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Hover-capable flapping-wing micro air vehicles are well suited for missions in confined spaces. The best design

practices for flapping wings and their kinematics are largely unknown, especially for flexible wings. To address this

issue, numerical optimization is applied to the design of the kinematics and structural sizing of a flappingwing using a

surrogate-based approach. The surrogates are generated using kriging interpolation of the time-averaged thrust

generated and power required by thewings. The thrust and power data are computed using a nonlinear approximate

aeroelasticmodel developed in previous studies by the authors.A numerical optimization algorithm is used to identify

designs that produce the desired combination of thrust and power. The design variables consist of parameters

describing the flap–pitch kinematics and the stiffness of the flexible wings. A trend study of thrust and power indicate

that the phase angle between flap and pitch motions significantly affects the wing performance when the stroke

amplitudes and the frequency are fixed. Smaller amounts of pitch actuation produced peak thrust in flexible wings

when compared to the rigid wings. Several flexible configurations produce higher thrust when compared to the best

thrust-producing rigid configuration. However, rigid wings have higher propulsive efficiency when compared to

flexible wings for the same amount of generated thrust. Thus, the actual design of a flapping wing will depend on the

relative importance given to thrust production and propulsive efficiency.

Nomenclature

Aw = wing area
a = distance between pitching axis and midchord

of the airfoil
Ckrg = spatial correlation function
cr = root chord
E = elastic modulus
êZSP

= unit vector along ZSP, resolved in the
�XSP; YSP; ZSP� coordinate system.

e = error
F = global mean in the surrogate
f = flapping frequency
j, k = indices in surrogate modeling
KΦ, Kα = shape parameters in flap and pitch
Ndv = number of design variables
Nsp = number of sample points
Ntest = number of test points
n̂SP = instantaneous unit normal vector at a point on

wing, resolved in the �XSP; YSP; ZSP� coordi-
nate system

P = aerodynamic power
p = local static pressure on the airfoil
Rj = radial location of the jth spanwise section

with respect to the wing root

Rspan = span of the wing, measured from root to
the tip

s = approximation of the local mean-squared
error at x obtained from kriging

T = thrust
t = time
tlespar = thickness of leading-edge spar
trib1–trib5 = thickness of the ribs (battens)
Uref = reference speed
Utip = maximum tip speed
w = parameter used to balance the search process

in the efficient global optimization
�XSP; YSP; ZSP� = coordinate system fixed to the stroke plane
�Xw; Yw; Zw� = wing-fixed coordinate system
x = vector of design variables
xSP = instantaneous positionvector of a point on the

wing in the �XSP; YSP; ZSP� coordinate system
xw = instantaneous positionvector of a point on the

wing in the �Xw; Yw; Zw� coordinate system
y = function to be approximated
ŷkrg = kriging prediction
ymin = current best value of the objective function
Z = deviation about the global mean, assumed to

be a stochastic process
α = pitch angle
α1 = pitch amplitude
β = constant
ϑk, ςk = correlation parameters in kriging
ν∞ = kinematic viscosity of the fluid
ν = Poisson’s ratio
ρ = density of the material
ρ∞ = freestream density of the fluid
Φ = flap angle
Φ1 = flap amplitude
ϕdist = normal cumulative distribution function
ϕden = normal probability density function
φα = phase angle between flap and pitch motions

I. Introduction

H OVER-CAPABLE flapping-wing micro air vehicles
(FWMAVs) are expected to be suitable for missions involving
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confined spaces carried out at low altitudes and short ranges, such as
search inside buildings. The expected maximum dimension of such
vehicles is less than 15 cm, and their weight is less than 100 g. Such
vehicles operate at low Reynolds numbers (102 < Re < 104) and low
forward flight speed (less than 15 m∕s) [1].
The wing kinematics of hover-capable flyers consists predomi-

nantly of flapping and pitching motions, combined with a compara-
tively small elevation motion [1]. Research on flapping wings [1–5]
indicates that the aerodynamic forces vary significantly in the design
space described by the kinematic parameters. The power available for
FWMAVs is also limited due to the restrictions on size andweight [6].
Thus, the selection of kinematics that produces the best combination
of thrust and power is an important consideration for the development
of wings intended for FWMAVs.
Optimization of the kinematics for rigid and flexible wings was

considered in [7–9]. In [7], a semi-empirical aerodynamic model was
combined with a global optimization algorithm to identify power-
minimizing kinematics for several rigid bio-inspired wing configura-
tions in hover undergoing combined flap–pitch motion. Optimal
kinematics were found to resemble the kinematics in the corre-
sponding biological flyers. In [8], the lift and propulsive efficiency
(lift generated per unit power) of rigid airfoils undergoing pitch–
plunge motions was simulated using aerodynamics based on the
solution of theNavier–Stokes equations. The performance in forward
flight was optimized using a gradient-based (GB) approach. In [9],
optimal combinations of wing kinematics, flexibility, and planform
were identified using a GB optimization approach. The wings,
modeled as beams, were actuated by a combined flap–pitch–
elevation motion. The aerodynamic loads and power were computed
using a quasi-steady formulation. Configurations that reduced the
required power were identified.
In the current study, the aerodynamic force and power of the

flapping wing are computed using an approximate aeroelastic model
developed by the authors [10,11]. The model produced acceptable
correlation with computational fluid dynamics (CFD) simulations
and experiments for a range of kinematic, structural, and aerody-
namic parameters [10–12]. It also yields a significant reduction in
computational cost compared to CFD-based approaches. However,
the cost of the large number of simulations required in an optimiza-
tion study prevents the direct coupling of the aeroelastic analysis with
the optimization algorithm. Therefore, surrogate models, which
represent computationally efficient global approximations of the
analysis [13], are used. The surrogates are constructed by interpo-
lating the output obtained from a suitable number of true function
evaluations and are used to replace the expensive computations when
exploring the design space.
Previous studies on flapping-wing studies employing surrogate

approaches were limited to rigid wings [14]. Surrogates generated
from CFD data were used to study the influence of leading-edge
vortices (LEVs) and tip vortices on the lift and thrust generated by
rectangular wings undergoing prescribed translation and pitching
motions. Regions in the design spacewhere tip vortices had a benefi-
cial effect were identified. Surrogate-based approaches have been
shown to have considerable potential for optimizing nonlinear
aeroelastic systems. In [15,16], surrogate-based optimization was
used to design helicopter blades with low vibration levels in forward
flight. Surrogates based on krigingwere found to be very effective for
predicting the vibratory hub loads in forward flight.
The overall goal of this paper is to identify combinations of wing

kinematics and flexibility that enhance the performance for aniso-
tropic flapping wings in hover. The performance metric is repre-
sented by the thrust generated and the power consumed by thewings.
The specific objectives of this paper are to develop accurate surrogate
models that predict the performance of rigid and anisotropic flapping
wings in hover, and compare the performance of rigid and flexible
wings in a large parameter space to assess the effect of wing
flexibility.
The remainder of the paper is organized as follows. First, the

nonlinear approximate aeroelastic model used to calculate the thrust
and power generated by the flapping wings, and the surrogate-
based optimization procedure is summarized. Next, the optimization

studies conducted using rigid and flexible wings are described.
Finally, the important conclusions gleaned from the results are
presented.

II. Overview of the Nonlinear Aeroelastic Model

The aeroelastic model is obtained by coupling a nonlinear finite-
element-based structural dynamic model of the wing with an
approximate unsteady aerodynamic model. The model, developed
in previous studies by the authors [10,11], exhibits acceptable
correlation with CFD simulations and experiments for a wide range
of kinematic, structural, and aerodynamic parameters [10–12]. The
components of the aeroelastic model and the corresponding valida-
tion and verification studies are described in [10–12]. Therefore, the
discussion presented in this paper is limited to an overview.

A. Structural Dynamic Model and Wing Kinematics

The wings are modeled in MSCMARC, a commercially available
nonlinear finite-element code [17]. The structural dynamic model is
based on thin shell triangular elements, shown in Fig. 1a, suitable for
modelingwings undergoing large rigid-body rotations andmoderate-
to-large flexible deformation due to coupled bending and twisting
in both the spanwise and the chordwise directions. Each node has
six degrees of freedom: three displacements and three rotations.
The nodal degrees of freedom are interpolated using a bilinear
interpolation.
The wings are actuated by combined flap–pitch motions that are

based on the kinematics considered in [7]. The flapping and pitching
motions, given by

Φ�t� � Φ1

sin−1�KΦ sin�2πft��
sin−1�KΦ�

(1)

and

α�t� � −α1
tanh �Kα sin�2πft� φα1��

tanh�Kα�
(2)

are prescribed about the flapping and feathering axes shown in
Fig. 1a. The variables KΦ and Kα govern the shape of the flap and
pitch kinematic patterns as shown in Fig. 2. The movement of the
feathering axis due to the time-dependent flapping motion describes
the stroke plane (SP), shown in Fig. 1b. The axes Xw and Yw, shown
in Fig. 1a, are assumed to coincide with XSP and ZSP, shown in
Fig. 1b, respectively, at the start of the motion. Thewing rotations are
converted to displacements using the following relation:

xSP �

2
664

cos Φ 0 sin Φ

0 1 0

− sin Φ 0 cos Φ

3
775 ·

2
664
1 0 0

0 cos α − sin α

0 sin α cos α

3
775 · xw

and applied as displacement boundary conditions at the wing root.

B. Unsteady Aerodynamic Model

The unsteady aerodynamic model [10,11] is a modification of the
original model described in [18,19]. The formulation incorporates
LEVs, a wake model, and accounts for the effects of wing flexibility,
forward flight, and fluid viscosity. The model is based on two-
dimensional (2-D) potential flow and is applied on thewing in a strip-
theory manner. Separation of the flow from the leading edge (LE) is
assumed (i.e., it is either present or not, along with the location of the
separation point). The model [10,11] does not capture spanwise flow
and tip vortices. The accuracy of the approach is expected to decrease
when such effects have a predominant effect of the forces. The
aerodynamic model exhibits reasonable agreement with CFD-based
aerodynamics and experiments in both the time-averaged values
and the time histories of the forces for the range of kinematic and
aerodynamic parameters considered in the current work [10–12].
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Thus, it is suitable for the optimization studies conducted in
this paper.
The overall approach [10] is illustrated in Fig. 3. The wing is

divided into several spanwise stations, shown in Fig. 1a, where each
section is represented as an airfoil. For each airfoil, the airfoil motion
and the shed wake geometry are approximated using an airfoil-wake
surface that is represented by a cylinder normal to the stroke plane
(SP), shown in Fig. 1b. The cylindrical surface is straightened out

(unwrapped) to represent a 2-D plane. The airfoil and shed vortices
are modeled in this plane by transforming the airfoil into a circle on a
complex plane using a conformal mapping. The bound and shed
wake vorticity are computed on the complex plane. The quasi-steady
component of vorticity is obtained by neglecting the effect of the shed
wake. The strength of shed vorticity is computed by enforcing a
stagnation condition at the leading edge (LE) and aKutta condition at
the trailing edge. The airfoil bound vorticity is obtained as a sum of
the quasi-steady and wake-induced vorticity on the airfoil. Next, the
vorticity on the complex plane is transformed back to the airfoil-wake
surface using an inverse transform. Subsequently, the unsteady
aerodynamic pressure on the surface of the wing is computed from
the total vorticity using the unsteady Bernoulli equation. Finally, the
shed vorticity is convected using the Rott–Birkhoff equation, derived
from Biot–Savart law for 2-D flow.
The SP is assumed to be horizontal for the case of hover. The thrust

is defined as the component of the aerodynamic force normal to the
SP (i.e., along the ZSP axis) and is given by

T�t� �
ZZ
Aw

êZSP
· �p dAwn̂SP� (3)

The aerodynamic power, which is the component of the total
mechanical power required to overcome the aerodynamic forces
acting on thewing, is calculated from the instantaneouswing velocity
and pressure distributions as

P�t� �
ZZ
Aw

_xSP�t� × �p dAwn̂SP� (4)

The time-averaged (or mean) thrust and aerodynamic power, which
are the performance metrics used in the current study, represent the
average payload capacity and power penalty over a flapping cycle,
respectively. The wing performance is enhanced by increasing the
payload capacity and decreasing the power penalty.
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Y

Z

X

Stroke plane (SP)

sp

sp

sp

R j

Airfoil-w
ake surface

for wing section

b) Stroke plane

Fig. 1 Wing configuration and coordinate systems.
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Fig. 2 Variation of flap and pitch kinematic patterns with shape parameters.
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Fig. 3 Computational procedure for the aerodynamic model.
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C. Fluid–Structure Coupling

The equations ofmotion for the aeroelastic problem are obtained in
MARC using an updated Lagrangian method [20]. Time-domain
integration of the equations is done using a single-step Houbolt
numerical scheme [21]. The fluid–structure coupling inMSCMARC
is accomplished by two user-defined subroutines: FORCDT and
FORCEM. The aeroelastic model is illustrated by the block diagram
shown in Fig. 4. At each time step, rigid-bodymotion is prescribed by
specifying the displacements at the nodes using the FORCDT
subroutine. The aerodynamic loads are computed based on the wing
motion at the beginning of each time step and applied as pressure on
the structure using the FORCEM subroutine. This subroutine is
called from the main program for each step of the Newton–Raphson
iteration within a time step to ensure convergence of the structural
displacements. Finally, the vortices shed into the wake are convected
at the end of the time step. Additional details are provided in [22].

III. Surrogate Modeling and Optimization

Surrogate models are used to predict the time-averaged aerody-
namic force and power as functions of the kinematic and structural
parameters. The surrogate modeling approach used is similar to [16]
and is summarized next.

A. Generation of the Surrogate and Testing Its Accuracy

The steps required for surrogate generation are illustrated in
Fig. 5. The initial set of surrogates are constructed using fitting points
selected to sample the parameter space. These points are selected
using an optimal Latin hypercube (OLH) sampling [13]. In this
approach, the design variables are partitioned into several equally
spaced sections, thereby dividing the parameter space into several
equally sized hypercubes. A spreading criterion is used ensure uni-
form sampling in the design space. The accuracy of the surrogates is
estimated at a set of testing points that are not included in the set of
fitting points. The testing points are also generated using an OLH
sampling to represent the parameter space in an efficient manner.
The aerodynamic or aeroelastic simulations are performed at each

of the design points. The simulations are run in parallel on several

processors because the true function evaluation at each design point
can be obtained independently of the evaluations at other design
points.
The surrogates are created from the fitting data following the

kriging interpolation approach used in [16]. In kriging, the unknown
function is approximated by

y�x� � F�x� � Z�x�

where F�x� is the global mean, and Z�x� is the deviation about the
global mean, represented as a stochastic process. Previous studies
[16,23,24] indicate that using F�x� � β, where β is constant, is
adequate for producing approximations of sufficient accuracy.
Therefore, in this study, it is assumed thatF�x� � β. A crucial step in
determining Z�x� is the selection of a spatial correlation function
(SCF), which accounts for the effect of each interpolation point on
every other point. The SCFused in this study is givenby a generalized
Gaussian function [23] as

Ckrg�x�i�; x�j�� � exp

�XNdv

k�1
ϑkjx�i�k − x�j�k j

ςk

�

where ϑk and ςk determine the quality of the fit. The general
procedure used to identify ϑk and ςk, and subsequently Z�x�, is
described in [25].
The accuracy of the surrogates is improved by adding new points

to the set of existing fitting points. Two approaches are used to
determine the new points. In the first approach, additional fitting
points are determined in an ad hoc manner using an OLH sampling
for specific regions of the parameter space where the accuracy of the
surrogate is found to be inadequate. In the second approach, the
accuracy of the surrogates is improved in a systematic manner by
using an efficient global optimization (EGO) algorithm [16,26,27].
An expected improvement function (EIF) [26,27], defined based on
the local error in prediction provided by the kriging approach, is used
to identify regions of the parameter space where the predictions of
the surrogate are unreliable due to a high amount of uncertainty.
Subsequently, additional sample or “infill” points are identified by
maximizing the EIF. Two types of EIFs can be defined:

EIF1 � �ymin − ŷkrg�ϕdist

�
ymin − ŷkrg

s

�

and

Initialize system
variables

Prescribe 
rigid body motion

Convect wake

Total
simulation

time?

End

NO

YES

Compute 
aerodynamic

loads 

Compute 
flexible

deformation

Newton-Raphson iteration

pool
noit ar get ni

e
mi T

Fig. 4 Computational framework for the aeroelastic model in MARC.

Construct surrogates
 from fitting data

Generate initial fitting data and 
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2) Conduct aerodynamic or aeroelastic 
simulations at each sample point

1) Select points to sample 
the parameter space

Test accuracy of surrogates

Is accuracy 
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Generate additional fitting data

2) Conduct aerodynamic or aeroelastic 
simulations at each sample point

1) Select points using EGO 
or OLH sampling

Done
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Fig. 5 Steps in surrogate modeling.
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EIF2 � sϕden

�
ymin − ŷkrg

s

�

where s is obtained following [25]. The function EIF1 is large when
ŷkrg is likely to be better than ymin. The termEIF2 is large in regions of
the parameter space where the mean-squared error is large (i.e., there
is much uncertainty in the surrogate prediction). The search process
can be performed in regions of the parameter spacewhere the designs
are expected to be optimal (using only EIF1) or where there is
considerable uncertainty in surrogate prediction (using only EIF2).
Alternately, a balance between the two types of searches is obtained
by using a weighted expected improvement function (WEIF) [16] as

WEIF�x� �
�
wEIF1 � �1 − w�EIF2 if s > 0

0 if s � 0
(5)

where 0 ≤ w ≤ 1. In the current study, additional points to increase
accuracy of the surrogates were identified using EIF2 or by sub-
stituting w � 0 in Eq. (5).
The OLH sampling of the parameter space is performed using the

iSight software [28,29]. The surrogates are generated in MATLAB
using the DACE toolbox [25]. The EGO algorithm is implemented in
MATLAB using an in-house code.

B. Optimization

Numerical optimization is employed to achieve two separate goals:
1) locate the new sample points to improve the accuracy of the
surrogates using the EGO algorithm, and 2) identify designs that
yield the desired combination of aerodynamic force and power once
surrogates of sufficient accuracy are generated. The optimum is
identified by using a combination of global and gradient-based
approaches in sequence. The design point predicted by the global
search algorithm is used as the initial guess for the gradient-based
algorithm. This hybrid approach reduces the computational cost of
the optimization when the design points found by the global search
are a sufficiently good starting guess for the gradient-based approach.
The global search is based on the GODLIKE (from “global opti-

mum determination by linking and interchanging kindred evalua-
tors”) algorithm.§ The GODLIKE approach invokes differential
evolution [30], genetic algorithms [31], particle swarm optimization
[32], and adaptive simulated annealing algorithms [33] and links
them together by inserting random members of the population
obtained from one approach into the population of other approaches
during their optimization cycles. This interchange of the predictions
from different algorithms eliminates weakness in the population due
to the limitations of the individual approaches. The use of stronger
populations in each cycle enhances the probability of locating a true
global optimum. However, the interchange also adversely affects
the convergence rate, thereby increasing the number of function
evaluations needed for the optimization. Therefore, the GODLIKE
algorithm is computationally less efficient but more robust compared
to the individual constituents. The gradient-based approach uses an
interior point algorithm [34–36], in which a constrained minimiza-
tion problem is solved by replacing it by a sequence of approximate
minimization problems. The inequality constraints are implemented
using logarithmic penalty functions. In each iteration, the size of the
optimization step is computed by solving the discretized version of
the Karush–Kuhn–Tucker equations [34–36].
The GODLIKE and the interior-point algorithms are implemented

in MATLAB using the GODLIKE toolbox and by invoking the
fmincon function provided in the optimization toolbox, respectively.

IV. Results and Discussion

The results obtained from the surrogate-based optimization of
rigid and flexible wings in hover are for a Zimmerman planform,

shown in Fig. 1a, that has been used in previous studies [10,11,37].
These wings have Rspan � 75 mm, cr � 25 mm, and an aspect
ratio of 7.65. The computations were carried out for air (ρ∞ �
1.209 kg∕m3 and ν∞ � 1.64 × 10−5 m2∕s). The approximate
aerodynamic loads are calculated by dividing the wing into 10
spanwise stations,where a spanwise station is depicted in Fig. 1a. The
calculations are performed by discretizing each airfoil using 101
elements, using four wake subiterations per time step, and a vortex
core radius equal to 2.5% of the corresponding airfoil chord.
Leading-edge flow separation is assumed throughout the flapping
stroke. The aerodynamic loads are computed using the unsteady
Bernoulli equation. For all the simulations, an approximate steady
state was obtained after one cycle. Therefore, the time-averaged (or
mean) quantities are calculated by averaging the corresponding time
histories over cycles 2 through 5.

A. Results for Rigid Wings

In previous studies employing the aerodynamic model [10,11],
the simulations were conducted using 59 spanwise stations. In the
current paper, only 10 spanwise stations are used to reduce the
computational cost required to generate the fitting and testing data.
The accuracy of the computations was evaluated by comparing the
predictions using 10 spanwise stations to those obtained using 59
spanwise stations. The errors in thrust and power were calculated at
50 points obtained from anOLH sampling of the parameter space, for
the allowed ranges of the kinematic design variables (DVs) listed in
the Table 1. The simulations at each sample point were performed
using 10 2.53 GHz Intel Xeon E5540 processors (2 GB RAM per
processor). The maximum times per simulation were approximately
1.5 and 9 hwhen using 10 and 59 spanwise stations, respectively. The
maximum local errors in thrust and power are 6 and 3% of the
corresponding maximum values in the data sets. The rms errors in
thrust and power are less than 2% of the corresponding maximum
values. This implies that the accuracy achieved when using 10
spanwise stations is adequate.
Kriging surrogates to predict the mean thrust and mean power

generated by rigid wings were obtained initially from a set of 200
points. The accuracy of the surrogates was tested at the set of 50OLH
points obtained previously. The mean and maximum errors in thrust
and power are defined as

emax � maxfejg (6a)

and

emean �
1

Ntest

XNtest

j�1
ej (6b)

where

ej �
jŷjkrg − yjj
maxfyjg (6c)

where yjkrg and yj are the surrogate prediction and true function
evaluation at the jth test point. Next, the accuracy of the surrogates
was improved by adding 149 new fitting points selected as follows.
First, the initial surrogate was used in the EGO algorithm to identify

Table 1 Design variables and their bounds

Description Bounds

Flap amplitude 10 ≤ Φ1 ≤ 60 deg
Pitch amplitude 0 ≤ α1 ≤ 60 deg
Phase amplitude 0 ≤ Φα1 ≤ 360 deg
Shape parameter in flap 0 ≤ KΦ ≤ 1
Shape parameter in pitch 0 ≤ Kα ≤ 5
Location of pitch axis 0 ≤ a ≤ 0.25cr
Flapping frequency 10 ≤ f ≤ 30 Hz

§Data available online at http://www.mathworks.com/matlabcentral/
fileexchange/24838-godlike-a-robust-single-multi-objective-optimizer [re-
trieved 6 June 2014].
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50 points. The surrogate was improved by incorporating the new
fitting points, and a second path through EGOwas used to identify 50
points. The process was repeated for a third time to select 49
additional points. In the iterations using EGO, each new point was
picked so that the minimum normalized distance between the point
and all other preceding points was a user specified value of 0.1. The
errors in the surrogates are summarized inTables 2 and 3. Large errors
were found to occur at the boundaries corresponding to α1 � 0 deg,
and fΦ1 � 60 deg; f � 30 Hzg. Therefore, 870 additional points
were introduced using a combination of OLH samplings and EGO as
follows. In the first sampling, 100 OLH points were generated for
α1 � 0 deg, 10 ≤ Φ1 ≤ 62.5 deg and 10 < f < 32.5 Hz, where the
ranges for other DVare given in Table 1. Next, additional 290 OLH
points were introduced for 52.5 ≤ Φ1 ≤ 62.5 deg and 27.5 < f <
32.5 Hz, where the ranges for other DV are given in Table 1. Next,
290 points were selected using EGO for 50 ≤ Φ1 ≤ 60 deg and
20 < f < 30 Hz, where the ranges for other DVare given in Table 1.
Finally, two sets of 195 OLH points were generated for Φ1 �
55 deg, f � 25 Hz and Φ1 � 60 deg, f � 30 Hz, respectively.
Introduction of the additional points resulted in a significant
reduction in the maximum error in thrust, as evident from Table 2.
The reduction of maximum error in power was relatively smaller, as
shown in Table 3. The distribution of errors are provided in Tables 2
and 3. The results in Tables 2 and 3 indicate that the surrogates have
acceptable accuracy (errors less than 20%) over a large region of the
parameter space.
The surrogates are combined with the numerical optimization

algorithm to identify kinematics that maximized the thrust. The
kinematic variables corresponding to themaximum thrust based on the
surrogates aswell as the true function evaluations are shown inTables4
and 5. The relative errors in thrust and power prediction are 3 and 8%,
respectively. Note that the maximum thrust in the set of fitting points
is 5.6 g. Thus, the optimum predicted using the surrogate-based
optimization approach produces higher thrust compared to the best
thrust producing design in the set of fitting points.

The variation of the thrust and power with the various DV,
calculated for the kinematics that produce maximum thrust, are
shown in Fig. 6. The value of the kinematic parameter corresponding
to maximum thrust is indicated by a circle. Both the thrust and power
increase monotonically with increasing flap amplitude, as shown in
Fig. 6a. This is due to the fact that thrust and power are competing
design objectives. Figure 6b shows that thrust and power are
nonmonotonic with pitch amplitude, indicating that only a limited
amount of pitching motion is beneficial. The phase angle affects the
interaction of the wing with the vortices generated at the end of the
previous stroke. This effect, termed as the wake capture [4], is an
unsteady mechanism that is not captured by aerodynamic formula-
tions that use quasi-steady or fixed-wake assumptions. The thrust and
power vary significantly over the range of phase angles considered, as
shown in Fig. 6c. This implies that the wake-capture mechanism can
be used to tailor the thrust and power of a flapping wing without
significant modification of the stroke amplitude or flapping frequen-
cy. The effect of the shape parameters given in Eqs. (1) and (2) on the
thrust and power is shown in Figs. 6d and 6e. Figure 6d indicates that
both thrust and power decrease as the flapmotion changes from a sine
motion to a triangularwave. Thevariations of thrust and power for the
range of KΦ considered are less than 20%. Both thrust and power
increase when a square wave is used for the pitching motion, as
shown in Fig. 6e. The increase in thrust (35%) is larger than the
increase in power (less than 20%). Thus, a rapid pitch motion can be
used to produce a significant increase in thrust with only a minor
penalty on the power consumption. As shown in Fig. 6f, the power
decreases by 15% when the location of the pitching axis is moved
from the leading edge (a � 0) to the quarter-chord point (a � 0.25).
However, the change in thrust is relatively small: 6%. Therefore,
pitching about the quarter-chord is beneficial for power consumption
reduction with a relatively minor reduction in thrust. Both thrust and
power increasemonotonically with increase in flapping frequency, as
shown in Fig. 6g.
Practical constraints can often limit the available power. Therefore,

a constrained optimization study was conducted to maximize thrust
for a specified amount of power. The power availablewas varied from
the power required to generate maximum thrust, denoted by PTmax

, to
0.5PTmax

. The Pareto front corresponding to the maximum thrust
for the specified value of power is shown in Fig. 7a. Note that
the decrease in thrust is less than 30% of Tmax for a 50% decrease in
power. The true function evaluations at several points on the curve are
represented by the squares in Fig. 7a. The relative errors between the
surrogate predictions and the true function evaluations, plotted
against the normalized value of the corresponding true function
evaluation (T∕Tmax or P∕PTmax

), are shown in Fig. 7b. The errors in
thrust and power prediction, which are less than 18%, are consistent
with the errors listed in Tables 2 and 3.

B. Results for Flexible Wings

An aeroelastic optimization study was conducted using anisotropic
wings built from unstressed Capran film (membrane) supported by
a carbon-fiber-based spar-rib skeleton. The wing configuration is
depicted in Fig. 1a. The thicknesses of the leading-edge spar and the
five ribs, shown in Fig. 1a, are used as the DV that control flexibility.
Thematerial properties of themembrane and composite skeleton, the
widths of the leading-edge spar and the battens, and the thickness
of the membrane are fixed [10] and are provided in Table 6. The
kinematic and structural parameters, which represent the DV for the
flexible wings, together with their allowed ranges of variation are
given in Table 7.

Table 2 Errors in thrust

Errors 197 points 346 points 1215 points

Mean and maximum errors

Mean, % 6.3 5.9 2.7
Maximum, % 52 72 14.5

Distribution of errors

>20% 4 points 1 point 0 point
<20% 46 points 49 points 50 points

Table 3 Errors in power

Errors 197 points 346 points 1215 points

Mean and maximum errors

Mean, % 3.5 2.4 1.5
Maximum, % 38.7 27 20.5

Distribution of errors

>20% 1 point 1 point 1 point
<20% 49 points 49 points 49 points

Table 4 Design point
corresponding to maximum

thrust: kinematic design variables

Parameter Value

Φ1 60 deg
α1 50 deg
ϕα1 80.2 deg
KΦ 0.183
Kα 3.65
a 0.14
f 30 Hz

Table 5 Design point corresponding to maximum
thrust: surrogate predictions and true function

evaluations

Surrogate prediction True function evaluation

Tmax, g 5.89 5.75
PTmax

, W 0.482 0.452
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The finite-element model of the wing, shown in Fig. 1a, is
composed of 765 shell elements (element type 75 in MARC). Wing
kinematics are implemented as displacement boundary conditions at
the nodes that form the triangular root. During the simulations, a
pressure-based filter [22], described by Eq. (7), was used to limit the
magnitude of numerical noise that is transmitted to the flexible wing:

papp �
pcomp

jpcompj
minfjpcompj; jplimitjg (7)

where j · j denotes the absolute value or magnitude, and pcomp,plimit,
and papp are the computed, applied, and limit values of aerodynamic
pressure, respectively. For the cases considered, plimit � 81pref ,

where the reference pressure is given by pref � 1
2
ρ∞U

2
tip and

Utip � 2πfβ0Rspan.
The kriging surrogates were created initially from a set of 199

points using an OLH sampling of the parameter space described in
Table 7. The accuracy of the surrogates was tested at 49 points, also
obtained by OLH sampling of the parameter space described in
Table 7. Each simulation for generating the fitting and testing data
was conducted using a single 2.53 GHz Intel Xeon E5540 processor
(4 GB RAM). The maximum time per simulation was 15 h. The
aerodynamic calculations for the flexiblewings were not parallelized
due to restrictions associated with MARC. Thus, the data for each
sample point were computed using a single processor. The accuracy
of the surrogates was first improved by 372 additional fitting points
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Fig. 6 Variation of thrust and power with kinematic design variables for rigid wings.
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identified using EGO. These points were determined in four cycles,
where the surrogate was used in EGO and refitted by including the
new points for the next cycle. Significant errors at the boundary
corresponding to fΦ1 � 55 deg; f � 25 Hzg were noted. There-
fore, 720 additional points were included using a combination of
EGO and OLH sampling. First, two sets of OLH samplings were
used. In the first set, 276 points were selected for the ranges given in
Table 8. In the second set, 99 points were selected for α1 � 0 deg,
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Fig. 7 Constrained optimization of rigid wings.

Table 6 Material properties
of the composite skeleton and

membrane

Parameter Value

Composite

E11 233 GPa
E22 23.1 GPa
E12 10.5 GPa
ν12 0.05
ρ 1740 kg∕m3

Membrane

E 2.76 GPa
ν12 0.489 (Incompressible)
ρ 1384 kg∕m3

Thickness 15 microns

Table 8 Reduced bounds for the design variables

Description Bounds

Flap amplitude 52.5 ≤ Φ1 ≤ 57.5 deg
Pitch amplitude Same as in Table 5
Phase amplitude Same as in Table 5
Shape parameter in flap Same as in Table 5
Shape parameter in pitch Same as in Table 5
Location of pitch axis Same as in Table 5
Flapping frequency 22.5 ≤ f ≤ 27.5 Hz
Thickness of LE spar Same as in Table 5
Thickness of rib 1 0.05 ≤ trib1 ≤ 0.3 mm
Thickness of rib 2 0.025 ≤ trib2 ≤ 0.3 mm
Thickness of rib 3 0.025 ≤ trib3 ≤ 0.3 mm
Thickness of rib 4 0.025 ≤ trib4 ≤ 0.3 mm
Thickness of rib 5 0.025 ≤ trib5 ≤ 0.3 mm

Table 9 Errors in thrust

Errors 199 points 571 points 1291 points

Mean and maximum errors

Mean, % 10.5 4.5 4.4
Maximum, % 43 19.3 15.5

Distribution of errors

>20% 6 points 0 points 0 points
<20% 43 points 49 points 49 points

Table 10 Errors in power

Errors 199 points 571 points 1291 points

Mean and maximum errors

Mean, % 6.6 5.6 2.6
Maximum, % 22 30 21

Distribution of errors

>20% 2 points 1 point 1 point
<20% 47 points 48 points 48 points

Table 7 Design variables and their bounds

Description Bounds

Flap amplitude 10 ≤ Φ1 ≤ 55 deg
Pitch amplitude 0 ≤ α1 ≤ 50 deg
Phase amplitude 0 ≤ ϕα1 ≤ 360 deg
Shape parameter in flap 0 ≤ KΦ ≤ 0.8
Shape parameter in pitch 0 ≤ Kα ≤ 4
Location of pitch axis 0 ≤ a ≤ 0.25cr
Flapping frequency, Hz 10 ≤ f ≤ 25 Hz
Thickness of LE spar 0.15 ≤ TLE spar ≤ 0.4 mm
Thickness of rib 1 0.2 ≤ trib1 ≤ 0.3
Thickness of rib 2 0.05 ≤ trib2 ≤ 0.3 mm
Thickness of rib 3 0.05 ≤ trib3 ≤ 0.3 mm
Thickness of rib 4 0.05 ≤ trib4 ≤ 0.3 mm
Thickness of rib 5 0.05 ≤ trib5 ≤ 0.3 mm Table 11 Kinematic and structural variables

corresponding to maximum thrust

Description Rigid wing Flexible wing

Φ1, deg 55 55
α1, deg 50 34.8
ϕα1, deg 80.3 81.9
KΦ 0.19 0.63
Kα 4 3.75
a 0.18 0.23
f, Hz 25 25
tLE spar 0.3034 mm
trib1 0.2241 mm
trib2 0.1378 mm
trib3 0.2262 mm
trib4 0.1093 mm
trib5 0.2100 mm
Tmax (prediction), g 3.74 4.16
True evaluation, g 3.28 3.99
PTmax

(prediction), W 0.215 0.273
True evaluation, W 0.198 0.272
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where the ranges of the remaining DVare given in Table 7. Next, 169
points were selected using EGO for 50 ≤ Φ1 ≤ 55 deg and
20 ≤ f ≤ 25 Hz, where the ranges of remaining DV are given in
Table 7. Finally, 176 points were selected using OLH sampling for
Φ1 � 55 deg and f � 25 Hz, where the ranges of remaining DVare
given in Table 7. The additional points resulted in a decrease of
the mean and maximum errors in both power and thrust. The
magnitude and distribution of errors in the surrogates are summarized
in Tables 9 and 10. It is evident that the final surrogates have
acceptable accuracy (errors less than 20%) over a large region of the
parameter space.

The kinematic and structural parameters that produce maximum
thrust are presented in Table 11. The corresponding parameters for
rigid wings are also provided. The true function evaluations for thrust
yields 3.28 g for rigid wings and 3.99 g for flexible wings. The
corresponding evaluations for power yield 0.198 and 0.272 W for
rigid and flexible wings, respectively. This implies that the best
flexible configuration generates 22%more thrust and consumes 37%
more power compared to the best rigid wing. For the flexible wings,
the maximum thrust in the set of fitting points is 3.9 g, which is less
than the corresponding Tmax in Table 11. Thus, the optimal flexible
configuration predicted using the surrogate-based optimization
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Fig. 8 Variation of thrust and power with kinematic parameters for flexible wings (solid line) and rigid wings (dashed line).
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approach produces higher thrust compared to the best thrust-
producing design in the set of fitting points.
The variation of thrust and power with kinematic and structural

parameters, calculated at the point of maximum thrust, are shown in
Figs. 8 and 9, respectively. Several similarities to the variation of
thrust and power obtained for rigid wings (shown using the dashed
line) are noted. Both the thrust and power increase monotonically
with increase in flap amplitude, as shown in Fig. 8a. Figure 8b indi-
cates that thrust and power are nonmonotonic with pitch amplitude,
suggesting that only a limited amount of pitching motion is useful.
The best flexible configuration generates greater thrust compared to
rigid wings while requiring a smaller amount of pitch. This is due to
the twist produced that modifies the pitch distribution. Both thrust
and power vary significantly over the range of phase angles consid-
ered, as shown in Fig. 8c. The variation of thrust with phase angle for
flexible wings is similar to its variation for rigid wings. The variation
of power is less significant. This suggests that the phase difference
between flap and pitchmotions for flexiblewings can be used to tailor
the thrust for fixed-stroke amplitudes and frequency.
The effect of the shape parameters on the thrust and power are

shown in Figs. 8d and 8e. Figure 8d indicates that the thrust increases
slightly as the flap motion changes from a cosine motion to a
triangular wave. The power variation is minor compared to the
reduction in thrust, indicating that flap motion based on a triangular
wave is beneficial. For flexiblewings, the thrust and power vary only

slightly with Kα, as shown in Fig. 8e. This implies that a rapid pitch
motion at the end of the flapping stroke has a greater impact on rigid-
wing performance when compared to flexible wings. The thrust and
power decrease slightly as the pitching axis ismoved from the leading
edge of the flexible wing to the quarter-chord point. Thus, pitching
about the quarter-chord point is beneficial. The opposite trend is
found for thrust generated by rigid wings, where it is beneficial to
pitch about a point closer to the leading edge.
Both thrust and power increasewith increasing flapping frequency,

as shown in Fig. 8g. The flexible wings generate more thrust
compared to rigid wings only for f > 22 Hz. Below 22 Hz, rigid
wings produce slightly greater thrust for equal or less required power
compared to flexible wings. Therefore, increasing wing flexibility in
this region of the design space results in thrust reduction accom-
panied by a small increase in power required.
The variation of thrust and power with structural design variables

are illustrated in Fig. 9. The thickness of the LE spar has a significant
effect on both the thrust generated and power consumed by the
flexible wings, as shown in Fig. 9a. The variation of thrust with
tlespar is nonmonotonic, suggesting that only a limited amount of
spanwise stiffness is beneficial. Both thrust and power increase
with increase in tlespar, implying that increasing wing stiffness
enhances thrust production but also increases the power penalty. The
variation of thrust and power with the thickness of ribs 1, 2, 3, and 4,
shown in Figs. 9b–9e, is minor. Rib 5 affects the tip twist. The trends
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Fig. 9 Variation of thrust and power with structural parameters.
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in Fig. 9f suggest that a stiffer chord on the outboard sections
increases the thrust produced with only a minor increase in power
penalty.
Results of a constrained optimization, inwhich the available power

is specified as a fraction of the PTmax
, are shown in Fig. 10a. The

corresponding results obtained for rigid wings for the range of
kinematic variables listed in Table 7 are shown. True function
evaluations at several points on the curves are also shown. The best
flexible configuration predicted by the surrogates produces 12%
more thrust and requires 27%more power compared to the best rigid
configuration. The true function evaluations show that the best
flexible configuration produces 22% more thrust and requires 37%
more power compared to the best rigid configuration. The surrogates
predict that rigid wings generate greater thrust compared to flexible
wings for a given required power. This trend is displayed by the true
function evaluations that indicate that rigid configurations produced
equal or slightly greater thrust compared to flexible configurations
for the samevalue of power required. Thus, the surrogates adequately
capture the trends in both thrust and power. Several flexible
configurations produced equal or greater thrust compared to the best
rigid configuration. However, they also required greater amounts
of power.
The relative errors in prediction, plotted against the normalized

value of the corresponding true function evaluation (T∕Tmax or
P∕PTmax

), are shown in Fig. 10b. The surrogates for both thrust and
power have acceptable accuracy (errors less than or equal to 20%).
For both rigid and flexible wings, the errors in prediction of power
increase as P∕PTmax

decreases.
The propulsive efficiencies (thrust per unit power) of the rigid and

flexible configurations identified in Fig. 10a are shown in Fig. 11. It is
evident that the propulsive efficiency decreases as thrust increases for
both rigid and flexible wings. The rigid wings have a 15–30% higher

propulsive efficiency compared to the flexible configurations when
similar values of thrust are generated. The results in Figs. 10a and 11
indicate that wing flexibility is beneficial for thrust production
but has a detrimental impact on the power consumption and
propulsive efficiency. This suggests that the choice between rigid
and flexible wings is likely to depend on the relative importance of
thrust generation and propulsive efficiency for a particular wing
design.

V. Conclusions

Surrogate-based optimization of rigid and flexible flapping wings
in hover is described. The surrogate models, generated by kriging,
are used to predict the time-averaged thrust and power by the wings.
The accuracy of the surrogates was improved using a combination
of the EGO approach combined with OLH sampling centered at the
boundaries. The surrogates were used to examine the variation of
thrust and power with the kinematic and structural parameters.
Constrained optimization studies, in which the thrust wasmaximized
for a specified amount of available power, were also conducted. The
principal conclusions are provided next.
1) The surrogates, for both rigid and flexible wings, were effective

for identifying configurations that were superior to the best configu-
ration in the set of fitting points.
2) A rapid pitching motion at the end of the flapping stroke was

beneficial for thrust production for both rigid and flexible wings.
3) The phase angle between flap and pitch motions, which

modifies the wake capture, has a significant impact on the thrust
generated and the power consumed by the wings. Therefore, the
phase angle can be used to tailor wing performance for fixed-stroke
amplitudes and flapping frequency.
4) Among all structural design variables, the thickness of the

leading-edge spar had the greatest influence on the thrust generated
and power consumed by flexible wings.
5) The peak performance achieved with flexible wings required a

smaller amount of pitch actuation compared to rigid wings. This is
due to the elastic twist produced in the flexible wings that modifies
the effective angle of attack. Therefore,wing flexibility can be used as
a passive means of enhancing performance while reducing the
complexity of the wing actuation.
6) Several flexible configurations produced greater thrust when

compared to the best thrust-producing rigid configuration. However,
rigid wings had greater propulsive efficiency compared to flexible
wings when similar levels of thrust were generated. The rigid wings
were found to offer similar, and sometimes better, thrust for specified
power compared to flexible wings in several regions of the parameter
space. Thus, the choice between rigid and flexible wings depends on
the relative importance of thrust and efficiency.
The wings examined in the current paper represent only a limited

set of the large number of feasible planforms and wing constructions
(spar batten, bio-inspired, etc.). The current work suggests that the
preference between rigid and flexiblewings is likely to depend on the
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number of design variables and range of parameters considered. This
motivates the need to consider combined optimization of wing
planform, construction, kinematics, and structural properties.
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