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A formulation for sensitivity analysis of fully coupled time-dependent aeroelastic rotors in forward flight with trim

constraints is given in this paper. The formulation includes the effect of blade shape parameters as well as blade cyclic

pitch control parameters to enable analysis and optimization of rotors in a trimmed condition. Both forward

sensitivity and adjoint sensitivity formulations are derived that correspond to analogs of the nonlinear aeroelastic

analysis problem. Both sensitivity analysis formulations make use of the same iterative disciplinary solution

techniques used for analysis, and they make use of an analogous coupling strategy. The fully coupled aeroelastic

analysis formulation is first verified to effectively perform performance predictions of a four-bladed rotor in forward

flight started impulsively from rest. Upon successful verification of the fully coupled adjoint formulation, it is used to

perform trim and aerodynamic shape design optimization for helicopter rotors in forward-flight conditions.

Nomenclature

A = rotor disk area; πR2, m2

a = speed of sound, m · s−1

CD = two-dimensional drag coefficient
Cf = skin-friction coefficient
CL = two-dimensional lift coefficient
CM = two-dimensional pitching moment coefficient
Cp = pressure coefficient
CQ = rotor shaft torque coefficient; Q∕�ρAΩ2R3�
CT = rotor thrust coefficient; T∕�ρAΩ2R2�
Cd0 = profile drag coefficient
c = rotor chord, m
D = vector of design variables
L = objective function
M = Mach number; V∕a
Mtip = rotor tip Mach number; Utip∕a
M∞ = freestream Mach number; U∞∕a
R = rotor radius, m
Re = Reynolds number; Vc∕ν
r = radial distance of a rotor spanwise station, m
U∞ = freestream velocity; ft · s−1

u = flow solution
V = velocity, m · s−1

x = mesh (interior or surface) coordinates
α = sectional angle of attack, deg
αs = shaft tilt angle, deg
Δt = time-step size, deg

θ0 = collective pitch, deg
Λ = adjoint solution
ν = kinematic viscosity, m2 · s−1

ρ = flow density, slugs m−3

ψ = azimuth angle, deg
Ω = rotor rotational speed, rad · s−1

I. Introduction

A DJOINT formulations have become popular for aerodynamic
shape-optimization problems using computational fluid dynamics

[1–8], largely due to the fact that they allow the computation of sensi-
tivity derivatives of an objective function with respect to a set of given
inputs at a cost that is essentially independent of the number of inputs.
Although the use of adjoint equations is now fairly well established in
steady-state shape optimization, only recently have inroads been made
into extending them to unsteady flow problems. A preliminary demon-
stration of themethod’s feasibility in three-dimensional problems can be
found in [9]. Full implementation in a general sense and application to
large-scale problems involving helicopter rotors were carried out by
Nielsen et al. in theNASAFUN3Dcode [10,11], byLee andKwon [12],
by Mani and Mavriplis [13] using the current flow solver framework,
and by a few others from the recent past [14,15].
Since engineering optimization is an inherently multidisciplinary

endeavor, the next logical step involves extending adjoint methods to
multidisciplinary simulations and using the obtained sensitivities for
driving multidisciplinary optimizations. In the context of fixed (and
especially rotary-wing) aircraft, aeroelastic coupling effects can be
very important and must be considered in the context of a successful
optimization strategy. The coupling of computational fluid dynamics
(CFD) and computational structural dynamics (CSD), as well as the
use of sensitivity analysis on such a system, has been addressed in the
past, primarily from a steady-state standpoint [16,17]. Until now,
relatively little work has been done addressing unsteady aeroelastic
optimization problems, mainly due to complexities in the linear-
ization of coupled time-dependent systems. In previous work
[18–20], a time-dependent three-dimensional aeroelastic adjoint
formulation for helicopter rotor optimization problems was derived.
This work built upon a previously demonstrated time-dependent
aerodynamic optimization capability that was applied to helicopter
rotors in [13], through the addition of a Hodges–Dowell-type [21]
beam finite element model to simulate the rotor structure, and the
development of the fully coupled discrete adjoint of the resulting
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aeroelastic system. This work demonstrated the effectiveness of
using this approach for performing aeroelastic optimization of a
representative rotorcraft configuration in hover conditions.
The aim of the current work is to extend the formulation to include

time-dependent rotor pitch inputs to accommodate forward-flight
analysis and optimization. For shape optimization of rotors in
forward flight, pitch inputs not only can feature as design parameters
but also can allow for strong rotor trim constraints by making use of
force and moment sensitivities with respect to pitch inputs.
In the following sections, we outline the disciplinary components

that are used to construct the analysis and adjoint formulations for the
flexible rotor problem in forward-flight conditions. These include the
flow solver, the finite element beam structural model, a fluid–
structure interface, as well as a prescribed blade motion facility and a
mesh deformation capability, all described in Sec. II. The general
solution procedure of the fully coupled problem at each time step is
described in Sec. III. The sensitivity analyses including both the
tangent and adjoint formulations are presented in Sec. IV. Unsteady
coupled analysis results are discussed, and verification of the adjoint
computed sensitivities is then presented in Sec. V. Performance
optimization of a helicopter rotor is presented in Sec. VI. Finally, the
conclusion section summarizes the results.

II. Analysis and Sensitivity Formulation

A. Flow Solver Analysis Formulation

The flow solver used in this work is the Reynolds-averaged
Navier–Stokes unstructured three-dimensional (NSU3D) [22] mesh
solver. NSU3D has been widely validated for steady-state and time-
dependent flows, and it contains a discrete tangent and adjoint
sensitivity capability that was demonstrated previously for
optimization of steady-state and time-dependent flow problems. As
such, only a concise description of these formulationswill be given in
this paper, with additional details available in previous references
[9,13,22]. The flow solver is based on the conservative form of the
Navier–Stokes equations, which may be written as

∂u�x; t�
∂t

� ∇ · F�u� � 0 (1)

For moving mesh problems, these are written in arbitrary
Lagrangian–Eulerian (ALE) form as

∂Vu
∂t

�
Z
B�t�

�F�u� − _xu� · n dB � 0 (2)

Here, V refers to the volume of the control volume bounded by a
control surface B�t�, _x is the vector of mesh face or edge velocities,
andn is the unit normal of the face or edge. The state vectoru consists
of the conserved variables, and the Cartesian flux vector F �
�Fx;Fy;Fz� contains both inviscid and viscous fluxes. The equations
are closed with the perfect gas equation of state and the Spalart–
Allmaras turbulent eddy viscosity model [23] for all cases presented
in this work. The time derivative term is discretized using a second-
order-accurate backward-difference formula (BDF2) scheme,
leading to the implicit system of equations at each time step given as

3

2Δt
Vnun−

2

Δt
Vn−1un−1� 1

2Δt
Vn−2un−2�Sn�un;xn; _xn��0 (3)

where Vn � V�xn� represents the mesh control volumes, and
Sn�un; xn; _xn� represents the spatial discretization terms at the nth
time step. The functional dependence of the implicit system to be
solved at each time step can be written in residual form as

Rn�un; un−1; un−2; xn; xn−1; xn−2� � 0; n �; 2; 3; : : : ; N (4)

where the initial conditions are given by uo and xo, and noting that a
first-order-accurate backward-difference formula time discretization
is used for the first time step.
At each time step, the implicit residual is solved using Newton’s

method. The Jacobian matrix is inverted iteratively using a line-

implicit agglomeration multigrid scheme that can also be used as a

preconditioner for a Generalized Minimum RESidual (GMRES)

Krylov solver [24]. To simplify the notation, we drop the time-level

superscripts and represent the general flow equations to be solved at

all time levels as the system given by

R�u; x� � 0 (5)

where the vector U denotes the flow values over all time steps, x
represents the CFD mesh coordinates over all time steps, and Eq. (5)

denotes the simultaneous solution of all time steps. Given the

functional dependence of Eq. (4), it is evident that Eq. (5), when

written in matrix form, takes on a lower triangular form and can be

solved by forward substitution, which corresponds to a forward

integration in time.

B. Structural Model Formulation

A nonlinear bend-twist beam model is a suitable and widely used

structural model for slender fixed- and rotary-wing aircraft structures

within the context of an aeroelastic problem. A bend-twist beammodel

was previously developed and coupled to the NSU3D unstructured

mesh Reynolds-averaged Navier–Stokes solver for steady [25,26] and

time-dependent problems [20]. The nonlinear governing equations of a

slender beam are discretized using the finite element method in space

usingHamilton’s principle, as described in detail in thework byHodges

andDowell [21]. Figure 1 shows a typical beamwith 15 deg of freedom

for each element to accommodate bendwise, lagwise, axial, and

torsional displacements. The elastic twist ϕ refers to the rotation about

the blade elastic axis. The second-order equation ofmotion for the beam

can be expressed asM �q� C _q� Kq � F, where �M�, �C�, and �K� are
the mass, damping, and stiffness matrices of the system of equations

representing the beam. Vector F � F�t� is the forcing vector. Vector q
represents the displacements along all degrees of freedom. This set of

equations can be reduced to a first-order system as �I� _Q� �A�Q � F,
where �I� is the identity matrix,Q � �q; _q�T , F � �0; �M�−1F�T , and

�A� �
�

0 −�I�
�M�−1�K� �M�−1�C�

�

Similar to the flow equations, a second-order backward-difference

time-integration scheme (BDF2) is used to advance the structural

equations in time. This results in the system of equations to be solved

at each time step are given as

3

2Δt
Qn −

2

Δt
Qn−1 � 1

2Δt
Qn−2 � �A�nQn � Fn (6)

The functional dependence of the structural dynamic equations to

be solved at each time step can be written in residual form as

J�Qn;Qn−1;Qn−2;Fn� � 0; n �; 2; 3; : : : ; N (7)

As with the flow equations, to simplify the notation, we drop the

time-level superscripts and represent the structural dynamic

equations to be solved at all time levels as the system given by

J�Q;F� � 0 (8)

whereQ andF represent the structural states and forces, respectively,

over all time steps. Written in matrix form, Eq. (8) exhibits a lower

triangular form and can be solved by forward substitution in time,

which corresponds to a forward time-integration procedure. The beam

model has beenvalidated [27] for the standardHART-II rotor case [28]

by comparing its natural frequency predictions with the predictions

from other reliable CSDmodels, such as UMARC [29] andDLR [30].

1. Forward Sensitivity Formulation of Beam Model

The beam tangent (forward sensitivity) linearization is similar to the

analysis problem. For a given functional L�D;Q�D��, its sensitivity
with respect to a blade design parameterD can be written as
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dL

dD
� ∂L

∂D
� ∂L

∂Q
dQ

dD
(9)

This requires solving for sensitivity of the beam stateQ, which can
be obtained bydifferentiatingEq. (8)with respect to the designvariable
D and rearranging as

�
∂J
∂Q

�
∂Q
∂D

� −
∂J
∂F

dF

dD
−

∂J
∂D

(10)

Solving for ∂Q∕∂D in Eq. (10), and substituting this intoEq. (9), the
forward sensitivity of the objective function dL∕dD can be obtained.

2. Adjoint Formulation of Beam Model

The adjoint formulation of the beam model can be derived by ap-
proaching the tangent formulation in the reverse (transpose) direction.
Taking the transpose of the objective functional sensitivity yields

dL

dD

T
� ∂L

∂D
T � dQ

dD

T ∂L
∂Q

T

This requires solving for the transpose sensitivity of the beam state
Q, which leads to solving for an adjoint vector ΛQ defined as

�
∂J
∂Q

�
T

ΛQ � ∂L
∂Q

T
(11)

The final objective sensitivities can be obtained by

dL

dD

T
� ∂L

∂D
T
�

�
−
∂J
∂D

T
−
dF

dD

T ∂J
∂F

T
�
ΛQ (12)

The preceding forms the adjoint formulation of the beam model. In
this work, we consider only shape design variables that affect the outer
mold line of theCFDgeometrywithoutmodifying the structuralmodel.
Thus, the influence of these aerodynamic design variables is only felt
through changes in the aerodynamic forces applied to the structural
model,which correspond to the second term in the bracketson the right-
hand side of the preceding equation. The first term in the brackets
vanishes in this case, but it would be nonzero when considering
structural design parameters such asmaterial properties. As previously,
the left-hand-side Jacobian term of the structural adjoint equation
corresponds to the transpose of the Jacobian in the forward
linearization. In earlier work by Mishra et al. [18], forward and adjoint
formulations of the beamsolverwere implemented andverified for both

structural design parameters (such as element stiffnesses elastic
modulus or Young's modulus (E) moment of inertia (I), rigidity
modulus (G) torsion constant (J), and element masses) and force-based
design parameters (as required for the coupled aeroelasticity problem).

C. Fluid–Structure Interface

In addition to the solution of the aerodynamic problem and the
structural dynamics problem, the solution of the fully coupled time-
dependent aeroelastic problem requires the exchange of aerodynamic
loads from theCFD solver to the beam structure, which in turn returns
surface displacements to the fluid flow solver. In practice, the fluid–
structure interface (FSI) computes forces at each CFD surface mesh
point F�x; u� by integrating the surface stresses (pressure and shear)
over the surface area associated with each surface grid point. These
forces are then projected onto the beam finite element basis functions
where they are assembled in the form of forces on the beam finite
element nodal locations denoted as Fb. Conversely, once the beam
deflections have been computed, the structural displacements are
transferred back to the surface CFD mesh in a similar manner. The
governing equations for the FSI can be written in residual form as

SFSI�Fb; x; u� � Fb − �T�Q��F�x;u� � 0 (13)

SSFI�xs;Q� � xs − �T�Q��TQ � 0 (14)

where SFSI represents the force transfer from CFD to CSD, and SSFI

denotes the displacement transfer from CSD to CFD. In these
equations, �T� represents the rectangular transfer matrix that projects
pointwise CFD surface forces F�x; u� onto the individual beam
elements, resulting in the beam forces Fb. The transpose of this
matrix is used to obtain the CFD surface displacements xs from the
beam degrees of freedom Q, thus ensuring the principle of
conservation of virtual work. Also note that �T� is a function of Q,
since the transfer patterns change with the beam deflection.

D. Prescribed Motion Facility

The prescribedmotion of the rotor bladesmust be applied in order to
simulate a rotor in forward flight. For a fixed hub, the overall rotor
motion can be broken down into two parts: the cyclic pitching of the
blades defined by a pitch angle θ, and the azimuthal rotation of the
blades about the hub axisψ , as shown inFig. 2. The time-varying blade
pitch angle can be represented by a combination ofmeanpitch angle θ0
and several harmonic components of pitch angles (e.g., θci and θsi for
the ith harmonic): θ � θ0 � θci cos�iψ� � θsi sin�iψ�, for harmon-
ics of i � �1; 2; · · · �. This introduces the set of control parameters (i.e.,

Fig. 1 Beam element with flap, lag, torsional, and axial (total 15) degrees of freedom (DOFs).
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D � �θ0; θci ; θsi �), which define the prescribed blade cyclic pitching
motion. In this work, three pitch parameters are used, namely,
collective θ0 and two cyclics (θc1 , θs1 ) corresponding to a single
harmonic i � 1.At each time step, the individual blade pitch angles are
computedusing the aforementioned control inputs andused todisplace
all CFD surface mesh points by the required angular rotation θ. Thus,
the pitchingmotion results in a newset of surfacegrid pointsdefinedby
the solution of the blade pitching equation in residual form:

Sθ�xsp; xs;D� � 0 (15)

where xsp represents the new pitched blade surface mesh points; xs
represents the original surface mesh points; and D represents the
control inputs, which may also be used as design parameters for
optimization runs.
Once the surface mesh points have been displaced, the interior

mesh must be deformed to avoid negative cells in neighboring
regions. This is accomplished using the mesh deformation facility
described subsequently in Sec. II.F, resulting in a new set of interior
mesh points denoted as xo. The azimuthal rotation is next applied by
rotating the entire grid as a solid body. This is achieved by solving the
prescribed mesh rotation equations, written in residual form as

Sψ �x; xo� � 0 (16)

where x denotes the final deformed and rotated mesh coordinates.

E. Geometry Parametrization Facility

To perform shape optimization of a multibladed rotor, a shape
parametrization capability must be implemented. The specific pa
rametrization used in this work is described in Sec. V.B.1. Mathe-
matically, the bladedesignmethodologydefines a blade surface,which
in turn defines the coordinates of the CFD surfacemesh points on each
blade in a fixed reference frame as a function of a set of shape design
variablesD. Thus, the blade surfacemeshpointsxso are obtained as the
solution of the parametrization equations in residual form:

Bcad�xso;D� � 0 (17)

where Bcad denotes a possible computer-aided design (CAD) param-
etrization of the blade, andD refers to the blade shape parameters, such
as Hicks–Henne bump functions, blade twist, and pitching parameters
described in Sec. V.B.1.

F. Mesh Deformation Capability

A mesh deformation capability is required to deform the volume
mesh in response to prescribed displacements of the surface CFD
mesh. Surface displacements can be produced in three manners:
1) through blade geometry shape changes resulting during the design
process; 2) through blade deflections generated by the structural
model; and 3) due to the prescribed blade cyclic pitching, defined by
the three pitch control parameters. In practice, a single mesh de-
formation calculation is performed at each coupling cycle. Thus, the
surface displacements are first determined by adding together the

displacements from the three sources when present, and the interior
mesh point coordinates are obtained by solving themesh deformation
equations, which can be written in residual form as

G�xo; xsp� � 0 (18)

wherexo denotes the deformed interiormesh coordinates in response to
the displaced surfacemesh coordinatesxsp. It should bementioned here
that the structural effects of pitching accelerations have been ignored
owing to relatively higher torsional rigidity, and consequently lower
torsional natural frequencies of HART-II rotor. Note that the mesh
deformation calculation is carried out before the azimuthal mesh
rotation phase, which operates on the deformed coordinates xo before
rotation to produce the final mesh coordinates x used in the CFD
simulation, as described byEq. (16). Themeshdeformation approach is
based on a linear elastic analogy. In this approach, the mesh is modeled
as a linear elastic solid with a variable modulus of elasticity that can be
prescribed either as inversely proportional to cell volume or to the
distance of each cell from the nearest wall (and thus is a function of
current grid).The resulting equations are discretized and solved on the
mesh in its original undeformed configuration in response to surface
displacements using a line-implicit multigrid algorithm analogous to
that used for the flow equations. A detailed explanation of the method
can be found in [25,31]. An equivalent adjoint solver [31] for the mesh
deformation problem is also implemented for use in the coupled
aeroelastic adjoint capability.

III. General Solution Procedure

The general analysis problem consists of multiple coupled sets of
equations, namely, the blade design equations, the prescribedmotion
equations, the mesh deformation equations, the flow solution
equations, the structural model equations, and the fluid–structure
interface. All these equations are coupled and must be solved
simultaneously at each time step. The coupled system of equations to
be solved can be written as

Bcad�xso;D� � 0 (19)

Sθ�xsp; xso; xs;D� � 0 (20)

G�xo; xsp� � 0 (21)

Sψ �x; xo� � 0 (22)

R�u; x� � 0 (23)

SFSI�Fb; x; u� � 0 (24)

J�Fb;Q� � 0 (25)

SSFI�xs;Q� � 0 (26)

In Eq. (20), the cyclic pitching acts directly on the deflected blade
shape coordinates xs, although these depend on the original
undeflected blade surface coordinates xso and reduce to these values
at the beginning of the solution procedure before the solution of the
structural equations. The preceding equations denote the system of
equations to be solved over all time steps. However, since each
residual equation at a given time level n depends on (at most) the
values from time levels n, n − 1, and n − 2, the entire system can be
solved by forward substitution in time (i.e., forward time integration).
In this case, the equations to be solved at a given time level n can be
written more precisely by reintroducing the time-level superscripts
on the residual operators and their corresponding arguments.

Fig. 2 Illustration of prescribed pitch and azimuthal rotation for rotor
in forward flight.
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Within each physical time step, the solution of the fully coupled
fluid–structure problem consists of performing multiple coupling
iterations on each discipline using the latest available values from the
other disciplines. Thus, a typical solution procedure starts by
generating the blade surface mesh coordinates and prescribing the
required pitch angles to these points, as determined by the first two
equations, which can be evaluated explicitly. Next, the mesh
deformation equations [i.e., Eq. (21)] must be solved iteratively, after
which the deformed mesh is rotated through explicit evaluation of
Eq. (22). The flow equations [i.e., Eq. (23)] can then be solved
iteratively using the updated grid coordinates x, and the resulting
flow variables u are then used to compute forces which are applied to
the structural model through explicit evaluation of the FSI [i.e.,
Eq. (24)]. Using these forces, the structural model is solved directly
[i.e., Eq. (25)] and the resulting displacements are transferred back to
the CFD mesh as determined by Eq. (26). Since the surface mesh
coordinates are now modified, the entire process must be repeated,
starting at the second equation, until convergence is achieved.

IV. Sensitivity Analysis for Coupled Aeroelastic
Problem

In this work, we consider only aerodynamic performance
objectives that depend only on the flow solution and geometric shape.
Starting with the forward sensitivity problem, the sensitivity of such
an objective L can be written as

dL

dD
�

�
∂L
∂x

∂L
∂u

�2664
dx

dD
du

dD

3
775 (27)

As previously noted, the variables u and x represent the values over
all time steps, and the inner products are over all space and time. The
individual disciplinary sensitivities are given as the solution of the
coupled system, which is obtained by differentiating the coupled
analysis equations:

∂Bcad

∂xso
0 0 0 0 0 0 0

∂Sθ

∂xso

∂Sθ

∂xsp
0 0 0 0 0

∂Sθ

∂xs

0
∂G
∂xsp

∂G
∂xo

0 0 0 0 0

0 0
∂Sψ

∂xo

∂Sψ

∂x
0 0 0 0

0 0 0
∂R
∂x

∂R
∂u

0 0 0

0 0 0
∂SFSI

∂x
∂SFSI

∂u
∂SFSI

∂Fb
0 0

0 0 0 0 0
∂J

∂Fb

∂J
∂Q

0

0 0 0 0 0 0
∂SSFI

∂Q
∂SSFI

∂xs

dxso

dD

dxsp

dD

dxo

dD

dx
dD

du
dD

dFb

dD

dQ
dD

dxs

dD

∂Bcad

∂D

∂Sθ

∂D

0

0

0

0

0

0

The first equation corresponds to equations for surface mesh point

sensitivities with respect to the shape design variables, while the

second equation rotates these sensitivities through the prescribed

pitch angle, and adds the sensitivities with respect to the pitch control

inputs, which are also used as design parameters. The third equation

propagates the surface mesh sensitivities to the interior mesh points

through the mesh deformation equations, while the fourth equation

corresponds to the azimuthal rotation of these mesh sensitivities. The

fifth equation generates the flow sensitivities based on the mesh

sensitivities and the solution of the linearized flow problem. The flow

sensitivities are then used to construct force sensitivities for the

structural model using the FSI, which in turn generate structural

sensitivities in the seventh equation. These are passed back to the

CFD surface mesh in the last equation, to be reused at the next

coupling iteration. As can be seen, each disciplinary solution

procedure requires the inversion of the same Jacobian matrix as the

corresponding analysis problem, which is done using the same

solution technique.

Technically, the above system represents the forward sensitivity

equations to be solved over all time steps. However, as mentioned

previously, due to the dependence on at most the previous two time

levels in all the individual disciplinary equations, the above matrix

equation can be solved by forward substitution in time. The left-hand

sidematrix can rearranged into a lower triangular form, by reordering

of the equations grouping together all disciplinary equations at a

given time step, which are then solved simultaneously before

advancing to the next time step, as described in references [13,32].

However, for convenience we retain the global temporal notation

with the understanding that the above system can also be interpreted

as the equations to be solved at a given time step, simply by adding the

appropriate time level superscripts to the corresponding operators

and variables.

The corresponding adjoint problem can be obtained by pre-

multiplying the above matrix equation by the inverse of the large

coupling matrix and substituting this into Eq. (27), transposing the

entire system, and defining adjoint variables as solutions to the

following coupled system:
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∂Bcad
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T ∂Sθ

∂xso

T

0 0 0 0 0 0

0
∂Sθ

∂xsp

T ∂G
∂xsp

T

0 0 0 0 0

0 0
∂G
∂xo

T ∂Sψ

∂xo

T

0 0 0 0

0 0 0
∂Sψ

∂x

T ∂R
∂x

T ∂SFSI

∂x

T

0 0

0 0 0 0
∂R
∂u

T ∂SFSI

∂u

T

0 0

0 0 0 0 0
∂SFSI

∂Fb

T ∂J
∂Fb

T

0

0 0 0 0 0 0
∂J
∂Q

T ∂SSFI

∂Q

T

0
∂Sθ

∂xs

T

0 0 0 0 0
∂SSFI

∂xs

T

Λxso

Λxsp

Λxo

Λx

Λu

ΛFb

ΛQ

Λxs

0

0

0

∂L
∂x

T

∂L
∂u

T

0

0

0

Once again, the solution of the various disciplinary adjoint

equations requires the inversion of the corresponding disciplinary

Jacobians (transposed in this case), which can be accomplished using

the same iterative solvers as for the analysis and forward sensitivity

problems, but proceeding in the reverse order. By analogy with the

forward sensitivity problem, this coupled adjoint system over all time

steps can be written in upper triangular form and solved by back

substitution, which corresponds to a backward integration in time

[13,32]. The specific coupled system to be solved at each time step

can be recovered by specifying the time-level superscripts on all

operators and variables.
Once the solution of the coupled disciplinary adjoint problems has

been obtained, these can be used to compute the objective

sensitivities as

dL

dD
�

h
− ∂Bcad

∂D − ∂Sθ

∂D 0 0 0 0 0 0
i

2
66666666664

Λxso
Λxsp
Λxo
Λx

Λu

ΛFb

ΛQ

Λxs

3
77777777775

(28)

Figure 3 illustrates the flow of information between fluid and

structural disciplines for the analysis, tangent, and adjoint solvers. In

the analysis problem, the CFD solver sends a force vector to the

structural solver and receives a surface displacement vector;whereas in

the tangent problem, these are replaced with a force sensitivity and

displacement sensitivity vector, respectively. For the adjoint problem,

the information proceeds in reverse order, with the CFD solver

receiving a force adjoint vector from the structuralmodel and sending a

displacement adjoint to the structural model. In all cases, these vectors

have the same dimensions as those used in the analysis problem and

make use of the same data structures for interdisciplinary coupling.

The unsteady adjoint requires a solution state from each of the time

steps, which is easily read from a hard disk saved during the forward

analysis step. This avoids additional memory requirements.

The forward and adjoint sensitivities for the coupled aeroelastic
problem are verified using the complex step method [33]. As in the
case of finite differencing, the complex step-based differentiation
also requires a step size. However, unlike finite differencing, the
complex step method is insensitive to small step sizes because no
differencing is required. In theory, it is possible to verify forward and
adjoint-based gradients using the complex step method to machine
precision. With this in mind, a complex version of the complete
coupled aerostructural analysis code has been constructed through
scripting of the original source code to redefine variables from real to
complex types and to overload a small number of functions for use
with complex variables.

V. Results

A. Time-Dependent Analysis Problem

The chosen test case is a four-bladed HART-II rotor in a forward-
flight condition. The flight conditions correspond to a wind-tunnel

Fig. 3 Corresponding flow of information for analysis, tangent, and
adjoint solution processes.
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test [28] with a freestream Mach number ofM∞ � 0.095, a rotor tip
Mach number of Mtip � 0.638, and a shaft tilt angle toward a

freestream of αshaft � 5.4 deg. The corresponding rotor rotational

speed is Ω � 1041 rpm. The blade pitch angle actuation is

prescribed as θ�θ0�θ1s sin�ψ��θ1c cos�ψ�, with θ0 � 5.0 deg,
θ1s � −1.1 deg, and θ1c � 2.0 deg, where ψ corresponds to the

azimuthal angle of rotation about the hub axis. The rotor is

impulsively started from rest, in an initially quiescent flowfield, and

rotated with the mesh as a solid body for a fixed number of

revolutions. This problem is solved both for a rigid-blade model

(using no structural model) as well as for a flexible-blade model

(using the beam structural model). For the latter, the flow is solved in

a tight coupling mode with the beam solver as described previously.

The baseline simulation (coarse mesh) makes use of a mixed

elementmeshmade up of prisms, pyramids, and tetrahedra consisting

of approximately 2.32million grid points and is shown in Fig. 4a. The

simulations are run for five rotor revolutions using a 2 deg time step, i.

e., for 900 time steps starting from freestream initialization. For the

rigid-blade simulation, the time-dependent mesh motion is

determined by first pitching the blade about the blade axis followed

by solving the mesh deformation equations and then rotating the

entiremesh as a solid body at each time step. The unsteadyReynolds-

averaged Navier–Stokes equations are solved at each time step in

ALE form, using the Spalart–Allmaras turbulence model.

The coupled CFD/CSD simulation is run in a similar manner.

However, the flow solution (CFD) is coupled with the beam solver

(CSD) at every time step by appropriately exchanging 1) airloads

information from the flow domain to the beam; and 2) blade

deformation information from the beam to the flow domain, through

the fluid–structure interface (i.e., blade surface). In this coupled

simulation, themesh ismoved according to the deformations dictated

by the new flexed blade coordinates determined from the structural

beam code after the combined kinematics of pitch actuation followed

by solid body rotation of the entire mesh have been performed. This

coupled fluid–structure interaction problem needs to be iterated until

satisfactory convergence (up to more than two orders of magnitude

drop) is achieved on flow, structure, and mesh deformation problems

within each time step. The flow and mesh deformation problems are

converged up to more than two orders of magnitude of residual

values. However, the structure problem is converged up to machine

precision residual values which is possible due to the use of direct

matrix inversion.

The simulations were performed on the Yellowstone supercom-

puter at the NCAR-Wyoming Supercomputing Center, with the

analysis problem running in parallel on 1024 cores. Each time step

used six coupling iterations and each coupling iteration used 10

nonlinear flow iterations, with each nonlinear iteration consisting of a

three-level line-implicit multigrid cycle. The typical simulation at

this level of resolution required approximately 40 min of wall-clock-

time per rotor revolution.

Figures 5 and 6 summarize the overall convergence of the rigid and

aeroelastic coupling analysis formulations. Figure 5a shows the

typical flow and turbulence residual convergencewithin a single time

step for the rigid rotor case (no structural model), whereas Fig. 5b

depicts the convergence of the flow and turbulence residuals at the

same time step for the coupled aeroelastic case. In this case, the jumps

in residual values at the start of new coupling iterations are clearly

visible, although these jumps become smaller as the coupling

procedure converges. The overall residual histories closely follow

those of the rigid rotor case after the first few coupling iterations.

Figure 6a depicts the convergence of the mesh deformation residual

for the same time step, also showing jumps in the residual at the start

of each new coupling iteration. Solution of the mesh deformation

equations terminates when the residuals reach a prescribed tolerance

of 10−6 (lowest residual shown in the figure is greater than 10−6), and
hence the variable number of iterations per coupling cycle. Most

notable is the fact that the initial mesh deformation residual decreases

at each new coupling iteration, providing a measure of the

convergence of the entire coupling procedure. The corresponding

residual drop for the beam equations, which is solved by direct

inversion, is observed to be of 15 orders of magnitude, as shown in

Fig. 6b. Figure 6b illustrates the convergence of the coupled beam/

FSI residual [i.e., Eqs. (24) and (25)], showing rapid convergence to

Fig. 5 Flow and turbulence residual convergence at a given time step for rigid- and flexible-blade analyses.

Fig. 4 Computational polyhedra mesh.
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machine zero in a small number of iterations within a single CFD/
CSD coupling iteration.
The effect of the CFD/CSD aeroelastic coupling is clearly

demonstrated in Fig. 7a, which compares the deformed blade shape and
its correspondingCp surface contours from the coupled simulationwith
that from the rigid-blade simulation. From the figure, it is noted that
all four blades show different deformation characteristics due to
corresponding different aerodynamic environments they experience in
forward flight. The blade attains the largest flap displacement at azimuth
(ψ � 180 deg) and the smallest flap displacement at azimuth (ψ �
0 deg). For both the flexible and rigid blades, the pressure contours
demonstrate that the advancing side blades experience higher loading
(larger pressure gradients near the rotor tips) than the retreating side
blades. The flexible-blade tip vertical displacement time history shown
in Fig. 7b demonstrates 1 per cycle behavior of blade flapping, as
expected.
Figure 8 summarizes the performance comparison between

flexible and rigid blades over five rotor revolutions. Besides showing
consistent 4∕rev harmonic content in the airloads, the figures also
show that the rigid blades overpredict thrust and power compared to
flexible blades. This suggests that performance predictions might be
erroneous if the aeroelastic nature of rotor blade is not taken into
account. Figure 9 further compares the rotor longitudinal CMY

and
lateral CMX

moments of the flexible rotor with the rigid rotor. It
should be noted that neither the rigid nor the flexible rotor are in a
moment trimmed state (zero mean moment) at the prescribed pitch
parameters.

B. Fully Coupled Unsteady Aeroelastic Adjoint Sensitivity Verification

1. Geometry Parameterization

To obtain sensitivities with respect to a set of shape parameters that
are well suited for design optimization purposes, a baseline blade is
constructed by stacking 11 airfoil sections along the span. Each
airfoil contains 10 Hicks–Henne bump functions (five on the upper
surface, and five on the lower surface) that can be used to modify the
airfoil shape.Additionally, the twist values of the blade at the root and
tip airfoil sections are also used as designvariables, resulting in a total
of 112 design variables. Figure 10a provides an illustration of the
baseline blade design setup. A high-density structured mesh is
generated about this blade geometry, which is then rotated and
translated to match each individual blade in the CFDmesh, as shown
in Fig. 10b. Interpolation patterns between each unstructured mesh
surface point and the baseline structured mesh are determined in a
preprocessing phase. These interpolation patterns are then used to
interpolate shape changes from the baseline blade to all four blades in
the CFDmesh (as determined by changes in the design variables) and
to transfer sensitivities from the surface CFD mesh points to the
design variables using the chain rule of differentiation.
In addition to the aforementioned designvariables, the inclusion of

control parameters for pitching in forward flight introduces a new set
of three design parameters, i.e.,D � �θ0; θc1 ; θs1 �. Designvariable θ0
is known as rotor collective pitch angle, and θc1 and θs1 are the rotor
cyclic pitch angles. This results in a total of 115 design variables.
These sensitivities, in addition to the aforementioned geometric
sensitivities, are transferred onto the CFD surface mesh points from

Fig. 7 HART-II blade deformation.

Fig. 6 Residual convergence of mesh and beam (overall FSI) in one coupling iteration.
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the master blade shape through the interpolation method described
earlier.

2. Unsteady Objective Function Formulation

A time-integrated objective function based on the time variation of
the thrust CT , torque CQ, and moment coefficients (CMX

and CMY
) is

used for this test case.Thegoal of the optimization is to reduce the time-
integrated torque coefficient while constraining the time-integrated
thrust coefficient to the baseline rotor performance, as well as
constraining themoment coefficients along the rollCMX

and pitchCMY

axes of the rotor to a trimmed value, i.e., zero average moment values.
The objective function is based on the summation of the differences

Fig. 10 Illustration of a) baseline blade with design parameters and b) overlap in tip region between baseline blade structured mesh and CFD surface
unstructured mesh.

Fig. 9 Rotor moments comparison of flexible blade with rigid blade.

Fig. 8 Performance comparison of flexible blade with rigid blade.
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between a target and a computed objective value at each time step n.
Mathematically, the global objective function is defined as

Lg � LShape � LTrim (29)

LShape � ω1

1

T

Xn�N

n�1

Δt�δCn
Q�2 (30)

LTrim � ω2

1

T

Xn�N

n�1

Δt�δCn
T �2 � ω3�δ �CMX

�2 � ω4�δ �CMY
�2 (31)

δCn
Q � �Cn

Q − Cn
Qtarget� (32)

δCn
T � �Cn

T − �CTtarget� (33)

δ �CMX
� 1

T

Xn�N

n�1

Δt�Cn
MX

− Cn
MX target

� (34)

δ �CMY
� 1

T

Xn�N

n�1

Δt�Cn
MY

− Cn
MY target

� (35)

where themean target thrust coefficient value is specified to theHART-
II baseline mean trim value of �CTtarget � 0.0044, and the target torque
andmoment values are set to zero. Theweights (ωi, i � �1; 2; 3; 4�) are
included to equalize the difference in orders of magnitude between the
thrust, torque, and moment coefficients. Use of pitch control
parameters (�θ0; θci ; θsi �) as design variables and use of moment
penalty terms [34] ensure that the optimized rotor shapewith optimized
control parameters tend toward a final trimmed state when the rotor
design cycles converge. Ideally, this penalty approachwill be expected
to be computationally more efficient than the use of a hard constraint
formulation, since this latter approach will require the computation of
multiple adjoint problems at each design cycle, as opposed to the single
adjoint required in the current formulation. However, since the trim
constraint may not be satisfied exactly in penalty approach, additional
computational costsmaybe incurred in trimming the rotor (using a trim
optimization step) before shape design is carried out. Given only a few
number of iterations required for trim optimization, the overall penalty
approach can still be more efficient. Although, some references [35]
claimed to have achieved hard constraint design optimization solving
multiple adjoints with only an incremental cost, it remains unclear if
this additional cost using their suggested approach would be any less
than that required in trim step.

3. Unsteady Adjoint Sensitivity Verification

The fully coupled CFD/CSD adjoint formulation was verified by
comparing its sensitivities with those obtained from the tangent as
well as the complex step method. The coupled adjoint formulation
was verified for perturbations of the collective pitch parameter θ0 and
one shape design parameter (blade twist), for both uncoupled (rigid
blade) as well as coupled (flexible blade) simulations. A complex
perturbation of size 1 × 10−100 is introduced on the collective pitch at
the beginning of the analysis run. The design sensitivities of the
functional (∂Lg∕∂D) obtained from complex, tangent, and adjoint
formulations are compared after every time instance for up to 180
time steps (one full rotor revolution) for both the design parameters,
as shown in Tables 1 and 2. Both the rigid and the fully coupled
aeroelastic problems are converged to machine zero at each time step
in order to avoid contaminating the sensitivity values with errors due
to incomplete convergence. The rigid sensitivity verification serves
as an additional check of the forward sensitivity formulation for
forward-flight conditionswhen the structural code is switched off. As
can be seen from the table, the sensitivities agree to at least 11

significant digits for both the rigid and flexible aeroelastic rotor cases.
More important, the agreement does not degrade with an additional
number of time steps, and it remains close tomachine precision over a
full rotor revolution, as performed in this case.

VI. Performance Optimization of Helicopter Rotor in
Forward Flight

The optimization tool thus verified is applied to the flexibleHART-
II rotor using the same time-dependent test case as described in
Sec. V.A. The simulation is run for two full rotor revolutions, starting
impulsively from rest in quiescent flow. The objective consists of the
time-integrated torquewith a thrust andmoment penalty, as described
previously. However, the objective to beminimized is only integrated
over the last rotor revolution, in order to avoid the optimization
process from focusing on startup transients. Although a larger
number of rotor revolutions will be required to ensure periodic
solution and be more appropriate for trim optimization, in the view of
demonstrating adjoint capability, the number of rotor revolutions is
restricted to only two in theviewof demonstrating adjoint optimization
capability. Moreover, for the flexible blades, the test problem aims at
addressing the unsteady adjoint solution during the transient state in the
first two revolutions, which differs significantly from the rigid-blade
solutions. The optimization problem is solved on a relatively coarse
grid (2.3 million points) using a time step size of 2.0 deg. Figure 11

Table 2 Adjoint sensitivity verification for forward flightdL∕dθtwist

n Method Uncoupled (rigid) Coupled (aeroelastic)

1 Complex 1.1637068616115 77E-006 1.06133376191 8736E-006
Tangent 1.1637068616115 76E-006 1.06133376191 9181E-006
Adjoint 1.1637068616115 53E-006 1.06133376191 9045E-006

2 Complex 1.0761441905301 53E-006 8.5786110870 25843E-007
Tangent 1.0761441905301 49E-006 8.5786110870 40541E-007
Adjoint 1.0761441905301 28E-006 8.5786110870 35991E-007

3 Complex 4.14206693169 2117E-007 1.172781721 193872E-007
Tangent 4.14206693169 1910E-007 1.172781721 241823E-007
Adjoint 4.14206693169 2887E-007 1.172781721 238660E-007

4 Complex −1.8468228189 31199E-007 −5.751866415110603E-007
Tangent −1.8468228189 31223E-007 −5.751866415037913E-007
Adjoint −1.8468228189 29633E-007 −5.751866415041355E-007

5 Complex −7.0780547287 71792E-007 −1.2194927006 26512E-006
Tangent −7.0780547287 71558E-007 −1.2194927006 17727E-006
Adjoint −7.0780547287 68141E-007 −1.2194927006 18853E-006

180 Complex −3.17085875323 6345E-005 −6.5840071420 79779E-005
Tangent −3.17085875323 6326E-005 −6.5840071420 65199E-005
Adjoint −3.17085875323 3577E-005 −6.5840071420 75842E-005

Bold text helps in displaying the precision of comparison between the three different

sensitivity values (complex vs tangent vs adjoint).

Table 1 Adjoint sensitivity verification for forward flight dL∕dΘ0

n Method Uncoupled (rigid) Coupled (aeroelastic)

1 Complex 8.135662924562 930E-005 7.56981714367 3123E-005
Tangent 8.135662924562 923E-005 7.56981714367 3061E-005
Adjoint 8.135662924562 884E-005 7.56981714367 2761E-005

2 Complex 7.303561433847 516E-005 6.040142774935 852E-005
Tangent 7.303561433847 498E-005 6.040142774935 835E-005
Adjoint 7.303561433847 042E-005 6.040142774935 570E-005

3 Complex 1.57907571578 3277E-005 −4.95990987078 6381E-006
Tangent 1.57907571578 3178E-005 −4.95990987078 7765E-006
Adjoint 1.57907571578 0985E-005 −4.95990987078 5228E-006

4 Complex −3.2797894053 16752E-005 −6.1938961878 19846E-005
Tangent −3.2797894053 16760E-005 −6.1938961878 20087E-005
Adjoint −3.2797894053 24491E-005 −6.1938961878 20419E-005

5 Complex −7.4662642948 60007E-005 −1.142069116982 308E-004
Tangent −7.4662642948 59811E-005 −1.142069116982308E-004
Adjoint −7.466264294878836E-005 −1.142069116982 432E-004

180 Complex −2.6062254875 10254E-003 −5.17618942743 9016E-003
Tangent −2.6062254875 10356E-003 −5.17618942743 9005E-003
Adjoint −2.6062254875 28119E-003 −5.17618942743 4507E-003

3822 MISHRA, MAVRIPLIS, AND SITARAMAN

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
14

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
49

62
 



shows the residual convergence for a typical unsteady adjoint time step
forΔt � 2 deg. The figure shows the residual drops by five orders of
magnitude over six coupling cycles.
The optimization procedure used is the Limited memory

Broyden–Fletcher–Goldfarb–ShannoBound constraint optimization
bounded reduced Hessian algorithm [36]. Each request by the
optimization driver for a function and gradient value results in a

single forward time integration of the analysis solver and a single
backward integration in time of the adjoint solver. A bound of�5%

chord for each defining airfoil section is set on the Hicks–Henne [37]
bump functions, a bound of�1.0 deg of twist is set on the root and
tip twist definitions, and a bound of�5.0 deg of pitch angle is set on
all the pitch parameters (collective and cyclic). The optimizations are
performed on the Yellowstone supercomputer at the National Center
for Atmospheric Research (NCAR)-Wyoming Supercomputing
Center with the simulations (analysis/adjoint) running in parallel on
1024 cores. Each time step in the analysis problem employs six
coupling cycles. Each coupling cycle uses 10 nonlinear iterations. A
typical coupled functional gradient (analysis/adjoint) computation
step requires approximately 70 min when run on 1024 cores.
The performance optimization consists of three main stages:

1) trim, 2) shape/performance optimization and, 3) retrim. The “trim”

step involves trimming the rotor to a target windtunnel rotor thrust
value of CT � 0.0044 and zero longitudinal and lateral moments
(CMY

, CMX
� 0). The objective function used in this step consists

only of the thrust and moment terms, or simply LTrim in Eq. (29); and
the objective minimization is performed using only the three pitch
parameters, namely, collective and cyclic as design variables.
In the second stage, blade shape optimization is performed by

including the performance objective, i.e., the CQ term into the time-
dependent objective function to be minimized. Appropriate weights
(ωi, i � 1, 2, 3, 4) are used to maintain the rotor trim state through a
penalty function while the blade shape is optimized to obtain
minimum rotor power. In total, 115 design parameters are used in this
stage, including 112 blade shape parameters and three pitch control
parameters. However, even after optimization convergence in stage
two, the exact trim state is not maintained. This is because the trim
objective components in the objective function are used only as weak
constraint terms, i.e., as penalty terms and not as hard constraints.
Therefore, the last stage involves trimming the rotor back to the target
thrust and moment values, once again using only the three control

Fig. 13 HART-II rigid-blade trim convergence.

Fig. 12 HART-II rigid-blade trim.

Fig. 11 Residual convergence in a typical adjoint time step.
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pitch parameters as design inputs. This stage is otherwise referred to

as the “retrim” stage in this paper.

The optimization results for the rigid-blade case are presented first,

followed by the flexible-blade optimization results. Figure 12

demonstrates that the rigid HART-II rotor was successfully trimmed

to the target rotor thrust (CT � 0.0044) and moment values (CMX
,

CMY
� 0). Figure 13a shows that the trim objective gradient drops by

more than five orders of magnitude, whereas the objective functional

achieves a minimum over 26 design iterations. The gradients shown

in this figure and the subsequent figures are actually projected

gradients, which are nothing but the norm of the projection of the

negative gradient onto the bounding box defined by design variable

bounds [36]. Figure 13b further shows consistent convergence of all

the three pitch parameters.

Figures 14 summarizes the optimized rotor blade shape as well as

retrimmed rotor performance plots. Figure 14a shows that the baseline

trimmed rigid rotor is shape optimized to achieve approximately 4.7%

power reduction with a penalty of approximately 2.3% thrust loss.

Although some of this gain is lost upon retrim, the final optimized and

trimmed rotor achieves an overall 2.8% reduction in power compared

to the baseline blade. The near-identical lines of the baseline and

retrimmed rotor thrust plots in Fig. 14b confirm that the rotor is

retrimmed back to the trim target thrust value. Figure 14c shows a

two-order-of-magnitude gradient drop and consistent functional

convergence after 35design iterations for the blade shape optimization.

Figure 15 shows the shape-optimized blade sections at nine stations

[38]. The optimized blade shape results in thicker inboard and thinner

outboard stations.

Figures 16 illustrates the trim optimization of the flexible HART-II

rotor to the trim target thrust (CT � 0.0044) andmoment values (CMX
,

CMY
� 0). Figure 17a shows that the trim objective gradient drops by

more than two orders of magnitude, whereas the objective functional

achieves a minimum over 19 design iterations. Figure 17b further

shows consistent convergence of all the three pitch parameters.

Figure 18 summarizes the flexible-blade shape optimization, as

well as retrimmed performance plots. Figure 18a shows the baseline

trimmed flexible rotor is shape optimized to achieve a significant

power reduction of approximately 5.0% with a thrust loss of

approximately 2.6%. Similar to the rigid-blade retrim, for the flexible

blade, some of this gain is lost upon retrim. However, the final shape-

optimized and retrimmed rotor achieves an overall 3.1% reduction in

Fig. 16 HART-II flexible-blade trim.

Fig. 15 HART-II rigid-blade optimized blade sections: baseline (solid
lines), and optimized (dashed lines) [38].

Fig. 14 HART-II rigid-blade shape optimization and retrim.
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power compared to the baseline blade. Figure 18c shows more than one

order of magnitude gradient drop and consistent functional convergence

over 21 design iterations for the blade shape-optimization stage.

Figure 19 shows the shape-optimized blade sections at nine stations. The

optimized blade shapes show similar trends to those observed in the

rigid-blade shape optimization, i.e., thicker inboard and thinner outboard

stations.

VII. Conclusions

In this work, a discrete adjoint formulation for time-dependent
tightly coupled aeroelastic three-dimensional problems of flexible
rotors in forward-flight conditions has been developed. The unsteady
adjoint sensitivities of the formulation over several time steps have
been verified, and the agreement was found to be sustained over a
large number of time steps. The current formulation for rotor
problems in forward-flight conditions was built upon a previously
developed adjoint formulation for rotor problems in hover conditions
by incorporating a blade cyclic pitch capability in the analysis
formulation as well as in tangent and adjoint sensitivity analysis
formulations. The formulation was designed to reuse, as much as
possible, the original coupled aeroelastic data structures and solution
strategies employed for the analysis problem, thus simplifying
implementation and verification.
After successful verification of the developed adjoint optimization

tool, it was effectively used to perform efficient rotor blade shape
design targeting minimum rotor torque with the constraint of a
prescribed rotor trim state. The performance optimization on both
rigid and flexible blades consistently resulted in approximately 3.0%
power reduction over the baseline blade shape while sustaining a
target trim state.
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Fig. 19 HART-II flexible-blade optimized blade sections: baseline (solid
lines), and optimized (dashed lines) [38].

Fig. 17 HART-II flexible-blade trim convergence.

Fig. 18 HART-II flexible-blade shape optimization and retrim.
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