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PREFACE

This dissertation presents work in which computation and modeling are

used to make advancements in two separate and distinct areas of acous-

tics: ultrasound bioeffects modeling (which serves to motivated the bulk

of this thesis) and acoustic transmission loss uncertainty quantification in

uncertain ocean environments. While these works are united in the use

of computation and broader field of acoustics, the underlying motivation

and relevant background is separate. Hence this document is split into

two separate and distinct parts along these lines. A summary of relevant

background information, work performed, and conclusions in each area

will be presented separately.
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ABSTRACT

This dissertation presents work in which computational modeling is used to advance two

areas of interest in modern acoustics. First, we develop computational models to study

the poorly understood physics underlying Contrast-Enhanced Ultrasound (CEUS) bioef-

fects and Diagnostic Ultrasound (DUS)-induced lung hemorrhage. A better understand-

ing of these problems is critical to the development of science-based safety guidelines.

Because inertial cavitation is thought to cause CEUS bioeffects, we model a spherical

bubble in viscoelastic soft tissue, driven by experimentally-measured ultrasound wave-

forms (1.5 − 7.5 MHz), with known bioeffects thresholds. Bioeffects thresholds were

compared with calculated cavitation metrics and experimentally determined bioeffects

thresholds were found greater than accepted thresholds for inertial cavitation in water,

and that the maximum dimensionless bubble radius Rmax/R0 correlated strongly with

bioeffects thresholds as a function of frequency. Separately, we investigate DUS-induced

lung hemorrhage and model an acoustic wave in soft tissue (water) traveling toward an

alveolus (air) with a perturbed surface. First, a trapezoidal wave with ultrasonically rele-

vant properties (5.0−12.5 MPa pressures amplitudes, 1.3−6.0 µs wave durations), drives

the interface. We showed that acoustic waves may be capable of depositing sufficient

baroclinic vorticity to drive significant interface perturbation growth, long after the wave

has passed. This growth scaled with the circulation density (i.e., the circulation per unit

length of the interface) and exhibited power-law behavior at late time. To approximate

Ultrasound (US)-induced stresses and strains on alveoli, we subjected interfaces of vary-

ing initial perturbation amplitude to 1.5 MHz ultrasound pulses with peak amplitudes

xiv



from 1 − 5 MPa and observed interfacial viscous stress amplitudes up to approximately

60 Pa and interfacial strains up to 38%. While the viscous stresses appeared beneath

capillary failure thresholds, the calculated strain was sometimes greater than expected

failure thresholds for alveolar epithelium. Since this work considers only a single pulse,

and the vorticity driving the deformation is expected to accumulate over multiple pulses,

we conclude that vorticity-induced deformation is worthy of further investigation.

Finally, we develop area statistics, a computationally efficient method for estimat-

ing Probability Density Functions (PDFs) of acoustic Transmission Loss (TL) in uncer-

tain ocean environments. Such PDFs of TL are useful for real-time Naval applications

but impractically expensive to obtain via traditional computational methods. This work

describes how to approximate the PDF of TL at a point of interest using TL statistics

from the field surrounding the point of interest. The idea is that local TL variations

due to environmental fluctuations are represented by spatial variations in TL in single

baseline TL field calculation. The baseline calculation used the most probable values

for uncertain parameters describing the sound speed profile, bathymetry, and geoacous-

tic bottom-layer properties. Area statistics-generated PDFs were compared with 2000-

sample Monte Carlo-generated PDFs via the L1 error, in ten ocean environments with

varying properties and uncertainties, for source frequencies of 100, 200, and 300 Hz and

depths of 91, 137, 183m. The area statistics-generated PDFs had an L1 error < 0.5 in

91% of the 11,000+ test locations (depths from 20 m - 4.5 km, ranges from <1 km to

>70 km). Area statistics PDFs were generated in milliseconds, required ∼ 10−6 times the

computational effort required for Monte Carlo PDFs and were thus suitable for real-time

applications.

In summary, this dissertation contains: 1.) research in which computational mod-

els of CEUS and ultrasound-alveolar interaction were developed and used to study the

physics of relevant ultrasound-induced bioeffects, and 2.) area statistics, a real-time

appropriate computational technique for estimating PDF of TL in uncertain ocean envi-
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ronments, is developed and tested.
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Part I:

Ultrasound bioeffects
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CHAPTER 1

Introduction

In this chapter we establish the merit and relevance of the presented work. The problems ap-

proached here apply to a variety of active areas of study and modern applications within the

fields of acoustics and fluid mechanics, though the primary focus and motivation of this work

is to better understand the underlying physics of specific biological effects of Diagnostic Ultra-

sound (DUS). An understanding of the physical mechanisms underlying DUS bioeffects is neces-

sary for evidence-based regulation. Accordingly, we describe the driving physical mechanisms of

interest in these problems. We also discuss the specific problems we will be approaching and the

framework we use to approach them. Finally, an overview of the goals and contributions of this

part of the thesis are presented.

1.1 A physical description of sound as it relates to this work

Sounds are vibrations traveling through a medium. Parcels of material perturbed or displaced

collide with their neighbors, which collide with their neighbors and so on. In this way, mechanical

energy propagates as a wave at a finite speed, away from the initial perturbation location, through

any gas, liquid, or solid medium. This is the basic mechanism by which sound moves through all

matter whether it be the tissues in the human body, the water in the oceans, or the plasma in the

stars.

The scientific study of sound, in all its many forms, is what we refer to as acoustics. Through

years of study and experimentation, mankind has gained a deep understanding of the physical

2



behavior of sound and has learned to harness it as a tool, leading to high-impact advancements

throughout Science, Technology, Engineering, and Math (STEM) in areas ranging from climate

change (by monitoring the ocean’s acoustic properties) to structural health monitoring and diag-

nostic and therapeutic medicine. Much of our basic understanding of sound has come from the the-

oretical study of sound passively propagating through a constant, infinite, homogeneous medium.

However, in reality no such medium exists and sound is not always passive. Indeed many of the

interesting physical questions and real-world applications of interest to modern acousticians are

concerned with the scenarios in which sound is traveling through a complicated medium which it

sometimes physically alters. In this thesis, we hope to advance the study of acoustics by studying

a few of these scenarios.

The focus of this part of the thesis is on problems in which sound travels between multiple

media and causes a physical change in the system as it travels. Typically, when sound travel-

ing in one medium encounters another medium, a portion of the acoustic energy is transmitted

into the new medium, while the remainder is reflected and scattered back into the medium from

which the sound originated. In most cases, this results in little change in the media themselves,

however, in some instances, acoustic energy can be converted into other forms of energy such

as kinetic or thermal, resulting in bulk motion or heating of the media. Conversion of energy

such as this is often consequence of nonlinearity in the system, which can arise from physical

properties of the system such as a liquid-gas interface, or from sufficiently strong acoustic waves

(Acoustic pressure/[density · sound speed2] 3 1). An example of acoustic energy becoming ki-

netic as a result of a nonlinearity in the physical system is a gas-vapor bubble within water or

tissue driven by an acoustic wave. As a result of rising and falling acoustic pressure, the bubble

may oscillate or collapse, changing the temperature and pressure, and driving the motion within

the bubble and the surrounding medium. The absorption of acoustic energy into the medium as

heat resulting in a temperature rise (due to localized compression) in a viscous medium is an

example of an effect that can be particularly important for strong, nonlinear acoustic waves. Ad-

ditionally, localized compression/rarefaction due to strong nonlinear acoustic waves can result in
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an increase in localized sound speed, causing waves to sharpen into shocks, introducing further

nonlinearity. In any case, the resulting thermal or physical stresses associated with the heating or

movement of the media may result in physical (e.g., phase transition) or chemical (e.g., protein

denaturation) changes. The ability of acoustic waves to physically alter a medium is of particular

interest and relevance to the field of medical ultrasound, in which such alteration is relevant to both

safety concerns in the context of diagnostic sonography and engineering concerns in the context of

therapeutic Ultrasound (US).

1.2 Ultrasound in medicine and biological effects

Ultrasound (US) refers to sounds or vibrations with frequencies beyond that audible to the human

ear, typically > 20 kHz. The use of US in medicine dates back to the 1940s when Austrian

neurologist Dr. Karl Theodore Dussik attempted to use transmission ultrasound to outline the

ventricles of the brain (Dussik, 1942; Singh & Goyal, 2007). Since then the abilities and use of

US have expanded greatly and the technology has proven to be a powerful tool for noninvasive

therapies and safe, real-time diagnostic imaging (Dalecki, 2004). Consequently, the use of US

has become ubiquitous throughout modern medicine. The bulk of the present work will focus on

Diagnostic Ultrasound (DUS), which is routinely used for noninvasive imaging of a range of soft

tissues including muscles, tendons, organs, glands and neonatal fetuses.

For context, we explain the basic physical processes that occur during US procedures. In prac-

tice, high-frequency, typically MHz-range, acoustic waves and pulses are created at the surface of

the body using a piezoelectric US transducer. These acoustic waves, propagate via an impedance

matching, acoustic coupling medium from the transducer into the tissue. Once in the tissue, a

portion of the sound scatters at material interfaces within the body, or more simply, some of the

sound echoes whenever it moves from one tissue to another or encounters a cavity in the body.

More precisely put, a portion of the sound is reflected when it encounters a change in the acoustic

impedance, defined as the product of the density and sound speed of the medium. This scattering
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Figure 1.1: An example diagnostic ultrasound image of a featus at 12 weeks in a sagittal scan. Au-
thor Wolgang Moroder [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0), via Wiki-
media Commons]

of sound is the basic physical principle that makes ultrasound for diagnostic imaging possible. In

DUS, some of the reflected sounds encounter a receiver. This receiver is typically also a piezo-

electric transducer, and much like the process of generating the wave, but in reverse, the receiver

is vibrated and converts the acoustic signal to a series of electrical pulses. The signal is amplified,

recorded, transmitted to an ultrasound scanner or another computer where it is processed. The

strength of the received signal is indicative of the impedance mismatch at the reflective surface

and is indicated as brightness in an ultrasound image. The timing of the receipt of the reflected

signal across the receiver is determined by the shape of the reflecting surface. By processing this

information, a real-time image of the reflecting surface is generated. An example ultrasound image

of a fetus is shown in Figure 1.1.

The passage of acoustic waves of diagnostically relevant amplitudes through tissue does not

typically permanently alter or affect the tissues structures or processes and the use of ultrasound

for imaging is typically considered safe and noninvasive. However, the passage of acoustic waves

through a medium is not entirely passive under all circumstances (Nyborg, 2001). When energy
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from ultrasound is converted to kinetic or thermal energy, within a tissue, it can physically alter

or damage that tissue through a variety of mechanisms (O’Brien, 2007). These effects are referred

to as US bioeffects and can be beneficial or detrimental depending on their exact nature. In thera-

peutic applications, US is used to deliberately cause desirable bioeffects that are beneficial to the

patient. DUS is typically designed to minimize interaction between the acoustic field and tissue

(Dalecki, 2004) (as per United States Food and Drug Administration Regulation), and bioeffects

are generally undesirable side effects that are avoided if possible. Ultrasound bioeffects have mo-

tivated extensive research into the development of effective guidelines and regulations for safe US

technologies and procedures.

A large portion of past research into ultrasound bioeffects has focused on determining what

types of US bioeffects exist, and under what circumstances they occur. This work has shown that

bioeffects may take on a variety of different forms, depending on the US parameters and type

of tissue exposed (National Council on Radiation Protection and Measurements. Scientific Com-

mittee 66 on Biological Effects of Ultrasound. & National Council on Radiation Protection and

Measurements., 2002). Various kinds of hemorrhage and cell death are among the most common

forms of US bioeffects. In tissues containing gases such as the lung and intestines, ultrasonically

induced hemorrhage has been observed. Lehmann & Herrick (1953) and Miller & Thomas (1990)

observed abdominal petechial hemorrhage as a result of unfocused ultrasound in mice. And Child

et al. (1990) found hemorrhage in mouse lungs after the animal was exposed to lithotripter pulses.

Numerous other studies have been performed on the topic of US-induced lung hemorrhage and a

much deeper review is given in chapters 3 and 4. Pulsed ultrasound of the heart has been shown

to be capable of inducing cardiac contractions in frogs and mice (Dalecki et al., 1993; MacRobbie

et al., 1997). Cell death has been observed in liver, kidney, and heart tissue as a result of Contrast-

Enhanced Ultrasound (CEUS), which uses injections of microbubbles as additional scatterers for

image contrastSkyba et al. (1998); Miller et al. (2008a).

6



1.2.1 Physical mechanisms of ultrasound bioeffects and problem description

Depending on the type of physical damage mechanism responsible, US bioeffects are classified

into two groups, thermal and non-thermal (Dalecki, 2004). While both thermal and non-thermal

bioeffects may occur simultaneously, one or the other is often dominant. The first group, ther-

mal bioeffects, are characterized by deposition of acoustic energy into tissue as heat and are often

a result of therapeutic, rather than diagnostic, ultrasound. This heating can lead to a variety of

deleterious effects including the release of highly reactive free radicals, protein denaturation at the

molecular level, and death at the cellular level, ultimately causing tissue damage or death. As an

example, one class of therapeutic US, known as High-Intensity Focused Ultrasound (HIFU) uses

strong, concentrated acoustic waves to intentionally convert acoustic energy to heat through vis-

cous dissipation and thermal diffusion. HIFU is typically at MHz order frequencies and intensities

up to 10,000 W/cm2. HIFU is used to raise the temperature of unwanted tissues such as fat or

cancer to the point of destruction via thermal necrosis (Escoffre & Bouakaz, 2016). Little else will

be said about thermal bioeffects, as the bioeffects of interest here fall into the non-thermal cate-

gory. Non-thermal bioeffects are attributed to a variety of physical phenomena including acoustic

radiation force, radiation torque, and acoustic streaming, though the bulk of non-thermal bioeffects

are commonly associated with acoustic cavitation, which is the most widely studied non-thermal

mechanism (Dalecki, 2004). For certain bioeffects, such as DUS-induced lung hemorrhage, the

underlying physical mechanisms are largely unknown.

The work of this thesis is primarily motivated by DUS bioeffects. DUS bioeffects tend to

be a result of mechanical processes and typically take the form of hemorrhage, tissue damage or

cell death. Unlike some bioeffects that occur as a result of therapeutic US, DUS bioeffects are

unintentional and a represent a potential safety concern. Hence in this thesis we seek to develop a

better understanding of two particular DUS bioeffects problems,

1. The first problem is motivated by CEUS and the associated cavitation-induced biological ef-

fects, which include hemorrhage and cell death in a variety of forms (e.g., cell death and/or
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hemorrhage in the heart, kidney, muscle, etc...) (Miller et al., 2008a). We pursue of a better

understanding of the relationship between US thresholds associated with bioeffects and the

physical dynamics of the system. To this end we take a novel approach, combining experi-

mentally measured ultrasound and bioeffects thresholds with modeling and simulation. We

model the problem of an ultrasound contrast agent microbubble subjected to an experimen-

tally measured ultrasound pulse and simulate relevant bubble dynamics. Calculated cavita-

tion dynamics are related to known bioeffects and thresholds, associated with properties of

the driving waveforms.

2. The second problem we consider is that of DUS-induced lung hemorrhage. As the under-

lying physical mechanism that drives the hemorrhage is not clearly understood (O’Brien,

2007), we aim to gain a better conceptual understanding of the physics at play. To accom-

plish this, we develop a unique model of the interaction between an alveolus and an acoustic

wave, traveling in soft tissue. The alveolar wall is modeled as an air-water interface, driven

by trapezoidal and ultrasound pulse-like acoustic waves. We analyze the dynamics of the

system to describe the interface evolution mathematically. Where possible we compare cal-

culated stress and strain estimates of the interface with alveolar failure criteria for disruption

of endothelial and epithelial tissues.

Given these bioeffects problems, we will now provide a brief overview of what is known about

the physical mechanisms of CEUS cavitation bioeffects and DUS-induced lung hemorrhage. We

will also include a description of a proposed mechanism for DUS-induced alveolar hemorrhage.

1.2.1.1 Cavitation of ultrasound contrast agent microbubbles

Acoustic cavitation is the phenomenon by which gas nano and microbubbles, called cavitation

nuclei, are cyclically grown by low pressures and collapsed by high pressures of the field. When

the bubble dynamics during collapse are dominated by the inertia of the surrounding fluid, the

process is called Inertial Cavitation (IC). IC is typically violent, with the bubble rapidly collapsing

to a fraction of its original size resulting in calculated internal pressures ranging from 100 to
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7000 MPa and temperatures from 1000 to 20000 K (Flynn, 1982). There are several possible

damage mechanisms associated with IC that may be responsible for observed US bioeffects. Due

to the pressure difference between the vapor/gas mixture within the bubble at collapse and the

surrounding medium, the collapsed bubble can emit a powerful shock wave that can be damaging

to the bubble’s surroundings. When cavitation is triggered near a rigid surface, the bubble can

collapse in a radially asymmetric fashion causing a high-speed “re-entrant” jet of liquid to impinge

upon the surface, effectively striking the surface with a liquid hammer. If cavitation occurs at

an appropriate distance from a non-rigid surface, such as soft tissue boundaries and blood vessel

walls, the jet can impinge away from the surface, potentially invaginating the surface (Brujan,

2011). The resulting stresses and strains can result in structural damage. Figure 1.2 schematically

illustrates potential cavitation damage mechanisms within a blood vessel.

While IC does not typically occur during non-contrast DUS, it is of concern during CEUS,

which uses contrast-agent microbubbles injected into patients’ bloodstreams to act as additional,

strong scatterers. The high acoustical impedance mismatch between the gas microbubbles and the

surrounding soft tissues allows for high contrast imaging and can be used to ultrasonically image

blood flow, which is useful for diagnosing heart valve problems, liver lesions, and more (Claudon

et al., 2012; Rognin et al., 2008). However, the use of contrast agent microbubbles can also have

potential deleterious side effects. These microbubbles can act as cavitation nuclei and the resulting

cavitation has been associated with a variety of different forms of cellular death and damage. The

precise ultrasonic thresholds for which cavitation and bioeffects occur have been a topic of intense

study and are not completely physically described. Furthermore, the exact physical mechanisms

through which cavitation causes bioeffects are also not clearly understood (Barnett et al., 1994).

As a result of the potential for cavitation-related US bioeffects, the United States Food and

Drug Administration called for a metric to quantify cavitation dosage and predict likely cavitation

damage from ultrasound. As bioeffects are typically attributed to IC, efforts to predict cavitation

damage considered the likelihood of IC based on theoretical calculations of free gas bubbles in

water. In the case of acoustic cavitation, the likelihood of damage depends on the duration of
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Ultrasound Pulse

Cavitation Nucleus

Cavitation

a.) Bubble expansion

b.) Jet (away from wall)

c.) Jet (toward wall)

d.) Shock wave

Figure 1.2: Schematic of possible cavitation-induced ultrasound bioeffects mechanisms. (Left) A
microbubble within a blood vessel interacts with an ultrasound pulse. (Middle) Subsequently, the
bubble undergoes cavitation. (Right) A variety of possible cavitation bubble dynamics scenarios
are potential bioeffects damage mechanisms (from top to bottom): a). Bubble expansion beyond
the radius of a surrounding blood vessel. b.) A cavitation jet away from the wall of a surrounding
blood vessel or tissue surface causes the surface to invaginate. c.) A cavitation jet of high speed
liquid strikes a vessel or tissue wall. d.) A shock wave created by the bubble collapse encounters
nearby tissue.
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peak negative pressure experienced by a cavitation nucleus, with longer interactions depositing

more energy into the nucleus, and thus having a greater likelihood of inducing IC and bioeffects.

The duration of the Peak Rarefaction Pressure Amplitude (PRPA) is inversely related to the US

frequency. Holland & Apfel (1989) demonstrated that the threshold PRPA needed to trigger IC,

defined based on a maximum bubble temperature ≥ 5000K, depended on the size of the cavitation

nucleus. Smaller cavitation nucleii, must overcome greater surface tension effects in order to

cavitate, with the Laplace pressure scaling inversely with the radius of the nucleus. Furthermore,

as the initial radius of a nucleus increases, the inertia of the surrounding fluid that it must be

overcome also increases (American Institute of Ultrasound in Medicine, 2000). Thus Holland &

Apfel (1989) illustrated that for a given frequency there is an optimal nucleus size for triggering IC.

Based on these calculations and corrections for heat dissipation in tissue the Mechanical Index (MI)

was created as a measure of ultrasound-induced cavitation related bioeffects and defined as

MI =
Pr.3√

fc

, (1.1)

where Pr.3 is the PRPA derated by 0.3 dB/MHz-cm (a soft tissue attenuation coefficient) and fc is

the center frequency Apfel & Holland (1991). As the MI was originally created based on theoret-

ical thresholds for inertial cavitation in water, the derated PRPA was used to account for in vivo

attenuation, however the effects of tissue’s elastic properties are not accounted for by this metric,

and because the cavitation dynamics are expected to change from tissue-to-tissue a more robust

evidence-based metric would be useful. The United States Food and Drug Administration (FDA)

mandates that MI≤ 1.9 for diagnostic ultrasound, though US bioeffects have been observed at MI

below this in the case of DUS of mammalian lungs (O’Brien, 2007; FDA, 1997).

1.2.1.2 Ultrasound-induced lung hemorrhage

The second US bioeffects topic of interest in this thesis is DUS-induced Lung hemorrhage (LH). In

the relevant literature, this is also sometimes referred to more specifically as Pulmonary Capillary
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Hemorrhage (PCH). This phenomenon was first discovered in mice over twenty years ago by

Child et al. (1990) and has since been shown to occur in a variety of other mammals including

rats, pigs, rabbits, and monkeys (O’Brien & Zachary, 1997; Miller, 2012; Tarantal & Canfield,

1994). Research into this phenomenon has focused on three main areas: (1) Determining the

physical mechanism of the hemorrhage; (2) Understanding how the occurrence and severity of the

hemorrhage depend on the ultrasonic properties (frequency, amplitude, waveform, etc...); and (3)

Understanding how the occurrence and severity of the hemorrhage depend on the characteristics

of ultrasound subject (species, age, anesthesia, etc...). The work in this thesis pertains primarily to

the first of these three areas.

Despite extensive previous research into DUS-induced LH, the underlying physical mecha-

nisms are still not well understood. Furthermore, past work has shown that common US bioeffects

mechanisms do not explain the observed injuries. Thermal damage mechanisms appear unlikely

to be the primary source of damage as DUS-induced lung lesions do not appear similar to those

induced by heat (Zachary et al., 2006). Furthermore, cavitation mechanisms do not appear to be re-

sponsible, as the severity of DUS-induced LH in mice increased under raised hydrostatic pressure

(O’Brien et al., 2000b) and was unaffected by the introduction of US contrast agents into both rats

and mice subject to lung US (Raeman et al., 1997; O’Brien et al., 2004). Both of these results are

inconsistent with what is expected of IC-induced bioeffects. More recent work by Miller (2016a,b)

investigating acoustical radiation surface pressure as a potential damage mechanism found that the

pressures expected in pulsed ultrasound were likely too low to completely explain the observed

hemorrhage on their own. Simon et al. (2012) found that atomization and fountaining occurred

at tissue-air interfaces subjected to HIFU and suggested that this could potentially happen at di-

agnostic levels as well. Similarly, works by Tjan & Phillips (2007, 2008) model the evolution

of an inviscid, free surface subjected to a Gaussian velocity potential and find that this can lead

to the ejection of liquid droplets. They go on to say that DUS of the lung may similarly lead to

the ejected of droplets capable of puncturing the air-filled sacs within the lung. The problem of

US-lung interaction is the central motivation of chapters 3 and 4. As such, a far more in-depth
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literature review is provided in these chapters.

1.2.1.2.1 Proposed mechanism for DUS-induced lung hemorrhage: vorticity-driven strain

of the alveolar walls

In this thesis we propose yet another potential physical mechanism for causing DUS induced lung

hemorrhage, and as such we now provide the relevant background. The physical problem underly-

ing interactions between ultrasound waves and the various tissue and fluid layers of the body is that

of a mechanical wave traveling in one medium encountering a second medium of differing phys-

ical properties. As was previously explained, this can result in acoustic energy being converted

into motion or heat. In the case of the bubble, the relevant manifestation of this was cavitation.

Another manifestation of this is the growth of perturbations at fluid-fluid interfaces as a result of

non-uniform velocity gradients that occur at the driven interface. Another way of thinking of this

is in terms of baroclinic vorticity, or localized fluid rotation, generated by the misalignment of in-

terface density gradients and mechanical wave pressure gradients. In this dissertation we propose

that (1) ultrasound-induced baroclinic vorticity may drive the growth of perturbations at liquid-

gas interfaces such as those of the alveoli and (2) this perturbation growth leads to alveolar strain

with possible hemorrhage. In the remaining portion of the section, we discuss in greater detail the

underlying physics at play here and some of the past work that has been done to understand it.

There has been extensive past research into the physics that underlies mechanical waves in-

teracting with and accelerating fluid-fluid interfaces. Much of this work has investigated regimes

outside those of acoustic interests, including applications in fusion energy and astrophysics. Tay-

lor (1950) predicted that, for an interface between two fluids of different densities, if the fluid was

accelerated normal to the interface in the heavy-to-light direction, perturbations at the interface

would grow. That is to say that a “bubble” of light fluid penetrates the heavy fluid, and a “spike”

of heavy fluid penetrates the light fluid. This is known as the Rayleigh-Taylor Instability (RTI).

A similar topic of past study is the Richtmyer-Meshkov Instability (RMI), which occurs when a

perturbed fluid-fluid interface is instantaneously accelerated by a shock, causing the interface per-

13



Figure 1.3: Schematic of baroclinic torque. From Heifetz & Mak (2015). A force balance upon
a particle subject to perpendicular pressure and density gradients illustrates baroclinic torque on a
fluid particle.

turbation to grow (Brouillette, 2002; Drake, 2006). This growth is driven by a sheet of baroclinic

vorticity deposited along the interface as a result of misalignment between the pressure gradient

across the shock and the density gradient across the perturbed interface. This physical mechanism,

by which misaligned gradients create a torque on fluid particles generating vorticity, can be thought

of in terms of a hydrostatic balance upon a particle. Pressure gradients result in acceleration of the

flow that is inversely proportional to density. When these two gradients are misaligned, the result

is a shearing effect or velocity differential on the fluid and vorticity is generated (Heifetz & Mak,

2015). A graphical explanations of baroclinic vorticity generation, adapted from (Heifetz & Mak,

2015) is shown in Figure 1.3. Analytically, baroclinic vorticity generation can be shown by taking

the curl of the conservation of momentum equation for a fluid with variable density. It is worth not-

ing that it is a second order, nonlinear effect and cannot be explained by traditional linear acoustics

in a uniform medium.

The physics of the classical RMI are fairly well understood. The classical RMI setup consists

of a planar shock impinging normally upon the peaks and troughs of a sinusoidal interface. The

interface is accelerated non-uniformly such that counter-rotating vortices are generated across the

interface. This drives peaks and troughs of the interface to accelerate in opposing directions, nor-

mal to the peak/trough surface. Much like in the case of the RTI, this too results in light fluid

penetrating the heavy fluid and vice versa. For the case of a wave moving from a light fluid into

a heavy one, the peaks and troughs of the interface accelerate away from one another, growing
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Figure 1.4: Schematic of the Richtmyer-Meshkov Instability for a heavy-light interface. Adapted
from Brouillette (2002). The initial condition (left), circulation post wave-interface interaction
(center), and perturbation growth (right) are shown.

the interface perturbation. For the case of a wave moving from a heavy fluid into a lighter fluid,

the peaks and troughs interface initially accelerate toward one another. They then pass each other,

inverting the phase of the interface perturbation, and continue moving in opposite directions, grow-

ing the perturbation amplitude. This process is illustrated in Figure 1.4, which has been adapted

from Brouillette (2002). This work proposes that similar physics occur at ultrasonically driven

air-tissue interfaces within the lungs. Much greater detail regarding the proposed mechanism is

provided in Chapters 3 and 4.

1.3 Tissue as a compressible fluid system

To investigate CEUS and DUS-induced lung hemorrhage, throughout this dissertation we model

the relevant physical problems of ultrasound in human tissue as compressible, multiphase fluid sys-

tems. In this section we attempt to justify this general approach and explain some of the applicable

assumptions and implications.

The underlying governing equations upon which our models are based are the general conser-
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vation equations for mass, momentum, and energy for a fluid,

∂ρ

∂t
+ ∇ · (ρu) =0, (1.2a)

ρ
Du
Dt

=∇ · τ + ρg, (1.2b)

∂E
∂t

+ ∇ · (Eu) =ρ (g · u) + ∇ · (u · τ) + ∇ · q, (1.2c)

where ρ is density, u is the flow velocity vector, t is time, τ is the stress tensor, g is the body

force vector, E = ρ
(
e + 1

2 [u · u]
)

is the total energy defined as the sum of the kinetic energy per

unit mass 1
2 (u · u) and the internal energy per unit mass e, and lastly q is the heat flux vector. To

model ultrasound-tissue interactions, the general conservation equations (1.2) are simplified and

manipulated based on the physics appropriate to the specific problem at hand. The closure of these

equations is also treated differently depending on the particular problem and model. Details on

the appropriate equations of state used to relate pressure and energy, constitutive equations used

to relate stress and strain, and boundary conditions are described in greater detail in sections 2.3.2

and 3.3.

To consider what physical effects are at play during diagnostic ultrasound, both contrast-

enhanced and of the lung, we consider the basic physical scenario of each of these problems:

an acoustic wave traveling through a multiphase medium consisting of soft tissue and gas. Soft

tissues are viscoelastic materials, i.e., they exhibit solid and fluid like behaviors simultaneously un-

der different types of forcing, i.e, viscosity, elasticity, and relaxation may all be simultaneously at

play. These tissues include blood as well as lung, liver, and kidney tissue, which are relevant to the

motivations of this thesis. The multiphase nature of these problems suggests that gas-liquid/gas-

viscoelastic interface phenomena such as surface tension may also be of some relevance. As fluid

motion is expected, inertial effects are likely to be of importance. Additionally, as ultrasonic heat-

ing is a known source of biological effects, we consider heat transfer and thermal mechanisms as

well. And for completeness, since the vast majority of ultrasound procedures do not occur on the

International Space Station, we consider the effects of gravity too. In the following, we introduce
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dimensional analysis to assess the relative importance of each of these physical phenomena for the

problems we approach in this part of the thesis.

1.3.1 Dimensional analysis and assumptions for Contrast-Enhanced Ultra-

sound

CEUS-related bioeffects are generally attributed to a process called IC in which a bubble or void

within a fluid collapses rapidly. This can result in high temperatures, pressures, stresses, strains,

and strain rates within the surrounding fluid. More details about this process and its relationship

to US bioeffects are provided in Section 1.2.1.1. In this work, we consider the problem of a single

US pulse interacting with a contrast agent microbubble, initially at rest within a viscoelastic soft

tissue. For the sake of justification we consider a typical case here. In Chapter 2 a more in-

depth analysis, specific to the work presented here, is performed. Consider an ultrasound pulse

of clinically relevant frequency f = 3 MHz and PRPA= pa = 1 MPa. The soft tissue is treated

as a Voigt type viscoelastic material, as in Yang & Church (2005), and has a nominal density

ρ = 1000 kg/m3, an elastic modulus from G = 5 kPa to 1 MPa, and a dynamic viscosity µ = 0.015

Pa s, and corresponding kinematic viscosity ν = µ/ρ = 1.5 × 10−5 m2/s. Surface tension is based

on that of blood, such that S = 0.056 N/m (Apfel & Holland, 1991). Note that the physical

properties of soft tissue vary widely and are poorly characterized, particularly at the strain rates

associated with cavitation. Based on the work of Patterson et al. (2012a) we define a characteristic

velocity of u =
√

pa/ρ = 31.6 m/s, which corresponds to a change in radius over a period of free

oscillation. As a characteristic length scale, we use a typical bubble size such that equilibrium

radius is R0 = 1µm.

Based on this setup we perform dimensional analysis to assess the relative importance of each

of the potentially relevant physical mechanisms to the problem of acoustically-driven cavitation in

soft tissue:

Viscosity: To assess the relevance of viscosity we consider the Reynolds Number, which is the ratio
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of inertial to viscous forces within a flow and is defined as Re = ρuR0/µ = 2.1. A Reynolds number

of order unity, suggests that inertia is on the order of viscous forces, and hence cannot be neglected.

Heat transfer and thermal effects: The Prandtl number is the ratio of momentum diffusivity to ther-

mal diffusivity and is defined as Pr = ν/α = 105.6. The calculated Pr is large relative to Re and

suggests that the effects of thermal diffusivity are dominated by momentum diffusivity. We infer

that that minimal heat transfer occurs over the course of the collapse and as such it is neglected in

our model.

Surface Tension: The Weber number is the ratio of inertial to surface tension forces in the flow and

is defined as We = ρu2R0/S = 17.9. The calculated We is large relative to Re, but not so much as

to suggest that the effects of surface tension at the bubble wall are negligible, even when the bubble

is at its equilibrium radius. Additionally, we note that the effects of surface tension may have an

even greater effect during collapse when the bubble radius may decrease by an order of magnitude

or more. Hence surface tension is not neglected.

Elasticity: The Cauchy number is a measure of the ratio of elastic to inertial forces and is defined

as Ca = ρu2/G = 1 − 200 for the range of elastic moduli considered (i.e., 5 kPa - 1 MPa). Based

on this the effects of elasticity are not expected to be particularly important to the bubble dynamics

for the tissues of kPa order elasticity, though this is expected to change for stiffer tissues. Addi-

tionally, we note that our work considers a Voigt type viscoelastic model, which is important as

the microsecond timescales associated with cavitation can effect the relative importance of viscous

and elastic forces. Accordingly, elasticity is included in the cavitation bubble model.

Gravity: The Froude number is the ratio of inertial to gravitational forces, or more generally, any

applicable body forces within a flow, and is defined as Fr = u/
√

gR0 = 104, where is the gravita-

tional constant g = 9.81 m/s2. The calculated Froude number is much larger than Re and suggests
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that gravitational and buoyancy effects are minimal relative to inertia and is neglected for the sake

of this analysis. This is of particular importance because, for a homogeneous medium, it allows us

to consider the case of a spherically symmetric collapse, which greatly simplifies the problem.

In summary, based on the dimensional analysis performed, we consider spherically symmetric

bubble dynamics in a Voigt-Viscoelastic medium with surface tension. The effects of gravity and

heat transfer are neglected.

1.3.2 Dimensional analysis and assumptions for an acoustically driven alve-

olus

In this section, we focus on the problem of an ultrasound pulse or physically similar acoustic wave

impinging upon an alveolus within an adult human lung. To assess the relevant physical mech-

anisms here in order to layout the logic for our assumptions and approach, we present a general

case relevant to the motivating problem of lung ultrasound. A more comprehensive justification

and analysis, specific to the work presented can be found in chapters 3 and 4. Consider an ultra-

sound pulse with central frequency f = 3 MHz, and amplitude pa = 1 MPa, which are within the

expected parameter range based on past research (Miller et al., 2015). We use the mean diameter of

a typical adult human alveolus as a characteristic length scale length scale `A = 200µm (Ochs et al.,

2004). The alveolus is treated as air at 37◦ such that the sound speed is cA = 353 m/s, the density

is ρA = 1.14 kg/m3, the kinematic viscosity is νA = 16.6 × 10−6 m2/s, and no elasticity is present

in the alveolar interior. The surrounding soft-tissue is treated as water-like, but with elasticity such

that the sound speed is cT = 1500 m/s, the density is ρT = 1000 kg/m3, the kinematic viscosity is

νT = 0.7× 10−6 m2/s and the elastic modulus of the alveolar wall is G = 5 kPa (Cavalcante, 2005).

We use a characteristic velocity uT =
√

pa/ρT = 31.6 m/s, a convenient scale based on the wave

and tissue properties. Based on the physical problem described here we use dimensional analysis

to access the relative importance of potentially relevant physical mechanisms:
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Viscosity: In consideration of effects of viscosity, we calculate the Reynold’s Number Re =

uT`/νT = 9035, which suggests that the inertial forces dominate the viscous forces. Additionally,

in consideration of late time effects, we calculate the approximate viscous boundary layer thick-

ness at t f inal, the time at the end of the simulated period such that lviscous =
√
νwatert f inal ≈ 20 µm.

Furthermore, typical acoustic viscous boundary layer thicknesses for MHz frequency ultrasound

are . 1 µm. As lviscous/` � 1, the viscous boundary layer is expected to remain far less than either a

typical alveolar diameter or the length scales associated with relevant geometrical structures of the

perturbed interface at the end of our baseline simulations (described in Chapters 3 and 4). Hence

we exclude the effects of viscosity in our calculations.

Heat transfer and thermal effects: We use similar arguments to those used for viscous effects

in consideration of thermal effects. The thermal length scale is defined as lthermal =
√
κ/π fρCp,

where the Cp is the specific heat and κ is the thermal conductivity. In air CpA = 1005 J/Kg K and

κA = 0.027 W/m K and in tissue (based on water) CpT = 1005 J/Kg K and κT = 0.49 W/m K.

Hence lthermal,A = 0.3µm and lthermal,T = 1.5 µm. For both fluids, on either side of the interface,

lthermal/` � 1 such that the thermal boundary layer is small relative to the characteristic length of

the flow. Hence we neglect heat transfer in our approach to this problem moving forward.

Surface Tension: The role of surface tension in the alveoli is critical to healthy respiratory func-

tion. Alveoli secrete pulmonary surfactant, which lowers the surface tension at the alveolar surface,

helping prevent airway collapse and easing the re-inflation of alveoli during breathing. As a result

of this surfactant, alveolar surface tension is far below that of water and has been reported as S A = 9

mN/m (Schürch et al., 1976). Hence we define our Weber Number as We = ρT u2
T`/S A = 22222.

This suggests that forces due to surface tension are small relative to the acoustic pressure at the

interface. Based on this, we neglect surface tension in our analysis as well.

Elasticity: To assess the expected importance of elasticity to the system we define a Cauchy num-
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ber Ca = ρT u2
a/G which becomes the ratio of the acoustic pressure to the elasticity Ca = pa/G =

200. This suggests that elastic effects are dominated by the acoustic pressure during the wave-

interface interaction within the tissue. Within the alveolar air space, there is no elasticity and the

Cauchy number is infinite. Based on this, we neglect elasticity in our model. Additional calcula-

tions considering the relevance of this assumption at later times, after the passage of the wave are

provided in Appendix A.7.

Gravity: The importance of gravity is assessed based on a Froude number calculation Fr =

uT/
√

g` = 714. This suggests that gravitational forces are small relative to inertia, and can be

neglected. Another reasonable justification for neglecting gravity is that the orientation of the

model problem in space is arbitrary and as a 2D model we treat the flow as existing in a plane that

is orthogonal to gravitational forces and thus not affected by gravity.

In summary, based on the dimensional analysis performed, we consider an acoustically-driven,

perturbed, water-air interface. The effects of viscosity, elasticity, surface tension, gravity, and heat

transfer are neglected.

1.3.3 Limitations

Before proceeding we would like to acknowledge that the simplifications and assumptions made

in the previous sections, while justified in the specified regimes, do deviate from the true physical

systems in many situations. The purpose of these simplifications is to make the relevant problems

tractable with the available resources (computational, intellectual, financial, temporal, etc...). In

both CEUS and in ultrasound-alveoli interactions, the presented dimensional analysis is based on

tissue properties such as viscosity and elasticity and behavior that are poorly characterized in both

nature and quantity. Additionally, the analysis performed here is for reference cases within the rel-

evant range, and certain dependencies, such as the frequency dependence of sound speed in bulk

lung tissue, are not captured here. Furthermore, actual tissues are often characterized by a wide
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range of physical length scales ranging from submicron to meter and are heterogeneous at both

micro and macroscopic scales. Despite these limitations, the models developed remain valid in

the specified regimes by presented dimensional analysis. As such, for cavitation in locally homo-

geneous Voigt viscoelastic soft tissues with kPa order elasticity and otherwise water-like physical

properties (e.g., viscosity, surface tension, density, sound speed) we expect the computed dynam-

ics to be representative of what one would expect in the real world. Similarly for gas-liquid and

gas-tissue interfaces with kPa order elasticity and otherwise water-like physical properties, driven

by ultrasound waves with diagnostically relevant parameters of the order of those stated, we ex-

pect that over the timescales of interest (∼ 100µs) the dynamics are appropriately represented. The

purpose of this work is to gain insight into the approximate physics applicable to these problems

only within the valid regimes for which the models were designed.

1.4 Thesis overview

This part of the thesis presents work studying the physics of two problems relevant to ultrasound

bioeffects: 1) Cavitation of ultrasound contrast agents microbubbles in human tissue, and 2) DUS-

induced hemorrhage of the lung. For each problem, the objectives of this thesis are to

1. Develop a computational model to simulate the problem.

2. Perform simulations to gain new insights into the relevant physics of CEUS and diagnostic

lung ultrasound.

3. Use the results of the simulations to develop and test new hypothesis and when possible

make conclusions about the physics and its relevance to the US bioeffects.

Upon pursuit of the above objectives, the novel contributions made throughout this thesis are

summarized as follows:

• A novel approach to investigating CEUS related bioeffects is taken, combining simulations

of bubble dynamics in a soft tissue-like viscoelastic medium, with experimentally measured
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ultrasound waveforms and known bioeffects thresholds.

• Calculated cavitation dynamics are related to known bioeffects thresholds associated with

the experimentally measured US inputs.

• Further evidence is offered to suggest that existing IC thresholds may not be well suited for

viscoelastic media.

• A novel model of an ultrasound-driven alveolus is developed.

• It is demonstrated that acoustic waves interacting with perturbed liquid-gas interfaces may

generate sufficient baroclinic vorticity to drive appreciable interface deformation. These

deformations are a result of nonlinear processes and cannot be described by purely linear

acoustics.

• Vorticity-driven perturbation growth of gas-liquid interfaces perturbations is shown to ex-

hibit power-law behavior and scale with interfacial circulation density.

• It is shown that because the morphology of the interface is changing during the wave-

interface interaction, vorticity deposition depends on the transient form of the wave, and

consequently so does the long-term growth (or lack thereof) of the interface perturbation.

• Approximate stresses and strains associated ultrasound-driven gas-liquid interfaces are cal-

culated. These quantities are compared with established alveolar failure criteria to conclude

that, while ultrasound-induced viscous stress in the lung is unlikely to cause hemorrhage,

there is a potential for vorticity-driven alveolar wall strain that may be related to hemor-

rhage.

A more detailed chapter-by-chapter summary of the work and conclusions of this thesis is provided

below.

In Chapter 2, we simulate the cavitation bubble dynamics of contrast agent microbubbles in

soft tissue (Patterson et al., 2012a). Experimentally measured US waves with known bioeffects oc-

currence and thresholds are used (Miller et al., 2008b). A parametric study is performed, relating
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ultrasound and tissue parameters to calculated cavitation bubble dynamics. The soft tissue is mod-

eled as a Voigt viscoelastic medium based on the work of Yang & Church (2005). The calculated

cavitation dynamics and theoretical inertial cavitation thresholds (Flynn, 1982; Apfel, 1982) are

compared with bioeffects thresholds associated with each US pulse, as defined by the observation

of kidney hemorrhage in rats exposed to CEUS by Miller et al. (2008b). While the results were

generally dependent on US, gas, and tissue properties, it was found that the theoretical inertial

cavitation thresholds were lower than observed bioeffects thresholds. It is shown that these thresh-

olds correlate strongly to calculated metrics of cavitation, such as dimensionless maximum radius

Rmax/Requilibrium and that this correlation is lost when simply looking at the dimensional maximum

bubble size Rmax, which is not a cavitation metric.

In Chapter 3, we develop a model of an ultrasonically-driven alveolus as a compressible, multi-

phase fluid system. This model is used to study the fundamental problem of an acoustically-driven

perturbed liquid-air interface. We demonstrate that under the assumptions presented in Section

1.3.2, trapezoidal acoustic waves of sufficient pressure amplitude are capable of generating enough

baroclinic vorticity to appreciably deform the interface. The dependence of this deformation on

the amplitude and temporal characteristics of the wave is studied. It is demonstrated that the defor-

mation rate scales with the amount of circulation per unit length of the interface. It is also shown

that the amount of circulation deposited by the wave is heavily dependent on the deformation that

occurs during the wave-interface interaction, and therefore depends on the transient properties of

the wave.

In Chapter 4, the work of the previous chapter is extended to increase its relevance to clini-

cal DUS. The previously developed model of an ultrasound-driven alveolus is modified and used

to simulate a perturbed liquid-gas driven by an ultrasound pulse with diagnostically relevant pa-

rameters. We calculate approximate stresses and strains at the interface and compare to accepted

alveolar failure criteria. It is shown that viscous stresses are small compared to expected failure

thresholds. However, it is also shown that strains at gas-liquid interfaces such as those of the lungs,

driven by acoustically-generated vorticity, may be sufficient to drive hemorrhage for sufficiently
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strong ultrasound pulses. This work concludes that while vorticity may be a possible mechanism

for driving DUS-introduced lung hemorrhage, additional work needs to be completed to account

for multiple pulses as well as physical effects of elasticity and viscosity in order fully understand

the role of vorticity in this problem.

In the final chapter 5 of Part I of this dissertation, we summarize the main conclusions take-

aways and accomplishments of this work. I also make recommendations for future work to over-

come the limitations of the presented research and extend this work to address relevant problems

within the field.
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CHAPTER 2

Theoretical microbubble dynamics at capillary

breaching thresholds

In this chapter, we present work in which experimentally-measured US pulses are used to simulate

US contrast agent microbubble dynamics. The pulses were previously used in experiments to

determine capillary breaching thresholds in rat kidneys (Miller et al., 2008b). We compare the

calculated bubble dynamics to the experimentally-determined bioeffects thresholds to investigate

the use of theoretical IC thresholds as a predictor for bioeffects. This work was published in the

Journal of the Acoustical Society of America (Patterson et al., 2012a,b).

2.1 Abstract

To predict bioeffects in contrast-enhanced diagnostic and therapeutic ultrasound procedures, the

dynamics of cavitation microbubbles in viscoelastic media must be determined. For this theoret-

ical study, measured 1.5-7.5 MHz pulse pressure waveforms, which were used in experimental

determinations of capillary breaching thresholds for contrast-enhanced diagnostic ultrasound in rat

kidney, were used to calculate cavitation nucleated from contrast agent microbubbles. A numerical

model for cavitation in tissue was developed based on the Keller-Miksis equation (a compressible

extension of the Rayleigh-Plesset equation for spherical bubble dynamics), with a Kelvin-Voigt

constitutive relation. From this model, the bubble dynamics corresponding to the experimentally

obtained capillary breaching thresholds were determined. Values of the maximum radius and tem-
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perature corresponding to previously determined bioeffect thresholds were computed for a range

of ultrasound pulses and bubble sizes for comparison to inertial cavitation threshold criteria. The

results were dependent on frequency, the gas contents, and the tissue elastic properties. The bioef-

fects thresholds were above previously determined inertial cavitation thresholds, even for the tissue

models, suggesting the possibility of a more complex dosimetry for capillary injury in tissue.

2.2 Background & Introduction

Cavitation-bubble collapse has been a topic of interest in physical acoustics for nearly a century

and has been the object of many experimental and theoretical studies, which have outlined the

complexity of the phenomenon (Leighton, 1997). This field made a landmark contribution to non-

ionizing radiation biology in medicine in the 1980s when the possibility of inertial cavitation, with

potential induction of bioeffects, from diagnostic ultrasound pulses was predicted theoretically

(Flynn, 1982; Apfel, 1982). This possibility was included in considerations for the regulation

of the ultrasound output of diagnostic machines. Apfel & Holland (1991) performed detailed

calculations of the response of different nuclei sizes in the form of free air microbubbles and

found that the optimum size decreased with increasing frequency, f . In addition, the rarefactional

pressure amplitude threshold, p, for inertial cavitation was determined for the optimum nuclei,

using the criterion of a >5,000 K gas temperature at collapse. For nuclei in blood, the ratio of

p1.67/ f was found to have a constant value of 0.13 at the threshold, using units of MPa and MHz.

This finding was used to create a Mechanical Index (MI) for regulatory purposes and for display

on the screens of diagnostic ultrasound machines. The MI was set equal to the peak rarefactional

pressure amplitude (PRPA) adjusted for attenuation and divided by the square root of frequency.

The regulatory guideline limit for diagnostic ultrasound was considered according to the Medical

Device Amendment Act of 1976 and the maximum value existing at that time. This guideline limit

was eventually set from measurements on a single diagnostic ultrasound probe to be 1.9 (Nyborg,

2001). It is noteworthy that the critical value corresponding to the Apfel & Holland (1991) result
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would be p/ f 0.6 = 0.29, which is much less than the MI limit. This discrepancy does not appear to

be of concern for normal diagnostic ultrasound from both experimental (Carstensen et al., 2000)

and theoretical (Church, 2002) considerations.

To improve diagnostic information in ultrasound examinations, ultrasound contrast agents

(UCAs) were invented. The contrast agents consist of a suspension of stabilized gas-filled mi-

crobubbles, which provide strong echoes from blood and improve contrast in sonography (Averkiou

et al., 2003; Raisinghani et al., 2004). Soon after contrast-enhanced diagnostic ultrasound was de-

veloped, microscale bioeffects were reported (Miller et al., 2008a). The typical bioeffect seen in

mesentery, muscle, heart, and kidney was capillary rupture, which appeared to be caused by cav-

itation nucleation in blood from the circulating contrast microbubbles. Recently, hemorrhage of

glomerular capillaries was studied in rat kidney to determine PRPA thresholds and the frequency

dependence of the thresholds (Miller et al., 2008b). Presumably, the thresholds correspond to the

action of the optimum cavitation nuclei, and this approach therefore provides a means to directly

compare cavitation theory with the bioeffects experiments. Over the 1.5-7.5 MHz frequency range

tested, the thresholds were proportional to the frequency, such that p/ f was approximately constant

at 0.49 MPa/MHz for actual diagnostic ultrasound and 0.62 MPa/MHz for diagnostic ultrasound

simulated by a laboratory pulsed-ultrasound system. These thresholds fell below the MI=1.9 level,

especially for the lower frequencies, but above the inertial cavitation thresholds of Apfel & Holland

(1991), and the frequency dependence was different. Evidently, the bioeffects thresholds depend

on cavitation dynamics not specifically tied to the inertial cavitation threshold of free air bubbles

in blood determined by Apfel & Holland (1991). The fundamental reason for these results remains

uncertain, which revives the non-ionizing radiation biology problem of ultrasonic cavitation in

medical ultrasound.

The theoretical model of Apfel & Holland (1991) applies to air microbubbles in a Newtonian

liquid. However, contrast agents in the blood stream do not necessarily exhibit such properties. It

is well-known that human tissue behaves in a viscoelastic fashion (Frizzell, 1976; Madsen et al.,

1983). The bubble dynamics greatly depend on not only the viscoelastic properties (Allen & Roy,

28



2000a; Yang & Church, 2005) for a given model, but also on the type of model (Johnsen & Hua,

2012) and on nonlinearity (Allen & Roy, 2000b). Furthermore, the gas contained in contrast agents

is not air; for example, perfluoropropane (PFP, C3F8) in Definity (Perflutren Lipid Microsphere,

Lantheus Medical Imaging, N Billerica MA), which may affect the collapse temperature. The sta-

bilizing skin or shell may not be an important factor for the capillary rupture bioeffect because the

nucleation process appears to liberate a free gas microbubble. The thresholds for this cavitational

bioeffect are above the destabilization threshold of the optimal microbubbles, which therefore may

be modeled as free microbubbles (Sboros et al., 2002; Marmottant et al., 2005). Basically, at low

PRPAs the stabilization is lost, which releases a free microbubble, thus nucleating cavitation, fol-

lowed by dissolution at the conclusion of the pulse (Porter et al., 2006). In the case of diagnostic

ultrasound, the microbubble is subjected to a series of pulses that start low, build to a peak and

finally decline. Thus, when the peak pulse arrives to cause the injury, the microbubbles likely are

already destabilized.

The detailed mechanism by which cavitation causes bioeffects is unknown, although several

have been proposed, such as shock emission upon collapse, growth beyond a given size, high tem-

peratures generating free radicals, re-entrant jets in non-spherical collapse (Zeqiri, 2003). In order

for such phenomena to occur, it is expected that inertial cavitation occurs. From this observation,

prior studies have used the threshold for inertial cavitation as a surrogate for bioeffects (Yang &

Church, 2005). This inertial cavitation threshold was developed theoretically for bubble dynam-

ics in water (Flynn, 1975a). In this work, we show that the bioeffects threshold is different from

previously developed inertial cavitation thresholds. The difference between the inertial cavitation

threshold calculated for air microbubbles in blood and the capillary rupture thresholds is likely

due to an incomplete model. That is, the homogenous model results may correlate better with the

bioeffects results if tissue elasticity, gas contents, pulse parameters, and possibly other factors are

considered.

In the current work, a different approach combining experiments and numerical modeling to

studying bioeffects is followed. In vivo experiments were performed to determine the pulse ampli-
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tude and frequency under which bioeffects occur (Miller et al., 2008b). Given these experimental

pulses, bubble dynamics are modeled numerically over the entire waveform duration, which is not

taken into account by Apfel & Holland (1991), to determine how the bubble response correlates

with the observation of bioeffects. A detailed description of the methodology is presented. The

experimental setup and numerical model are first discussed in Section 2.3. The results from the

combined experimental and numerical procedure are presented in Section 2.4. The ability of es-

tablished inertial cavitation thresholds, and general cavitation parameters, to predict bioeffects is

discussed. The article ends with a summary of the results and considerations for future work on

this topic.

2.3 Materials and Methods

2.3.1 Experimental Setup

In the previous study of glomerular capillary hemorrhage in rats by Miller et al. (2008b), bioeffect

thresholds were determined for ultrasound exposure with diagnostic ultrasound machines and with

a laboratory system set up to simulate diagnostic scanning. The ultrasonic waveforms (pressure

vs. time) used for the driving pressure in this study were based on the laboratory system bioeffect

thresholds at 1.50, 2.25, 3.50, 5.00 and 7.50 MHz (with corresponding bioeffects thresholds of

0.98, 1.31, 2.38, 2.82 and 6.00), which allowed more flexibility in producing the desired pulse

waveforms than the diagnostic ultrasound machine.

The experiment was designed to simulate worst-case-scenario clinical conditions for CEUS.

Anesthetized rats were held in place in a 75 L bath of 37◦ C degassed water, and exposed to ultra-

sound while receiving a constant 10 µl/kg/min infusion of UCA. The ultrasound probe was placed

such that its focal zone was at the cortex of the right kidney. The ultrasound system consisted of

a transducer, power amplifier (A-500, Electronic Navigation Industries, Rochester NY), function

generator (model 3314A function generator, Hewlett Packard Co., Palo Alto CA). Five damped

single element transducers (Panametrics, Olympus NDT Inc. Waltham, MA) with 1.9 cm diam-
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Figure 2.1: 7.5 MHz experimental and numerical ultrasound waveforms at bioeffects threshold
pressure. Experimental and numerical (filtered) pressure waveforms for the 7.5 MHz pulse at
the threshold (Peak negative pressure: 6.0 MPa, 543 ns duration, MIeq=PRPA/ f 1/2=2.2). Solid:
experimental; dashed: numerical.

eter and 3.8 cm focus were used at their resonant ultrasonic frequencies in a warmed water tank.

The function generator was set using the n-cycle mode with n = 3 to produce a simple pulse

train with pulse durations and PRPAs the same as used for the in vivo exposures. The waveforms

were measured with a calibrated PVDF bilaminar film hydrophone with 0.4 mm spot size (model

805, Sonora Medical Systems, Longmont CO) and were adjusted to equal the threshold at each

frequency and to several 3 dB increments above and below the threshold. The purpose of the pro-

gressive steps was to help identify any specific cavity behavior, which recurred at each frequency

as the threshold was crossed. The hydrophone measured the alternating pressure including the

PRPA, to which the constant atmospheric pressure must be added to obtain the total pressure. The

highest PRPA available for the higher frequencies was limited by the transducers. The experimen-

tal waveforms are imported into Matlab, and smoothened using a moving-average low-pass filter.

This procedure results in waveforms, such as that shown in Figure 2.1 for the threshold at 7.5 MHz,

in which the high-frequency experimental noise is removed. The smoothened waveforms are then

input into the bubble dynamics code as the driving pressure.
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Parameter Dimensional value Dimensionless number
Viscosity µ = 0.015 (Pa s) 7→ Re = ρuRo/µ = 2/3
Elasticity G = 105 (Pa) 7→ Ca = ρu2/G = 1.0
Surface tension S = 0.056 (N/m) 7→ We = ρu2Ro/S = 2
Sound speed c = 1570 (m/s) 7→ C = c/u = 157

Table 2.1: Base physical parameters representative of soft tissue used in the present study.

2.3.2 Bubble Dynamics Model

The bubble dynamics are modeled under the assumption that a single spherical gas bubble is sub-

jected to a far-field pressure change (ultrasound pulse) in an infinite medium of uniform properties.

Given that bioeffects are observed in some of the experiments and that it is likely that inertial cavi-

tation occurs, it is expected that compressibility of the surrounding medium matters. Furthermore,

tissue is expected to behave in a viscoelastic fashion. To account for all of these elements, the

Keller-Miksis equation (Keller, 1980), a compressible extension of the Rayleigh-Plesset equation,

is considered, and the constitutive relation between the stresses and strains follows a Kelvin-Voigt

viscoelastic model, as in Yang & Church (2005). Thus the nondimensional equations governing

the bubble dynamics are:

(
1 −

Ṙ
C

)
RR̈ +

3
2

(
1 −

Ṙ
3C

)
Ṙ2 =

(
1 +

Ṙ
C

) [
pB − 1 − pa −

R
C

dpa

dt

]
+

R
C

ṗB, (2.1)

where R(t) is the bubble radius, C is the dimensionless sound speed, pa is the time-varying compo-

nent of the far-field pressure and the dot represents material (time) derivatives. The bubble pressure

pB is given by

pB =

(
1 +

2
We

)
1

R3γ −
2

WeR
+ τR, (2.2)

where We is the Weber number (dimensionless surface tension), γ is the specific heats ratio for the

gas, and τR is the shear stress in the rr-direction evaluated at r = R.

As in Yang & Church (2005), the Kelvin-Voigt model is used as the constitutive relation be-
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tween the stresses and strains:

τR = −
4

3Ca

(
1 −

1
R3

)
−

4
Re

Ṙ
R
, (2.3)

where Re is the Reynolds number (dimensionless viscosity), and Ca is the Cauchy number (di-

mensionless elasticity). The dimensionless numbers are defined in Table 2.1. The resulting system

of equations is solved for the bubble radius using a fifth-order accurate Cash-Karp Runge-Kutta

method with adaptive time-step control. In the problem under consideration, the pressure pulse is

smooth and its wavelength is on the order of 1 mm. Since the bubbles are initially in the micron

range and do not grow beyond a few initial radii, the present Rayleigh-Plesset-type approach is

justified.

The base values for tissue properties, listed in Table 2.1, are taken from the literature (Apfel

& Holland, 1991; Yang & Church, 2005). In the present work variables are nondimensionalized

using a tissue density of ρ = 1000 kg/m3, a characteristic speed given by u =
√

patm/ρ where patm

is atmospheric pressure, and a characteristic equilibrium radius of R0 = 1 µm. The resulting time

scale is thus close to the Rayleigh collapse time. A range of equilibrium radii within 0.1-2.0 µm, a

typical size distribution for UCAs, is considered. Thus, changing the equilibrium radius modifies

the nondimensional parameters. The specific heat is taken as γ = 1.13 for perfluoropropane.

Reported values of tissue elasticity fall in the 1-100 kPa range (Arda et al., 2011). However, it is

known that the elasticity may increase up to the MPa range at high strains (Krouskop et al., 1998).

Here, a nominal elasticity of G = 100 kPa is considered as the base case.

Since the thresholds for cavitational bioeffects are above the destabilization threshold, the mi-

crobubbles are modeled as free bubbles (Sboros et al., 2002; Marmottant et al., 2005), i.e., UCA

stabilizing films and shells are neglected. Additionally, the detailed effect of the physical con-

straint imposed by blood vessel walls is considered by including it in the bulk elasticity of the

tissue. Though non-spherical perturbations may occur due to the local heterogeneity of tissue and

thus lead to a significant change in the bubble dynamics, non-spherical collapse is expected to
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produce lower temperatures and pressures (Johnsen & Colonius, 2009). In this sense, the spher-

ically symmetric model represents a worst-case scenario useful in determining safe, conservative

parameters for CEUS procedures.

2.4 Results and Discussion

2.4.1 Bubble Response

Typical bubble responses are first shown to provide a qualitative understanding of the physics.

Figures 2.2, 2.3 and 2.4 show the history of the dimensionless bubble radius produced by a given

pressure waveform for a range of essentially linear to nonlinear cases, and different elasticities

(5 kPa, 100 kPa and 1 MPa). In the linear case, the bubble oscillations are in phase with the

pressure waveform. Increasing the elasticity leads to larger oscillation amplitudes, though the

changes are small. At intermediate frequency and amplitude, the oscillations become larger and

more nonlinear for larger elasticities. This observation, although seemingly counterintuitive, is

consistent with the results of Johnsen & Hua (2012), who showed analytically that the damping

of the oscillations is smaller in this range of elasticities. In the fully nonlinear case (large pulse

amplitude and frequency), the oscillation amplitude becomes yet larger, thus yielding a larger

maximum radius and very small minimum radius. For all elasticities, the initial behavior is similar

up to the second maximum radius. Thereafter, the stiffer case (G=1 MPa) departs and collapses

violently, while the other cases rebound. The maximum radius is achieved at approximately the

same time in all cases, after the peak positive pressure. In all the simulations, the oscillations damp

out rapidly after the passage of the pulse.

In the results of the following sections, the maximum dimensionless radius, Rmax, and dimen-

sional bubble temperature at collapse, Tmax, obtained using the ideal gas law, are determined by

recording their largest value over the simulation. These quantities are compared to the inertial

cavitation thresholds used by Apfel & Holland (1991) and Yang & Church (2005): Rmax = 2 and

Tmax = 5000 K. The dependence of the bubble dynamics on the pulse amplitude, initial bubble size
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Figure 2.2: Bubble radius (top) and input-pressure waveform (bottom) histories for an essentially
linear case (frequency: 1.5 MHz; peak negative pressure: 0.35 MPa). No bioeffects are observed
here. R0 = 1 µm; solid: G = 5 kPa; dashed: G = 100 kPa; dotted: G = 1 MPa.

Figure 2.3: Bubble radius (top) and input-pressure waveform (bottom) histories for a moderately
nonlinear case (frequency: 3.5 MHz; peak negative pressure: 2.4 MPa). Bioeffects are observed
here. R0 = 1 µm; solid: G = 5 kPa; dashed: G = 100 kPa; dotted: G = 1 MPa.

(i.e., UCA size distribution), pulse frequency, and tissue properties are considered individually.
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Figure 2.4: Bubble radius (top) and input-pressure waveform (bottom) histories for a highly non-
linear case (frequency: 7.5 MHz; peak negative pressure: 6.0 MPa). Bioeffects are observed here.
R0 = 1 µm; solid: G = 5 kPa; dashed: G = 100 kPa; dotted: G = 1 MPa.

2.4.2 Dependence on the Pulse Amplitude

Given the strong dependence of the MI on the rarefactional pressure amplitude, the influence of

the pulse amplitude on the bubble dynamics is first evaluated. Figure 2.5 shows the dimensionless

maximum radius as a function of rarefactional pressure amplitude. Initial bubble radii ranging

between 0.1–2.0 µm are shown, as well as different frequencies. The open symbols denote cases

where bioeffects did not occur, while the filled symbols denote the occurrence of bioeffects.

The results show that the bubble dynamics, through the maximum radius, scale with the pulse

amplitude. Although the results do not collapse fully onto a line, a general trend is discernible.

At low amplitude, the increase in the maximum radius is approximately linear; beyond some am-

plitude, the bubble undergoes nonlinear oscillations, thus explaining the different dependence and

larger spread. These results are consistent with the plots shown in Figures 2.2-2.4. Over a broad

range of amplitudes, the occurrence of bioeffects has little correlation with pulse amplitude alone:

at a given amplitude, bioeffects may be observed or not, depending on the bubble size and pulse

frequency. Only at very large pressure amplitudes (PRPA > 4.20 MPa) are bioeffects systemati-
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Figure 2.5: Dependence of the dimensionless maximum bubble radius on the peak negative pres-
sure for G = 100 kPa. Empty symbols: no bioeffects; filled symbols: bioeffects. Pentagrams: 0.1
µm; circles: 0.5 µm; squares: 1 µm; diamonds: 2 µm; frequency: 1.5 - 7.5 MHz. The Rmax = 2
inertial cavitation threshold (red, dashed line).

cally observed regardless of the bubble size and pulse frequency. This behavior is not surprising,

since at these amplitudes the bubble response is expected to be highly nonlinear. Conversely, at

low amplitudes (PRPA < 0.97 MPa), the oscillations are linear and no bioeffects are observed,

regardless of bubble size and pulse frequency. In this latter case, most bubbles whose Rmax/R0 is

below two do not exhibit bioeffects; however, this behavior depends on the value of elasticity, as

shown in Section 2.4.5. Although not shown here for conciseness, similar results are obtained for

peak positive pressure.

Similarly, the criterion Tmax > 5000 K is not achieved with perfluoropropane. As shown in

Figure 2.6, the observed temperatures for PFP are far below this value, though the results for air

approach it. This result is expected since the criterion was determined for air, which has a larger

specific heats ratio (γair = 1.4) than PFP (γ = 1.13). The specific heats ratio appears in the internal

gas pressure term in Equation 2.2; its effect on the bubble dynamics is minor if the minimum radius

is not very small, as in Figure 2.6. Still, since the adiabatic relationships for an ideal gas are used,
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Figure 2.6: Dependence of the bubble dynamics on the gas contents (G = 100 kPa). (a) History of
the bubble radius for PFP (solid) and air (dashed). R0 = 1 µm; frequency: 3.5 MHz; peak negative
pressure: 3.3 MPa. (b) Maximum temperature for PFP (circles) and air (squares). R0 = 0.1 − 2
µm; frequency: 1.5 - 7.5 MHz.

the temperature is significantly affected by the different specific heats ratio. Hence, even though

the bubble dynamics are not strongly affected by the specific heats ratio, the maximum temperature

is.

2.4.3 Dependence on the Initial (Equilibrium) Bubble Radius

In the experiment, the size distribution of the UCAs is not known exactly. It is desirable to know

whether the observed bioeffects are caused by all bubbles responding to the ultrasound, or whether

a specific size is more likely to be responsible at the bioeffects threshold. To answer this question,

for each experimental frequency, bubbles of different radii ranging from 0.1–2 µm are subjected

to the pressure waveform corresponding to the bioeffects threshold amplitude. It should be noted

that varying the equilibrium radius changes the non-dimensional parameters. Figure 2.7 shows

the maximum dimensionless radius, for both water (zero elasticity) and tissue (finite elasticity,

G = 100 kPa), for the amplitude at which bioeffects are first observed at a given frequency.

Excluding the smallest size, the bubble response in tissue is monotone and changes little for a
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Figure 2.7: Dependence of the dimensionless maximum bubble radius on the initial bubble size for
the amplitude at which bioeffects are first observed, at a given frequency, for G = 100 kPa. Empty
symbols: water; filled symbols: tissue. Circles: 1.50 MHz; squares: 2.25 MHz; diamonds: 3.50
MHz; pentagrams: 5.00 MHz; hexagrams: 7.50 MHz. The Rmax = 2 inertial cavitation threshold
(red, dashed line).

given frequency; there is no initial size that consistently leads to a dramatic response. The some-

what erratic behavior of the small bubbles may imply that such sizes are not exclusively present in

UCA concentrations. On the other hand, the behavior is more irregular for water, particularly at

small radii: for a given frequency, there is an optimal size that exhibits the largest response; these

variations are much larger than for tissue.

2.4.4 Dependence on the Pulse Frequency

The dependence of the bubble response on the pulse frequency is considered in this section. Figure

2.8 shows the maximum dimensionless and dimensional radius for all initial bubble sizes and

amplitudes vs. frequency. The square symbols denote cases in which bioeffects were observed in

the experiments, while the circular symbols represent no bioeffects. The initial bubble sizes are

not discriminated here for simplicity.

With the exception of a few outliers, a clear separation between cases for which bioeffects did

and did not occur is observed; in other words, the bioeffects threshold has a strong dependence on
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Figure 2.8: Dependence of the bubble dynamics on the frequency for G = 100 kPa. R0 = 0.1 − 2
µm; empty circles: no bioeffects; squares: bioeffects. (a) Dimensionless maximum bubble radius.
(b) Dimensional maximum bubble radius.

the frequency. The trend appears to be approximately linear with frequency. Large growth may be

achieved with no evident bioeffects, especially at high frequencies. The quantity Rmax is a measure

of cavitation collapse, since it is related to the available energy of the bubble. Thus, the present

results indicate that cavitation collapse is expected to play an important role regarding bioeffects,

although the precise mechanism cannot be inferred. Again, the existing criteria for inertial cavita-

tion thresholds are frequency-independent and do not correlate well with the bioeffects threshold,

which clearly shows a strong dependence on frequency.

Another hypothesis is that bubble growth may be responsible for capillary breaching. However,

the plot of the dimensional maximum radius vs. frequency does not show systematic bioeffects

beyond a certain size, e.g., some capillary diameter. Thus, growth is not the sole mechanism by

which bioeffects occur. However, the data remains inconclusive, due to the inability to identify the

cases in which cavitation collapse is the dominant effect.
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Figure 2.9: Dependence of the dimensionless maximum bubble radius on the frequency. R0 =

0.1 − 2 µm; empty circles: no bioeffects; squares: bioeffects. (a) G = 5 kPa. (b) G = 1 MPa.

2.4.5 Dependence on the Tissue Properties

As suggested in Figures 2.2-2.4, the bubble dynamics are sensitive to the tissue properties, specif-

ically the elasticity. However, different types of tissue may have very different properties. Many

of the measurements of tissue elasticity are made in vitro, and depend strongly on tissue prepa-

ration, storage, and degradation as well as method of measurement. Consequently, it is possible

that these measurements do not accurately represent the current behavior. To explore the effect

of the elasticity on the results and the correlation to bioeffects, Figure 2.9 shows the maximum

dimensionless radius for all initial bubble sizes and amplitudes vs. frequency for G = 5 kPa and

G = 1 MPa. Although seemingly high, the latter elasticity is chosen to match the work of Yang &

Church (2005).

The bubble dynamics and correlation to bioeffects significantly change when reducing the elas-

ticity. For a value of 5 kPa, the discrimination is no longer clear. The bubble dynamics are closer

to the behavior in water, such that different sizes may have dramatically different responses to the

same waveform, as explained previously. On the other hand, the stiffer medium (G = 1 MPa)

shows an even sharper demarcation, which again appears to be approximately linear. Given the
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sensitivity of the results on the elasticity, it is clear that more precise in vivo data is required for

elasticities of tissues at the relevant strain rates.

Although not shown here, the type of viscoelastic model significantly affects the bubble dynam-

ics (Johnsen & Hua, 2012; Patterson et al., 2012a). For instance, a standard linear solid model,

which includes stress relaxation in addition to elasticity, leads to very different maximum radii and

oscillation properties (frequency and damping). For large relaxation times, elasticity variations

become negligible.

2.5 Conclusions

In the present work, a numerical model is used to investigate experimentally observed bioeffects as

a result of contrast-enhanced ultrasound. This work is unique in its combination of experimental

results and numerical modeling. For the experimentally generated input pressure waveforms, it is

known which of these triggered bioeffects, and from the numerical model we obtained calculated

values for the dimensionless maximum radius and dimensional maximum temperature for each of

these cases. By comparing the results of this study to previously established inertial cavitation

thresholds used by Apfel & Holland (1991) and Yang & Church (2005), Tmax = 5000 K and

Rmax = 2, it would appear that the inertial cavitation threshold does not play a role in determining

the bioeffects threshold. However, it is unlikely that the inertial cavitation threshold is irrelevant.

Instead, it is far more probable that these thresholds are not defined appropriately for cavitation in

a viscoelastic medium, such as soft tissue. This work suggests the need for further experimental

and numerical studies of cavitation in viscoelastic media.

The present work shows a strong correlation between cavitation dynamics and bioeffects when

considering the pulse frequency. From the plot of maximum dimensionless radius vs. frequency,

there is a clear separation between when bioeffects do and do not occur, and based on these results

it appears that the frequency of the input pressure waveforms is of key importance to the definition

of a bioeffect threshold, and likely the inertial cavitation threshold as well.
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The present work shows that the elasticity of tissue significantly affects the bubble dynam-

ics. This finding is perhaps not completely unexpected given that bubble dynamics are known to

strongly depend on viscoelastic properties and model. The present study shows the need for more

accurate measurements of material properties and for determining appropriate constitutive models

for soft tissue, particularly at high strain rates. Finally, although the present work suggests that

inertial cavitation collapse plays an important role with respect to bioeffects, it does not shed light

on the exact mechanism, e.g., shock emission upon collapse, growth beyond a given size, high tem-

peratures generating free radicals, re-entrant jets in non-spherical collapse, etc. In future work we

plan on investigating this injury mechanism by conducting direct simulations of the full equations

of motion for bubble dynamics in a viscoelastic medium.
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CHAPTER 3

Growth of liquid-gas interfacial perturbations driven

by acoustic waves

In this chapter we develop a numerical model of Ultrasound (US)-alveolar interaction as an acoustically-

driven, perturbed liquid-gas interface. Using the resulting computational framework we study the

evolution of the interface for acoustic waves within the Diagnostic Ultrasound (DUS) regime and

beyond. Using dimensional analysis, we describe the interface perturbation growth in terms of the

vorticity dynamics. Finally, we consider the results and conclusions within the context of DUS

of the lung. This work is in preparation to be submitted for publication (Patterson & Johnsen, (In

preparation)).

3.1 Abstract

Diagnostic ultrasound has been shown to cause lung hemorrhage in a variety of mammals, though

the underlying damage mechanisms are still unclear. Motivated by this problem, we use numer-

ical simulations to investigate the interaction of an ultrasound wave with the alveolar tissue-air

interface. A planar, positive, trapezoidal waveform propagates in tissue (modelled as water) and

impinges upon an alveolus of the lung (modelled as air); to represent the alveolar surface rough-

ness, the interface consists of a small-amplitude, single-mode perturbation. Because of the sharp

density gradient at the interface, we hypothesize that ultrasound waves, despite their relatively

low amplitude, deposit sufficient baroclinic vorticity to drive perturbation growth. Our simulations
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show that the interface perturbation amplitude grows to many times larger than the original value,

well after the wave has passed. We demonstrate that conventional (linear) acoustics cannot ac-

count for such deformations; instead, the perturbation growth is driven by nonlinear effects—the

baroclinic vorticity deposited along the interface, due to the misalignment of the pressure gradient

(across the wave) and the density gradient (across the perturbed liquid-gas interface). Based on

dimensional analysis and scaling, we observe that the perturbation amplitude and length of the

interface scale with the circulation density and grow according to power-law behavior in time. If

the time-interval between the pressure increase and decrease is sufficient, both deposit vorticity of

the same sign, thus enhancing the perturbation growth; conversely, if the interval is too short, the

vorticity deposited by the pressure increase is canceled by the decrease. A further consequence is

that one may be able to control the growth of such perturbed interfaces by modulating the incoming

wave.

3.2 Introduction

DUS is one of the safest forms of medical imaging and has become ubiquitous in clinical practice.

DUS-induced lung hemorrhage is the only known bioeffect of non-contrast, pulsed US, as bleed-

ing has been shown to occur in mammals including mice, rats, rabbits, pigs, and monkeys (Child

et al., 1990; O’Brien et al., 2006a; Tarantal & Canfield, 1994; Miller, 2012). Furthermore, this

problem has been shown to occur for a wide range of frequencies from 1.5 to 12 MHz, for Me-

chanical indices well below the accepted safe limit for diagnostic ultrasound, MI = 1.9 (O’Brien,

2007). Although this problem does not appear to be of medical safety concern for humans under

typical conditions, there is a need to better understand the physical mechanisms of DUS-induced

lung hemorrhage, which cannot currently be explained by well-established US bioeffects mecha-

nisms. Typically, US bioeffects are generally classified as thermal or non-thermal, with the bulk

of non-thermal bioeffects being a result of acoustically driven inertial cavitation. Except for one

study reporting cavitation activity (Holland et al., 1996), the bulk of the research suggests that
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inertial cavitation is not the cause of DUS-induced lung hemorrhage: Raeman et al. (1996) and

O’Brien et al. (2004) found that bleeding is not worsened by the use of ultrasound contrast agents,

and O’Brien et al. (2000b) observed that the severity of the hemorrhage increases when the hydro-

static pressure is raised. Beyond lung hemorrhage, a number of studies have explored nonlinear

mechanisms as a potential cause for bioeffects. Filonenko & Khokhlova (2001) developed nu-

merical models to study the effects of acoustic nonlinearity on wave propagation and heating in

soft tissue. Khokhlova et al. (2006) numerically solved a KZK-type equation simulating High-

Intensity Focused Ultrasound (HIFU) fields in a tissue phantom with the purpose of studying the

impact of nonlinear propagation, cavitation and boiling on lesion formation. Based on potential

flow simulations of an inviscid free surface subjected to a Gaussian velocity potential, Tjan &

Phillips (2007) suggested another damage mechanism for DUS-induced lung hemorrhage, namely

that under the right circumstances, droplets capable of puncturing the air-filled sacs within the lung

may be ejected by the focused US. Simon et al. (2012) experimentally demonstrated atomization

of water and soft tissue at air interfaces exposed to 2 MHz HIFU, though at amplitudes higher than

diagnostic. Despite these efforts, the precise damage mechanism underlying DUS-induced lung

hemorrhage is still unknown.

In parallel, the dynamics of accelerated interfaces separating fluids of different densities have

been the subject of intensive studies in fluid mechanics. When exposed to accelerations whose

sign is opposite that of the density gradient, interfacial perturbations grow exponentially as a man-

ifestation of the Rayleigh-Taylor (RT) instability (Taylor, 1950). Bubbles of light fluids “rise” into

the heavy fluid while spikes of heavy fluid “fall” into the light fluid. Although the original analysis

pertained to perturbation growth at early times under constant acceleration, extensions to nonlinear

growth and time varying accelerations have been performed. In the limit of instantaneous acceler-

ation (e.g., as produced by a shock wave), perturbations initially grow linearly in time, as predicted

by Richtmyer-Meshkov (RM) analysis (Richtmyer, 1960; Meshkov, 1969), regardless of the sign

of the density gradient. To characterize the growth at later times, Hecht et al. (1994) developed a

potential flow model for both RT and RM flows with Atwood Number A =
ρheavy−ρlight

ρheavy+ρlight
= 1, which
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describes bubble growth in both linear and nonlinear regimes. Srebro et al. (2003) presented a

buoyancy-drag model to describe the perturbation growth for time-dependent Atwood number and

acceleration profile. In both RT and RM flows, perturbation growth can be explained by vorticity

generated baroclinically, i.e., due to the misalignment of the density and pressure gradients:

dω
dt

∣∣∣∣∣
baroclinic

=
∇ρ × ∇p

ρ2 , (3.1)

where ω is the vorticity, ρ density and p pressure. The majority of RT research has examined

interfacial perturbation growth under constant acceleration fields; RM research is primarily con-

cerned with shock-accelerated interfaces, where the post-shock pressure is kept raised (Brouillette,

2002). There has been limited study of interfaces undergoing transient acceleration. Mikaelian

(1996) simulated shock passage through multiple gas layers with sinusoidally perturbed interfaces

to show that subsequent reshock by reflected waves caused the flow to evolve into a complex

nested mushroom morphology. Mikaelian (2009) developed a model for hydrodynamic instabil-

ities driven by time-dependent accelerations, which agreed well with full simulations. Henry de

Frahan et al. (2015b) demonstrated that subsequent interactions between reflected and transmitted

shocks and rarefactions with interfaces in layered media could be used to decrease and possibly

control the long term growth of a shock-accelerated interface. Much of the past research in both

RT and RM flows has focused largely on gas-gas interfaces. Haas & Sturtevant (1987) experimen-

tally shocked helium and R22-filled bubbles in air. They showed that transmitted waves overtake

one another and merge downstream as a result of nonlinear gas dynamics. Numerical simulations

of shock-bubble interactions have verified the timescales and physical features observed in these

experiments. These simulations, in conjunction with nonlinear theory, have shown that baroclinic

vorticity is generated by the wave-interface interaction, and dominates the late-time dynamics of

the system (Picone & Boris, 1988; Quirk & Karni, 1996).

We submit that an ultrasound wave propagating in tissue and impinging upon the lung may

give rise to perturbation growth along the interface, much like that observed in RT and RM flows.
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Despite being smooth by contrast to shocks, ultrasound waves in tissue have pressure amplitudes

on the order of megapascals over millimeters; although the strength of the waves is relatively small

given the large density and sound speed, the pressure gradients are not negligible. Furthermore,

the density jumps by several orders of magnitude over a few microns across the tissue-air interface.

These observations motivate our hypothesis, namely that baroclinic vorticity generated by the mis-

alignment of the pressure gradient across the ultrasound wave and the density gradient across the

tissue-lung interface causes interfacial perturbations to grow, even after the passage of the wave.

We note that misalignment of the acoustic pressure gradient and interface density gradient also

occurs for the case of non-normal wave incidence, even for a perfectly flat interface. As the alve-

olar structure is highly anisotropic, non-normal wave impingement is bound to occur during real

DUS wave-alveolar interactions. Such a phenomenon cannot be described by linear acoustics.

Ultimately, if the growth is sufficient over the relevant time scales, capillary rupture may follow.

However, the fluid mechanics of this process are expected to be different from classical RT and RM

theory: by contrast to conventional RT analysis, the acceleration imparted by the pressure wave

is time-varying and transient; as opposed to the classical RM process, the transient wave deposits

vorticity over a finite duration. Thus, the transient nature of the problem (e.g., interface deforma-

tion during wave interaction) is expected to be important. Our objective is to predict the growth of

perturbations along water-air interfaces subjected to time-varying pressure waves using numerical

simulations, under conditions relevant to diagnostic ultrasound. To probe the basic mechanics, the

tissue-lung interface is modeled as a water-air interface, and the ultrasound waveform is idealized

to a trapezoidal wave. The article is organized as follows. We first describe the problem under

consideration and our methods. We then investigate the perturbation growth and vorticity dynam-

ics for a baseline case. As we seek to understand the late-time growth, we then examine how

the wave properties (amplitude and length) affect the dynamics. Finally, we summarize the main

conclusions and suggest the next steps to be taken.
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3.3 Fluid mechanics modeling of ultrasound-lung interaction

Consider a diagnostic ultrasound (DUS) pulse traveling into the lung. Since past studies have

observed lung hemorrhage with frequencies ranging from 1.5 to12 MHz and pressure amplitudes

from 1.0 to 12.3 MPa (Penney et al., 1993; Child et al., 1990; O’Brien et al., 2000a; Miller et al.,

2015), we consider pulses in the MHz and MPa ranges. The wave traverses several layers of soft

tissue and fluid making up the thoracic wall (∼ 2 cm thick) and pulmonary pleura (∼ 1 mm thick),

whose acoustic properties (density and sound speed) are close to that of water (McLean et al.,

2011). The size of the focal region is on the order of the ultrasonic wavelength λ, approximately

1 mm for a 1.5 MHz wave in tissue. After passing through the pleurae, the wave encounters

a network of openly connected, air-filled saccules with distinctly irregular surfaces—the alveoli,

whose typical size in adult humans is ` ≈ 200 µm (Ochs et al., 2004). The lung is a complex or-

gan, as exemplified by the range of length scales and physical properties (multiphase, viscoelastic,

surface tension, high gas volume fraction Bayliss & Robertson, 1939; Suki et al., 1994). How-

ever, dimensional arguments suggest that at sufficiently early times inertial effects dominate in

the interaction of an ultrasound wave with the lung; viscous, surface tension and elastic effects

are negligible. By the end of the simulations considered here, the viscous boundary layer thick-

ness is approximately
√
νwatert f inal ≈ 20 µm, far less than both a typical alveolar diameter and the

400 µm amplitudes achieved at that time in our baseline case. The Weber number corresponding

to the lung surface tension ( ∼ 9 mN/m, Schürch et al., 1976) and a pressure amplitude of 1 MPa

is We = pa`/σlung = O
(
104

)
� 1. For an elastic modulus K = 5 kPa (Cavalcante, 2005), the

acoustic Cauchy number is Ca = pa/K = O
(
102

)
� 1. To reinforce the relative unimportance of

elasticity within the considered problem, we compare the estimated inertial as elastic forces at the

interface for our baseline case in Appendix A.7.

Our interest lies in the interaction between an incident ultrasound cycle and the first alveolar

tissue-air interface it encounters, as illustrated in Figure 3.1. Given the complexity of the full prob-

lem, we simplify it to a tractable one on the basis of the above observations. Since viscous, surface

49



tension and elastic effects are negligible, the dominant mechanics are the wave propagation, its

interaction with the tissue-lung interface and subsequent interfacial deformations. Thus, we model

the thoracic wall and pleura as water, and the lung as air; both substances are compressible, with

appropriate density and sound speed. To simplify the representation of the alveolar surface rough-

ness, the interface is initially represented by a single-mode sinusoidal perturbation of amplitude

a0,

yinter f ace(x, t = 0) = a0 sin
(
2πx
`
−
π

2

)
, (3.2)

where a0 is taken to be 0.03` in this work. We define the time-dependent interfacial perturbation

amplitude a(t) as half the peak-to-trough distance in the y−direction. λ � `, and as such the incom-

ing wave is planar the scale of an alveolus. More complex, corrugated interfaces can be described

by combining such sinusoidal perturbations of varying amplitudes and wavelengths. Despite the

three-dimensional geometry of the real problem, the essential physics are well approximated by

this two-dimensional description.

Although our motivation is rooted in DUS-induced lung hemorrhage, a typical DUS pulse

bears challenges when investigating the fundamental mechanics of acoustically driven perturbed

liquid-air interfaces. For instance, the waveforms are often noisy, continuously vary and come in

as pulses consisting of several cycles of variable amplitude. For simplicity, we construct an ide-

alized waveform comprising the key elements of DUS pulses expected to drive the mechanics, as

illustrated in Figure 3.2. The trapezoidal waveform is shown first, in red, as an envelope around a

diagnostic pulse to show the relative amplitudes and length scales, and then by itself, describing the

precise initial pressure condition as a function of distance from the interface in the +y-direction. By

contrast to shock waves, which instantaneously and impulsively accelerate the interface and main-

tain a state of high pressure after their passage, an ultrasound wave continuously interacts with

the interface over the finite duration of its passage; the pressure returns to its initially unperturbed

ambient value thereafter. Direct application of Richtmyer-Meshkov analysis to relate the continu-
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Figure 3.1: Schematic view of the physical and model problems. Left: Schematic description
of the physical problem of interest (ultrasound pulse in tissue impinging upon the first alveolus it
encounters). Right: Computational set-up of the model problem (acoustic wave in water impinging
upon a sinusoidally perturbed air interface of initial amplitude a0).

ously varying pressure profile to baroclinic vorticity deposition is thus not straightforward. For this

reason, we consider a single, positive trapezoidal wave of amplitude and length relevant to DUS,

consisting of a linear pressure increase followed by a constant elevated pressure, itself followed by

a linear pressure decrease back to ambient. Noting that its intensity is approximately trapezoidal,

the complex, multi-cycle DUS pulse is simplified to a waveform to which Richtmyer-Meshkov-

inspired analysis can be applied: though finite duration, the pressure gradients are constant and the

time intervals over which vorticity is deposited (pressure increase/decrease) are clearly defined.

Despite this specific choice for the waveform, we explain in Section 3.5 how these results are gen-

eralizable to arbitrary waveforms with positive and negative pressure contributions. Results for

an ultrasound pulse waveform, a negative trapezoidal waveform, and a sinusoidal waveform are

provided in Chapter 4, Appendices A.5, and A.6, respectively.

The amplitude and length of the wave are chosen to be relevant to DUS. The pressure increases

from atmospheric by amplitude pa = 5.0 to 12.5 MPa over a distance ∆La = 1 mm for an alveolus

of diameter 200 µm. The wave is symmetric in time such that the pressure decreases over the same
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Ultrasound Pulse

Shock wave

Figure 3.2: Ideological progression from ultrasound pulse and shock to baseline trapezoidal wave.
This wave can be analyzed with Richtmyer-Meshkov-inspired analysis.

∆La. To keep the pulse duration consistent with DUS, we choose as a baseline a total pulse length

of L = 45` corresponding to 9 mm in soft tissue or a 5.5 µs pulse duration, in the range relevant

to previous research (Child et al., 1990; O’Brien et al., 2006b). Thus, the length of the constant

elevated pressure is 35`. Thus, the initial pressure waveform is prescribed as

p(y f , t = 0) = patm + pa



0, y f ≤ 0, or y f ≥ 45`,

y f

5` , 0 ≤ y f ≤ 5`,

1, 5` ≤ y f ≤ 40`,

1 − y f−40`
5` , 40` ≤ y f ≤ 45`,

(3.3)

where y f = y − (a0 + 0.3`) is the y-location, relative to the initial location of the wave leading

end. At these amplitudes and frequencies, linear acoustics describes ultrasound propagation in

homogeneous tissue, such that the initial x− and y−velocity components are set to u = 0 and

v = −∆pa/(ρc), respectively, and initial density is ρwater + ∆pa/c2 (Anderson, 1990), where ∆pa =

p(y, 0) − patm is the acoustic perturbation pressure.

Once the ultrasound reaches the interface, the pressure differential (due to the geometrical
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perturbation) over a short distance applies a torque on fluid particles along the sharp, perturbed

interface, thus generating rotation (or baroclinic vorticity). Since this effect is nonlinear, and thus

cannot be described by linear acoustics, we solve the Euler equations, written here in two dimen-

sions (x, y):

∂ρ

∂t
+
∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.4a)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
+
∂

∂y
(ρuv) = 0, (3.4b)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y

(
ρv2 + p

)
= 0, (3.4c)

∂E
∂t

+
∂

∂x
(
u
[
E + p

])
+
∂

∂y
(
v
[
E + p

])
= 0, (3.4d)

where t is time, ρ density, p pressure, u and v are still the x− and y−velocity components and E the

total energy. A stiffened equation of state relates the pressure to the internal energy,

E =
ρ
(
u2 + v2

)
2

+
p + nB
n − 1

, (3.5)

where B is an empirically determined measure of liquid stiffness that allows water to be treated as

an ideal gas under high pressure. For perfect gases, such as in our treatment of air, n is the specific

heats ratio and B = 0.

The interface evolution is captured using a γ−based (Shyue, 1998), such that

∂

∂t

(
1

n − 1

)
+ u

∂

∂x

(
1

n − 1

)
+ v

∂

∂y

(
1

n − 1

)
= 0, (3.6a)

∂

∂t

( nB
n − 1

)
+ u

∂

∂x

( nB
n − 1

)
+ v

∂

∂y

( nB
n − 1

)
= 0. (3.6b)

We initially prescribe a small, finite-thickness parameter δ to the interface (Latini et al., 2007),
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such that the initial volume fraction field is

α0 =



1 (water),

exp
(
log

(
10−16

)
|d|8

)
(mixture),

0 (air),

d =
δ + yinter f ace(x) − y

2δ
, (3.7)

where δ = 0.08`. While our choice of this parameter is based purely on previous research, we

demonstrate in Appendix A.4 that, within a reasonable range of values, our results are largely

independent of δ.

The dimensional fluid properties used for air are determined at 300 K and 1 atm such that

ρair = 1.18 kg/m3 and cair = 347.2 m/s. For water, ρwater = 996 kg/m3 and cwater = 1648.7 m/s. The

parameters in the stiffened equation of state are nair = 1.4, Bair = 0, nwater = 5.5, and Bwater ≈ 492

MPa (Marsh & Los Alamos Data Center for Dynamic Material Properties (U.S.), 1980; Holian,

1984; Cocchi et al., 1996). The density and sound speed of water, as well as the alveolar diameter,

equal here to the interface perturbation wavelength, are used for non-dimensionalization.

The equations are solved on a domain ranging in the xy−plane from 0 ≤ x ≤ 1` (periodic

in x) and −20` ≤ y ≤ 60` (outflow boundary conditions in y). The y−length of the domain is

chosen such that the entire initial wave and subsequently deforming interface fit in the domain.

We use a third-order accurate Discontinuous Galerkin (DG) scheme (p = 1) in space with the

Roe solver and a fourth-order accurate, adaptive Runge-Kutta method to march forward in time

(Henry de Frahan et al., 2015a). To isolate the effects of a single pulse, the longest time span

reasonable to observe the evolution of the system is the time between consecutive pulses, which

for a typical pulse repetition frequency of 1 kHz is 1000 µs (O’Brien et al., 2000a). Here, due

to computational limitations, we consider up to a final time t f inal/(`/c) = 4748 or approximately

576 µs of dimensional time. The grid resolution is 100 points per ` in x and y, except for the top and

bottom-most 10` segments of the domain, where the grid is stretched geometrically to minimize

artificial reflections. Given the exceedingly long time duration, we used the highest possible grid
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resolution based on our computing resources and time constraints. Though the solution cannot

be fully converged in a pointwise sense with the Euler equations (Samtaney & Pullin, 1996), the

results show grid dependence of certain integral quantities. Nevertheless, the conclusions made on

the basis of our results are still valid. Convergence of various quantities for our baseline case is

examined in Appendix A.2.

In this study, we determine the dependence of the time-evolution of the interfacial perturbation

amplitude on the wave amplitude pa and length L of the wave. To remain clinically relevant, we

consider wave amplitudes between pa = 5.0 and 12.5 MPa and lengths between L = 10` and

45`. For our baseline case, pa = 10 MPa and L = 45`. As our results indicate, this baseline

is convenient because the pulse amplitude is sufficiently strong to evolve the dynamics to late

time within a computationally feasible time, yet not so strong as to drive the system to behave

qualitatively differently than weaker waves within the diagnostic ultrasound regime.

3.4 Results and discussion

3.4.1 Dynamics of the baseline case

3.4.1.1 Density-based description of the perturbation growth

To exemplify the growth of a perturbation along a water-air interface driven by the trapezoidal

wave of interest, Figure 3.3 shows the time evolution of the density field for the baseline case. The

wave propagates from water (top) to air (bottom). Frame 1 shows the interface shortly after it first

encounters the wave at t/(`/c) = 4.75, near the end of the compression. Upon interaction with the

interface, nearly all of the acoustic energy is reflected back into the water as a rarefaction due to

the significantly lower acoustic impedance of air. The transmitted wave in air is weakly focused

or defocused, depending on the convex or concave nature of the curved interface. Between frames

1 and 2, the mean interface location moves in the negative y-direction by 0.31 (corresponding to

the mean acoustic velocity multiplied by the time between the pressure rise and decrease), as it
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Figure 3.3: The evolution of the acoustically-driven, perturbed interface. Density contours at
t/(`/c) = 4.75, 47.5, 475, and 1424 for the baseline pa = 10 MPa, L = 45` trapezoidal wave.
Black line: α = 0.5 volume fraction isoline; black dashed line: initial mean interface location.

is advected by the velocity corresponding to the elevated pressure. Between these two frames,

the perturbation phase reverses sign as evidenced by the initial perturbation peak at x/` = 0.5

becoming a valley. From frame 2 on, bubbles of air are observed to rise into the water along the

sides at x/` = 0, 1, while a liquid spike penetrates the air in the middle at x/` = 0.5. This bubble

and spike evolution continues well after the incident wave has passed. The cumulative effect is that

the interface perturbation grows from an initially smooth sinusoid to a pointed spike at late times.

We turn to a more quantitative description of the time-evolution of the perturbation in Figures

3.4 (amplitude) and 3.5 (bubble and spike locations). The bubble and spike locations are defined as

the highest and lowest y-coordinate, respectively, of the constant α = 0.5 volume fraction isoline,

and are meaningful really only after phase reversal; the interface amplitude is calculated by taking

the difference between the bubble and spike locations. As the volume fraction is not equal to the
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mass fraction, this isoline does not always align with the apparent interface in the figure. We note

that this area of mixed fluid around the interface where the volume fraction is between 0 and 1 is a

product of the numerical treatment and is not necessarily a property of the physical system.

The early time behavior is characterized by several distinct events. Following the impingement

of the leading end of the wave at non-dimensionalized time t/(`/c) = t1 = 0.3, the interfacial

pressure rises until t2 = 5.3, at which point the pressure has reached its maximum amplitude. As

the initial perturbation peak moves in the negative y-direction, the interface amplitude decreases

to nearly zero (flat interface) at tp = 24, the instant when the phase reverses. The amplitude

increases thereafter as the initial peak (now the spike) continues its progress in the negative y-

direction. The interfacial pressure remains constant until t3 = 40.3, at which point the leading end

of the rarefaction reaches the interface. The pressure decreases until t4 = 46.1, at which point the

full wave has left the interface and the pressure is atmospheric again, as it was originally. The

perturbation amplitude continues to grow well after the wave has passed, reaching many times its

initial value. At these late times, the growth appears to be smooth, continuous and monotonic in

time. This large growth may have significant implications in the context of potential ultrasound-

generated damage to the lung as the alveolar surface elongates, thus potentially giving rise to

capillary rupture.

Slightly before t4, the slope of the bubble and spike locations changes significantly, at a time

we define as t/(`/c) = tΓ = 44.6. We remark that between t2 and t3 the bubble and spike velocities

consist of the superposition of the wave velocity corresponding to the elevated pressure and the

velocity induced by the baroclinic vorticity, to be discussed in greater detail in the next section.

Once the magnitude of the former is sufficiently small (toward the end of the passage of the wave),

the latter becomes dominant. At this time, the net bubble velocity becomes positive and rises. This

time tΓ, defined as the minimum in the bubble location after phase reversal, plays an important role

in our analysis from Section 3.4.2.

The most important contribution of linear acoustics is the interface translation (downward on

the contour plots) during the interaction with the wave; the overall interfacial perturbation evolution
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Figure 3.4: Interface perturbation amplitude history a(t)/a0 for the baseline pa = 10 MPa, L = 45`
trapezoidal wave. t/(`/c) ≤ 120 (a) and t/(`/c) ≤ 5000 (b). In (a), times at which different
stages of the incoming trapezoidal pressure wave first encounter the interface are indicated as t1

(the compression), t2 (the constant elevated pressure, pa), t3 (the rarefaction), and t4 (the return to
ambient pressure).
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Figure 3.5: y-locations of the bubble and spike for the baseline pa = 10 MPa trapezoidal wave
case, during and shortly after the wave-interface interaction. By definition, the bubble is the top
(solid, blue) curve and the spike is bottom (red, dashed) curve. tΓ, as defined by the minimum
bubble location, is the vertical (black, dotted) line.
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cannot be explained solely by this principle. The combined effects of the compression and the

deformations occurring between the time the wave travels from the perturbation peak to trough

would yield a perturbation amplitude change of approximately 0.01a0. Linear acoustics would

further imply that the perturbation should no longer evolve after the wave passage. It follows that

nonlinear mechanisms must drive the perturbation growth.

3.4.1.2 Vorticity-based description of the perturbation growth

The results presented in the previous section demonstrate that the perturbation amplitude grows

well after the incident wave has traversed the interface, driven by a mechanism that cannot be

explained by conventional linear acoustics. During interaction with the interface, the pressure

differential (due to the geometrical perturbation) over a short distance applies a torque on fluid

particles along the interface, thus generating rotation (baroclinic vorticity). Such effects would

be of higher-order and thus negligible for acoustic waves encountering small density variations;

in the present problem, however, the pressure and density change by significant amounts over

short distances, thus giving rise to substantial gradients dominating otherwise first-order (acoustic)

effects. For these reasons, we examine the perturbation growth in terms of vorticity, ω = ∇ × u,

whose evolution in two dimensions is given by

∂ω

∂t
+ (u · ∇)ω = −ω (∇ · u) +

∇ρ × ∇p
ρ2 . (3.8)

The high impedance mismatch and relatively low dilatation at the wave amplitudes of interest

make the first term on the right-hand side (dilatation) essentially negligible compared to the last

term (baroclinic), which is large given the nearly discontinuous density gradient and the significant

pressure variations over relatively short lengths; Appendix A.1 quantitatively supports this claim.

Figure 3.6 depicts vorticity contours at t/(`/c) = 4.75, 47.5, 475, and 1424, for the baseline case. At

time zero, there is no vorticity in the domain. Frame 1 shows that near the end of the compression-

interface interaction a vortex sheet exists along the interface, with negative vorticity between x/` ∈
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Figure 3.6: The evolution of the vorticity field. Vorticity contours at t/(`/c) = 4.75, 47.5, 475 and
1424 for the baseline pa = 10 MPa, L = 45` trapezoidal wave case. Black solid line: α = 0.5
volume fraction isoline; black dashed line: initial mean interface location.

[0.0, 0.5] and positive vorticity between x/` ∈ [0.5, 1.0]. The vorticity appears to be primarily in the

air as the interface location (black line) is taken to be the α = 0.5 volume fraction isoline. By frame

2, the initially deposited vorticity has driven the perturbation peak downward such that the phase is

now reversed during the passage of the rarefaction. As a consequence of this phase reversal, most

of the vorticity deposited by the rarefaction has the same sign as the distribution generated by the

compression, despite the corrugation of the interface. If the interface had remained undeformed,

the vorticity deposited by the rarefaction would have been opposite sign and thus act to reduce that

due to the compression. Instead, the enhanced vorticity gives rise to a clockwise (left-half domain)

and counter-clockwise (right-half domain) vortex pair driving the spike to form at x/` = 0.5. Over

time, the vorticity contours become fainter, but appear to spread over a larger region.

During the interface evolution, the vorticity redistributes itself along the interface. To quantify

this behavior, we plot in Figure 3.7 the cumulative vorticity (in y) along the interface,
∫ +∞

−∞
ω̃(x, y)dy,

where ω̃ = ω for 0 < α < 1 and is otherwise zero (in pure water or air). Initially, the vorticity
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Figure 3.7: Cumulative vorticity along the interface for early, intermediate, and late times. Cu-
mulative vorticity (in y) along the interface,

∫ +∞

−∞
ω̃(x, y)dy, where ω̃ = ω for 0 < α < 1 and is

otherwise zero (in pure water or air), at t/(`/c) = 4.75 (blue, solid), 47.5 (red, dashed), 475 (green,
dotted), and 1424 (purple, dashed-dotted).

is smooth and nearly sinusoidal, as expected (Samtaney & Zabusky, 1994). During the phase re-

versal process, the vorticity peaks move toward x/` = 0.5. Given the geometry at the time when

the rarefaction arrives, a second peak in the vorticity distribution is observed near x/` = 0.0, 1.0 at

t/(`/c) = 47.5. Though apparently fainter in the contour plots, the vorticity is clearly concentrated

near the spike, driving the heavy fluid into the light one.

For a more quantitative global measure of vorticity, we consider the circulation produced in the

right-half domain (the left is equal and opposite by symmetry) for the baseline case in Figure 3.8.

The same times at which different stages of the incoming trapezoidal pressure wave first encounter

the interface are indicated on this figure. From t1 to t2 (during the interaction of the compression

with the interface), positive vorticity (circulation) is deposited given the direction of the density

and pressure gradients. This circulation increase is linear since the pressure and density gradi-

ents are constant over the interaction interval. Other than small changes due to transverse wave

reflections, the circulation remains essentially constant until t3, at which point the leading edge of

the rarefaction encounters the interface. Since the phase has reversed at tp, the deposited vorticity

is of the same sign (i.e., positive) as that deposited by the compression, such that the circulation
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Figure 3.8: Circulation history for the right-half domain for the baseline pa = 10 MPa, L = 45`
trapezoidal wave case. t/(`/c) ≤ 120 (a) and t/(`/c) ≤ 5000 (b). In (a), times at which different
stages of the incoming trapezoidal pressure wave first encounter the interface are indicated as t1:
the compression; t2: the constant elevated pressure pa; t3: the rarefaction; t4: the return to ambient
pressure.

approximately doubles by the time the trailing end of the rarefaction arrives at t4. Thereafter, any

changes in vorticity after this point, are no longer due to the primary incoming wave. The decrease

in circulation observed after the wave passage is due to the intersection of the transverse reflections

of the rarefaction (now compressions) near the bubble, while the late-time increase is attributed to

the acceleration of the heavy fluid into the light one as the spike penetrates the air, which is a form

of secondary baroclinic vorticity generation (Peng et al., 2003).

3.4.2 Dependence of the perturbation growth on the wave amplitude

3.4.2.1 General Observations

Since the perturbation growth is driven by residual baroclinic vorticity deposited by the interac-

tion of the ultrasound wave with the interface, it follows that the growth rate increases if more

vorticity is deposited. Thus, holding all other parameters fixed, we anticipate the perturbation am-

plitude growth rate to increase with increasing wave amplitude given that the baroclinic term is
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Table 3.1: Circulation during the wave-interface interaction.

Γ(ti)/(`c) × 103

pa (MPa) t1 t2 t3 t4

5.0 0 3.3 3.8 2.9
7.5 0 5.0 6.0 8.7
10.0 0 6.8 8.8 18.0
12.5 0 8.5 11.9 30.5

proportional to the pressure difference. This behavior is confirmed by Figure 3.9, which shows the

amplitude and circulation histories for wave amplitudes ranging from 5.0 to 12.5 MPa; to help an-

alyze the results, Table 3.1 lists the circulation at times t1−4. As expected, after the initial transient,

the late-time growth rate increases with increasing pressure amplitude. The circulation at the dif-

ferent ti follow a consistent behavior, as the values increase with increasing pressure amplitude. At

t2, we observe that the circulation deposited by the compression increases at a nearly constant rate

with pressure amplitude, consistent with the fact that the time rate of change of the circulation is

proportional to the baroclinic term, itself proportional to the pressure difference. From t2 to t3 and

t3 to t4, the rise in circulation generally increases with increasing amplitude, except for the 5 MPa

wave between t3 to t4. In this latter case, there is a decrease in circulation, due to the fact that phase

inversion has not occurred by the time the rarefaction encounters the interface. After t4, we observe

that both the decrease and late-time rise in circulation depend on the pressure amplitude; greater

amplitudes lead to greater changes. In the 12.5 MPa case, the circulation appears to decrease at

very late times (t ≥ 4000). This behavior is caused by round-off level errors accumulating over the

course of this long simulation, thus breaking the left-right symmetry of the simulation (Movahed

& Johnsen, 2013).

3.4.2.2 Late time scaling of the perturbation amplitude

The smooth and monotonous behavior of the perturbation amplitude growth suggests that a more

general scaling describing its dependence on the pressure amplitude may exist. Clearly, the pertur-

bation growth is related to the circulation Γ. As the perturbation grows, the vorticity redistributes
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Figure 3.9: The interface amplitude and circulation for long time and multiple wave amplitudes.
Histories of the interface perturbation amplitude (a) and circulation (b) for trapezoidal wave cases
with L = 45`, pa = 5.0 (blue, solid), 7.5 (red, dashed), 10.0 (green, dotted), and 12.5 (purple,
dashed-dotted) MPa, for t/(`/c) ≤ 5000.

itself along the interface, such that dependence on the interface length s and the initial wavelength

` are expected. Finally, given that the waves traverse the interface over a finite duration, depen-

dence on the sound speed c is expected. Thus, the dependence of the amplitude on these variables

can be formulated as a dimensional analysis problem:

a(t) = f (Γ, s, `, c; t) ⇒
a(t)
`

= G
(

Γ

`c
,

s
`

;
t
`/c

)
, (3.9)

where ` and c are used for non-dimensionalization. We note that there is likely an Atwood number

dependence, but since the density fields do not significantly change we ignore this parameter here.

Well after the wave passage (e.g., for t & 500), the circulation no longer changes significantly (ex-

cept perhaps in the pa = 12.5 MPa case, where the circulation changes up to approximately 30%),

as there is no dominant mechanism to affect it. However, as the interface deforms and elongates

(i.e., s(t) increases), the vorticity gets redistributed along the interface. The circulation density

Γ/s is thus a relevant quantity describing the vortex dynamics (Pozrikidis, 2000). As observed in
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Section 3.4.1.2, the baroclinic vorticity is the dominant contributor to the interface perturbation

growth after tΓ. Thus, we expect the perturbation amplitude to depend on the circulation density at

this time, which we define Γ(tΓ)/s(tΓ) = Γ0/s0. It therefore follows that

a(t)
`

= F
(

Γ0

s0c
,

tc
`

)
. (3.10)

Finally, we hypothesize that the perturbation growth scales linearly with the circulation density,

such that

a(t)
`

=
Γ0

s0c
F

( tc
`

)
. (3.11)

To verify this hypothesis, we plot the perturbation amplitude a(t) scaled by the circulation density

at tΓ in Figure 3.10. To facilitate the comparison, the time origin has been shifted by tp such that

the instant the phase inversion occurs has been synchronized for all cases. Two observations stand

out. First, the scaled growths collapse onto what appears to be a single curve. Second, this curve

appears to asymptote to a constant slope exhibiting a power-law behavior, i.e., F = (tc/`)n. To

compute n, we write

ln
[
(a(t − tp)/

(
Γ0

s0

`

c

)]
= b + n ln

[
(t − tp)/(`/c)

]
, (3.12)

where tp is still the time of phase reversal and b is the y−intercept of the best fit line, which depends

on the value of a(t − tp)/
(

Γ0
s0

`
c

)
when the interface growth becomes asymptotic. Using data from

(t − tp) ≥ 2000, we perform a linear regression analysis to determine the best fit values for n

in a least squares sense. We find that n ≈ 3/5, as illustrated in Table 3.2. Though difficult to

distinguish in Figure 3.10, the pa = 12.5 exhibits a slightly higher time exponent, with n closer

to 2/3; this discrepancy may be due to the fact that circulation, even at late times, still grows

in a non-negligible fashion in this case. We note however that this amplitude falls beyond those

typically used in clinical diagnostic ultrasound. We should also point out that grid independence is
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Table 3.2: Interface amplitude growth time exponents, a(t)
`
∼ tn

.
pa (MPa) n(t ≥ 2000)

5.0 0.61
7.5 0.59
10.0 0.61
12.5 0.66
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Figure 3.10: Interface amplitude scaled by circulation density at tΓ. For the trapezoidal wave cases
with L = 45`, pa = 5 (blue, solid), 7.5 (red, dashed), 10 (green, dotted), and 12.5 (purple, dashed-
dotted) MPa. Time is synchronized based on phase inversion. Black dashed line: power-law
growth as t3/5.

not achieved on the current grid, such that the actual value of the exponent may change slightly as

finer grids are used; on the other hand, the collapse of the data does not appear to depend on the grid

spacing. As we are only considering the small perturbation case here a0/` � 1, the dependence

on the initial perturbation amplitude a0 is not considered here. Because the angle of misalignment

between the density and pressure gradients is small, vorticity changes should scale linearly with

small changes in this angle that arise from varying a0, such that the above analysis should hold (see

Appendix A.1). As larger changes in a0 would effect the morphology of the interface throughout

its interaction with the wave, the effects of a0 are not immediately obvious.
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3.4.2.3 Late time scaling of the interfacial length

The tenfold to hundredfold perturbation amplitude growth is accompanied by a corresponding

increase in interfacial length s. This quantity is important for the dynamics of the vortex sheet

produced along the interface by the ultrasound passage (Pozrikidis, 2000); vortex sheet dynamics

have in fact been explored in the context of the Rayleigh-Taylor instability (Tryggvason, 1988).

In such analysis, the quantity of interest is the circulation density Γ/s. We expect this quantity to

depend on the wave amplitude pa, the initial wavelength `, the density and sound speed of the liq-

uid, ρ and c, respectively. Following a dimensional analysis process similar to that in the previous

section, we find that the inverse of the circulation density (in other words: the interfacial length

scaled by instantaneous circulation) bears the following dependence on the relevant dimensionless

parameters:

s(t)
Γ(t)

c = ψ

(
pa

ρc2 ,
tc
`

)
. (3.13)

Given that the growth is baroclinic, we hypothesize that the circulation scales linearly with pressure

amplitude, such that

s(t)
Γ(t)/c

=
ρc2

pa
f
( tc
`

)
. (3.14)

To determine the time dependence of the interfacial length, we plot in Figure 3.11 the time histories

of the interfacial length and scaled interfacial length. Again, time is synchronized based on phase

inversion. As for the amplitude, the growth rate of the length increases with pressure amplitude.

Furthermore, with the exception of the pa = 5 MPa case, our simple scaling collapses the interfa-

cial length onto a single curve after a sufficiently long time (t & 500). The collapsed curve exhibits

a power-law dependence on time f = (tc/`)m, where m ≈ 1/2 for pa = 7.5, 10 and 12.5 MPa. This

scaling confirms that the interfacial deformations are governed by the dynamics of the vortex sheet

produced by the ultrasound interaction. The result from the pa = 5 MPa case does not follow the
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Figure 3.11: Histories of the interfacial length (a) and scaled interfacial length (b). For the trape-
zoidal wave cases with L = 45`, pa = 5 (blue, solid), 7.5 (red, dashed), 10 (green, dotted), and
12.5 (purple, dashed-dotted) MPa. Time is synchronized based on phase inversion. Black dashed
line: power law growth as t1/2.

same behavior for two main reasons. First, the rarefaction encounters the interface during phase

inversion, at which point the interface is essentially flat. Thus, the vorticity contribution is negligi-

ble; nevertheless, the rarefaction accelerates the interface and increases its length, thus decreasing

the circulation density. As a result, the geometry at tp is different from that observed in the other

cases. Second, s/Γ has yet to achieve its asymptotic behavior. However, running the simulation to

asymptotic behavior would be prohibitively expensive from a computational standpoint.

We highlight the different dependence of the perturbation amplitude and interfacial length on

circulation. The growth of the former is dictated by the geometry and the amount of circulation at

the end of the interaction. Thus, the instantaneous circulation at that time is sufficient to describe

the growth. On the other hand, the interfacial length depends on the details of the vortex sheet

dynamics. Thus, the interfacial length is sensitive to the instantaneous circulation and in fact local

vorticity.
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3.4.3 Dependence of the growth on the wave duration

The results from the previous sections indicate that the interface morphology during the interac-

tion of the rarefaction, at the end of the trapezoidal wave, with the interface plays a key role in the

dynamics. If the interface has undergone phase inversion by the time the rarefaction has arrived,

vorticity of the same sign as that due to the compression is deposited, thus enhancing the growth.

On the other hand, if the rarefaction arrives before the phase has inverted, vorticity of the opposite

sign is deposited and counteracts the vorticity initially deposited by the compression. In the limit

where the rarefaction immediately follows the compression, zero net vorticity would be deposited

only if the interface has not deformed, thus leading to no growth. The amount of baroclinic vor-

ticity deposited by the rarefaction depends on the interface morphology at the time of interaction,

described by the sine of the angle between density and pressure gradients, such that the effect of the

rarefaction on the interface perturbation growth depends heavily on the time-dependent features of

the wave. To examine this behavior, we hold the pressure amplitude constant at pa = 10 MPa and

vary the time (or length L) between the compression and rarefaction. The corresponding amplitude

and circulation histories are shown in Figure 3.12. For the two longest waves, L = 35` and 45`, the

rarefaction encounters the interface well after phase inversion. In these cases, the rarefaction de-

posits additional vorticity of the same sign as that due to the compression (e.g., positive vorticity in

the right side of the domain) and enhances growth. For the L = 30` case, the rarefaction impinges

upon the interface shortly after the interface phase-reversal, when the interface is nearly flat. As

a result, the pressure and density gradients are nearly aligned and little additional circulation is

generated. Thus the growth is driven purely by the circulation deposited by the compression. For

shorter waves (L ≤ 25`), the rarefaction encounters the interface before the perturbation reverses

phase, thus reducing the circulation. Among cases for which the interface inverts phase before

encountering the rarefaction, the larger the instantaneous perturbation amplitude at the time of the

rarefaction, the greater the circulation generated, since the average angle between the density and

pressure gradients is greater. The same is true when comparing cases for which the interface inverts
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Figure 3.12: The interface and circulation dependence on wave duration. Interface amplitude (a)
and circulation (b) histories for the pa = 10 MPa trapezoidal wave case with L = 45` (blue, solid),
35` (red, dashed), 30` (green, dotted), 20` (purple, dashed-dotted), 15` (orange, with circles), 10`
(yellow, with triangles).

its phase before encountering the rarefaction.

These results suggest that by appropriately modulating the incoming wave the perturbation

growth can be controlled. This observation is particularly important for waves for which the pres-

sure returns to its ambient value after the wave passage, which is the case for acoustic waves in

general by contrast to the conventional shock-accelerated (Richtmyer-Meshkov (RM) instability)

problem.

3.5 Conclusions

We investigated the interaction of an acoustic wave propagating in a liquid and impinging upon

a perturbed liquid-gas interface, as a model for wave-interface interaction with alveoli, in consid-

eration of lung hemorrhage. Despite selecting a simplified, yet relevant waveform (trapezoidal,

symmetric in time, returns to ambient conditions after pressure rise) to facilitate the analysis, the

results are generalizable to more complex, continuous ultrasound waveforms. For waveform pa-

rameters relevant to the application, we observed that acoustic waves in water lead to interface
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perturbation phase inversion, followed by perturbation growth to amplitudes many times larger

than the initial value well after the wave passage. We further characterized the dependence of the

perturbation growth on the wave amplitude and length.

We demonstrated that the mechanism driving the perturbation growth is the torque generated by

the misalignment of the pressure and density differentials during the wave interaction, manifested

by the production of baroclinic vorticity along the interface. This effect, usually higher-order

in acoustics, is dominant in our problem due to the substantial pressure difference over a short

length (megapascals over millimeters), and the nearly discontinuous density profile. Although the

symmetric nature of the wave may suggest that vorticity deposited by the compression should be

exactly canceled by that produced by the rarefaction, such an argument overlooks the transient

nature of the process, namely the fact that the baroclinic torque drives the interface to deform

during the passage of the compression, during the time when the pressure amplitude is kept high,

and during the passage of the rarefaction. As a result, the alignment between the pressure and

density gradients is different during the passage of the rarefaction, compared to that produced by

the compression. This result can be generalized to state that, except for very special cases, waves

interacting with an interface over a finite duration and producing interface deformation generate

net baroclinic vorticity, whether the wave is symmetric in time or not.

An immediate consequence of the problem of interest is the observation of two perturbation

growth regimes, depending on whether phase inversion has occurred by the time when the rarefac-

tion reaches the interface. If the phase has inverted, vorticity of the same sign as that deposited

by the compression is produced, thus leading to enhanced growth; conversely, if phase has not yet

inverted, vorticity of the sign opposite that deposited by the compression is produced, thus leading

to reduced growth. Varying the amplitude and length of the wave can push the dynamics from one

regime to the other. We also note that at sufficiently high amplitudes the late time perturbation

growth obeys a power-law scaling. By considering the evolution of the interfacial length and the

vorticity redistribution along the interface, we found that this result is consistent with a vortex-

sheet-based description of the interface dynamics. Finally, the dependence of the results on the
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wave length suggests that perturbation growth may be controlled by modulating the waveform.

This work is a step toward a fundamental understanding of the effects of acoustically generated

vorticity along liquid-gas interfaces. The results suggest that significant strains may be imposed

upon the interface. To directly relate these findings to ultrasound-induced lung hemorrhage, how-

ever, a more comprehensive description of the tissue-lung rheology (viscoelastic properties) and

geometry is required, along with the use of application-specific waveforms.
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CHAPTER 4

Pulsed ultrasound-induced stresses and strains at

gas-liquid interfaces

In Chapter 3 we introduced the problem of Diagnostic Ultrasound (DUS)-induced lung hemor-

rhage, however, the focus was on the fundamental physical problem of an acoustically driven gas-

liquid interface, such as those of the alveoli. In this chapter, we aim to extend that work to increase

its relevance to DUS of the lung. Here, we hypothesize that real DUS waves may be capable of

generating sufficient baroclinic vorticity at alveolar interfaces in the lung to drive deformation and

hemorrhage. To investigate this hypothesis we again model the alveolus as a perturbed water-air

interface and examine the dynamics when driven by ultrasound pulses with clinically relevant pa-

rameters. We compare the interface evolution to that expected of a vorticity driven interface based

on the work of Chapter 3. Furthermore, we infer the viscous stress and calculate the approximate

strain at the interface and compare computed values to expected alveolar damage thresholds, based

on previous published research.

4.1 Abstract

DUS-induced lung hemorrhage in mammals is the only known biological effect of non-contrast di-

agnostic ultrasound. Despite years of study, the underlying physical mechanism remains unknown.

In this work we model the interaction between an ultrasound pulse and an alveolus as an acoustic

wave in water propagating toward a water-air interface. To capture the alveolar surface rough-
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ness the interface contains a single-mode sinusoidal perturbation, representing the alveolar surface

roughness, of variable initial amplitudes equal to 3, 10, and 30% of the perturbation wavelength,

which represents the alveolar diameter. By solving the Euler equations of fluid motion we study

the evolution of the interface for 1.5 MHz ultrasound with peak amplitudes of 1.0, 2.5, and 5.0

MPa. The interface is observed to continue deforming long after the passage of the wave. Interfa-

cial strains of up to 38% after 288 µs. Viscous stresses are estimated and maximum amplitudes are

found to be on the order of 10 Pa. For a 10 MPa pulse, interface perturbation amplitudes are shown

to grow approximately as t3/5, which is expected of vorticity-driven growth based on the work of

Chapter 3.

4.2 Introduction

Lung Ultrasound (US) has become a common tool for imaging and diagnostics in critical and point-

of-care situations and its use is growing (Lichtenstein, 2009). Currently, Pulmonary Capillary

Hemorrhage (PCH) is the only biological effect known to occur in mammals as a result of non-

contrast diagnostic ultrasound. It has been shown to occur under clinically acceptable parameters

with Mechanical Index (MI)≤ 1.9 (FDA, 1997) and peak pressures as low as 1.0 MPa (Dalecki

et al., 1997). The physical mechanism underlying this damage is still not well understood. While

the occurrence of hemorrhage as a result of diagnostic lung US has not been directly studied in

human lungs for obvious ethical reasons, an understanding of the underlying cause is important

for the development of evidence-based safety guidelines and regulations.

US-induced Lung hemorrhage (LH) is not a new problem. It was first discovered in mice

over twenty years ago (Child et al., 1990). And since then, there has been considerable work to

progress our understanding. Much of this previous research has primarily aimed at three specific

ends: (1) investigating the physical damage mechanism causing the hemorrhage; (2) determining

the dependence of damage characteristics and bioeffects thresholds on the US properties; and (3)

determining the dependence of damage characteristics and thresholds on the characteristics of
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the US subject. This study aims to contribute to the first of these areas: we aim to estimate

the potential stresses and strains imparted by a single ultrasound pulse on a perturbed liquid-gas

interface, similar to that of a single alveolus. To do this we will extend the computational fluids

model of an US-driven alveolus developed in Chapter 3 to include US pulse-like waveforms and

interface geometries with larger perturbation amplitudes than previously considered, which are

more representative of physical alveoli.

In Chapters 1 and 3, a portion of the body of past research into the physical mechanisms of

DUS was reviewed, so only a brief summary is provided here. US-induced pulmonary hemorrhage

is characterized by alveoli filling with blood as well as plasma proteins and erythrocytes (Miller,

2016a; Penney et al., 1993). Alveolar edema or frank hemorrhage has also been shown to occur

as a result of mechanical stress failure of the alveolar membrane induced by over pressure (West

et al., 1991). The cause of DUS-induced hemorrhage in the lungs appears mechanical in nature and

thermal mechanisms appear unlikely to cause the observed damage (Zachary et al., 2006; Dalecki,

2004). Cavitation, acoustic radiation force, resonance, and acoustic fountaining or atomization

have all been studied as possible mechanical damage mechanisms for DUS-induced LH (Holland

et al., 1996; Miller, 2016a; Jabaraj & Jaafar, 2012, 2013; Jabaraj & S., 2013; Tjan & Phillips, 2007;

Simon et al., 2012). Experimental results suggest that the most common mechanical ultrasound

bioeffect mechanism, cavitation, is unlikely, and for reasons detailed in the previous chapters, none

of the remaining mechanisms completely explains the damage (O’Brien et al., 2000b; Raeman

et al., 1996; Miller, 2016a).

Research investigating the dependence of US-induced LH on the characteristics of the US

subject has considered species, age, physiological development, and pulmonary state of the US

subject. Within mammals, the occurrence of DUS-induced LH has been observed to be largely

species-indiscriminate and has been found to occur in mice, pigs, rats, rabbits, and monkeys

(Baggs et al., 1996; Child et al., 1990; Dalecki et al., 1997; Frizzell et al., 1994, 2003; Harri-

son et al., 1995; Holland et al., 1996; Kramer et al., 2001; O’Brien & Zachary, 1997; O’Brien

et al., 2001a, 2003a, 2005, 2000b, 2001c; Penney et al., 1993; Raeman et al., 1993, 1996; Taran-
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tal & Canfield, 1994; Zachary & O’Brien, 1995; Zachary et al., 2001a,b). Dalecki et al. (1997)

subjected neonatal, juvenile, and adult mice to pulsed ultrasound of the lung and observed that

while hemorrhage thresholds were similar in all mice, the degree of hemorrhage was much greater

in the adult mice than in the younger subjects. Similarly, O’Brien et al. (2003a), studied the age

dependence of hemorrhage in pigs, and found that older pigs had a significantly lower hemorrhage

thresholds than juvenile and middle-aged pigs. In an unexpected result, the study also found that

if one lung was exposed to US and the pig was then rolled over and the second lung exposed,

the hemorrhage threshold in the second lung was substantially lower than in the first. To study

the dependence of hemorrhage on the impedance boundary condition at the lungs pleural surface,

O’Brien et al. (2002) subjected rats with variable degrees of lung inflation to 3.1 MHz pulsed US

with Peak Rarefaction Pressure Amplitude (PRPA) = 8.6, 16 MPa. It was found that deflated

lungs, which had less impedance mismatch with their surroundings, were more easily damaged

than partially deflated lungs, which were more easily damaged than inflated lungs. While no di-

rect experimentation has been performed on humans, for obvious ethical reasons, Meltzer et al.

(1998) found that transesophageal echocardiography with similar US parameters to those causing

lung hemorrhage in animal studies (3.1 MHz, PRPA= 2.4 MPa) did not lead to visible hemorrhage

on the surface of the lung. While DUS-induced LH has not been shown to occur in humans, its

occurrence in a wide variety of mammals under diagnostically relevant conditions suggests a need

for further investigation.

The body of research investigating the dependence of lung hemorrhage on US properties is

extensive and has investigated the dependence of hemorrhage occurrence and severity on a wide

variety US parameters. Zachary & O’Brien (1995) used continuous-wave and pulsed-wave US

in mice, rabbits, and pigs, and found that continuous- and pulsed-wave-induced lesions appear

macroscopically similar, but differed microscopically. Hemorrhage induced by continuous wave

US consisted primarily of plasma and contained some cells, whereas pulsed-wave induced hemor-

rhage was composed mostly of cells and contained little plasma. Raeman et al. (1996) subjected

mice to 2.3 MHz pulsed US with peak pressures up to 3 MPa and varying exposure time and
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found that while threshold amplitudes appeared insensitive to exposure time, suprathreshold dam-

age increased with increasing exposure. In a review of previous work, Miller (2016a) indicated

that previously observed differences in bioeffects thresholds between studies may be attributable

to exposure duration differences. O’Brien et al. (2001b) investigated the effects of US beamwidth

and found that for rats subjected to 2.8 and 5.6 MHz ultrasound, incidence, surface area, and vol-

ume of hemorrhage increased with increasing beamwidth. It was noted that lung hemorrhage is

perhaps the only known beamwidth-dependent mechanical bioeffect of US. O’Brien et al. (2003b)

found evidence that increasing US pulse duration decreases the PRPAs threshold associated with a

5% likelihood of lung hemorrhage in rats subjected to 2.8 MHz ultrasound with peak amplitudes

ranging from 4-9 MPa. Given that the dependencies of bioeffects on waveform amplitude and

frequency are not fully understood, we consider the dependence of the alveolar wall dynamics on

acoustic wave amplitude.

Separately, the structure, mechanical behavior, and failure properties of alveoli have been stud-

ied extensively and are of particular interest to the present work. The alveoli can be thought of as

a network of openly connected, air-filled saccules with distinctly irregular surfaces. Past research

suggests that alveolar size is species dependent (Faffe et al., 2002). While alveoli are not perfect

spheres, their mean diameters range from tens to hundreds of microns, with reported values of 45

µm in mice and 200 µm in adult humans (Knust et al., 2008; Ochs et al., 2004). The septa sepa-

rating adjacent alveoli are nearly planar structures that contain several tissue layers and are coated

with a thin layer of liquid surfactant (Gil et al., 1979; Reifenrath, 1975; Perlman & Wu, 2014).

Within the alveolar septa surrounding the alveoli, are the pulmonary capillaries, a sheet-like web

which is almost completely unsupported by surrounding tissue (West et al., 1991). Separating the

blood from the air is a multi-layer wall of tissues, 0.2 - 0.3µm thick, referred to as the blood-gas or

blood-air barrier (West, 2000). West et al. (1991) raised the pulmonary capillary pressure of anes-

thetized rabbits and observed consistent stress failure of the capillary and alveolar epithelium for

transmural at or above 40 mmHg (5.3 kPa). It was observed that failure corresponded to approxi-

mately 25 mN/m wall tension in the capillaries, and noted that “this tension is small, comparable
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with the tension in the alveolar wall associated with elastic recoil.” The capillary wall stress at

failure was calculated to be approximately 8 kPa. Alveolar wall strain has also been studied and

linear, alveolar strain due to normal tidal breathing is reported to range from 0 – 5% for humans

(Roan & Waters, 2011). Belete et al. (2010) found that when subjected to cyclical linear stretch

at 0.5 Hz for 30 minutes, rat alveolar epithelial cells experiencing linear strains of 8% or greater

were frequently damaged, whereas those experiencing strains of 3 – 6% were often undamaged.

This work is the first to use a fully nonlinear, Euler-based computational fluids approach to

study the dynamics of an alveolus driven by a single ultrasound pulse. Extending the alveolar

model of Chapter 3, we perform numerical experiments to simulate the dynamics of gas-liquid

interfaces driven by ultrasound pulse waveforms within the clinically relevant range. Using simple

models, we approximate the linear interfacial strain and infer viscous stress at the interface, which

we compare to alveolar failure criteria from relevant literature. Additionally, we compare the

interface evolution to that expected of a vorticity-driven growth of interfacial perturbation, based

on our past work (Patterson & Johnsen, (In preparation), 2017).

4.3 Methods

Much of the basic problem setup and computational framework detailed in Chapter 3 are reused

here. In this section we briefly summarize the model and then focus specifically on three specific

areas where changes have been to better suit our focus on DUS-induced LH: (1) problem geometry,

(2) incoming waveform, (3) calculation of stress and strain.

v

In the previous chapter, we simulated trapezoidal acoustic waves impinging upon a nearly

planar interface with a sinusoidal perturbation. The width of the domain represents a single alveolar

diameter, ` = 200µm in adult humans (Ochs et al., 2004), which is also the wavelength of the

perturbation. The initial perturbation amplitude used a0 = 0.03`, implies a nearly flat alveolar

surface, which is not always the case, as can be seen in the histological cross section of alveoli

78



Soft tissue

Lung surface

Alveoli

Ultrasound

Figure 4.1: A histological cross section of alveoli (Left). A schematic of ultrasound impinging
upon the lung surface and alveoli, from the surrounding soft tissue (Right). A black box sur-
rounds an alveolar surface, which schematically illustrates the physical problem upon which the
initial condition is created.[Alveolar cross section adapted from work by Jpogi [CC BY-SA 4.0
(http://creativecommons.org/licenses/by-sa/4.0), via Wikimedia Commons]

shown in Figure 4.1. To account for the variety of geometries in alveolar tissue, many of which are

not particularly flat. A typical surface radius of curvature for a human alveolus has been reported as

109 µm (Mercer et al., 1994). We will now consider perturbation amplitudes of a0 = 0.03`, 0.10`

and a0 = 0.30`. We acknowledge that this does not capture the true range of cross-sectional

alveolar geometries. However, this simplified geometry, necessitated by computational constraints,

will allow for the generalization of the conclusions of this work broadly to relevant geometries. The

diagnostic ultrasound pulse waveform, as illustrated in the time domain in Figure 4.2 is modeled

as a sinusoidal carrier wave of amplitude pa and frequency f modulated by a Gaussian Envelope,

and as such that the initial pressure condition can be described as,

p(y f , t = 0) = pa sin
(
2π f

y f − L
c

)
exp

−
([

y f − L/2
]

c
)2

FWHM/
(
2
√

2 ln (2)
)
, (4.1)

where y f = y − 11a0 is the y-location, relative to the initial location of the wave leading end.

The carrier wavelength λ = cwater/ f and the full width of the Gaussian envelope at half of the

maximum amplitude, or FWHM, are designed to scale appropriately with respect to the alveolar

length scale ` = 200 µm. Here, we choose design parameters of f ≈ 1.25c/2π` and FWHM = 15`
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Figure 4.2: Ultrasound pulse waveform

such that the corresponding center frequency is approximately f = 1.5 MHz and FWHM = 3 mm.

Accordingly, the pulse length L = 45` is defined such that the pulse duration is approximately 6 µs.

In implementation L is the length of the computational domain, over which the wave is defined to

exist (i.e., pressure is set to ambient outside the wave region, effectively truncating the ends of the

Gaussian envelope). This waveform is an analytical approximation of a true DUS pulse, which

allows us to manipulate the parameters of interest.

4.3.1 Stress and strain at the alveolar interface

As previously mentioned, among the tissue layers surrounding the alveoli are the pulmonary cap-

illaries, a sheet-like, blood-filled web, almost completely unsupported by surrounding tissue (West

et al., 1991). It is the hemorrhage of these capillaries that interests us, and thus, to interpret the

results of the numerical experiments in the context of DUS-induced lung hemorrhage, we will cal-

culate the linear strain and infer the viscous stress at the liquid-gas interface, which represents the

alveolar septa, where these capillaries lie. We aim to compare the calculated stresses and strains

to relevant injury criteria. We note that from the available strain and strain rate data, it would

be possible to infer a total viscoelastic stress at the interface if a constitutive model were known.
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However, constitutive models appropriate to this work do not appear available at this time and the

development of such models would require experiments far beyond the scope of this work.

Calculation of the viscous stress

Viscous stresses resist motion of the flow, however since the Euler equations, which are inherently

inviscid, are solved, we aim to infer the viscous stress resulting from the interfacial motion and

deformation. We do this because, while the justifications in Chapter 3 suggest that flow dynam-

ics can be reasonably approximated by neglecting viscosity an understanding of the approximate

viscous stress associated with DUS is necessary to understand the results in the context of alve-

olar injury. To do this we infer the viscosity at each point in space and time as µ(x, y, t) based

on the physical properties of air and water, and the volume fraction of water α(x, y, t) given that

µ = αµwater + (1−α)µair. The shear stress in a two-dimensional, Newtonian flow is calculated using

the computed viscosity field and the velocity gradients as

τxy(x, y, t) = µ

(
∂u
∂y

+
∂v
∂x

)
, (4.2)

where u and v represent the x- and y-components of the velocity. The maximum viscous stress

amplitude is extracted from the field at each point in time from our simulations.

Calculation of the interface strain

The linear interfacial strain is calculated as

ε =
s(t) − s0

s0
(4.3)

where s(t) is the arc length of the interface, which is initially s0 = s(0). While some of the large

deformations we observe in our results may actually be out of the realm of finite strain, we choose

this metric, which is consistent with previous alveolar strain calculations in the literature. For

example, Roan & Waters (2011) used the relative change in alveolar diameters, which is analogous
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to relative change in the interface arc length here.

4.4 Results and Discussion

To accomplish the aims of this study, two sets of numerical experiments are performed. The first set

of experiments is designed to determine the stresses and strains on a perturbed liquid-gas interface,

driven by clinically relevant ultrasound pulses. Simulations of interactions between sinusoidally

perturbed water-air interfaces and diagnostic ultrasound pulses are performed for wave amplitudes

of pa = 1.0, 2.5, and 5.0 MPa and initial perturbation amplitudes of a0 = 0.03`, 0.10` and 0.30`.

The second set of experiments is designed to test the hypothesis that US pulses are capable of

generating sufficient baroclinic vorticity at an air-water interface to drive appreciable interface

deformation. For this second set of experiments, which is described in greater detail in Section

4.4.4, we perform simulations of an US pulse-driven gas-liquid interface, with parameters similar

to those of the baseline trapezoidal wave in Chapter 3 (pa = 10 MPa, a0 = 0.03`, L = 45`) and

compare interface growth dynamics driven by a US pulse to those driven by the trapezoidal wave

of Chapter 3.

4.4.1 Qualitative observations of the interface

To illustrate the evolution of the interface, Figures 4.3, 4.4, and 4.5 show density contours for pulse

amplitudes of 1.0, 2.5, and 5.0 MPa, respectively, at dimensionless times t/(`/c) = 4.75, 47.5, 475,

and 2374. While these dimensionless quantities are used for comparison of this work to that

of Chapter 3, for the sake of physicality, we will report times and stresses in this section as di-

mensional quantities. As such, for an ` = 200 µm alveolar diameter, these dimensionless times

approximately corresponds to dimensional times of 0.6, 6.0, 60, and 290 µs. In each case, subfig-

ures (a), (b), and (c) correspond to initial perturbation amplitudes of a0 = 0.03`, 0.10`, and 0.30`

respectively; t = 0.6 µs occurs just after the wave first encounters the interface and by t = 6.0 µs

the wave has completely passed. For the pa = 1.0 MPa pulse, the interface remains largely un-
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moved and undeformed by the interaction with the wave, even at late times (illustrated in Figure

4.3). For the pa = 2.5 MPa pulse, little deformation is observed for a0 = 0.03`, however at higher

initial amplitudes (a0 = 0.10` and 0.30`), the interface is clearly deformed at late times and a cusp

is observed to form along the interface at x/` = 0.5 (illustrated in Figure 4.4). For the pa = 5.0

MPa pulse, obvious deformation is observed for all considered values of a0 (illustrated in Figure

4.5). For a0 = 0.10` and 0.30`, a spike of heavy fluid with a cusp at x = 0.5 is again observed

to form at late times. For all incoming waves, the degree of deformation appears to increase with

increasing initial perturbation amplitude a0 and wave amplitude pa. The observed sharp features,

which evolved from an initially smooth interface perturbation, could potentially lead to stress con-

centration, which in alveoli, may lead to hemorrhage.

4.4.2 Interface strain, ε

In consideration of possible strain-related damage of the alveolar wall we examine the linear in-

terface strain ε(t), as defined in Equation (4.3), and its dependence on wave amplitude pa and

perturbation amplitude a0. Figure 4.6 shows strain histories ε(t) for variable pa = 1.0 (blue), 2.5

(red), and 5.0 (green) MPa and constant initial perturbation amplitude a0 = 0.03` (a), 0.10` (b),

and 0.30` (c), while Figure 4.7 shows these data re-plotted for variable a0 = 0.03` (blue), 0.10`

(red), and 0.30` (green) and constant wave amplitudes pa = 1.0 (a), 2.5 (b), and 5.0 (c) MPa. For

all pressure amplitudes pa and initial perturbation amplitudes a0, negative strain is observed during

and immediately following the wave-interface interaction, indicating a net reduction in interfacial

length. This reduction is observed to correspond to the flattening of the interface perturbation dur-

ing and after the interaction with the acoustic pulse. For the pa = 1.0 MPa wave with all a0 and the

2.5 MPa wave with a0 = 0.03` and 0.10`, this reduction in interface length is observed to slowly

continue at a decreasing rate throughout the duration of the simulation. For the pa = 2.5 MPa

wave with a0 = 0.30` and the pa = 5.0 MPa wave with all a0, a stretching or increase in interfacial

length follows the length reduction. Based on Figures 4.4 and 4.5, the increased interfacial length

corresponds to the growth of the liquid spike into the gas. It is observed that this deformation and
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Figure 4.3: Evolution of the interface for pa = 1.0 MPa ultrasound wave. Density contours at
t = 0.6, 6.0, 60, and 288 µs for initial perturbation amplitudes (a) a0 = 0.03`, (b) a0 = 0.10`, and
(c) a0 = 0.30`.
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Figure 4.4: Evolution of the interface for pa = 2.5 MPa ultrasound wave. Density contours at
t = 0.6, 6.0, 60, and 288 µs for initial perturbation amplitudes (a) a0 = 0.03`, (b) a0 = 0.10`, and
(c) a0 = 0.30`.
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Figure 4.5: Evolution of the interface for pa = 5.0 MPa ultrasound wave. Density contours at
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(c) a0 = 0.30`. 86



strain increase takes place long after the passage of the wave, when the acoustic pressure is negli-

gible (t/(`/c) & 47.5). As explained in Chapter 3, the deformation cannot be explained by linear

acoustics, which predicts negligible deformation after the passage of the wave.

The interface strains increase with increasing pa and a0, which is consistent with baroclinic

vorticity-driven growth because these quantities determine the wave pressure gradient and its de-

gree of misalignment with interface density gradient. The minimal strain case is observed for

the smallest considered initial perturbation and wave amplitudes (a0 = 0.03`, pa = 1.0 MPa),

for which a maximum strain amplitude of ε = 0.001 was observed at the final computed time

t = 288 µs. Conversely, the maximum strain case occurs for the largest considered initial pertur-

bation and wave amplitudes (a0 = 0.30`, pa = 5.0 MPa), for which, a maximum strain amplitude

of ε = 0.38 was observed at the final computed time t = 288 µs. We highlight that for the pa = 5.0

MPa case, these are not small strains and linear strain theory is not likely to apply, even if failure

of the interface has not yet occurred. We consider the strain results relative to the ε = 0.08 strain

failure criteria (Belete et al., 2010). Over the simulated duration, this threshold was exceeded only

for the pa = 5.0 MPa wave with a0 ≥ 0.10` and 0.30`, in which cases the strain exceeded ε = 0.08

at approximately t = 100 and 220 µs respectively.

4.4.3 Viscous stress

In further consideration of possible alveolar damage mechanisms, we compute the inferred viscous

shear stress field, based on the motion of the inviscid flow, and the extract the maximum along the

interface. To illustrate the viscous stress around the interface, color contours of the viscous stress

fields are provided for the pa = 5.0 MPa wave in Figure 4.8 at t = 2.9 µs, approximately when

the acoustic pulse and viscous stress are at their maximum amplitudes. Subfigures (a), (b), and (c)

again correspond to initial perturbation amplitudes of a0 = 0.03`, 0.10`, and 0.30`, respectively.

Black lines indicate isocontours of the volume fraction of water α = 0.5. Since the viscous shear

stress is governed by the velocity gradients in the fluid, which scale linearly with the acoustic

pressure gradients (See Equation A.1), it is unsurprising that the greatest viscous shear stress am-
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Figure 4.6: Interfacial strain dependence on pressure amplitude (pa = 1.0, 2.5, 5.0 MPa). Each plot
shows ε for a different initial condition: a0 = 0.03` (a), 0.10` (b), and 0.30` (c).
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plitudes occur during the wave-interface interaction, and in particular close to the time when the

maximum pressure amplitude encounters the interface. The maximum viscous stress is observed

to occur in the lighter region of the interface, in which the fluid is mostly air and the velocity gra-

dients are greatest. At this point in time, the fluid around the interface has had little time to move

as a result of the wave and consequently the interface remains largely undeformed.

We extract the maximum viscous stress amplitudes from field
∣∣∣τxy

∣∣∣
max

, which were found to lie

consistently along the interface for all cases. To illustrate the dependence of
∣∣∣τxy

∣∣∣
max

on the pulse

amplitude pa and initial perturbation amplitude a0, Figure 4.9 shows
∣∣∣τxy

∣∣∣
max

histories for variable

pa = 1.0 (blue), 2.5 (red), and 5 (green) MPa and constant initial perturbation amplitude a0 = 0.03`

(a), 0.10` (b), and 0.30` (c), and Figure 4.10 shows this data re-plotted for variable a0 = 0.03`

(blue), 0.10` (red), and 0.30` (green) and constant wave amplitudes pa = 1.0 (a), 2.5 (b), and 5.0

(c) MPa. We highlight the fact that, because we are intentionally only interested in the maximum

interfacial stress amplitude, the location along the interface at which
∣∣∣τxy

∣∣∣
max

occurs changes in

time, which is not captured in the figures. For all waves and initial perturbation conditions,
∣∣∣τxy

∣∣∣
max

oscillates with the wave during the wave interaction, around a mean value which appears to rise

and fall with the acoustic intensity. We note that there is a component of these oscillations that

coincide with the fluctuations in the US pulse. These fluctuations occurs at approximately twice

the pulse frequency because we are considering the absolute value of the viscous stress, which we

expect to scale with the magnitude of the velocity gradients and therefore the pulse amplitude (see

the acoustic relationships described in Chapter 3).

It is clear from both Figure 4.9 and 4.10 that, on average, increasing the wave amplitude in-

creases the viscous stress amplitude at the interface as expected (neglecting chronologically local

oscillations). Regarding the dependence of
∣∣∣τxy

∣∣∣
max

on a0, we make two observations. First, as a0

increases, the chronologically local mean value of
∣∣∣τxy

∣∣∣
max

also increases, though this is slightly

less obvious from the figures due to the varying degree of oscillation between the curves. Second,

based on differences between Figures 4.9(a), (b), and (c), as a0 increases, the oscillation behavior

changes. The overall magnitude of the osccillations in
∣∣∣τxy

∣∣∣
max

, relative to the chronologically local
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mean, decreases. This is because as a0 increases, a greater portion of the reflected wave propagates

in the transverse direction. These transverse waves introduce additional oscillations in the shear

stress field, which are small when compared to those generated directly by the incoming wave.

These oscillations are identified according to their timing and are most clearly explained with an

example. Consider
∣∣∣τxy

∣∣∣
max

for the pa = 5 MPa, a0 = 0.3` case, as shown in Figure 4.7(c). The

larger stress peaks occur approximately regularly during the wave interaction every 0.3 µs, and

correspond to the interactions of the peaks and troughs of the wave with the interface, as shown in

Figure 4.2. Shortly after each of these larger peaks there is a slight drop in the peak stress. The time

separating the peak and drop is approximately `/c ≈ 0.12 µs, indicating these fluctuations are a

consequence of the transversely reflected wave, which has the opposite sign of the incoming wave.

We note that axial reflections are small and do not return to the interface until after the passage of

the initial wave. After the passage of the wave, the maximum shear stress drops to nearly zero in

all cases.

In consideration of DUS-induced alveolar hemorrhage, we note that for the parameters con-

sidered here the maximum viscous stress amplitudes observed at the interface occur during the

interaction with the wave and ranged from 2 to 61 Pa. Even the greatest observed stress is two

orders of magnitude smaller the 8 kPa minimal stress failure threshold observed by West et al.

(1991) for disruption of alveolar epithelium. These stresses occur during the wave-interface inter-

action, and quickly fall off thereafter, in much less time than a typical period between pulses (∼ 1

ms). This suggests that viscous stresses are not likely to quickly accumulate between pulses. A

possible, exception to this could occur if the velocity field were to change significantly, perhaps

as a result of accumulated vorticity from subsequent US pulses. The computational cost of testing

this possibility numerically is not feasible under the current framework, and as such is beyond the

scope of this work.
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Figure 4.8: Evolution of the viscous stress field for the pa = 5.0 MPa wave. Contour plots of the
Newtonian viscous stress τxy in Pascals are shown for each initial perturbation amplitude, at t = 5,
near the point when the maximum stress occurs. In Figures (a), (b), and (c) a0 = 0.03`, 0.10`, and
0.30` respectively.

4.4.4 Ultrasound-induced vorticity dynamics and interface growth

Having examined the stresses and strains associated with liquid-gas interfaces driven by US pulse

waves, within the regime relevant to clinical DUS, we now hypothesize that the observed deforma-

tion is driven by baroclinic vorticity deposited at the liquid-gas interface by the US pulse. As there

is still a highly nonlinear density gradient across the interface, misaligned with strong ultrasonic

pressure gradients, the potential for meaningful baroclinic vorticity deposition, and consequently

persistent of the system, exists. As we demonstrated that this was possible for a trapezoidal acous-

tic wave in Chapter 3, we consider a second set of experiments, designed to test if this holds true

for the ultrasound pulse. We will compare the interface and vorticity dynamics of an ultrasound

driven pulse, with those of the trapezoidal pulse of the Chapter 3. The 1.0 to 5.0 MPa pulses used

earlier in this chapter drive the system too slowly for the interface growth to reach its late-time

behavior within a computationally feasible period. Additionally, we aim to compare to our previ-

ous results and as such we choose our acoustic pulse parameters and initial interface perturbation

amplitude to match that of our baseline trapezoidal wave case Chapter 3: a0 = 0.03`; pa = 10

92



Time, t (µs)
0 5 10 15 20

M
ax

im
u
m

sh
ea
r
st
re
ss
,
|τ

x
y
|
(P

a)

0

10

20

30

40

50

60

pa = 1 MPa

pa = 2.5 MPa

pa = 5 MPa

(a) a0 = 0.03`

Time, t (µs)
0 5 10 15 20

M
ax

im
u
m

sh
ea
r
st
re
ss
,
|τ

x
y
|
(P

a)
0

10

20

30

40

50

60

pa = 1 MPa

pa = 2.5 MPa

pa = 5 MPa

(b) a0 = 0.10`

Time, t (µs)
0 5 10 15 20

M
ax

im
u
m

sh
ea
r
st
re
ss
,
|τ

x
y
|
(P

a)

0

10

20

30

40

50

60

pa = 1 MPa

pa = 2.5 MPa

pa = 5 MPa

(c) a0 = 0.30`

Figure 4.9: Interfacial viscous stress dependence on on pressure amplitude (pa = 1.0, 2.5, 5.0
MPa). Each plot shows
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for a different initial condition: a0 = 0.03` (a), 0.10` (b), and 0.30`
(c).
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Figure 4.10: Interfacial viscous stress dependence on initial perturbation amplitude amplitude
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MPa; L = 45`. To further facilitate comparison of this experiment to those of the previous chapter,

all results presented here will be non-dimensionalized by ` and cwater unless otherwise indicated.

To illustrate the vorticity during and after the passage of the wave, Figure 4.11(a) shows vor-

ticity contours for the pa = 10 MPa pulse wave case, at t/(`/c) = 4.75 and 90 (or t = 0.6 and

12 µs). It can be clearly seen that vorticity is deposited along the interface by the ultrasound wave,

and remains after its passing. In consideration of a quantitative, cumulative measure of vorticity

deposited by the ultrasound wave we integrate the vorticity at over the right-half domain for each

point in time to obtain the circulation, Γ(t). Figure 4.11(b) plots the right-half domain circulation

history during the wave interaction and shortly thereafter. The end of the interaction between the

incident wave and the interface is indicated as a black, dashed vertical line t/(`/c) = 47.5. It can

be seen that the wave deposits circulation, which remains approximately constant after its passage.

The circulation left at the end of the wave is approximately 3 × 10−4, which is roughly 1/5 that

left by the pa = 10 MPa trapezoidal wave in Chapter 3. We note that unlike the trapezoidal wave,

which consists entirely of positive pressure, the US pulse consists of cyclic positive and negative

pressure, such that each subsequent cycle is expected to deposit vorticity of sign opposite that of

the previous cycle, since a phase inversion of the interface perturbation was not observed during

the wave-interface interaction. Hence it is perhaps unsurprising that less circulation is deposited

by the ultrasound pulse than by the trapezoidal wave of equivalent maximum amplitude. As in the

previous chapter, the circulation in the left-half domain is equal and opposite, such that the total

circulation is zero. Similar circulation histories for the pa = 1.0, 2.5, and 5.0 MPa waves, used

in the earlier stress and strain calculations, are provided in Appendix B.1, and reveal that similar

to the pa = 10 MPa case, circulation remains after the passage of the wave. Appendix B.1 also

explores the dependence of that circulation on a0 and pa for the case of the ultrasound pulse.

To compare the late time growth of the perturbation amplitude driven by the ultrasound wave,

with that driven by the trapezoidal wave, Figure 4.12 displays the perturbation amplitude history

a(t)/a0 on a log-log scale. For t/(`/c) ≤ 4000 we calculate the interface perturbation amplitude

growth exponent tn, as was done in Chapter 3 and find that n = 0.57. This result is consistent with
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Figure 4.11: Vorticity and circulation histories for the pa = 10 MPa ultrasound pulse. (a) Vorticity
contours during the wave interaction, at t/(`/c) = 4.75 and after its passage at t/(`/c) = 90. (b)
The dimensionless circulation history. The passage of the wave at t/(`/c) = 47.5 is indicated as a
black, dashed vertical line.

the t3/5 power-law growth obtained for a trapezoidal wave in Chapter 3.

After the passage of the US pulse, there are no obvious mechanisms, beside baroclinic vor-

ticity, to drive the continued deformation of the interface. As such, it is worth discussing what

precisely contributes to the circulation remaining after the passage of the wave. Throughout the

wave-interface interaction, the interface itself deforms such that while US pressure gradient is

continuously misaligned with portions of the interface density gradient, though the degree of that

misalignment changes in time along the entire interface. While this deformation appears to be

nominally small (note the barely observable difference between frames 1 and 2 for each subfigure

within Figures 4.3, 4.4, 4.5), it is finite, calculable, and critical to the vorticity dynamics. Because

the pressure returns to ambient after the passage of the wave, it must be true that the integral of

the acoustic pressure gradient over all time is zero, just as it was for the trapezoidal wave. Thus

the only way that baroclinic vorticity can remain after the passage of the wave is through changes

in the density gradient during the interaction. As the interface deforms the direction these small

changes in the direction and local magnitude of the density gradient result in a net deposition of

circulation that remains to deform the interface after the passage of the wave. This has particu-

lar relevance to ultrasound which relies on many subsequent pulses, potentially resulting in the
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Figure 4.12: Interface perturbation amplitude history for the pa = 10 MPa ultrasound pulse. a(t)/a0

is plotted vs time on a log-log scale. t3/5 growth is indicated by the dashed black line.

accumulation of vorticity over time.

4.4.5 Limitations of the present work

The model of an ultrasound-driven alveolus used in this work is exactly that, a model. This work

aims only to offer insight into the physics and potential physical damage mechanisms of DUS-

induced lung hemorrhage. Our approximation of the physical system is perhaps not a particularly,

naturally intuitive one. Moreover the vorticity mechanisms that we suggest are driving the system

are not intuitive for a viscoelastic solid. The concept of vorticity, even in a viscoelastic solid (e.g.,

soft tissue), can be thought of rather simply at a fixed instant in terms of a velocity magnitude (not

direction) difference between opposite sides of a particle of continuum, such that the instantaneous

tendency of the particle is to rotate. Our conceptual arguments for overcoming this arise out of

our understanding of this as a continuum of viscoelastic solids, which may act as a solid or liquid

depending on the physical regime of interest. The model is based on highly fundamental laws of

mechanics (conservation of mass, momentum, energy) and neglected physical effects are justified

in the relevant regime based on dimensional analysis. Additionally, the problem geometry and
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setup are chosen based on the relevant application. While the author recognizes that treatment of

an alveolar septum as a perturbed water-air interface intuitively seems a bit too simple, all of the

dimensional and order of magnitude arguments suggest that specifically for the timescales con-

sidered here, the simulated dynamics are reasonable. Though there are several limitations to this

study that would not allow the simulated physics to capture the physics of diagnostic ultrasound-

alveolar interactions over longer time spans. Here we specifically consider limitations that arise

from our constitutive model of the lung tissue and the model problem geometry. Based on our

physical understanding, it is not unreasonable to speculate about how each of these limitations is

likely to effect the simulated physics.

In this study, we treat the alveolar septa and capillaries therein as a liquid-gas interface, and

within our physical model we neglect certain physical features characteristic of soft tissue, in-

cluding viscoelasticity and the mechanical failure. Rather than repeat the dimensional analysis

arguments used to initially justify the model in Chapters 1 and 3 we will consider how each of

these could affect the physical system. Viscosity and elasticity both have potential importance at

late times. In the context of the present work, viscosity may act to serve as a mechanism to dis-

sipate vorticity, thus reducing strain on the interface. However, the characteristic timescale over

which we expect the vorticity to dissipate over a relevant area ∼ `2/νair is multiple milliseconds,

and is thus unlikely to greatly effect the dynamics over the considered period. Elasticity is likely

to provide a restoring force to resist the deformation of the interface, however this is likely to be

small relative to the fluid inertia, which we show quantitatively in Appendix A.7. Additionally,

this model is no longer valid after the alveolar septum fails, which may occur in some of our simu-

lations based on the considered failure criteria. As the strains observed are large, before the elastic

force is likely to overcome the fluid inertia, the elastic restorative force may not be particularly

useful at mitigating vorticity-induced strain. Many of these specific limitations are in part a result

of limitations of the existing body of knowledge concerning the mechanical properties and fail-

ure behavior of alveolar tissue under stresses and strains, which is poorly characterized within the

timescales and physical regimes relevant here. We highlight the fact that the available stress and
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strain failure criteria available for alveoli are based on much slower processes than occur during

DUS, making for an imperfect comparison at best. Additionally, the stress 8 kPa stress failure

criterion of West et al. (1991) is for wall stress, which is not the same as shear, but was the best

available metric at the time of this writing.

In consideration of the limitations of our model geometry, we will start from the fact that this

work aims only to study interactions between a single ultrasound pulse and a single alveolus. As

such we consider the effect of a treating the alveolar septum as a slightly perturbed sinusoidal in-

terface between fluids. In comparison to the histological slide of alveoli shown in Figure 4.1, the

geometry considered here is smoother and flatter than true alveolar boundaries. As such, there is

the potential for greater shear stress concentrations and baroclinic vorticity generation with subse-

quent strain in the real physical system. Additionally, the 2D representation of the problem as a

single alveolus neglects any physical support the system may receive from its surroundings. And

while it has been suggested that pulmonary capillaries are largely unsupported by surrounding tis-

sues (West et al., 1991), without quantification of that support, it is possible that it would help to

reduce vorticity-driven motion of the interface, particularly at the edges. However, the deformation

and strain observed here is largely driven by vorticity local to the interface perturbation, such that

it would likely not be greatly effected by such support. Lastly, we acknowledge that this model

cannot capture 3D fluid effects (e.g., turbulence, vortex-stretching, etc...) that are expected to be

negligible over the timescales considered based on the Reynolds number and order of magnitude

analysis of the individual terms of the vorticity equation (see Appendix A.1).

4.5 Summary, conclusions, and future work

In summary, US pulse waves were simulated propagating from water into sinusoidally perturbed

water-air interfaces to model a single US-pulse impinging upon an alveolus from surrounding soft

tissue. We assume a typical adult mean alveolar diameter of ` = 200 µm (Ochs et al., 2004) as

a characteristic length scale, such that the maximum simulation time was approximately 288 µs.
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To estimate viscous stresses and interfacial linear strains relevant to DUS-induced alveolar hem-

orrhage, 1.5 MHz ultrasound pulse waves with amplitudes of pa = 1.0, 2.5, and 5.0 MPa were

used. Initial interface perturbation amplitudes of a0 = 0.03`, 0.10`, and 0.30` were considered.

For each case, the wave-interface interaction generated vorticity along the interface and resulted in

long-term deformation of the interface, which continued well after the passage of the wave. Rel-

evant calculations of the density fields, inferred viscous stress fields, and linear interfacial strain

within the simulated period are reported. The computed peak interface strain amplitudes |ε| ranged

from 0.01 to 0.38. During the computed period, only for the 5.0 MPa wave did strains exceed the

|ε| = 0.08 damage threshold, reported by Belete et al. (2010). The peak passive viscous stress

estimates at the interface were on the order of tens of Pascals, which is far below the 8 kPa stress

failure criterion reported by West et al. (1991). A second experiment was performed to determine

that baroclinic vorticity is the driver of the observed deformation. For this experiment, a pa = 10

MPa pulse was propagated toward a perturbed water-air interface of amplitude a0 = 0.03` and

the vorticity and interface dynamics were compared to those of the trapezoidal waves in Chapter

3. It was found that ultrasound pulses deposited circulation of similar distribution and order of

magnitude to those previously observed for the trapezoidal waves. The perturbation was found to

grow approximately as t3/5, as was expected for baroclinic vorticity-driven growth, based on our

previous work.

This work is a first step toward investigating the possibility of baroclinic vorticity-induced

strain as potential mechanism for ultrasound-induced alveolar hemorrhage. This work is novel in

its modeling using the nonlinear equations of fluid motion to study the dynamics of an alveolus

interacting with a single DUS pulse. Furthermore, this work is unique in its comparison of alveolar

stress and strain estimates with previously determined failure criteria. While the calculated stresses

and strains observed based on the interaction between an air water interface and a single ultrasound

pulse may be representative of some of the physics associated with DUS-alveolar interactions, we

cannot confidently say that baroclinic vorticity is the likely cause of DUS-induced hemorrhage in

the lung. As true DUS typically involves many subsequent pulses, further investigations will need
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to account for this. However, based on the work reported here, we draw the following conclusions:

1. Newtonian, viscous stress alone is unlikely to be sufficient to cause DUS-induced hem-

orrhage of the alveolar wall. While many approximations and simplifications were made

throughout the course of this work, the work presented estimates worst case viscous shear

stresses. Here, the velocity gradients are higher than would be expected in the true physical

system because neglected viscous and elastic effects would resist interfacial motion in the

true physical system. In spite of this, the calculated shear stresses are multiple orders of

magnitude less than expected alveolar stress failure thresholds.

2. DUS pulses within clinically relevant regimes have the potential to deposit baroclinic

vorticity within gas-liquid interfaces in the lungs, which is capable of driving defor-

mation. This work clearly demonstrates that diagnostically relevant ultrasound pulses are

capable of creating lasting baroclinic vorticity at liquid-gas interfaces which are dynamically

similar to alveolar tissue-gas interfaces. For the 10 MPa case, the interface perturbation ex-

hibits ∼ t3/5 power-law growth at late times, as was previously shown to occur for interfaces

driven by trapezoidal acoustic waves. For weaker waves, running the simulations to suffi-

ciently late time to observe this behavior was too computationally costly to be done. This

indicates that ultrasonically driven vorticity is a viable mechanism for driving the observed

growth. The observed interfacial strains created by pulses as weak pa = 5.0 MPa were more

than sufficient to cause damage based on previously observed alveolar failure criteria. Fur-

thermore, based on dimensional arguments, dissipation of the observed vorticity is expected

to occur over multiple milliseconds, which is greater than the typical time between subse-

quent DUS pulses. Hence US may be capable of accumulating vorticity in the lungs over

several subsequent pulses and thus driving greater deformation. This will depend on the

morphology of the interface during the arrival of each pulse, which is likely to vary widely

depending on the initial conditions and ultrasound parameters, as the minimum strain cases

showed practically no deformation over a third of a typical pulse interval, and the large strain

cases are likely to cause alveolar failure before subsequent pulses arrive.
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CHAPTER 5

Conclusions and future work

Two problems within the area of diagnostic ultrasound bioeffects motivate the work of this thesis

presented up to this point. For the first problem, we study the dynamics of ultrasonically driven

microbubbles as it relates to Contrast-Enhanced Ultrasound (CEUS)-induced bioeffects. For the

second problem, we study the physics of acoustic wave interactions with gas-liquid interfaces, as

it relates Diagnostic Ultrasound (DUS)-induced lung hemorrhage. The two primary objectives of

this work are:

1. To develop computational models of the aforementioned Ultrasound (US) bioeffects prob-

lems.

2. To perform numerical experiments using these computational models to gain insight into the

physics and fluid mechanics underlying DUS bioeffects in the context of CEUS and DUS of

the lung.

5.1 Summary of key contributions and findings

5.1.1 Bubble Dynamics of Contrast Enhanced Ultrasound and Related Bio-

effects

To accomplish the first objective in the context of CEUS and related cavitation bioeffects, we

developed a model of a contrast agent microbubble subjected to a DUS pulse within a com-
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pressible, viscoelastic soft tissue (Patterson et al., 2012a), based on the works of Keller (1980);

Yang & Church (2005). As such, the bubble is modeled as a spherically symmetric ideal gas body.

The surrounding tissue is modeled as a compressible, Voigt viscoelastic material with properties

relevant to soft tissues based on the literature. The ultrasound wave is modeled as a uniform change

in the pressure immediately surrounding the bubble. In a novel contribution to the field, experi-

mentally measured ultrasound waveforms, with known bioeffects thresholds (Miller et al., 2008b)

were used to drive the bubble.

To accomplish the second objective, we performed simulations of bubble dynamics for bub-

bles driven by several experimentally measured US pulses in soft tissue with variable mate-

rial parameters including viscosity and elasticity. Ultrasound waves with frequencies ranging

from 1.5 to 7.5 MHz and PRPA ranging from less than 1 to greater than 6 MPa were used. For

each frequency, the threshold Peak Rarefaction Pressure Amplitude (PRPA) associated with the

onset of bioeffects (specifically, glomerular kidney hemorrhage in rats) was known (Miller et al.,

2008b). Metrics associated with the simulated cavitation and bubble dynamics were related to the

ultrasound parameters and bioeffects thresholds and the following four conclusions were drawn:

• Calculated cavitation metrics in a theoretical viscoelastic media correlate with experimen-

tally observed bioeffects. Simulation results for the maximum dimensionless bubble radius

Rmax/R0, a measure of the violence of a cavitation event, were classified based on whether

or not the waveform was known to cause kidney hemorrhage in rats subject to CEUS in a

previous study (Miller et al., 2008b). From a plot of Rmax/R0 (a common cavitation metric)

vs US frequency, it is clear that for a given frequency there are distinct regimes in which

bioeffects do and do not occur. Explicitly, it was observed that above a certain threshold

values of Rmax/R0 and PRPA, bioeffects always occurred, below a different set of threshold

values they did not occur. These bioeffects thresholds increased with increasing frequency,

and it is likely that the inertial cavitation thresholds increased in a similar fashion.

• Cavitation dynamics and bioeffects thresholds depend on elasticity, though the relationship

is not trivial. Within the simulations, tissue elasticity ranged from 5 to 1000 kPa. It was

103



found that increasing the elasticity could either enhance or diminish the strength of the sim-

ulated bubble response, based on standard cavitation metrics. For kilopascal order values

of elasticity, the bubble dynamics mimicked those expected for an identical experiment in

water. The effect of elasticity was found to depend on the waveform of the driving US pulse.

With the bubble response showing a greater deviation from that expected in water, for higher

amplitude and increasingly nonlinear wave.

• While never intended to accurately represent cavitation in tissue, previously established

thresholds for inertial cavitation in water, Tmax = 5000 K and Rmax/R0 = 2 (Apfel & Hol-

land, 1991; Flynn, 1975b), are not equivalent to bioeffects thresholds. Based on the results

of this study, these thresholds do not correspond to cases in which bioeffects were observed.

Moreover, observed bioeffects thresholds for Rmax/R0 were shown to have strong frequency

dependence. It seems unlikely that bioeffects thresholds are independent of cavitation thresh-

olds, but rather that these thresholds need to be adjusted for ultrasonically driven cavitation

in a viscoelastic media.

• Here, we perform a parameter sweep of several uncertain values, such as elasticity and bub-

ble size demonstrate that deviations of these parameters, within a range of reasonable values,

can lead to significantly different results in the simulated dynamics. However, better charac-

terization of tissue and bubble properties is needed. Existing values and viscoelastic consti-

tutive models for the mechanical properties and behavior of tissue are incomplete. There is

particularly little information available for stresses and strains that occur on the length and

time scales relevant to cavitation and ultrasound.

5.1.2 Diagnostic Ultrasound-induced lung hemorrhage and acoustically driven

gas-liquid interfaces

To accomplish the first objective, a novel model of an ultrasound pulse-driven alveolus was

developed. An ultrasonically driven alveolus is modeled as a 2D compressible fluid system. The
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alveolus is modeled as air and the surrounding tissue as water, with a sinusoidally perturbed in-

terface between the two. The ultrasound wave is treated as an acoustic wave existing initially in

water, which is then allowed to propagate toward the interface. As such the overall computational

model system consists of a rectangular domain containing an acoustic wave in water propagating

toward a perturbed air interface. Using dimensional analysis, it is shown that this model is appro-

priate for studying the dynamics that occur during the ultrasound-alveolar interaction, and for at

least a brief period thereafter. This work is unique, as the developed model appears to be the first

model of diagnostic-ultrasound alveolar interaction to consider the nonlinear conservation equa-

tions for mass, momentum, and energy. As a consequence of this, the developed model is able to

capture nonlinear phenomena that cannot be explained by linear acoustics, but which we show are

important to the system dynamics.

In pursuit of the second objective, the model described above was used in a two-part study:

First, numerical experiments of perturbed gas-liquid interfaces driven by trapezoidal acous-

tic waves were performed and studied to describe the fundamental fluid dynamics of an

acoustically driven gas-liquid interface. Acoustic parameters such as the peak pressure am-

plitude and wave duration (length) are varied and their effect on the system dynamics, particularly

with regards to vorticity and interface perturbation growth, is studied. Using dimensional analysis

we develop mathematical relationships to describe the response of the interface to the trapezoidal

acoustic wave. Second, we simulate alveoli-like perturbed liquid gas-interfaces, driven by

ultrasound pulse waveforms. Peak acoustic pressure amplitude and initial perturbation ampli-

tude (which corresponds to geometry) are varied to study the dynamics for a range of parameters

relevant to diagnostic lung ultrasound. Computed interfacial stresses and strains are compared

with alveolar failure criteria. The following five conclusions are drawn with regard to acoustically

driven gas-liquid interfaces and DUS-induced lung hemorrhage.

• Acoustically generated baroclinic vorticity may be capable of appreciably deforming per-

turbed liquid-gas interfaces. For the cases studied here, this was due to the substantial acous-

tic pressure difference over a short length (megapascals over millimeters), and the nearly
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discontinuous density profile of the interface. Although the rise from and return to ambi-

ent pressures associated with acoustic waves suggests that net vorticity deposited should be

zero, such an argument overlooks the transient nature of the process, namely the fact that

the baroclinic torque may drive the interface throughout the wave-interface interaction, such

that the density gradient is non-constant.

• Initially smooth interface perturbations, driven by residual baroclinic vorticity may expe-

rience asymptotic power-law growth. The rate of this growth depends on the circulation

density at the point in time when the direction of the bubble and spike (interfacial peaks and

troughs) velocity can no longer be explained by linear acoustics, necessitating a description

of the dynamics which captures the effects of vorticity.

• Changes in the acoustic waveform that have little effect on the interface dynamics during the

wave-interface interaction, may have a significant long-term effect on the evolution of the

interface through the residual vorticity deposited at the interface.

• US pulses with diagnostically relevant parameters may be capable of inducing significant

deformation of gas-liquid interfaces through the generation of baroclinic vorticity at interface

perturbations. Gas-liquid interfaces driven by 1.5 MHz DUS pulses with PRPAs ranging

from 1 to 5 MPa were found to deform long after the passage of the wave. For the 5 MPa

waves, observed interfacial strains were reached as high as 38%, far greater than 8% expected

strain failure thresholds for alveolar walls Belete et al. (2010). This deformation occurred

over a period of fewer than 300 µs, which is less the time period between pulses for a typical

DUS pulse repetition frequency of 1 kHz. Furthermore, based on dimensional arguments,

it was found that the baroclinic vorticity driving the deformation is likely to persist over

multiple milliseconds (`2/ν = O (ms)), suggesting that the use of many subsequent pulses,

as is the case for clinical DUS, may result in an accumulation of vorticity, and thus greater

interfacial strain.

• Newtonian viscous stresses alone are not likely to be responsible for DUS-induced lung
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hemorrhage. The largest estimated viscous stresses observed were on the order of tens of

pascals and were multiple orders of magnitude beneath expected stress failure thresholds.

5.2 Overall conclusions

Beyond the specific problems of interest studied in this thesis, we consider the bigger picture of

using computational modeling and numerical experiments to study US bioeffects problems. With

regard to this theme, the following two conclusions are drawn based on the cumulative efforts

presented in this thesis:

• Computational modeling can play a unique and useful role in investigating the physics that

underlies ultrasound bioeffects. The purpose of computational studies such as those pre-

sented here is to gain insight which can be useful for supplementing, explaining, and guid-

ing experiments. When used as a supplement to experimental techniques computational

models can provide estimates of difficult to measure physical quantities that may play an

important role in the occurrence of the biological effects such as elevated temperature and

pressure in a collapsing bubble, as Chapter 2. Additionally computational models can be

useful when trying to answer questions that cannot be readily treated through modern exper-

imental methods. For instance DUS-induced lung hemorrhage cannot be directly observed

in real time through modern medical imaging techniques due to the structural complexity

of the lung and surrounding tissues and the small spatial and time scales associated with

the hemorrhage. Partly as a consequence of this, the mechanism driving the hemorrhage

is still unknown. However, potential physical damage mechanisms can be discovered and

studied through computational modeling. This is the case in Chapters 3 and 4, in which

acoustically-generated baroclinic vorticity induced strain is shown to occur at alveoli-like

gas-liquid interfaces. This possible damage mechanism has not been previously considered.

And while this mechanism cannot be confirmed numerically, it highlights the importance

of nonlinearity in the problem, an aspect of the physics that is often ignored and worthy of
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further study.

• Based on the cumulative results of this part of the dissertation, we conclude that for computa-

tional modeling of ultrasound bioeffects to be optimally useful for research purposes, there is

a necessity for more accurate physical characterizations of tissue than are currently available.

And secondarily, for these models to ever be clinically useful for predicting individual occur-

rence of bioeffects, they will likely need to be adapted on a case-by-case basis. The models

developed and used in this thesis are justified for their stated regimes based accepted data

available at the time of their creation. However, it is widely known that soft tissues are com-

plex media which exhibit a wide variety of physical properties that are not well characterized

in all regimes. Physical properties such as elasticity, viscosity, and stress-strain relationships

can vary widely depending on variable physical state of tissue (e.g., stress, strain, strain rate,

temperature, degree of hydration, etc...). Reported values for these properties vary widely in

the literature and are frequently unavailable entirely for the regimes of interest to many ul-

trasound bioeffects problems. For example, repeatedly experimentally validated viscoelastic

models for soft tissues subject to strain rates of the order of those associated with inertial

cavitation are rather hard to come by in this author’s experience. In spite of this scarcity of

information, the dynamics of the US bioeffects problems can be highly dependent on these

poorly characterized parameters, as in the case of the elasticity-dependent cavitation bubble

dynamics of Chapter 2. Furthermore, there are certain aspects of these problems that can

vary widely from person to person, and as such for computational models to be of clinical

use for predicting or estimating ultrasound bioeffects they will likely need to be adapted for

these variations. For instance, in our consideration of diagnostic lung ultrasound in Chap-

ters 3 and 4, we neglect the attenuation of the wave that would realistically occur before it

enters the lungs. This attenuation depends on the thickness of the thoracic wall and as can

be readily observed in any populated area, human geometries vary significantly between in-

dividuals. As such, two different people subject to identical DUS pulses for diagnostic lung

imaging may experience very different degrees of biological effects. If the models developed

108



here are to be used in the future, it will be important to adapt them for the specific problem

of interest based on the best available data at the time.

5.3 Recommendations for future work

In this section, we offer suggestions for which some of the works of this thesis may be improved

upon or expanded. With the end goals of increasing the relevance of this dissertation work to the

motivating problems and applications and better understanding the underlying physics, the sug-

gested strategies for advancing the works of this thesis can be generally summarized into a broad

three-part strategy. First, advance the computational model by adding physical phenomena ne-

glected here for fundamental study and problem tractability, but which may be of relevance to the

motivating problem or application. Second, where possible, use experimental data as part of the ini-

tial problem setup, such as experimentally measured acoustic waves or physical geometries. Third,

perform simulations which attempt to computationally replicate experimental studies or portions

thereof and compare results. For example, parametric studies with variable ultrasound parameters

could examine trends and dependencies which have already been observed experimentally, such

as the difference in thresholds pressures with varying exposure duration. Where sensible, use the

resulting information gained from the numerical experiments to look for new insight into the cause

of the observed trends. In the remainder of this section there is a short piece with more specific

recommendations for future work related to the study of CEUS bioeffects as in Chapter 2 and a

more extensive piece focusing on extending the work of Chapters 3 and 4.

5.3.1 Extending and improving the study of bubble dynamics at capillary

breaching thresholds

As the work of Chapter 2 was published several years before the writing of this thesis, it is perhaps

unsurprising that the author’s labmates and colleagues have already extended areas of that work

significantly. Specifically, bubble dynamics models that account for heat and mass flux and incor-
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porate more robust viscoelastic constitutive models have been developed (Gaudron et al., 2015;

Warnez & Johnsen, 2015; Barajas & Johnsen, 2017). By combining these advanced bubble mod-

els with the experimentally measured US pulses and bioeffects thresholds featured in Chapter 2,

it may be possible to obtain a better understanding of the relationship between the cavitation dy-

namics and observed bioeffects thresholds. Specifically one could look for qualitative changes in

the bubble dynamics behavior that happens at or around the PRPA thresholds associated with the

onset of hemorrhage. Though our work considers contrast agent microbubbles after their shells

have ruptured, one could extend this work by also incorporating the effects of the protein and lipid

coatings that surround CEUS microbubbles, as was done by Marmottant et al. (2005). While these

suggestions extend the work by advancing the spherically symmetric bubble model, none of the

proposed recommendations thus far captures 3D effects which may also be of importance. Along

these lines, one could use the basic problem setup, driving pressure waves, and initial conditions

from Chapter 2 to design direct numerical simulation experiments, solving appropriate forms of

the equations for conservation of mass, momentum, and energy with a relevant constitutive rela-

tionship and equation of state for closure.

5.3.2 Extending and improving the physical model of DUS lung-interaction

One of the directions upon which one could build upon the work of Chapters 3 and 4 is to increase

the relevance to actual physical lung ultrasound. In the design of our model, the consider an

idealized problem setup with a well defined interface and waveform. This is well suited for the

type of fundamental studies that are performed in this dissertation, because various parameters

carefully controlled and the dependence of the dynamics on each can be isolated. Additionally,

results from the simplified model are more generalizable than those obtained from a more realistic

setup which would inherently require more specified, unique geometries and waveforms. However,

there is value in aiming to increase the relevance of the model to the physical problem and there

are a variety of areas upon which our model could be made more realistic and relevance to the

motivating problem, by adjust the model system’s physics and geometry. Here we discuss a few of
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the limitations of the present work in this regard and offer suggestions for ways to overcome these

limitations and extend and improve the current work.

5.3.2.1 Improving the lung model

• Inclusion of presently neglected physical mechanisms

In the introduction to the present work we present conservation equations 1.2 for mass mo-

mentum and energy and then perform dimensional analysis to justify neglecting various

physical effects during the time and spacial scales of interest to the studies performed here,

and in Appendix A.7 we go one step further modeling the elastic and inertial forces at the

interface to show that elasticity is of relatively little importance for the problems we con-

sider. However, we note within this work that two of these effects, viscosity and elasticity,

are likely to be more important if considering longer time scales, over which viscosity will

dissipate energy and elastic forces will increase with increasing strain. These effects may be

considered by adding the appropriate terms to the equations of motion that are solved here.

While the ideal constitutive equation to relate the stress and strain is not well known for

ultrasonic regimes, there has been work in this area that could be integrated into the existing

framework and built upon. Lanir (1983) developed a viscoelastic constitutive model relating

the alveolar membrane and its liquid interface to the bulk tissue properties and later Kowe

et al. (1986) and Denny & Schroter (2000) built upon this, developing alveolar finite element

models. As these effects are completely excluded in the present work, any reasonable exten-

sion in this direction is likely to help generate solutions that are closer to the physical reality,

particularly over the longer timescales associated with typical diagnostic imaging exposure

durations.

• Use of realistic alveolar geometries In the present work, the morphology of the alveolar

wall is approximated as a smooth sinusoidal perturbation between fluids. However, as was

illustrated in Figure 4.1, the true morphology is far more complicated. This relevance of

this work to mammalian DUS could greatly be improved by building a problem geometry
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based on a histological cross-section of alveolar tissue, which can be obtained at micron-

resolution using microfocal X-ray (Litzlbauer, 2006). These images could then be used to

define an initial volume fraction field based on the brightness of each pixel. This could be

further extended to 3D by using the methods described by Parameswaran et al. (2009). While

the numerical methods used in this work are too computationally expensive to be practical

for geometries such as this over the timescales of interest, experiments such as this would

be useful for investigating the mechanism by which hemorrhage propagates into successive

layers of alveoli.

5.3.2.2 Improving the ultrasound model

• Experimentally measured US pulse waveforms

The ultrasound pulse used in the work presented in Chapter 4 was a simplified waveform

consisting of a sinusoidal wave modulated by a Gaussian envelope. Consequently, certain

potentially important features of experimental ultrasound waveforms, such as nonlinearity

and the resulting high pressure gradients, are not captured. By using experimentally mea-

sured waveforms to drive the problem, the effects of these features can be studied. This

would also aid in the comparison of numerical and experimental results, which will be dis-

cussed in more detail at the end of this section.

• Simulations over clinically relevant timescales, with multiple pulses

Research suggests that the total number of pulses (Pulse Repetition Frequency (PRF) ×

Exposure Duration (ED)) used in DUS of the lung has a significant effect on US-induced

hemorrhage (O’Brien et al., 2005, 2001c). And the results of Section 3.4.3 suggest that cir-

culation deposition and therefore interfacial strain and perturbation growth may be control-

lable using multiple carefully designed pulses. However, the current computational model

of an ultrasound-driven alveolus is too computationally expensive to simulate multiple US

pulses at a realistic PRF (e.g, ∼ 1 KHz). This problem is in large part a consequence of the

highly variable length and timescales that exist in DUS of the lung. First, we consider the

112



difference in length scales between the alveolus (O
(
10−4

)
m) and the physical length of the

acoustic wave (O
(
10−3

)
m). Because the acoustic wave begins in the domain, the domain

must be sufficiently large enough to capture it entirely and allow it to leave without signifi-

cant boundary effects. However, to also capture the dynamics of the interface, it is necessary

to use sufficiently high resolution, particularly within portion of the domain containing the

interface, which often changes considerably over the course of a simulation. Second, we

consider the difference in timescales between the wave-interface interaction (∼ µs) and the

amount of time between pulses, over which the interface is expected to continually evolve

(∼ms). Such that even using an adaptive timestep obeying the Courant-Friedrichs-Lewy con-

dition (CFL = umax∆t
∆x ≤ 0.5), the problem must run for many timesteps (typically ∼ 105 for a

300µ s simulation) due to the high spacial resolution. Thus we have a large domain, at high

resolution, running for many timesteps, and hence a computationally expensive problem,

which in practice takes weeks to months of real-time to simulate.

To decrease the computational cost of the simulation in a way that simultaneously allows

for the use of multiple ultrasound pulses we suggest implementing time-dependent bound-

ary conditions to prescribe the incoming acoustic wave and prevent reflections. This could

be done using the methods described by Thompson (1987, 1990). The dynamic creation of

the acoustic waves at the boundary, such that they do not need to be prescribed in the initial

domain, would allow the computational domain to be shortened by the length of the wave at

the very least. Furthermore, because these boundaries can be designed to be strongly non-

reflective, the need for the stretched grid at the top and bottom of the domain is removed.

As such, the overall domain size may be decreased by as much as tenfold in the vertical di-

rection, greatly reducing the computational costs. Additionally, a time-dependent boundary

formulation would allow for the creation of waves at late times, such that multiple pulses

could be simulated.

The implementation of the suggested time-dependent boundary conditions Discontinuous

Galerkin (DG) spatial schemes is technically difficult. While it is possible to adapt these
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techniques (Toulopoulos & Ekaterinaris, 2011), it is recommended that if this course of re-

search is undergone, one might consider other numerical techniques suitable for these prob-

lems, such as Weighted Essentially non-oscillatory (WENO) methods. While these methods

lack certain advantages of DG (e.g., compact stencil), they offer benefits such as being more

readily developed for the solution of the Navier-Stokes equations, if one wished to add vis-

cosity to the problem, as suggested above.

• Comparison of computational and experimental results

In order to test the hypotheses proposed within this thesis, there is a need for fundamental

liquid-gas interface experiments with waveforms relevant to DUS. Once an theoretical ex-

planation of the fluid mechanics of these interface problems (as is offered in this thesis) is

experimentally validated, simulations closer to reality should be performed. While the stud-

ies and simulations performed as part of this dissertation work do not occur over the typical

timescales associated with DUS-induced lung hemorrhage, by implementing the previous

suggestions we can begin to simulate something much closer to the typical experimental se-

tups used to study this problem. As was done for CEUS in Chapter 2, simulated dynamics

can be compared to experimental results. To further study the feasibility of the proposed

physical mechanism underlying DUS-induced lung hemorrhage: baroclinic vorticity driven

strain of the alveolar wall, one could begin to more rigorously study the dependence of the

vortex dynamics and associated strain on ultrasonic parameters for which the hemorrhage

dependence is already well understood. The dependence of lung hemorrhage on a vari-

ety of ultrasonic parameters (e.g., pulse repetition frequency, pulse duration, effective dose,

pulse frequency, exposure duration) been studied extensively. The dependence of baroclinic

vorticity-induced strain on these parameters has not been rigorously investigated. One could

go a long way toward supporting or ruling out the proposed damage mechanism by com-

paring the relationships between these parameters and hemorrhage to relationships between

these parameters and simulated vorticity dynamics and strain.

114



Part II:

Underwater Acoustic Uncertainty
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CHAPTER 6

Efficient Estimation of the Probability Density

Function of Acoustic Transmission Loss in Uncertain

Ocean Environments Using Area Statistics

In this chapter we develop area statistics a computational technique for estimating the Probability

Density Function (PDF) of Transmission Loss (TL) in ocean environments with uncertain environ-

mental parameters, using a single TL field calculation. PDFs are generated using area statistics

are compared with PDFs generated from accepted Monte Carlo methods via the L1 error for many

environments and locations. It is found that area statistics-generated PDFs are engineering-level

accurate (L1 < 0.5) in 91% of cases and require less than one-millionth the computational effort

of the Monte Carlo-generated PDFs on average. As the area statistics-generated PDFs can be

generated in milliseconds on a typical desktop computer, the technique is useful for real-time ap-

plications. This work is in preparation to be submitted for publication (Patterson & Dowling, (In

preparation)).

6.1 Abstract

Calculations of acoustic transmission loss (TL) in the ocean are useful in naval and ocean moni-

toring applications. These TL calculations are often uncertain because they are based on uncertain

environmental parameters, but standard methods for determining TL uncertainty are computation-
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ally expensive and inappropriate for real-time applications. The present work describes how TL

statistics in a range-depth area surrounding a point of interest within a single TL field calcula-

tion can efficiently estimate the probability density function (PDF) of TL that results from ocean

environmental uncertainty. The underlying idea is that at a range-depth (r, z) location within an

uncertain ocean sound channel, variations in the TL value resulting from varying environmental

uncertainties can be represented by spatial variations in TL found near the point of interest in a

baseline TL calculation. Here, such area statistics-estimated PDFs of TL are compared to PDFs

of TL obtained from 2000-sample Monte Carlo calculations at source frequencies of 100, 200 and

300 Hz and source depths of 91, 137, and 183 m (300, 450, 600 ft), in ten uncertain ocean envi-

ronments, at test location depths ranging approximately from 20 m to 4.5 km and source-receiver

ranges from a less than 1 km to more than 170 km. These comparisons show that the estimated

PDFs of TL have an L1 error < 0.5 when compared to Monte Carlo PDFs, and are thus considered

engineering-level accurate in 91% of tested locations. Additionally, the PDFs were produced with

tens of thousands to millions of times less computational effort than the Monte Carlo calculations.

6.2 Introduction

Sensing in the ocean is primarily managed through the broadcast and/or reception of acoustic

waves. Computational acoustic field models are commonly used to assess the extent of radiated

sound fields, and to extract information from recorded signals via signal processing routines. Un-

fortunately, the ocean environmental parameters necessary for fully exploiting the capabilities of

modern acoustic field models are seldom (if ever) known with sufficient precision to prevent uncer-

tainty in ocean parameters from influencing the predicted acoustic fields. Yet, understanding and

quantifying the uncertainty associated with a given field calculation is important for determining

its utility. The focus of this work is on the development of a computationally efficient procedure

for estimating the uncertainty of acoustic Transmission Loss (TL) computations that arises as a

result of an uncertain environment.
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In underwater acoustics, the uncertainty in acoustic field predictions arises from limited knowl-

edge of the physical and geometric properties of the ocean environment of interest. Consequently,

acoustic field predictions are typically made using imperfect estimates of environmental parame-

ters, and as a result, the predicted fields themselves are also uncertain. For a harmonic acoustic

field produced by a point source, the most fundamental attribute at any point in space is the field’s

amplitude and this is commonly reported as TL, a field quantity that has been part of sonar engi-

neering for many decades (Urick, 1962). Knowledge of the uncertainty in TL predictions has utility

in practical naval applications (Abbot & Dyer, 2002; Pace & Jensen, 2002) and ocean measurement

system design (Munk, 1994). Unfortunately, there is no known general relationship between envi-

ronmental uncertainty and TL field uncertainty, and the most common techniques for calculating

TL uncertainty, Monte Carlo and direct sampling methods, are too computationally expensive for

implementation in real-time applications. The purpose of this paper is to introduce and describe

an approximation procedure, herein named area statistics, as an approximate but computationally

efficient alternative to Monte Carlo and direct sampling methods (or other means) for producing

the probability density function of TL at a point of interest within an uncertain ocean environment.

The topic of acoustic uncertainty in ocean environments has seen considerable interest in the

last decade or so (Livingston et al., 2006). The physical uncertainty of an ocean environment has

been shown to have considerable impact on naval applications ranging from sonar performance

prediction to tactical decision aids and threat assessment. Accordingly, there has been much work

within the field of underwater acoustics toward two goals: (1) understanding and quantifying envi-

ronmental and acoustic field uncertainties, and (2) determining how these uncertainties affect rele-

vant applications (Abbot & Dyer, 2002; Emerson et al., 2014; Sha & Nolte, 2005; Stone & Osborn,

2004). The technique described here primarily addresses the first goal through computationally ef-

ficient predictions of TL field uncertainty based on typical ocean environment uncertainties.

There have been multiple studies aimed at accurately describing environmental uncertainties.

This is a challenging task given the complexity and variability of the ocean water column and

seabed properties, especially in shallow waters (Livingston et al., 2006). Uncertainties associated
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with archived bathymetry data sets obtained without the use of modern multi-beam technology

have been reported (Calder, 2006), and historical data have been used to describe seasonal sound

speed uncertainties on the continental shelf and slope in the Middle Atlantic Bight (Linder et al.,

2006).

Here we propose the area statistics procedure for estimating acoustic TL field uncertainties that

arise as a result of the uncertain environment. The starting point for the area statistics technique is

a single baseline TL field calculation that provides TL for a unity-strength point source (at range

= 0) as function of range and depth within the ocean along a chosen azimuthal direction. For

this baseline calculation, all uncertain environmental parameters are set to their most probable

values. The probability density function (PDF) of TL is used here to quantify the uncertainty of

baseline TL values since it contains all the relevant TL statistics for ocean applications (Gerstoft

et al., 2006). The mean and standard deviation of TL, which may be reflective of the macro- and

micro-states of the ocean, respectively (Abbot et al., 2006), are readily calculated from the PDF

of TL. The techniques currently available for predicting the PDF of TL require differing levels

of computational effort. These are described in the following paragraphs from highest to lowest

computational cost, as assessed by the number of additional TL field calculations beyond the

baseline calculation necessary to implement the technique.

Monte Carlo and direct sampling methods are well-accepted techniques for obtaining PDFs

of TL, but their computational effort increases exponentially as the number (M) of uncertain en-

vironmental parameters increases. For both techniques, a potentially large set of TL calculations

is undertaken that sample the M-dimensional space of uncertain environmental parameters in a

random (Monte Carlo) or structured (direct sampling) manner. The PDF of TL at any location

in physical space is then constructed from the computed TL values found at that location in each

of the many field TL calculations. Monte Carlo calculations have been used to obtain the prob-

ability distribution of TL subject to geoacoustic inversion uncertainty (Gerstoft et al., 2006), and

to explore acoustic sensitivity to environmental parameters and assess the utility of a stochastic

description of environmental variables (Heaney & Cox, 2006). More recently, Monte Carlo and
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direct sampling calculations have been used to generate reference PDFs of acoustic field ampli-

tude to assess the accuracy of approximate PDF construction techniques (James & Dowling, 2008,

2011). Monte Carlo calculations based on 2000 TL field calculations are used for this purpose in

the work reported here.

The mathematically rich technique of polynomial chaos expansions (PCE) has also been used

to assess acoustic uncertainty (Finette, 2005, 2006, 2009). Here the uncertain acoustic field is

represented as a series of Q basis functions with each function having its own range-, depth-, and

frequency-dependent coefficient. The coefficients are determined from the solution of a set of Q

coupled partial differential equations. The technique produces converged uncertainty assessments

as Q increases, with Q being a proxy for the number of field calculations when there is a single

uncertain environmental parameter (M = 1). However, when there are more uncertain parameters

(M ≥ 2), a different PCE solution technique is needed and the approximate correspondence be-

tween Q and the number of field calculations is lost. For comparison, the area statistics technique

described herein is simpler to implement than PCE and it does not require the solution of any

additional partial differential equations beyond the baseline TL field calculation.

There are also approximate methods for predicting acoustic uncertainty that do not involve the

computational expense of Monte Carlo simulation or mathematical complexity of PCE. A tech-

nique for estimating TL confidence bounds for environments in which acoustic propagation can be

described by a sum of propagating modes has been previously described (Zingarelli, 2008). The

technique can be applied when there are multiple uncertain parameters and it is computationally

efficient, as it only requires the baseline field calculation. However, it inherently relies on range,

depth, or frequency averaging, and does not provide the full PDF of TL. Another approximate

method for predicting the PDF of acoustic field amplitude for multiple uncertain environmen-

tal parameters is based on determining spatial shifts between acoustic field calculations completed

with a difference in one uncertain parameter (James & Dowling, 2008). However, this field-shifting

technique requires one additional field calculation for each uncertain parameter.

The area statistics technique described here provides estimates of the PDF of TL, and only
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requires the baseline TL field calculation. The technique is a quantitative implementation of the

idea that the uncertainty in the TL value of harmonic wave transmissions at a range-depth (r, z)

location in an uncertain ocean sound channel is represented in the TL values found near the point

of interest within a baseline TL calculation at that frequency. The usefulness of the area statistics

technique lies in its simplicity and low computational cost. It can be used in any environment

for which TL field calculations can be completed, and unlike Monte Carlo and direct sampling

methods, it is consistently fast enough for implementation in real-time sonar applications. As

implemented here, it incorporates M = 6 uncertain physical parameters, represented by many more

random variables. When compared to Monte Carlo results based on 2000 TL field calculations,

area statistics-generated PDFs of TL had an L1 error [defined by Equation (6.7)] below] less than

0.5 , and were hence labeled engineering-level accurate, in 91 % of tested locations.

The remainder of this paper is divided into three sections. The next section describes the ten

uncertain ocean environments used in this study, the area statistics technique, and the procedures

followed for generating the Monte Carlo results. The third section presents quantitative com-

parisons between area statistics and Monte Carlo results in the ten ocean environments for three

different source depths and three different frequencies at field point depths from 20 m to 4.5 km,

and ranges from less than 1 km to more than 174 km. The final section summarizes this effort and

states the conclusions drawn from it.

6.3 Methods

This section describes the main components of this investigation: the uncertain ocean environ-

ments and their characterization, the algorithm steps followed for the area statistics technique, the

implementation details for the Monte Carlo calculations, and the quantitative means for assess-

ing the accuracy of the PDFs of TL produced from area statistics. Sample results are provided to

illustrate each component.

Ten ocean environments with uncertain bathymetry, sound speed profiles (SSPs), and seabed
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properties were considered in this study. The environments, labeled 1 through 10 and ordered ac-

cording to their maximum depth from shallowest to deepest, are shown in cross-section in Figure

6.1. For all environments, bathymetry data were taken from privately available databases. The 10

environments are located in the Pacific, Atlantic, and Indian Oceans. Nine of the environments

were chosen to include a wide variety of bathymetric features. The location of a tenth environ-

ment was chosen randomly to ensure objectivity. We note that Environment 3 consists of the

first 15 km of Environment 4, in order to test the algorithm at higher resolution near the source.

Additionally, Environment 7 is the horizontal mirror of Environment 8 in order to evaluate area

statistics-generated PDFs of TL in equivalent upslope and downslope environments.

Six uncertain physical parameters were considered within each environment: bathymetry (depth)

fluctuation ∆D (r), seabed density ρb, seabed sound speed cb, seabed attenuation αb, and water col-

umn sound speed fluctuations ∆c (z), which is the sum of two constituent pieces: fluctuations

from seasonal variability ∆cΩ (z) and fluctuations from variations in the temperature and salinity

∆cΓ (z). These are labeled and depicted in Figure 6.2. For each Monte Carlo sample calculation

n, of N = 2000 total calculations, each uncertain parameter required one or more random sam-

ples drawn from appropriate Gaussian Distributions. In a typical simulation, between 89 and 741

random samples were drawn: 1 for each seabed property ρb, cb, αb, 1 for SSP fluctuations ∆cΓ (z)

arising from temperature and salinity variations, 1 – 3 for SSP fluctuations ∆cΩ (z) arising from

seasonal variation, and 82-734 for bathymetry fluctuations ∆D (r) (i.e., one per range point in the

bathymetry profile). The most probable value µ and Gaussian standard deviation σ of each ran-

dom variable distribution is provided in Table 6.1. The most probable values, standard deviations,

and parametric ranges in Table 6.1 were intended to mimic the actual uncertainties associated with

readily available information about ocean environmental parameters. Note that for each environ-

ment, source frequency, source depth combination, the situation where all random parameters take

on their most likely values are referred to as the baseline case. Detailed specifications of how these

were used to complete the Monte Carlo calculations are provided below.
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Figure 6.1: Nominal bathymetry for the ten uncertain ocean environments used in this study. En-
vironments are ordered according to increasing maximum depth from shallowest (1) to deepest
(10).
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Figure 6.2: Schematic of generic ocean environment and uncertain environmental parameters:
bathymetry fluctuation ∆D (r) ; sound speed profile fluctuations due to seasonal variation ∆cΩ (z)
and due to temperature and salinity fluctuations ∆cΓ (z) ; and seabed properties (density ρb , sound
speed cb , attenuation coefficient αb ). The distributions of relevant random variables are provided
in Table I. With the exception of bathymetry, all uncertain parameters are assumed to be range
independent. The source depth was zs = 91, 137, 183 m (300, 450, 600 ft). The point of interest
for recovering the PDF of TL is indicated by a black dot. The rectangle surrounding this dot
nominally indicates the range-depth area utilized by the area statistics technique.
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Uncertain environmental parameters and distributions

Uncertain parameter Mean, µ Std. Dev., σ Range

Bottom layer density, ρb (kg/m3) 1971 304 1060, 2883

Bottom layer sound speed, cb (m/s) 1982 541 1500, 3000

Bottom layer attenuation, αb (dB/λ ) 0.47 0.34 0.1, 1.0

Bathymetry fluctuation weight, ξ (r) 0 1 N/A

Water column SSP temperature and salinity fluctua-
tion standard deviation weights, γ

0 1 N/A

Water column SSP seasonal fluctuation eigenfunc-
tion weights, ωi

0 1 N/A

Table 6.1: Summary of the uncertain environmental parameters and their distributions. The mean
values were chosen for the baseline TL field calculation, upon which area statistics was performed.
For the Monte Carlo samples, random variables were sampled for each uncertain parameter from
Gaussian distributions with the mean and standard distributions shown here.

In this investigation, for each Monte Carlo sample calculation the seabed was treated as a single

layer with random range-independent properties (ρb, cb, and αb). The seabed property values were

sampled from a Gaussian distribution based on the mean and standard deviation of the tabulated

bottom layer properties found in Jensen et al. (2011) for clay, silt, sand, gravel, moraine, chalk,

and limestone. The distributions of ρb, and αb were truncated at µ ±3σ. And, the distribution of

cb was truncated by the properties of clay on the low end and limestone on the high end to ensure

that the value of cb remained physically realistic.

The bathymetry profile for each Monte Carlo sample calculation Dn (r; ξn) was the sum the

most probable bathymetry profile Dµ (r), based on available databases and a random fluctuation

∆Dn (r). Fluctuations in the ocean depth were a function of range r , and were determined through

a stochastic process represented by ξn (r), such that

∆Dn (r) = εDµ (r)

∣∣∣∇Dµ (r)
∣∣∣

max
(∣∣∣∇Dµ (r)

∣∣∣)ξn (r) . (6.1)

Based on the work of Lermusiaux et al., (2010), the random fluctuation ∆Dn depends upon the
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most probable local depth, the local slope normalized by the maximum slope of the most probable

bathymetry profile, and a global parameter ε = 3%, which represents relative deviation from the

most probable depth. ξn (r) is composed of random weights sampled from a Gaussian distribution

with 0 mean and unit variance at each range point in the bathymetry profile. For each Monte Carlo

realization in the various ocean environments ξn (r) was obtained from 82 to 734 random samples

(i.e., one per range point in the bathymetry profile).

Because ξn (r) is randomly assigned at each range point and has an equal likelihood of being

positive or negative, the resulting bathymetric profiles were made artificially and unrealistically

rough. This enhanced roughness was found to lead to enhanced acoustic attenuation that increases

with increasing range. To remedy this problem, the mean bathymetry profile and the random

portion were smoothed with a sliding boxcar average having a 5-range-point span to produce an

nth bathymetry profile:

Dn (r; ξn (r)) = Dµ (r) + ∆Dn (r; ξn (r)) (6.2)

The description of the SSP, c(z), and the chosen treatment of its randomization has many steps

and requires a bit more attention than the other pieces. Information regarding the SSPs within

the environments of interest was obtained from privately available ocean databases. The Chen-

Millero-Lee equation (Chen & Millero, 1977; Millero & Li, 1994) was used to compute the SSP

from temperature, pressure, and salinity. Here, fluctuations in the SSP were treated as a function

of depth z , and were attributed to two separate sources: uncertainty in database-provided salinity

and temperature profiles and seasonal variation, each determined through stochastic processes γ

and ω , respectively. As such, for each nth Monte Carlo sample calculation we write the SSP as

cn
(
z;ωi,n, γn

)
= cµ (z) + ∆cΓ,n (z; γn) + ∆cΩ,n

(
z;ωi,n

)
. (6.3)

Here, cµ (z) is the most probable SSP at r = 0 based on available databases, obtained by taking

the month-averaged sound speed at each depth z over 12 months; ∆cΓ,n (z; γn) is the contribution
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to SSP uncertainty due to uncertainty in the temperature T (z) and salinity S (z) of the database-

provided SSPs, respectively and depends on a single random weight γn for each Monte Carlo

sample calculation; and∆cΩ,n
(
z;ωi,n

)
is the contribution to the SSP uncertainty due to seasonal

variation, which for each nth Monte Carlo sample calculation is a sum of empirical orthogonal

eigenfunctions. Each ith eigenfunction was weighted by an independent random weight ωi,n . The

random weights γn andωi,n are sampled from Gaussian distributions with 0 mean and unit variance.

For each Monte Carlo sample calculation ∆cΓn (z; γn) was calculated by using the database-

provided temperature T (z) and salinity S (z) profiles and standard deviations σT (z) and salinity

σS (z) . Fluctuations in the temperature and salinity were treated as uncorrelated. Fluctuations in

the SSP due to uncertainty in the salinity and temperature were calculated as the product of the

standard deviation in c (z) due to fluctuations in T (z) and S (z) and a random weight γn , sampled

from a Gaussian distribution with zero-mean and unit variance such that

∆cΓ,n (z) = γn

√(
∂c
∂T

)2

σ2
T (z) +

(
∂c
∂S

)2

σ2
S (z). (6.4)

For each Monte Carlo sample calculation a SSP fluctuation ∆cΩ,n
(
z;ωi,n

)
due to seasonal varia-

tion of the SSP was included too. This fluctuation was calculated as a sum of empirical orthogonal

functions determined from 12 monthly SSPs. This technique has been previously used to quan-

tifiably describe sound speed fluctuations (Kundu et al., 1975; LeBlanc & M., 1980; Yang & Y.,

1999). Each ith eigenfunction was composed of an eigenvalue ηi and an eigenvector vi and was

weighted by an independent random weight ωi,n. The relevant contribution to each of the random

SSPs is constructed using a sum over P randomly weighted orthogonal eigenfunctions, where P is

the minimum number of eigenfunctions necessary to capture 95% of the variance in the monthly

SSPs. As such, P is the minimum integer which satisfies

0.95 ≤

∑P
j=1 η j∑∞
j=1 η j

, (6.5)

where η j is the jth eigenvalue in descending order by magnitude (i.e., η1 is the largest eigenvalue).
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In practice, it was found that P was typically 1 or 2. Hence, for the nth Monte Carlo sample

calculation, the SSP fluctuation due to seasonal variation is

∆cΩ, n

(
z;ω j,n

)
=

P∑
j

ω j,n
√
η jv j (z) (6.6)

Thus 2000 Monte Carlo TL field sample calculations were performed using the Range-Dependent

Acoustic Model (RAM)(Collins, 1994),each with randomly determined bathymetry, SSP, and seabed

properties according to the previously described methods.

The area statistics procedure is based on the assumption that the uncertainty in the TL value at

any range-depth (r, z) location in an uncertain ocean sound channel can be represented by spatial

variations in TL found near that location in the baseline TL calculation. The area statistics pro-

cedure for developing an estimate of PDF(TL) merely requires the baseline TL calculation at the

frequency of the sound source, the (r, z) location of interest within the calculated TL field, and

an algorithm or recipe for choosing and combining TL values. Given the simple assumption upon

which the area statistics technique is based, the primary development effort involved empirically

determining how to sample the TL field near the point of interest to achieve acceptable results for

the six uncertain environmental parameters.

For the area statistics technique, the baseline TL field calculation may come from any acoustic

propagation model. For this investigation, computed TL fields were obtained using RAM.In each

case, TL field calculations were performed along an outward radial from a unity-strength harmonic

monopole sound source with frequency fs = 100, 200, or 300 Hz, and depth zs = 91, 137, or 183 m

(300, 450, or 600 ft). The source frequency and a nominal sound speed cs = 1500 m/s were used

to calculate the nominal wavelength, cs
fs

= λs , where needed.

Using the baseline TL field calculation, a simple algorithm or recipe with four steps was used

to produce area statistics results for any range-depth (r ,z ) location of interest. First, all the TL

values within a range-depth rectangle centered on (r ,z) were collected and weighted uniformly.

Second, these TL values were sorted into a histogram. Third, a boxcar average with a span of 5
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bins was performed on the histogram to smooth it. Fourth, the smoothed histogram was normalized

to form an estimate of the PDF of TL. For this study, the baseline sample-rectangle’s range and

depth dimensions were 30λs and 13λs , respectively, and a nominal histogram bin width of 1 dB

was used. These baseline sample-rectangle dimensions were chosen to produce suitable results

for the environmental uncertainties defined in Table 6.1. Though, if sufficient resolution of the

TL field was provided, the results were often insensitive to factor of two changes in the sample

rectangles dimensions. Different sample rectangle dimensions, different TL sample weighting,

and other adjustments to the area statistics algorithm may be necessary for alternative treatments

of the uncertainties.

The version of RAM used was designed to output TL fields at a fixed number of range-depth

points, independent of the size of the environment or calculation field resolution. Thus, for large

environments it was necessary to modify the size of the sample rectangle to ensure that a sufficient

number of TL sample points were obtained. As such, if fewer than nine columns of TL were

obtained in the original box width, the box width was doubled until this condition was met. The

minimum number of acceptable columns, nine, was chosen empirically, though fewer columns

appeared to function adequately in most cases. Although results are not shown here, it was also

found that by increasing the output resolution of the TL field, one can avoid increasing the box

size. Such an increase in computational resolution was not taken to ensure that the method was

capable of working robustly with the default version of RAM,as it cannot be expected that others

implementing area statistics will be inclined to change the PE-solver source code. Of the 4020

test locations in all 10 environments, the area statistics sample area width was increased in roughly

3500 cases, with a little over half of all sample boxes taking on a width of 120λs , but with none

wider than 240λs . In addition, TL samples were not collected from any portion of the sample

area lying above the ocean surface or below the ocean floor. When necessary, the bathymetry was

linearly interpolated to calculate the water column depth at the range associated with each column

of the computational output TL grid.

Figure 6.3 illustrates the area statistics procedure at the range-depth location of (r = 6703 m,
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z = 240 m) in Environment 2 for a 200 Hz sound source. In Figure 6.3(a), the TL sample area

is indicated by the white box near the center of the TL field plot. The TL sample area is shown

in an expanded view in Figure 6.3(b) and is comprised of 1872 individual TL samples. The area

statistics-estimated PDF of TL developed from the TL samples in Figure 6.3(b) is shown in Figure

6.3(c).

To assess the accuracy of the estimated PDFs of TL, they were compared with Monte Carlo-

generated PDFs of TL that were created from the 2000 separately computed TL values at the

location of interest. These 2000 TL samples were sorted into a histogram with 1 dB nominal width

bins, and the histogram was normalized to create a PDF of TL. Here the number of Monte Carlo

samples (2000) was high enough so that the Monte Carlo-generated PDFs of TL were comparably

converged when compared to their counterpart area statistics-estimated PDFs of TL (typically 100

to 1500 samples).

Quantitative comparisons of the area statistics-estimated PDFs of TL (subscript ’AS’) and the

Monte Carlo PDFs of TL (subscript ’MC’) were made with the L1 error-norm:

L1 =

∫ +∞

−∞

|PDFMC (T L) − PDFAS (T L) | d (T L) , (6.7)

which can be thought of as the integrated absolute value of the difference between the two PDFs,

or perhaps more intuitively as the non-overlapping area of the two PDFs. For PDF comparisons,

L1 is a convenient metric of accuracy because it is a single dimensionless quantity that inherently

accounts for differences in the mean, width, and shape of two PDFs. The L1 error-norm is bounded

between 0 and 2, with L1 = 0corresponding to a perfect match between the two PDFs and L1 = 2

corresponding to total mismatch (no overlap) of the two of the PDFs. In this study, L1 < 0.50,

which corresponds to ≥ 75% area overlap, was chosen as the criterion for which an area statistics-

generated PDF was deemed engineering-level accurate. This criterion typically corresponded to a

difference of < 3 dB mean error (a measure of PDF location) and < 3 dB standard deviation error

(a measure of PDF width) at 90% and 97% of test locations, respectively.
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(a)

(b) (c)

Figure 6.3: Example of Area Statistics Process. (a) Example TL field for a 200 Hz source, in
Environment 2, with a 30λs× 13λs (range x depth) area statistics sample area centered at range-
depth location (r = 6703 m z = 240 m). (b) Expanded area statistics TL sample rectangle from the
TL field shown in (a). (c) PDF of TL generated from the TL values collected in the sample area
shown in (b).
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The L1 error-norm is illustrated in Figure 6.4 for engineering-level accurate, i.e. L1 < 0.5,

in Figure 6.4(a) and inaccurate, i.e. L1 ≥ 0.5, in Figure 6.4(b), estimates for the PDF of TL. In

both panels, the jagged shaded area is the L1 error. The result shown in Figure 6.4(a) comes from

the range-depth location (r = 6703 m, z = 240 m) in Environment 2, and the mean and standard

deviation of the area statistics PDF (solid curve) are respectively 0.3 dB greater than and 0.3 dB

less than those of the Monte Carlo PDF (dashed curve). The result shown in Figure 6.4(b) comes

from the range-depth location (r = 4472 m, z = 144 m) in Environment 2, and the mean and

standard deviation of the area statistics PDF (solid curve) are 2.2 dB less than and 1.0 dB greater

than, respectively, than those of the Monte Carlo PDF (dashed curve).
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Figure 6.4: Comparison of area statistics- (solid curve) and Monte Carlo (dashed curve) generated
TL PDFs. In Environment 2 at range-depth locations (a) r = 6703 m, z = 240 m, and (b) r = 4472
m, z = 144 m. In both panels, the L1 error is the shaded area. In (a), L1 = 0.15 while in (b), L1 =

0.53. With the Monte Carlo PDF assumed to be correct, the mean and standard deviation errors of
the area statistics PDFs in (a) are 0.3 dB and 0.3 dB, respectively. In (b), these errors are 2.2 dB and
1.0 dB, respectively. The area statistics-estimated PDF of TL in (a) is considered engineering-level
accurate while that in (b) is not.
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Results and Comparisons

For an overall accuracy assessment of the area statistics method, the L1 error from Equation (6.7)

was computed on a coarse rectangular grid in each of the ten uncertain ocean environments for

sources with frequencies of 100, 200, and 300 Hz and depths of 91, 137, and 183 m (300, 450,

600 ft). The single exception to this is Environment 1, where the 183 m source depth was beneath

the ocean floor and therefore was not considered. Hereafter, each Environment-source frequency-

source depth combination is referred to as a test “case” and within each, the locations at which the

L1 error is computed are referred to as a test “locations”. The results are shown in Figure 6.5 as a

grid of test locations overlaid on the baseline TL field for a 200 Hz source at 137m depth, in each

environment. Test locations were nominally chosen to occur at fractional intervals of one-twentieth

the maximum range and one-eleventh of the maximum water column depth. However, the exact

position of each location was adjusted to align with the computational grid spacing, and test points

below the ocean floor were not considered. In each panel of Figure 6.5, a white circle indicates

a test location where the area statistics-estimated PDF of TL was found to be engineering-level

accurate (L1 < 0.5), whereas a black triangle indicates a test location where engineering-level

accuracy of the area statistics-estimated PDF of TL was not achieved (L1 ≥ 0.5). Additionally,

test locations where the minimum area statistics sample TL value was greater than 100 dB were

also not considered, and are not included in the results here. Ultimately, area statistics PDFs were

compared with Monte Carlo PDFs for 87 test cases and 11,436 test locations in total.

In the ten environments considered, area statistics produced PDFs of TL with L1 errors less

than 0.5 at 86, 92, and 94 % or more of test locations for source frequencies of 100, 200, and 300

Hz, respectively. A quantitative summary of these results is provided in Table 6.2. Area statistics

performed consistently well, within Environments 1 and 3-10. In these environments, engineering-

level accuracy was achieved for 94% of tests and the mean L1 error was just 0.25. In Environment

2, area Statistics achieved engineering level-accuracy in only 56% of cases, and the mean L1 error

was 0.51.

133



We hypothesize that the poor performance of area statistics in Environment 2 resulted from the

combined effects of the short range of the environment (12 km) and the relatively little uncertainty

associated with the SSP from both seasonal variation and temperature and salinity fluctuations.

In practice, little variability in the SSP leads to narrower and taller Monte Carlo-generated PDFs

of TL near the source that are not well captured by area statistics. And while small variations in

the SSP create small variations in the TL field near the source, they produce greater variations

in the TL field once propagated further down range. For example, in Environment 10, where the

SSP variability is also low, area statistics achieved engineering-level accuracy in only 64% of test

locations within the first 12 km of range, but performed much better further down range. To further

test this hypothesis, a separate set of Monte Carlo sample runs was performed for Environment 2, in

which the eigenvalues used to capture the seasonal SSP variation, η j, were artificially increased by

tenfold. The resulting percentage of engineering-level accurate test locations across all frequencies

increased from the original 54% to 78% for the 137 m source depth. Hence we infer that for area

statistics to succeed near the source, there must be sufficient sound speed variability.

To ensure that the number of Monte Carlo samples (2000) was high enough that the Monte

Carlo-generated PDFs of TL were comparably converged when compared to their counterpart

area statistics-estimated PDFs of TL (typically 100 to 1500 samples). A sensitivity analysis that

involved decreasing the number of Monte Carlo samples to 1500 for each test location resulted in

little appreciable change. Specifically, when compared to the 2000 sample results, 59 of the 87

cases experienced no change in the overall percentage of engineering level accurate (L1 <0.5) test

locations. In 27 of the remaining 28 cases the change was ≤ 2%, with the one outlier changing

by 4%. In total, less than 0.6% of the 11436 test locations changed whether or not they were

engineering level accurate and the L1 errors when comparing the area statistics PDF to the 1500 and

2000 sample Monte Carlo PDFs differed by 0.03 or less in 99 % of tested locations. The Individual

PDF shapes showed only occasional small variations at the extremities. These differences tended

to be due to statistically unlikely, outlying sample cases which cannot be avoided when taking a

large number of random samples.
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The computational effort associated with area statistics was also compared to that associated

with the Monte Carlo calculations using MATLABs tic and toc functions. As might be expected,

given its simple formulation, area statistics is significantly more efficient than Monte Carlo cal-

culations. With the baseline TL calculation as a starting point for both approaches, area statistics

does not require another TL field calculation whereas the Monte Carlo approach as implemented

here involves 1999 more. Thus, the difference in computational burden is substantial. For a single

location, the Monte Carlo calculations (using 10 Pad terms and a computational range × depth res-

olution of λs/1.25 ×λs/12 in RAM’s PE solver) required between 11 thousand and 5.8 million times

more computational effort than area statistics, depending on the environment and frequency. The

mean and median ratio of computational effort required for the Monte Carlo-generated PDFs to that

required for the area statistics-generated PDFs were both on the order of one million. In general, it

was noted that the more expensive a single field calculation was, the greater the speedup achieved

by area statistics. Additionally, once the baseline TL calculation is complete, area statistics can

provide PDFs of TL in milliseconds of real time, making it practical for real-time applications of

TL uncertainty.
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Figure 6.5: TL fields with area statistics test locations and indication of success vs failure at each.
For the ten environments shown in Figure 6.1 with a 200 Hz source, Markers indicate locations
where area statistics and Monte Carlo-generated PDFs of TL were compared. White circles in-
dicate locations where area statistics results compare favorably with those from Monte Carlo cal-
culations (L1 < 0.5). Black triangles indicate locations where such comparisons are unfavorable
(L1 ≥ 0.5).
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6.4 Summary and Conclusions

This paper describes the area statistics technique for efficiently estimating transmission loss (TL)

uncertainty in underwater acoustics. The technique is based on the idea that the TL variation found

near the point of interest in real space is similar to that found at the location of interest when

environmental parameters are varied as described here. The technique is simple and can be used

to produce approximate PDFs of TL in uncertain ocean sound channels from a single (baseline)

TL field calculation completed using the most probable value for each uncertain parameter. To

implement the technique, TL values near a location of interest in the baseline TL field are collected

and sorted into a histogram that is smoothed and normalized to obtain an approximate PDF of

TL at the location of interest. To determine the technique’s accuracy, PDFs of TL created using

area statistics were compared to PDFs generated using 2000 sample Monte Carlo calculations in

ten different ocean environments at three source frequencies fs = 100, 200, and 300 Hz at three

different source depths zs = 91, 137m, 183m (300, 450, 600 ft). The area statistics-generated PDFs

of TL achieved engineering-level accuracy (L1 < 0.5) in 91% of test locations overall.

The effort reported here supports the following three conclusions. (1) The area statistics tech-

nique is a viable alternative, or worthy complement, to Monte Carlo calculations or other more

computationally intensive techniques for estimating the uncertainty of TL field calculations in

uncertain ocean environments with sufficient range and/or sound speed uncertainty. In this inves-

tigation, the technique produced engineering-level accuracy at 94% of sample locations in the 9

environments considered with greatest sound speed variability. The technique was far less success-

ful in the single outlying environment that was short range and had little sound speed variability,

achieving engineering-level accuracy in only 56% of test locations. (2) The area statistics tech-

nique is so simple and computationally inexpensive that it should be implemented even when a

more reliable but more computationally demanding approach is the primary means for TL uncer-

tainty estimation. As part of this investigation, the area statistics approach was found to require

less than one-millionth of the computational cost of the Monte Carlo calculations for the cases
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considered here. Thus, the computational penalty for implementing both, if the latter is preferred,

is vanishingly small. Moreover, the technique is computationally inexpensive enough for use in

real time applications. (3) The sample rectangle size, TL sample weighting, and other implementa-

tion details of the area statistics algorithm described here are likely to need adjustment if the ocean

sound channel uncertainties of interest differ from those given in Table 6.1. The area statistics

technique is ad-hoc and the implementation parameters in its current formulation were tuned to

achieve a high percentage of engineering-accurate predictions for ocean sound channels with the

uncertainties specified in Table 6.1 and in the ocean data bases used here. However, the uncertain-

ties specified in Table 6.1 are generic and may serve as a useful starting point for many uncertain

ocean sound channels. Thus, the area statistics formulation provided here may be broadly applica-

ble.
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Average L1 % of test locations with L1 ≤ 0.5
Environment

Number Source Depth (m) Source Frequency fs (Hz) Source Frequency fs (Hz)
100 200 300 100 200 300

1* 91 0.32 0.29 0.32 87 93 95

137 0.31 0.34 0.33 90 89 92

2 91 0.68 0.44 0.37 34 69 78

137 0.63 0.48 0.4 33 61 69

183 0.7 0.49 0.38 29 59 76

3 91 0.21 0.18 0.19 91 98 98

137 0.2 0.17 0.16 94 98 100

183 0.19 0.16 0.15 95 98 100

4 91 0.24 0.25 0.23 98 98 99

137 0.23 0.21 0.24 99 99 100

183 0.22 0.22 0.24 100 100 98

5 91 0.33 0.34 0.35 90 88 80

137 0.28 0.27 0.3 92 94 92

183 0.23 0.25 0.26 98 93 96

6 91 0.29 0.28 0.26 92 90 98

137 0.29 0.21 0.24 87 100 100

183 0.27 0.22 0.21 94 97 100

7 91 0.32 0.28 0.27 91 96 93

137 0.3 0.28 0.24 91 91 98

183 0.28 0.26 0.26 92 93 98

8 91 0.26 0.23 0.22 96 98 96

137 0.26 0.2 0.2 93 100 99

183 0.24 0.21 0.21 96 96 99

9 91 0.25 0.26 0.28 95 94 97

137 0.24 0.24 0.26 95 98 97

183 0.25 0.23 0.26 94 98 97

10 91 0.34 0.31 0.33 79 89 85

137 0.36 0.3 0.3 81 92 91

183 0.32 0.29 0.31 85 91 89

Average 91, 137, 183 0.30 0.27 0.26 86 92 94

Table 6.2: Summary of L1 error of area statistics-generated TL PDFs, compared to Monte Carlo-
generated PDFs. Results for source frequencies fs = 100, 200, and 300 Hz and source depths zs =

91, 137, and 183 (300, 450, and 600 ft) in each of the ten environments. *A 183m source depth
could not be tested in Environment 1 as this would put the source beneath the ocean floor.
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Appendix A

Appendices for Chapter 3

A.1 Order of magnitude analysis of vorticity-generation mech-

anisms

To quantifiably compare the various mechanisms by which vorticity changes in the flow we per-

form an order of magnitude analysis on each term of the vorticity transport equation (3.8). Initially,

there is no vorticity. Given the present problem set-up, the only mechanism that can lead to the

production of vorticity is the baroclinic torque, which is clearly non-zero during the interaction of

the ultrasound wave with the interface since the pressure (wave) and the density (interface) gra-

dients are misaligned. For this reason, we focus on the relative magnitude of each term during

the interaction time, ∆ta ≈ 5`/cwater. Since the average perturbation amplitude during the inter-

action is sufficiently small (∼ 0.96a0), we assume the interface remains static and undeformed

throughout the interaction, such that the density gradient is approximately constant. We treat the

divergence and magnitude of curls/gradients of quantity f as ∼ ∆ f /∆L, where ∆L is the problem’s

characteristic length scale. Since flow is driven by the acoustic wave ∆p = ∆pa, ∆u = ∆ua, and

∆ρ = ∆ρa, where the subscript a denotes acoustic quantities. The quantities are related according

to (Anderson, 1990),

∆pa = ±∆uaρc = c2∆ρa. (A.1)
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Since a0/` � 1 (indicating small misalignment between ∇ρ and ∇p), we can approximate sin θ ≈

θ. It thus follows that the magnitude of the baroclinic term is

∥∥∥∥∥∇ρ × ∇p
ρ2

∥∥∥∥∥ = |∇ρ||∇p|| sin θ| = O
(
|∆ρI |

|∆LI |

|∆pa|

|∆La|

1
|ρ|2
|θ|

)
. (A.2)

where ∆ρI is the density jump across the interface, ∆pa is the pressure amplitude of the wave,

∆LI is the characteristic length of the interface (thickness) and ∆La that of the wave (wavelength).

Approximating the vorticity as of equal magnitude to the baroclinic term, the dilational term can

be estimated as

‖−ω (∇ · u)‖ = O

(
|∆ua|

|∆La|

|∆ρI |

|∆LI |

|∆pa|

|∆La|

1
|ρ|2
|θ|

)
. (A.3)

Making use of Equation (A.1), the relative magnitude of the baroclinic to dilational terms is:

∥∥∥∥∇ρ×∇p
ρ2

∥∥∥∥
‖−ω (∇ · u)‖

∼ O

(
|c|
|∆ua|

)
= O

(
|ρ|

|∆ρa|

)
(A.4)

To evaluate the above expressions for comparison with our computational results, we consider

our base trapezoidal wave case where pa = ∆pa = 10 MPa. The length scale associated with the

acoustic wave is the initial length of the pressure compression ∆la = 5`. The initial interface length

scale ∆Li, defined as the thickness of the mixed layer from α = 0.05 to 0.95 volume fraction of

water is estimated as ∆Li ≈ 0.05`. We approximate the order of θ based on its average value along a

half-wavelength of the interface for a0 = 0.03` such that the average value of |θ| ≈ 0.12. evaluating

expression (A.4) we to find that |c| / |∆ua|=O
(
102

)
and thus expect that the relative contribution

of baroclinic to compressible/advective vorticity generation is approximately of order O
(
102

)
at

t = ∆ta ≈ 5.

To compare our computational results to the analysis we consider the integral of the vorticity
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and vorticity generation terms over the right-half domain,

Γ =

∫
Arh

ω dArh, (A.5)

where
∫

Arh
dArh =

∫ +∞

−∞

∫ `

`/2
dy dx. Only the right-half domain is considered because the total cir-

culation over the whole domain is 0 due to symmetry. Circulation is chosen as the quantity of

comparison as it is a global quantity, which better captures the overall vorticity dynamics than the

vorticity at any single point. As a single quantity rather than a field, it is also simpler to compare

the computational and analytical results. The relative order of magnitude relationships obtained in

(A.4) are spatially independent and expected to hold when integrated over the right-half domain.

Accordingly we evaluate the vorticity generation terms from our computational results integrated

over the right-half domain. At t ≈ 5.0 we find that

∫
Arh

[
∇ρ×∇p
ρ2

]
dArh∫

Arh
[−ω (∇ · u)] dArh

= O
(
102

)
. (A.6)

Hence the computational results and analysis are in agreement and suggest that the vorticity is

nearly entirely baroclinic.

A.2 Convergence: interface length per unit circulation, s(t)/Γ(t)

We investigate the convergence of the results in Figure A.1 for Γ/s, which is the relevant quantity of

interest. The presented results are based on simulations run at a resolution of 100 points/` in both

the horizontal and vertical directions. At this resolution, neither the circulation or the interface

amplitude are fully converged, though the qualitative behavior of each does not appear to very

greatly with increasing resolution. Figure A.1 shows plots of interface length per unit circulation,

s(t)/Γ(t) for variable resolutions of 50, 75, 100, and 125 points/`. Overall the results are converging

to the solution on the finest grid. While the early-time behavior shows discrepancy, the late-time

behavior appears to have largely converged to asymptotic growth. Although the numerical value
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Figure A.1: Convergence of the interface length at long times. Interface length histories s(t) scaled
by the inverse circulation density per unit input pressure, [(Γ(t)/s(t))/pa]−1. Curves are shown for
the baseline 10 MPa trapezoidal wave cases or variable x and y resolution: 50 pts/` (blue) 75 pts/`
(red), 100 pts/` (green), 100 pts/` (purple). For comparison sake, time has been shifted by tp such
that the instant the phase inverts occurs simultaneously in each case. The black dashed line above
the curves at late times corresponds to power law growth with t1/2.

of the time exponent of the growth may be sensitive to the grid resolution, the qualitative behavior

does not appear to change. To obtain accurate quantitative measurements of the time exponent,

finer simulations would have to be conducted, which would be computationally prohibitive given

the exceedingly long run time.

Plots of circulation and amplitude for 50, 75, and 100 cells per ` are also presented in Figure .

It can be seen that while neither the interface amplitude or circulation are completely converged,

there values appear to change little with increasing resolution.

A.3 Vorticity distribution

To better understand the distribution of vorticity generation within the gas-liquid mixture region of

the interface we perform an order of magnitude analysis to compare the baroclinic vorticity from

equation (A.2) in pure water vs air. As this can already be evaluated in water from what we have

provided up to this point, we will focus on evaluation of the order of baroclinic vorticity generation
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Figure A.2: Convergence of the interface amplitude and circulation. Interface amplitude and
circulation histories are presented for increasing resolution 50, 75, and 100 cells per domain
width/dimensionless length scale `

in air.

Throughout this analysis we will denote the properties of the incoming wave and water with a

subscript −, and the transmitted wave and air with a subscript +. For water, we will use the values

for ∆ρI ,∆LI ,∆ρa,∆La and θ previously defined in Appendix A.1, based on our initial condition.

Our treatment of the density gradient across the interface will remain unchanged for evaluation

in air such that ∆ρ−I = ∆ρ+
I and ∆L−I = ∆L+

I . To evaluate the remaining terms in air we will

borrow techniques from linear acoustics. To find the pressure rise in the transmitted wave ∆p+
a , we

recognize that a0/` << 1 and treat the incoming wave as a plane wave impinging normally on a

flat material interface such that ∆p+
a = T∆p−a , where T is the acoustic transmission coefficient, T =

2ρ+c+/ (ρ+c+ + ρ−c−) (Kinsler et al., 1982). For our water-air interface T ≈ 4.97 × 10−4. Because

of the strong impedance mismatch between fluids, the acoustic wave is almost entirely reflected,

decreasing the pressure gradient in the air. Because of the drop in sound speed across the interface,

the transmitted wave is compressed into a smaller physical area (i.e., the wavelength decreases)

relative to the incoming wave, such that ∆L+
a = ∆L−a (c+/c−). This effect increases the pressure

gradient in the air. To evaluate θ+, we utilize Snell’s law which states that c− sin θ− = c+ sin θ+.
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Because a0/` << 1 it is also true that θ− << 1, thus we use the small angle approximation of sin to

find that θ+ ≈ θ−(c+/c−). This refraction effect decreases the misalignment between the pressure

and density gradients for the transmitted wave relative to the incoming wave. Quantitatively it also

approximately cancels the increase in vorticity deposition that arises as a result of the increased

pressure gradient created by the decrease in the length of the transmitted wave.

To get an idea of where within the mixed gas-liquid region at the interface the vorticity will be

generated, we consider equation (A.2) in air and water and write the ratio to find

∥∥∥∥∇ρ×∇p
ρ2

∥∥∥∥
air∥∥∥∥∇ρ×∇p

ρ2

∥∥∥∥
water

=O


[
|∆ρ+

I |
|∆L+

I |
|∆p+

a |
|∆L+

a |
1
|ρ+ |2
|θ+|

]
[
|∆ρ+

I |
|∆L+

I |
(|∆p+

a |/|T|)
|∆L+

a |(|c+ |/|c− |)
1
|ρ− |2

(|c+| / |c−|) |θ+|

]
 ,

=O

|T| ( |ρ−|
|ρ+|

)2 . (A.7)

For our water-air interface, we evaluate equation (A.7) to find that the ratio of baroclinic vorticity

generation in air to that in water would be of order O
(
102

)
. While this analysis considers vorticity

generation in pure air and water, as opposed to the mixed fluid region that is exactly relevant to this

work, we make two observations based on this result. First, this result analysis is for an extreme

case in which all of the vortical energy relevant to this problem, is able to be concentrated in pure

air and water, and thus this result acts as an upper bound on the change in vorticity deposition we

expect as the wave move from water across the interface into air. Additionally, this result suggests

that for the mixed water-air region, where the strongest density gradient exists, vorticity generation

is likely to occur in gas dominated fluid regions with a higher volume fraction of air than water.

From the vorticity contours at t = 1.0 shown in 3.6, the vorticity is clearly concentrated in

the region with volume fraction of water α < 0.5. To quantify this, numerically integrating the

vorticity over the right-half domain we find that 97% of the circulation occurs in this region. To

further illustrate the dependence of the vorticity deposition on the relative gas-liquid composition

of the fluid within the interface region, Figure A.3 shows a scatter plot of the vorticity values in each

cell vs the mean volume fraction of water in the cell < α > (Left). The average circulation per-cell
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Figure A.3: Dependence of vorticity on volume fraction across the interface. For cells with non-
negligible vorticity, a scatter plot of the mean vorticity in each cell is plotted as a function of
volume fraction water (Left).

is seperated into bins based on the relevant volume fraction to obtain a histogram and normalized to

obtain the circulation distribution circulation as a function of α (Right). The observed circulation

deposition in air-dominated fluid, α < 0.5, and is within the predicted upper bound. This is

qualitatively consistent with our analysis.

A.4 Numerical treatment of the initial interface

The prescribed interface thickness parameter (typically δ = 0.08`) was used to determine the initial

volume fraction and density condition where the a distance parameter from the interface is defined

as

d =
δ + y(x)inter f ace − y

2δ
.
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and the initial Volume fraction is written as

α =



1,

exp
(
log

(
10−16

)
|d|8

)
,

0,

such that d is normalized within the mixed air-water region.

Theoretical vs simulated reflection coefficients

To ensure that the numerical implementation of the interface is sufficiently captures the dynamics

of a discontinuous interface, the simulated acoustic reflection coefficient RS was calculated for the

case of the 10 MPa trapezoidal wave for the prescribed thickness parameter δ and compared to the

theoretical acoustic reflection coefficient R, where,

Rtheoretical =
(ρc)air − (ρc)water

(ρc)air + (ρc)water
= 0.999

Rsimulated =
pR

pI
=
−pre f lected − patm

pa − patm
= 0.991.

Thus for default value δ0 = 0.08`, the calculated reflection coefficient for the simulation was

approximately within 1% of the theoretical reflection coefficient. This reflection is illustrated in

Figure A.4, which shows snapshots of the pressure field at several times throughout and after the

passage of the wave. To determine the sensitivity of the simulations to changes in δ, the simulated

reflection coefficient is calculated for delta = 0.02`, 0.04`, 0.08`, and 0.16` in Figure A.5. It is

found that Rsimulated is approximately constant for δ0/4 ≤ δ ≤ 2δ0.
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Figure A.4: Evolution of the pressure field for the pa = 10 MPa trapezoidal wave. Snap-
shots of pressure throughout the waves time in the domain and shortly thereafter at t/(`/cair) =

0, 3, 6, 9, 12, 25, and 30. We observe that once the wave leaves the domain at approximately
t/(`/cair) = 21, after which noticeable reflections do not occur.
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Figure A.5: Numerical reflection coefficient at the interface vs interface thickness parameter δ.
The reflection coefficient R based on calculated wave amplitudes is shown for various values of
the interface thickness parameter δ = 0.01, 0.04, 0.08, and 0.16. The default value for results in
chapters 3 and 4 is δ = 0.08 and indicated in red. The computed reflection coefficient appears to be
approximately constant at Rcomputed = 0.991 for the range of interface thicknesses considered here.

A.5 Perturbation growth for the -10 MPa trapezoidal wave

To demonstrate that the long term growth of the interface does not require a positive definite wave, a

trapezoidal wave with -10 MPa amplitude used to drive the perturbed water-air interface of Chapter

3. The amplitude growth and The amplitude growth (left) and circulation (right) are shown in

Figure A.6. The late time growth goes as t0.61 and as consistent with that driven by the positive

trapezoidal wave. The total circulation deposited after the passage of the wave is similar order of

magnitude to that left by the positive trapezoidal wave.

The nature of the circulation deposition for the negative wave is somewhat different from that

of the positive wave. The initial rarefaction of the negative wave causes the immediate growth

of the interface perturbation while simultaneously creating baroclinic vorticity. By the time the

compression arrives near the end of the wave, the interface amplitude has grown appreciably,

such that there is greater misalignment between the pressure gradient of the compression wave

and the interface density gradient. Consequently the compression creates vorticity of opposite
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Figure A.6: Perturbation amplitude (left) and circulation (right) histories for the -10 MPa trape-
zoidal wave. The growth follows a power law in time with exponent ≈ 0.61, and is thus consistent
with the results for the positive wave shown in Chapter 3.

sine, but greater magnitude than that of the earlier rarefaction. This is in contrast to what was

previously observed for the positive wave, for which the compression deposited baroclinic vorticity

and also drove the perturbation of the interface to phase invert before the rarefaction occurred. Thus

changing the direction of the interface density gradient such that the baroclinic vorticity created by

the rarefaction was of the same sine as that created by the compression.

A.6 Perturbation growth for the 10 MPa sinusoidal wave

To demonstrate the growth of the interface driven by a simple wave with both positive and negative

parts, a sinusoidal wave (positive pressure followed by negative) with 10 MPa amplitude is used

to drive the perturbed water air interface of Chapter 3. The amplitude growth and The amplitude

growth (left) and circulation (right) are shown in Figure A.7. The late time growth goes as t0.66

which is faster than that observed for the positive and negative trapezoidal wave. However we note

that this simulation was only able to run for half as long as those of Chapter 3, and at the end of

the simulation the exponential growth rate appears to be decreasing in time. The total circulation

deposited after the passage of the wave is similar order of magnitude to that left by the positive
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Figure A.7: Perturbation amplitude (left) and circulation (right) histories for the 10 MPa sinusoidal
wave. The growth follows a power law in time with exponent ≈ 0.66, which is faster than the t3/5

growth observed 3, seemingly because the simulation was not able to reach late time behavior with
the computational resources provided.

trapezoidal wave.

A.7 Comparison of elastic and inertial forces for the 10 MPa

trapezoidal wave

In my pursuit of a better understanding of Diagnostic Ultrasound (DUS)-induced lung hemorrhage,

one of the most common hesitancies of my work that I have encountered is my choice to model

the alveolar septum as an interface between two fluids. The alveolar septa is, after all, composed

of elastic tissue, which would intuitively resist the vorticity-driven deformation that I observe.

Dimensional arguments have been previously presented in which the ratio of elastic and inertial

forces relevant to diagnostic ultrasound of an alveolus is considered via Cauchy number and I

do not wish to recapitulate those argument here. Rather, to address this issue in a perhaps more

concrete, intuitive fashion I have developed a model to approximate the approximate elastic and

inertial forces at the interface. Using these models each will be calculated as a function of time

and compared for the 10 MPa trapezoidal wave of Chapter 3.

152



The inertial force of the moving fluid at the interface, in the vertical direction, per unit depth

into the page, is approximated as

F(t)I,y = s(t)δρα50 ÿ(t)inter f ace, (A.8)

where s(t) is the interface length; δ is the interface thickness parameter, ρα50 the density of a fluid

mixture of equal parts air-water by volume (as this isocontour was previously used to define the

interface location); and ÿ(t)inter f ace is the mean y-velocity of the interface. We note that this is little

more than Fy = may, where the mass per unit depth m is the interface area s(t)δ and the vertical

acceleration ay is that of the mean interface location.

The elastic, restorative force of the interface, in the vertical direction, per unit depth into the

page, is approximated as

F(t)E,y =
s(t) − s(0)

s(0)
Eas(t)

∣∣∣es(x, t) · ey
∣∣∣ (A.9)

where Ea is the elastic modulus of the alveolar wall, which depends on the transmural pressure, and

ranges from 12 to 140 kPa (Perlman & Wu, 2014). Note, the lower value Ea = 5 kPa Cavalcante

(2005), used for in the non-dimensional arguments of Chapters 1 and 3, is perhaps more realistic,

though here we aim to consider the worst case scenarios, so here we have used the largest value for

the elastic modulus of the alveolar wall available in the literature. es(x, t) and ey are unit vectors in

the direction tangential to the interface, which varies in space and time.
∣∣∣es(x, t) · ey

∣∣∣ is the average

alignment between the interface tangent and vertical direction and corresponds to the portion of

the restorative force which acts to resist the vertical inertia of the fluid. Note that in practice, is

initially small (≈ 0.2), but approaches 1 as the interface deforms, and as such it played little role in

the results.

Based on these models the inertial and elastic forces were calculated for the 10 MPa wave

of Chapter 3, and the results were dimensionalized to increase intuitive physicality as was done in

Chapter 4. In Figure A.8, the results are plotted as a force per unit depth (on a logarithmic scale) vs
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Figure A.8: Comparison of elastic and inertial forces for the pa = 10 MPa trapezoidal wave. To
help visualize the noisy data, the plot on the right contains the absolute value of the inertial force,
with a moving average filter applied.

time in µs. The inertial force data is rather noisy as a result of the interface acceleration being taken

as numerical second derivative of the interface position. In spite of this, it appears that the inertial

force of the fluid upon the interface, per unit depth is on the order of hundreds to thousands of

Pa/m. Minimum and maximum elastic force values are given for Ea = 12 and 140 kPa, and range

from less than 100 Pa to approximately 10 kPa. While a crude estimate of each, this demonstrates

within reason that the fluid inertia at the alveolar wall is expected to dominate its elastic restorative

force for several hundreds of microseconds, over which considerable deformation and strain of the

interface occurs.
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Appendix B

Appendices for Chapter 4

B.1 Circulation due to 1, 2.5, and 5 MPa Ultrasound Pules with

dependence on pa and a0

To illustrate that the circulation remains after the passage of the wave for Ultrasound (US) pulses

within the diagnostic regime, and to explore the dependence of the ultrasound-generated circulation

on pa, Figure B.1b shows the circulation history Γ(t) for the a0 = 0.3` case for a0 = 0.03` (blue),

0.1` (red), and 0.3` (green). During the wave-interface interaction t ≤ 10, the circulation again

fluctuates rapidly, however it can be seen that the chronologically local mean circulation increases

with increasing pa as would be expected since the amplitude of the pressure gradient also rises.

After the passage of the wave the amount of circulation remaining increases with increasing pa,

though not necessarily according to a purely linear relationship.

B.2 Ultrasound-induced interface growth, strain, and circula-

tion

The interface amplitude growth a(t)/a0, strain ε(t), and circulation Γ are plotted for all pa = 1, 2.5,

and 5 MPa cases.
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Figure B.1: Dependence of circulation deposition on pressure amplitude (left) and initial perturba-
tion amplitude (right).
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Figure B.2: Interface amplitude, circulation, and strain histories are presented for all ultrasound
pulse cases considered in Chapter 4.
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Appendix C

Underwater uncertainty Monte Carlo

Randomization Techniques

C.1 Area statistics randomizations

This appendix is meant largely to serve for personal reference and serves to explain some of the

finer points of the Monte Carlo randomization techniques used in Chapter 6. Specifically, some of

the details useful in replicating or programming the bathymetry and sound speed randomization

are detailed herein.

C.1.1 Bathymetry

For each of N Monte Carlo sample runs, the bathymetry profile is a function of range r, depth z,

and is determined through a stochastic process represented by ξ.

Dn(r; ξ) = Dµ(r) + Dσ(r, ξn(r)).

Where n = 0, 1, 2, ...,N. Dµ is the best estimate bathymetry profile based on available databases.

Dσ(r, z; ξ) is the stochastic portion of the sound speed profile and ξn is a random event. The random

portion of the sound speed profile Dσ is defined based on the work of Lermusiaux et al. (2010),

and is dependent upon local depth, normalized slope, and a global parameter ε representing relative
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deviation from the best guess (e.g. 1%, 2%, 3%),

Dσ(r, z) = Dmu(r)εŜ (x, y)ξ,

where Ŝ is local slope normalized by the maximum slope for the best guess bathymetry profile.

Ŝ (r) =

∣∣∣∇Dµ(r)
∣∣∣

max(|∇D(r|)
,

such that Ŝ (x, y) ⊆ [0, 1].

Dn(r; ξ) = Dµ(r) + Dσ(r, ξn).

C.1.2 Sound speed profile

For each of N Monte Carlo sample runs, the sound speed profile c = c(r, z; ξ) is a function of range

r, depth z, and is determined through a stochastic process represented by ξ.

cn(r, z; ξ) = cµ(r, z) + cσ(r, z; ξn)

Where n = 0, 1, 2, ...,N. cµ is the best estimate sound speed profile, which is calculated as the

month-averaged velocity profile at a given location (r, z). cσ(r, z; ξ) is the stochastic portion of the

sound speed profile and ξn is a random event. At each range of interest, cµ is obtained by finding the

average averaging 1 sound speed profile per month over an M month timespan. Monthly profiles

are obtained from private databases.

To calculate cσ(r, z; ξn) empirical orthogonal functions are used to randomize the sound speed

profile for each Monte Carlo sample calculation. At a given range, the sound speed variation at

each fixed depth can be thought of an independent variable, such that the value of that sound speed

calculated for each month represents a new observation of that variable. Hence, at each range, a
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matrix C is constructed such that each column of C constitutes a single sound speed profile taken at

D constant depths from a each of the M months considered. Such that we have D random variables,

each with M observations and C is of dimensions D×M (rows × columns). The covariance matrix

of Cᵀ is constructed

X =

(
C −Mµ

) (
C −Mµ

)ᵀ
M − 1

.

HereMµ is a matrix with the dimensions equal to that of C, for which each column is cµ, a D × 1

vector containing the row average of C. We solve

Xvi = λivi

to find the eigenvalues λi and corresponding right eigenvectors vi of X. Each of the random sound

speed profiles will be constructed from the mean sound speed profile cµ, and a sum over S randomly

weighted orthogonal eigenfunctions. We define S as the number of eigenfunctions necessary to

capture 95% of the variance in the sample sound speed profiles, such that S is the minimum integer

which satisfies

0.95 ≤

∑S
j=1 λ j∑∞
j=1 λ j

.

Hence the random component of each of the nth sound speed profiles is defined as

cσ,n(r, z; ξ) =

S∑
j=1

ξ j,n
√
λ j(r)v j(r, z),

where random event ξ j,n is sampled from a Gaussian distribution centered at 0 with unit variance.

Thus for the nth sample calculation, the randomized sound speed profile at a range-depth location
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(r, z) is described by

cn(r, z; ξ) = cµ(r, z) +

S∑
j=1

ξ j,n
√
λ j(r)v j(r, z).

161



BIBLIOGRAPHY

Abbot, P., & Dyer, I. 2002. Sonar Performance Predictions Incorporating Environmental Variabil-
ity. Pages 611–618 of: Pace, N. G., & Jensen, F. B. (eds), Impact Littoral Environ. Var. Acoust.
Predict. Sonar Perform. Dordrecht: Springer Netherlands.

Abbot, P., Dyer, I., & Emerson, C. 2006. Acoustic Propagation Uncertainty in the Shallow East
China Sea. IEEE J. Ocean. Eng., 31, 368–383.

Allen, J. S., & Roy, R. A. 2000a. Dynamics of gas bubbles in viscoelastic fluids. I. Linear vis-
coelasticity. J. Acoust. Soc. Am., 107, 3167.

Allen, J. S., & Roy, R. A. 2000b. Dynamics of gas bubbles in viscoelastic fluids. II. Nonlinear
viscoelasticity. J. Acoust. Soc. Am., 108, 1640–1650.

American Institute of Ultrasound in Medicine. 2000. Section 7–discussion of the mechanical index
and other exposure parameters. J. Ultrasound Med., 19, 143–8, 154–68.

Anderson, J. D. 1990. Modern compressible flow: with historical perspective vol. 2. series in
aeronautical and aerospace engineering, vol. 2. New York: McGraw–Hill.

Apfel, R. E. 1982. Acoustic cavitation: a possible consequence of biomedical uses of ultrasound.
Br. J. Cancer. Suppl., 5, 140–6.

Apfel, R. E., & Holland, C. K. 1991. Gauging the likelihood of cavitation from short-pulse, low-
duty cycle diagnostic ultrasound. Ultrasound Med. Biol., 17, 179–85.

Arda, K., Ciledag, N., Aktas, E., Aribas, B. K., & Köse, K. 2011. Quantitative assessment of
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