
Personalized Web Services Interface Design Using Interactive Computational Search

by

FNU Jirigesi

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

(Software Engineering)

in the University of Michigan-Dearborn

2017

Master’s Thesis Committee:

Assistant Professor Marouane Kessentini, Chair

Professor Qiang Zhu

Associate Professor Brahim Medjahed

ii

DEDICATION

To My Parents.

iii

ACKNOWLEDGEMENTS

It is with a great joy that I reserve these few lines of gratitude and deep appreciation to all those

who directly or indirectly contributed to the completion of this work:

I express my greatest gratitude to Dr. Marouane Kessentini, who dedicated all his wonderful

time to collaborate, support and lead me to the end of this piece of work. His advices,

dedication, availability, relevant comments, corrections and committeemen led to the success

of this work.

I also express my greatest thanks to SBSE members who supported me with valuable feedback

and always kindly encouraged me to succeed this project.

I thank all the lecturers of the CIS master degree who have used their valuable time to transmit

the knowledge that help in putting this work together me.

Finally, I wish to express my deep gratitude and thank my family who has consistent ly

expressed its unconditional support and encouragement.

All those who contributed in one way or another, to make this work, can be found here, the

crowning of their efforts.

Thank you.

iv

TABLE OF CONTENTS

Dedication ... ii

Acknowledgements ... iii

LIST OF FIGURES ... v

Abstract.. vi

Chapter 1: Introduction .. 1

Chapter 2: Related Work .. 5

2.1 Background .. 5

2.2Problem Statement and Related Work ... 7

CHAPTER 3: Interactive Search Algorithm For Presonalized Design Of Web Services

Interface .. 11

3.1 Approach Overview ... 11

3.2 Solution Approach ... 16

Chapter 4: VALIDATION .. 23

4.2 Experimental Setting ... 25

4.3 Results ... 26

Chapter 5: Conclusion ... 31

References ... 33

v

LIST OF FIGURES

Figure 1: Restructuring the design of a Web service Interface example (Amazon Simple

Notification Service) …...………………………………………………………………..…...10

Figure 2. Approach overview ……………………………………………………...………...11

Figure 3: Example of a solution representation …...…………………………………..…….18

Figure 4: The proposed interface design modularization tool …..…………………...…..….19

Figure 5: The user can specify some desired metrics value ………………………..……….21

Figure 6: The user can move or delete an operation …………………………………..…….21

Figure 7: The precision (PR) results on all the 22 Web services .…………………………...27

Figure 8: The recall (RE) results on all the 22 Web services ……...………………………..27

Figure 9: The number of fixed design antipatterns (NF) results on all the 22 Web service

……………………………………………..…………………………….……………………28

vi

ABSTRACT

Most of successful Web services evolve through a process of continuous change due to

several reasons such as improving the quality, fixing bugs and adding new features. However, this

evolution process may weaken the design of the Web service’s interface by including a large

number of non-cohesive operations and make it unnecessarily complex for users to find relevant

operations to be used by their services-based systems.

In this thesis, we propose a remodularization recommendation approach that dynamica l ly

adapts and interactively suggests a possible modularization of the Web services interface design

to users/developers and takes their feedback into consideration. Our approach uses an interactive

multi-criteria decision making algorithm, based on interactive NSGA-II, to find a set of good

design interface modularization solutions that find a trade-off between improving several interface

design quality metrics (e.g. coupling, cohesion, number of portTypes and number of antipatterns),

maximizing the reuse of user-interface interaction history patterns identified from previous

releases and satisfying the interaction constraints learnt from the user feedback during the

execution of the algorithm while minimizing the deviation from the initial design.

We evaluated our approach on a set of 22 real-world Web services, provided by Amazon

and Yahoo. Statistical analysis of our experiments shows that our dynamic interactive Web

services interface modularization approach performed significantly better than the state-of-the-art

modularization techniques.

vii

Key words: Web services, interface design, quality, multi-objective search

1

CHAPTER 1: Introduction

Web services promote software reuse by providing reusable services to end users who can

compose them to implement or update an existing system [2]. One of the main key factors for

deploying successful and popular services is assuring a well-designed interface for users (service’s

subscribers) to find relevant and high-quality operations to implement the features of their service-

based systems [6]. The Web services interface is provided by the service providers such as FedEx,

Google, PayPal and Google. It is the most critical component in the service-oriented architecture

(SOA) since the interface is the only visible component to the users.

The evolution of Web services may have a negative impact on the design quality of the

interface by including a large number of non-cohesive operations and make it unnecessar ily

complex for users to find relevant operations to be used their services-based systems. An example

of well-known interface design defect is God object Web service (GOWS) [3] which implements

many operations related to different business and technical abstractions in a single service interface

leading to low cohesion of its operations and unavailability to end users because it is overloaded.

The choice of how operations should be exposed through a service interface can have an impact

on the performance, popularity and reusability [7] and it is not a trivial task. On one hand, Web

services interface including a high number of operations lead their clients to invoke their interfaces

many times which significantly deteriorate the performance. On the other hand, aggregating

several operations of an interface into one operation will reduce the reusability of the service.

2

Despite its importance, very few studies focused on personalizing and improving the design

of Web services interface for the users/subscriber [4] [5]. The majority of existing work [3] [11]

[12] addressed the problem of the detection of design defects of Web services interface based on

declarative rule specification. In these settings, rules are manually defined to identify the key

symptoms that characterize an interface design defect using combinations of mainly quantitat ive

metrics. For each possible interface design defect, rules that are expressed in terms of metric

combinations need high calibration efforts to find the right threshold value for each metric.

Another important issue is that translating symptoms into rules is not obvious because there is no

consensual symptom-based definition of design defects. In fact, the identification of these interface

design defects is a very subjective process and requires integrating the user in the loop. These

difficulties explain a large portion of the high false-positive rates reported in existing research.

Very recent work [4][5] addressed the problem of fixing these design defects by fully-

automatically decomposing Web services interface based only on the cohesion metric. Deciding

on how to decompose/modularize an interface is subjective and difficult to automate since it is

required to integrate the feedback of users during the modularization process. In addition, the

history of interactions between the users and the current interface design could be important to

understand the dependency between the operations within an interface and generate a personalized

interface. However, these aspects were not considered by existing studies.

In this thesis, we propose a remodularization recommendation approach that dynamica l ly

adapts and interactively suggests a possible modularization of the Web services interface design

to developers and takes their feedback into consideration. Our approach uses an interactive mult i-

criteria decision making algorithm, based on interactive NSGA-II[15], to find a set of good design

interface modularization solutions that find a trade-off between improving several interface design

3

quality metrics (e.g. coupling, cohesion, number of portTypes and number of antipatterns),

maximizing the reuse of user-interface interaction history patterns identified from previous

releases and satisfying the interaction constraints learnt from the user feedback during the

execution of the algorithm while minimizing the deviation from the initial design. Based on this

analysis, the interface modularization solutions are ranked and suggested to the developer one by

one in an interactive fashion. The developer can approve, modify or reject each of the

recommended operations or portTypes, and this feedback is then used to update the proposed

rankings of recommended interface modularization solutions. After a number of interactions with

the developer, the interactive NSGA-II algorithm is executed again on the new modified design

interface to repair the set of interface modularization solutions based on the new changes and the

feedback received from the users.

We evaluated our approach on a set of 22 real-world Web services, provided by Amazon

and Yahoo. Statistical analysis of our experiments shows that our dynamic interactive Web

services interface modularization approach performed significantly better than the state-of-the-art

modularization techniques [4][5]. The primary contributions of this thesis can be summarized as

follows:

1. This work introduces a novel interactive and personalized way to modularize and

improve the quality of Web services interface using interactive dynamic multi-objec t ive

optimization. The proposed technique supports the adaptation of interface design solutions

based on the user feedback while also taking into account other objectives such as the history

of previous interactions from multiple releases and improving several quality attributes while

minimizing the deviation from the initial design. To the best of our knowledge, we propose the

first approach to interactively generate a personalized Web services interface.

4

2. This work reports the results of an empirical study on an implementation of our

approach. The obtained results provide evidence to support the claim that our proposal is more

efficient, on average, than existing Web services modularization techniques based on a

benchmark of 22 real-world services. This thesis also evaluates the relevance and usefulness

of the suggested interface design improvements for Web service users.

The remainder of this thesis is as follows: Chapter 2 presents the relevant background, a

motivating example for the presented work and an overview of the related work; Chapter 3

describes the search algorithm; an evaluation of the algorithm is explained and its results are

discussed in Chapter 4. Finally, concluding remarks and future work are provided in Chapter 5.

5

CHAPTER 2: Related Work

We first detail some required background information to understand the problem addressed

in this work, then we present a motivating example to illustrate the limitations of existing studies.

Finally, we present an overview of existing work.

2.1 Background

The interface of a Web service is described as a WSDL (Web service Description

Language) document that contains structured information about the offered operations and their

input/output parameters [6]. A portType is a set of abstract operations. Each operation refers to an

input message and output messages. The users select the desired operation on their services-based

system implementation via the interface by specifying the name of the operations and the required

parameters (inputs) and they receive the required outputs without accessing to the source code of

these used operations.

Most of existing real-world Web services interface regroup together a high number

operations such as Amazon EC2 that contains more than 100 operations in some releases. There

are few WSDL design improvement tools [4][5] that have emerged to provide basic refactorings

on WSDL files however applying these refactorings is fully manual and time consuming as

discussed in the next section. These interface design refactorings correspond to Interface

Decomposition, Interface Merging (to merge multiple interfaces) and Move Operation (to move

an operation between different interfaces).

6

Web service interface defects are defined as bad design choices that can have a negative

impact on the interface quality such as maintainability, changeability and comprehensibility which

may impacts the usability and popularity of services [12]. They can be also considered as structural

characteristics of the interface that may indicate a design problem that makes the service hard to

evolve and maintain, and trigger refactoring. To this end, recent studies defined different types of

Web services design defects [3]. In our experiments, we focus on the seven following Web service

defect types:

 God object Web service (GOWS): implements a high number of operations related

to different business and technical abstractions in a single service.

 Fine grained Web service (FGWS): is a too fine-grained service whose overhead

(communications, maintenance, and so on) outweighs its utility.

 Chatty Web service (CWS): represents an antipattern where a high number of

operations are required to complete one abstraction.

 Data Web service (DWS): contains typically accessor operations, i.e., getters and

setters. In a distributed environment, some Web services may only perform some simple

information retrieval or data access operations.

 Ambiguous Web service (AWS): is an antipattern where developers use ambiguous

or meaningless names for denoting the main elements of interface elements (e.g., port types,

operations, messages).

 Redundant PortTypes (RPT): is an antipattern where multiple portTypes are

duplicated with the similar set of operations.

7

 CRUDy Interface (CI): is an antipattern where the design encourages services the

RPC-like behavior by declaring create, read, update, and delete (CRUD) operations, e.g.,

createX(), readY(), etc.

We choose these defect types in our interactive interface design tool because they are the

most frequent and hard to detect [20], cover different interface design issues, due to the availability

of defect examples and could be detected using a tool proposed in our previous work [3][12].

2.2 Problem Statement and Related Work

In the following, we introduce some issues and challenges related to restructuring the

design quality of the Web service interfaces. Figure 1 illustrates a fine-grained service that can

lead to a system with a poor performance due to an excessive number of calls to one interface

regrouping all the operations. Thus, it is critical to fix this issue by creating new portTypes that

group together the most cohesive operations to decompose the Amazon Simple Notificat ion

Service interface.

Recently, few studies are proposed to restructure the design of the Web services interface

[4][5]. We can distinguish two main categories: manual and fully-automated techniques. The

manual approaches propose a set of refactorings that the user can select and execute to split an

interface, extract an interface and merge two interfaces [8]. However, manual refactoring of the

design interface is a tedious task for developers that involve exploring the whole operations in the

interface to find the best refactoring solution that improves the modularity of an interface. In the

fully-automated approach, developers have to accept the entire refactoring solution and existing

tools do not provide the flexibility to adapt the suggested solution interactively. In addition, most

of these manual and fully-automated techniques focus on fixing design defects rather than the

8

modularity of the interface [4][5]. Overall, there is no general consensus on how to decide if a

particular design violates a quality heuristic. In fact, there is a difference between detecting

symptoms and asserting that the detected situation is an actual design defect. Another issue is

related to the definition of thresholds when dealing with quantitative information. For example,

the GOWS defect detection involves information such as the interface size as illustrated in Figure

1. Although we can measure the size of an interface, an appropriate threshold value is not trivia l

to define. An interface considered large in a given service/community of users could be considered

average in another. Thus, it is important to consider the user in the loop when identifying such

design violations.

Several possible levels of interaction are not considered by existing Web services interface

refactoring techniques. It is easy for developers to identify large interfaces that should be

refactored, but they find it is difficult, in general, to locate a target portType when applying a move

operation. In addition, existing tools do not update their recommended refactoring solutions based

on the user’s feedback such as accepting, modifying or rejecting certain refactoring actions. While

automation is important, it is essential to understand the points at which human oversight,

intervention, and decision-making should impact on automation. Human developers/users might

reject changes made by any automated technique. Especially if they feel that they have little

control, there will be a natural reluctance to trust and use the automated design restructuring tool.

In addition to the above-mentioned limitations, existing studies propose only few quality

metrics such as cohesion to decompose a Web service interface. However, several conflic t ing

metrics have to be considered such as coupling, number of portTypes, cohesion, number of design

defects, etc. Thus, it is critical to find a trade-off between these different metrics based on the

preferences of the user. Furthermore, the history of the interaction between the users and the Web

9

service interface (invocations) is not considered by existing work when decomposing Web services

design interfaces. In fact, users in general select operations that are related to each other’s when

implementing a specific feature. Thus, such information could be useful when regrouping

operations together into portTypes.

Several studies addressed the problem of clustering and remodularization of object oriented

(OO) applications in terms of packages organization. Anquetil et al. [22] used cohesion and

coupling of modules within a decomposition of OO systems to evaluate its quality. Maqbool et al.

[23]used hierarchical clustering in the context of software architecture recovery and

modularization. On the other hand, Mancoridis et al. [24] proposed the first search-based approach

to address the problem of software modularization using a single objective approach.

Harman et al. [25] used a genetic algorithm to improve subsystems decomposition by

combining several quality metrics including coupling, cohesion, and complexity. Similarly, Seng

et al. [26] treated the remodularization task as a single objective optimization problem using

genetic algorithm to reduce violations of design principles. Later, Abdeen et al. [27] proposed a

heuristic search-based approach for automatically optimizing (i.e., reducing) the dependencies

between packages of a software system by moving classes beteween packages.

Recently, Mkaouer et al. [14] have proposed a multi-objective approach to finding optimal

remodularization solutions that improve the structure of packages, minimize the number of

changes, preserve semantics coherence, and reuse the history of changes. Despite these advances

in OO systems modularization [28, 29, 30, 31, 32, 33, 34, 35], still this problem is not widely

explored in the context of Web service interfaces.

10

To address the above-mentioned limitations, we propose in this thesis a new way for users

to refactor the design of their Web services interface as a sequence of transformations based on

different levels of interaction and dynamic adaptive ranking of the suggested refactorings. The

next section describes the proposed interactive, dynamic and personalized Web services interface

designing restructuring technique.

Fig. 1. Restructuring the design of a Web service Interface example (Amazon Simple

Notification Service)

11

CHAPTER 3: Interactive Search Algorithm For Presonalized Design Of Web

Services Interface

In this chapter, we present an overview of our approach and then we provide the details of

our problem formulation and the solution approach.

3.1 Approach Overview

The goal of our approach is to propose a new dynamic interactive way for users to refactor

the Web services interface based on their usage. The general structure of our approach is sketched

in Fig. 2.

Fig. 2. Approach overview

12

Our technique comprises two main components. The first component is an offline phase,

is executed first in the background, when the users are uploading the Web services interface that

they want to restructure its design. During this phase, the multi-objective algorithm, NSGA-II [15],

is executed for a number of iterations to find the non-dominated solutions balancing the three

objectives of improving the interface design quality, which corresponds to minimizing the number

of design antipatterns and improving design quality metrics (coupling and cohesion), the second

objective of maximize the reuse of the user interaction and changes history from previous releases,

and the third objective of minimizing the number of introduced changes and portTypes in the

proposed interface design restructuring solutions.

The output of this first step of the offline phase is a set of Pareto-equivalent interface

restructuring solutions that optimizes the above three objectives. As explained in Algorithm 1, the

second step of the offline phase explores this Pareto front using a knee point strategy [14] . The

knee point corresponds to the solution with the maximal trade-off between all fitness functions,

i.e., a vector of the best objective values for all solutions. In order to find the maximal tradeoff, we

use the trade-off worthiness metric proposed by Rachmawati and Srinivasan [14] to evaluate the

worthiness of each solution in terms of objective value compromise. The solution nearest to the

knee point is then selected.

The second component of our approach is an online phase to manage the interaction with

the user. It dynamically updates the list of interaction constraints based on the feedback of the

developer. This feedback can be to approve/apply or modify or reject some of the suggested

operations location and portTypes in the interface. Thus, the goal is to guide, implicitly, the

exploration of the search space of possible interface modularization solutions. Since the

interactions constraints are updated dynamically, our interactive algorithm allows the implic it

13

move between non-dominated solutions of the Pareto front. The list of constraints that could be

learnt will be discussed in the next section. For example, when a user accept a portType then the

operations of that portType have to stay together in the next interactions of the algorithm but new

operations could be moved to that portType. Another interaction option for the user is to specify

desired values of the different metrics then the multi-objective algorithm will try to restructure the

design of the interface to reach these desired values.

After a number of interactions, users may have modified or rejected a high number of

suggested interface changes or have introduced several new changes manually. Whenever the users

stop the interface design modularization session by closing the suggestions window, the first

component of our approach is executed again on the background to update the last set of non-

dominated interface modularization solutions by continuing the execution of NSGA-II based on

the three objectives defined in the first component as described in Algorithm 1 and also the new

constraints summarizing the feedback of the user. In fact, we consider the rejected portTypes or

operations by the developer as constraints to avoid generating solutions containing similar

portTypes in the next iterations to avoid putting together again the operations of that rejected

portTypes in the next iterations of the algorithm. This may lead to reducing the search space and

thus a fast convergence to better interface modularization solutions. Of course, the continuation of

the execution of NSGA-II takes as input the updated version of the interface after the interactions

with users.

The whole process continues until the developers decide that there is no necessity to

restructure the interface any further.

14

Algorithm 1. Dynamic Interactive NSGA-II at generation t

Input

Sys: system to evaluate, Pt: parent population

Output

Pt+1

 Begin

/* Test if any user interaction occurred in the previous

iteration */

If UserFeedback = TRUE then

/* Rejected or Modified portTypes as constraints */

 Ct ← Get-Constraints();

/* Updated interface after applying changes */

Sys ← Get-Remodulazied-Interface();

 UserFeedback ← FALSE;

End If

St ← Ø, i ← 1;

 Qt ← Variation (Pt);

 Rt ← Pt Qt;

Pt ← evaluate (Pt, Ct, Sys);

 (F1, F2, ...) ← Non-dominationed-Sort (Rt);

 Repeat

15

 St ← St  Fi; i ← i+1;

 Until | St | ≥ N;

 Fl ← Fi; //Last front to be included

 If | St | = N then

 Pt+1 ← St;

 Else

 Pt+1 ←
1
1




l
j

Fj;

 /*Number of points to be chosen from Fl*/

 K ← N – |Pt+1|;

 /*Crowding distance of points in Fl */

 Crowding-Distance-Assignment(Fl);

 Quick-Sort(Fl);

 /*Choose K solutions with largest distance*/

 Pt+1← Pt+1 ∪ Select(Fl, k);

End If

If t+1 = Threshold then

 UserFeedback ← TRUE;

/* Select and rank the best front */

 Rank-Solution (F1); /* based on Algorithm 2 */

 Threshold ← Threshold + t+1;

16

End If

End

3.2 Solution Approach

Most real world optimization problems encountered in practice involve multiple criteria to

be considered simultaneously. These criteria, also called objectives, are often conflicting. Usually,

there is no single solution that is optimal with respect to all these objectives at the same time, but

rather many different designs exist which are incomparable per se. Consequently, contrary to

Single-objective Optimization Problems (SOPs) where we look for the solution presenting the best

performance, the resolution of a multi-objective optimization (MOP) yields a set of compromise

solutions presenting the optimal trade-offs between the different objectives. When plotted in the

objective space, the set of compromise solutions is called the Pareto front. The resolution of a

MOP yields a set of trade-off solutions, called Pareto optimal solutions or non-dominated

solutions, and the image of this set in the objective space is called the Pareto front. Hence, the

resolution of a MOP consists in approximating the whole Pareto front.

In this work, we adapted one of the widely used multi-objective algorithms called NSGA-

II and integrated the interactive component to it. NSGA-II is a powerful search method stimulated

by natural selection that is inspired from the theory of Darwin. Hence, the basic idea of NSGA-II

is to make a population of candidate solutions evolve toward the near-optimal solution in order to

solve a multi-objective optimization problem. NSGA-II is designed to find a set of optimal

solutions, called non-dominated solutions, also Pareto set. A non-dominated solution is the one

which provides a suitable compromise between all objectives without degrading any of them. As

17

described in Algorithm 1, the first step in NSGA-II is to create randomly a population P0 of

individuals encoded using a specific representation. Then, a child population Q0 is generated from

the population of parents P0 using genetic operators such as crossover and mutation. Both

populations are merged into an initial population R0 of size N. As a consequence, NSGA-II starts

by generating an initial population based on a specific representation that will be discussed later,

using the exhaustive list of interface operations given as input as mentioned in the previous section.

Thus, this population stands for a set of possible solutions represented as sequences of portTypes

(including the operations) which are selected and combined. After a number of iterations, the best

solution (interface design modularization) will be presented to the user to get his feedback then

the algorithm will continue to execute taking into consideration the new learnt interaction

constraints.

To summarize, the main NSGA-II loop goal is to make a population of candidate solutions

evolve toward the best clustering of interface operations into portTypes, i.e., the sequence that

minimizes the coupling, number of antipatterns, number of portTypes and number of interface

changes, and maximizes the cohesion and the satisfaction of the interaction constraints. During

each iteration t, an offspring population Qt is generated from a parent population Pt using genetic

operators (selection, crossover and mutation). Then, Qt and Pt are assembled in order to create a

global population Rt. Then, each solution Si in the population Rt is evaluated using our three fitness

functions. We describe in the next sections, the different steps of adaption of the interactive NSGA-

II algorithm to our problem.

A solution consists of a sequence of n interface operations assigned to a set of portTypes.

A portType could contain one or many operations but an operation could be assigned to only one

portType. The vector-based representation is used to cluster the different operations of the

18

interface, taken as input from the WSDL file description, into portTypes. Figure 3 describes an

example of 5 operations assigned to two portTypes. A vector representation is automatica l ly

translated by our tool into a graphical interface as described in Figure 4.

Fig. 3. Example of a solution representation

The initial population is generated by randomly assigning a sequence of operations to a

randomly chosen set of portTypes. The size of a solution, i.e. the vector’s length corresponds to

the number of operations of the Web service interface however the number of portTypes is

randomly chosen between upper and lower bound values. The determination of these two bounds

is similar to the problem of bloat control in genetic programming where the goal is to identify the

tree size limits. Since the number of required portTypes depends mainly on the size of the target

interface design, we performed, for each target design, several trial and error experiments using

the HyperVolume (HP) performance indicator [19] to determine the upper bound after which, the

indicator remains invariant. For the lower bound, it is arbitrarily chosen. The experiments section

will specify the upper and lower bounds used in this study.

The generated solutions are evaluated using three fitness functions as detailed in the

following.

Objective 1: Maximize the interface design quality metrics. This fitness function is defined

as the average of three measures. The first measure is the number of design antipatterns that can

be detected using the rules defined in our previous work [3][12] . The list of antipatterns is

19

discussed in Section 2. The second measure is the cohesion that corresponds to the degree to which

the operations exposed in a service interface conceptually belong together [4] . We used, in this

thesis, the definition of cohesion defined by [4] which is based on communicational and textual

similarities between the operations within the same portType based on cosine similarity and call-

graphs. The third measure is coupling within a service measures the relationships between

implementation elements belonging to the same service [5] . Service interface coupling is a

measure of how strongly a service interface is connected to or relies on other service interfaces.

We used the existing definition of coupling based on the similarity between the operations within

the same portType and the number of calls to other operations in different portTypes [5] .

CohesionCoupling
ondularizatinsBeforeMoantipatter

nularizationsAfterModantipatter
f 

#

#
1

Fig. 4. The proposed interface design modularization tool.

20

Objective 2: Maximize the interaction and history-based function. This function maximizes

the satisfaction of the constraints learnt from the interaction with user or minimizes the distance

with the desired metrics, if specified by the user as described in Figure 5. In case that the user did

not specify these desired values then we just ignore this component of the fitness function.

Furthermore, the user has four other types of interaction, as described in Figures 3 and 6, that

correspond to accept a portType, reject a portType, move operation(s) and delete operation(s).

Every of these user interaction actions will generate a set of constraints. When a portType is

accepted, the list of operations in that portType should stay together in the next iterations but new

operations could be added to the portType. In the case of a reject of a portType by the user, a

constraint is generated to avoid regrouping together again these operations into the same portType.

The application of a move operation action will generate a constraint to keep the moved operation

in the targeted portType in the next iterations. When an operation is deleted, a constraint will be

generated to avoid putting again that operation in the source portType in the next iterations.

Another constraint considered by our fitness function is based on the history of previous releases

(if available), when two operations were modified together in the same release by developers then

a constraint will be generate to put them together in the same portType. Formally, the second

fitness function to minimize is defined as follows:

sConstra

sstraHistroyConstatisfied

MMDesired

f
k

i

ii

int#

int#1

1

2 








Objective 3: Minimize the number of portTypes and the number of changes comparing to

the initial design. The designer may have some preferences regarding the degree of the deviation

21

with the initial design of the interface thus we formally defined the fitness function as the

following:

gesdesignChanportTypesf ##3 

The number of design changes is calculated based on the number of differences between

the two vector representations of the initial design and the generated one, i.e. the number of

operations of the new design assigned to different portTypes than the initial design.

Fig. 5. The user can specify some desired metrics value

Fig. 6. The user can move or delete an operation

22

In each search algorithm, the variation operators play the key role of moving within the

search space with the aim of driving the search towards optimal solutions. For the crossover, we

use the one-point crossover operator. It starts by selecting and splitting at random two parent

solutions. Then, this operator creates two child solutions by putting, for the first child, the first part

of the first parent with the second part of the second parent, and vice versa for the second child. It

is important to note that in multi-objective optimization, it is better to create children that are close

to their parents in order to have a more efficient search process. For mutation, we use the bit-string

mutation operator that picks probabilistically one or more refactoring operations from its or their

associated sequence and replaces them by other ones from the initial list of possible refactorings.

When applying the change operators, different pre- and post-conditions are checked to

ensure the applicability of the newly generated solutions such as removing redundant operations

or conflicts between operations such as assigning the same operation to two different portTypes.

23

CHAPTER 4: VALIDATION

To validate the ability of our interactive interface modularization framework to generate a

good design quality, we conducted a set of experiments based on 22 real-world web services. The

obtained results are subsequently statistically analyzed with the aim of comparing our proposal

with a variety of existing fully-automated approaches. In this section, we first present our research

questions and then describe and discuss the obtained results.

4.1 Research Questions and Evaluation Metrics

We defined three research questions that address the applicability, performance in

comparison to existing fully-automated interface modularization approaches [4][5] , and the

usefulness of our interactive multi-objective approach. The three research questions are as follows:

RQ1: To what extent can our approach recommend relevant interface design

improvements to the users?

RQ2: How does our interactive formulation perform compared to fully-automated Web

services interface restructuring techniques [5]?

RQ3: Can our approach be useful for the users of Web services and the developers of

service-based systems?

24

Table 1. Studied Web service interfaces

Service interface Provider #operations

i1. AutoScalingPortType Amazon 13

i2. MechanicalTurkRequesterPortType Amazon 27

i3. AmazonFPSPorttype Amazon 27

i4. AmazonRDSv2PortType Amazon 23

i5. AmazonVPCPortType Amazon 21

i6. AmazonFWSInboundPortType Amazon 18

i7. AmazonS3 Amazon 16

i8. AmazonSNSPortType Amazon 13

i9. ElasticLoadBalancingPortType Amazon 13

i10. MessageQueue Amazon 13

i11. AmazonEC2PortType Amazon 87

i12. KeywordService Yahoo 34

i13. AdGroupService Yahoo 28

i14. UserManagementService Yahoo 28

i15. TargetingService Yahoo 23

i16. AccountService Yahoo 20

i17. AdService Yahoo 20

i18. CompaignService Yahoo 19

i19. BasicReportService Yahoo 12

25

i20. TargetingConverterService Yahoo 12

i21. ExcludedWordsService Yahoo 10

i22. GeographicalDictionaryService Yahoo 10

4.2 Experimental Setting

Parameter setting influences significantly the performance of a search algorithm on a

particular problem. The stopping criterion was set to 10,000 evaluations for all algorithms in order

to ensure fairness of comparison. The other parameters’ values were fixed by trial and error and

are as follows: crossover probability = 0.6; mutation probability = 0.4 where the probability of

gene modification is 0.2; population size = 50. Regarding the evaluation of fixed interface design

antipatterns, we focus on those defined in chapter 2.

Our study involved 19 participants from the University of Michigan to use and evaluate

our tool. Participants include 11 master students in Software Engineering, 8 Ph.D. students in

Software Engineering. All the participants are volunteers and familiar with Web services and

refactoring in general. The experience of these participants on programming ranged from 2 to 19

years. 7 out of the 19 participants are currently active programmers as well in software industry

with a minimum experience of 2 years.

Participants were first asked to fill out a pre-study questionnaire containing four questions.

The questionnaire helped to collect background information such as their role within the company,

their programming experience, their familiarity with Web services. In addition, all the participants

attended one lecture about Web services design quality, modularization and passed five tests to

evaluate their performance to evaluate and suggest interface design modularization solutions.

26

4.3 Results

Results for RQ1. As described in Figures 7 and 8, we found that a considerable number

of proposed portTypes, with an average of more than 80% in terms of precision and recall on all

the 22 Web services, were already suggested manually (expected refactorings) by the users

(software development team). The recall scores are slightly higher, in average, than precision ones

since we found that the portTypes suggested manually by developers are incomplete compared to

the solutions provided by our approach. In addition, we found that the slight deviation with the

expected portTypes is not related to incorrect ones but to the fact that different possible

modularization solutions could be correct.

We evaluated also the ability of our approach to fix several types of interface design

antipatterns and to improve the quality as described in Figure 8 depicts the percentage of fixed

code smells (NF). It is higher than 79% on all the 22 Web services, which is an acceptable score

since users may not be interested to fix all the antipatterns in the interface. Some Web services,

such as AmazonSNSPortType, has a higher percentage of antipatterns with an average of more

than 86%. This can be explained by the fact that this Web service interface includes a low number

of antipatterns than others.

To summarize and answer RQ1, the experimentation results confirm that our interactive

approach helps the participants to restructure their Web service interface design efficiently by

finding the relevant portTypes clustering and improve the quality of all the 22 Web services.

27

Fig. 7. The precision (PR) results on all the 22 Web services.

Fig. 8. The recall (RE) results on all the 22 Web services.

28

Fig. 9. The number of fixed design antipatterns (NF) results on all the 22 Web services.

Results for RQ2. Figures 7,8 and 9 confirm the average superior performance of our

interactive approach compared to the two existing fully-automated interface design decomposition

techniques [4][5].

Figure 7 and 8 show that our approach provides significantly higher precision and recall

than all other approaches having PR and RC scores respectively between 17% (minimum) and

74% (maximum), on average on the different Web services. The same observation is valid for the

number of fixed antipatterns (NF). This is can be explained by the reason that the main goal of

these existing approaches to improve only the cohesion metric. In addition, our approach is based

on a multi-objective algorithm to find a trade-off between different objectives including the

correction of antipatterns.

In conclusion, our interactive approach provides better results, on average, than all of the

existing fully-automated refactoring techniques (answer to RQ2).

29

Results for RQ3. We have also asked the participants to take a post-study questionna ire

after completing the different validation and tasks using our interactive approach and the two

techniques considered in our experiments. The post-study questionnaires collected the opinions of

the participants about their experience in using our approach compared to fully-automated tools.

The post-study questionnaire asked participants to rate their agreement on a Likert scale from 1

(complete disagreement) to 5 (complete agreement) with the following statements:

 The interactive dynamic interface modularization recommendations are a desirab le

feature to improve the quality of Web services interface.

 The interactive manner of recommending modularization solutions by our approach is a

useful and flexible way to consider the user perspective compared to fully-automated

tools.

The agreement of the participants was 4.9 and 4.6 for the first and second statements

respectively. This confirms the usefulness of our approach for the users of our experiments. The

remaining questions of the post-study questionnaire were about the benefits and also limita t ions

(possible improvements) of our interactive approach.

We summarize in the following the feedback of the users. Most of the participants mention

that our interactive approach is faster than the manual restructuring of the interface since they spent

a long time with manual changes to create portTypes and move operations. Thus, the developers

liked the functionality of our tool that helps them to modify a portType based on the

recommendations.

30

Another important feature that the participants mention is that our interactive approach

allows them to take the advantages of using multi-objective optimization without the need to learn

anything about optimization and exploring explicitly the Pareto front to select one “ideal” solution.

The implicit exploration of the Pareto front in an interactive fashion represents an important

advantage of our tool along with the dynamic update of the recommended design. The participants

also suggested some possible improvements to our interactive approach. Some participants believe

that it will be very helpful to extend the tool by adding a new feature to decompose mult ip le

services into interfaces based on the dependency between them. Another possibly suggested

improvement is to consider the users invocation data to restructure the interface.

31

CHAPTER 5: CONCLUSION

We proposed, in this thesis, an interactive recommendation tool for Web services interface

design modularization that dynamically adapts and suggests design changes to developers based

on their feedback and three objective functions. Our interactive approach allows users to benefit

from search-based tools without explicitly involving any knowledge about optimization and mult i-

objective optimization algorithms. In fact, the exploration of the non-dominated refactoring

solutions is implicitly performed based on the interaction with the users. The feedback received

from the users is used to reduce the search space and converge to better design modulariza t ion

solutions.

To evaluate the effectiveness of our tool, we conducted a human study on a set of users

(software developers) who evaluated the tool and compared it with the state-of-the-art interface

design modularization techniques. Our evaluation results provide strong evidence that our tool

improves the applicability of interface modularization techniques, and proposes a novel way for

software developers to refactor their interfaces design interactively.

Future work involves validating our technique with additional interfaces and APIs in order

to conclude about the general applicability of our methodology. Furthermore, we only focused, in

this work, on the recommendation of interface design changes. We plan to extend the approach by

32

considering multiple service interfaces instead of one interface for the purpose of services

composition. In addition, we will consider the importance of interface antipatterns during the

correction step using previous invocations, interface complexity, etc.

33

REFERENCES

1. M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for predicting

maintainability of service-oriented software,” in the 7th International Conference on Quality
Software, Oct 2007, pp. 328–335.

2. D. Romano and M. Pinzger, “Analyzing the evolution of web services using fine-gra ined

changes,” in IEEE International Conference on Web Services (ICWS), June 2012, pp. 392–

399. ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A,
Publication date: January YYYY. A:16

3. A. Ouni, M. Kessentini, K. Inoue, and M. O Cinneide, “Search-based web service antipatterns

detection,” IEEE Transactions on Services Computing, vol. PP, no. 99, 2015.

4. D. Athanasopoulos, A. V. Zarras, G. Miskos, and V. Issarny, “Cohesion-Driven

Decomposition of Service Interfaces Without Access to Source Code,” IEEE Transactions on
Services Computing, vol. 8, no. JUNE, pp. 1–18, 2015.

5. A. Ouni, Z. Salem, K. Inoue, and M. Soui, “SIM: an automated approach to improve web
service interface modularization,” in IEEE International Conference on Web Services, ICWS
2016, San Francisco, CA, USA, June 27 - July 2, 2016, 2016, pp. 91–98.

6. M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Revising WSDL Documents: Why

and How,” Internet Computing, IEEE, no. 5, pp. 48–56.

7. M. Perepletchikov, C. Ryan, and Z. Tari, “The impact of service cohesion on the analyzability

of service-oriented software,” IEEE Transactions on Services Computing, vol. 3, no. 2, pp. 89–
103, 2010.

8. D. Romano and M. Pinzger, “A genetic algorithm to find the adequate granularity for service

interfaces,” in Services (SERVICES), 2014 IEEE World Congress on. IEEE, 2014, pp. 478–

485.

9. R. Haesen, M. Snoeck,W. Lemahieu, and S. Poelmans, “On the definition of service
granularity and its architectural impact,” in Advanced Information Systems Engineer ing.
Springer, 2008, pp. 375–389.

10. M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt, “Formalising service-oriented

design,” Journal of software, vol. 3, no. 2, pp. 1–14, 2008.

34

11. B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE Antipatterns. John
Wiley; Sons, Inc., 2003.

12. H. Wang, A. Ouni, M. Kessentini, B. R. Maxim, and W. I. Grosky, “Identification of web

service refactoring opportunities as a multi-objective problem,” in IEEE Internationa l
Conference on Web Services, ICWS 2016, San Francisco, CA, USA, June 27 - July 2, 2016,
2016, pp. 586–593.

13. H. Masoud and S. Jalili, “A clustering-based model for class responsibility assignment problem

in object-oriented analysis,” Journal of Systems and Software, vol. 93, pp. 110–131, 2014.

14. W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and A. Ouni, “Many-

objective software remodularization using nsga-iii,” ACM Trans. Softw. Eng. Methodol., vol.
24, no. 3, pp. 17:1–17:45, May 2015.

15. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182–

197, 2002.

16. M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., 1999.

17. D. Athanasopoulos and A. Zarras, “Fine-grained metrics of cohesion lack for service
interfaces,” in IEEE International Conference on Web Services (ICWS), July 2011, pp. 588–

595.

18. K. Praditwong, M. Harman, and X. Yao, “Software module clustering as a multi-objec t ive

search problem,” IEEE Transactions on Software Engineering, vol. 37, no. 2, pp. 264–282,
March 2011.

19. E. R. Hruschka, R. J. Campello, A. Freitas, A. C. De Carvalho et al., “A survey of evolutionary

algorithms for clustering,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 39, no. 2, pp. 133–155, 2009.

20. M. A. Torkamani and H. Bagheri, “A Systematic Method for Identification of Anti-patterns in
Service Oriented System Development,” International Journal of Electrical and Computer
Engineering, vol. 4, no. 1, pp. 16–23, 2014.

21. C. Mateos, A. Zunino, and J. L. O. Coscia, “Avoiding WSDL Bad Practices in Code-First Web

Services,” SADIO Electronic Journal of Informatics and Operational Research, vol. 11, no. 1,
pp. 31–48, 2012.

22. N. Anquetil and T. C. Lethbridge, “Experiments with clustering as a software remodulariza t ion
method,” in 6th Working Conference on Reverse Engineering. IEEE, 1999, pp. 235–255.

35

23. O. Maqbool and H. A. Babri, “Hierarchical clustering for software architecture recovery,”
IEEE Transactions on Software Engineering, vol. 33, no. 11, pp. 759–780, 2007.

24. S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner, “Using automatic

clustering to produce high-level system organizations of source code.” in IWPC, vol. 98.
Citeseer, 1998, pp. 45–52.

25. M. Harman, R. M. Hierons, and M. Proctor, “A new representation and crossover operator for
search-based optimization of software modularization.” in GECCO, vol. 2, 2002, pp. 1351–

1358.

26. O. Seng, M. Bauer, M. Biehl, and G. Pache, “Search-based improvement of subsystem

decompositions,” in Proceedings of the 7th annual conference on Genetic and evolutionary
computation. ACM, 2005, pp. 1045–1051.

27. H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, “Automatic package coupling and cycle

minimization,” in 16th Working Conference on Reverse Engineering. IEEE, 2009, pp. 103–

112
28. Kalboussi S, Bechikh S, Kessentini M, Said LB. Preference-based many-objective

evolutionary testing generates harder test cases for autonomous agents. In Internationa l
Symposium on Search Based Software Engineering 2013 Aug 24 (pp. 245-250). Springer,
Berlin, Heidelberg.

29. Ouni, Ali, Marouane Kessentini, and Houari Sahraoui. "Search-based refactoring using

recorded code changes." In Software Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pp. 221-230. IEEE, 2013.

30. Bechikh, Slim, Marouane Kessentini, Lamjed Ben Said, and Khaled Ghédira. "Chapter four -
preference incorporation in evolutionary multiobjective optimization: A survey of the state-of-

the-art." Advances in Computers 98 (2015): 141-207.

31. Boussaa, Mohamed, Wael Kessentini, Marouane Kessentini, Slim Bechikh, and Soukeina Ben

Chikha. "Competitive coevolutionary code-smells detection." In International Symposium on
Search Based Software Engineering, pp. 50-65. Springer, Berlin, Heidelberg, 2013.

32. Kessentini, Marouane, Houari Sahraoui, Mounir Boukadoum, and Manuel Wimmer. "Search-

based design defects detection by example." In International Conference on Fundamenta l

Approaches to Software Engineering, pp. 401-415. Springer, Berlin, Heidelberg, 2011.

33. Kessentini, Marouane, Arbi Bouchoucha, Houari Sahraoui, and Mounir Boukadoum.
"Example-based sequence diagrams to colored petri nets transformation using heurist ic
Search." Modelling Foundations and Applications (2010): 156-172.

34. Kessentini, Marouane, Philip Langer, and Manuel Wimmer. "Searching models, modeling

search: On the synergies of SBSE and MDE." In Proceedings of the 1st International Workshop

36

on Combining Modelling and Search-Based Software Engineering, pp. 51-54. IEEE Press,
2013.

35. Kessentini, Marouane, Manuel Wimmer, Houari Sahraoui, and Mounir Boukadoum.

"Generating transformation rules from examples for behavioral models." In Proceedings of the
Second International Workshop on Behaviour Modelling: Foundation and Applications, p. 2.

ACM, 2010.

