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Microstructures havea significant effect on theperformanceof critical components innumerous aerospacemetallic

material applications. Examples include panels in airframes that are exposed to high temperatures and sensors used

for vibration tuning. This paper addresses the techniques to optimize the microstructure design for polycrystalline

metals. The microstructure is quantified with the orientation distribution function that determines the volume

densities of crystals that make up the polycrystal microstructure. The orientation distribution function of

polycrystalline alloys (e.g., hexagonal close-packed titanium) is represented in a discrete form, and the volume-

averagedproperties are computed through the orientationdistribution function.The optimization is performedusing

the space of all possible volume-averagedmacroproperties (stiffness and thermal expansion). A direct linear solver is

employed to find the optimal orientation distribution functions. The direct solver is capable of finding exact solutions

even for problems with multiple or infinite solutions. It is first applied to the optimization of the panel-buckling

problem. The objective of the buckling optimization problem is to find the best microstructure design thatmaximizes

the critical buckling temperature. The optimum solution computed with this approach is found to be same as the

optimum solution of a global approach that uses a genetic algorithm. The linear solver methodology is extended to

plastic properties and applied to explore the design of a Galfenol beam microstructure for vibration tuning with a

yielding objective. The design approach is shown to lead to multiple optimum solutions.

I. Introduction

M ANYaerospace applications use materials that operate at high

temperatures. For example, titanium panels in high-speed

vehicles are exposed to elevated temperatures. The microstructure of

such alloys has an important effect on the performance under high

thermal stresses. Thus, the optimization of the microstructure is

expected to significantly improve the performance. Response of plate

panels in compression, due to thermal loading and edge restraints, is a

classical plate-buckling problem. The stability analysis of isotropic

metal plates is a general problem and can be found in textbooks [1].

However, the isotropy assumption is not justified when including

microstructural effects and is in direct conflict with the trends in new

materials development, where one of the major goals is to enhance the

properties of the material in certain directions while sacrificing the

properties in other directions where they are not as important (e.g.,

development of laminated composite systems). Likewise, techniques

that allow tailoring of properties of polycrystalline alloys (e.g., Ti, Al

used in structural panels) involve tailoring of preferred orientations of

various crystals constituting the polycrystalline alloy (see Fig. 1).

Using alloys with tailored crystallite distribution, this paper addresses

the problem of optimizing properties in critical applications.

The microstructure is quantified using the orientation distribution

function (ODF). The ODF represents the volume fractions of the

crystals of different orientations in the microstructure. The ODF is

defined based on a parameterization of the crystal lattice rotation.

Popular representations include Euler angles [2,3] and classes of

angle-axis representations, with the most popular being the

Rodrigues parameterization [4]. Conversion of continuous
orientation space to finite degrees of freedom for material property
optimization requires discretization techniques. Discretization
schemes either focus on a global basis (e.g., Fourier space or
spherical harmonics [5,6]) or a local basis using a finite element
discretizedRodrigues spacewith polynomial shape functions defined
locally over each element [7,8]. Liu et al. [9] identified the ODF
solutions to various optimization problems by directly sampling the
ODF space using a data mining methodology. However, sampling in
the property space is favorable because the number of design
variables is significantly lesser. The microstructure-sensitive design
methodology presented by Fast et al. [10] employs sampling within
the property hull similar to this work. However, the discretization
scheme for the ODF was based on a Fourier basis. The Fourier/
spectral methods cannot represent sharp textures due to the use of a
global basis. In contrast, the finite element approach presented here
can lead to single-crystal solutions (or sharp textures) due to the use
of a local basis. In this paper, we demonstrate, for the first time, the
generation of multiple polycrystal solutions in an engineering
optimization problem using the finite element representation of
the ODF.
Theobjective of the presentwork is to findout the optimalODFs that

maximize/minimize a macroscale objective function. Because the
number of unknowns in the ODF is large, the optimization is first
performed in the space of all possible material properties. When a
lower- or upper-bound homogenization approach is employed, the
space of all possible properties is simply a convex hullwith the vertices
represented by single-crystal properties. Once the best set of properties
is found, the best microstructure (ODF) corresponding to that property
can be identified using linear programming. To demonstrate the
approach, the optimal ODFs that maximize the critical increase in the
buckling temperature of a simply supported hexagonal close-packed
(HCP) titanium plate are identified. The optimum result is compared to
the results from a global approach that uses a genetic algorithm with
sampling in the complete ODF space. Another example is shown
where the optimization methodology is extended to a problem
involving vibration tuning of a Galfenol beam. We show that the
approach can lead us tomultiple ODF solutions. The remainder of this
paper is organized as follows. In Sec. II, the analytical solution of the
simply supported thermal buckling problem is introduced. Section III
addresses the computation of microstructure properties using an
orientation distribution function. Section IVaddresses the optimization
methodology, utilization of the linear solver, optimization results, and
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their comparison with the global approach. In Sec. V, we discuss the
Galfenol beam vibration-tuning problem with multiple optimum
solutions. The summary of the paper and the potential extensions are
discussed in Sec. VI.

II. Critical Increase in Temperature for Buckling of a
Plate Under Uniform Heating

Airframe panels made of titanium alloys can be modeled as thin,
rectangular, anisotropic plates. In this example, we include full
anisotropy of the thermal expansion tensor but restrict the stiffness to
be orthotropic. The thermal buckling problem of such plates (when
simply supported) has been solved analytically [11]. The principal
directions are taken to be parallel to the sides, and the material is
compressed by uniformly distributed axial load Nx (Fig. 2). The
representation of one of the meshes used for this problem is shown
in Fig. 3.
The deflection equation of the orthotropic plate will have the form

D11

∂4w
∂x4

� 2D33

∂4w
∂x2∂y2

�D22

∂4w
∂y4

� Nx

∂2w
∂x2

� Ny

∂2w
∂y2

� 0 (1)

whereD values are the flexural rigidities that are computed using the

stiffness tensor components (Cij):
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where h is the thickness of the plate. The solution series for the plate

deflection in the z direction are given next:

w � Amn sin

�
mπx

a

�
sin

�
nπy

b

�
(3)

whereAmn are constants, andm and n are integers. This case employs

a simply supported orthotropic plate with the given boundary

conditions:

w � 0;
∂w2

∂x2
� νy

∂w2

∂y2
� 0 at x � 0; a

w � 0;
∂w2

∂y2
� νx

∂w2

∂x2
� 0 at y � 0; b; (4)

where νx and νy are Poisson’s ratios. By requiring that Eq. (3) be a

solution of Eq. (1), the relation can be obtained:

Nx

�
m

a

�
4

� Ny

�
n

b

�
4

� π2
�
D11

m

a
� 2D33

mn

ab
�D22

n

b

�
(5)

This formulation herewill be given for a general casewhere forces

Nx and Ny may vary but must maintain a constant ratio β. However,
the problem of interest in this work only has Nx as the axial force

(Fig. 2), i.e., β � 0:

Nx � λ; Ny � λβ (6)

The critical value of λ is found from the formula:

Fig. 1 Microstructure of high-temperature materials.

Fig. 2 Representation of the analytical problem.

Fig. 3 Mesh 2 representation.
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λ�π2
����������������
D11D22

p
b2

·

�������������������
D11∕D22

p �m∕c�2�
�
2D33∕

����������������
D11D22

p �
n2� �������������������

D22∕D11

p �c∕m�2n4
1�β�c∕m�2n2

(7)

where c is the ratio between the lengths of the sides of the plate
(c � a∕b). The problem then consists of seeking the values ofm and
n that give the smallest λ and hence the critical distributed buckling
load λcr. Based on the solution of the critical distributed buckling
load, we can get the expression for the critical increase in temperature
using the coefficient of thermal expansion tensor (α):

ΔTcr �
λ

12∕h2�D11 · αx �D12 · αy �D13 · αxy�
(8)

The material properties α and C are the material properties
computed from the microstructure (represented using the ODF).

III. Modeling Properties of Hexagonal Close-Packed
Titanium Microstructure

The alloy microstructure consists of multiple crystals, with each
crystal having an orientation. The generalized Hooke’s law for the
aggregate of crystals may be written in the form:

< ϵij >� Seffijkl < σkl > �αeffij ΔT (9)

where <ϵij > and <σkl > are the volume-averaged strain and stress,
respectively; Seff�� �Ceff ��−1�� is the effective compliance tensor in
the coordinate system of the part;Ceff is the effective stiffness tensor;
and αeff is the effective thermal-expansion tensor. Assuming
homogeneity of the deformation in a macroscale elementary volume,
the effective thermoelastic properties may be found through
averaging using the Taylor approximation [12]:

Ceff �< C >; αeff �< α > (10)

where C and α are the stiffness and thermal expansion tensors for
each crystal, and the average is done over crystals of all orientations in
themicrostructure. If the effect of factors (e.g., crystal size and shape)
is ignored, averaging (denoted by < . > in the preceding equation)
can be performed over the orientation distribution function (ODF,
represented by A). The ODF gives the volume density of each
orientation in the microstructure. If the orientation-dependent
property for single crystals, χ�r�, is known, any polycrystal property
can be expressed as an expected value, or average, given by

< χ >�
Z
R
χ�r�A�r; t� dv (11)

where the ODF, A, is a function of orientation r and time t (for
plasticity problems). The average value is computed by integrating in
the representative volume element, dv, which can be obtained by
considering the crystallographic symmetries.
The present work employs Rodrigues angle-axis parameterization

of the orientation space [7] because angle-axis representations define
an alternate way of representing orientations compared to Euler
angles [2,13]. Rodrigues’s parameterization is created by scaling the
axis of rotation n as r � ntan�θ∕2�, where θ is the rotation angle.
Finite element discretization of the orientation space and associated
integration schemes using Gauss quadrature allows matrix
representation of Eq. (11). The ODF is discretized into N
independent nodes, with Nelem finite elements and Nint integration
points per element. Two different meshes, accounting for hexagonal
symmetry, were used in this work to solve the problem. Mesh 1
contains 111 nodes and 288 elements. This translates to 288
integration points (one integration point per element) and 50
independent nodes (50 ODFs). However, mesh 2 includes 605 nodes

and 2304 elements. This translates to 2304 integration points (one
integration point per element) and 388 independent nodes
(388 ODFs).
Using this parameterization, any polycrystal property can be

expressed in a linear form as follows [14]:

< χ > �
Z
R
χ�r�A�r; t� dv

�
XNelem

n�1

XNint

m�1

Z
R
χ�rm�A�rm�wmjJnj

1

�1� rm · rm�2
(12)

where A�rm� is the value of the ODF at the mth integration point with
global coordinate rm of thenth element; jJnj is the Jacobiandeterminant
of thenth element;wm is the integrationweight associatedwith themth
integration point; and 1∕�1� rm · rm�2 represents the metric of
Rodrigues parameterization. This is equivalent to an equation linear in
the ODF: <χ >� pintTAint, where pint

l � χ�ri�wijJij1∕�1� ri · ri�2
and Aint � A�ri�, i � 1; : : : ; Nint × Nelem.
The polycrystal stiffness �C and the thermal expansion coefficient �α

are computed through a weighted average (over A) of the stiffnesses
and thermal expansion coefficients of individual crystals expressed in
the sample reference frame. In a general case, use of Eq. (10) to
compute the effective stiffness and thermal expansion tensor for use
in the buckling model results in an anisotropic stiffness and thermal
expansion tensor. The yield stress is computed using a crystal
plasticity model from our recent work [9].

IV. Optimization Method

The optimization of the panel-buckling problem is performed to
find out the best microstructure design that maximizes the critical
increase in buckling temperature. This section discusses optimization
methodology, utilization, and test of a linear solver as well as
optimization results for the buckling problem and comparison with
the global approach.
For the sample dimensions of 0.25 × 0.25 × 0.005 m, the ΔTcr of

an alpha–titanium plate with optimal ODF was identified. The
optimization problem enforces three separate constraints on the ODF
that is desired: symmetry, normalization, and positiveness. The
procedure for optimization is described here.

A. Symmetry

First, the symmetry of the HCP crystal structure is enforced by
using only the “independent nodes” in the ODF mesh. Independent
nodal points are the reduced set of nodes obtained by accounting for
symmetry conditions at the boundaries of the ODF mesh. Let H be
the matrix converting the independent nodal values Anode to the
integration point values Aint through the shape functions, then
Aint � HAnode. The vector containing the values of the ODF at
independent nodal pointsAnode is sufficient to describe the ODF and
is hereafter referred to as A.
Remark: Properties are specified using the modifiedpT � pintTH

as <χ >� pTA. For calculating more than one property, p is written
in amatrix form.Using reduced integrationwith one integration point
per element at local coordinates of (0.25,0.25,0.25) and an
integrationweight ofw � 1∕6, theHmatrix can be defined from the
equation Aint

e � 0.25
P

4
i�1 A

i
e, where Aint

e is the integration point
ODF value at element e, and Ai

e, i � 1; : : : ; 4 refers to the ODF
values at the four nodes of the tetrahedral element e.

B. Normalization

The constraint that the volume fractions sum to 1 is given by the
following relationship:

Z
R
Adv �

XNelem

n�1

XNint

m�1

A�rm�wmjJnj
1

�1� rm · rm�2
� 1 (13)
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This is equivalent to the linear constraint: qint
T
Aint � 1 where

qinti � wijJij 1
�1�ri ·ri�2 andA

int
i � A�ri�, where each i corresponds to

a combination of �n;m�, i � 1; : : : ;Nint ×Nelem. This can also be

written in terms of independent nodes as qT�qint
T
H as qTA � 1.

C. Positiveness

The positivity of the ODF is enforced by the constraintA ≥ 0 (i.e.,
the volume fractions are positive).
Mathematical representation of the optimization problem is given

next:

max ΔTcr (14)

subject to qTA � 1; A ≥ 0 (15)

D. Utilization of a Direct Linear Solver to the Optimization Problem

The optimization is performed in a solution space that is reduced to

the space of stiffness and thermal expansion parameters from the

complete ODF space. This reduction saves a great amount of

computational time because the complete ODF space has 50

parameters for mesh 1 and 388 parameters for mesh 2. However, the

macroscopic property space has 12 parameters (nine independent C
elements for orthotropic stiffness modeling and three independent α
parameters for anisotropic thermal expansion modeling) for both

meshes.
Property closures represent the complete range of properties

obtainable from the space of ODFs. These are approximated by the

space between upper and lower bounds of the given property. Upper-

bound closure of stiffness values represents the range of properties

obtainable by the upper-bound homogenization relation in Eq. (17).

The hull maps the full range of upper-bound values of a combination

of stiffness values. The extremal textureswere found to correspond to

single crystals. A simple technique for constructing property closures

(for the homogenization relations considered here) is by establishing

the smallest convex region enveloping single-crystal property points.

Linear programming, although more rigorous, is more intuitive for

construction of property closures because closures are obtained as a

result of property maximization or minimization. Connecting faces

on the closure may contain polycrystals that are explicitly identified

by the LP approach. This approach is also well suited for other

problems, such as identification of textures with desired property

combinationswhere several properties are optimized simultaneously.

Let v1, v2 be the set of properties for which the closure is required.

The closure for property v1 is first found by obtaining the extremal

values (v1max, v1min). Then, property v1 is discretized into m values

vi1; i � 1; ..; m between v1max and v1min. The property closure of the

combined set of properties (v1, v2) is found by executing a similar

extremum LP problem at each point vi1 with the additional constraint
that pT

1A � vi1. In general, the closure for a combined set of n
properties (v1; v2; : : : ; vn) is an n-dimensional volume found by

executing an LP problem extremizing vn at a set of discrete points

(vi1; v
j
2; : : : ; v

l
n−1) in the closure area of (v1; v2; : : : ; vn−1). The

corresponding LP problem for minimizing vn is written next:

min
A

vn � pT
nA satisfying the constraints

qTA � 1

A > 0

pT
1A � vi1

pT
2A � vj2

: : :

pT
n−1A � vln−1 (16)

To maximize vn, another similar problem is executed where the

objective is changed asminAvn� − pT
nA. The closure represents the

range of properties obtainable when using the homogenization

methodology.
The domain boundaries are computed using both upper-bound and

lower-bound approaches. Upper-bound approach, which is based on

the constant-strain assumption through plate thickness, computes the

properties inC and α space (bothwill be named asC space). However,

lower-bound approach, which is based on the constant-stress

assumption through plate thickness, computes the properties in C−1

and α−1 space (both will be named as C−1 space). The experimental

results can lie in any of these spaces, and so the optimum solution

should be searched using both approaches. The computations of the

design variables, which are determined as volume-averaged stiffness

and thermal expansion quantities, are represented using an example

formulation of <C >. <C > computations with upper- and lower-

bound approaches are given in Eqs. (17) and (18), respectively:

< C >�
Z
R
CAdv (17)

< C−1 >�
Z
R
C−1Adv (18)

Equations (17) and (18) show the linear relation between volume-

averaged macroscopic <C > and properties of each crystal. The same

linear relation is valid for the other stiffness and thermal expansion

parameters. Thus, the linear programming approach provides exact

solutions to the problem of identifying ODF that lead to a given

property.
The optimization is performed by sampling in C space for upper-

bound approach and a sampling in C−1 space for lower-bound

approach. The direct linear solver determines the corresponding

ODFs for the optimum properties in C and C−1 spaces. The solver is

also capable of findingmultiple/infinite solutions because it uses null

space of the coefficient matrix to find the directions of the solutions.

The use of the null-space approach requires any one solution to the

problem. This one solution is obtained by sampling in the property

space and using linear programming. The remaining infinite

solutions are defined as the sums of this one solution and solution

directions represented by null space vectors. The coefficient matrix

can be defined using the linear relations for macroproperties and the

unity constraint for the ODF. The size of the coefficient matrix is

13 × 50 for mesh 1 and 13 × 388 for mesh 2 because the rows are

representing 12 independent linear equations for 12 parameters (C
and α elements) of the reduced space and one design constraint. The

infinite solutions can be represented as shown next:

Xi � X1 � λVi; where i � 1; 2; 3; 4; : : : ; n (19)

Vi � Null�C�∶; i�� (20)

where Eq. (19) defines the infinite solutionsXi using one solutionX1

and null space vectorsVi. n is the number of null space vectors. Even

though the number of null space vectors is finite, the number of

solutions are infinite because λ can be any number that satisfies the

ODF positiveness constraint (A ≥ 0). Because the optimization

problem is solved in macroproperties’ space (property closure), and

the macroproperties’ space is generated by the ODF values through

averaging equations, any point inside this solution domain

corresponds to a known set of ODF values. Therefore, there is

always at least one optimal ODF solution inside this domain. The

solution strategy aims to find this optimum solution not only when it

is unique but also when it is multiple.
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E. Optimization Results of Analytical Solution for Simply Supported
Plate

The optimization problem aims tomaximize the critical increase in
temperature by optimizing the ODF values, and it uses the analytical
solution of a simply supported plate. The same material (HCP
titanium) is considered. The optimization is performed in the reduced
property space using the given procedure. 10,000 design samples are
generatedwith Latin hypercube sampling (LHS) in the reduced space
(C and α for upper-bound approach, and C−1 and α−1 for lower-
bound approach). TheLHSmethodwas preferred because it defines a
controlled randomdistribution and gives information about all design
space. It is also very fast to implement to the problem. The optimum
parameters that provide the maximum ΔTcr are transformed back to
the ODF space with the linear solver. The numerical approach
presented to solve for multiple solutions found only one solution for
this buckling problem, and this optimum result is a single crystal with
a 23.0% increase for mesh 1 and a 28.3% increase for mesh 2 in the
critical buckling temperature for the plate with four sides simply
supported over a randomly oriented design. The optimum results
obtained with the linear solver procedure are also checked with a
global approach. The global approach uses the sampling in the ODF
space and then uses a genetic algorithm to find the optimum solution.
The genetic algorithm uses the sampling points as initial design
points to start the optimization iterations. LHS was also used for
sampling in the global method together with the well-known genetic
algorithm, nondominated sorting genetic algorithm (NSGA-II).
NSGA-II is selected as the optimization method because it is known
as a fast and elitist genetic algorithm, and it always converges to the
global solution [15]. The biggest drawback of gradient-based
optimization algorithms is the possibility of converging to one of the
local solutions instead of the global solution. For this reason, they are
also strictly dependent on the initialization values of the input
variables. The problems of interest in thiswork could potentially have
many local solutions (either single-crystal solutions or combinations
of polycrystal solutions). However, the final solution of interest
should be the global optimum solution that gives the maximumΔTcr

value. To avoid any local optimum solution, a gradient-based
optimization algorithm was not chosen. NSGA-II can be used for
single- and multi-objective optimization problems because it has the
capability of finding global optimum solutions not only in single-
objective problems but also in multi-objective problems [16]. Thus,
the same optimization algorithm can also be used to solve similar
problems with multiple objectives. The optimization information for
the global approach is shown in Table 1.
The global optimization approach also obtained the same optimum

solutions, single crystals, that were already found with the linear
solver approach. The main advantage of the linear solver approach is
that it was much more efficient in terms of computation time
compared to the global approach. The computational times spent on
the same platform for the linear solver and global approaches are
compared in Table 2.
The optimization results are shown and compared to the randomly

oriented designs in Table 3. The optimum microstructure consists of
single crystals in both cases, the final optimum structure is shown in
Fig. 4 for mesh 1. Figures 5 and 6 illustrate <001> and <010> pole
figures for mesh 1. Figure 7 shows the final optimum microstructure
of mesh 2, and Fig. 8 illustrates <001> pole figure for mesh 2.
Figures 9 and 10 show the property closures in C (upper-bound
approach) and C−1 (lower-bound approach) spaces, respectively, for
C11, C12, and C22 parameters and their inverses. The boundaries of

the closure triangles are determined by single-crystal solutions,
and the optimum single-crystal solution is also marked in the
plots.

V. Optimization of Galfenol Beam Microstructure for
Vibration Tuning

The linear solution methodology presented in the previous
sections is extended to the plastic properties to explore the
microstructure design of a cantilevered Galfenol beam for a
vibration-tuning problem with yielding objective (Fig. 11).
Introduction of the yielding objective to the problem provides
multiple solutions; however, the vibration tuning restricts these
solutions to have a finite number of directions in the solution space.
The modeling of the microstructure part is the same because stiffness
parameters and yield stress are represented using independent ODF
values. However, the number of independent ODF values is 76 at this
time because Galfenol has a body-centered cubic structure. The
design objective is yield stress, whereas the first bending and
torsional natural frequencies are constrained for vibration tuning. The
main goal of the problem is to find the best microstructure design that
maximizes the yield stress of the beam and satisfies the given
vibration constraints.
According to the coordinate system introduced in Fig. 11, the

analytical equations of the first torsional and bending natural
frequencies for an orthotropic material can be shown respectively as

follows: ω1t � π
2L

��������
G12L
ρIp

q

ω1b � �αL�2
����������
E1I1
mL4

r
and αL � 1.87510 (22)

where G12 � 1∕S66, E1 � 1∕S11, and S represents the compliance

elements (S � C−1). In these formulations, J is the torsion constant, ρ
is the density, Ip is the polar inertia moment,m is the unit mass, L is

the length of the beam, and I1 is the moment of inertia along axis 1.
The computations of the yield stress using upper- and lower-bound
approaches are given in Eqs. (23) and (24), respectively:

< σy >�
Z

σAdV (23)

< σ−1y >�
Z

σ−1AdV (24)

The mathematical formulation of the optimization problem is
given next:

Table 1 Optimization information for global solution
approach

Optimization information Mesh 1 Mesh 2

Optimization algorithm NSGA-II NSGA-II
Number of number of design of experiments 100 100
Sampling algorithm LHS LHS
Number of total designs 10,000 10,000

Table 2 Computational time comparison for
linear solver and global optimization approaches

Method Mesh Computational time

Linear solver Mesh 1 ∼27 min
Linear solver Mesh 2 ∼1.5 h
Global optimization Mesh 1 ∼9.5 h
Global optimization Mesh 2 ∼11 h

Table 3 Results for a simply supported rectangular HCP
titanium plate

Parameter Alpha–Ti, four sides simply supported

Average ΔTcr (mesh 1) 82.5, K
Average ΔTcr (mesh 2) 82.0, K
Maximum ΔTcr (mesh 1) 101.5, K
Maximum ΔTcr (mesh 2) 105.2, K
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max σy (25)

subject to

Z
AdV � 1 (26)

subject to 19Hz <� wω1t ≤ 21 Hz (27)

subject to 120Hz ≤ ω1b ≤ 122.5Hz (28)

A ≥ 0 (29)

The optimization problem includes the unit volume constraint by
definition as well as the constraints for the first natural frequencies to
tune the beam vibration. To solve the problem, the length of the beam
is taken as L � 0.45 m, and the beam is considered to have a
rectangular cross section with dimensions a � 20 mm and
b � 3 mm. The steps taken to optimize the microstructure are
summarized next.
1) The solution space is first reduced to the independent

macroelements’ space consisting of microstructure-dependent
properties. The limits for microstructure-dependent properties are
computed using lower- or upper-bound approaches. In this problem,
the microstructure-dependent properties are E1, G12, and σy.
2) One solution of the problem should be computed to start the

algorithm. The solution technique depends onwhether the problem is
linear or not. For a linear problem, “one solution” can be computed
solving a linear programming (LP) problem. However, sampling can
be performed to find one solution of a nonlinear problem. The values
of the microstructure-dependent input parameters will be the same in
all solutions if multiple solutions exist.
3) Provided the same microstructure-dependent property values,

independent solution directions are computed using the null-space
approach of the linear solver. For a single solution problem, there is
no existing solution direction because the single solution defines a
point in the solution space.
4) In case of having multiple solutions, these solutions are

computed using one solution of the problem and the independent
solution directions [Eq. (20)].
The optimization problem of Galfenol beam vibration tuning has

linear design objective and constraints. Therefore, the one solution to
the problem could be found by solving an LP problem directly. The
multiple solutions of this problem correspond to the designs having
the same values for microstructure-dependent input parameters (E1

and G12). The problem has 73 solution directions (76 optimization
variables, three linear equations: two of them are for computation of
E1 andG12, and one of them is for unit volume constraint), and these
solutions are polycrystal designs. The property closure graph for E1

andG12 variables (E–G space) is given in Fig. 12. The parameters of
the multiple optimum solution are given and compared to the best
single-crystal solution in Table 4. Some of the optimum

Fig. 4 Cross section of the optimal ODF for maximum critical increase in temperature (mesh 1).

Fig. 5 <001> pole figure for mesh 1.

Fig. 6 <010> pole figure for mesh 1.
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microstructure designs are shown inFig. 13. Because the linear solver

was able to compute independent solution directions for the Galfenol

beam optimization problem, each design in Fig. 13 is different from

the others and has different ODF values. However, they still provide

Fig. 7 Cross section of the optimal ODF for maximum critical increase in temperature (mesh 2).

Fig. 8 <001> pole figure for mesh 2.

Fig. 10 Property closures for C−1 space for C−1
11 , C−1

12 , and C−1
22

parameters of HCP titanium.

Fig. 11 Geometric representation of Galfenol beam vibration problem.

Fig. 9 Property closures in C space for C11, C12, and C22 parameters of
HCP titanium.

Fig. 12 Property closure for E1 and G12.
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an identical maximum yield stress value and satisfy the design
constraints.

VI. Conclusions

This paper addresses an optimization methodology for structural
problems with various macrodesign objectives. Optimization is
performed in a reduced space composed of thermoelastic properties,
and the optimal ODF is solvedwith a linear programming solver. The
optimization result was also checked with a global methodology that
used a genetic algorithm together with a sampling in the ODF space.
Both solutions gave the same optimum solution. When compared to
an HCP titanium plate with a randomly oriented microstructure, the
optimal ODF provided significant 23.0 and 28.3% increases in the
analytical solution, which were found in a fraction of the time of
the global solution approach. For the next step, the methodology was
extended to plastic properties to explore design of structural problems
with a yielding objective. For this purpose, a vibration-tuning
problem subjected to a maximum yield stress objective was
optimized. Imposing a controlled vibration response to the problem
leads multiple solutions, and these solutions are computed using the
direct linear solution approach in property space. The optimal ODF
distribution of thesemultiple solutions provided an 8.91% increase in
maximum yield stress objective compared to the best single-crystal
solution of the problem. It is shown that multiple solutions can be
obtained by augmenting the solutions with the null space. From

among these solutions, the microstructure that can be manufactured
with the most economical processing route can be identified. For
future work, instead of using a one-point descriptor for micro-
structure design (ODF), a higher-order descriptor (such as the
orientation correlation function) will be used to better represent the
microstructure.
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