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High-aspect-ratio wings present in very flexible aircraft can undergo large deformations, which results in

significant changes in natural frequencies as well as in static and dynamic aeroelastic response. This geometric

nonlinear behavior becomes an integral part of any aeroelastic analysis to be conducted in such class of vehicles.

Aeroelastic scaling is an important way to study the aeroelastic behavior of aircraft, and it is an integral part in risk

mitigation for aircraft development. However, the current aeroelastic scaling methodologies have focused on

geometrically linear structures. This paper demonstrates a methodology for geometrically nonlinear aeroelastic

scaling of very flexible aircraft. The known linear scaling factors and similarity rules are extended to address

geometrically nonlinear aeroelastic scaling. A high-aspect-ratio flying wing in free flight is taken as an example to

verify the new scaling procedure, and numerical studies are conducted using the University of Michigan’s Nonlinear

Aeroelastic Simulation Toolbox. Numerical results support the new approach for aeroelastic scaling of very flexible

aircraft.

Nomenclature
�B = strain-displacement operator
BL = linear strain-displacement differential operator

BNL�fug� = nonlinear strain-displacement operator

Ch = generalized (structural) damping matrix
D = material matrix
dV = domain volume
EA = beam extensional stiffness
EIy = out-of-plane bending stiffness
EIz = in-plane bending stiffness

GJ = beam torsional stiffness
i = imaginary number
K = structural stiffness matrix
Kh = generalized structural stiffness matrix
KL = linear stiffness matrix due to small deformations
KNL = nonlinear stiffness matrix due to large

geometric deformation
KT = tangential stiffness matrix in global coordinate

system
Kσ = geometric stiffness matrix due to prestress
kb = length scaling factor
kEA = extensional stiffness scaling factor
kEI = bending stiffness scaling factor
kGJ = torsional stiffness scaling factor
kK = stiffness scaling factor
kL = lift scaling factor

kM = moment scaling factor
km = mass scaling factor
kRe = Reynolds-number scaling factor
kt = time scaling factor
kV = speed scaling factor
kρ = air density scaling factor
kω = frequency scaling factor
kμ = air dynamic viscosity scaling factor
M = structural mass matrix
Mh = generalized structural mass matrix
P = vector of additional applied loads
Q = matrix of aerodynamic influence coefficients
Qg = matrix of generalized unsteady aerodynamic

forces due to gust
Qh = matrix of generalized unsteady aerodynamic

forces due to vehicle motion
Qx = matrix of unit aerodynamic loads
R = external forces
u = structural deformation
uh = vector of generalized structural degrees of freedom
ux = vector of aerodynamic trim parameters
V = uniform flow speed
wg = vertical gust speed
wmax = maximum vertical gust speed
xg = gust wavelength
δu = virtual displacement
δε = virtual strain
ε0 = initial strain
λ = eigenvalue
ρ = air density
σ = stress
σ0 = initial stress
φ = eigenvector
ψ = summation of the internal and external forces
ω = circular frequency

I. Introduction

A EROELASTIC scaled models for wind-tunnel testing or flight
test play a key role in studying the aeroelastic characteristics of

full-size aircraft, in which the aeroelastic scaling laws are the key
elements [1]. The scaled models are also widely used in research
studies such as active control of aeroelastic response, flutter
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characterization and mitigation, and theoretical or computational
methods validation. Aeroelastic scaled models are designed and
manufactured so that the results obtained from the wind-tunnel tests
or flight tests can be directly related to the aeroelastic behavior of the
full-size aircraft that they represent. The key elements that enable this
are the aeroelastic scaling laws based upon the relationship among the
physical parameters that characterize eachmodel. Based on the use of
dimensional analysis and the fundamentals of the Buckingham π
theorem, the classical approach to aeroelastic scaling was presented
by Bisplinghoff et al. [2]. Since then, wind-tunnel models from
aeroelastic scaling have beenwidely used in testing of linear structure
for more than 50 years, and aeroelastic scaling considerations that
enable one to relatewind-tunnel test results to the behavior of the full-
sizewing or aircraft have played an important role in aircraft research
and development [3].
A comprehensive survey on aeroelastic testing for certification

process and airworthiness requirement is presented in [4]. It is also
discussed there the requirements for aeroelastic wind-tunnel model
test and aeroelastic scaling. Wind-tunnel models are generally
manufactured with a very different internal structure from the full-
scale aircraft. However, it is optimized to give the design that is
closest to the prespecified target elastic, inertial, and aerodynamic
properties based upon some scaling parameters. The optimization
enables the model to present characteristics similar to its full-scale
counterpart (e.g., reduced frequencies, mode shapes, gust response,
buckling limit, control surface effectiveness, etc.). An example of
the process to design a flutter scaled model of a low-aspect-ratio
wing using genetic algorithm is presented by Wu et al. [5]. Another
example is thework by French and Eastep [6] that used this approach
to match scaled stiffness and mass properties using five different
stiffness and two different mass design approaches. Comparisons
between experiment and the designs showed the effectiveness of
the optimum design method for a linear, low-aspect-ratio wing.
Friedmann [3] studied aeroelastic scaling for fixed- and rotary-wing
aircraft and introduced a two-pronged approach that involved
bringing simulation to capture the aerodynamic or control non-
linearities of the problem with the classic scaling relations. He
demonstrated the aeroservoelastic scaling solution of a two-
dimensional airfoil combined with an actively controlled flap. For
large finite-element representations, simple scaling rules were
proposed by Pototzky [7] and applied to a modal formulation of the
aeroservoelastic equations. That allowed the scaling of multiple
discrete coordinate equations of motion from a detailed finite-
element model, and it was verified on a representation of the high-
speed civil transport aircraft.
Over the past two decades, high-altitude long-endurance (HALE)

aircraft have gained greater interest. These configurations present
high-aspect-ratio wings for high aerodynamic performance and,
combined with the low structural weight, lead to very flexible
vehicles. The wings of HALE aircraft may undergo large
deformations during normal operating conditions, thus exhibiting
geometrically nonlinear behavior. Moreover, the low frequency
response of the very flexible structure is in the same range of
frequencies associated with then vehicle flight dynamics (e.g.,
phugoid, short period, Dutch roll, etc.), making it impossible to
separate them in tests as typically done with more traditional (linear)
vehicles. To understand the geometrically nonlinear aeroelastic
behavior of HALE aircraft, there have been different efforts on
simulation and test of fully flexible wings. Nonlinear aeroelastic
solvers have been under development to improve predictions of
aircraft response, stability, and overall performance, and an overview
of those can be found in [8]. Among them, Cesnik et al. have
developed a novel and practical solution to the nonlinear
aeroelasticity and its coupling with flight dynamics of very flexible
aircraft as well as built the framework for their simulation known as
the University of Michigan’s Nonlinear Aeroelastic Simulation
Toolbox [8,9]. All of these studies have contributed in different ways
toward the understanding of the nonlinear characteristics of highly
flexible aircraft. However, due to its complex coupled nature and very
limited validation data for the codes, the problem is still not fully
understood.

Aeroelastic scaling in general is a good way to simulate and
validate aeroelastic behavior of full-size aircraft. According to the
corresponding certification process and airworthiness requirement,
all numerical efforts must eventually be validated by aeroelastic
scaling against experimental data so that they can be applied to
new aircraft concepts. However, the literature regarding aeroelastic
scaling of geometrically nonlinear structure is virtually nonexistent,
and the great majority of existing scaling work focuses on linear
structures. Because of the complexities of the response of very
flexible structure, scaling laws for linear structure are of very limited
value.
In the field of aeroelastic scaling of a geometrically nonlinear

structure, [10–12] present the best attempt to nonlinear aeroelastic
scaled design for a joined-wing aircraft for wind-tunnel and flight
tests. This was done by first optimizing the scaled natural frequencies
of the model to match the full-scale design, which is similar to the
work of Miller et al. [13]. There, an optimum design of a 1/15-scaled
Sensorcraft wing was achieved with equivalent tip deflection under
aerodynamic loads and natural frequencies to the corresponding full-
scale vehicle. This was augmented in [11] by the corresponding
match of modes and then the first buckling eigenvalue. An optimi-
zation method was used for the scaled model design. The efficacy of
scaling the buckling load as a means of scaling geometrically
nonlinear response is examined closely in [11]. From that, it can be
concluded that it is necessary to match the entire geometric stiffness
matrix that depends upon internal loads of the deformed structure.
More recently, [12] extended the previous two-step optimization
approach by the same group to include the matching of nonlinear
static deflections for designing the scaled model. Although these
were steps in the right direction, there has been no fundamental
aeroelastic scaling study for geometrically nonlinear structures that
can be applied to generic HALE vehicles.
The objective of this paper is to present a methodology for

aeroelastic scaling of geometrically nonlinear structures undergoing
large deformations through theoretical demonstration and numerical
verification. The proposed method is exemplified in the aeroelastic
scaling of a geometrically nonlinear flying-wing aircraft in free flight.

II. Aeroelastic Scaling Methodology

The behavior relation between the aeroelastic scaled model to the
full-size model is governed by aeroelastic scaling laws. The sections
to follow present the derivations of those relations for the case of
geometric linear and nonlinear structures, including the effects of
the six rigid-body degrees of freedom present during free flight.
Although the Buckingham π theorem could have been used from the
ground up, a direct dimensional analysis of the equations of motion
was preferred in this paper. As Bisplinghoff et al. [2] showed for
linear systems, the methods are equivalent, and no loss of generality
is incurred in the derivation that follows.

A. Basic Equations for the Linear Aeroelastic Analysis

The basic governing equation for the aeroelastic analysis of linear
structures can be represented as [14]

�
K −

1

2
ρV2Q

�
u�M �u � 1

2
ρV2Qxux � P (1)

where K is the matrix of structural stiffness, ρ is the air density, V is
the uniform flow speed, Q is the matrix of aerodynamic influence
coefficients, u is the vector of structural deformation,M is the matrix
of structural mass,Qx is thematrix of unit aerodynamic loads, and ux
is the vector of aerodynamic trim parameters (e.g., angle of attack,
elevator deflection, etc.), which is used to define the deflection of
aerodynamic control surface and the overall rigid motion of the
aircraft. Finally, P is the vector of additional applied loads. For the
static aeroelastic solution and determination of the trim conditions,
only the steady terms in Eq. (1) are used. It is worth noticing that,
although the aerodynamic load, represented by Q, is combined with
the structural stiffness term in Eq. (1), it can be regarded as a complex
entry with dependence on the states and its derivatives as well
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equivalent rational functions to represent wake effects. This,
however, does not impact the analysis described next because the
matrix will be subdivided as needed for the different aspects of the
analysis.
Note that, as for geometric-nonlinear structures, the iteration of

aerostructural coupling calculation should be implemented with
updated geometric position considering elastic deformation, and
Eq. (1) should be evaluated in a static equilibrium condition iteratively.
This implies that the stiffness matrix (and not only the load vectors) in
Eq. (1) should be updated for the current deformation state.
Using harmonic motion into Eq. (1), one can obtain the

eigenproblem for the modal vibration analysis as [14]

�K − λM��φ�0 (2)

Where λ is the eigenvalue, and φ is the corresponding eigenvector.
Note that, as for geometric-nonlinear structures, the modal

analysis will depend on the structure’s current state. The normal
mode analysis should be performed based on the current stiffness and
mass matrices, which are dependent on the current deformation state.
The equation governing the gust response analysis can be written

as [14]

−ω2Mhuh � iωChuh �Khuh �
1

2
ρV2Qhuh �

1

2
ρV2Qg

wg
V

(3)

where ω is the circular frequency, Mh is the generalized structural
mass matrix, uh is the vector of generalized structural degrees of
freedom (i.e., structural modes), i is imaginary number, Ch is the
generalized (structural) damping matrix, Kh is the generalized
structural stiffness matrix, Qh is the matrix of generalized unsteady
aerodynamic forces due to vehicle motion, Qg is the matrix of

generalized unsteady aerodynamic forces due to gust, wg is the

vertical gust speed, and the other symbols are consistent with those in
Eq. (1). The analysis of flight dynamic stability can be further attained
on the basis of Eq. (3) with some transformation for stability analysis
and ignoring the gust term.
A discrete vertical gust model can be applied to the vehicle on its

intended flight path as shown in Fig. 1.Without loss of generality, the
shape of the gust can be the “1-cosine” gust defined by

wg �
1

2
wmax

�
1 − cos

�
2πx

xg

��
(4)

where wmax is the maximum vertical gust speed, xg is the gust
wavelength, and x is the distance that the vehicle penetrated into the
gust; the gust is considered to be uniformly distributed along the span
of the vehicle.

B. Scaling Factors for Linear Aeroelastic Structures

The selection of scaling factors is a critical first step of any
aeroelastic scaling model design. The length scaling factor kb, the
speed scaling factor kV, and the air density scaling factor kρ are

generally selected as the three basic scaling factors for aeroelastic
model design of linear structure for wind-tunnel testing. Here, kb is
the length ratio of the scaled model to the full-size model, kV is the
speed ratio of the scaled model to the full-size mode, and kρ is the air
density ratio of the scaled model to the full-size model environment.
It is usually desirable to make aeroelastic models as large as

possible for ease of fabrication and structural strength as well as to
make it easier to install instrumentation in them [1]. Aeroelastic
scalingmodels are typically larger relative towind-tunnel test section
dimensions than conventional aerodynamic models. Low-speed
models may have a larger span, perhaps as large as 75% of the test
section width of the wind tunnel. As for the scaled model for flight
test, the length ratio is expected to be as low as possible. But it
depends on the target gross takeoff weight (associated with the
intended payload for instrumentation and controls) and the
acceptable overall cost of the experiment.
Generally, an air density that is well up within the wind-tunnel

capability is selected [1]. The larger the test density for themodel, the
heavier the model can be made. Usually the heavier an aeroelastic
model is, the easier it is to design and fabricate. Very lightweight
structures are not only fragile but are also costly to make and
maintain.
For low-speed tests where compressibility effects are not

important, an availablewind-tunnel speed or a suitable flight speed is
selected to represent some speed of the full-size model [1]. But for
tests where compressibility effects are important, there must be a
matchedMach number between the scaled and the full-sizemodels so
that the speed scaling factor becomes in effect the speed-of-sound
scaling factor.
Tomeet the flutter similarity between the scaledmodel and the full-

size model, four similarity criteria as described next must be met on
the basis of the previous three basic scaling factors [2,5]. A fifth
similarity criterion must be met as an additional condition when
similarity is performed on static aeroelastic response and gust
response under the effect of gravity.

1. Geometrical Similarity

The scaling factor of geometrical similarity can be described as the
aforementioned kb. The geometrical similarity means that all size
ratios of the scaled model to the full-size model, including the span
ratio, chord ratio, etc., are the same as kb. It also assumed that the
scaled model and full-size model have the same airfoils.

2. Mass Similarity

The mass similarity criterion can be written as

km � kρk3b (5)

which means that the mass distribution of the scaled model should be
proportional to the one of the full-size model via the mass scaling
factor km.

3. Stiffness Similarity

The stiffness similarity criterion can be described as

kK � kρk2Vkb (6)

whichmeans that the stiffness distribution of the scaledmodel should
be proportional to the one of the full-size model via the stiffness
scaling factor kK.
As for high-aspect-ratio wings, the scaling factors of bending,

torsion, and extensional beam stiffness coefficients aremore useful in
practice and can be written, respectively, as

kEI � kKk3b � kρk2Vk4b (7)

kGJ � kKk3b � kρk2Vk4b (8)

kEA � kEI∕k2b � kρk2Vk2b (9)Fig. 1 “1 − cosine” uniform gust profile.
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where EI is the equivalent beam (out-of-plane or in-plane) bending
stiffness, GJ is the beam torsional stiffness, and EA is the beam
extensional stiffness.
Based on the relation of natural frequency with mass and stiffness,

the frequency scaling factor naturally follows to be

kω �
��������������
kK∕kM

p
� kV∕kb (10)

where the time scaling factor is simply defined as

kt � kb∕kV (11)

4. Aerodynamic Similarity

The geometrical similarity results in aerodynamic similarity when
the Mach number and Reynolds number between the scaled and the
full-size models are consistent, respectively. However, neither Mach
number similarity nor Reynolds number similarity is easy tomeet. As
for low-speed flight as typical of HALE aircraft, the Mach number
similarity could be ignored because of the almost incompressible air.
However, the Reynolds number between the scaled and the full-size
models should be the same or at least on the same order ofmagnitude.
The scaling factor of Reynolds number can be defined as

kRe � kρkVkb∕kμ (12)

where kμ is the scaling factor for the dynamic viscosity of air.
Based on the equation for lift, the scaling factor for lift can be

attained as

kL � kρk2Vk2b (13)

Similarly, based on the equation for aerodynamic moment, the
scaling factor of moment can written as

kM � kρk2Vk3b (14)

5. Froude Number Similarity

The Froude number determines the ratio of the deflection under
steady gravitational load to deflection due to aerodynamic and
inertial loads. To meet similarities on static aeroelastic response and
gust response, or when the gravity effect should be considered in
flutter test, the Froude number between the scaledmodel and the full-
size model should be the same. The matching of Froude number can
be satisfied by [11]

kV �
�����
kb

p
(15)

C. Connection Between the Scaling Factors of Linear to Geometri-
cally Nonlinear Structures

In comparison with linear structures, a geometrically nonlinear
structure has its special stiffness characteristics, which depend on the
current structural deformation. It is obvious that geometrical
similarity, mass similarity, aerodynamic similarity, and Froude
number similarity can be also met in the deformed state when the
scaled model and the full-size model meet the aforementioned
similarity in the undeformed state and present similar deformation in
any given deformed state. Therefore, it depends on whether the
stiffness of the geometrically nonlinear structure varying with
structural deformation can be maintained similar between the scaled
and the full-size models. This will directly impact the applicability of
the linear aeroelastic scaling laws to the geometrically nonlinear
structure.
Generally, the stiffness of the geometrically nonlinear structure

varying with the structural deformation can be represented as [15]

�KT � � �KL� � �KNL� � �Kσ � (16)

where �KT � is the tangential stiffness matrix of an element in global
coordinate system, �KL� is the linear stiffness matrix due to small

deformations, �KNL� is the nonlinear stiffness matrix due to large
geometric deformation, and �Kσ � is the geometric stiffness matrix due
to prestress.
Therefore, the �KT � of the full-sizemodel and the scaledmodel will

be similar if it can be guaranteed that the scaling coefficients of �KL�,
�KNL�, and �Kσ � are the same.

1. Correlation Between Stress and Strain

The principle of virtual work of an element can be written as

fδugTfψg �
Z
fδεgTfσg dV − fδugTfRg � 0 (17)

wherefδug is the virtual displacement, fψg is the summation of the
internal and external forces, fδεg is the virtual strain, fσg is the stress,
dV is the domain volume, and fRg is the column vector of external
forces.
The strain-displacement relation can bewritten in the formof strain

increment as

fδεg � � �B�fδug (18)

where � �B� is the differential operator that defines the strain-
displacement relation.
For the problem of large displacements, the relation between strain

and displacement is nonlinear; therefore, � �B� is a nonlinear function
of fug, which can be written as

� �B� � �BL� � �BNL�fug�� (19)

where �BL� is the term corresponding to the linear strain-
displacement operator, and �BNL�fug�� is the additional term
containing the nonlinearity in the strain-displacement relation.
Even though the problem is geometrically nonlinear, it remains

materially linear. That is, the relation between stress and strain meets
the linear elastic relation, which can be written as

fσg � �D��fεg − fε0g� � fσ0g (20)

where �D� is the material matrix, fε0g is the column vector of initial
strains, and fσ0g the initial stresses.
Based on the previous relation between stress and strain, and

keeping in mind that fδεg � fδεgS � fδεgF, the following equations
can be attained to describe the relation between the scaled model and
the full-size model:

fδugS � kbfδugF (21)

�BL�S � �BL�F∕kb (22)

�BNL�S � �BNL�F∕kb (23)

δ�BNL�S � δ�BNL�F∕kb (24)

fσgS � kρk2VfσgF (25)

�D�S � kρk2V �D�F (26)

VS � k3bVF (27)

where the subscripts S and F represent the scaled model and the full-
sized model, respectively.
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2. Linear Stiffness Matrix due to Small Deformation

Based on Eqs. (17–20), the linear stiffness matrix due to small
deformation is represented by

�KL� �
Z
�BL�T �D��BL� dV (28)

For the full-size model, Eq. (28) can written as

�KL�F �
Z
�BL�TF�D�F�BL�F dVF (29)

and for the scaled model as

�KL�S �
Z
�BL�TS �D�S�BL�S dVS (30)

Substituting Eqs. (22), (26), and (27) into Eq. (30) yields

�KL�S � kρk2vkb
Z
�BL�TF�D�F�BL�F dVF � kρk2vkb�KL�F (31)

and therefore the scaling factor for �KL� is

kKL � kρk2Vkb (32)

3. Nonlinear Stiffness Matrix due to Large Geometric Deformation

Based on Eqs. (17–20), the nonlinear stiffness matrix due to large
geometric deformations is given by

�KNL� �
Z
��BL�T �D��BNL� � �BNL�T �D��BNL�

� �BNL�T �D��BL�� dV (33)

For the full-size model, Eq. (33) can written as

�KNL�F �
Z
��BL�TF�D�F�BNL�F � �BNL�TF�D�F�BNL�F

� �BNL�TF�D�F�BL�F� dVF (34)

and for the scaled model as

�KNL�S �
Z
��BL�TS �D�S�BNL�S � �BNL�TS �D�S�BNL�S

� �BNL�TS �D�S�BL�S� dVS (35)

Substituting Eqs. (22), (23), (26), and (27) into Eq. (35) yields

�KNL�S � kρk2Vkb�KNL�F (36)

and therefore the scaling coefficient of �KNL� is

kKNL
� kρk2Vkb (37)

4. Geometric Stiffness Matrix Due to Prestress

Based on Eqs. (17–20), the geometric stiffness matrix due to
prestress satisfies the following energy relation:

fδugT �Kσ �fug �
Z
fδugT �BNL�Tfσ0g dV (38)

For the full-size model, Eq. (38) can written as

fδugTF�Kσ �FfugF �
Z
fδugTF�BNL�TFfσ0gF dVF (39)

and for the scaled model as

fδugTS �Kσ �SfugS �
Z
fδugTS �BNL�TSfσ0gS dVS (40)

Substituting Eqs. (21), (23), (25), and (27) into Eq. (40) yields

fδugTS �Kσ �SfugS � kρk2Vk3b
Z
fδugTF�BNL�TFfσ0gF dVF (41)

Substituting Eqs. (21) and (39) into Eq. (41), one has

fδugTS �Kσ �SfugS � kρk2Vk3bfδugTF�Kσ �FfugF
� kρk2VkbfδugTS �Kσ �FfugS (42)

which results in

�Kσ �S � kρk2Vkb�Kσ �F (43)

Therefore, the scaling coefficient of �Kσ � is given by

kKσ
� kρk2Vkb (44)

5. Condition for Aeroelastic Similarity for Geometrically Nonlinear

Structures

Based on Eqs. (32), (37), and (44), one must impose similarity
between the scaled model and the full-scale model for the three
stiffness terms, that is

kK � kKL � kKNL
� kKσ

(45)

This similarity condition along with the scaling factors for linear
aeroelasticity defined by Eqs. (5–15) form the basis for the geo-
metrically nonlinear aeroelastic scaling between two different scale
models.
Therefore, the aeroelastic behavior between the scaled and the full-

size models will be similar both at the state of small deformation and
in the state of large deformation, if the scaledmodel is designed on the
basis of the aforementioned scaling factors.

III. Numerical Verification

To verify the aeroelastic scaling criteria for geometrically
nonlinear structures, a high-aspect-ratio flying wing in free flight is
used. The full-size model is based directly on the vehicle definition
presented in [16].

A. Model Description

The high-aspect-ratio flyingwing in free flight used as the full-size
model is shown in Figs. 2 and 3. Based on that, two scaled models
with different scaling factors were considered. In the analysis, all
vehicles are trimmed for level flight. Flaperon control surfaces are
distributed along the wing trailing edge.
The full-size vehicle has a span of 72.8 m and a constant chord

length of 2.44 m. The outboard one-third of the wing semispan has a
dihedral angle of 10 deg. As indicated in Fig. 2, there are three pods,
which are located at middle span and at two-thirds of the semispan at
each side. The side pods have a mass of 6.0 kg each, and the center
one has a mass of 27.23 kg. The payload is applied on the center pod
with a mass of 40.0 kg.
There are two scaled models. One is scaled to match Froude

number andReynolds number where the scaledmodel is described as
scaled model 1. The other is scaled to only match Reynolds number
and not the Froude number, where the scaled model is described as
scaling model 2. The geometric and physical properties and air
parameters of the full-size model, the scaled model 1, and the scaled
model 2 are listed in Tables 1, 2, respectively. For all cases, the
Reynolds number is approximately 250,000.
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B. Comparison of Results Between the Two Scaled Models and the
Full-Size Vehicle

In this section, comparison of static aeroelastic response, natural
frequencies, and gust response between the full-size model and the
two scaled models are investigated for the flying-wing vehicles in
free flight.

1. Trim Comparison

Aerodynamic shape, stiffness distribution, and mass distribution
have direct effect on the static aeroelastic response (vehicle
deformation) as well as on trimmed parameters (angle of attack and
control surface deflection). To investigate the consistence of the static
aeroelastic response between the scaled models and the full-size

model, the comparison of trimmed body angle of attack and flaperon
angle are presented in Figs. 4 and 5, respectively. The flight speed is
held constant at 30 m∕s for the full-size model, and the payload on
the center pod of the full-size model varies from 0 to 80 kg. The
comparison of the relative wing flatwise bending deformation
normalized by the vehicle half-wingspan between the full-size model
and the scaled model 1 is shown in Table 3, whereas the results

Fig. 2 Geometry of the full-scale flying-wing vehicle.

Fig. 3 Level-flight trimmed flying-wing vehicle configuration with
respect to its undeformed shape.

Table 1 Geometric properties, air parameters and scaling parameters for various flying-wing vehicle models

Parameter Full-size vehicle Scaled model 1 Scaled model 2

Geometric properties

Half-wingspan, m 72.8 14.6 5.97
Chord length, m 2.44 0.488 0.200
Beam reference axis, % chord 25 25 25

Air parameters

Air density, kg∕m3 0.1096 1.225 1.225
Air speed 1, m∕s 25.0 11.18 27.38
Air speed 2, m∕s 30.0 13.42 32.73
Angle of attack Trimmed Trimmed Trimmed
clα 2π 2π 2π

Independent scaling parameters

Length 0.200 0.082
Air density 11.180 11.180
Air speed 0.447 1.091

Dependent scaling parameters

Mass 8.94 × 10−2 6.16 × 10−3

EIy 4.47 × 10−1 1.09
EIz 3.58 × 10−3 6.01 × 10−4

GJ 3.58 × 10−3 6.01 × 10−4

EA 8.94 × 10−2 8.94 × 10−2

Lift 8.94 × 10−2 8.94 × 10−2

Natural frequency 2.24 13.31

Table 2 Stiffness and mass properties for various flying-wing vehicle models

Parameter Full-size vehicle Scaled model 1 Scaled model 2

Extensional stiffness EA, Pa · m2 1.00 × 1010 8.94 × 108 8.94 × 108

Torsional stiffness GJ, N · m2 1.65 × 105 5.90 × 102 9.91 × 101

Flat bending stiffness EIy, N · m2 6.00 × 105 2.15 × 103 3.60 × 102

In-plane bending stiffness EIz, N · m2 1.24 × 107 4.44 × 104 7.45 × 103

Mass per unit span m, kg∕m 2.000 8.944 × 10−1 1.502 × 10−1

Torsional inertia Ixx, kg · m 4.150 7.424 × 10−2 2.095 × 10−3

Flat bending inertia Iyy, kg · m 6.900 × 10−1 1.234 × 10−2 3.483 × 10−4

In-plane bending inertia Izz, kg · m 3.460 6.189 × 10−2 1.746 × 10−3

Concentrated mass at a side pod, kg 6.000 5.366 × 10−1 3.695 × 10−2

Concentrated mass at center pod, kg 27.23 2.435 1.677 × 10−1

Concentrated payload mass, kg 40.00 3.578 2.463 × 10−1
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between the full-size model and the scaled model 2 are shown in
Table 4.
As presented in Figs. 4, 5 and Tables 3, 4, the trimmed parameters

and relative displacement of the scaled model matching Reynolds
and Froude numbers (scaled model 1) are consistent with those of the
full-size model. However, there is no consistence between the full-
size model and the scaled model 2, where only Reynolds number is
matched and not Froude number.

2. Comparison of Frequencies

As the basis for dynamic aeroelastic response and stability, natural
frequencies are very important. To investigate the comparison of
natural frequencies between the full-size model and the two scaled

models, natural frequency analysis are carried out for both the vehicle
at a given deformed state (corresponding to flight speed of 30 m∕s)
and for its undeformed state. The natural modes of the deformed
structure are different from those of the undeformed structure. Table 5
presents comparison of natural frequencies between the full-size
model and the scaled model 1 (matching Reynolds and Froude
numbers). Table 6 shows comparison of natural frequencies between
the full-size model and the scaled model 2 (matching Reynolds
number but not Froude number).
The results indicate that natural frequencies for the scaled model 1

are consistent with those of the full-size vehicle once parameters are
factored tomatch the units of the full-sizemodel. However, there is no
consistence between the full-size model and the scaled model 2
results.
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Fig. 4 Trimmed body angle of attack for different payloadmass values. Fig. 5 Trimmed flaperon deflection for different payload mass values.

Table 3 Comparison of relative vehicle (wing) deformation (matching Froude and Reynolds numbers)

Airspeed 1 Airspeed 2

Spanwise station, % Full-size model, % Scaled model 1, % Ratio Full-size model, % Scaled model 1, % Ratio

33.3 1.97 1.98 1.01 1.97 1.98 1.01
66.6 6.28 6.31 1.00 6.27 6.30 1.00
100 11.11 11.16 1.00 11.10 11.15 1.00

Table 4 Comparison of relative vehicle (wing) deformation (matching Reynolds number)

Airspeed 1 Airspeed 2

Spanwise station, % Full-size model, % Scaled model 2, % Ratio Full-size model, % Scaled model 2, % Ratio

33.3 1.97 0.15 0.077 1.97 0.17 0.086
66.6 6.27 0.49 0.078 6.27 0.57 0.091
100 11.11 0.88 0.080 11.10 1.02 0.092

Table 5 Comparison of natural frequencies (matching Froude number and Reynolds number)

Full-size model, Hz Scaled model 1, Hz
Ratios (nominal
kω � 2.24)

Mode Undeformed Deformed Undeformed Deformed Undeformed Deformed

First flat blend plus plunge 0.30 0.29 0.66 0.66 2.24 2.24
First flat bend plus roll 0.64 0.63 1.42 1.42 2.24 2.24
First torsion plus yaw 1.25 1.14 2.79 2.54 2.24 2.24
First edge bed plus lead-lag plus pitch 1.52 — 3.40 — 2.24 —

Second flat bend plus plunge 1.60 1.59 3.58 3.57 2.24 2.24
Second flat bend plus roll 1.61 1.60 3.60 3.58 2.24 2.24
Second torsion plus lead-lag plus pitch — 1.85 — 4.14 — 2.24
Second torsion plus pitch 2.37 — 5.31 — 2.24 —

Edge bend plus lead-lag plus pitch — 2.66 — 5.95 — 2.24
Second torsion plus first edge bend plus yaw 2.97 2.96 6.64 6.61 2.24 2.24
Third flat bend plus roll 4.10 4.10 9.17 9.17 2.24 2.24
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3. Stability Comparison

To assess the vehicle stability, a linearization of the aeroelastic
equations of motion at each trimmed condition is performed for the
full-size model and the scaled models 1 and 2 for different payload
values. Then the longitudinal flight dynamic modes are evaluated for
their stability. Figure 6 shows the root loci of the phugoidmode of the
three models, where the results for the scaled models have already
been factored by their corresponding frequency ratios. The flight
speed of 30 m∕s is kept constant for the full-size model while the
payload varies (solid symbols standing for the zero payload cases).
As shown in Fig. 6, the root loci of the phugoidmode for the scaled

model 1 (matching Froude and Reynolds numbers) is consistent with

the one of the full-size vehicle at different values of payload (after
parameters are factored to match the units of the full-size model).
However, the same does not hold for scaled model 2, indicating once
again the importance of enforcing the Froude number similarity
as well.

4. Comparison of Gust Response

To understand the consistence of gust response between the full-
size model and scaled models 1 and 2, the discrete gust model
described previously is used in the fully nonlinear, time-marching
solution. The wavelength is equivalent to 25 times the vehicle chord
length, which corresponds to 61 m for the full-size model. The
maximum vertical gust speed is 10 m∕s for full-size model, while the
vehicle is flying at 30 m∕s. The gust excitation is applied for the full-
size model after 0.1 s of flying trimmed in calm air (no change in trim
parameters while going through gust). The gust parameters for the
scaled models have been properly scaled according to the scaling
factors in Table 1.
The longitudinal and vertical displacements of the origin of the

body frame (center span, at the beam reference line position) are
plotted in Fig. 7 for the full-size model and the scaledmodels 1 and 2.
The comparisons for body pitch angle andwing-tip displacements are
shown in Figs. 8 and 9, respectively. Finally, flatwise bending and
torsional moments at the vehicle midspan are also plotted in Figs. 10
and 11, respectively. For all these results, the results from the scaled
models have been scaled to match the units of the full-size model.
From those plots, the body-frame displacements, the body pitch

angle, the relative wing-tip displacement, and the flatwise bending
moment and torsional moment at the center of the vehicles for the
scaled model 1 are consistent with those of the full-size model (after
results are factored to match the units of the full-size model). Once
again, there is no consistence between the full-size model results and

Table 6 Comparison of natural frequencies (matching Reynolds number only)

Full-size model, Hz Scaled model 2, Hz
Ratios (nominal
kω � 13.31)

Mode Undeformed Deformed Undeformed Deformed Undeformed Deformed

First flat blend plus plunge 0.30 0.29 3.93 3.93 13.30 13.37
First flat bend plus roll 0.64 0.63 8.46 8.46 13.30 13.33
First torsion plus yaw 1.25 1.14 16.62 16.50 13.31 14.53
First edge bed plus lead-lag plus pitch 1.52 — 20.24 — 13.31 —

Second flat bend plus plunge 1.60 1.59 21.31 21.02 13.30 13.18
Second flat bend plus roll 1.61 1.60 21.39 21.30 13.30 13.32
Second torsion plus lead-lag plus pitch — 1.85 — 21.38 — 11.54
Second torsion plus pitch 2.37 — 31.59 — 13.31 —

Edge bend plus lead-lag plus pitch — 2.66 — 31.71 — 11.93
Second torsion plus first edge bend plus yaw 2.97 2.96 39.51 39.77 13.31 13.44
Third flat bend plus roll 4.10 4.10 54.48 54.49 13.30 13.30
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Fig. 6 Phugoid mode comparison between the full-size model and the
two scaled models.
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a) Longitudinal displacement b) Vertical displacement

Fig. 7 Body-frame displacement response due to gust.
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the scaled model, which onlymatches Reynolds number but does not
match Froude number.

IV. Conclusions

An aeroelastic scaling methodology for (geometrically nonlinear)
very flexible aircraft has been presented. Based on theoretical
derivation and numerical verification on a flying-wing vehicle in free
flight, the aeroelastic scaling laws for linear structure were extended
to address geometrically nonlinear structures. A nonlinear aeroelastic
analysis including static aeroelastic response, gust response, and
frequencies have been conducted on the full-size model and two

sample scaled models using the University of Michigan’s Nonlinear
Aeroelastic Simulation Toolbox.
The analysis results indicate that the current existing aeroelastic

scaling law for linear structure is also suitable for geometrically
nonlinear structure with large deformation. It was shown that the
scaling factors for the linear and nonlinear parts of the stiffnessmatrix
follow the same similarity rule. Moreover, it is imperative that the
Froude number similarity bemet. The Froude number determines the
ratio of the deflection under gravitational load to deflection due to
aerodynamic and inertial loads. Satisfying the Froude number
similarity guarantees that the large static wing deflection under initial
trim condition is met, and therefore the nonlinear stiffness properties
between models is satisfied as well. The stiffness has a direct impact
into the static and dynamic aeroelastic response of the system.
Reynolds-number similarity is also important particularly when its
value is low enough for laminar/turbulence transition. In practice,
however, matching the Reynolds number criterion may present a
challenge in view of the other scaling factors.
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0 10 20 30 40 50
0

5

10

15

20

T
ip

 d
is

pl
ac

em
en

t (
ve

rt
ic

al
),

 %

Time, s

 

 

Full model
Scaled model 1
Scaled model 2

Fig. 9 Relative tip wing displacement with respect to vehicle half-span
response due to gust.

0 10 20 30 40 50
−12

−10

−8

−6

−4

−2

0

C
ro

ss
−

se
ct

io
n 

be
nd

in
g 

m
om

en
t, 

*1
03  N

−
m

Time, s

 

 

Full model
Scaled model 1
Scaled model 2

Fig. 10 Bending moment at the vehicle center response due to gust.
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Fig. 11 Torsional moment at the vehicle center response due to gust.
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