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Despite considerable research on aerodynamic shape optimization, there is no standard benchmark problem

allowing researchers to compare results. This work addresses this issue by solving a series of aerodynamic shape

optimization problems based on the Common Research Model wing benchmark case defined by the Aerodynamic

Design Optimization Discussion Group. The aerodynamic model solves the Reynolds-averaged Navier–Stokes

equationswith aSpalart–Allmaras turbulencemodel.A gradient-based optimization algorithm is used in conjunction

with an adjoint method that computes the required derivatives. The drag coefficient is minimized subject to lift,

pitching moment, and geometric constraints. A multilevel technique is used to reduce the computational cost of the

optimization. A single-point optimization is solved with 720 shape variables using a 28.8-million-cell mesh, reducing

the drag by 8.5%. A more realistic design is achieved through a multipoint optimization. Multiple local minima are

foundwhen starting frommultiple randomly generated geometries, but theminimumdrag values are within 0.1 drag

counts of each other, and the geometries differ by only 0.4%of themean aerodynamic chord. The effect of varying the

number of shape design variables is examined. TheCommonResearchModel wing benchmark problemproved to be

useful for evaluating our design optimization framework, and the geometries and meshes for both the baseline and

optimized wings are available as supplemental materials in this paper.

I. Introduction

T HE design of transonic transport aircraft wings is particularly
important because of the large number of such aircraft operating

on a daily basis and because small changes in the wing shape may
have a large impact on fuel burn. This directly affects both the
airlines’ cash operating cost and the emission of greenhouse gases.
Advances in high-performance computing hardware and algorithms

have enabled the ever-increasing fidelity of the computational fluid
dynamics (CFD) models used for evaluating aircraft performance. As
the computational time for a given CFDmodel reduces below a certain
level, it becomes feasible to use it togetherwith numerical optimization
to perform aircraft design. Although there are various possible
optimization techniques, the use of gradient-based algorithms together
with an adjointmethod that computes the required gradients efficiently
has proven to be particularly effective. Such optimizations typically
require a total time equivalent to O�102� CFD simulations to obtain
optimal designs. This enables wing designers to shorten design cycle
times and thus explore the design spacemore effectively. They can also
obtain detailed designs earlier in the design process, allowing them to
better understand the design tradeoffs and to make more informed
design decisions.
Aerodynamic shape optimization can be dated back to the 16th

century, whenNewton [1] used calculus of variations tominimize the
fluid drag of a body of revolution with respect to the body’s shape.
Although there were many significant developments in optimization
theory after that, it was only in the 1960s that both the theory and the
computer hardware became advanced enough to make numerical

optimization a viable tool for everyday applications. The application
of gradient-based optimization to aerodynamic shape optimization
was pioneered in the 1970s. The aerodynamic analysis at the timewas
a full-potential small perturbation inviscid model, and the gradients
were computed using finite differences. Hicks et al. [2] first tackled
airfoil design optimization problems. Hicks and Henne [3] then used
a three-dimensional solver to optimize a wing with respect to 11
design variables representing both airfoil shape and the twist
distribution.
Because small local changes in wing shape have a large effect on

performance, wing design optimization is especially effective for
large numbers of shape variables. As the number of design variables
increases, the cost of computing gradients with finite-differences
becomes prohibitive. The development of the adjoint method
addressed this issue, enabling the computation of gradients at a cost
independent of the number of design variables. For a review of
methods for computing aerodynamic shape derivatives, including the
adjoint method, see Peter and Dwight [4]. For a generalization of the
adjoint method and its connection to other methods for computing
derivatives, see Martins and Hwang [5].
Pironneau [6] pioneered the adjoint approach by deriving the adjoint

of the Stokes equations and the incompressible Euler equations [7] to
optimize airfoil profiles. Jameson [8] extended the adjoint method to
handle inviscid compressible flows,making it suitable for the design of
transonic airfoils. Since then, adjoint implementations for the com-
pressible Euler equations have been used by various researchers to
perform aerodynamic shape optimization. Reuther et al. [9,10], for
example, performed the aerodynamic shape optimization of complete
aircraft configurations. The development of more robust CFD mesh
deformations has made it possible to widen the range of the design
parameters and study, for example, nonplanar geometries [11,12].
The aerodynamic design of transonic wings requires a model that

can represent the shock-wave boundary-layer interaction because
there is a strong nonlinear coupling between airfoil shape, wave drag,
and viscous effects. Therefore, using a model that relies solely on the
Euler equations is insufficient and can even be misleading [13].
Fortunately, the adjoint method has been extended to the com-

pressible Navier–Stokes equations with turbulence models, enabling
us to tackle practical aerodynamic design problems. Jameson et al.
[14] optimized a wing–body configuration modeled with the com-
pressible Navier–Stokes equations using a continuous adjoint ap-
proach. They used a 590,000-cell mesh and achieved a shock-free
solution at Mach 0.86. Anderson and Bonhaus [15] optimized airfoil
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shapes using a discrete adjoint that included the linearization of the
Spalart–Allmaras turbulence model. Nielsen and Anderson [16]
further extended the approach to the three-dimensional Reynolds-
averaged Navier–Stokes equations. They achieved an 8% drag
reduction for the ONERA M6 wing with thickness and camber de-
sign variables at two chordwise locations. Dwight and Brezillon [17]
and Brezillon and Dwight [18] optimized the DLR-F6 wing–body
configuration using a Reynolds-averaged Navier–Stokes (RANS)
solver and a discrete adjoint, achieving a 10-count drag reduction by
varying 96 design variables.
Lyu et al. [13] developed a discrete adjoint for theRANS equations

and Spalart–Allmaras turbulence model using algorithmic differ-
entiation to construct the required derivative terms. They used this
adjoint implementation to perform aerodynamic shape optimizations
of the ONERAM6wing with 192 design variables for both the Euler
and RANSmodels. They observed significant differences between the
optimal shapes obtained with Euler and RANS, which emphasized the
importance of including the viscous compressible effects in transonic
aerodynamic shape design.
The efforts mentioned previously use aerodynamic shape

optimization frameworks combining different CFD solvers, adjoint
implementations, optimizers, and geometry parameterizations, all
applied to different design optimization problems. Thus, we need
a set of benchmark cases for aerodynamic design optimization,
following a model similar to that of the Drag Prediction Workshop
[19–21]. To address this issue, a few researchers formed the
Aerodynamic Design Optimization Discussion Group (ADODG)
and developed four benchmark problems to test aerodynamic op-
timization methods. These problems range from the optimization of
a two-dimensional airfoil using the Euler equations to three-
dimensional shape optimization using the RANS equations.§

In this paper, we address the lack of benchmarks in aerodynamic
design optimization by presenting a comprehensive set of results for
what is currently the most computationally intensive benchmark
problem among the test cases: the lift-constrained drag minimization
of the NASA Common Research Model (CRM) wing with a RANS
model. Four papers, including this one, were presented on this test
case at the 2014 AIAA Science and Technology Forum and
Exposition in a special session organized by the ADODG [22–25].
Our optimized geometries andmeshes for this case are available as

supplemental materials (Supplemental Data S1–S8) for this paper.
We also solve two additional problems for the samewing that are not
currently part of the benchmark: a multipoint case, and a case with
more restrictive thickness constraints. In addition, we study the effect
of the grid size, the number of shape design variables, and their
distributions.We also demonstrate the robustness of our aerodynamic
shape optimization framework by starting the optimization from a
random perturbation of the CRM wing geometry.
We developed a multilevel optimization acceleration technique to

increase the performance of the aerodynamic shape optimization.
This method is analogous to the grid sequencing or the multigrid
startup strategy often used in CFD. Using this method, aerodynamic
shape optimization with a large mesh size requires significantly less
computational time.
The majority of the aerodynamic shape optimization problems

in the literature are solved with gradient-based optimizers

[9,10,12,26,27]. High-fidelity aerodynamic shape optimization with
a large number of design variables has the potential to have multiple
local minima. The problem is that, because of the high number of
dimensions and the high cost of the function evaluations, the design
space is impossible to visualize fully. This makes it challenging to
estimate the number of local minima and to form a complete picture
of the design space. Several authors explored the multimodality in
aerodynamic shape optimization with gradient-free optimization
[28,29] and combinations of gradient-free and gradient-based
optimization [30]. However, there has been no thorough study for
RANS-based three-dimensional aerodynamic shape optimization
with large numbers of shape variables. In this paper, we explore
multimodality by performing several shape optimizations starting
from randomly generated geometries.
The paper is organized as follows. The numerical tools used in this

work are described in Sec. II. The problem formulation, themesh, and
the baseline geometry are described in Sec. III. The aerodynamic
shape optimization of the CRMwing is presented in Sec. IV, and the
multilevel optimization acceleration technique is discussed in Sec. V.
In Sec. VI, the robustness of the approach is demonstrated by the
optimization of a wing with a randomly perturbed surface. The effect
of the number of design variables is investigated in Sec. VII. A more
restrictive thickness constraint is examined in Sec. VIII, and
multipoint optimization is considered in Sec. IX.

II. Methodology

This section describes the numerical tools and methods that we
used for the shape optimization studies. These tools are components
of the framework for multidisciplinary design optimization (MDO)
of aircraft configurations with high fidelity (MACH) [31]. MACH
can perform the simultaneous optimization of aerodynamic shape
and structural sizing variables considering aeroelastic deflections
[32]. However, in this paper, we use only the components of MACH
that are relevant for aerodynamic shape optimization: the geometric
parameterization, mesh perturbation, CFD solver, and optimization
algorithm.

A. Geometric Parameterization

We use a free-form deformation (FFD) volume approach to
parameterize the wing geometry [33]. The FFD volume parameter-
izes the geometry changes rather than the geometry itself, resulting in
a more efficient and compact set of geometry design variables, thus
making it easier to manipulate complex geometries. Any geometry
may be embedded inside the volume by performing a Newton search
to map the parameter space to the physical space. All the geometric
changes are performed on the outer boundary of the FFD volume.
Any modification of this outer boundary indirectly modifies the
embedded objects. The key assumption of the FFD approach is that
the geometry has constant topology throughout the optimization
process, which is usually the case in wing design. In addition,
because FFD volumes are trivariate B-spline volumes, the derivatives
of any point inside the volume can be easily computed. Figure 1
shows the FFD volume and the geometric control points used in
the aerodynamic shape optimization. The shape design variables
are the displacement of all FFD control points in the vertical �z�
direction.

Fig. 1 Shape design variables are the z displacements of 720 FFD control points shown as spheres.

§Data available online at https://info.aiaa.org/tac/ASG/APATC/
AeroDesignOpt-DG/default.aspx [retrieved May 2014].
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B. Mesh Perturbation

Because FFD volumes modify the geometry during the
optimization, we must perturb the mesh for the CFD to solve for

the modified geometry. The mesh perturbation scheme used in this
work is a hybridization of algebraic and linear elasticity methods,
developed by Kenway et al. [33]. The idea behind the hybrid scheme
is to apply a linear-elasticity-based perturbation scheme to a coarse
approximation of the mesh to account for large, low-frequency
perturbations, and to use the algebraic warping approach to attenuate
small, high-frequency perturbations. For the results in this paper, the
additional robustness of the hybrid scheme is not required, and sowe
use only the algebraic scheme.

C. Computational-Fluid-Dynamics Solver

We use SUmb [34] as the CFD solver; it is a finite-volume, cell-
centered multiblock solver for the compressible Euler, laminar

Table 1 Mesh-convergence study for the baseline CRMwing

Mesh level Mesh size CD CL CM α, deg

h � 0 ∞ 0.01990
L00 230, 686, 720 0.01992 0.5000 −0.1776 2.2199
L0 28, 835, 840 0.01997 0.5000 −0.1790 2.2100
L1 3, 604, 480 0.02017 0.5000 −0.1810 2.1837
L2 450, 560 0.02111 0.5000 −0.1822 2.1944

Fig. 2 Baseline CRM wing geometry scaled by its mean aerodynamic chord.
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Navier–Stokes and RANS equations (steady, unsteady, and time-
periodic). SUmb provides options for a variety of turbulence models
with one, two, or four equations and options for adaptive wall
functions. The Jameson–Schmidt–Turkel scheme [35] augmented
with artificial dissipation is used for the spatial discretization. The
main flow is solved using an explicit multistage Runge–Kutta
method, along with geometric multigrid. A segregated Spalart–

Allmaras turbulence equation is iterated with the diagonally
dominant alternating-direction implicit method.
To efficiently compute the gradients required for the optimization,

we have developed and implemented a discrete adjointmethod for the
Euler and RANS equations within SUmb [13,36]. The adjoint
implementation supports both the full-turbulence and frozen-
turbulencemodes, but in the present work, we use the full-turbulence
adjoint exclusively. We solve the adjoint equations with pre-
conditioned generalized minimal residual method (GMRES) [37]
using PETSc [38–40]. We have previously performed extensive
Euler-based aerodynamic shape optimization [41,42] and aerostruc-
tural optimization [32,43]. However,we have observed serious issues
with the resulting optimal Euler-based designs due to the missing
viscous effects. Although Euler-based optimization can provide
design insights, we found that the resulting optimal Euler shapes are
significantly different from those obtained with RANS [13]. Euler-
optimized shapes tend to exhibit a sharp pressure recovery near the
trailing edge, which is nonphysical because such flow near the
trailing edge would actually separate. Thus, RANS-based shape
optimization is necessary to achieve realistic designs.

D. Optimization Algorithm

Because of the high computational cost of CFD solutions, wemust
choose an optimization algorithm that requires a reasonably low
number of function evaluations. Gradient-free methods, such as
genetic algorithms, have a higher probability of getting close to the
global minimum for multimodal functions. However, slow conver-
gence and the large number of function evaluations make gradient-free
aerodynamic shape optimization infeasible with the current computa-
tional resources, especially for large numbers of design variables.
Because we require hundreds of design variables, we use a gradient-
based optimizer combinedwith adjoint gradient evaluations to solve the
problem efficiently.
Theoptimization algorithmweuse for all the results presentedherein

is SNOPT (from “sparse nonlinear optimizer”) [44] through the Python
interface pyOpt [45]. SNOPT is a gradient-based optimizer that
implements a sequential quadratic programming method; it is capable
of solving large-scale nonlinear optimization problemswith thousands
of constraints and design variables. SNOPT uses a smooth augmented
Lagrangian merit function, and the Hessian of the Lagrangian is
approximated using a limited-memory quasi-Newton method.

III. Problem Formulation

The goal of this optimization case is to perform lift-constrained
drag minimization of the NASA CRM wing using the RANS
equations. In this section, we provide a complete description of the
problem.

A. Baseline Geometry

The baseline geometry is a wing with a blunt trailing edge
extracted from the CRM wing–body geometry [20,21]. The NASA
CRM geometry was developed for applied CFD validation studies.
The CRM is representative of a contemporary transonic commercial
transport, with a size similar to that of a Boeing 777. The CRM has
3.5 more quarter-chord wing sweep and 10.3% less wing area than
the Boeing 777-200 [46]. The CRM geometry has been optimized in
aerodynamic performance. However, several design features, such
as an aggressive pressure recovery in the outboard wing, were
introduced into the design to make it more interesting for research
purposes and to protect intellectual property. This baseline geometry
provides a reasonable starting point for the optimization, while
leaving room for further performance improvements. In addition, the
CRM was designed together with the fuselage of the full CRM
configuration, and so its performance is degradedwhen only thewing
is considered.
The geometry and specifications are given by the ADODG,¶ and

we repeat them here for convenience. The fuselage and tail are

a) L0 mesh: 28.8 million cells, 199.7 drag counts

b) L1 mesh: 3.6 million cells, 201.7 drag counts

c) L2 mesh: 450 k cells, 211.1 drag counts

Fig. 3 O-grids of varying sizes were generated using a hyperbolic mesh
generator.

¶Data available online at https://info.aiaa.org/tac/ASG/APATC/
AeroDesignOpt-DG/default.aspx [retrieved May 2014].
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removed from the original CRM, and the root of the remaining wing
is moved to the symmetry plane. This baseline geometry is shown in
Fig. 2. All coordinates are scaled by the mean aerodynamic chord
(275.8 in.). The resulting reference chord is 1.0, and the half span
is 3.758151. The moment reference point is at �x; y; z� �
�1.2077; 0.0; 0.007669�, whereas the reference area is 3.407014.
The baseline geometry is available in Supplemental Data S1.

B. Mesh-Convergence Study

We generate the mesh for the CRM wing using an in-house
hyperbolicmesh generator. Themesh ismarched out from the surface
mesh using anO-grid topology to a far field located at a distance of 25
times the span (about 185 mean chords). The nominal cruise flow
condition isMach 0.85with aReynolds number of 5million based on
themean aerodynamic chord. Themeshwegenerated for the test case
optimization contains 28.8 million cells. The mesh size and y�max

values under the nominal operating condition are listed in Table 1.
We perform amesh-convergence study to determine the resolution

accuracy of this mesh. Table 1 lists the drag and moment coefficients
for the baseline meshes. We also compute the zero-grid spacing drag
using Richardson’s extrapolation, which estimates the drag value as

the grid spacing approaches zero [47]. The zero-grid spacing drag
coefficient is 199.0 counts for the baseline CRM wing. We can see
that the L0 mesh has sufficient accuracy; the difference in the drag
coefficient for the L0 mesh and the zero-grid spacing drag is within
one drag count. The surface and symmetry plane meshes for the L0,
L1, and L2 grid levels are shown in Fig. 3. Thesemeshes are available
in Supplemental Data S2–S4 in the CFD general notation system
format.

C. Optimization Problem Formulation

The aerodynamic shape optimization seeks to minimize the drag
coefficient by varying the shape design variables subject to a lift
constraint (CL � 0.5) and a pitching moment constraint (CMy

≥
−0.17). The shape design variables are the z-coordinate movements
of 720 control points on the FFD volume (shown in Fig. 1) and the
angle of attack. The control points at the trailing edge are
constrained to avoid any movement of the trailing edge. Therefore,
the twist about the trailing edge can be implicitly altered by the
optimizer using the remaining degrees of freedom. The leading-
edge control points at thewing root are also constrained to maintain
a constant incidence for the root section. There are 750 thickness

Table 2 Aerodynamic shape optimization problem

Function/variable Description Quantity

Minimize CD Drag coefficient

With respect to α Angle of attack 1
z FFD control point z coordinates 720

Total design variables 721

Subject to CL � 0.5 Lift coefficient constraint 1
CMy

≥ −0.17 Moment coefficient constraint 1
t ≥ 0.25tbase Minimum thickness constraints 750
V ≥ Vbase Minimum volume constraint 1
ΔzTE;upper � −ΔzTE;lower Fixed trailing-edge constraints 15
ΔzLE;upper;root � ΔzLE;lower;root Fixed-wing root incidence constraint 1

Total constraints 769

Fig. 4 Sensitivity study of the baseline wing shows which shape changes yield the largest improvements.
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constraints imposed in a 25 chordwise and 30 spanwise grid
covering the full span and from 1 to 99% local chord. The thickness
is set to be greater than 25% of the baseline thickness at each
location. Finally, the internal volume is constrained to be greater
than or equal to the baseline volume. The complete optimization
problem is described in Table 2.

D. Surface Sensitivity on the Baseline Geometry

To examine the potential improvements of the baseline geometry,
we performed a sensitivity analysis. The sensitivity of the drag and
pitching moment with respect to the airfoil shape is shown in Fig. 4
as a contour plot of the derivatives of CD and CMy

with respect to
shape variations in the z direction. The regions with the highest
gradient of CD are near the shock on the upper surface and near the
wing leading edge. This indicates that leading-edge shaping and
shock reduction through local shape changes should be the major
drivers in CD reduction at the beginning of the optimization. As for
CMy

, the shape changes near the root and tip of the wing are the
most effective in adjusting the pitching moment. Because these
sensitivity plots are a linearization about the current design point,
they provide no information about the constraints. Nonetheless,
these sensitivity plots indicate what drives the design at this
design point.

IV. Single-Point Aerodynamic Shape Optimization

In this section, we present our aerodynamic design optimization
results for the CRMwing benchmark problem (described in Table 2)
under the nominal flight condition (Mach 0.85, Re � 5 × 106). We

use the L0 grid (28.8 million cells) for the optimization, thanks to a
multilevel optimization acceleration technique that significantly
reduces the overall computational cost of the optimization. The
details of this technique are presented in Sec. V. Our optimization
procedure reduced the drag from 199.7 to 182.8 counts (i.e., an 8.5%
reduction). The corresponding Richardson-extrapolated zero-grid
spacing drag decreased from 199.0 to 181.9 counts. Given that the
CRM configuration was designed by experienced aerodynamicists,
this is a significant improvement (although they designed thewing in
the presence of the fuselage, which we are ignoring in this problem).
The optimized geometry and meshes are available in Supplemental
Data S6–S8. A movie of the optimization iteration history for this
case is available in Supplemental Data S9.
Figure 5 shows a detailed comparison of the baseline wing and the

optimized wing. In this figure, the baselinewing results are shown on
the left, and the optimized wing results are shown on the right. At the
optimum, the lift coefficient target is met, and the pitching moment is
reduced to the lowest allowed value. The lift distribution of the
optimized wing is much closer to the elliptical distribution than that
of the baseline, indicating an induced drag that is close to the
theoretical minimum for a planar wake. This is achieved by fine-
tuning the twist distribution and airfoil shapes. The baselinewing has
a near-linear twist distribution. The optimized design has more twist
at the root and tip and less twist nearmidwing. The overall twist angle
changed only slightly, from 8.06 to 7.43 deg.
The optimized thickness distribution is significantly different from

that of the baseline because the thicknesses are allowed to decrease to
25%of the original thickness, and there is a strong incentive to reduce
the airfoil thicknesses to reduce wave drag. The volume is

Table 3 Drag differences between baseline and optimized meshes are consistent for each level

Mesh level Mesh size Baseline CD Optimized CD ΔCD CL Optimized CM Optimized α, deg

h � 0 ∞ 0.01990 0.01819 0.00171
L00 230, 686, 720 0.01992 0.01820 0.00171 0.5000 −0.1694 2.1759
L0 28, 835, 840 0.01997 0.01825 0.00172 0.5000 −0.1700 2.1660
L1 3, 604, 480 0.02017 0.01846 0.00171 0.5000 −0.1710 2.1584
L2 450, 560 0.02111 0.01964 0.00147 0.5000 −0.1731 2.1970

Fig. 5 The optimized wing is shock-free and has 8.5% lower drag.
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constrained to be greater than or equal to the baseline volume, and so
the optimizer drastically decreases the thickness of the airfoils on the
outboard of the wing to the lower bounds, where there is less volume
to be gained, while increasing the thickness near the root (up to 20%),

where the chords are larger and the volume-drag tradeoff is more
favorable. Telidetzki et al. [24] observed similar trends in their
results. The low outboard thickness would, in practice, incur a large
structural weight penalty, and to trade off the reduction in drag and
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increase in weight would require aerostructural optimization [32]. To
obtain a more realistic design without resorting to aerostructural
optimization, in Sec. VIII, we solve an additional optimization
problem with a stricter thickness constraint.
Thebaselinewing exhibits a front of closely spacedpressure contour

lines spanning a significant portionof thewing, indicating a shock. The
optimized wing shows parallel pressure contour lines with uniform
spacing, indicating a shock-free solution under the nominal flight
condition. This is confirmed by the shock surface plots; we can see that
the baseline wing has a shock on the upper surface, whereas the
optimized wing does not show shocks under the design condition. The
shock elimination can also be seen on the airfoil Cp distributions.
The sharp increase in local pressure due to the shock becomes a gradual
change from the leading edge to the trailing edge.
Another noticeable feature in theoptimizedwing is the sharp leading

edges in the outboardwing sections.Theoptimizer exploits aweakness
in the problem formulation; with a single-point optimization, there is
no penalty for thinning out the leading edge. In practice, however,
sharp leading-edge airfoils experience adverse performance under off-
design conditions, because the flow is prone to separation at off-design
angles of attack.We address these issues inmore detail by performing a
multipoint optimization in Sec. IX.
To ensure that the result of our single-point optimization has

sufficient accuracy, we conducted a grid-convergence study of the
optimized design. Table 3 summarizes the results for each grid level.
The mesh-convergence plot for both the baseline and optimized
geometry meshes is shown in Fig. 6. The zero-grid spacing drag,
which was obtained using Richardson’s extrapolation, is also plotted
in the figure.We can see that the L0mesh has sufficient accuracy; the

difference in the drag coefficient for the L0 mesh and the value
obtained for the zero-grid spacing is within one drag count. The
variation in drag coefficient between the baseline and optimized
meshes is nearly constant for each grid level, which gives us
confidence that the optimization using the coarse meshes represent
the design space trends sufficiently well. Therefore, we perform the
remaining optimization studies on the coarser mesh (L2), assuming
that we capture the correct design trends.

V. Multilevel Optimization Acceleration Technique

In this section, we present an acceleration technique that reduced
the overall computational cost of the optimization. Aerodynamic
shape optimization is a computational intensive endeavor, where the
majority of the computational effort is spent in the flow solutions and
gradient evaluations. Therefore, many CFD researchers have tried to
develop more efficient flow and adjoint solvers. Commonly used
methods, such as multigrid, preconditioning, and variations on
Newton-type methods, can improve the convergence of the solver,
thus reducing the overall optimization time. Our flow solver has been
significantly improved over the years to provide efficient and reliable
flow solutions. Another area of improvement is the efficiency of the
gradient computation. As mentioned in Sec. I, the adjoint method
efficiently computes gradients with respect to large numbers of shape
design variables. For our adjoint implementation, the cost of
computing the gradient of a single function of interest with respect to
hundreds or even thousands of shape design variables is lower than
the cost of one flow solution [13].
Because we have improved the efficiency of our flow and adjoint

solvers significantly over the last few years [13,31,36], we seek new
methods to further reduce the computational cost of the aerodynamic
shape optimization. In this paper, we present a method that is inspired by
thegrid-sequencingprocedure inCFD.Because it is lesscostly tocompute
both the flow solution and the gradient on a coarser grid, we perform the
optimization first on the coarsest grid until a certain level of optimality is
achieved. Then, we move to the next grid level and start with the optimal
design variables from the coarser grid. Because the drag and lift co-
efficients are generally different for each grid level, the approximate
Hessian (used by the gradient-based optimizer) must be restarted. We

Table 4 The number of iterations on the L0 grid
is reduced to 18

Grid level Iterations Procs Time, h Total proc-hr

L2 638 64 29.3 1,875.2
L1 89 256 20.2 5,171.2
L0 18 1,248 11.1 13,852.8

Fig. 8 The optimized results of each grid level exhibit only subtle differences.
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repeat this process until the optimization on the finest grid has converged.
Note that this procedure is different from traditional multigrid methods,
where the coarse levels are revisited via multigrid cycles.
We used this procedure to obtain the optimal wing presented in the

previous section.We use three grid levels: L2 (451,000 cells), L1 (3.6
million cells), and L0 (28.8 million cells). The merit function,
optimality, and feasibility histories are plotted in Fig. 7; detailed
definitions of these values can be found in the SNOPT manual [48].
We can see that most of the optimization iterations are performed on
the coarse grid, and as a result, the number of the function and
gradient evaluations on the successively finer grids is greatly
reduced. Table 4 summarizes the computational time spent on each
grid level. Thanks to the optimization with the coarser grids, only 18
iterations are needed on the L0 grid to converge the optimization.
However, the L0 grid requires the largest computational effort, due to
the high cost of the flow and adjoint solutions on this fine grid. Given
that the cost per optimization iteration in the L0 grid is 770 processor-
hours (proc-hr) (compared to 2.9 proc-hr for the L2 grid), it is not
feasible to perform an optimization using only the L0 grid. Assuming
that the same number of iterations used for the L2 grid (638)would be
needed for the L0 grid, the computational cost would be 23 times
higher than that of the multilevel approach, which would correspond
to 16 days using 1248 processors.
Figure 8 shows the initial and optimized results at each grid level. If

we examine the results more closely, we see that the optimized results
for the L2, L1, and L0 grids are all similar. This validates the
underlying assumption of this method, that a coarser grid provides a

good approximation to the design space of the finer grid when the set
of design variables remains the same. Most of the computational
effort on the subsequent grid levels is spent on smoothing out the
shock that reappeared because of the finer grid spacing. This
multilevel acceleration technique proved to significantly reduce the
number of iterations needed to optimize in the fine grid, and the total
computational effort was greatly reduced.

VI. Aerodynamic Shape Optimization Starting from
a Random Geometry

The existence of multiple local minima in RANS-based three-
dimensional aerodynamic shape optimization with respect to large
numbers of design variables has yet to be explored. The problem is
that, because of the high number of dimensions, the design space is
difficult to visualize. In addition, the function evaluations are costly,
making it challenging to explore the design space thoroughly and
come to definitive conclusions.
We explore the multimodality of the single-point aerodynamic

shape optimization problem described in Sec. IV, by solving separate
optimizations starting from four different geometries. The first
starting geometry is theCRMwing of Sec. IV.The other three starting
geometries are randomly generated by applying a random
perturbation to each design variable of the CRM wing, resulting in
completely different geometries. The volume constraint is imposed,
such that the volume of the baseline CRM wing is preserved. The
initial starting points for the three random runs are shown in Fig. 9.

Fig. 9 The initial geometries are randomly generated from the baseline CRM wing.
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The Cp distribution is shown on the surface, along with a
visualization of the shock and separation.
Figure 10 shows the optimized results from a random initial

geometry. The optimization is performed on the L2 grid. We can see
that the performance of the initial design is extremely poor. This is no

surprise because the airfoil shapes are unlike anything one would
design; they exhibit oscillations and sharp edges, resulting in awildly
varyingCp distribution. In addition, the flow solution is probably not
accurate. In spite of these wild shapes and the inaccuracy of the flow
solution, the gradients seem to point in the right direction because the

Fig. 11 All three optimizations with random starting geometries converged to similar optima.

Fig. 10 The optimization manages to start from a random geometry and converge to an optimal wing that is shock-free.
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optimizer is able to smooth out the airfoils and achieve a shock-free
wing similar to the original single-point design presented in Sec. IV.
All the constraints are met, and the lift distribution is close to
elliptical. This optimization demonstrates the robustness of our
aerodynamic optimization approach and showcases the power of the
adjoint method. A movie of the optimization iteration history for this
case is available in Supplemental Data S10.
We performed the same optimization for three random starting

points and compared the results against each other, as well as against
the single-point optimized wing, as shown in Fig. 11. The airfoil Cp
distributions of each optimized result and the nominal optimized
result from Sec. IV are shown. Overall, there are only small
differences between the four designs, as evidenced by the similar Cp
distributions and cross-sectional shapes. The difference in drag
between all four designs is within one drag count. However, there are
still some small visible differences, indicating the possibility that the
design space is multimodal.
To further visualize this design space, we compute the merit

function in the design space between two optimized designs, as
shown in Fig. 12. Themerit function is a combination of the objective
function and the constraints [48].We are able to visualize a slice of the
design space by plotting the merit function along a line between two
optima. A series of wing shapes are generated by linearly varying all

of the design variables. A CFD solution is solved for each of those
designs to obtain themerit function. As shown in this figure, themerit
function does appear to have multiple local minima, even though the
values of themerit function arewithin one count among those optima.
In addition, we also computed the mean difference between the
design variables of each of the optimized designs as shown in Fig. 13.
The three optima appear to be nearly equally spaced in the design
space, with a Euclidean distance ranging from 2.72 to 3.34 in., which
corresponds to only 1.2% of the mean aerodynamic chord. Based on
this data, we believe that the design space for this aerodynamic shape
optimization problem is mostly convex but that it has a small flat
region that is multimodal. The humps and local minima could also be
caused by the constraints.

VII. Effect of the Number of Shape Design Variables

The cost of computing gradients with an efficient adjoint
implementation is nearly independent of the number of design
variables. We took advantage of this efficiency by optimizing with
respect to 720 shape design variables in the previous sections.
However, we would like to determine the tradeoff between the
number of design variables and the optimal drag and to examine the
effect on the computational cost of the optimization. Thus, in this
section, we examine the effect of reducing the number of design
variables. A series of new enlarged FFDs are created to ensure proper
geometry embedding for small numbers of design variables. The
shape design variables are distributed in a regular grid, where the
finest grid has 15 × 48 � 720 design variables. The 15 chordwise
stations correspond to 15 distinct airfoil shapes, while the shape of
each airfoil is defined by 48 control points (half of these on the top,
and the other half on the bottom).
We solve the optimization problem of Sec. IV using the L2 grid

with variations in the number of defining airfoils and the number of
points per airfoil. Figure 14 shows the resulting optimized designs for
different numbers of airfoil control points and a fixed number of
defining airfoils. Reducing the airfoil control points from 48 to 24 has
a negligible effect on the optimal shape and pressure distribution, and
the optimum drag increases by only 0.1 counts. As we further reduce
the number of airfoil points to 12 and 6, both the drag and pressure
distribution show noticeable differences.
Variation in the number of defining airfoils follows a similar trend

to the variation in the number of airfoil control points, as shown in
Fig. 15.However, the drag penalty due to the number of airfoils is less
severe than the penalty observed in the airfoil point reduction.
Therefore, increasing the number of designvariables in the chordwise
direction is more beneficial than increasing the number of defining
airfoils in the spanwise direction.
We also perform the optimization with a reduced number of shape

design variables in both the chordwise and spanwise directions
simultaneously, as shown in Fig. 16. From this study, we conclude
that an adequate optimized design can be achieved with a smaller
number of design variables; with 8 × 24 � 192 shape variables, the
difference in the optimal drag coefficient is only 0.6 counts. Any
further reduction in the number of design variables has a much larger
impact on the optimal drag.
Figure 17 plots the convergence history for each optimization case.

Whenwe decrease the number of airfoil control points, the number of
optimization iterations required decreases drastically. However, the
number of defining airfoils has little effect on the optimization effort.
This is in part because the adjoint computational cost is independent
of the number of design variables. In addition, the coupled effects
between designvariables are much stronger betweenvariables within
an airfoil than between variables in different airfoils.
For an optimization process inwhich the computational cost scales

with the number of design variables, such as when the gradients are
computed via finite differences, or for gradient-free optimizers, a
smaller number of design variables would significantly impact the
optimized design. For example, for 3 × 6 � 18 variables, the drag of
the optimized design would increase by 5.4 counts.
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Fig. 13 The Euclidean distances between the multiple local minima are
similar and are all under 3.4 in. (1.2% of the mean aerodynamic chord).
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VIII. Aerodynamic Shape Optimization Without
Thickness Reduction

As seen in Sec. IV, the optimized wing has a thickened root airfoil
and an unrealistically thin tip airfoil. To address this issue, we solved
an optimization problem identical to that solved in Sec. IVexcept for
modified thickness constraints: all thicknessesmust be greater than or
equal to the baseline thickness (instead of being allowed to decrease

to 25% of the baseline thickness). The optimization is performed

on the L2 grid, and the results are shown in Fig. 18. A movie of

the optimization iteration history for this case is available in

Supplemental Data S11.
The results of the optimization with no thickness reduction are

shown in black. The spanwise lift and twist distributions for the two

cases are similar. However, the pressure distribution and airfoil

Fig. 15 Optimized designs with varying number of airfoil sections.

Fig. 14 Optimized designs with varying number of airfoil control points.
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shapes are significantly different, especially those near the wing
root and wing tip. The mean difference between the baseline and
optimized designs is only 1.1 in. The optimized wing with no
thickness reduction has five additional drag counts when compared

with the optimized wing that allowed 25% of the baseline thickness.
This aerodynamic performance penalty may be compensated for by
the reduction in thewingweightwhen structural design is considered.
A detailed aerostructural optimization would be necessary to
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Fig. 17 The number of optimization iterations does not decrease significantly as the number of defining airfoils is decreased.

Fig. 16 Optimized designs for varying numbers of shape design variables.
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examine themultidisciplinary tradeoffs involved [31,32]. In addition,
the optimization takes significantly fewer iterations (296 iterations)
as compared to the optimization in Sec. IV (638 iterations). This is
due to the absence of volume-thickness trade resulting from the
tighter thickness constraints.

IX. Multipoint Aerodynamic Shape Optimization

Transport aircraft operate at multiple cruise conditions because of
variability in the flight missions and air traffic control restrictions.
Single-point optimization under the nominal cruise condition could
overstate the benefit of the optimization because the optimization
improves the on-design performance to the detriment of the off-
design performance. In Sec. IV, the single-point optimized wing
exhibited an unrealistically sharp leading edge in the outboard of the
wing. This was caused by a combination of the low value for the
thickness constraints (25% of the baseline) and the single-point
formulation.

A sharp leading edge is undesirable because it is prone to flow
separation under off-design conditions. We address this issue by
performing amultipoint optimization. The optimization is performed
on the L2 grid. We choose five equally weighted flight conditions
with different combinations of lift coefficient and the Mach number,
as previously done by the authors [32]. The flight conditions are the
nominal cruise, �10% of cruise CL, and �0.01 of cruise Mach, as
shown in Fig. 19. More sophisticated ways of choosing multipoint
flight conditions and their associated weights can be used, such as the
automated procedure developed by Liem et al. [43] that minimizes
fleet-level fuel burn. The objective function is the average drag
coefficient for the five flight conditions, and themoment constraint is
enforced only for the nominal flight condition.
A comparison of the single-point and multipoint optimized

designs is shown in Fig. 20. A movie of the optimization iteration
history for this case is available in Supplemental Data S12. The
single-point results are shown on the left, and the multipoint results
are shown on the right. The Cp for the multipoint optimized result
corresponds to the nominal condition. Themultipoint sectionalCp of
flight conditions 2–5 are plotted in gray. Unlike the shock-free design
obtained with single-point optimization, the multipoint optimization
settled on an optimal compromise between the flight conditions,
resulting in a weak shock at all conditions. The leading edge is less
sharp than that of the single-point optimized wing. Additional flight
conditions, such as a low-speed flight condition, would be needed to
further improve the leading edge. The overall pressure distribution of
the multipoint design is similar to that of the single-point design. The
twist and lift distributions are nearly identical.Most of the differences
are in the chordwise Cp distributions in the outer wing section. The
drag coefficient under the nominal condition is approximately two
counts higher. However, the performance under the off-design
conditions is significantly improved. Similar trends were observed in
the multipoint optimization of Vassberg and Jameson [23].
To demonstrate the robustness of the multipoint design, we plot

ML∕D contours of the baseline, single-point, and multipoint designs
with respect to CL and cruise Mach in Fig. 21. ML∕D provides a
metric for quantifying aircraft range based on the Breguet range
equation with constant thrust-specific fuel consumption. Although

Fig. 19 The multipoint optimization flight conditions represent a five-
point stencil in Mach–CL space.

Fig. 18 The drag on the optimized wing is five counts higher if no airfoil thickness reduction is allowed.
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the thrust-specific fuel consumption is actually not constant,
assuming it to be constant is acceptable when comparing
performance in a limited Mach-number range [49]. We add 100
drag counts to the computed drag to account for the drag due to the
fuselage, tail, and nacelles, and we get more realisticML∕D values.
The baseline maximum ML∕D is at a lower Mach number and a

higher CL than that of the nominal flight condition. The single-point
optimization increases the maximumML∕D by 4% and moves this
maximum toward the nominal cruise condition. If we examine the
variation of ML∕D along the CL � 0.5 line, we see that the
maximum occurs at the nominal Mach of 0.85, which corresponds to
a dip in a drag divergence plot.
For the multipoint optimization, the optimized flight conditions

are distributed in the Mach–CL space, resulting in a flattenedML∕D
variation near the maximum, which means that we have more
uniform performance for a range of flight conditions. In aircraft
design, the 99% value of the maximumML∕D contour is often used
to examine the robustness of the design [20]. The point with the
highest Mach number on that contour line corresponds to the long-
range cruise point, which is the point at which the aircraft can fly at a
higher speed by incurring a 1% increase in fuel burn [50]. In this case,
we see that the 99% value of the maximum ML∕D contour of the
multipoint design is larger than that of the single-point optimum,
indicating a more robust design.
TheML∕Dmax of the multipoint design is slightly higher than the

maximum for the single-point design. Although this seems
counterintuitive, it can be explained by the fact that the analysis
conditions do not line up with the optimized maximum location. The
optimizer has no information about the exact flight condition of the
peak location, and thus it does not directly control the value at that
location. A potential remedy for this mismatch would be the addition
of two degrees of freedom to the optimization problem: the nominal
Mach number and the nominal lift coefficient. This would allow the
optimizer to track the ML∕Dmax location during the optimization;
upon convergence, the objective value would reflect the maximum
possible performance in the M − CL space. Performing such an
optimization, however, would require propulsion and operating cost

models and would involve multidisciplinary tradeoffs between
aerodynamics and these other disciplines [43].

X. Conclusions

In this paper, we have presented an extensive study of the
CRM wing shape optimization benchmark defined by the
Aerodynamic Design Optimization Discussion Group (ADODG).
Both the baseline and optimized geometries andmeshes are available
in Supplemental Data S1–S8. The drag coefficient is minimized
for one flight condition with respect to 720 shape design
variables, subject to lift, pitching moment, and geometric con-
straints, using grids with up to 28.8 million cells. The drag co-
efficient of the optimized design was reduced by 8.5% relative to
the CRM baseline: from 199.7 to 182.8 counts, with a zero-grid
spacing value of 181.9 counts. We implemented a multilevel
optimization procedure that significantly reduced the total com-
putational time.
The single-point optimized design exhibits a small thickness-to-

chord ratio (3.3%) at the tip, which would incur a large structural
weight penalty in a real wing. Thus, we performed an additional
optimization that did not allow for thickness reduction. Although the
optimal drag increased by five counts relative to the nominal case, the
associated reduction in structural weight would likely offset this
penalty in a real wing when considering the overall aircraft
performance.
The multimodality of the aerodynamic shape optimization

problem was examined by starting optimizations from randomly
generated initial geometries. All optimal wings had similar airfoil
shapes, with a mean difference of 1.2 in. The variation of the merit
function between the multiple local optima confirm that these points
are indeed local minima and indicate that the design space consists of
a convex bowl with a small flat bottom that is multimodal. Based on
our data, the minimum drag coefficient values werewithin 0.1 counts
(0.05%), and the radius of this flat bottom seems to be about 1.6 in.
Given these small differences, it does not seem worthwhile to put
much effort into finding the global minimum for this problem.

Fig. 20 The multipoint optimized wing has a weak shock on the upper surface for each flight condition.

982 LYU, KENWAY, AND MARTINS

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
33

18
 

http://arc.aiaa.org/doi/suppl/10.2514/1.J053318
http://arc.aiaa.org/doi/suppl/10.2514/1.J053318
http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053318&iName=master.img-013.jpg&w=503&h=294


We studied the effect of the designvariables by varying the number
of defining airfoil sections and the number of control points for each
of those sections. Reducing the number of airfoil control points from
48 to 12 resulted in a 0.9-count drag increase. The total number of
optimization iterations also reducedwith the number of airfoil control
points. The number of airfoil sections has a similar influence on the
optimized drag. However, decreasing the number of airfoil sections
while keeping the number of airfoil control points constant did not
affect the overall computational cost in a significant way. We found
that the optimization with eight airfoil sections and 24 control points
per section (192 design variables) provided the best tradeoff; it
increased the optimal drag by only 0.6 counts relative to the 720-
variable case (15 airfoils with 48 points each), while requiring 40%
fewer optimization iterations.
Finally, we performed amultipoint optimization of the CRMwing.

This resulted in a more robust design than that of the single-point
optimization, as evidenced by the enlarged contour of the 99%
maximumML∕D. We also compared the contours ofML∕D for the
single-point baseline optimum and the multipoint optimum. Both the
single-point and multipoint optimizations shifted the maximum
ML∕D toward the nominal flight condition.
This CRM wing aerodynamic shape optimization problem is a

valuable benchmark for the wing design optimization community,
and we hope that more researchers tackle this problem. The ADODG
is also expected to expand this suite of benchmark problems in the
near future.

This aerodynamic design optimization problem is limited to a
fixed-wing planform, but it is an excellent first step. To consider span
and sweep, and to eliminate the explicit thickness constraints, it is
necessary to consider the tradeoffs between drag and structural
weight, which has been done in an optimal way using aerostructural
optimization [32]. To take full advantage of the optimization, we
should also include the flight conditions as design variables, but then
we would have to solve an even more complex MDO problem that
considers propulsion, mission analysis, and economics.
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