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Abstract 
 
Cost of battery energy storage systems (ESS) has reduced significantly in recent years resulting in 

a marked increase in its use for power grid applications. Regulations by grid operators and state 

policies, such as energy storage mandates, have further accelerated their deployment in place of 

conventional generators for range of grid services. Majority of such policies and regulations are 

designed to compensate ESS based on their classification as a generator, transmission, or 

distribution assets. What is less acknowledged, and in many cases not accounted for, are the 

environmental benefits that ESS may provide when deployed for the grid services. Recognizing 

the environmental value of energy storage through policy measures can increase their relative 

attractiveness. This research presents a comprehensive analytical framework to evaluate the 

emissions abatement by ESS while providing resource adequacy service by shifting the peak load. 

Using a constrained optimization for ESS dispatch and least-cost economic principle, the margina l 

generation mix, and emissions rate were identified. The emissions mitigation potential is 

determined for shifting the peak load generation from inefficient natural gas based peaker units to 

the marginal generators during non-peak hours. Model determined the net avoided CO2 emissions, 

capacity value, energy arbitrage gains, and net cost of ownership for ESS in order to estimate the 

cost of CO2 abatement from the grid. We examined three grid regions (ERCOT, CAISO, and ISO-

NE), selected for their high share of natural gas generation. Across all the grid regions, the first 

100 MW of storage capacity on the grid provides the maximum emissions reduction and benefits 

from subsequent capacity additions diminish. The combustion emissions abatement potential 

across all the grid regions and technologies is between 30-42 tonCO2/MWh of storage capacity. 

On life-cycle basis, net emissions avoided over emissions invested (EAOI) is higher for longer 

duration of storage capacity due to lower energy dependent production burdens for the storage 

system. The study also presents a framework to assess the capacity value of ESS on the grid for 

different storage duration. The energy arbitrage and capacity value streams identified with load 

shifting application are not enough to repay the capital and operation costs for the ESS. Hence, the 

total cost of avoided emissions with such application is considerably high: between $750–

3,200/ton-CO2. The approach used to determine the CO2 emissions benefits in this study can also 

be applied to other emissions to inform the environmental value of ESS to policymakers, grid 

operators and utilities.   
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1. Introduction 
 

In the U.S., the power sector accounts for over 29% of total greenhouse gas (GHG) 

emissions and majority of these emissions are directly associated with the combustion of fossil 

fuels during the use phase.1To reduce the environmental impacts from the power sector, renewable 

resources such as solar photovoltaics (PV) and wind turbines are increasingly deployed at both 

utility and distributed scale across U.S. The intermittent characteristics of these renewables is 

affecting the power system reliability leading to more deployment of inefficiency combustion 

turbines on the grid. Energy storage is a promising technology to address this issue by improving 

the resource adequacy for the grid by shifting the peak load and displacing the inefficient units 

from the grid. The emissions reduction potential is dictated primarily by the heat rates of displaced 

and added generator units as well as the storage system characteristics such as round-trip efficiency 

and lifetime.    

Large-scale integration of such variable renewable resources is quickly changing the power 

generation and management systems of the electricity grid.2 Zahedi presented the new challenges 

with maintaining power quality and reliability of the grid due to intermittency and unpredictability 

nature of solar power generation, especially at large-scale solar energy systems. 3  Wang and 

Bertling demonstrated that incorporation of wind farms has very limited system reliability 

improvement. 4  Furthermore, higher penetration of wind resources degrade the grid voltage 

stability due to the surplus or shortage of power.5. In addition, low marginal cost of electric ity 

generation for non-dispatchable renewable resources have reduced the energy margins for large-

scale dispatchable thermal power plants in several wholesale markets.6 This created the risk of 

early uneconomic retirements for several thermal assets and lower reserve margins on the grid. 

Insufficient capacity margins pose a critical challenge to grid operators for maintaining the 

reliability standards. On the other hand, behind the meter solar PV resources are further altering 

the net-load pattern by creating new late-evening peaks that demands flexible resources  with 

higher ramp-rate.7,8 With the growth of electric vehicles and advent of superchargers the need for 

the flexible grid resources is further amplified. 9  Traditionally, such new capacity needs are 

managed through operating reserves in short terms and through resource adequacy planning 

mechanisms in long term. The combustion turbine (CT) is generally viewed as the capacity 

resource to be used on the grid for addressing the needs during the limited number of peak hours 
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on the grid. On the other hand, natural gas based combined cycle (NGCC) are used to provide the 

baseload generation requirements. . With higher heat rates, CT units not only increase the cost 

burden on electricity rate payers but also leads to higher GHG emissions from power sector. 

Energy storage systems (ESS) can potentially address such challenges through load-shift ing 

application.  

ESS are considered as an effective tool to enhance the flexibility and controllability of the 

entire grid and several studies have assessed the role of energy storage to enable high penetration 

of renewables on the grid.10,11 CAISO’s studies suggest that 22 GW / 186 GWh of energy storage 

would be needed in California by 2050 for 100% RPS target.12,13 Denholm and Margolis evaluated 

the combination of PV and storage to effectively replace baseload generation in the system.14 Zhao 

et. al provided a comprehensive review of potential applications for integrated ESS and renewable 

resources.15 With the flexible charging–discharging characteristics ESS can play various roles for 

different stakeholders including generation-side roles: such as time-shifting & load smoothing and 

grid-operator side roles: including frequency regulation, voltage control and transmiss ion 

congestion relief. Each of these applications have specific performance requirements and based on 

the technical characteristics of ESS technologies, suitability for grid applications are 

determined.16,17 With the emergence of new technologies, hybrid energy storage systems are also 

thoroughly researched. Integrating storage technologies with supplementary operating 

characteristics can enable range of services offerings from a single ESS. 18  Energy storage 

technologies holds the key to high share of renewable energy on the grid, however its adoption is 

limited by high costs. Arbabzadeh et. al demonstrated this in the off-grid system where 

incorporating vanadium redox flow battery reduces both the renewable curtailment and life cycle 

carbon emissions, however it is not the most cost-effective solution for low emissions target 

scenarios.19  

To address the need for grid balancing resources with use of ESS, policymakers and 

regulators are intensifying measures to incentivize cost-efficiency improvement for 

implementation of energy storage technologies in the market. 20 , 21 , 22  Three states: California, 

Oregon, and Massachusetts already have energy storage mandates in-place.23,24 With the state 

directives to the Public Service Commission for developing an Energy Storage Deployment 

Program, New York is expected to join the list with storage procurement target for 2030.25,26 

FERC Order 755 guidelines mandates storage assets to be compensated with performance driven 
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tariffs structure for grid services, but like other state mandates, it fails to acknowledge the 

environmental impacts of energy storage system integration for grid applications. 27 , 28  ESS 

inherently do not possess green characteristics and thus tracking their emission attributes is 

essential to formulate their future policies. In the load shifting application, ESS changes the net 

load profile by discharging during peak load hours and charging using non-peak hours. Such 

application provides an opportunity to avoid the emissions from the grid by displacing the 

conventional combustion turbines during peak hours with cleaner resource while charging.29,30 In 

the natural gas dominated power grid regions unutilized capacity from marginal units during non-

peak hours, , can potentially be dispatched on the grid to charge ESS. Compared to peaker units, 

the natural gas combined cycle units are 25-40% more efficient and have lower operational cost 

of electricity generation.31 Due to this difference in operational costs, ESS can shift load to less 

expensive units while potentially mitigating emissions due to improved system generator 

efficiency. Lund et. al and Finnveden et. al have noted in their researches the need for estimating 

marginal GHG emissions from electricity generation to more accurately estimates the changes in 

emissions resulting from marginal changes in the net-load profile.32,33 In this study we developed 

a dispatch model of electricity production to quantify GHG emissions from the marginal units on 

the grid that enables the evaluation of the environmental value for ESS with load shift ing 

application. 

Many studies have thoroughly investigated these ESS technologies for power systems 

applications and evaluated their benefits for the resource adequacy and grid reliability. 34 ,35 ,36 

Capacity credit is usually adopted to assess the contribution of a generator unit to the resource 

adequacy. Majority of current work involving energy storage capacity benefits is centered around 

smoothing the output power profiles of renewable energy resource. 37 , 38  Today the effects of 

standalone energy storage on system reliability is negligible and majorly ignored. However, the 

load shifting application essentially improves the reserve margin by reducing the net peak load on 

the grid and hence contribute to system reliability. Models to optimize the ESS performance on 

the grid for peak load shaving are also abundant in the literature. 39 , 40 , 41  Majority of these 

optimization models are tested on IEEE standard bus systems, have thoroughly investigated the 

operational parameters of ESS, and determined the optimal configuration for technical and 

economic performance. However, there are very few studies that deployed the environmenta l 

impact as a part of their objective function in assessing the bulk ESS on the grid for load-
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shifting.42,43 Bulk-ESS systems for load shifting application will affect how the existing systems 

operate and methods are necessary to examine the marginal effects and resulting change in CO2 

emissions. This study presents an analytical framework to compute the environmental impacts of 

integrating ESS to the grid for load-shifting applications. The model uses linear optimiza t ion 

approach to determine the hourly dispatch of energy storage units and identifying the displaced 

and added generation capacity from the grid. There are range of energy storage technolo gies 

available commercially that can be deployed for bulk-energy services like peak load shifting. 44 

The model examined for Vanadium redox batteries (VRFB), Sodium Sulfer (NaS), Lithium ion 

(Li-ion), and Lead-Acid (PbA) battery energy storage technologies. Different penetration levels 

for ESS on the grid are studied to determine the incremental benefits and net cost of GHG 

abatement. Sensitivity analysis is also conducted to highlight the significance of each parameter 

in the dispatch model for ESS on environmental benefits. 

The framework presented in this research work can be applied for any ESS technology to 

compute specific emission benefits associated with fuel consumption for displaced and added 

generation units. The outline of the report is as follows: Section II explains the methods to 

determine the ESS optimal operating strategy and its environmental benefits; Section III presents 

the simulation results for ERCOT grid case study; In Section IV the state policies and regulatory 

measures are discussed which can optimize the environmental benefits of ESS on the grid followed 

by conclusion in Section V.  
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2. Methods 
 

Electricity is provided through a continuously changing mix of generation assets and 

power-grid complexity makes it extremely difficult to trace grid electricity consumption back to a 

specific generation asset.45 Furthermore, energy storage shifts electricity production away from its 

consumption on the time-scale. Ryan et. al reviewed range of methods to compute the emission 

associated with the electricity load and found that several academic studies deployed economic 

dispatch model to determine both marginal unit and marginal emissions from electric ity 

consumption.46 Typically, marginal units are determined based on economic dispatch principle in 

which the last dispatched unit, with an economic production level, cost-effectively satisfy the load, 

power flow, and transmission constraints on the grid. In addition to this, the marginal units for a 

given period are also affected by the units providing baseload generation, ramp requirement on the 

grid for subsequent hours, as well as need for flexible capacity to address forecast and uncertainty 

movements on the grid load. In Load shifting service electricity is stored during times of low 

demand (Figure-4), increasing the dispatched capacity and associated emissions on the grid from 

marginal generator during non-peak hours. The stored energy is then discharged during the peak 

hours which reduce the net dispatched capacity requirement from marginal generator units and 

hence the associated emissions.  

To assess the emissions mitigation potential of ESS used primarily for peak load reduction, 

we carried out the analysis in three steps: 1) Developing a baseline power system model based on 

fuel type and generator technology; 2) Using linear optimization model to determine ESS dispatch 

for minimizes daily peak load; and 3) Computing the net cost of emissions abatement using the 

average heat-rates of marginal units, cost of storage system, and revenue potential from energy 

and (when available) capacity markets for ESS. This study is novel because it assesses the 

environmental emissions abatement potential in the existing grid regions in U.S. through a 

historical load data and provides the cost of CO2 abatement with this mechanism to compare it 

with other emissions mitigation approaches. The minimum and maximum size range studied for 

energy storage in this application is 100 MW to 1,000 MW, with storage capacity from 100 MWh 

to 6,000 MWh, each operated up to one cycle per day. The model is implemented for three grid 

regions: ERCOT, CAISO, and ISO-NE. The modeling approach is summarized in Figure-1. 
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Figure 1: Modeling approach for evaluating the environmental impact of ESS on the grid 

with peak load shifting application 

2.1 Economic Dispatch Model 

It was essential to develop an hourly baseline power system model to determine margina l 

power generating units. In current U.S. electricity markets, regional grid operators determine unit 

commitment and generator dispatch at varying time intervals (e.g., day-ahead, hour-ahead and 

real-time markets). In this study, the dispatched capacity of generator units is grouped together 

into categories based on the type of fuel used and generation technology. McCarthy and Yang used 

a similar approach in their effort to estimate the GHG emissions impact of plug-in hybrid electric 

vehicles in California. 47  The model uses a least cost-based ordering approach to establish a 

dispatch order where the generators are dispatched from low to high operational cost. The cost of 

generation for a resource depend on multiple factors including start-up cost, maintenance costs, 

unit type, fuel used, age, and load flexibility. To characterize the least cost principle in our 

simplified model, we used variable fuel cost for each category of power plant where the entire fleet 

is dispatched based on fuel consumption up to their maximum available capacity. Our dispatch 

model uses a simple merit-order approach to match supply with demand. The model moved 

through the queued set of plants types and dispatch the generation by fuel type until it meets the 

demand. 

To develop a dispatch model the first step was to obtain the supply information. Power 

plants are represented in our models for each grid region are primarily based on the data from EPA 
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Clean Air Markets Program.48 This database provides the unit level operating data for 2015 for 

each state. This database is supplemented with information from respective ISO’s data archives 

for grid load, Energy Information Administration (EIA) Form 860 and EIA-923. 49,50  Table-1 

provides a list of major input factors along with their respective data sources used in this work. 

The simulations presented here use the grid as it existed in 2014 for ERCOT and 2016 for CAISO 

and ISO-NE. Based on the type of fuel and technology, the generating units are categorized as: 

Renewables which include wind, solar, and biomass; hydropower; nuclear; coal; natural gas 

combined cycle (NGCC); natural gas steam turbines (NGST); natural gas combustion turbines 

(NGCT); and oil based combustion turbines. Non-dispatchable resources (typically renewable) are 

considered as firm dispatch on the grid and resulting net-load which is catered through 

dispatchable resources. The available capacity from dispatchable power plants are queued in same 

order as presented above for ascending variable cost. Due to low marginal cost nuclear resources 

assumed to appear lower in the dispatch order followed by coal and hydro resources. NGCC and 

NGST units provides the remaining generation capacity whereas the load ramp and peak capacity 

is provided by the less efficient NGCT and oil based combustion turbines.  

Table 1: Summary of major datasets used in the economic dispatch model and their sources 

Dataset Source 
Hourly demand ISO's Data Archives51,52,53 
Total annual imports ISO's Data Archives 
Unit prime mover type Form EIA-860, 2016 U.S. EIA54 
Unit prime mover fuel type Form EIA-860, 2016 U.S. EIA55 
Unit prime mover heat rate Form EIA-923, 2016 U.S. EIA56 
Unit hourly economic dispatch Clean Air Markets Data Archives U.S. EPA57 
Hourly nuclear production values Power Reactor Status Reports, U.S. NRC58 
Hourly renewable production values ISO's Data Archives 

 

In this study, we used a representative model for each of the following grid operator regions: 

• ERCOT: It manages the production and distribution of electricity within a part of Texas which 

serves about 90% of the state and operates separately from the Eastern and Western 

Interconnections, with limited connectivity through five direct-current ties.  

• CAISO: It constitutes about 80% of California’s power grid which is divided into three sub-

regions where exchange among the regions are limited due to transmission constraints. 
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• ISO-NE: It oversees the bulk electric power and transmission system primarily for six 

Northeastern states including Connecticut, Maine, Massachusetts, New Hampshire, Rhode 

Island, and Vermont. 

 
Figure 2: Studied grid region. From left: (i) ERCOT; (ii) CAISO; (iii) ISO-NE59 

All three grid regions have significant natural gas capacity (ERCOT- 48%, CAISO- 32%, and 

ISO-NE- 53%) which allows charging constraint with NGCC units to be valid as margina l 

units.60,61,62 ERCOT region has a peak load of 65GW and generates 347 TWh of electricity. Wind 

resources provide 11.7% of electricity used in ERCOT On the other hand, CAISO with the peak 

load of 45GW and annual electricity generation of 228 TWh, source 20% of its electricity supply 

from non-hydro renewable resources. In ISO-NE nuclear accounts for 26.3% of annual electric ity 

use (105 TWh).63,64,65 Given the interconnected nature of power grid, the spatial boundary of this 

study is limited to geographic extent of respective grid regions. Import and export transactions can 

represented a significant share of the capacity supply stack for studied areas. In 2016, CAISO 

imported about 26% of its electricity from other western grid regions and whereas ISO-NE met 

almost 17% of its electricity demand from Canadian sources.66,67 Although in aggregate these 

regions reflect overall importing trends which can impact marginal units, the net flow of electric ity 

from neighboring regions are assumed to remain constant in our analysis. Figure-3 summarizes 

the dispatch model results for January month in all the three grid region. It is observed that CAISO 

region has larger capacity of combustion turbines followed by ERCOT region. Whereas, natural 

gas based steam turbines accounts for higher marginal capacity in ISO-NE grid. Appendix-A 

shows the dispatch model results with the generation for summer, and winter months. 

The simplifying, aggregate methods and the disparate data sources used for the model lead to 

some differences in generation and demand. To ensure that the model is a realistic representation 

of respective grid regions, dispatch results for generation capacity were compared to the historica l 

grid load. As we do not model intra-zonal transmission and distribution (T&D), the losses 
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associated with it are added to grid load based on historical average T&D loss rates of 7%.68 The 

dispatch model needs to accurately capture the hourly variation on the grid load and difference in 

the unit type dispatch during off-peak and on-peak hours for determining the emissions from 

marginal units. On an average, the generated load profile by baseline model matches the demand 

on the grid. Modeled generation varies from historical load data by ±7.5% in some hours over the 

year, but is within 3.5% of the observed value when averaged over the year. The differences 

between the modeled results and historical values are also compared on annual generation mix. 

Appendix-B shows generation by fuel type for generators in each grid regions, showing close 

alignment of results for generator mix. The differences between the modeled results and historica l 

values are modest and outweighed by year-over-year fluctuations in external trade through 

import/export.  

(i)  

(ii)  

(iii)  
Figure 3: From top to bottom: Hourly resource mix stack from the economic dispatch model for 

the three grid regions (i) ERCOT; (ii) CAISO; (iii) ISO-NE                                                                   
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2.2 Constrained Optimization Algorithm for ESS Dispatch 

The net electricity demand (net-load1)  is influenced by several factors such as temperature, 

renewable resource penetration, and variability of wind & solar resources. The hourly load shape 

is the dominant factor influencing the hourly dispatch of ESS. Therefore, for this study we 

modelled ESS to dispatch in the day-ahead energy market assuming perfect load forecast. In 

addition, ESS is constrained with one cycle per day starting from 12:00AM midnight. A MATLAB 

based linear program is developed to determine the optimal day-ahead hourly commitment for 

charging and discharging of ESS. The objective functions for the optimization model is to 

minimize the daily primary peak load [1-3] where the decision variables are the hourly discharging 

rate 𝑃𝑃𝐷𝐷,𝑖𝑖
𝑋𝑋 , and hourly charging rate 𝑃𝑃𝐶𝐶,𝑖𝑖

𝑋𝑋 , for each 𝑖𝑖𝑋𝑋  hour of day 𝑋𝑋 as demonstrated in Figure-4. 

Objective Function: 

          𝒇𝒇𝟏𝟏  = min  𝑷𝑷𝑷𝑷𝑿𝑿                                              ∀ 𝑿𝑿             ----------- [1] 

             𝑷𝑷𝑷𝑷𝑿𝑿= max  𝑳𝑳𝒊𝒊𝑿𝑿                                              ∀ 𝑿𝑿                         ----------- [2] 

𝑳𝑳𝒊𝒊𝑿𝑿  = 𝒍𝒍𝒊𝒊𝑿𝑿 − �𝑷𝑷𝑫𝑫 ,𝒊𝒊
𝑿𝑿 × 𝒕𝒕�+ �𝑷𝑷𝑪𝑪,𝒊𝒊

𝑿𝑿 × 𝒕𝒕�          ∀ 𝑿𝑿                ----------- [3] 

Decision Variables: 𝑷𝑷𝑫𝑫,𝒊𝒊
𝑿𝑿  and 𝑷𝑷𝑪𝑪,𝒊𝒊

𝑿𝑿  

𝑃𝑃𝑃𝑃𝑋𝑋= Peak load for day X (MW) 

𝐿𝐿𝑖𝑖𝑋𝑋   = Net-grid load in ith hour for day X with ESS dispatch model (MW) 

𝑙𝑙𝑖𝑖𝑋𝑋   = Grid load in ith hour for day X with baseline dispatch model (MW) 

𝑃𝑃𝐷𝐷,𝑖𝑖
𝑋𝑋 = ESS discharging rate in ith hour on X day of the year (MW) 

𝑃𝑃𝐶𝐶,𝑖𝑖
𝑋𝑋 = ESS charging rate in ith hour on X day of the year (MW) 

t    = Unit time step in the dispatch model (hr) 

ESS are typically measured in two dimensions: power rating (MW) and energy capacity 

(MWh). Power rating is represented by the maximum charging and discharging limit of the system. 

Power capacity is relevant for load-shifting because it represents the maximum potential by which 

an energy storage can reduce the peak load from the grid. Energy capacity of ESS determines the 

duration of potential displacement. The operation of the ESS is subject to both power and energy 

constraints. In addition, the charging and discharging efficiencies creates the ESS operational 

                                                                 
1 Net load on the grid is defined as =  grid load – solar generation – wind generation  
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limits.  Maximum hourly charging and discharging rate for ESS is constrained by the power rating 

of ESS as in eq. [4].  

𝟎𝟎 ≤ 𝑷𝑷𝑫𝑫,𝒊𝒊
𝑿𝑿  , 𝑷𝑷𝑪𝑪 ,𝒊𝒊

𝑿𝑿 ≤  𝑷𝑷𝑬𝑬𝑬𝑬              ∀ 𝒊𝒊,𝑿𝑿                ----------- [4] 

𝑃𝑃𝐸𝐸𝐸𝐸= Power rating of ESS (MW) 

Similar to Rahimi’s approach, our model uses a virtual discharging and charging bar on 

load shape to optimize ESS commitment in day-ahead market. We first identify the peak load 𝑃𝑃𝑃𝑃𝑋𝑋  

and the peak load hour 𝑖𝑖𝑃𝑃𝑋𝑋  for each 𝑋𝑋  day and determines the adjacent hours for potentially 

discharging the ESS for minimizing the daily peak. 69  Likewise, the model determines the 

minimum grid load and off-peak hour before the daily peak for potentially charging the ESS. As 

shown in Figure-5, the model uses a discharge bar AB over the daily peak load and slide it down 

to determine displaced generation capacity from the grid for each hour. The length of shaved load 

for each hour 𝑃𝑃𝐷𝐷,𝑖𝑖
𝑋𝑋  is constrained by [4]. A similar charging bar is placed below minimum load hour 

occurring before the daily peak load where hourly charging rate 𝑃𝑃𝐶𝐶,𝑖𝑖
𝑋𝑋  is constrained by [4]. The 

total quantity of peak reduction and added capacity is governed by energy constraints [5-7]. The 

iterative process balances the charging and discharging of ESS determining the decision variables 

to optimize the primary objective function. In each iterative cycle the model monitors the state of 

charge (SOC) for ESS. The change in SOC affect the ability of ESS to meet the discharging or 

charging objective in the model. Compared to central station power plants, the lifetime of battery 

energy storage systems is quite short, and its replacement cost has great impact on it overall 

economic performance. To minimize the degradation caused by low SOC, the ESS are constrained 

to operate between a minimum and maximum SOC threshold [8]. The system is solved 

chronologically starting from January 1st with ESS at 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸 . For each day the objective funct ion 

utilizes upto maximum capacity of ESS 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸  that satisfy all the constraints and discharge the 

unit to 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸  level by end of each day [9]. 

��𝑷𝑷𝑫𝑫 ,𝒊𝒊
𝑿𝑿  × 𝒕𝒕�

𝟐𝟐𝟐𝟐

𝒊𝒊=𝟎𝟎

 ≤  𝜼𝜼𝑫𝑫  ×  𝑬𝑬𝑬𝑬𝑬𝑬  × �𝟏𝟏 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴𝑬𝑬𝑬𝑬  �          ∀ 𝑿𝑿 

                                    ----------- [5] 

��𝑷𝑷𝑪𝑪 ,𝒊𝒊
𝑿𝑿  × 𝒕𝒕�

𝟐𝟐𝟐𝟐

𝒊𝒊=𝟎𝟎

 ≤  
 𝑬𝑬𝑬𝑬𝑬𝑬  × �𝟏𝟏 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴𝑬𝑬𝑬𝑬  �

 𝜼𝜼𝑪𝑪
                      ∀ 𝑿𝑿 
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                              --------- [6] 

��𝑷𝑷𝑫𝑫 ,𝒊𝒊
𝑿𝑿  × 𝒕𝒕�

𝟐𝟐𝟐𝟐

𝒊𝒊=𝟎𝟎

=  𝜼𝜼𝑫𝑫  × 𝜼𝜼𝑪𝑪 × ��𝑷𝑷𝑪𝑪,𝒊𝒊
𝑿𝑿  × 𝒕𝒕�

𝟐𝟐𝟐𝟐

𝒊𝒊=𝟎𝟎

                 ∀ 𝑿𝑿 

                              --------- [7] 

𝑺𝑺𝑺𝑺𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴𝑬𝑬𝑬𝑬 ≤  𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊 𝑿𝑿   ≤ 𝑺𝑺𝑺𝑺𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴𝑬𝑬𝑬𝑬                                         ∀ 𝒊𝒊,𝑿𝑿        --------- [8] 

𝑺𝑺𝑺𝑺𝑺𝑺𝟎𝟎𝑿𝑿 =  𝑺𝑺𝑺𝑺𝑺𝑺𝟐𝟐𝟐𝟐 
𝑿𝑿 =  𝑺𝑺𝑺𝑺𝑺𝑺𝑴𝑴𝑴𝑴𝑴𝑴𝑬𝑬𝑬𝑬                                             ∀ 𝑿𝑿            --------- [9] 

𝐸𝐸𝐸𝐸𝐸𝐸        = Energy rating of ESS (MWh) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸  = Minimum State of Charge for ESS (%) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸  = Maximum State of Charge for ESS (%) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑋𝑋    = State of charge in ith hour and X day or the year (%) 

𝜂𝜂𝐷𝐷 = ESS discharging efficiency (%) 

𝜂𝜂𝐷𝐷  = ESS charging efficiency (%) 

 
Figure 5: Example results for peak load shifting 

The primary objective for ESS is to provide resource adequacy service on the grid by 

reducing the peak load and displacing the marginal generator capacity during the peak hours. Using 

the results from the constrained ESS dispatch optimization model, the new net-load profile is 

determined as in eq. [3] and the economic dispatch model from section 2.1 is deployed to identify 

the change in the required generator capacity.  
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For peak load shifting application, several energy storage technologies offer the most 

suitable characteristics including pumped-hydro storage, flow batteries, lead-acid batteries, 

lithium-ion batteries, and sodium-sulfur batteries. These advanced battery systems can be utilized 

with existing infrastructure, helping energy providers to meet peak demands while contribut ing 

towards the reserve margin targets. Table-3 list the potential energy storage technolo gies 

considered within this study and their respective system parameters for the optimization problem. 

2.3 Environmental Impact Assessment  

As identified by Arbabzadeh et al., a key principle in achieving environmental benefits 

from energy storage is to “charge clean, displace dirty.  Factors that influence this include: the 

emissions from generators displaced, the emissions from charging generators and the round-trip 

efficiency of ESS technology.70 During the operation of ESS for peak load shifting emissions from 

displaced marginal generators are avoided in exchange for emissions from additional margina l 

units brought online to charge the ESS. To evaluate the change in CO2 emissions with use of ESS, 

we compared the baseline dispatch model from section 2.1 with the constrained ESS dispatch 

model in section 2.2 for a year-round to obtain the net displaced and added generator schedule for 

each hour. The generators that are attributed with charging the energy storage system are NGCC 

units in all the three grid regions because each region have high penetration of NGCC units which 

serves as the marginal units during the non-peak hours. The units that are displaced by the 

discharge of the ESS, are typically the marginal NGCT and NGST generators. However, for the 

high penetration cases of ESS, NGCC are also displaced to minimize the peak load. The emissions 

associated with thermal generators are defined by the heat rate (HR) and the avoided emissions are 

attributed to less fuel consumption on the grid for electricity generation by shifting the load units 

with lower HR. However, this comes at the cost of round-trip losses in ESS which is captured in 

the constrained dispatch of ESS and the net-load profile. Because we categorized the generator 

units based on fuel and technology type, we are using annual average heat rate (Btu/kWh) for 

generator type from U.S. EIA 2015 database instead of actual heat rate of individual generator 

unit. Although this introduces a small error into our model, we are primarily interested in annual 

marginal emissions changes, and therefore we expect the effect of this error to be relatively small. 

With the average heat rate for combustion turbines and combined cycle power plants, net CO2 

emissions avoided from the grid during the use phase of ESS, 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑼𝑼𝑼𝑼𝑼𝑼 is computed using eq [12]. 
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In this study, we investigate CO2eq emissions only, however this model can be applied to other 

impact factors as well.  

�𝑷𝑷𝑫𝑫 ,𝒊𝒊
𝑿𝑿 × 𝒕𝒕� =  𝑬𝑬𝒅𝒅𝒅𝒅_𝑪𝑪𝑪𝑪𝑿𝑿 +  𝑬𝑬𝒅𝒅𝒅𝒅_𝑺𝑺𝑺𝑺𝑿𝑿 + 𝑬𝑬𝒅𝒅𝒅𝒅_𝑪𝑪𝑪𝑪𝑿𝑿     ----------- [10] 

�𝑷𝑷𝑪𝑪,𝒊𝒊
𝑿𝑿 × 𝒕𝒕� =  𝑬𝑬𝒄𝒄𝒄𝒄_𝑪𝑪𝑪𝑪𝑿𝑿        ----------- [11] 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑼𝑼𝑼𝑼𝑼𝑼 =  𝒇𝒇𝑵𝑵𝑵𝑵𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐  ���𝑯𝑯𝑯𝑯𝑪𝑪𝑪𝑪 × �𝑬𝑬𝒅𝒅𝒅𝒅_𝑪𝑪𝑪𝑪𝑿𝑿
𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

�+ �𝑯𝑯𝑯𝑯𝑺𝑺𝑺𝑺 × �𝑬𝑬𝒅𝒅𝒅𝒅_𝑺𝑺𝑺𝑺𝑿𝑿
𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

�
𝟑𝟑𝟑𝟑𝟑𝟑

𝑿𝑿=𝟏𝟏

−  �𝑯𝑯𝑯𝑯𝑪𝑪𝑪𝑪 × ��𝑬𝑬𝒄𝒄𝒄𝒄_𝑪𝑪𝑪𝑪𝑿𝑿 − 𝑬𝑬𝒅𝒅𝒅𝒅_𝑪𝑪𝑪𝑪𝑿𝑿 �
𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

��  

           ----------- [12] 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬     = Emissions avoided over emissions invested 
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑼𝑼𝑼𝑼𝑼𝑼 = Net CO2 Emissions Avoided from NG combustion 
𝒇𝒇𝑵𝑵𝑵𝑵𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = NG Combustion emissions factor 
𝑯𝑯𝑯𝑯𝑪𝑪𝑪𝑪 = Heat Rate for NG Combustion Turbines (CT) Power Plants 
𝑯𝑯𝑯𝑯𝑺𝑺𝑺𝑺 = Heat Rate for NG Steam Turbines (CT) Power Plants 
𝑯𝑯𝑯𝑯𝑪𝑪𝑪𝑪 = Heat Rate for NG Combined Cycle (CC) Power Plants 
𝑬𝑬𝒅𝒅𝒅𝒅_𝑪𝑪𝑪𝑪𝑿𝑿  = Displaced CT in ith hour on X day of the year 
𝑬𝑬𝒅𝒅𝒅𝒅_𝑺𝑺𝑺𝑺𝑿𝑿  = Displaced ST in ith hour on X day of the year  
𝑬𝑬𝒅𝒅𝒅𝒅_𝑪𝑪𝑪𝑪𝑿𝑿  = Displaced CC in ith hour on X day of the year 
𝑬𝑬𝒄𝒄𝒄𝒄_𝑪𝑪𝑪𝑪  
𝑿𝑿 = Added CC in ith hour on X day of the year 

In addition to emissions associated with combustion at power plants, we considered 

upstream and downstream emissions associated with natural gas production and battery materials, 

manufacturing, and disposal.  Note that a complete comparative life cycle assessment of using ESS 

as an alternative to conventional peaker unit would also need to consider the materials and 

manufacturing burdens associated with the power plant itself.  The production burdens for the 

avoided fuel use (NG) can be approximated using the fuel upstream emissions burden factor 𝒇𝒇𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼 . 

However, comparison of upstream and end of life emissions for ESS with the displaced peaker 

units is challenging because many units have been in service on the grim for over 2-20 years and 

some of them can potentially be deployed for alternative ancillary services instead of retirement. 

Allocation of these emission require thorough assessment of each individual unit. A systematic 

comparison of ESS are so far only available for either complete replacement of existing units or 

as an alternative option for new capacity. Energy returned on invested (EROI) metric has been 
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commonly adopted in assessment of fuels and energy systems as it incorporates both the primary 

energy inputs to the system and the usable energy. 71,72 Barnhart and Benson presented a similar 

concept for evaluating the electrical ESS using the energy stored on energy invested (ESOI) 

metric.73 The ESOI use the net energy stored over the life-time of an ESS system and accounts for 

the production burden in denominator to determine the effectiveness. Motivated by such analysis 

we present a novel method to assess the effectiveness of emissions abatement from ESS: emissions 

avoided on emissions invested (EAOI). EAOI, eq [13], is the ratio of net emissions avoided on 

life-cycle bases from the fuel combustion to the net emissions burden from the production of ESS. 

Similar to eq [11], net CO2 emissions avoided from the production phase of fuel use 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼 is 

computed using the upstream emissions factor 𝒇𝒇𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼  in eq [14]. We amortized the embodied 

emissions in the ESS to allocate the production burden for one year of operation [15].  

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬=  
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑼𝑼𝑼𝑼𝑼𝑼 + 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵

𝑼𝑼𝑼𝑼

𝑵𝑵𝑵𝑵𝑵𝑵𝑬𝑬𝑬𝑬
𝑼𝑼𝑼𝑼  

           ----------- [13] 

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼 = 𝒇𝒇𝑵𝑵𝑵𝑵

𝑼𝑼𝑼𝑼  ���𝑯𝑯𝑯𝑯𝑪𝑪𝑪𝑪 × �𝑬𝑬𝒅𝒅𝒊𝒊𝑪𝑪𝑪𝑪
𝑿𝑿

𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

� + �𝑯𝑯𝑯𝑯𝑺𝑺𝑺𝑺 × �𝑬𝑬𝒅𝒅𝒊𝒊𝑺𝑺𝑺𝑺
𝑿𝑿

𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

�
𝟑𝟑𝟑𝟑𝟑𝟑

𝑿𝑿=𝟏𝟏

− �𝑯𝑯𝑯𝑯𝑪𝑪𝑪𝑪 × ��𝑬𝑬𝒄𝒄𝒊𝒊𝑪𝑪𝑪𝑪
𝑿𝑿 − 𝑬𝑬𝒅𝒅𝒊𝒊𝑪𝑪𝑪𝑪

𝑿𝑿 �
𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

��  

           ----------- [14] 

𝑵𝑵𝑵𝑵𝑵𝑵𝑬𝑬𝑬𝑬
𝑼𝑼𝑼𝑼 = �

𝒇𝒇𝑬𝑬𝑬𝑬−𝑷𝑷
𝑼𝑼𝑼𝑼 × 𝑷𝑷𝑬𝑬𝑬𝑬 + 𝒇𝒇𝑬𝑬𝑬𝑬−𝑬𝑬

𝑼𝑼𝑼𝑼 × 𝑬𝑬𝑬𝑬𝑬𝑬
𝑳𝑳𝑬𝑬𝑬𝑬−𝑳𝑳𝑳𝑳𝒇𝒇𝒇𝒇

� 

           ----------- [15] 

  𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼  = Net CO2 Emissions Avoided from NG production 

𝑵𝑵𝑵𝑵𝑵𝑵𝑬𝑬𝑬𝑬
𝑼𝑼𝑼𝑼  = Levelized Net Production Burden for ESS 

𝒇𝒇𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼     = NG Upstream emissions factor 
𝒇𝒇𝑬𝑬𝑬𝑬−𝑬𝑬
𝑼𝑼𝑼𝑼 = Energy Storage production burden – Storage capacity dependent 
𝒇𝒇𝑬𝑬𝑬𝑬−𝑷𝑷
𝑼𝑼𝑼𝑼 = Energy Storage production burden – Power rating dependent 
𝑳𝑳𝑬𝑬𝑬𝑬−𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 =Service life of energy storage system 
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2.4 Cost of Emissions Abatement 

The goal for this study was to help us investigate the cost-effectiveness of using energy 

storage primarily for CO2 abatement from the grid. Emissions abatement policies like cap and 

trade or carbon taxes have significant consequences in electricity markets as they affect the 

operating margins for fossil fuel based generators. In order to compare the cost-effectiveness of 

energy storage, we computed the cost of ownership for the ESS and net revenue potential to 

determine the cost of CO2 abatement 𝑪𝑪𝑪𝑪𝑪𝑪𝟐𝟐 from the grid in the use phase as $/ton.CO2 [16]. The 

regional electricity markets in U.S. typically encompass three classes of service: energy, capacity, 

and ancillary services. Energy service relates to the physical delivery of power, capacity service 

addresses the resource adequacy for the grid by ensuring the availability of sufficient generation 

capacity during peak load, and the ancillary service market provides remaining grid support 

services. The following section explains the revenue potential assessment methodology for 

evaluating ESS.  

𝑪𝑪𝑪𝑪𝑪𝑪𝟐𝟐 =  
𝑵𝑵𝑵𝑵𝑵𝑵𝑬𝑬𝑬𝑬

𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵
𝑼𝑼𝑼𝑼𝑼𝑼 

             ----------- [16] 
Where   𝑵𝑵𝑵𝑵𝑵𝑵𝑬𝑬𝑬𝑬 =  𝑳𝑳𝑳𝑳𝑳𝑳𝑬𝑬𝑬𝑬 −  𝑹𝑹𝑬𝑬𝑬𝑬 − 𝑹𝑹𝑪𝑪𝑪𝑪        

𝑳𝑳𝑳𝑳𝑳𝑳𝑬𝑬𝑬𝑬 = Levelized capital cost of energy storage 
𝑹𝑹𝑬𝑬𝑬𝑬     = Annual revenue from Energy Arbitrage by ESS 
𝑹𝑹𝑪𝑪𝑪𝑪     = Annual revenue from capacity market by ESS 

2.4.1 Levelized Cost of Energy Storage 

The estimated cost of ownership for ESS depends on several parameters including the net 

capital cost of the system and the revenue potential. There are several studies and reviews in the 

literature that provides the cost of ESS, however, there is hardly any consensus on the capital cost 

for any energy storage technology. Zakeri, and Syri in their comprehensive life cycle cost review 

found that the Li-ion cost assumption in the literate have been to between $283-683/kW for power 

and $470-1249/kWh for energy cost.74 Schmidt et. al used the experienced based cost curves to 

predict the aggregated cost of utility scale Li-ion battery energy storage systems to be $461/kWh 

by 2030.75 The life of ESS also plays a critical role in determining the annual cost of ownership. 

The life-time of each energy storage technology is based on 365 operating cycles per year for peak-

load shifting application. Using annual discount rate of 5 percent, the levelized capital cost is 
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computed for ESS in eq [17]. In addition to the capital cost, a 1.5% additional annual operation 

and maintenance cost is assumed over the lifetime of ESS.  

𝑳𝑳𝑳𝑳𝑳𝑳𝑬𝑬𝑬𝑬 =  � 𝑷𝑷𝑬𝑬𝑬𝑬 × 𝑪𝑪𝑬𝑬𝑬𝑬𝑷𝑷 +   𝑬𝑬𝑬𝑬𝑬𝑬 × 𝑪𝑪𝑬𝑬𝑬𝑬𝑬𝑬 �  × (𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪 + 𝒓𝒓𝑶𝑶&𝑴𝑴)              ----------- [17] 

  𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪 = 𝑰𝑰 × � (𝟏𝟏+𝑰𝑰)𝑳𝑳𝑬𝑬𝑬𝑬−𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳

�(𝟏𝟏+𝑰𝑰)𝑳𝑳𝑬𝑬𝑬𝑬−𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳−𝟏𝟏�
�    

𝒓𝒓𝑪𝑪𝑪𝑪𝑪𝑪 = Capital recovery factor 
𝒓𝒓𝑶𝑶&𝑴𝑴   = Annual operation and maintenance cost (fixed as % of capital cost) 
𝑰𝑰          = Discount Rate 
𝑪𝑪𝑬𝑬𝑬𝑬   
𝑷𝑷      = Power dependent capital cost of energy storage system 

𝑪𝑪𝑬𝑬𝑬𝑬   
𝑬𝑬      = Energy dependent capital cost of energy storage system 

2.4.2 Energy Arbitrage Value 

Resource in energy markets are compensated with the locational marginal price (LMP) 

which is the marginal cost of supplying, at least cost, the next increment of electric demand at a 

specific location (node) on the electric power network. LMP’s are typically higher during the peak 

hours due to lower HR for marginal units. With the load shifting application ESS capitalize on the 

energy arbitrage by charging at a cheaper rate and getting compensated with higher LMP for 

discharging during peak hours [18].  

𝑹𝑹𝑬𝑬𝑬𝑬 =  ����𝑬𝑬𝑫𝑫,𝒊𝒊
𝑿𝑿  − 𝑬𝑬𝑪𝑪,𝒊𝒊

𝑿𝑿 �× 𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊𝑿𝑿� 
𝟐𝟐𝟐𝟐

𝒊𝒊=𝟏𝟏

𝟑𝟑𝟑𝟑𝟑𝟑

𝑿𝑿=𝟏𝟏

 

            ----------- [18] 
𝑳𝑳𝑳𝑳𝑳𝑳𝒊𝒊  𝑿𝑿= Historical clearing locational marginal price for ith hour on X day 

2.4.3 Capacity Value 

Generator assets are compensated in capacity market based on their capacity value, which 

is the capability of a resource to provide firm energy in the hour of need, typically during the peak 

load period or in a contingency event when adequate generation is not available. The capacity 

value is measured as the percentage of nameplate capacity for a generator resource. With peak 

shaving applications ESS can potentially obtain capacity credit and generate additional revenue 

for its resource adequacy service. However, the capacity and reliability benefits of ESS are less 

acknowledged by grid operators. Today some regions do account for capacity value of ESS which 

is the function of both the power rating and energy capacity. CAISO classify energy storage as a 
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non-generator resource with effective flexible capacity (EFC) as the output power that can cater 

the grid load for 3 hours. The EFC of an ESS is qualified for capacity payment in the market. In 

other regions ESS are classified as a non-generator resource because they are limited by energy 

storage capacity and hence contribute to reserve margin on a discounted basis. Several studies in 

literature have established a capacity value for energy storage systems based on their duration of 

storage. However, there is no consistent and standardized approach across these studies to 

recognize the capacity benefits. In order to consider the appropriate incentive for the reliability 

service from peak load shifting application the capacity credit for an ESS system is computed 

using the dispatch model as the average daily peak load reduction over power rating of ESS [19]. 

This incorporates the incremental capacity benefits for the higher energy to power ratio in our 

model for catering the peak load. To compute the revenue potential from capacity market historica l 

capacity prices are considered for respective grid regions [20]. Unlike CAISO and ISO-NE, 

ERCOT is energy only market. Hence, the capacity revenue are assumed to be zero for ERCOT.  

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 =  
𝟏𝟏
𝟑𝟑𝟑𝟑𝟑𝟑

 × �
𝑴𝑴𝑴𝑴𝑴𝑴 �𝒍𝒍𝒊𝒊𝑿𝑿�−𝑴𝑴𝑴𝑴𝑴𝑴 �𝑳𝑳𝒊𝒊𝑿𝑿�

𝑷𝑷𝑬𝑬𝑬𝑬

𝟑𝟑𝟑𝟑𝟑𝟑

𝑿𝑿=𝟏𝟏

 

           ----------- [19] 

𝑹𝑹𝑪𝑪𝑪𝑪 =  𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 × 𝑷𝑷𝑬𝑬𝑬𝑬 ×  𝑷𝑷𝑪𝑪𝑪𝑪𝑪𝑪      ----------- [20] 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪         = Capacity Credit of ESS 
𝑴𝑴𝑴𝑴𝑴𝑴 �𝒍𝒍𝒊𝒊𝑿𝑿�  = Peak Load for day X in baseline dispatch model 
𝑴𝑴𝑴𝑴𝑴𝑴 �𝑳𝑳𝒊𝒊𝑿𝑿� = Peak Load for day X in ESS constrained dispatch model 
𝑷𝑷𝑪𝑪𝑪𝑪𝑪𝑪           = Capacity price 
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Table 2: Grid Application Assumptions for ESS Model  

Input parameters Units Variable Values Sensitivity 
Cases 

ESS Power Rating MW 𝑃𝑃𝐸𝐸𝐸𝐸  100 - 1000 -- 
ESS Capacity Hr 𝑇𝑇𝐸𝐸𝐸𝐸 1 - 6  -- 
Number of ESS Full Cycles a per Year 𝐿𝐿𝐸𝐸𝐸𝐸−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  365 -- 
Study period b Year n 1 -- 
Natural Gas Emissions Factor     
Upstream 76 kg of CO2eq/MMBtu 𝑓𝑓𝑁𝑁𝑁𝑁

𝑈𝑈𝑈𝑈 13.63 ± 10% 

Combustion 77 kg of CO2eq/MMBtu 𝑓𝑓𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  53.07 -- 
Heat Rates 78     
Natural Gas Turbines Btu/kWh 𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶 11,302 ± 10% 
Natural Gas Steam Turbines Btu/kWh 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆 10,372 ± 10% 
Natural Gas Combined Cycle Btu/kWh 𝐻𝐻𝐻𝐻𝐶𝐶𝐶𝐶 7,655 ± 10% 
Discount Rate % I 5 ± 2% 
a ESS are constrained to operate for one cycle per day to shave daily primary peak 
b ESS system emissions abatement is studied for one annual cycle from Jan – Dec for each grid 
region 
 

 

Table 3: Energy Storage Systems Parameters  
Parameter Units Variable VRFB PbA NaS Li-ion 
Operation 
Parameter 

      

Round-trip efficiency % 𝜂𝜂𝐷𝐷 × 𝜂𝜂𝐶𝐶  82.5 79 80 80 80.5 81 85 82 
Service life  Years 𝐿𝐿𝐸𝐸𝐸𝐸−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 10 9 10 13 
Production 
Burden 83 

      

Energy Dependent kg CO2/MWh 𝑓𝑓𝐸𝐸𝐸𝐸−𝐸𝐸
𝑈𝑈𝑈𝑈  104,400 114,933 67,820 35,700 

Power Dependent a kg CO2/MW 𝑓𝑓𝐸𝐸𝐸𝐸−𝑃𝑃
𝑈𝑈𝑈𝑈  160,000 160,000 160,000 160,000 

Cost of ESS 84       

Capital Cost- Power $/kW 𝐶𝐶𝐸𝐸𝐸𝐸𝑃𝑃  490 378 366 463 
Capital Cost- Energy $/kWh 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸  467 463 298 795 
O&M Cost b % of CapEx 𝑟𝑟𝑂𝑂&𝑀𝑀 1.5% 1.5% 1.5% 1.5% 
aThis component of energy storage production burden is held constant due to the lack of data 
bO&M costs are assumed to be same across all the energy storage technology type 
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3. Results 
 
3.1 Emissions Abatement Potential 

The net emission impact of using ESS on the grid for resource adequacy service depends 

on both the avoided emissions in the use phase and the upstream emissions burden. Figure-6 

demonstrates the net emissions abatement potential of various ESS sizes with Li-ion battery 

technology. The results for other technologies are provided in Appendix C for respective grid 

regions. For each ESS size the avoided combustion emissions from the fuel use is normalized by 

the energy capacity (MWh) of the system to understand the net impact of incremental storage 

capacity on the grid. The first 100MWh of energy storage on the grid has the highest emissions 

reduction potential of 42 ton-CO2/MWh as energy storage majorly displaces marginal combustion 

turbines across all the grid regions. As the capacity penetration of ESS increased to 6000 MWh, 

the annual emissions reduction potential reduces to 35 ton-CO2/MWh in ERCOT and 30 ton-

CO2/MWh ISO-NE grid. Whereas, in CAISO region emissions reduction potential remains close 

to 40 ton-CO2/MWh of storage even with 6000 MWh of ESS capacity because it has high higher 

share of peaker units (7.8%) in its energy mix. Round-trip efficiency of ESS technologies influence 

the displaced marginal unit capacity and the emissions abatement by avoided fuel use. Like in 

Figure-6, increased penetration on the grid across all the battery technologies lead to similar 

decremental trend in emissions abatement as for Li-ion batteries (Appendix C). However, with 

lower round-trip efficiencies their respective abatement potential is considerably lower than Li-

ion ESS. These values are further used to determine the net cost of emission abatement.  

Figure 6 and Appendix C also shows the EAOI for respective ESS technology, representing 

net environmental benefits relative to production burden of ESS. Across all the technology type 

EAOI is greater than one which means for all the ESS configurations the peak load shift ing 

application result in net emissions reduction on life-cycle basis. EAOI for a given ESS technology 

depends of multiple parameters including energy dependent production burden factor, round trip 

efficiency, and life-time of the system. For all four ESS technologies studied and in all three grid 

regions, increased penetration of ESS (MW) leads to lower EAOI ratio. This is primarily due to 

diminishing emissions abatement potential with higher storage capacity because the production 

burden associated with the power rating is assumed to be consistent across all technologies. 
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Furthermore, among the all the four technologies Li-ion batteries have superior performance due 

to its higher efficiency, life-time, and lowest production burden associated with energy capacity. 

However, energy dependent upstream emissions burden is relatively lower across all the 

technologies when compared to power dependent burden. Hence, with higher storage capacity 

(hrs) the EAOI ratio is improved significantly in each grid regions. For all the three grid regions 

first 100 MW of ESS with 600 MWh capacity offers highest life-cycle environmental benefits 

relative to its production burden.  

 Avoided CO2 emissions from fuel 
combustion 

Emissions avoided over emissions 
invested (EAOI) 

 

  
 

  
 

  

          

Figure 6: Emissions avoided from the grid with the use of lithium-ion battery energy storage 
systems for peak load shifting application in three U.S. grid regions with variable power and 
energy storage capacity. Life cycle CO2 emissions are represented using the EAOI ratio which 
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incorporates both: upstream production burdens for batteries & fuel and use phase avoided 
emissions from fuel combustion        

3.2 Capacity Value of Energy Storage Systems 

Recognizing the capacity value contribution of ESS is important to ensure proper 

compensation for their resource adequacy service and incentivizing its deployment on the grid. 

The value of ESS capacity in this study is based on the degree to which it contributes to the 

reliability of the electric supply system by reducing the daily peak demand. The capacity credits 

computed for ESS sizes are summarized in Figure 7. Across all the grid regions, the first one-hour 

block of stored energy provides the maximum capacity benefits and the incremental benefits from 

subsequent blocks of stored energy begin to diminish. For example, in CAISO grid for a 1000 MW 

system the first one-hour block provides 45% capacity value, while the second one-hour block 

provides 24% additional capacity value (for a total of 69%). This is because the value of the first 

one-hour block of energy stored captured the maximum load reduction in peak hour. The 

subsequent block of storage operates in the shoulder hours and therefore provides lower reliability 

benefits than their rated capacity. Although, ERCOT do not have a capacity market, but it is 

observed that the ESS system with 4 hours of storage capacity can provides nearly 100% capacity 

benefits primarily by peak load reduction. A similar increasing capacity value trend is observed in 

CAISO and ISO-NE grid for longer duration of storage. CAISO and ISO-NE regions have 

relatively lower capacity value because these regions observe primary peak in earlier in the day 

limiting charging period for ESS, and have higher secondary peak load. Across all the three regions 

first 100 MW obtains higher capacity credit and as more storage capacity is integrated on the grid 

their capacity credit is reduced.  

In addition to the resource adequacy services of ESS, the benefits from a grid planning 

perspective also play an important role in determining the correct incentives. As seen in section 

3.1, ESS enables the use of efficient generators on the grid and this is demonstrated from the 

improvement in the grid load factor (LF) as shown in Figure 7. Load factor is defined as the 

average energy load on a system as compared to its peak load for a given period. A higher load 

factor is advantageous for grid operators because existing energy resources on the grid can be 

utilized more effectively leading to their higher capacity factor (CF). This essentially spreads the 

fixed costs of resources over more kWh of output, resulting in lower cost of electricity generation 
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per unit ($/kWh). Shifting the peak load flattens the load duration curve by increasing the 

utilization of existing resources through charging and reducing the peak demand from the grid 

through discharging. The increase in load factor is because of both: improvement in the average 

load and reduction in peak load. Across all the three regions as the penetration of ESS capacity 

(MW) increases on the grid, higher storage duration (hrs) leads to greater improvement in the load 

factor. With the lowest annual peak load, ISO-NE regions observes the highest potential of over 

4.3% improvement in LF with 6000 MWh followed by CAISO (2.45%) and ERCOT (1.5%).  

       Capacity value of energy storage system with peak load shifting application 
      ERCOT        CAISO        ISO-NE 

   
          

       Increase in annual load factor with energy storage system on the grid 
      ERCOT        CAISO        ISO-NE 

   

          
Figure 7: Capacity Value of battery energy storage system in the constrained economic dispatch 
model computed as average daily peak load reduction over the power rating on ESS. Impact on 
grid load factor is also summarized for the grid regions where shifting the peak load using ESS 
flattens the load duration curve and essentially increases the LF. 

3.3 Value Proposition and cost of emissions abatement 

Figure-8 shows the results of the cost assessment for ESS in the three grid regions for peak 

load shifting with Li-ion battery technology. The results for VRFB, NaS, and PbA technology is 
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provided in Appendix D. As shown in Figure-8, the net revenue potential for ESS increases with 

more deployment of storage systems on the grid. However, decreasing slope across all the storage 

capacity (MW) curves on the grid demonstrates that the marginal revenue reduces for longer 

duration of energy storage. Due to lack of capacity market ERCOT regions has higher margina l 

prices during peak hours and hence the highest energy arbitrage potential among all the three grid 

regions. In CAISO region resource adequacy mechanism offers additional revenue potential for 

ESS owners through bilateral contracts with load serving entities. Whereas, capacity payment 

through annual auctions in ISO-NE region provides the capacity value to ESS. Although, capacity 

credit is higher for longer duration of storage capacity (Figure-7), the net share of capacity value 

in total revenue reduces in both the regions and energy arbitrage becomes increasingly important.  

The emissions abatement cost computed here incorporates all the parameters of grid and 

storage system through amortized cost of storage (shown in Appendix E), net revenue, and 

emissions abated in the use-phase from the grid. As shows in Figure-8, the cost of emissions 

abatement is lower with first 100 MW of storage on the grid across all the three regions. As the 

storage capacity is scaled up, the incremental cost of storage outweighs the increase in annual 

revenues and reduction in CO2 emission. Longer duration of storage capacity improves the cost 

performance as the energy dependent cost component is compensated through higher capacity 

credits for storage systems. As seen in Appendix D, across all the technologies NaS batteries will 

result in lowest cost of abatement due to its lower investment cost and higher life-time. 
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      ERCOT        CAISO        ISO-NE 
Revenue potential for Li-ion battery ESS with peak load shifting application 

   

                 

Share of capacity and energy arbitrage revenue streams for Li-ion battery ESS 

   
 

Net cost of combustion emissions abatement with ESS 

   
 

Figure 8: Net revenue potential for ESS across the grid regions based on capacity penetration 
and various duration of storage. Revenue breakdown is shown from energy arbitrage and 
capacity markets for 300MW ESS system. Using the emissions avoided in the use phase and 
levelized cost of storage, net emissions abatement cost trend is determined where each additional 
storage unit yielding higher marginal cost of CO2 abatement from the grid  
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4. Discussion 

The integration of ESS into the grid can lead to a wide range of environmental impacts and 

understanding the net environmental impact of using ESS for power grid services requires the 

integration of LCA and power systems analysis. The marginal generator units are identified on the 

grid for determining the changes to the power system with integration of ESS. Linear optimiza t ion 

model is developed to determine the hourly dispatch of energy storage for minimizing the daily 

peak load. This research suggests that energy storage integration shows promise for lowering the 

total life cycle emissions with peak load shifting application. Results shows that energy storage 

can potentially reduce 30-42 tonCO2/MWh of storage capacity from the studied grid regions. 

Although, the cost of the battery energy storage is quite high and can change the results 

significantly, the cost of avoided carbon emissions with peak load shifting application of energy 

storage is uneconomical compared to alternative mechanisms. The abatement cost only considers 

the avoided combustion emissions of the fuel, but the net cost of emissions abatement  depends on  

marginal units on the grid during charging hours, production burden for battery system & fuel, and 

revenue potential from power markets.   

The marginal generator unit on the grid is highly sensitive to number of parameters and the 

marginal emission factor may range from 525 gCO2/kWh to 670 gCO2/kWh.85 Typically, these 

marginal emissions are lowest during early morning hours with low grid load and are highest in 

the afternoon with the mid-day peak load. In gas dominated grid regions generators operating on 

the margin are likely to be natural gas based CC and CTs, however, Siler Evans study found coal 

as marginal unit for over 14% period in Texas and 16% in Western Electricity Coordinating 

Council (WECC).86 Mo et. al. determined that in MISO region coal accounts for over 55% of 

marginal generation during non-peak hours, while gas takes up almost all the marginal generation 

during peak load period.87  Electricity generation system uses complex operating constrains to 

constantly balance supply and demand on the grid. The model developed in this study simplif ied 

the grid into one zone and under the most basic assumptions, all the marginal emissions for 

charging the energy storage are considered from NGCC plants. Natural gas is often more expensive 

than coal, however, due to system constraints some zones in the grid regions have coal as the 

marginal unit. To charge energy storage with coal and displace natural gas based peaker units leads 
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to more net emissions during the operation of the energy storage system, fundamentally altering 

the objective of emissions abatement from the grid.  

As more capacity of storage is integrated on the grid, upstream emissions associated with 

the energy storage and natural gas have more influence on EAOI in peak load shifting application. 

There are major uncertainties associated with the production burden for grid scale ESS and with 

constraint of one charge-discharge cycle in the load shifting application, ESS are underutilized. 

With the advancement in technologies ESS are capable of stacking range of grid services includ ing 

frequency regulation, reserves, and voltage regulations. Considering multiple service application, 

ESS could mitigate more emissions from the grid when compared to single service case. For the 

life-cycle assessment, share of production burden for ESS would be attributed to secondary 

services by ESS, improving the EAOI for load-shifting application. In addition to environmenta l 

value, using energy storage asset for more than one function can potentially increase the storage 

profitability.88,89 However, policy and market conditions remain the primary barriers to stacking 

energy storage services. On the other hand, there are uncertainties exist with the production burden 

of the displaced fuel use for peaker units. A small fraction of methane leakage occurring in the 

extraction, production, and transportation of natural gas could significantly impact the life-cyc le 

emissions of the displaced fuel use from the grid.90,91 If both charging and discharging units are 

natural gas based, then the EAOI would have minimal impact whereas if the charging generators 

are other than gas, the results for EAOI will change significantly. 

In addition to the environmental benefits, the economics also plays a key role is 

determining the cost-effectiveness of ESS for emissions abatement application. The levelized 

capital cost of ESS is a function of the use case and system specifications, e.g. power rating and 

energy capacity. The use case for a storage technology determine its lifetime in number of years 

that a storage technology will continue to operate. The cost of storage technologies is coming down 

very quickly and as the cost of storage is reduced the emissions abatement cost also decrease. 

Another consideration is the net revenues earned by ESS in energy and ancillary service markets. 

Energy arbitrage potential with load shifting service across all the region is volatile and is dictated 

by several parameters including gas price and renewable penetration on the grid.  In addition, ESS 

provides capacity benefits by contributing towards system resource adequacy. In this study ESS 

operates on the well-established functionality of peak shaving through which it is available at 
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maximum capacity during peak load hours. However, the true capacity value is computed as the 

capability of a resource to lower the risk of loss of load events (LOLE). Shioshansi and Madaeni 

et. al. estimation approach through dynamic programming use loss of load probability to determine 

the capacity value of storage as a function of the duration of stored energy. 92 Since the duration 

of stored energy dictates in which peak hours the storage system can mitigate the risk and provide 

reliability benefits, storage system with shorter duration of storage qualifies for partial capacity 

credit. The framework applied in this research only consider the peak-shaving due to which the 

capacity benefits are relatively higher than other studies. The role of capacity market based revenue 

in CAISO and ISO-Ne strengthens the argument that the capacity benefits of energy storage system 

should be recognized as per the level of stored energy duration to improve their economic 

performance.  

The framework applied in this study presents a simplistic approach that can be used to 

refine the existing standards for considering the capacity contribution of energy storage for 

resource adequacy. This study further provides a structure to quantify the emissions abatement 

potential of using energy storage system across grid applications and evaluate its cost effectiveness 

for different storage technologies. As shown in the results, there is significant potential to deploy 

energy storage on the grid for reducing the emissions with resource adequacy service. However, 

on the cost side energy storage technologies proved to be an expensive strategy for emissions 

reduction. The energy arbitrage and capacity value streams are not enough to repay the capital and 

operation costs for the ESS. Hence, the environmental value quantified in this research presents 

an additional value stream which could be recognized through policy and market regulation for 

ESS. Furthermore, it is believed that by providing other services during the idle hours of storage 

systems the cost effectiveness of the proposal could be improved. Accordingly, a future study can 

be developed based on the results of this research to investigate how stacking multiple services 

shape the economic and life cycle environmental sustainability of energy storage systems on the 

gird.  
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Appendices 
  
Appendix A: Hourly dispatch model 

 
Figure 9: Hourly resource mix stack from the economic dispatch model for the month of June in 

three grid regions. Higher daily peak is observed across all the three regions in the summer 
period that consumed more natural gas based flexible resources. CAISO region has higher 

NGCT and NGCC to address the fast ramping requirement for late evening peak which coinside 
reduced solar PV generation 
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Figure 10: Hourly resource mix stack from the economic dispatch model for the month of 

october in three grid regions. Winter month has lower daily peak load compared to june month. 
ISO-NE region observed higher share coal resources on the grid compared to other months.  

 
Figure 11: Daily economic dispatch model results for the given hourly net-load where resources 

are stacked based on cost of generation to meet the net-load with lest marginal cost 
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Appendix B: Model Validation 

 
Figure 12: Baseline dispatch model validation using generated load vs historical grid load 
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Appendix C: Emissions reduction and EAOI for other ESS technologies 
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Appendix D: Cost of Emissions Abatement with Energy Storage Systems 
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Appendix E: Levelized cost of Energy Storage Systems 
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