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I. Introduction

W IND disturbances are a common factor in aviation accidents.
Among 126 airplane accidents that occurred between 1979

and 2009 involving loss of control in flight, 14% listed windshear,
turbulence, or thunderstorms as a cause or contributing factor.
Moreover, 86% of the accidents initiated by atmospheric distur-
bances led to an upset flight condition, which usually entails an
excursion of the aircraft state outside of the flight envelope. Sixty-
four percent of these accidents also involved inappropriate crew
response [1].
The flight envelope, the set of airspeeds, altitudes, flight-path

angles, and bank angles at which an airplane can maintain steady
flight, is useful for identifying when an airplane is prone to loss of
control. Airplanes are at a higher risk of loss of control when flying in
unstable flight states. Most airplanes are designed to fly stably or
stabilizably when flying steadily; therefore, flight states in the steady
flight envelope are generally not conducive to loss of control. In prior
work, the authors presented safety margins and adjusted flight enve-
lopes called stationary flight envelopes for airplane flight through
stochastic gusts [2]. Those margins and envelopes were primarily
based on the instantaneous probability of exceeding the steady flight
envelope, which also corresponds to the fraction of time spent outside
the steady flight envelope.
This Note connects several probabilistic safety margins for

airplane flight in turbulence, including the instantaneous probability
used in the authors’ prior work [2]. The safety margins, which are
various measures related to the probability of a stochastic process
deviating far from its meanvalue, include 1) the frequency of exceed-
ance, which is the rate at which a stochastic process exceeds a given
threshold; 2) the residence time, which is the average time at which a
stochastic process exceeds a given threshold for the first time; 3) the
logarithmic residence time, which is a dimensionless version of
the residence time defined for thresholds far from the mean; 4) the
instantaneous probability of exceedance, which is the probability that

a stochastic process exceeds a given threshold at time t that, for
an ergodic process, is also the fraction of time spent beyond the
threshold; 5) the probability of exceedance at time t, which is the
probability that a stochastic process has exceeded a given threshold at
or before time t; and 6) the probability of exceedance per unit time,
which is the probability of exceedance at time t divided by t. These
safety margins are applied to the problem of airplane flight through
stochastic wind gusts, where the exceedance thresholds are chosen to
be the constraints that define the steady flight envelope.
This Note expands upon work by Hoblit on frequency of exceed-

ance [3] to show how to compute the probability per unit time of
exceeding the flight envelope, the residence time within the flight
envelope, and the logarithmic residence time within the flight enve-
lope. This Note also shows that the logarithmic residence time
derived from the frequency of exceedance equals the logarithmic
residence time derived by Meerkov and Runolfsson [4] for linear
time-invariant systems driven by white noise. The Note concludes
that the dimensional and dimensionless measures of safety comple-
ment one another to understand the hazard posed by flight through
stochastic gusts.
Section II presents the dynamic model of airplane flight through

stochastic gusts. Section III shows how to compute the probability
per unit time of exceeding a threshold and the residence time within
that threshold. Section IV introduces the logarithmic residence time
and shows that two disparate methods to compute it give the same
result. Finally, Sec. V presents a numerical example related to ex-
ceeding the steady flight envelope in turbulence that is validated in
simulation in Sec. VI.

II. Linearized Airplane Dynamics in Stochastic Gusts

The authors’ prior work [2] derives linearized airplane flight
dynamics driven by stochastic gusts expressed in state space form,
bothwith andwithout feedback control [5]. The result is a linear time-
invariant (LTI) system of differential equations linearized around a
reference steady flight state. The system’s state variables are the
airplane linear and angular velocity perturbations δvc and δω, as well
as the Euler angle perturbations δϵ [5]. The state variables also
include the states ξw of a prefilter. This prefilter yields the wind gust
linear and angular velocity perturbations.
The system has two inputs. The first input is a white noise

disturbance d�t� with covariance matrix D that drives the prefilter.
Appropriate choice of the prefilter and white noise input yields wind
velocity perturbations for which the power spectral density matches
that of the Dryden wind turbulence model [6] or approximates that of
the von Kármán wind turbulence model [7], as specified by U.S.
Department of Defense standards [8]. The other input is the airplane
control surface deflections δc, a vector containing the aileron,
elevator, and rudder control inputs δa, δe, and δr, respectively.
The linearized dynamics can be expressed compactly as

_x � Ax� Bδc� Ed�t� (1)

x �

0
BB@
δvc
δω
δϵ
ξw

1
CCA; δc �

0
@ δa
δe
δr

1
A (2)

where A, B, and E are the state, input, and disturbance matrices,
respectively. Assuming that this LTI system is driven by zero-mean
Gaussian, ergodic, stationary white noise, the state variables are
themselves zero-mean Gaussian, ergodic, and stationary random
processes. An output y � Cx can be chosen for the system, where C
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is the output matrix. While this Note considers only single output
systems, the results are generalizable. The variance of the output is

σ2y � C �PCT (3)

where �P is the covariance matrix of the state vector and the finite,
unique, positive definite solution of the Lyapunov equation

A �P� �PAT � EDET � 0 (4)

If the chosen output is the perturbation of some quantity that is
constrained in steady flight, such as the true airspeed, the angle of
attack, or the normal load factor, then the dynamics and statistics of
the output can characterize flight envelope excursions. In prior work
[2], the authors note the relationship between the standard deviation
of aGaussian distribution, the instantaneous probability of exceeding
the flight envelope, and the fraction of time spent outside the flight
envelope [5]. However, current Federal Aviation Administration
guidance on computing failure probabilities relies on the probability
per flight hour of encountering a hazard [9]. An additional measure
that quantifies whether a hazard will be encountered is the residence
time: the expected time until a hazard is first encountered. The
remaining sections showhow to compute the probability per unit time
and the residence time for the airplane flight dynamics problem
described in this section.

III. Residence Time and Probability per Unit Time
Computation from Frequency of Exceedance

For large deviations of a random process, the probability per unit
time of exceeding a threshold is closely related to the probability
of exceeding the threshold in a given time interval. Chapter 4 of
Hoblit’s text describes how to compute these probabilities for
perturbed variables in the case of airplane dynamics drivenby station-
ary, Gaussian models of turbulence [3]. His method involves
determining the frequency with which a Gaussian random process
exceeds some threshold, using that frequency as the rate for a Poisson
process that counts the number of threshold crossings of theGaussian
random process, and computing the probability that the first jump of
the Poisson process occurs at time t. Similar approaches are used in
the environmental sciences to assess the risk posed by intense storms
[10] and earthquakes [11]. This section expands upon Hoblit’s
method by providing details about the Poisson process used to
compute the probabilities and by showing how to compute the
residence time of the process between two thresholds [3].
Rice [12] shows that, for a zero-mean scalar, Gaussian random

process y with variance σ2y, power spectral density Φy�f�, and some
threshold ymax > 0, the frequency of exceedence of the threshold is

N�ymax� � N0e
−�y2max∕2σ2y� (5)

Rice [12] defines the frequency of exceedance as the number of
threshold upcrossings per unit time. A threshold upcrossing is an
event that occurs when the instantaneous value of the random process
changes from being less than the threshold value to being greater than
the threshold value. N0 is the number of upcrossings of zero per unit
time and can be computed from the power spectral density of the
random process

N0 �

�������������������������������R
∞
0 f2Φy�f� dfR∞
0 Φy�f� df

s
(6)

The integral in the numerator ofN0 is problematic because it does not
converge for either the Dryden or von Kármán models of continuous
gusts. This makes it difficult or impossible to compute accurate
values of N0 for gust loads, although Hoblit presents standard
methods to approximate N0 for gust loads [3].
Because of the symmetry of the Gaussian distribution, the

frequency of crossing−ymin < 0with negative slope is the same after
substituting ymin for ymax in Eq. (5). Expressing the threshold in terms
of standard deviations, ymax � kmaxσy,

N�kmax� � N0e
−�k2max∕2� (7)

According toHoblit [3], for kmax > 2, this frequency of exceedance is
a good approximation for the average number of peaks that exceed
ymax per unit time on sample paths of y.
Note that, whether counting upcrossings of the threshold or peaks

that exceed the threshold, this use of the frequency of exceedance
assumes that each exceedance is a single, isolated event. In Sec. VI,
the gust response is observed to have high frequency components
that, during the infrequent instances when the stochastic process
exceeds the threshold, cause the threshold to be crossed several times
in rapid succession before the process reverts to the mean.
For many types of stochastic processes, including Gaussian

processes, as the threshold whose peaks are being counted grows
arbitrarily, the number of peaks that have occurred converges to a
Poisson process. The Poisson process interarrival times are exponen-
tially distributed random variables with a rate equal to N�ymax� [13].
Assuming the number of peaks grows as a Poisson process, the
probability that at time t no peak in excess of the threshold has
occurred is e−N�ymax�t [14]. Its complement is the probability of
exceedance at time t: the probability that at least one peak has
exceeded the threshold by time t,

pex�t� � 1 − e−N�ymax�t (8)

For small N�ymax�t, as in the case of large deviations of y from the
mean,

pex�t� ≈ N�ymax�t (9)

andN�ymax� is approximately equal to the probability of exceedance
per unit time, pex�t�∕t.
Assume that y�t� is a zero-mean stochastic process. Define the first

passage time of y�t� fromwithin the thresholds ymax > 0 and−ymin <
0 as

τ�y0� � infft ≥ t0: y�t� ∈ f−ymin; ymaxgj − ymin < y0 < ymaxg
(10)

where y0 � y�t0�, and henceforth t0 is assumed to be 0. Define this
time’s mean

�τ�y0� � E�τ�y0�jy0� (11)

as the residence time. Equivalently, a residence time can be found for
−ymin < y < ∞ and a separate residence time can be found for
−∞ < y < ymax. The smaller of the two thresholds, min�ymin; ymax�,
yields the smaller of the two times, which is the residence time
for −ymin < y < ymax.
From the preceding discussion, if ymax and ymin are arbitrarily

large, then the residence time is also the expected time for the first
jump of the Poisson process counting peaks in excess of the smaller
threshold. The expected time for the first jump of a Poisson process is
the mean of its interarrival times’ exponential distribution, which in
this case is the inverse of the frequency of exceedance

�τ � N−1�min�ymin; ymax�� (12)

IV. Logarithmic Residence Time

Another measure to quantify when a stochastic process leaves a
given set is the logarithmic residence time. This section shows for the
first time that two disparate methods of computing the logarithmic
residence time give the same result. First, the section reviews
definitions and a theorem fromwork byMeerkov and Runolfsson on
aiming control that shows how to compute the logarithmic residence
time for LTI systems driven by white noise [4,15]. Their work also
derives control laws to control the logarithmic residence time.
Second, this section shows that a logarithmic residence time can be
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formulated from the frequency of exceedance of a stochastic process
and that the two logarithmic residence times are the same.
Consider a LTI system modeled in state-space form:

_x � Ax� εEd (13a)

y � Cx (13b)

where x ∈ Rn; y ∈ Rp; d is a zero-mean, stationary, Gaussian white
noise process with covariance matrix D; ε is a small, positive
parameter; and C has rank p. Define a domain Ψ ⊂ Rp that contains
the origin and has a smooth boundary ∂Ψ. Assume that x0 �
x�0� ∈ Ω0 ≜ fx ∈ Rnjy � Cx ∈ Ψg. Denote the output y�t� in
Eq. (13) with initial condition x0 as y�t; x0�. Define the first passage
time of the output y�t; x0� from Ψ as

τε�x0� � infft ≥ 0: y�t; x0� ∈ ∂Ψjy�t0; x0� ∈ Ψg (14)

and call its mean

�τε�x0� � E�τε�x0�jx0� (15)

the residence time. Large deviations theory offers asymptotic
approximations of these times for small ε.
Theorem 1: 1) A is Hurwitz and 2) the pair �A; E� is completely

controllable. Then, uniformly for all x0 belonging to compact subsets
of Ω � fx0 ∈ RnjCeAtx0 ∈ Ψ; t ≥ 0g,

lim
ε→0

ε2 ln �τε�x0� � μ̂�Ψ� (16)

where

μ̂�Ψ� � min
y∈∂Ψ

1

2
yTP−1y (17)

P � C �PCT (18)

and �P is the positive definite solution of the Lyapunov equation

A �P� �PAT � EDET � 0 (19)

This theorem is proven by Meerkov and Runolfsson [15]. The
constant μ̂ is referred to as the logarithmic residence time in Ψ.
Consider the special case where y is scalar. The covariance matrix

P simplifies to the variance σ2y; the domain Ψ simplifies to the real
interval �−ymin; ymax�, where ymin, ymax > 0; the boundary ∂Ψ
simplifies to the two real numbers f−ymin; ymaxg; and the logarithmic
residence time simplifies to

μ̂�Ψ� � min �ymin; ymax�2
2σ2y

(20)

This special case is analogous to the flight dynamicsmodel described
in Sec. II, with the addition of control inputs in the flight dynamics
model and the addition of the parameter ε to the present model to
quantify the relative magnitude of the disturbance. Meerkov and
Runolfsson, in showing how to control the logarithmic residence
time, show how to incorporate control inputs into the present
model [4,15].
The boundary ∂Ψ can be defined relative to the standard deviation

of y: ymin � kminσy, ymax � kmaxσy. Substituting into Eq. (20),

μ̂�Ψ� � 1

2
min �kmin; kmax�2 (21)

The logarithmic residence time for scalar output is proportional to the
square of the number of standard deviations between themean,which
is zero, and the boundary closest to the mean. The authors use the

number of standard deviations between the flight state and the steady
flight envelope boundary as the primary safety margin in their prior
work [2]. Equation (21) shows this safety margin to be equivalent to
using the logarithmic residence time.
The residence time can be approximated from the logarithmic

residence time as

�τε ≈ c�ε�eμ̂∕ε2 (22)

Meerkov and Runolfsson specify the normalization that determines
the preexponential factor c�ε� but never compute it, relying on the
dimensionless logarithmic residence time for all of their applica-
tions [4].
The same logarithmic residence time can be found using the

frequency of exceedance method described in Sec. III. Normalizing
the residence time in Eq. (12) by N0 and taking the natural log,

μ̂ � ln

�
N0

N�ymax�

�
� min �ymin; ymax�2

2σ2y
(23)

which is the same logarithmic residence time derived from the
dynamic model of Meerkov and Runolfsson [4,15]. The authors
speculate that, under appropriate assumptions, the preexponential
factors c�ε� andN0 are also the same; in that case, the residence times
from the two methods are also equal.

V. Numerical Example of a Navion in Turbulence

The authors’ prior work included a numerical example of a Navion
performing various steady flight maneuvers in turbulence [2]. The
previous work computed the variances of the true airspeed and nor-
mal load factor for these maneuvers. Additionally, it presented safety
margins and stationary flight envelopes based on these variances
[2,5]. This section expands upon the steady level longitudinal flight
in turbulence example from the authors’ previous work [2] to include
the logarithmic residence timewithin the steady flight envelope μ̂, the
residence timewithin the steady flight envelope �τ, and the probability
per unit time of exceeding the steady flight envelope, which equals
the frequency of exceedance N.
In the example, a Navion is attempting steady level longitudinal

flight in moderate turbulence with a reference true airspeed of
102 ft∕s at an altitude of 16,500 ft. This is an unusual state of oper-
ation for aNavion, since it is so close to stall at high altitude, but it is in
the flight envelope and provides a good illustration. Details on the
Navion and turbulence models are available in the prior work [2]. In
that example, the variance of the true airspeed perturbations σ2vt , and
therefore the true airspeed, is 15 ft2∕s2.
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Fig. 1 Illustration of the steady flight envelope and reference steady

flight state. Also shown is the reference state for the Navion’s stability

derivatives.
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The stall speed of a Navion at 16,500 ft is 94 ft∕s, which is 8 ft∕s
below the chosen reference true airspeed. Also note that, at 16,500 ft,
themaximum steady flight airspeed of aNavion is 230 ft∕s. So, if the
hypothetical LTI system output y of Sec. II–IV represents the true
airspeed perturbations, ymin � 8 ft∕s and ymax � 128 ft∕s, and the
stall boundary is substantially closer to the reference flight state.
Figure 1 depicts the steady flight envelope and the reference steady
flight state. The horizontal error bar for the reference steady flight
state, which spans the entire width of the flight envelope at 16,500 ft,
marks the upper and lower thresholds of the true airspeed. The figure
also shows the reference state used to determine the Navion stability
derivatives. The second column of Table 1 gives computed results for
the various metrics presented in Secs. III and IV. The residence time
and probability per unit time require computation ofN0 based on the
guidelines given by Hoblit [3]. The integral in the denominator of
Eq. (6) is found to converge to 98% of its value at f � 0.66 Hz,
which is used as the upper bound for the integral in the numerator.
While a flight envelope excursion every 100 s may seem frequent,

the duration of each excursion is also important for a hazard like stall
because stalls do not develop instantaneously. The true airspeed of
the given flight state is 2.2 standard deviations above the stall speed;
therefore, the true airspeed exceeds the steady flight envelope 1.3%of
the time [2]. Given the residence time and this percentage of time, the
duration of each flight envelope excursion is on the order of 1 s,which
may be enough time for a stall to develop.
On the normal load factor boundaries of the steady flight envelope,

even very brief excursions can be hazardous because the airplane

structure can fail relatively quickly. As in the authors’ prior work [2],
the results of this Note can be readily extended to the load factor
boundary. In general, for hazards that do not pose a threat instanta-
neously, analysis of both the dimensional and dimensionless probabi-
listic measures of safety gives a more complete picture of the
probability of encountering the hazard by allowing an estimate of the
duration of the exposure to the hazard.

VI. Simulation of a Navion in Turbulence

This section presents simulation results for a Navion in moderate
turbulence to validate the numerical results in the preceding section.
The simulation generates sample paths in Simulink for the Navion
true airspeed in level longitudinal flight in moderate turbulence. The
safety margins described earlier are computed for each sample path
and averaged. Figure 2 shows an example of a time history of the true
airspeed of the simulated Navion along with a dotted line for the
stall speed.
As expected, the mean of the true airspeed is 102 ft∕s. The

variance of the true airspeed is 13 ft2∕s2, 13% below the estimated
value. The logarithmic residence time is 8.7% above the estimate.
The residence time shows even better agreement, while the frequency
of exceedance and coefficient N0 have poor estimates.
According to the model of Sec. III, which is based on Hoblit’s

frequency of exceedance analysis [3], the residence time should equal
the mean interarrival time of the stall speed upcrossings. The mean
interarrival time is the reciprocal of the frequency of exceedance, so

Table 1 Estimated and simulated values of various airspeed statistics quantifying the probability of

a Navion in moderate turbulence exceeding the stall boundary of the steady flight envelope

Statistic Symbol Estimated value Simulated value Units

Variance σ2vt 15 13 ft2∕s2
Logarithmic residence time μ̂ 2.3 2.5
Residence time �τ 100 96 Seconds
Frequency of exceedance N 0.0099a 0.049 Upcrossings per second
Frequency of upcrossings of mean N0 0.10a 0.57 Upcrossings per second

aEstimated as described in [3].
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Fig. 2 Example of a time history of the Navion true airspeed in moderate turbulence. The dotted line marks the stall speed.
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Fig. 3 Close-up of the stall boundary excursion at 90 s in Fig. 2.
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these two times are not equal in the simulation. The high simulated
values of the frequency of exceedance and N0 indicate a high-
frequency component of the true airspeed perturbations not captured
in Sec. III, but one that does not affect the residence time.
Returning to Fig. 2, the true airspeed appears to drop below the stall

speed roughly every 100 s on average. However, for a few seconds
after crossing the stall boundary, the true airspeed lingers near the
boundary and crosses it severalmore times in rapid succession before
reverting to the mean. This is illustrated in Fig. 3, which is a close-up
view of the stall boundary excursion at the time 90 s in Fig. 2. A
similar phenomenon occurs near the mean, explaining the discrep-
ancy in N0. Though not presented, smoothing the simulated true
airspeed with a low-pass filter can reconcile the estimated and simu-
lated values of N and N0 without significantly changing the
residence time.
Overall, the estimates give good predictions of true airspeed

variance, logarithmic residence time, and residence time. The esti-
mates can also give good predictions of the frequency of exceedance
if the high-frequency variations of the true airspeedwhen it is close to
the stall boundary are ignored. Both the model and simulation lead
to the same analysis of the aircraft’s risk exposure: on average,
excursions across the stall boundary occur roughly every 100 s and
are 1 or 2 s in duration. Such frequent excursions are far frommeeting
Federal Aviation Administration (FAA) guidelines on probabilities
per flight hour [9], but these FAA guidelines refer to probabilities of
failure; and flight envelope excursions, especially brief excursions
across the stall boundary, do not necessarily correspond to failures.

VII. Conclusions

This Note expands upon the safety margins presented previously
by the authors [2] to include probabilities per unit time of exceeding
the flight envelope, residence times within the flight envelope, and
logarithmic residence times within the flight envelope. To compute
these new safety margins, this Note presented extensions of work by
Hoblit [3] on frequency of exceedance and probability per unit time
and showed them to give the same logarithmic residence time as
work byMeerkov and Runolfsson [4,15] on residence times for large
deviations of dynamic, stochastic systems. By connecting these
various statistics describing stochastic processes, thisNote provides a
more comprehensive set of metrics to quantify the safety of flight in
turbulence and set limits for airplane design and control.
In the authors’ prior work [2], the adjustment to the steady flight

envelope to form the stationary flight envelope was based on dimen-
sionless measures of exceeding the flight envelope, such as the
logarithmic residence time or the number of standard deviations be-
tween the mean flight state and the steady flight envelope boundary.
Alternative stationary flight envelopes can be formed using dimen-
sional measures, such as the residence time or the probability per unit
time. For example, the stationary flight envelope could be the set of
steady flight reference states where the residence time for the true
airspeed to exceed the steady flight envelope is greater than a certain

number of minutes. However, for a hazard like stall, analysis of both
the dimensional and dimensionlessmetrics offers the greatest insight,
allowing estimates of both how often and howmuch time the airplane
spends outside the stall boundary of the steady flight envelope.
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