
Improving High-Order Finite Element Approximation
Through Geometrical Warping

Devina P. Sanjaya∗ and Krzysztof J. Fidkowski†

University of Michigan, Ann Arbor, Michigan 48109

DOI: 10.2514/1.J055071

Polynomial basis functions are the ubiquitousworkhorse of high-order finite elementmethods, but their generality

comes at a price of high computational cost and fragility in the face of underresolution. In this paper, a method is

presented for constructing a posteriori tailored, generally nonpolynomial, basis functions for approximating a

solution andcomputingoutputs of a systemof equations.Thismethod is similar to solution-based adaptation, inwhich

elements of the computational mesh are sized and oriented based on characteristics of the solution. Themethod takes

advantage of existing infrastructure in high-order methods: the reference-to-global mapping used in constructing

curved elements. By optimizing this mapping, elements are warped to make them ideally suited for representing a

target solution or computing a scalar output from the solution. Guidelines on generating a good initial guess and

choosing a generalized set of optimization parameters are provided to minimize tuning time and to introduce

automation into the process. For scalar advection–diffusion and Navier–Stokes problems, it is shown that warped

elements can offer significant accuracy benefits without increasing the degrees of freedom in the system.

Nomenclature

c = chord
ce = constraint on element e
d = spatial dimension
F�u� = convective flux
fadapt = target fraction of elements with largest error

indicator
G�u;∇u� = viscous flux
H = total flux
J = scalar output of interest
J = reference-to-global mapping Jacobian
K = viscous diffusivity tensor
M = Mach number
Ne = number of elements
Ng = Gauss points
Np = number of basis functions per element
Nq = total number of degrees of freedom in an element
Pe = Peclet number
Pr = Prandtl number
Pp = polynomials of order p on an element
p = solution approximation order
q = geometry approximation order
R = residual vector
Re = Reynolds number
Rh = semilinear weak form
S = source term
s = state rank
Th = set of elements in a nonoverlapping tessellation of

the domain Ω
Uen = coefficients for the nth basis function on

element e
u = state vector

uh�x�jΩe
= approximated state on element e

uexact = exact solution
umanufactured = manufactured solution
jVj = velocity magnitude
Vh = solution approximation space
V0 = initial element volume
vh = test function
wg = weights at Gauss points
x = geometry node coordinates in global space
α = angle of attack
δ = design variables
δJ = output error
εJe = least-squares output error estimate on element e
εLSe = least-squares error on element e
εe0 = initial error on element e
ηV = prescribed nondimensional minimum determi-

nant of Jacobian as fraction of element volume
μb = nondimensional barrier penalty factor
ν = kinematic viscosity
ξ = geometry node coordinates in reference space
πe = unconstrained optimization problem on element e
Φ = Lagrange basis functions based on displaced

reference-space coordinates
ϕ = Lagrange basis functions
Ψ = discrete adjoint solution

I. Introduction

H IGH-ORDER finite element methods, such as discontinuous
Galerkin, offer accuracy benefits for many problems due to

their reliance on high-order polynomial functions for representing the
solution. Polynomials have excellent approximation properties, at
least for smooth functions; and when accuracy is important, high-
order approximation can beat low-order approximation in terms of
degrees of freedom (DOFs) and even computational cost [1].
However, polynomial approximation is not always the best

choice. High-accuracy requirements may necessitate very high
polynomial orders that make solutions computationally intractable.
In addition, certain features of the solution may be too under-
resolved on a givenmesh for robust polynomial approximation. One
remedy is adaptation (in particular, of the hp variety), in which
mesh elements h are refined where high order is not advantageous
[2–5]. Another option is test space optimization, the goal of which is
typically to improve accuracy in a certain error norm or an output of
interest [6–9]. Yet another possibility is to tailor finite element basis
functions to the problem at hand. This idea has been recognized in
numerous previous works, including the partition of unity method
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[10], the extended finite element method [11], isogeometric
analysis [12], and the discontinuous enrichment method [13].
Tailoring basis functions a priori is possible for some problems but it
is hard in general, especially for complex flows in which the
locations of features such as shocks and shear layers are not known
ahead of time. On the other hand, tailoring basis functions a
posteriori is a more robust alternative: one that we pursue in
this work.
Our proposed approach uses basis functions parametrized by

reference-to-global mappings used in the definition of curved
elements. Indeed, many high-order methods already do not employ
global-space high-order polynomials. Polynomials are used on a
reference element, but the reference-to-global mapping distorts the
approximation. This distortion was recognized previously and an
approach was designed to correct it via a linear shadowmap [14]. In
this work, we take an alternate position and embrace the distortion
produced by the mapping. That is, we attempt to tune the reference-
to-global coordinate maps in a mesh to produce elements that are
customized for representing a particular solution. We refer to this
process as element warping because we are changing the (internal)
shape of an element. The mapped basis functions will no longer
constitute a complete polynomial set in global space; instead, for a
given solution order p, the basis functions will contain certain high-
order modes that enable accurate approximation of the target
solution. This is not the only way to create parametrized basis
functions, but it is one that uses machinery (i.e., curved-element
mappings) already available in many high-order codes. This
proposedmethod is similar to r-refinementmethods [15–17], which
redistribute mesh points to minimize certain error measures, often
dynamically in time [18–21]. However, unlike r refinement, our
proposed method moves the high-order geometry nodes within an
element to an optimal location to warp the element while keeping
the mesh elements fixed; changing the element shape is left to a
separate h-adaptation step. We will see later that moving the high-
order geometry nodes is equivalent to tailoring the basis functions.
Our eventual goal is to fully integrate this method with hp output-
based adaptation to create customized approximation spaces geared
for predicting a desired output to high accuracy.
The outline for the remainder of this paper is as follows. Section II

reviews the discontinuous Galerkin (DG) finite element discretiza-
tion, with particular emphasis on solution approximation and curved
elements. Section III introduces the idea of intentionally curving the
interior structure of an element to improve approximation for a given
solution order, and Sec. IV presents our approach for optimizing the
associated reference-to-global coordinate transformation. Section V
shows results obtained from this method, and Sec. VI presents
conclusions and plans for further work.

II. Discontinuous Finite Element Discretization

The idea of warping an element to improve its approximation
properties can be applied to any method that supports high-order
curved elements. We focus on the discontinuous Galerkin method
because we have experience with it and because it is a relatively
mature high-order method suitable for convection-dominated flows
that are prevalent in aerospace engineering: our target application. In
this section, we present the discretization, with particular attention to
the curved-element treatment.

A. Conservation Law

Consider a conservation law given by the partial differential
equation (PDE)

∂tu� ∇ · H�u;∇u� � 0 (1)

where u ∈ Rs is the state vector, H ∈ Rd×s is the total flux, s is the
state rank, and d is the spatial dimension.We decompose the flux into
convective and diffusive parts via H � F�u� � G�u;∇u�, where
G�u;∇u� � −K�u�∇u is the viscous flux and K ∈ Rd2×s2 is the
viscous diffusivity tensor.

B. Discretization

The DG [14,22,23], as a finite element method, approximates the
state u in functional form using linear combinations of basis
functions on each element. No continuity constraints are imposed on
the approximations on adjacent elements. Denoting by Th the set of
Ne elements in a nonoverlapping tessellation of the domain Ω, the
state on element e, Ωe, is approximated as

uh�x�jΩe
�

XNp

n�1

Uenϕ
glob
en �x� (2)

In this equation, Np is the number of basis functions per element
and Uen is the vector of s coefficients for the nth basis function on
element e∶ϕglob

en �x�. Formally, we write uh ∈ Vh � �Vh�s, where, if
the elements are not curved,

Vh � fu ∈ L2�Ω�∶ujΩe
∈ Pp ∀ Ωe ∈ Thg

and Pp denotes polynomials of order p on the element. A caveat
here is that, for elements that are curved, the polynomial
approximation is usually performed on a master reference element
so that, following the reference-to-global mapping, the state
approximation on curved elements is not strictly of order p. We take
advantage of this observationwhenwe optimize the curved-element
shape to yield better approximation properties compared to
polynomials.
We obtain a weak form of Eq. (1) by multiplying the PDE by test

functions vh ∈ Vh and integrating by parts to couple elements via
interface fluxes. We use the Roe scheme [24] for convective fluxes
and the second form of Bassi and Rebay [25] for viscous fluxes,
yielding the final semilinear weak form

Rh�uh; vh� �
XNe

e�1

Rh�uh; vhjΩe
� � 0; ∀ vh ∈ Vh (3)

where Rh�uh; vhjΩe
� is the weak form on element e. Details on the

terms included in the weak form can be found in the literature [14].
Using the trial basis functions as test functions yields the final discrete
system R�U� � 0, where U is the vector of unknown basis function
coefficients and R is the vector of residuals, i.e., the discrete
equations.

C. Curved Elements

An element is geometrically linear if its shape is defined by the
location of its primary vertices. For example, in two dimensions,
three points define a triangle and four points define a quadrilateral. In
between the vertices, the geometry is interpolated (bi-/tri)linearly.
Such elements are simple to work with but, when used on curved
domain boundaries, they do not approximate the boundary well
enough for use with high-order solution approximation in the DG
[26–28]. A remedy is to curve the elements by equipping each
element with additional geometry information, typically in the form
of extra high-order geometry nodes.
A standard and relatively simple way to curve elements is to use a

polynomial mapping from the reference element to the global
element, as illustrated in Fig. 1. The formula for themapping function
is given in the figure, where q is the order of this polynomial,
Nq � �q� 1��q� 2�∕2 is the total number of degrees of freedom in
the mapping, ξ � �ξ; η�T is the coordinate in reference space, and
x � �x; y�T is the coordinate in global space. Using Lagrange basis
functions, ϕLag

i �ξ�, in the mapping allows for an intuitive
specification of the high-order element: the coordinates of the Nq

nodes xi fully define the mapping function, and x�ξi� � xi.
The coordinates xi should be chosen consistently with the

corresponding reference-space nodes ξi, which are equally spaced on
the reference element. For example, in Fig. 1, ξ6 is the centroid of the
reference triangle, so x6 should be located somewhere in the middle
of the curved element. On edges/faces that are on domain boundaries,
these nodes are typically on the geometry. However, these
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requirements do not pin down their locations, and heuristics or
quality metrics such as maximizing the Jacobian determinant are
often used in high-order node placement. In the next section, we
discuss another choice: a figure of merit based on accurate solution
approximation.

III. Warping High-Order Curved Elements

Curved elements are primarily used on domain boundaries to
accurately define a geometry for use with high-order solution
approximation [29]. For highly anisotropic boundary-layer meshes,
curved elements are generally also needed inside the domain to prevent
elements from self-intersecting and creating negative volumes [30,31].
Such curving is performed out of necessity in creating a valid mesh,
driven ultimately by geometry representation requirements on the
domain boundary. Curved elements do add computational expense (e.
g., through element-specific mass matrices), but this cost can be
mitigated by using the determinant of the mapping Jacobian matrix to
scale basis functions [32].
Typically, not much attention is paid to the precise location of

the high-order nodes, with the exception of those that have to lie on the
boundary. Instead, heuristics often dictate locations that in some sense
maximize the validity of the element, i.e., smoothly varying co-
ordinates with no clustering of nodes. In this section, we present the
idea of deliberatelywarping an element bymoving high-order nodes to
possibly clustered locations to optimize solution approximation.
Figure 2 illustrates the concept of element warping. Of interest are

the locations of a curved element’s geometry nodes, which dictate the
mapping from reference space to global space. By moving these
nodes, we can change the behavior of an approximated function (i.e.,
the state) in global space [33]. For example, consider a function that is
a linear polynomial in the reference-space coordinates. This is what
we typically refer to as a p � 1 solution approximation, since basis
functions are most easily defined in reference space. If an element is
geometrically linear, so that the reference-to-global mapping is
affine, thep � 1 function remains linear in global space. However, if
the element is curved, the mapped function will not necessarily
remain linear in the global coordinates. Figure 2 illustrates this
schematically for aq � 3 quadrilateral in which themiddle nodes are
placed close to each other so that a p � 1 function in reference space
develops a shear-layer type of structure in global space.

In general, for arbitrary curved elements, a function that is an order
p polynomial in reference space does not remain an order p
polynomial, or even a polynomial at all, in the global-space
coordinates. Specifically, a polynomial basis function in reference
space ϕref�ξ� maps to a global basis function according to

ϕglob�x�ξ�� � ϕref�ξ�

where x�ξ� is the geometry mapping given in Fig. 1. Moving an
element’s high-order geometry nodes changes this mapping and
gives us control over the appearance of the high-order basis functions.
Our goal is to optimize these global basis functions for the approxi-
mation of a particular solution, and we describe this optimization in
the next section. Before moving on, however, we note that we are
effectively working with a parametrized set of basis functions, where
the parameters are the high-order geometry nodes. For a largevalue of
q, we have many parameters, and we expect to be able to design
custom basis functions that will allow us to accurately represent a
solution even with low-order p. We expect increasing q to be
computationally more desirable compared to increasing p, since the
size of the system of equations is independent of q. Here, it is
important to note that p and q are not interchangeable. A sufficient
order p polynomial is still necessary for convergence and for
obtaining significant benefits from increasing q.

IV. Warp Optimization

In the previous section, we introduced the idea that warping an
element can change its approximation capabilities. In this section, we
describe our approach to optimize the warp of an element by moving
its high-order geometry nodes to optimal locations.

A. Design Variables

To keep computational costs low, we presently make the optimi-
zation problems local to each element. To minimize the influence of
one element’s optimization on its neighbor elements, we constrain
themovement of the high-order geometry nodes so as not to affect the
element shape (much). Thus, we do not move an element’s primary
vertices (three for a triangle) and we do not move edge nodes
perpendicular to the edge.
For optimization, we need to choose the design variables. The

global coordinates xi of the mapped nodes are an obvious choice,
but they are not ideal because they allow for arbitrary deformation.
We would still have to impose the constraints that, for example,
edge nodesmove only along the edge, and this is hard to do in global
space for curved elements. Instead, we turn to the reference element:
we hold the global nodes xi fixed, but we vary/optimize the
reference-space coordinates ξi corresponding to these nodes.
Normally, using an equally spaced nodal Lagrange basis for the
reference-to-global mapping, the ξi are just evenly distributed on
the reference element, with horizontal/vertical spacing of
1∕�q� 1�. During optimization, we change the positions of the ξi
in reference space, where imposing the edge motion constraint is
trivial. As these ξi still map to the fixed xi, the element must warp.
Figure 3 illustrates the allowable motions of nodes in q � 3
triangles and quadrilaterals.
The design variables are the allowable displacements of each ξi in

reference space. Call δ the vector of allowable displacements. The

Fig. 2 Schematic of high-order element warping, which consists of
intentional placement of high-order interior nodes to improve an
element’s approximation power for a particular solution.

Fig. 1 Example of a q � 3 mapping from a reference triangle to a curved element in global space.
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size of this vector is q2 − 1 for triangles and 2�q2 − 1� for
quadrilaterals. By the end of optimization, and during it for
convenience of code reuse when calling certain functions, we must
express the shape of the element using the standard equally spaced
Lagrange basis. We do this by solving the following linear system:

Φxnew � xold

whereΦ is anNq × Nq matrix with entriesΦij � ϕLag
j �ξ 0i �, ξ 0i are the

displaced reference-space coordinates of all the nodes, xold is an
Nq × d matrix of the original global-space node coordinates (one
node per row), andxnew is anNq × dmatrix of the desired newglobal-
space coordinates.
For multiple elements, we perform the optimization on each

element independently and then average the (global-space)
displacements of nodes that are shared between elements. In
practical cases, optimization is not applied to every element but,
rather, only to those elements with the largest errors.

B. Objective Function

Our goal here is to create a metric for measuring an element’s
approximation power, for use in optimization and as an error
indicator telling us which elements in a mesh need to be warped. We
consider the following two objective functions.

1. Least-Squares Error

Suppose that the exact solution uexact�x� is known. This is the case
when testing with manufactured solutions; although, for practical
cases, we could consider a solution or reconstruction in a higher-
order space (e.g., p� 1). For a scalar problem (s � 1), the least-
squares error εe on element Ωe is defined via

�εLSe �2 � min
uh∈Vh

Z
Ωe

�uh�x� − uexact�x��2 dA

� min
uh∈Vh

Z
E
j J�ξ�j�uh�ξ� − uexact�x�ξ���2 dE (4)

where J�ξ� is the mapping Jacobian matrix, E is the reference-space
element, and the minimization is taken over all possible uh in the
solution approximation space Vh. The integral in reference space is
evaluated using Gauss quadrature with Ng Gauss points ξg and
weights wg.
Note that integrating in reference space allows us to precompute

and reuse evaluations of the basis functions at the quadrature points.

Furthermore, negative Jacobian determinants encountered during
integration indicate infeasible regions of the design space to the
optimizer. Finally, for systems of equations, the least-squares error
can be computed for each state component separately and summed if
a single number is desired, though this introduces dependence on
arbitrary variable scaling.

2. Computing Outputs of a System

In aerospace applications, we often deal with systems of equations
(s > 1) and we generally only care about one or several outputs
instead of the solution everywhere. In this case, reducing the state
approximation error everywhere in the domain via the least-squares
error metric can be inefficient because the state may not need to be
accurate everywhere to predict accurate outputs. A more efficient
approach, and one that naturally handles systems, is to use an output-
based error measurement, as described in this section.
Output-based methods rely on the solution of an output

adjoint, which acts as a weight on the residual to produce the error
estimate and adaptive indicator [3]. The discrete adjoint solutionΨ
satisfies

�
∂R
∂U

�
T

Ψ� ∂J
∂U

T
� 0 (5)

whereJ is the scalar output of interest. Solving this equation yields
coefficients of the adjoint solution, which can then be used to
approximate the continuous adjoint ψ�x�.
A simple approach for incorporating output-based adjoint

information into the objective function is to modify the least-squares
error estimate in Eq. (4) to use a weighted combination of primal and
adjoint errors:

εJe � 1

2
kRkTe kψ − ψfinekLS �

1

2
kRψkTe ku − ufinekLS (6)

where ψfine and ufine are approximate/reconstructed fine-space
(p� 1) solutions, kRke is the fine-space primal residual norm on
element e, and kRψke is the fine-space adjoint residual norm on
element e. The residuals are computed using primal and adjoint states
before the optimization (i.e., δ � 0). Norms are taken separately for
each equation for systems, and the subscript LS indicates the least-
squares error; i.e., kψ − ψfinekLS is the error between the “truth”
(fine) adjoint and its projection into the order p approximation space
of the current warped element. Several methods to compute fine-
space adjoint were discussed in previous work [34–37].

a) Triangle in reference space b) Triangle in global space

c) Quadrilateral in reference space d) Quadrilateral in global space

Fig. 3 Example of allowable node motions for triangular and quadrilateral q � 3 elements.
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Equation (6) is motivated by the observation that low output error
is achieved when both the primal and adjoint solutions are
approximated well in an element [34], and the primal/ adjoint
residuals indicate the relative importance of each and make the
combination dimensionally consistent.

C. Constraint

As mentioned previously, we need all Jacobian determinants to be
nonnegative to ensure that elements in the mesh are valid and to
obtain a physical solution [38]. We find it more robust to go a step
further and enforce aminimum Jacobian determinant over an element
(measured at integration points). Thus, we impose the following
constraint on element e:

ce ≡
min�jJ�ξg�j�

V0

− ηV > 0 (7)

where V0 is the initial element volume, and ηV is the prescribed
nondimensional minimum determinant of Jacobian as a fraction of
the element volume.Anatural question is thenwhether this constraint
alone is enough to ensure that Jacobian determinants are nonnegative
over the entire element. This constraint does not guarantee
nonnegative Jacobian determinants over the entire element, but
robustness improves with larger Nq and ηV .

D. Optimization Problem

Now, we can formulate our constrained optimization problem on
an element as follows:

minimize
εe�δ�
εe0

with respect to δ subject to ce (8)

where we explicitly indicate the dependence of the error on the
design variables δ, and where εe0 � εe�δ � 0� is the initial error
on the element. We solve this constrained optimization problem via
an interior penalty method by using an inverse barrier function
with μb as the nondimensional barrier penalty factor. This turns
Eq. (8) into the following unconstrained optimization problem on
element e:

minimize πe�ξ�δ�; μb� �
εe�δ�
εe0

� μb
V0

min�jJ�ξg�j� − ηVV0

with respect to δ

(9)

The solution to Eq. (9) approaches that to Eq. (8) as μb
approaches zero. To keep the computational cost low, optimization
is only performed on a fraction fadapt of elements with the largest
error indicator.

The optimization problem on each element is solved using a
gradient-based method: the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) [39] algorithm with a backtracking line search. We treat the
optimization problem locally, in that the optimization is performed on
each element independently. When there are multiple elements, the
(global-space) displacements of nodes that are shared between
elements are averaged beforemoving all nodes to their new locations.
Note that treating the optimization problem as a global problem
would make it much more computationally expensive.
Although treating the optimization problem in element-local terms

is computationally advantageous, it does require carewhen averaging
to produce the global mesh. Due to the node averaging process, the
new node locations are no longer optimal, but our assumption is that
they are better than the original node locations, in the sense that these
new locations improve the approximation power of the finite element
method. However, to reduce the risk of obtaining an invalid mesh, we
must avoid overoptimizing locally. Local overoptimization increases
the probability of large node displacements that, upon averaging,
may cause self-tangling (negative Jacobians), resulting in an invalid
mesh. We avoid local overoptimization by setting μb to a sufficiently
small constant to ensure that the constraint is active for all BFGS
iterations, and by performing only a few BFGS iterations. Currently,
all required gradients are calculated using a finite difference
approximation.

V. Results

A. Boundary-Layer Approximation for a Laminar Airfoil

Before presenting the results of the node movement optimization,
we offer a heuristic example of the potential benefit of moving high-
order nodes. Consider a NACA 0012 airfoil inM � 0.5, Re � 5000
flow. In these conditions, a boundary layer (albeit not a very thin one)
develops near the airfoil wall. Within this boundary layer, several
flow properties change rapidly in the wall-normal direction, and an
accurate representation of this boundary-layer flow is important for
predicting the drag.
We investigate two types of q � 3 meshes for calculating drag at

several different values ofp. The first mesh (uniform) is one inwhich
the high-order nodes are spaced uniformly in the elements. The

a) Two types of curved elements b) Drag convergence for two mesh types

Fig. 4 Effect of interior node placement on the calculation of drag on an airfoil.

Table 1 Least-squares error for
solution approximation on a single

element with a manufactured solution

q p Unoptimized εLS Optimized εLS

3 3 0.1747 0.0240
4 0.0988 0.0110

4 3 0.1756 0.0136
4 0.0985 0.0062
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second mesh (repositioned) is one in which the high-order nodes are
heuristically clustered toward the airfoil, which improves the ability
of basis functions to accurately capture the rapid variation of flow
quantities near the airfoil.
Figure 4 shows a sample flowfield and the convergence of drag for

uniform refinements of the two families of meshes considered. For
approximation orders p � 1, 2, 3, we see a benefit of using the
meshes with the repositioned nodes. Specifically, the drag coefficient
error drops by one or more orders of magnitude compared to the
meshes with the uniformly distributed high-order geometry nodes,
for the same computational cost. These results are for uniform
refinements of a single guessed repositioning: we expect further
improvements from an optimization algorithm.

B. Single-Element Optimization with a Manufactured Solution

We consider a two-dimensional diffusion equation with source on
a �0; 1�2 domain

Fig. 5 Single-element manufactured solution (p � 4 and q � 4): initial and optimized-element shapes and least-squares approximated solutions.

Fig. 6 Scalar advection–diffusion, Pe � 10: fine-space primal and adjoint solutions (contours of the single scalar) for an integrated flux output.

Fig. 7 Scalar advection–diffusion, Pe � 10: adaptive indicator on a
quadrilateral mesh.
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∇2u� S�x� � 0

where S�x� is a source term that makes the following function a
manufactured solution:

umanufactured�x; y� � exp�a1 sin�a2x� a3y� � a4 cos�a5x� a6y��

with

�a1; a2; a3; a4; a5; a6� � �1; 3;−4; .5;−2; 3.5�

We consider a single element with q � �3; 4� and p � �3; 4� solution
approximation. We use least-squares error optimization with
parameters ηV � 0.1 and μb � 0.1. Table 1 shows that, without
optimization, increasing p reduces the least-squares error by a factor
of two, and optimization reduces the error further. For a given q,
increasing p reduces the error by a factor of two, whereas for a given

Fig. 8 Scalar advection–diffusion, Pe � 10: initial and optimized quadrilateral element shapes around the leading edge and trailing edge of the NACA
0012 airfoil.

Fig. 9 Compressible Navier–Stokes: fine-space primal and adjoint solutions.

Fig. 10 Compressible Navier–Stokes: adaptive indicator.
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Fig. 11 Compressible Navier–Stokes: initial and optimized mesh around the leading edge and trailing edge.

Table 2 Optimization parameters used for Euler cases (q � 3)

p � 1 p � 2 p � 3

Line search backtracking factor options [0.004, 0.02, 0.1] [0.005, 0.02, 0.1] [0.006, 0.05, 0.8]
μb 0.04 0.4 4
fadapt 1.0 1.0 1.0
ηV 0.2 0.15 0.1
BFGS iterations for SEQs 1 and 2 1 1 1
BFGS iterations for SEQ 3 3 3 3

Fig. 12 Euler equations (p � 1): initial error indicators.
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Fig. 13 Euler equations: fine-space primal and adjoint x-momentum solutions around leading edge.

a) Initial leading edge
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Fig. 14 Euler equations (p � 1 and q � 3): initial mesh and zoomed-in views of optimized elements.
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p, increasing q reduces the error by an order of magnitude. However,
this does not imply that increasing p and q are interchangeable.
Notice that there is a coupling between p and q to obtain significant
benefit from increasing q: with p � 4, we obtain more benefit from

the warp optimization.
Figure 5 begins with the exact (manufactured solution) and the

baseline p � 4 solution on the unoptimized, equal node-spacing
element. The figure then shows the optimized-element solution,

which is visually closer to the exact solution and has a much lower
least-squares error. The triangular mesh plots in Fig. 5 show the
initial and optimized shape of the single element obtained by
subdividing the reference element into many [2 × �15 × 15�]
equally spaced triangles and plotting the mapped positions of these
triangles in global space. We see that the optimized-element shape
shows marked stretching and twisting in the reference-to-global
mapping; it is this distortion that is responsible for the improved
approximation ability of the element even when using the same
p � 4 space on the reference element.

C. Multiple-Element Optimization for the Scalar Advection–Diffusion
Equation

We now consider a steady, scalar advection–diffusion problem on
a unit-chord (c � 1) NACA 0012 airfoil:

∇ · �Vu� − ν∇2u � 0 (10)

where V � �1; 0�, and Pe ≡ jVjc∕ν � 10. Dirichlet boundary
conditions are applied: u � 1 on the airfoil surface and u � 0 on the
far field. In this problem, we use the output-based optimization
metric, where the output of interest J is the integrated flux of u
through the airfoil surface. Figure 6 shows the fine-space primal and
adjoint solutions for this output on a quadrilateral mesh.

We run our high-order node optimization algorithm for the

quadrilateral mesh shown in Fig. 6 using p � 2, q � 4,
fadapt � 0.2, ηV � 0.15, and μb � 0.2. Note that only 20% of the

elements are optimized: the remaining 80% with low error are

skipped. Following optimization of the targeted elements, we solve

the problem again on the optimized mesh and compute the new

output. Denote by δJ the error in the output relative to a truth

(p � 4) solution.We find that this output error reduces from jδJ j �
9.0 × 10−4 on the initial mesh to jδJ j � 1.3 × 10−5 on the mesh

with optimized-element shapes.
Figure 7 shows the error indicator, i.e., εJe for each element

in the baseline mesh. We see that the area near the trailing edge

of the airfoil has the largest error; thus, elements near the trailing

edge will be targeted for warping. In addition, elements near the

leading edge and away from the airfoil above and below it will

be targeted.
Figure 8 shows the initial and optimized quadrilateral element

shapes in the leading-edge and trailing-edge regions of the airfoil.We

see pronounced distortion of the trailing-edge elements and some

distortion of the leading-edge ones.

D. Multiple-Element Optimization for the Two-Dimensional
Navier–Stokes Equations

Now, we consider a system of equations: steady, compressible

Navier–Stokes:

∇ · F�u� � ∇ · G�u;∇u� � 0 (11)

whereF andG are, respectively, the inviscid and viscous fluxes. The

geometry is a NACA 0012 airfoil with a closed trailing edge, and the

flow conditions are M � 0.5 and Re � jVjc∕ν � 1000. A Prandtl

number of Pr � 0.71 is used, and the boundary conditions are

adiabaticwalls on the airfoil and freestream conditions in the far field.

The output of interest is the drag.
Figure 9 shows the primal Mach contours and the x-momentum

component of the drag adjoint computed with high-order (p � 4)
approximation on the baseline quadrilateral mesh. We see boundary-

layer structures in both the primal and adjoint.
Following the baseline solution, we run an optimization using

p � 2 solution approximation, fadapt � 0.5, ηV � 0.1, and μb �
0.2. Figure 10 shows the error indicator: regions targeted for

adaptation include above and below the airfoil, whereas the trailing

edge has a relatively low error in this case, possibly due to the already

small elements there. Note that, in this case, we optimize half of the

element shapes.

Table 3 Euler equations: final error reduction
factor based on (p� Δp) fine-space solution with

Δp � 1 and q � 3a

α, deg Fine-space solution p � 1 p � 2 p � 3

1 Exact 13.55 2.55 1.29
Approximate 11.50 2.97 1.01

2 Exact 12.32 3.06 1.17
Approximate 13.89 2.53 1.26

aThe exact solution is computed by converging residuals to

machine zero, whereas the approximate solution is computed

using 5 iterations of element-block Jacobi smoothing.

Fig. 15 Navier–Stokes,M � 0.5, Re � 5000: fine-space primal and adjoint x-momentum solutions.
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Table 4 Optimization parameters used for viscous Navier–Stokes cases (q � 3)

p � 1 p � 2 p � 3

Line search backtracking factor options [0.004, 0.02, 0.1] [0.003, 0.08, 0.1] [0.006, 0.05, 0.2]
μb 0.05 0.12 0.2
fadapt 1.0 1.0 1.0
ηV 0.2 0.15 0.1
BFGS iterations for SEQs 1 and 2 1 1 1
BFGS iterations for SEQ 3 3 3 3

a) Initial leading edge b) Initial trailing edge c) Initial wake

d) Initial  p = 3 solution around

leading edge = 2°°)

e) Initial  p = 3 drag adjoint around

trailing edge

f) Initial  p= 3 solution around

wake
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Fig. 16 Navier–Stokes,M � 0.5, Re � 5000 (p � 2 and q � 3): initial mesh, fine solution/drag adjoint, and sample optimized elements.
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Figure 11 shows the initial and optimized-element shapes around

the leading edge and trailing edge of the airfoil. We see discernible

and nonintuitive nodemovement, mostly near the leading edge. After

solving again on the optimizedmesh,we find that the error in the drag

reduces from jδJ j � 1.1 × 10−3 on the baseline mesh to jδJ j �
4.8 × 10−4 on the mesh with optimized-element shapes. The

reduction in output error is not as large in this case as in the previous

scalar cases. A possible reason for this is that this example is a system

of equations, and different components of the system may impose

different demands on the optimal element shape. In addition, we are

not allowing cancellation of errors between system components in

our error indicator, since we compute the least-squares errors in

Eq. (6) componentwise. Relaxing this conservative calculation may

lead to larger error drops.

E. Multiple-Element Optimization for the Euler Equations

So far, we have seen the benefits of curved elements on coarse

meshes for solution approximation and output computation. Now,we

are in the position to address some questions pertaining to the nature

of optimization algorithm, such as how to provide a good initial guess

and how to automate the optimization process.
As expected, the optimization algorithm tends to perform better

given a good initial guess. One good initial guess for the background

mesh is an h-adapted mesh generated for a given p. To further

improve the quality of initial mesh, three sequences of optimization

are performed, in which the solution of each optimization provides

the initial guess for the next optimization. For the first two

optimizations, only one BFGS iteration is performed because the

only purpose for these two optimizations is to provide a good initial

guess for the third (last) optimization. For the last optimization, a

larger number of BFGS iterations is performed to find the optimum

mesh for the problem of interest. However, the iteration number is

still kept relatively small to prevent local overoptimization.
In general, tuning of optimization parameters helps improve

performance of optimization algorithm for a given problem.

However, automation is necessary for robustness in an hp-adaptive

setting. One aspect of the optimization algorithm thatwe have found

to be most “tunable” has been the backtracking factor in the line

search algorithm. To improve automation, we therefore provide

several options of backtracking factors from which an element can

choose the best-performing one. In addition, we found from

experience that it is advantageous to increase μb and lower ηV as p
increases. We found that having each element automatically pick a

suitable backtracking factor gives us a good compromise between

automation capability and optimization performance reduction due

to generalization. Furthermore, to ensure nonnegative Jacobian

determinants in the optimized mesh, we need to adjust how

aggressive the optimizer can be. As p increases, the optimizer

generally has access to a fairly accurate solution representation,

whichmeans that we can lower ηV asp increases because the chance

of having negative Jacobian determinants is less. However, at the

same time, we need to make sure that the optimizer is not so

aggressive that it will overoptimize locally; thus, higher μb is

needed for higher p. Based on these simple heuristics, we find a

general set of optimization parameters that gives reasonable error

reduction for a particular problem type and a givenp. Table 2 shows
the general setting of optimization parameters for Euler problems

with q � 3. Note that we have decided to separate settings by

physics of the problem, due to the different solution features

observed with the different model equations.
Here, we consider steady, inviscid flow over a NACA 0012 airfoil:

∇ · F�u� � 0 (12)

where F are the inviscid fluxes. The boundary conditions are the

inviscid wall on the airfoil and freestream conditions in the far field.

The output of interest is the drag.
To test robustness of using the generalized optimization

parameters, we analyze the flow at two different angles of attack:

α � 1 deg and α � 2 deg, while keeping other settings the same. A

relatively small change in angle of attack is chosen to ensure that the

same initial mesh can be used as a good initial guess for both cases.

The initial guess to the optimizer is an h-adapted mesh for

α � 2 deg. Figure 12 shows that the initial errors are slightly higher
for the casewith α � 1 deg, as expected.One region of the flowwith

high error is the leading edge. Figure 13 shows the primal

x-momentum solution and the x-momentum component of the drag

adjoint around the leading edge computed with high order (p � 4).
This confirms that the small change in angle of attack only changes

the flow slightly; thus, the same initial mesh can be used as a good

initial guess to the optimizer for both cases.
Figure 14 shows the initial mesh and a zoomed-in view of an

optimized-element shape around the leading edge and trailing edge of

the airfoil when an exact fine-space solution is used to drive the

optimizer. Since the small difference in angle of attack only changes

the flow slightly, most optimized elements have very similar shapes
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Fig. 17 Navier–Stokes,M � 0.5, Re � 5000 (p � 2 and q � 3): comparison of node movement of an element around the trailing edge.

Table 5 Navier–Stokes,M � 0.5, Re � 5000:
final error reduction factor based on (p� Δp) fine-

space solution with Δp � 1 and q � 3a

α, deg Fine-space solution p � 1 p � 2 p � 3

2 Exact 3.60 60.34 7.40
Approximate 3.36 2.02 2.68

4 Exact 43.87 3.04 3.24
Approximate 22.44 1.43 28.57

aThe exact fine-space solution is computed using GMRES, and

the approximate fine-space solution is computed using an

iterative method with element-block Jacobi smoothing.
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in bothmeshes. Hence, we provide a zoomed-in view of an optimized

element here.
As in previous cases, we see discernible and nonintuitive node

movement. In addition to using the exact fine-space solution, we
also run the same cases using a fine-space surrogate to drive the

optimizer, and the resulting optimized mesh is similar. The final
error reduction factors for both sets of runs are shown in Table 3. For
the case with α � 2 deg, eight iterations of element-block Jacobi
are used. For the case with α � 1 deg, we increase the number of
iterations to 50 because the starting mesh is not optimized for this
case. Note that we obtain the most benefit of the optimization at the
coarsest approximation order (p � 1) because, in this case, the

solution is the least accurate and stands to gain the most from

optimization.

F. Multiple-Element Optimization for the Viscous Navier–Stokes
Equations

Next, we consider steady, viscous flow over a unit-chord (c � 1)
NACA 0012 airfoil:

∇ · F�u� � ∇ · G�u;∇u� � 0 (13)

where F and G are, respectively, the inviscid and viscous fluxes.

The flow conditions are M � 0.5 and Re � jVjc∕ν � 5000. The

Fig. 18 RANS: fine-space primal solutions.

Table 6 Optimization parameters used in RANS cases (q � 3)

p � 1 p � 2 p � 3

Line search backtracking factors [0.002, 0.04, 0.9] [0.008, 0.04, 0.5, 1.2] [0.002, 0.06, 0.1, 1.5]
μb 6 1.2 0.6
fadapt 0.25 0.25 0.25
ηV 0.3 0.15 0.1
BFGS iterations for SEQs 1 and 2 1 1 1
BFGS iterations for SEQ 3 2 5 5
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boundary conditions are adiabatic walls on the airfoil and freestream
conditions in the far field. The output of interest is the drag.
Similar to the inviscid Navier–Stokes problem, we consider two

different angles of attack: α � 2 deg and α � 4 deg. The initial
guess to the optimizer is an h-adapted mesh for α � 2 deg.
Figure 15 shows the primal x-momentum solution and the
x-momentum component of the drag adjoint around the leading
edge computedwith high order (p � 4).We see boundary-layer and
wake structures in both the primal and adjoint. Furthermore, this
figure shows that the small change in angle of attack results in
relatively small change in the flow; thus, the same initial mesh can
be used as a good initial guess for both cases. Table 4 shows the
optimization parameters used for our analysis. Note that we only
make small changes in the parameter settings compared to ones
used for the inviscid problem; only the line search backtracking
factor options and μb are changed.
Figure 16 shows a zoomed-inviewof themesh and the flow around

the leading edge, trailing edge, and wake. An exact fine-space
solution is used to drive the optimizer. First, let us take a look at the
boundary-layer structures around the leading edge, where there is a
rapid change of velocity close to the airfoil surface. We expect that
the high-order nodes of the elements in the boundary-layer structure
will move toward the airfoil surface, and this is shown in Fig. 16j.
Second, we take a look at the x-momentum component of the drag
adjoint and notice that the flow in the middle element (B) changes
appreciably between α � 2 deg and α � 4 deg (see Figs. 16e and
16h). This difference in the drag adjoint causes different node
movement in this element, as shown in Fig. 16k. Third, notice that
the flow at the end of the wake in element C changes significantly
due to the change in the angle of attack (see Figs. 16f and 16i). This
causes different node movement in this element for α � 2 deg and
α � 4 deg, as shown in Fig. 16l.
Unlike for Euler, in the Navier–Stokes case, the difference in the

optimized mesh is more visible in certain elements of the mesh when
the optimizer is driven by the exact fine-space solution or by the fine-
space surrogate. Figure 17 shows the difference in node movement
for an element around the trailing edge due to accuracy of the fine-
space solution used in driving the optimizer. Table 5 shows the final
error reduction factors for the viscous Navier–Stokes problem
obtained with various p and q � 3. Similar to Euler, the case that
starts with an optimum starting mesh (α � 2 deg) is provided with a
cheaper iterative solver. The number of iterations for element-block
Jacobi smoothing is kept the same as before.

G. Multiple-Element Optimization for the Reynolds-Averaged Nav-
ier–Stokes Equations

Finally, we consider a Reynolds-averaged Navier–Stokes (RANS)
problem, closed with a negative-turbulent-viscosity modification of
the Spalart–Allmaras (SA) one-equation model [40]

∇ · F�u� � ∇ · G�u;∇u� � S�u� (14)

whereF andG are, respectively, the inviscid and viscous fluxes; and
S is the SA source. The geometry is the RAE 2822 airfoil, and
the flow conditions are M � 0.734 and Re � jVjc∕ν � 6.5 × 106.
The boundary conditions are adiabatic walls on the airfoil and
freestream conditions in the far field. The output of interest is
the drag.
Two different angles of attack are considered here: α � 2.79 deg

and α � 3.29 deg. The initial guess to the optimizer is an h-adapted
mesh for α � 2.79 deg. Figure 18 shows the primalMach number, x
momentum, and turbulent-viscosity solution computed with high-
order approximation (p � 4). We see a shock structure on the upper
surface of the airfoil, a boundary-layer structure around the airfoil,
and a turbulent wake structure. Figure 19 shows regions of the flow
where high error occurs.
Table 6 shows the optimization parameters used for our analysis.

First, note that, unlike in the previous two cases, the settings for
p � 1 are slightly different than the ones for p � 2 and p � 3. With
p � 1, the problem is underresolved, particularly because of the thin
boundary and shear layers, and it is therefore more prone to having
negative Jacobian determinants and local overoptimization. This is
why, in Table 5, μb and ηV are increased, whereas the number of
BFGS iterations for SEQ 3 (SEQ denotes the optimization iteration)
is decreased compared to the previous two cases. Furthermore, notice
that μb decreases as p increases. With sharper solution features of
RANS,more aggressive optimization is needed and can be used here.
We have also observed that the probability of overoptimizing locally
is lower compared to the previous two cases. Also, notice that, for
p � 2 and p � 3, there are four options of line search backtracking
factors instead of three. We find that having one additional option
tends to improve the global performance of the optimizer. Moreover,
fadapt is now set to 0.25. In addition to reducing computational cost,
lower fadapt is better here because there is a larger range of errors
within the mesh and only targeting some elements with high errors
improves the global performance of the optimizer. Finally, notice that
the number of BFGS iterations for SEQ 3 for p � 2 and p � 3 are
increased. More BFGS iterations are needed here because RANS
cases are generally more complex than Euler or laminar Navier–
Stokes cases.
Figure 20 compares the change in flow solution and mesh due to

the change in α. The Mach number solutions show that the small
change in α causes changes in the shock location and the angle of the
turbulent wake. In regionA, we can see that boundary-layer structure
formed on the upper surface of the airfoil and, similar to the previous
case, this results in high-order nodes moving closer to the airfoil
surface. In region B, we can see how elements around the shock are
curved to improve the output calculation. The node movement is
more vigorous for α � 3.29 deg because the initial mesh is
optimized for α � 2.79 deg. The relatively small change in α causes
a slight change in the shock location, and it is up to the curved
elements to improve the approximation. Lastly, in region C, we see
that the change in turbulent viscosity results in different node
movement of the element in the wake. Table 7 shows the benefits
obtained from curved elements for RANS.

a) = 2 .79°° b) = 3 .29°°

Fig. 19 RANS (p � 3): initial error indicators.
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VI. Conclusions

In this paper, amethod is presented for tailoring basis functions in a
finite element discretization to better approximate a solution. This
tailoring requires virtually no additional infrastructure beyond that
already available to support curved elements in a high-order
discretization: in this case, discontinuous Galerkin. Instead, the
locations of high-order geometry nodes become tunable parameters
that warp the reference-to-global coordinate mapping and allow for
accurate approximation of high-order solution features using low-

B 

C A 

Mach number solution on the final, optimized mesh 

A. Boundary Layer 

Initial Optimized 

B. Shock Boundary 

Initial  

Optimized 

Turbulent viscosity 

C. Turbulent Wake 

Initial 

Optimized 

B 

C A 

Mach number solution on the final, optimized mesh 

B. Shock  Boundary 

Initial  

Optimized 

C. Turbulent Wake 

Turbulent viscosity 

Initial 

Optimized 

A. Boundary Layer 

Optimized Initial 

a) = 2 .79°°

b) = 3 .29°°

Fig. 20 RANS (p � 3): Mach number solution on the final, optimized mesh along with mesh comparison on regions A–C.

Table 7 RANS: final error
reduction factor based on
(p� Δp) exact fine-space

solution with Δp � 1 and q �
3

α, deg p � 1 p � 2 p � 3

2.79 1.08 1.80 2.56
3.29 1.08 1.07 7.97
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order polynomials in reference space. An element-local optimization
algorithm is introduced for determining the ideal positions of these
nodes, driven by both least-squares and output-based error metrics.
For scalar problems, at least a 10-fold reduction in the error is
observed, both in least-squares and in output measures. For the Euler,
Navier–Stokes, and Reynolds-averaged Navier–Stokes equations,
the benefits varied more with physical model and approximation
order: though, in general, at least a factor of two error reduction for
most runs. Some tuning is performed of the optimization parameters,
specific to the approximation order and modeling physics, and the
elimination of this tuning in the interest of full automation is the
subject of ongoing work. It is noted that the proposed element shape
optimization does not add any degrees of freedom to the system of
equations. It does require fine-space information, though this could
be reused from output-based h∕p∕hp adaptation. Future work
includes implementation of metric-based node placement and
combination with hp adaptation.
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