjoint perturbation gives better error estimates.
Equation (8) expresses the output error in terms of contributions from
each coarse element. A common approach for obtaining an adaptive
indicator is to take the absolute value of the elemental contribution in
Eq. (8) [14,29,33–36],

ηκH � jRκH �IH;p�1H;p �uH;p�; ~ψH;p�1 − IH;p�1H;p �ψH;p��j (9)

With systems of equations, indicators are computed separately for
each equation and summed together. Because of the absolute values,
the sum of the indicators,

P
κHηκH , is greater or equal to the original

output error estimate. However, it is not a bound on the actual error
because of the approximations made in the derivation.
Frequently in the aeronautical industry, CFD simulations are

conducted under trimmed conditions, meaning under fixed, user-
defined values of certain outputs, typically lift or pitching moment.
Thismeans that certain boundary condition parameters (e.g., angle of
attack) depend on outputs computed from the flow solution. Thus, a
feedback loop must be used to correct those input parameters.
The feedback loop used in this work is illustrated in Fig. 2, where

Jtarget is the target value of the output for which the parameter α is
trimmed. The cycle starts by solving the flow equations using an
initial guess for α. Then, J is computed and checked against Jtarget
under a trimming tolerance. Until this tolerance is met, α is corrected
usingNewton’smethod forwhich the sensitivity of Jwith respect toα
is needed. This sensitivity is computed via an inner product between
an adjoint for J and a residual perturbation δR resultant from a
perturbation δα. This residual perturbation is computed by evaluating

the residual with the boundary condition perturbed by a small,
user-defined δα. In this work, δα is one one-thousandth of a radian.
When the output depends directly on the input parameter, ∂J∕∂α is
added to the output sensitivity, and this is also computed by finite
differences.
In cases where the target value for the output is not achievable or

the initial guess is bad, the cycle in Fig. 2 may not converge. In those
cases, a contingency plan is needed (e.g., a maximum number of
iterations is assigned or the cycle is restarted with a better initial
guess). In the output-based adaptation framework presented in this
work, the boundary conditions are only trimmed if the error estimate
for J is smaller than its trimming tolerance, εtol.

IV. Mesh Adaptation Mechanics

The elemental adaptive indicator ηκH drives a fixed-fraction
hanging-node adaptation strategy. In this strategy, which was chosen
for simplicity and predictability of the adaptive algorithm, a certain
fraction fadapt of the elements with the largest values of ηκH is marked
for refinement. Marked elements are refined according to discrete
options that correspond to subdividing the element in different
directions or increasing the approximation order. For quadrilaterals,
the discrete options are: x-refinement, y-refinement, and xy-
refinement, as depicted in Fig. 3. Although the option of modifying
the local polynomial approximation order is possible in this
framework [15], herewe consider onlyh-adaptation. The directions x
and y refer to reference-space coordinates of elements that can
be arbitrarily oriented and curved in physical space. Also, the
subelements created through refinement inherit the approximation
order from the original element. In three dimensions, a hexahedron
can be refined in seven ways: three single-plane cuts, three double-
plane cuts, and isotropic refinement.
In this work, h-refinement is performed in an element’s reference

space by employing the coarse element’s reference-to-global
coordinate mapping in calculating the refined element’s geometry
node coordinates. The refined elements inherit the same geometry
approximation order and quadrature rules as the parent coarse
element. As a result, there is no loss of element quality when a
nonlinear mapping is used to fit the element to a curved geometry.
Therefore, curved elements near a boundary can be efficiently refined
to capture boundary layers in viscous flow. For simplicity of
implementation, the initial mesh is assumed to capture the geometry

Fig. 2 Adjoint-based boundary-condition parameter correction, here shown for the angle of attack α.

pp
p

p

pp

pp

a) x-refinement b) y-refinement c) xy-refinement
Fig. 3 Quadrilateral h-refinement options. The dashed lines indicate
the neighbors of the refined element.
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sufficiently well, through a high enough order of geometry
interpolation on curved boundaries, such that no additional geometry
information is used throughout the refinements. That is, refinement of
elements on the geometry boundary does not change the geometry.
We note that, for highly anisotropic meshes, curved elements may be
required away from the boundary, and for simplicity, we use meshes
with curved elements throughout the domain.
Elements created in a hanging-node refinement can be marked for

h-refinement again in subsequent adaptation iterations. In this case,
neighbors will be cut to keep one level of refinement difference
between adjacent cells. This is illustrated in Fig. 4.
The choice of a particular refinement option ismade locally in each

element flagged for refinement. This choice is made by defining a
merit function that ranks each available refinement option i. This
function is defined as

m�i� � b�i�
c�i� (10)

The benefit and cost measures depend on themethod used for solving
the flow equations and they should be tailored for each specific
solver.
During calculation of the merit function, local mesh and data

structures are created, one for each element, that include the flagged
element and its first-level neighbors along with the corresponding
primal and adjoint states. In these local structures, the central element
is refined in turn according to each of the discrete options. On the
refined local mesh, the merit function is computed, and the
refinement option with the largest value of m�i� is chosen.
Because we are seeking the most efficient way of locally refining

an element amongst the available options, it is important that the
cost and benefit measures in Eq. (10) are accurate but tractable
representations of the computational expense and gain in accuracy,
respectively. In [15,23], we discuss these aspects at length.
In an output-basedmesh adaptation cycle, the steady-state residual

is driven to zero at each adaptive step. Therefore, mesh modification
on the element level can be interpreted as uncovering local residual
perturbations. Because an adjoint solution represents the sensitivity
of an output with respect to a residual perturbation, we define our
benefit function as

b�i� �
X
κh∈κH
jRκh�UkTkl�i��jjjΨkTkj�i�j (11)

where Rκh �·�j is a discrete residual component in the embedded
element, T�i� is a matrix that transfers the discrete primal and adjoint
states to the local meshes for each refinement i, andΨ is the discrete
coarse-space adjoint solution. Note that the adjoint variables act as
positive weights for each of the perturbations.
In this work, most of the computational time is spent in the

GMRES algorithm used to solve the linear systems that arise at each
step of the pseudotransient continuation method. These systems
are sparse; hence, we approximate the number of floating point
operations in applying GMRES by the number of nonzero entries in
the residual Jacobianmatrix. Based on this observation, we define the
cost measure as

c�i� �
X
κh∈κH

�
�p� 1�2·dim �

X
Niface�i�

�p� 1�2·dim
�

(12)

where p denotes the polynomial approximation order, and Niface�i�
is the number of internal faces associated with refinement option i.
The first term in Eq. (12) accounts for the self-blocks of the
residual Jacobian matrix corresponding to each of the subelements.
The second term accounts for the off-diagonal blocks (i.e., the
dependence of the subelements’ residuals on the neighboring states).

V. Results

A. NACA 0012,M∞ � 0.15, Re � 6 × 106, Drag Polar

This case is one of the NASA’s Turbulence Modeling Resource
cases [37]. The purpose of this case is to validate the modifications
made to the SA model. As suggested by NASA’s Turbulence
Modeling Resource, the domain’s outer boundary is located 500
chord lengths away from the airfoil. We consider eight angles of
attack in the drag polar: α � 0, 2, 4, 6, 8, 10, 12, and 15 deg. For each
angle of attack, an initial quartic mesh is generated by agglomerating
16 quadrilaterals from a linear mesh. We modify the original NACA
0012 geometry by closing the trailing edge according to [37]. The
linear meshes are generated so that the cells downstream from the
airfoil are approximately aligned with the wake. Figure 5 shows an
example of an initial quartic mesh. Because of the geometrical
simplicity of this case, we can have the first grid spacing off the wall
on the initial mesh such that y�max ≈ 0.06 for α � 10 and 15 deg and
y�max ≈ 0.03 for α � 0 deg.
The scheme’s polynomial approximation order is p � 2, and the

discretized SA equation is scaled by κSA � 1000. The adaptation is
driven by drag error with fadapt � 10%, and the residual norm is
reduced by eight orders of magnitude at each adaptive step. To
simplify our analyses, we limit the number of the adaptive steps to six
for all the angles and measure the error level of the final result.
Figure 6 shows the drag convergence with degrees of freedom for
three representative angles of attack. The largest final error estimate
over all the angles of attack is approximately three drag counts (∼3%)
in the α � 15 deg case.
Figure 7 compares our adaptive results with Ladson’s experi-

mental data [38] and with results computed with CFL3D [39] on a
fine, 897 × 257 element, structured grid [37]. The experimental data
consist of three sets of wind tunnel runs with varying roughness
of carborundum strips to force transition to turbulence at the 5%
position along the chord. This reduces transition effects and allows
for a more adequate comparison with fully turbulent simulations.
In spite of the adaptation being driven by drag error, the lift values

in Fig. 7a are in close agreement with the experimental data. Our
computed drag values are within 3% difference with respect to
CFL3D’s results. This difference is within the spread of 4% in the
CFD results reported for the SA model in [37]. With respect to the
experimental values in Fig. 7b, the simulations show slightly larger
drag values. We attribute these differences to the turbulence model
and possibly to experimental measurement precision as the adjoint-
based error estimation and adaptation only targets, and provides an
error estimate for, the discretization error.
The adjoint solution offers insight on regions of the computational

domain where residual errors affect the output of interest. Figure 8b
shows the x-momentum drag-adjoint solution for the α � 10 deg
case. The most notable feature of this adjoint solution is the

Fig. 4 Example of hanging-node refinement: shaded element is marked
for refinement, and the dashed lines indicated edges created to keep one
level of refinement difference between neighbors.

Fig. 5 NACA 0012,M∞ � 0.15, Re � 6 × 106, drag polar: initial mesh
for α � 10 deg (720 quartic elements).
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stagnation streamline, which, in the inviscid limit, is a weak inverse-
square-root singularity [40]. This sharp variation of the adjoint is
reflected in the adapted mesh in Fig. 8a.
The outer edge of the boundary layer, where ρ~ν exhibits strong

variation, is also heavily targeted for refinement, as observed in [15].
We note that, because the initial solutions across all angles of attack
had small values of y�, the first layer of cells off the wall is scarcely
marked for refinement. Yet, between the initial and final solutions,
there are large variations in force coefficients. This emphasizes a key
aspect of adjoint-based error localization and adaptation, which is the
reduced reliance on meshing guidelines for obtaining accurate
results.
Other features that are important for accurate prediction of drag

are the upper surface acceleration region, the trailing edge, and the
wake. These regions are also frequently targeted for refinement
because they present large magnitudes and variations of the adjoint
variables.

B. Common Research Model: Wing–Body Geometry,M∞ � 0.85,
CL � 0.5, ReMAC � 5 × 106

This case consists of transonic, turbulent flow over NASA’s
Common Research Model (CRM) [41]. This wing–body geometry
mimics a modern passenger aircraft, and its purpose is to establish a
reference for testing computational tools for simulation and design.
Recently, this case has been added to the International Workshop on
High-Order CFDmethods [42], and it is considered a difficult case in
the high-order CFD community because it challenges the robustness
of curved mesh generation, nonlinear solution strategies, and

adaptation methods. Here, we consider only p � 1 solution
approximation order due to the large cost of higher p-orders
combined with the difficulty in making high-quality, curved, coarse
meshes around the CRMgeometry. The results serve as a proof of the
concept of adaptive discontinuous finite-element methods applied to
a problem with industrial relevance.
The cubic mesh used in this case was generated via agglomeration

of linear cells. We do not consider mesh coarsening in our adaptation
mechanics. Hence, the initial linear mesh was generated with the
tradeoff of being coarse to use in our adaptation routine but fine
enough to represent the geometry adequately. Figure 9 shows the
linear and the agglomerated meshes. The off-wall spacing in the
agglomerated mesh is such that y� ≈ 1, computed from the initial
solution, for most of the fuselage and the wing.
The discretized SA equation is scaled by κSA � 1000, and we

use the modified version of Persson and Peraire’s [22] shock-
capturing schemementioned in Sec. II. The convergence criterion is a
residual-norm reduction of eight orders of magnitude from its
initial value.
We consider anisotropic h-adaptation at fixed p � 1 with

fadapt � 10%. Converging the initial solution for this problem is
difficult. The physics-constrained solver with line search and the
monotonic Residual Difference Method CFL strategy [23] is used
for the first primal solve. In addition, one step of mesh adaptation
based on the physics constraints [43] is taken to help the solver
to converge. In subsequent solves, converging the residual is
significantly easier.
The output used for adaptation is the total drag at a fixed lift. That

is, at each primal solve, the angle of attack is trimmed so that the

Fig. 6 NACA 0012,M∞ � 0.15, Re � 6 × 106, drag polar: for three angles of attack: solid lines: drag values; dashed lines: drag corrected by its error
estimate; shading: sum of error indicators.
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coefficient of lift is CLtarget
� 0.5� 0.001. The method for trimming

α is described in Sec. V.A.
Because of a lack of spatial resolution in the initial mesh in the

streamwise direction, the flow separates (Fig. 10a) before the lift

requirement is achieved. The solution in the initial mesh is nearly
unsteady, which makes the adjoint problem very ill conditioned and,
consequently, causes the error estimates to be very large, as shown in
Figs. 11a and 11b. In this situation, the lift requirement is relaxed, and

Fig. 8 NACA 0012,M∞ � 0.15, Re � 6 × 106, drag polar: final mesh, ρ~ν contours, and drag adjoint for α � 10 deg.

Fig. 9 CRM, wing–body geometry,M∞ � 0.85, CL � 0.5, ReMAC � 5 × 106: linear and agglomerated cubic meshes.

a) Lift coefficient versus angle of attack b) Drag polar

Fig. 7 NACA 0012,M∞ � 0.15, Re � 6 × 106, drag polar: comparison with experimental data.
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the adaptive process proceeds. This decision is not yet automated and
is one of the aspects of this problem that could benefit from further
research.
After the first drag-based adaptation step, the flowfield is

significantly different (Fig. 10b). The supersonic region is larger, and
no visible flow separation is present. The lift requirement is now
satisfied, and the error estimates for lift and drag are significantly
smaller (Fig. 11).

The Mach number contours shown in Fig. 10 do not present large
differences after the second adaptation step. Also, the areas targeted
for adaptation are similar to the regions observed in theDPW III -W1
case presented in [15]. These regions are the stagnation streamline,
the sonic transition, the shock–boundary-layer interaction, the wake,
and the edge of the boundary layer where ρ~ν transitions from zero its
maximum value. The final off-wall spacing is such that y� ≈ 0.2 for
most of the fuselage andwing surfaces, and the elements immediately

Fig. 10 CRM, wing–body geometry, M∞ � 0.85, CL � 0.5, ReMAC � 5 × 106: slice at 37% of the span (428 in.). Note: on the initial mesh, the flow
separates at CL � 0.387.
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attached to the surface are marked for refinement more often than in
the two-dimensional case presented here.
Figure 12 compares the pressure coefficient at two span loca-

tions with the corresponding experimental data [44].‡ Note that the
initial result is very far from the experiments. However, after one
adaptation step, the pressure distribution is much closer to the
experimental data, and as the adaptation progresses, the shock profile
becomes sharper, and the changes in pressure distribution become
smaller.
Figure 11 shows the convergence history for drag, lift, and pitching

moment. Note that our results for pitching moment are within the
range of data submitted to the workshop, while the drag values are
above the range of results from the workshop. However, it is worth
emphasizing that the finest solution presented here has a factor of five
to 10 fewer degrees of freedom than the midrange meshes used in the
uniform refinement studies in DPW-V.
Note that the drag error correction for this case is not as effective

as in the two-dimensional results. Here, two aspects are affecting the
quality of the drag error estimate. One is the robustness of the
fine-space approximation of the adjoint solution, which is affected
by the under-resolution of the mesh. The second aspect is the angle
of attack changing from one mesh to the next due to lift changes
caused by the mesh refinement. This suggests that variations in
the freestream boundary conditions due to lift error should be

incorporated in the drag error estimate, and this is the subject of
current work.
The mesh agglomeration algorithm used in this work receives as

input a linear, multiblock mesh, where each block has a number of
nodes that satisfies the following law:

Nnode � �q · Ni � 1� · �q · Nj � 1� · �q · Nk � 1� (13)

where q is the desired polynomial order for the geometry
representation, and �Ni;Nj; Nk� are the number of qth order elements
in the �i; j; k� directions. Note that, with the previous rule for the
number of nodes, geometric irregularities of order g ≤ q on the
agglomerated mesh can only exist at element borders. The relevance
of this observation is that the block boundaries in the linear mesh
should coincidewith the geometric irregularities of order g ≤ q in the
source geometry. A mitigation to this problem is to generate locally
finer meshes or to put block boundaries close to geometric
irregularities. However, this is not always possible or easy to achieve.
Another challenge is managing geometric irregularities as

oscillations may occur in the high-order geometry representation. A
way to address this problem is to adapt the surface elements of the
initial mesh based on the integrated distance between the high-order
elements’ solid boundaries and the source geometry and to reproject
the new nodes created in this adaptation onto the source geometry.
This allows for explicit control over the geometry representation error
with the caveat that we need to ensure volume positivity of the curved
elements at the boundary.

Fig. 11 CRM,wing–bodygeometry,M∞ � 0.85,CL � 0.5,ReMAC � 5 × 106, sequence of adaptedmeshes; gray shaded region: range of data submitted

to DPW-V. Note: on the initial mesh, the flow separates at CL � 0.387.

‡Experimental data were digitized from the 5th Drag Prediction Workshop
summary presentation.
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The irregularities identified on the CRM geometry are wing
trailing edge, wing–fairing junction, cockpit–nose-cone junction,
and fairing–body junction. In the case of our block topology for the
initial mesh, a block boundary is not aligned with the aft portion of
the fairing–body junction (Fig. 13). This causes oscillations in the
geometry of the agglomeratedmesh that affect the computed drag and
the robustness of the error estimates. The slightly wavy geometry
where g ≤ q is a possible source of larger drag in our results
(Fig. 11a), as the geometry is held fixed throughout the adaptation.

VI. Conclusions

The use of an adaptive discontinuous finite-element method to
predict drag was demonstrated. The two-dimensional results show
that adjoint-based adaptation reduces the discretization error to
acceptable levels and hence allows for quantification of the remaining
error due to turbulence modeling and measurement errors.
Furthermore, the increase in the number of degrees of freedom
from the initial meshes to the adapted meshes is roughly 85%, which
is much less than the increase due to one level of uniform refinement,
which would quadruple the mesh size.
The drag prediction results for the CRM geometry show that

adjoint-based mesh adaptation can significantly save degrees of
freedom in comparison with the uniform refinement studies
performed the DPW-V participants. The variational formulation of
the discontinuous Galerkin method allows for straightforward output
error estimation, but our current error estimation framework does not
account for the effect of discretization error on the angle of attack that

yields the target lift. This suggests that the adaptation should be
driven by a combination of drag and lift errors.
Finally, three-dimensional RANS simulations using discontinuous

finite elements are still very challenging both in terms of robustness
and in terms of computational expense. The results, however, are very
promising, and further research in these topics will certainly be
beneficial to future codes for aerodynamic performance prediction.
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