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I. Introduction

ERIVING the equations of motion of a flight vehicle modeled

as arigid body, a flexible body, or a system composed of many
rigid and flexible bodies is necessary for simulation, estimation, and
control. There is a wealth of literature devoted to the derivation of
the equations of motion using Lagrange’s equation ([1] p. 80), or
the quasi-coordinate form of Lagrange’s equation known and the
Boltzmann—Hamel equation ([1] p. 227).

Although the attitude of one reference frame relative to another is
globally and uniquely described by a rotation matrix ([2] p. 14),
rotation matrix parameterizations are often used for derivations and
computations. Euler angles and Rodrigues parameters are common
unconstrained parameterizations, whereas axis/angle parameters
and quaternions are well-known constrained parameterizations
([2] pp. 30-31).

The novel contribution of this note is the rigorous proof of three
identities related to axis/angle and quaternion parameterizations of
attitude. When using Lagrange’s equation, the three identities realize
astraightforward and concise derivation of the equations of motion of
a rigid or flexible mechanical system in matrix form without the
explicit use of the Boltzmann—-Hamel equation or index notation.
Highlighting the straightforward use of the identities is, although
expected, also a contribution. In particular, the three identities are
used to derive the equations of motion of a rigid spacecraft equipped
with N thrusters being perturbed by a residual magnetic disturbance
torque.

The remainder of this note is as follows. After reviewing pre-
liminary material, the three identities are presented. Next, an example
highlighting the utility of the three identities is discussed. Finally, the
identities are rigorously proven to be true. This note closes with some
final remarks. Relevant literature is discussed throughout the note as
material is presented.

II. Preliminaries
Reference frames a and b are denoted F, and F,. The compo-
nents of the Gibbsian vector resolved in F, are v, = [v,V,2V,3]7,
and resolved in F, are v, = [V, vp3]7. The relationship
between v, and v, is
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where C,,, = C7, is the 3 X 3 rotation matrix ([2] p. 528).

A. Axis/Angle Parameters
The rotation matrix Cj,, can be written as ([2] p. 24)

Cp.(a,¢) =cos ¢p1 + (1 —cos p)aa’ —sin pa* = e (2)
where a’a =1, a=[a;, a, as]" is the unit-length axis of
rotation, and ¢ is the angle of rotation. When ¢ = 0, £27, +4x, ...,
the axis a is undefined ([2] p. 14), which can be considered a
singularity. Throughout this note, derivations using axis/angle
parameters assume this singularity is avoided. Let @4 denote the
angular velocity of F, relative to F, expressed in F,. The

relationship between a, ¢, a, ¢ and @4 is ([2] p. 25)

[a] = [%(ax —CO]t_%aan) ]wZa 3)

¢ a
or I'(a.$)
@b = [sin ¢1 — (1 - cos p)a* a][g] 4)
S(a.¢)

Differentiating a”’ @ — 1 = 0 with respect to time gives

[2a” o][g]zo )
E(a.¢)

From Eqgs. (3) and (§), notice that
E(a,p)I'(a,¢) =0 (6)

As such, I'(a, ¢) spans the null space of Z(a, ¢) [3]. Also, using
Eqgs. (3) and (4),

S(a.p)I(a.¢) =1 O

B. Quaternions
Quaternions are often used to parameterize C,, and are defined

as (2] p- 17)
[e] _ |:a sin%]
n cos$

where €fe +n> =1, and e=[e; e €]'. In terms of
quaternions, the rotation matrix Cy, is ([2] p. 18)

Co.(e.n) = (P> —€Te)l + 2ee” —2ne* = 1 + 2eX€* — 2ne* (8)
The relationship between €, 1, €, 7, and wﬁ“ is ([2] pp. 26-31)

e
N e’

L(en)

or
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!l = 2(né — €€ — ei) = [2(n1 — €) —Ze][;] (10)
S(e.n)

Taking the time derivative of €”e + > = 1 yields

N i

E(en)
Using Eqgs. (9) and (11), it follows that
E(e.nl(e.n) =0 (12)

From Eq. (12), it is clear that Z(e,#n) and I'(e,n) are orthogonal
complements [3]. Also, Egs. (9) and (10) give

S(e,nT(e,n) =1 (13)

III. Main Result: The Three Identities

When C,,,, I', S, and E are written without arguments of either
(a, ¢) or (e, 1), then either axis/angle parameters or quaternions may
be assumed for each. In addition, ¢ € R* will be used to denote
g=[a” ¢]"andqg =[e" n]" when appropriate.

Recall v, = Cp,,v, from Eq. (1). The main purpose of this note is
rigorously proving that the following three identities hold when
attitude is parameterized in terms of either (a, ¢) or (€, 7).

Identity 1:
. awba N
(875 Jr=-ot
Identity 2:
a(Chuva)
—==T=(C x
()q ( bava)
Identity 3:
6(Cgavb) I = —CT p*
aq ba”b

Two identities presented in [4] are similar but not identical to
identities 2 and 3 when attitude is parameterized using quaternions;
axis/angle parameters are not considered in [4]. When attitude is
parameterized using Euler angles, equivalent identities to identities 1,
2, and 3 can be found in [5-9]. When any other unconstrained three-
parameter attitude parameterization is used, the equivalent of
identity 1 can be found in [7] and Appendix H of [10] in index form.

IV. An Example Highlighting the Utility of Identities
One, Two, and Three

Before rigorously proving identities 1, 2, and 3, an example
highlighting the utility of each identity will be presented. Specif-
ically, a rigid spacecraft equipped with N thrusters being continually
disturbed by a residual magnetic disturbance will be considered.
Although a rigid body system is being considered, the identities
can be used to derive the equations of motion of flexible systems
as well.

A. Lagrange’s Equation

For a system with nonholonomic constraints, Lagrange’s equation
takes the form ([1] p. 80)

ENGINEERING NOTES

d (0L(q.9)\" OL(€.9)"  _;, ,
— - =) i 14
dt( 2 o +e b

where L = T — U is the Lagrangian, T and U are the kinetic and
potential energy, g are the generalized coordinates, A are the Lagrange
multipliers associated with the constraints, and g' arethe generalized
forces or torques. The generalized coordinates are either axis/angle
parameters or quaternions (i.e., ¢ = [a” ¢]" or g =[e" y]").
Owing to the fact both (a, ¢) and (e, 1) satisfy only one constraint,
there is actually only one Lagrange multiplier, denoted A.

B. Kinetic and Potential Energy
The kinetic energy of the rigid body is ([2] p. 60)

1 1. .
T = szqr-]bwlbva — EquTJbSq

where J, = JT > 0 is the inertia matrix (not necessarily diagonal)
expressed in the body frame and the body frame is located at the mass
center. The potential energy associated with a residual magnetic
dipole is ([11] p. 281)

U= —mgbb

where m,, is the (constant) residual magnetic dipole and b, = C},,b,,
is Earth’s magnetic field vector ([12] pp. 779-786). Observe that U is
afunctionof g (i.e., U = U(q)) because b, = C,,(q)b,. Combining
the expressions for 7 and U, the Lagrangian is

L=T-U
1. .
1 T
= Ewgu Jy@} + mlb, (16)

When the Lagrangian is written in the form shown in Eq. (15)
(respectively, Eq. (16)), the notation L(q, §) (respectively, L(q. b))
will be used. This convention follows that of [3,7] and ([10]
pp. 267-268).

C. Method of Virtual Work

The spacecraft in question is equipped with i=1,...,N
thrusters. The ith thruster produces a force f{, = C,,,fi, and is located
atri = C,,r!, from the origin of the body frame where r} is constant,
as seen in the body frame. The virtual work associated with the ith
thruster is W' = f1 §ri. The relationship between the virtual
displacement &r’, and the (unconstrained) virtual displacement 5q is

_a(Cy,r))

ori, = ——basbl
r, o

where ri, = C7 ri . The virtual work associated with &g is

i7 a(Cla r;7) 5

T »i\T
oW = £ arl, = £ T HCoali) g

q =6q" amn

g

where g is the generalized torque associated with the ith thruster.

D. Application of Lagrange’s Equation
Lagrange’s equation given in Eq. (14) will now be employed to
derive the motion equations of the system, starting with the

computation of % (%ﬁq’)). To this end,
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oL(q.q) TG
dz( oq ) _( TSTS) = b 08 + 0l 1S
i aL(q7q) T o7
dt( G ) —SJw +SJa) (18)

Next, computation of %“II“” will be considered. Because L can be

written as L(q, §) = L(q, ®}), it follows that

oL(q.q) _ 0L(q.®}") dw}e

oL(q, @?*
+ (g, 03%)

og odwh O oq
0w’ (Cpub,)
_ o ba” b T baVa
=wy* Jy g +my oq
oL(q,q)T 6 baT o(Cpeb )T
(q q) W) waza + ( ba a) m, (19)
aq 0q dq

Combining Eqgs. (17), (18), and (19) with Lagrange’s equation given
in Eq. (14) and rearranging yields

. . dwbeT

a(Cbaba)T a(C rb)
oq m"+; oq

=&+ f

Premultiplying both sides by I'” gives

rTsTJ ba +FT S‘T _MT J Wb
(g 0q b%Pp
1

5(Cbub )

a(C r)T
— 1T=T T\~ ba"a) T-\~ba" b/
=I"E2'1+T E r

0

where Eqgs. (6) and (7), or (12) and (13), have been used to simplify.
Next, using the transpose of identities 1, 2, and 3 and then simplifying
the result leads to

N
. x " .
waza + wia Jtha = _(Clmba)xmb + Zrﬁy Cl)ufil
i=1

N
= —bm, + Y 1yt (20)

i=1

where fi = C,,fi and b, = Cy,b,. Observe that the torque
—bym;, = mjb, stems from the potential energy associated with the
residual magnetic dipole. Also, as expected, the generalized torques
(which stem from the virtual work) lead to torques of the form
7 = ri fi when identity 3 is employed. Augmenting the motion
equations in Eq. (20) with the appropriate kinematics (e.g., Eqs. (3) or
(9)) yields the rotational equations of motion that govern the motion
of the rigid body.

E. Remarks on the Example

The intent of the example developed in Sec. IV.A-D is to highlight
the utility of identities 1, 2, and 3, not to imply that the motion
equations cannot be derived any other way. However, the derivation is
quite straightforward and perhaps more attractive than other
approaches for a variety of reasons. For instance, the introduction of
quasi-coordinates and the Boltzmann—Hamel equation is avoided.
Also, identities 1, 2, and 3 enable derivation of the equations of
motion in a matrix form; scalar equations and index nation are not
needed.

Observe that neither C,,, nor q appear explicitly in Eq. (20). This is
consistent with the results obtained using a Newton—Euler approach
([2] pp. 55-61, [13] pp. 54-56, [14] pp. 272-278). Also, the
derivation of the equations of motion using quaternions does not rely
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on any assumption of singularity avoidance. This is in contrast to the
use of any three-parameter attitude representation where singularities
are assumed to be avoided during the derivation.

The derivation presented herein is different than the existing
literature in the following ways. First [4,7,15—-18], consider the case
where the Lagrangian is a function of the kinetic energy only; that is,
L = T. Second, the form of the Lagrange multiplier is explicitly
considered in [4,15,16], whereas in Sec. IV.D, the orthogonal
complement method removes the Lagrange multiplier altogether. In
[16,18] a 4 X 4 mass matrix is introduced where one element of the
mass matrix is arbitrary; the formulation presented in Sec. IV.A-D
avoids doing so. Fourth, in [15-18], the rotational equations of
motion are written in terms of ¢, ¢, and ¢ (where ¢ is the quaternion),
masking the equality between results obtained using a Newton—Euler
approach and a Lagrangian approach.

V. Proofs

In this section, identities 1, 2, and 3 will be rigorously shown to
hold. In the forthcoming proofs, the various identities summarized in
the Appendix will be used.

Theorem 1: Let C,, be parameterized in terms of axis/
angle parameters or quaternions, as in Egs. (2) and (8), where S and I
are given in Egs. (3) and (4), as well as in Egs. (9) and (10).
Identity 1 holds.

Proof Using Axis/Angle Parameters: The matrix S (a, ¢) will be
computed first. Taking the derivative of S(a, ¢») shown in Eq. (4)
gives

S(a,¢) = [ cos ¢p1 — (1 — cos ¢p)a* — ¢ sin pa*  a]

Post multiplying S (a, ) by I'(a, ¢) given in Eq. (3) yields

S(a,p)T(a,p) = [ cos ¢1 — (1 — cos Pp)a* — ¢ sin pa* ]

La* - cot a*a*
» 2 ( 5 )
a’
1/(. . ¢ .
=3 ¢ cos pa* — ¢ cos ¢ cotiaxa>< — (1 = cos ¢p)a*a*

+ (1 = cos (/5)00t¢a>< *a* qb@ln Ppa*a

W
sin ¢

X

+ ¢sin ¢ cotiaxaxaX +2aa”

N——
14cos ¢

1/. .
=3 (¢ cos ¢pa* — ¢ cos ¢ cot%axa>< — (1 = cos ¢p)a*a*
+ sin pa*aXa* — ¢ sin pa*a* — P(1 + cos P)a* + 2[1aT)
1 . ¢ .
=5 —¢ cos ¢ cotiaxaX — (1 = cos ¢p)a*a*

+ sin pa*aXa* — ¢ sin pa*a* — pa* + 2daT)

where various identities, such as tan% =sin ¢/(1 + cos ¢), have
been used to simplify. Using Eq. (4), it follows that

0wl [owh® dwhe
dg | da 0

=[d1 + (1 —cos ¢p)a* (cos ¢1 —sin pa*)a]

which, upon post multiplying by I'(a, ¢), becomes
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ba
ai;)b IL(a,¢) = [$1 + (1 — cos p)a* (cos ¢1 —sin pa*)a]
« |:%(a - cot%axax)]
al

1/ . . L
=3 ((f)aX —¢ cot%axa>< + (1 — cos ¢p)a*a* — sin qﬁaxaxax)

+ cos paa” —sin pa*aa”

S(a,¢)I'(a, ¢>)— v, D= —pa* — (1 —cos ¢)a*a*

+ sin pa*a*a*

1 . . .
+ 3 (—(f) cos ¢ cot%axa>< —¢sin pa*a* + ¢ COt%

axax)
+aa” —cos ¢paa’ + sin pa*aa”
= —pa* — (1 —cos p)a*a* + sin pa*a*a*
+ (1 —cos ¢)aa” +sin pa*aa’”
(/) ( cos ¢(1 —I—.cosrﬁ) B si.n2(/) N a —}—.cosz/’)))axa><
2 sing sing sing
0
=—¢pa*—(1—cos p)aa’ + (1 —cos p)aa’
+sin p(a*a*a* + a*aa’)
=—pa*+ (1 —cos ¢)(—aa’ + aa’)

(a*a)*

+sin p(a*a*a* — a*aa’)
= —pa* + (1 —cos ) (a*a)* + sin pa*(a*a* — aa”) = —w}""
N, e’
-1
where —a*a* = a’al —aa” = 0-aa’, a*a =—a*a, and
—a*a* = 1— aa” have been used to simplify (see ([2] p. 25) for

various identities related to @ and @, and the identities in the
Appendix). Therefore,

17a

(S(a ¢ - )r(a $) = -l

which is to say, identity 1 holds.
Proof Using Quaternions: First, the matrix S(e n) will be
computed. From Eq. (10) where S(e, ) is given, it follows that

S(e.n) =[2(711 —€¥)  —2¢]

Using Eq. (10) again, we can compute

ool [aw,f;a dwle

o 28 2] i+ 200 = =Stew

Thus, the left-hand side of identity 1 can be written

ba

Ste.n) - T(e.n) = 28(e, nT(e. n)
Evaluating 28 (e, ) (e, n) explicitly yields

28(e. ) (e.n) = 2201 — &) - 2@][% e ]
2

— 2071 = &) (g1 + €9) + 2é€7
= 2(qml + neX — ne* — €<e* + éeT)
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Recall the identity —e*é* =eTél —ée” (see the Appendix);
substituting ée” = €X&* + €’ €1 into the last line gives

2((m + €Té)1 + ne* — né* — €%e* + €X€X)
0

= —2(né* — fex + éeX — eX&X)

= 20 — i~ (€6)) = ~w”
where the identities (€*€)* = ¢Xe* — €*€* and é*e¢ = —e*¢ have

been used to simplify. It follows that
which is to say, identity 1 holds.

Theorem 2: Let C,, be parameterized in terms of axis/angle
parameters or quaternions, as in Egs. (2) and (8), where I and S are
given in Eqgs. (3) and (4), as well as in Egs. (9) and (10). Identity 2
holds for any v, € R3.

Proof Using Axis/Angle Parameters: To be concise, C,, (a, ¢) will

be written C,. To begin, C;,v, and (Cp,v,)* will be computed.
Using Eq. (2), it follows that

a)q )F(e n) = —a)b

C,,v, = cos ¢pv, + (1 —cos ¢p)aa’v, —sin pa*v, 1)

(Cpav,)* = (cos pv, + (1 —cos ¢p)aa’ v, —sin pa*v,)*
= cos ¢pv + (1 —cos p)a*a’v, —sin p(a*v,)*
= cos pv + (1 —cos p)a*a’v, —sin pa* v} + sin pvia* (22)

where the identity (a*v,)* = a*v} — v}a* has been used. Next,

0(Cbava)_ a(cbava) a(Cbava)
oq _[ Ja op ]

will be computed, starting with % Using Eq. (21),

a(cha va)

3 =(1-cos¢)a’v,1+ (1—cos ¢p)av! +sin pvX
a

=2(1-cos ¢p)a’v,1+ (1 —cos ¢)(—vlal+ avl) + sin pv’
=2(1—cos ¢p)a’v,1+ (1 —cos p)via™ + sin pvX

where vXa* = —vlal + av? has been used. Using Eq. (21) once

again,
o(C,
( (;’; %) = —sin ¢v, + sin paa’v, — cos pa*v,
= sin ¢p(—=1 + aa”)v, — cos pa*v,
= sin ¢pa*a*v, — cos pa*v,
where a*a* = —1 + aa” has been used to simplify.

Using the expression for I'(a, ¢)) given in Eq. (3), along with
cot% =sin ¢/(1 —cos ¢) = (1 + cos ¢)/ sin ¢, the left-hand side
of identity 2 will be evaluated:
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) g - [ACart) Ao [é(a* —cot‘éa*a*)]
q da op al
I(a.9)

= (1—cosp)a’v,a* —sin pa’ v, a*a*

1 1
— —_ XagXaX o1 X X 4 X 4 X
+2(1 cos p)via*a 2sm(ﬁvaa a*a

—a*

1. 1
+§sm Ppvia* —5(1 + cos p)via*a*
+sin pa*a*v,a’ —cos pa*v, a’
=(1- T X : X X _ X X X
(1—=cos ¢p)a’ v,a* + sin pvia* —cos pvy a*a
—1+aa”
+sin pa*a*(—a’v,1+v,a”) —cos pa*v,a”
———————
a*v}
= (1 —cos p)aTv,a* + sin pvla* + cos pv —cos pviaa’
+sin pa*a*a*vX —cos pa*v, a’
—a*
= cos v + (1 —cos p)a*a’v, —sin pa*v + sin gpvia*
(Cpav,)*via(22)
T

—cos pa*v,a’ —cos pvlaa
= (Cbava)>< —Ccos ¢(a><va + vf;a)aT

= (Cpavo)* —cos p(—via+via)a" = (Cpov,)*
Thus,

C
AEL) 0 g) = (Curv)

Proof Using Quaternions: As shown earlier, C,,(€,n) will be
written C,,,. To start, the terms C,, v, and (Cp,v,)* will be computed
first. Using Eq. (8), it follows that

Cp.v, = v, +26%€¢*v, — 2ne*v,

v, — 2e*vie + 2nvie (23)

(Cbava)x vz>1< + 2(€X€Xva)x - zn(exva)x
= vl + 2(—€Tev, + €€Tv,)* — 2n(eXv,)*

vl —2eTev +2¢%eTv, — 2n(eXv, ) (24)

Next,

a(Cbava)_ a(Cbava) a(Cbava)
o de on

will be computed. Starting with %, and using Eq. (23),

a(Cbava)

= —2e*v} + 2(vie)* + 2nv¥
0e

= —2e*v} + 2vXe* — 2e* v} + 2nv¥

= 2vXe* + 2nv) — 4e* v}
Using Eq. (23) once again,

d
(Chava) — 211;6‘
on
The left-hand side of identity 2 can now be computed. To do so,
I'(e, n) given in Eq. (9) will be used. Then, using Eq. (9), the left-hand
side of identity 2 is
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a(Chuva) F(e ) _ a(Chava) a(cbava) %(’71 + ex)
oq A o LT
—_—
T(e.n)

= nuie* + ?vX = 20eXvX + vieXeX + nule*
X 2y X X X T
—2e*vie* —viee
= 2p(vieX — €XvY) + vl — vi(—€*e* + e€T) — 2e*v)e>
e e’ N ——
(vle)* elel
2n(vie)* + (77 — eTe)vyl — 2% vie”

vl —2eTevy — 2e*vieX + 2n(vie)™

= v} —2eTevd +2(e"v,1 — v,el)e* + 2n(vie)X

= vX —2eTev + 2eTv,6* — 29(eXv,)* = (Cpav,)*
As such,

a(Cba va)

aq r(€~ ’7) = (Cbava)x

which is identity 2.

Theorem 3: Let C,, be parameterized in terms of axis/angle
parameters or quaternions, as in Egs. (2) and (8), where I and S are
given in Eqgs. (3) and (4), as well as in Eqgs. (9) and (10). Identity 3
holds for any v, € R>.

Proof Using Axis/Angle Parameters: Tobe concise, Cp,(a, ¢) will
be written C,, once again. Using Eq. (2), the right-hand side of
identity 3 is

—CT v} = —cos ¢pv} — (1 — cos gp)aav} —sin pa vl (25)

Next, the computation of

a(C;aUh)_ 6(C£av,,) 0(C£avb)
oq _[ da ) ]

will be considered. Observe that
C! v, = cos ¢pv;, + (1 — cos ¢p)aa’v, + sin pa*v, (26)
Using Eq. (26), the term % is

ot
% =(1—-cos¢)a’v,1+ (1 —cos $)av! —sin v}
=2(1—-cos¢p)av,1+ (1—cos ¢)(—vlal+ av]) —sin pv}
~——— —

X
vba

=2(1—cos¢)a’v,1+ (1—cos $)vya*—sin pv}
T
Similarly, using Eq. (26). the %" term is

0(C£a vb)
op

= —sin ¢v,, + sin paa’v, + cos pa*v,

sin p(—1 + aa’)v;, — cos ¢pvia
——
a*a*

= sin gpa*a*v;, —cos ¢vyia

It follows that, when various identities such as cot% =sin ¢/(1 —
cos ¢) = (1 + cos ¢)/sin ¢ are used, the left-hand side of
identity 3 is
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a(Ct vy)
aq

I(a.¢) = [ Lo e ,

A(Chavs) 0(C£avb)] [; (ax - Cot%axax) }

I(a.p)
= (1 —cos p)a’v,a* —sin pa’v,a*a*

1 1
— — XX gX _ o X X X g X
+2(1 cos p)vya*a 2sm Pv,a*a*a
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via Eq. (25), thus proving identity 3.
Proof Using Quaternions: Again, Cy, (€, n) will be written C;,, in
order to be concise. Using Eq. (8), the right-hand side of identity 3 is

—=CT v} = —v} — 26%e*v} — 2ne* v} 27

Next, the computation of
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will be considered. Observe that

CT v, = v, + 2*e*v, + 2ne*v, = v, — 26 vie — 2nvie (28)

Next, using Eq. (28), % and %f”) are
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e U

The left-hand side of identity 3 can now be computed. Using the
expression for I'(e, 7) in Eq. (9), it follows that
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where the last line follows from Eq. (27), proving identity 3.

VI. Conclusions

This note rigorously proves three identities that are useful for
deriving the equations of motion of mechanical systems in matrix
form using Lagrange’s equation when attitude is parameterized using
axis/angle parameters or quaternions. The utility of the three
identities has been highlighted through an example. Specifically, the
equations of motion of arigid-body spacecraft perturbed by a residual
magnetic disturbance torque and actuated by N thrusters has been
derived. In the future, the utility of the three identities in other
engineering fields such as estimation and control will be considered.

Appendix A: Various Identities
The following identities have been employed throughout this note:

(u + v)* = u* + vX,
u v = —v*u,
—wv* = (W v)1 —vu’,
@)X = wv* —vuX = —uv’ + v’
(Cpava)* = Cbavffq{u

where u and v are arbitrary 3 X 1 column matrices, 1 is the identity
matrix (of appropriate dimension), and

0 —U3 %3
v<=| v 0 -y
—VUy Uy 0
for any arbitrary 3 X 1 column matrix v = [v; v, v3]”. These

identities can be found throughout [2,13].
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