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ABSTRACT

Introduction of screening for prostate cancer using the prostate-specific antigen (PSA)

biomarker of the disease in the late 80ies led to remarkable dynamics of the incidence

of the disease and shortly after, cancer mortality showed a decline. Except for frag-

mentary studies, no comprehensive information exists on the PSA uptake in the

European countries that would allow specification of utilization intensity by age and

calendar time, which puts forward the problem of estimating PSA utilization pat-

terns from cancer incidence and mortality data. Even in the USA the patterns have

been heterogeneous and showed nontrivial dynamics. Capturing the picture by para-

metric methods has been very challenging. Although prostate cancer mortality rates

have fallen dramatically since the widespread adoption of PSA screening in the early

1990s, conclusively establishing screening benefit requires evidence from randomized

controlled trials. Former studies did not formally evaluate whether screening efficacy

differed between trials when implementation details such as screening patterns are

taken into account and conflicting results have been seen between trials.

In the second chapter, we formulate a joint model of cancer progression to symp-

tomatic (clinical) diagnosis and the screening process with the associated detection

mode, as both processes interact to produce the observed incidence in the population.

The risks of screening and clinical diagnosis are dependent sharing the latent tumor

onset and progression processes in the subject, denoted by a common shared frailty

term. Intensity of screening and the hazard driving prostate cancer progression are

estimated jointly and semiparametrically using the NPMLE method based on the

x



joint model. Asymptotic and finite sample properties of the proposed estimators are

studied analytically and by simulations. An application using data from the European

cancer registry EUREG is presented.

In the third chapter, we develop a semiparametric joint model of cancer progres-

sion to clinical and screening diagnosis based on screening trials data with a mixture

of known PSA test schedules per protocol and random unknown schedules before

and after implementation of the protocol in both control and screening arm. Ad-hoc

screening patterns in both arms before recruitment and after existing the trial, and

the hazard driving prostate cancer progression are estimated jointly and semipara-

metrically. Hypothesis tests comparing the screening risks between the arms and

periods are performed to validate if the randomization was contaminated. Applica-

tions using the subject-specific incidence data for both control and screening arms

from Prostate, Lung, Colorectal, and Ovarian screening trial (PLCO) and cancer inci-

dence data from The Surveillance, Epidemiology, and End Results (SEER) Program

are demonstrated.

In the fourth chapter, we derive the lead time to link cancer mortality with can-

cer incidence and screening efficacy. We use a two-step approach to formally test

whether screening efficacy differs between trials using mean lead time as a surrogate

of screening intensity. First, the mean lead time is estimated in each trial arm as a

proxy for the intensity of screening. Second, the association is quantified between the

mean lead time and prostate cancer mortality and tested whether it differs between

trials while accounting for differences in screening and diagnosis between arms. We

analyze the individual-level data from PLCO jointly with SEER US population data

to prove that there is no evidence that screening efficacy differed between trials and

screening can significantly reduce the risk of prostate cancer death.

xi



CHAPTER I

Introduction

This dissertation is motivated by the problem of interpreting recent screening

trials in prostate cancer, the European Randomized Study of Screening for Prostate

Cancer (ERSPC) in Europe and Prostate, Lung, Colorectal, and Ovarian cancer

screening trial (PLCO) in the United States. Introduction of screening for prostate

cancer using the prostate-specific antigen (PSA) biomarker of the disease in the late

80ies led to remarkable dynamics of the incidence of the disease and shortly after,

cancer mortality showed a decline (Schroder et al., 2009, 2012, 2014). Except for

fragmentary studies, no comprehensive information exists on the PSA uptake in the

European countries that would allow specification of utilization intensity by age and

calendar time, which puts forward the problem of estimating PSA utilization patterns

from cancer incidence and mortality data. Even in the USA the patterns have been

heterogeneous and showed nontrivial dynamics. Although prostate cancer mortality

rates in the United States have fallen dramatically since the widespread adoption of

PSA screening in the early 1990s, conclusively establishing screening benefit requires

evidence from randomized controlled trials. Previous studies did not formally evaluate

whether screening efficacy differed between trials when implementation details such

as screening patterns are taken into account.

The ERSPC and PLCO produced apparently conflicting results, with the ER-
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SPC reporting a 21% reduction in prostate cancer mortality (Schroder et al., 2009,

2012, 2014) and the PLCO finding no mortality difference between the trial arms

(Andriole, 2009, 2012). Rather than resolving questions, the trials have exacerbated

long-standing uncertainty about whether screening benefits cancer survival. Indeed

it has been assumed that changes in treatment, rather than PSA screening, largely

explain the observed decline in mortality rates (Chou and LeFevre, 2011). It was

suggested that ad-hoc screening in the control arms of the trials (contamination) was

to blame for the controversial results. Control arms of the trials are thought of as

being representative samples from the respective populations inheriting their popu-

lation screening patterns. However, because subject-level screening schedules in the

control arms as well as in the populations they come from are unobserved, adjust-

ing for contamination is impossible without a proper model-based methodology that

would allow estimation of the distributional characteristics of an ad-hoc screening

utilization process in a population from observed cancer incidence. Devising such

methodology and applying it to cancer registry data and trials data is one focus of

this dissertation.

In the second chapter, we formulate a joint model of cancer progression to symp-

tomatic (clinical) diagnosis and the screening process and the associated detection

mode, as both processes interact to produce the observed incidence in the popula-

tion. The risks of screening and clinical diagnosis are dependent sharing the latent

tumor onset and progression processes in the subject. The model is formulated that

treats both risks semiparametrically on two time scales, age t and calendar time (year)

y. Because the model is developed under the premise of unobserved screening sched-

ules, the screening tests are modelled as an unobserved non-homogeneous Poisson

process Nscr, with intensity hscr that depends on age and calendar time. The model

for the observed data is an average over the unobserved onset time (S), the screening

process (Nscr), and the mode of diagnosis (SDx vs. CDx). This set of unobserved

2



random variables and stochastic processes constitutes a complex shared “frailty” ob-

ject that explains the dependence between the competing risks of diagnosis. Intensity

of screening and the hazard driving prostate cancer progression are estimated jointly

and semiparametrically using the NPMLE method based on the joint model. Asymp-

totic and finite sample properties of the proposed estimators are studied analytically

and by simulations. An application using data from the European cancer registry

EUREG is presented.

In the third chapter, we develop a semiparametric joint model of cancer progres-

sion to clinical and screening diagnosis based on screening trials data with a mixture

of known PSA test schedules per protocol and random unknown schedules before and

after implementation of the protocol as well as in the control arm. We analyze the

subject-specific incidence data for both control and screening arms from PLCO. Pa-

tients in the control arm were screened following population patterns while those in

the screening arm were recruited and screened for 6 years according to a specific sched-

ule. The model is formulated under the premise of unobserved screening schedules

(population patterns) for subjects in the control arm and subjects in the screening

arm when they are off trials, with specific screening schedules N sc
scr following protocols

during trials. The population screening patterns are modeled as an unobserved non-

homogeneous Poisson process N c
scr, with intensity hscr that depends on age following

the longitudinal study. For both arms, subjects are assumed to be screened with

the same intensity as the population hscr before they enter trials due to randomiza-

tion. For subjects in the control arm during the trial, the intensity may change if

recruitment into the trial has an effect on subjects’ screening patterns (Gulati et al.,

2012; Pinsky et al., 2010) and the intervention effect persists after subjects exiting

the trial. Hence we set the intensity as r1hscr with the risk ratio r1. For subjects

in the screening arm during the trial, the test schedules are discrete and fixed and

they return to random after exiting the trial with the intensity r2hscr, where the risk

3



ratio r2 models the difference v.s. the population intensity. The screening risk ratio

r3 models the difference in screening utilizations between screening arm and control

arm after the trial. In addition, we incorporate incidence data from SEER with con-

trol arm in the absence of screening and intervention arm with screening intensity as

r4hscr. Ad-hoc screening patterns in both arms before recruitment and after existing

the trial, and the hazard driving prostate cancer progression are estimated jointly and

semiparametrically. Hypothesis tests comparing the screening intensities between the

arms and periods using the risk ratios are performed to validate if the contamination

exists. Applications using incidence data from PLCO and SEER are demonstrated.

In the fourth chapter, we derive the mean lead tim (MLT)s to link cancer mortality

to cancer incidence and screening efficacy. The lead time is the amount of time to

cancer diagnosis advanced due to screening, which is a counterfactual concept. We

use a two-step approach to formally test whether screening efficacy differs between

trials with mean lead time. First, the mean lead time is estimated in each trial arm as

a proxy for the intensity of screening. We estimate the MLTs empirically, without any

model assumptions about cancer progression and diagnosis. The empirical approach

estimated the MLTs by calculating the differences between survival curves for time

from randomization to diagnosis in each trial arm relative to an assumed baseline level.

Additionally, one analytic model (UMICH) and two simulation models (FHCRC and

MISCAn) estimated distributions of age at onset of latent disease and diagnosis in

the absence and presence of screening. The fitted model then estimated MLTs as

in the empirical approach but using projected instead of observed incidence data.

Second, the association is quantified between the mean lead time and prostate cancer

mortality and tested whether it differs between trials while accounting for differences

in screening and diagnosis between arms. We analyze the individual-level data from

PLCO jointly with SEER US population data to prove the benefits of screening in

terms of reducing the risk of prostate cancer death.

4



CHAPTER II

A Joint Model of Cancer Incidence and Screening

2.1 Introduction

Prostate cancer is the most common cancer in men presenting a significant public

health problem. Since the introduction of prostate specific antigen (PSA) screening

the incidence rates of newly diagnosed prostate cancers have seen a dramatic increase

in Europe (Figure 2.1) that followed country-specific PSA utilization uptake. Shortly

after, cancer mortality showed a decline (Schroder et al., 2009, 2012, 2014). To study

cancer incidence patterns induced by screening Tsodikov et al. (2006) developed a

parametric model of prostate cancer in the US population, relying on PSA utilization

patterns obtained from external studies. Except for fragmentary studies, no direct

data exist on the PSA uptake in the European countries. Because PSA utilization

in a population is a strong factor potentially confounding the results of survival and

screening trials (Lee and Tsodikov, 2013; Gulati et al., 2012), its estimation is an

important problem. In this chapter we propose a model that allows us to estimate

screening utilization indirectly from cancer incidence data.

The screening utilization patterns observed in the USA using claims and survey

data (Mariotto et al., 2007) have been heterogeneous and showed nontrivial dynamics,

which makes their parametric specification for a different population quite challenging

if not impossible. Also, parametric assumptions related to latent processes are difficult

5
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Figure 2.1: Averaged prostate cancer incidence of key countries enrolled in the European Randomized
Study of Screening for Prostate Cancer (ERSPC), Finland, Italy, Spain, Belgium, Netherlands,
Sweden, Switzerland. Data from the European Cancer Registry (EUREG).

to verify for lack of direct information in the observed data. Therefore, we set on

developing a model where the basic dynamic patterns of disease progression and

screening in the population are specified nonparametrically to avoid bias and be

flexible enough to reproduce nontrivial relationships.

The classical model of cancer natural history describes irreversible transitions

through three consecutive stages: disease-free stage, pre-clinical stage (asymptomatic)

and clinical stage (symptomatic) (Zelen and Feinleib, 1969). The preclinical period in

the absence of screening is called the sojourn time, while the clinical period is survival

post-diagnosis. The end of the disease-free stage is marked by the unobserved event

of tumor onset at the age of S. The end of the preclinical stage is marked by the event

of diagnosis. Cancer incidence in the subject is a result of risk competition of two

modes (causes) of diagnosis, one due to symptoms of the disease (clinical diagnosis,

CDx), and one due to the screening process (screening diagnosis, SDx). The risks are

dependent as neither of them exists before the unobserved shared tumor onset event,

denoted by a shared frailty term A.
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In this chapter, a joint model is formulated that treats both risks semiparamet-

rically on two time scales, age t and calendar time (year) y. Because the model is

developed under the premise of unobserved screening schedules, the screening tests

are modelled as an unobserved non-homogeneous Poisson process Nscr, with intensity

hscr that depends on age and calendar time. The model for the observed data is an

average over the unobserved onset time (S), the screening process (Nscr), the shared

frailty term A and the mode of diagnosis (SDx vs. CDx). This set of unobserved ran-

dom variables and stochastic processes constitutes a complex shared “frailty” object

that explains the dependence between the competing risks of diagnosis.

In Section 2 we define the model and derive its essential distributional characteris-

tics. In Section 3 we derive the likelihood function and the nonparametric maximum

likelihood estimators using an iterative reweighting algorithm (Chen, 2009), and study

its asymptotic properties. We apply the method to cancer registry data in Section

4, and perform a simulation study of the properties of estimators in finite samples.

Finally, we discuss the results in Section 5.

2.2 Statistical Framework

2.2.1 The natural history model without screening

To specify the model in the absence of screening we follow Rice and Tsodikov

(2016) who introduced a semi-parametric joint model of time to terminal event af-

fected by a latent progression event. The idea is similar to the parametric model by

Dejardin et al. (2010). We identify the latent event with tumor onset at the age of

S, and the terminal event with diagnosis at the age of T . By definition, the latent

event must precede the terminal one: S ≤ T . The hazard rate associated with the

r.v. T , dΛ(t|x) = λ(t|x)dt, where t is age at diagnosis (CDx), Λ is the cumulative

hazard, λ is its instantaneous counterpart, and x is the birth year (x = y− t), defines

7



cancer incidence on both time scales (t, y). The time to the latent onset event S

follows the Cox model dΛ0(t|Ztx), given covariates Ztx, with predictor θ(Ztx), and

the baseline cumulative hazard H0(t). The terminal event (CDx) follows the Cox

model dΛ1(t|Ztx, S) with predictor η(Ztx) and the baseline cumulative hazard H1(t),

constrained to show zero risk before the latent event by means of a multiplicative

indicator process I(t ≥ S) that depends on the latent r.v. S.

dΛ0(t|Ztx) = lim
ε→0

Pr(S ∈ [t, t+ ε]|S ≥ t, Ztx)

ε
= θ(Ztx)dH0(t), (2.1)

dΛ1(t|Ztx, S) = lim
ε→0

Pr(T ∈ [t, t+ ε]|T ≥ t, S, Ztx)

ε
= I(t ≥ S)η(Ztx)dH1(t). (2.2)

Here I is an indicator function such that I(t ≥ s) = 1 if t ≥ s, and zero otherwise. The

relative relationship between θ and η governs the duration of the sojourn time. Expo-

nential parameterization of predictors using regression coefficients β =
(
β0,β

′
η,β

′
θ

)′
gives η = η(β;Ztx) = eβ0+Z′txβη and θ = θ(β;Ztx) = eZ

′
txβθ . In the sequel we may

suppress some of the arguments for brevity, for example writing η(t) for η(β;Ztx).

Generally, when the conditional hazard function for a survival time T is a stochas-

tic process λ(t), then the marginal survival function G(t) = E[e−
∫ t
0 λ(ξ)dξ], where the

expectation is taken over the random trajectory λ̄(t) of the process λ from 0 to t.

Here and in the sequel the notation F̄t will indicate the trajectory of a function F

on [0, t] as opposed to a single value F (t) at the point t. Extending the formulation

of Rice and Tsodikov (2016) to time-dependent predictors, we obtain the marginal

diagnosis-free survival function in the form (see more derivation in Appendix A.1)

Gd(t|Z̄tx) = E
[
e−

∫ t
0 dΛ1(ξ|Zξx,S)

]
= e−

∫ t
0 θ(ξ)dH0(ξ) +

∫ t

0

e−
∫ t
s η(ξ)dH1(ξ)−

∫ s
0 θ(ξ)dH0(ξ)θ(s)dH0(s).

(2.3)

The first term in the above expression is the probability of no onset before t. The

8



integral of the second term averages the probability of no diagnosis during the sojourn

time [s, t] over the pdf of onset at time s.

2.2.2 The joint model with screening

The screening schedule in the subject is summarized by the [0, t]-trajectory N̄scr(t|x)

of the counting process Nscr(t|x) that counts the number of screens performed on the

subject before the age of t. The dependence on the birth cohort x is needed to ac-

count for variable utilization of screening over calendar time and age. Let α(t|x) be

the sensitivity of a screening test, that is the probability of cancer detection by a

screening test performed at age t, given that cancer is detectable (t > S). Given

a subject’s screening schedule at times τi, the the potential time to SDx survival

function becomes

GSDx(t|Z̄tx, S, N̄scr(t|x)) =
∏

i:S<τi≤t

(1− α(τi|x))

= exp

[∫ t

0

I(ξ ≥ S) log(1− α(ξ|x))dNscr(ξ|x)

]
.

(2.4)

We introduce the shared frailty term A to explain the dependence between the

two modes of diagnosis in the same subject. The corresponding conditional hazard

functions given tumor onset in terms of two modes of diagnosis are:

Time to CDx : dΛ1(t|Ztx, S, A) = AI(t ≥ S)η(Ztx)dH1(t),

Time to SDx : dΛ2(t|Ztx, S, A,Nscr) = −AI(t ≥ S) log(1− α(t|x))dNscr(t|x).

(2.5)

Assuming that screen counts follow a nonhomogeneous Poisson process with intensity

hscr(ξ|x), we have Nscr(t|x) ∼ Poisson
(∫ t

0
hscr(ξ|x)dξ

)
. Using the Laplace functional

9



of a Poisson process with intensity hscr (Serfozo (2009); Shiryaev (1960))

L(ϕ) = E
{
e−

∫ t
0 ϕ(x)dNscr(t)

}
= exp

{
−
∫ t

0

(1− e−ϕ(ξ))dHscr(ξ)

}
, (2.6)

for any integrable functional argument ϕ. We obtain the marginal survival function

incorporating risks of screening and clinical diagnosis as the expectation over the dis-

tribution of latent event time S, frailty termA and screening patternNscr. Let Λ0(t) =∫ t
0
θ(Zξx)dH0(ξ), Λ̃s,t =

∫ t
0
I(ξ ≥ s)

[
η(Zξx)dH1(ξ) + α(ξ|x)dHscr(ξ|x)

]
,L(k)(A) be

the kth derivative of the Laplace transform of A. Then we have

Gd(t|Z̄tx) = ES,A,Nscr
[
e−

∫ t
0(dΛ1(ξ|Zξx,S,A)+dΛ2(ξ|Zξx,S,A,Nscr))

]
= e−Λ0(t) +

∫ t

0

L(0)(Λ̃s,t)e
−Λ0(s)dΛ0(s).

(2.7)

Note that the above expression depends on the screening pattern only through the

product α(ξ|x)dHscr(ξ|x), so that the screening sensitivity is not identifiable jointly

with the screening intensity. From now on we will therefore assume that Hscr absorbs

α.

From (2.7) we have the marginal hazard function (see more derivation in Appendix

A.1)

dΛ(t|Z̄tx) = −dGd(t|Z̄tx)
Gd(t|Z̄tx)

= Ψ(t|Z̄tx)×
[
η(t)dH1(t) + dHscr(t|x)

]
, (2.8)

where

Ψ(t|Z̄tx) =
−
∫ t

0
L(1)(Λ̃s,t)e

−Λ0(s)dΛ0(s)

e−Λ0(t) +
∫ t

0
L(0)(Λ̃s,t)e−Λ0(s)dΛ0(s)

, (2.9)

and θ(t) = eZ
′
txβθ , η(t) = eβ0+Z′txβη . The function Ψ summarizes the dependence be-

tween times to the two potential points of diagnosis (SDx and CDx), and a departure

from additive independent risks expressed by the multiplier to the Ψ in (2.8).
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2.2.3 Censoring Mechanism

In our model, there are latent (tumor onset) and terminal (cancer diagnosis)

events. The time to the latent event S is never observed. By definition above, the

latent event must precede the terminal one: S ≤ T . There is a censoring time Tc

that is independent of S and T , given covariates Z. We observe (T ∗,∆, Z), where

T ∗ = min(T, Tc) and ∆ = I(T ∗ = T ). When ∆ = 1, we have S ≤ T ≤ Tc; otherwise

when ∆ = 0, then either Tc ≤ S or S ≤ Tc ≤ T . Thus under the censoring mechanism

we are unable to tell from observed data whether or not the latent event has occurred.

2.3 Estimation

2.3.1 Likelihood

Given the maximum follow up time υ, we write the log-likelihood as

` =
∑
x

∫ υ

0

∑
i∈R(t|x)

log
(
dΛ(t|Z̄txi)

)
dN(t|Z̄txi)− dΛ(t|Z̄txi), (2.10)

where R(t|x) is the set of subjects at risk for diagnosis of x-birth cohort at age t,

and dN(t|Z̄txi) is the indicator that subject i from the same risk set was diagnosed at

t. The above likelihood recognizes the life-table-type cross-sectional data structure

resulting from observations of a population at risk of the disease along with the counts

of diagnosis coming from the population, over a period of time. The probability for

a subject at risk to get a diagnosis over the next small period of time dt is dΛ, which

makes the first term of the conditional likelihood. The second term is a log of the

probability to survive without diagnosis for such subject, log(1− dΛ) = −dΛ, where

the differentials are understood as first order terms with respect to dt.

With the appropriate filtration Ft−, for the subject i ∈ R(t|x), we construct the
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orthogonal martingale (at the true model):

dM(t|Z̄txi) = dN(t|Z̄txi)− dΛ(t|Z̄txi), E
[
dN(t|Z̄txi)

∣∣Ft−] = dΛ(t|Z̄txi).

2.3.2 Nonparametric Maximum Likelihood Estimation

2.3.2.1 Functional derivative

Denote the functional derivatives of Ψ(t|Z̄tx) from (2.9) w.r.t. dH(τ) (dH0, dH1)

and dHscr(τ |x) as

ΨdH(τ)(t|Z̄tx) =
∂Ψ(t|Z̄tx)
∂dH(τ)

, (2.11)

ΨdHscr(τ |x)(t|Z̄tx) =
∂Ψ(t|Z̄tx)
∂dHscr(τ |x)

, (2.12)

respectively, where the functional derivatives are defined as follows. For a functional

J(f), f = f(u), the functional derivatives in (2.11) and (2.12) are defined as

∂J(f)

∂df(s)
=
∂J(f + εg)

∂ε

∣∣∣∣
ε=0,g=I(u>s)

(see Hu and Tsodikov, 2014a, Section 3.2) and correspond to taking the derivative

with respect to a ”jump” of f at time t, where f can be discrete or continuous. For

a linear functional of the form J(f) =
∫ t

0
ϕ(u) df(u), the functional derivative is

∂J

∂df(s)
=

∫ t

0

ϕ(u) d
∂(f + εg)

∂ε

∣∣∣∣∣
ε=0,g=I(u>s)

=

∫ t

0

ϕ(u) dI(u > s) = ϕ(s)I(t ≥ s).

Using this definition, we have

(i) ∂H(t)
∂dH(s)

= ∂Hscr(t|x)
∂dHscr(s|x)

= I(t ≥ s),

(ii) ∂ log dH(t)
∂dH(s)

= 1
dH(t)

∂dH(t)
∂dH(s)

= 1
dH(t)

dI(t ≥ s),
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(iii) ∂ log dHscr(t|x)
∂dHscr(s|x)

= 1
dHscr(t|x)

∂dHscr(t|x)
∂dHscr(s|x)

= 1
dHscr(t|x)

dI(t ≥ s).

2.3.2.2 Score equations and asymptotic properties

Let β = (βθ,βη,βφ) be the parameters with onset, clinical diagnosis, and frailty

parts of the model, respectively. Given the maximum follow-up time υ, differentiate

the log-likelihood we arrive at the following score equations for dH0(τ), dH1(τ), dHscr(τ |x)

and β (See Appendix A.2 for details).

UdH0(τ) =
∑
x

∫ υ

τ

∑
i∈R(t|x)

∂ log dΛ(t|Z̄txi)
∂dH0(τ)

dM(t|Z̄txi), (2.13)

UdH1(τ) =
∑
x

∑
i∈R(τ |x)

ηi(τ)dN(τ |Z̄τxi)
ηi(τ)dH1(τ) + dHscr(τ |x)

−
∑

i∈R(τ |x)

Ψ(τ |Z̄τxi)ηi(τ)wdH1(τ),

(2.14)

where τ ∈ (0, t] and

wdH1(τ) = 1−

∫ υ
τ

∑
i∈R(t|x)

ΨdH(τ)(t|Z̄txi)
Ψ(t|Z̄txi)

dM(t|Z̄txi)∑
i∈R(τ |x) Ψ(τ |Z̄τxi)ηi(τ)

, ηi(τ) = η(τ |β;Zτxi). (2.15)

For the screening intensity dHscr of x-birth cohort,

UdHscr(τ |x) =
∑

i∈R(τ |x)

dN(τ |Z̄τxi)
ηi(τ)dH(τ) + dHscr(τ |x)

−
∑

i∈R(τ |x)

Ψ(τ |Z̄τxi)wdHscr(τ |x), (2.16)

where

wdHscr(τ |x) = 1−

∫ υ
τ

∑
i∈R(t|x)

ΨdHscr(τ |x)(t|Z̄txi)
Ψ(t|Z̄txi)

dM(t|Z̄txi)∑
i∈R(τ |x) Ψ(τ |Z̄τxi)

. (2.17)

The score for β is

Uβ =
∑
x

∫ υ

0

∑
i∈R(t|x)

∂ log dΛ(t|Z̄txi)
∂β

dM(t|Z̄txi). (2.18)
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It can be shown that the score functions for H0, H1, Hscr are martingales at the true

model (see Appendix A.3.1 for details). For the weighted Breslow-type estimators of

dH1 and dHscr, we note that the weights w = (wdH1 , wdHscr) have expectation of 1,

given filtration Ft− . In particular, the martingale estimation equations (EE) solution

can be obtained by setting all weights to 1. The EE approach provides estimators

that are consistent, computationally fast, yet not fully efficient (Hu and Tsodikov,

2014). The efficiency of the NPMLE is due to the fact that optimal weights depend

on martingale residuals utilizing available information in the future of the subject.

We adapt the Weighted Breslow Estimator algorithm (Chen, 2009) to maximize

the likelihood by iteratively updating the weights. Following Rice and Tsodikov

(2016), we impose a proportional hazards (PH) assumption in the example. Let

dH0 = dH1 = dH, meaning that subject shares the same baseline hazard between

tumor onset and cancer detection by symptoms (CDx). With richer population-

level covariates, independent specification of these baseline hazards would perhaps

be a better choice. With the weights treated as known at the inner loop of the

algorithm, a set of recurrent score equations emerges similar to the computationally

efficient martingale estimating equations (Chen et al., 2002) in the EE approach. An

alternative computation method is the EM algorithm of Tsodikov (2003) that requires

substantial theoretical development for the current model. Given initial values for β

and initial weights w(0) as 1, we use Nelson-Aalen estimator as initial values for

dH and dHscr. For iteration count k = 0, 1, ..., we repeat the following steps until

convergence to maximize the likelihood over the two hazards and obtain the profile

likelihood `pr(β):

1. Fix weights w(k) and given (dH(k), dH
(k)
scr), obtain the solution (dH(k+1), dH

(k+1)
scr )

from the score equations for dH and dHscr.

2. Update the weights w(k+1) using (2.15) and (2.17) with (dH(k+1), dH
(k+1)
scr ).
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Maximization of the profile likelihood `pr(β), obtained using the above algorithm,

using general maximization methods such as conjugate gradients, we arrive at the

final MLEs.

Taking derivatives of the score equations w.r.t Ω = (β, dH, dHscr) and plugging

the converged estimators Ω̂, we obtained the observed information matrix J (Ω̂).

J (Ω̂) = −


∂2

∂β∂β′
∂2

∂β∂dH′
∂2

∂β∂dH′scr

∂2

∂dH∂β′
∂2

∂dH∂dH′
∂2

∂dH∂dH′scr

∂2

∂dHscr∂β
′

∂2

∂dHscr∂dH
′

∂2

∂dHscr∂dH
′
scr

 `(Ω)

∣∣∣∣∣∣∣∣∣∣
Ω=Ω̂

. (2.19)

Inverting J (Ω̂) the we can obtain the estimated standard errors of Ω̂ and construct

the confidence bands.

Consistency of the estimators is proved by empirical processes following Zeng and

Lin (2007); Kosorok (2008); Hu and Tsodikov (2014b). Weak convergence is proved

using the martingale structure of the score equations following Chen (2009); Hu and

Tsodikov (2014b). Denote the true value of the set of model parameters Ω by Ω0.

Under regularity conditions, we have the following propositions (see Appendix A.3

for proof):

Theorem II.1. β̂ converges to β0, Ĥ(·) converges to H0(·), Ĥscr(·|x) converges to

H0
scr(·|x) uniformly in probability in the interval [0, υ].

Theorem II.2. n1/2

[(
β̂ − β0

)′
, Ĥ(t)−H0(t), Ĥscr(t|x)−H0

scr(t|x)

]′
converges weakly

to a zero-mean Gaussian process whose covariance function structure is given in Ap-

pendix A.3.
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2.4 Example and Simulation Study

2.4.1 EUREG data analysis

EUREG permits the exploration of geographical patterns and temporal trends

of incidence, mortality and survival observed in European population-based cancer

registries for 35 major cancer entities in about 100 registration areas (EUREG, 2012).

We use the incidence data with cancer cases C and population P corresponding to age

interval [50,89] and calendar year interval [1953-2009] for key countries enrolled in the

European Randomized Study of Screening for Prostate Cancer (ERSPC), Finland,

Italy, Spain, Belgium, Netherlands, Sweden, Switzerland. Incidence of prostate cancer

before the age of 50 is negligibly small.

For the shared frailty A, let A ∼ Γ( 1
φ(Ztx)

, φ(Ztx)), where φ(Ztx) = eZ
′
txβφ that rep-

resents a gamma frailty model, a common choice in survival analysis with dependent

data. Under this specification, from (2.9) we have L(0)(s) = (1 + φs)−
1
φ ,L(1)(s) =

−(1 + φs)−
1
φ
−1,L(2)(s) = (1 + φ)(1 + φs)−

1
φ
−2. In the absence of covariates affecting

the tumor onset event, we set θ = 1 and φ(Ztx) = eβφ . Before the introduction of PSA

screening in the late 80ies, the incidence of prostate cancer had an increasing trend in

calendar time y (Figure 2.1), reportedly partially due to surgical treatment of benign

prostate enlargement (the TURP treatment) (Merrill et al., 1999). To model this

effect, a general linear model is specified for η(β;Ztx) during [1953,1989], saturating

in the year 1989 when the PSA screening test was introduced and the use of TURP

quickly receded,

η(β;Ztx) =


1, y < 1953

eβ1+β2(y−1953), 1953 ≤ y < 1989

eβ1+β2(1989−1953), y ≥ 1989.

(2.20)

With the calendar year y as the only covariate, Z̄txi does not depend on i, given t
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and x. Let P (t|Z̄tx) =
∥∥R(t|x)

∥∥, denote the size of the risk set for cohort x at age

t (population) and let C(t|Z̄tx) =
∑

i∈R(t|x) dNi(t|Z̄txi) be the count of cancer cases.

The score equations become

dH(τ) =
C(t|Z̄τx)

P (τ |Z̄τx)Ψ(τ |Z̄τx)η(τ)wdH(τ)

− dHscr(τ |x)

η(τ)
, (2.21)

dHscr(τ |x) =
C(t|Z̄τx)

P (τ |Z̄τx)Ψ(τ |Z̄τx)wdHscr(τ |x)

− η(τ)dH(τ). (2.22)

Setting β′ = (β1, β2, βφ) = (0.5, 0.5, 0.5) initially, and following the algorithm we

obtain the MLEs β̂, dĤ and dĤscr. Figure 2.2 and Figure 2.3 display the base-

line hazard h driving prostate cancer diagnosis in the absence of screening, and

the screening intensity hscr with the 95% confidence interval for the age 70 group

by year of diagnosis. The wider band for the screening intensity after 2007 is be-

cause of smaller available data for this period. Estimated regression coefficients are

β̂′ = (0.30, 0.20,−0.01), with standard errors SE(β̂′) = (0.009, 0.006, 0.12).

Figure 2.4 and Figure 2.5 display the observed cancer incidence and the predicted

one with PSA screening. Before year 1989, the year trend is modeled through β

parametrically. The prediction in this period is also driven by the nonparametrically

specified H. After 1989, the screening intensity matrix parameter hscr nonparametri-

cally specified by age and calendar time comes into play, and the expected incidence

depends on both age and year semi-parametrically matching the observed incidence.

2.4.2 Simulation study

To assess the finite-sample properties of the parameter obtained by the proposed

methodology, we perform a simulation study. In particular, we verify that the vari-

ance of modeled parameters can be obtained using the observed information matrix

J with reasonable accuracy. The simulation is conditional on population counts
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Figure 2.2: Baseline hazard of disease driving diagnosis dH with 95%CI

sampling cancer incidence from the population at risk using Bernoulli trials with

probability dΛ. For each dataset k we obtain the NPMLE estimators Ω̂(k) and the

observed information matrix J (k), k = 1, 2, ..., n. For large n, 1
n−1

∑n
k=1(Ω̂(k)− Ω̄)2 ≈

1
n

∑n
k=1 diag

[
(J (k))−1

]
. Table 1 and Table 2 present the simulation results in terms

of β, dH and dHscr, based on 200 replicates.

We note that β̂φ that describes the frailty term is characterized by much higher

variance than the rest of β, which is generally typical of parameters characterizing

latent model quantities. Same is true regarding the baseline hazard of disease driving

diagnosis dH vs. the intensity of PSA screening dHscr, given that PSA schedules are

not observed in the dataset. The PH assumption linking dH1 and dH0 into a common

dH allowed for the information from observed diagnoses to bear on the latent hazard

of tumor onset. Regarding bias, again we see manifestation of the same effect with

parameters in the latent parts of the model showing larger finite sample bias.
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Table 2.1: Simulation results: Frailty and year trend before screening β and hazard of disease driving
diagnosis dH by age.

Parameters True Bias ESE ASE
β
β1 0.22 0.01 0.009 0.01
β2 0.19 0.00 0.006 0.004
βφ -0.01 0.04 0.12 0.13
dH
55 0.00278 0.00001 9.1× 10−5 9.7× 10−5

60 0.00390 0.00003 9.4× 10−5 1.3× 10−4

65 0.00506 0.00004 9.4× 10−4 1.1× 10−4

70 0.00631 0.00005 9.7× 10−4 9.7× 10−5

75 0.00705 0.00005 1.1× 10−4 1.0× 10−4

80 0.00724 0.00005 1.3× 10−4 1.2× 10−4

85 0.00657 0.00003 1.5× 10−4 1.4× 10−4

ESE: Empirical Standard Errors; ASE:Aysmptotic Standard Errors

Table 2.2: Simulation results: Screening intensity by calendar time dHscr for age=70.

Year True Bias ESE ASE
1995 0.0032 0.0001 0.00067 0.00060
1999 0.0058 0.0007 0.00065 0.00061
2005 0.0123 0.0020 0.00068 0.00062
2009 0.0095 0.0023 0.00492 0.00451

ESE: Empirical Standard Errors; ASE:Aysmptotic Standard Errors
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Figure 2.3: Screening intensity dHscr for age 70 with 95%CI

2.5 DISCUSSION

The model we proposed provides a quantitative link between dissemination of

cancer control processes with unknown schedules and their impact on population

and public health measures of cancer incidence. We quantify the relationships that

underlie recent trends in prostate cancer incidence in terms of model parameters

(β, dH, dHscr) and perform inference on these parameters. The model can estimate

screening intensity in a population jointly with the disease natural history and gener-

ate predictions for prostate cancer incidence under a variety of PSA screening patterns

and for the case of no PSA screening (Hscr = 0).

The parameters in our model are estimated from population databases (cancer

registries) in the most challenging situation when neither screening schedules nor the

mode of diagnosis (screening vs. symptoms) are observed. We incorporate random

PSA schedules into the estimation procedures. The model provides a basis for assess-
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Figure 2.4: Observed prostate cancer incidence of countries enrolled in ERSPC

ing the effects of increased screening utilization on the results of survival and screening

trials. In particular, when trial patients are recruited from the general population,

the model provides guidance on the level of screening occurring in the control arm

(contamination). The methodology of this paper can be extended to estimate con-

tamination of the control arms of screening trials from trial data that are longitudinal

and consist of a mixture of schedules performed per protocol in the screening arm

and random screening occurring in the control arm, before recruitment into the trial,

and after the screening protocol has ended (long term follow-up). The proposed ap-

proach lays the groundwork for model-based joint integrative analysis of population

and trials data in cancer screening, confounded by ad-hoc screening outside of the

control period.

Current approaches to the analysis of screening trials rely on comparisons of mor-

tality between arms. This marginal approach fails to utilize the intermediate infor-
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Figure 2.5: Predicted prostate cancer incidence of countries enrolled in ERSPC

mation available from observations of cancer incidence and is subject to effects of

contamination of the control arm. Extending the proposed incidence model to in-

clude survival post-diagnosis and appropriate effects of early detection on survival is

a promising line of future research that could lead to improved power for the effect

of early detection on mortality resulting from better use of the sample information.

Using the extended model, it might also be possible to resolve the conflicting results

of current screening trials in the USA and Europe by careful adjustment for contami-

nation of the control arm, and allowing for some mortality benefit in the control arm

from ad-hoc screening.

The proposed joint model is quite general as it incorporates the most salient

features common to all cancers. As such, it can be applied to other cancers.
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CHAPTER III

Semiparametric Modeling and Analysis of Cancer

Incidence with Cancer Screening Trials

3.1 Introduction

High-quality randomized controlled trials have been demonstrated essential for

evaluating causal effects of medical interventions such as screening for cancer. How-

ever, trials rarely achieve perfect compliance with no contamination. Recent screen-

ing trials in prostate cancer, the ERSPC in Europe and PLCO in the United States,

showed apparently different results. While ERSPC showed a benefit of screening, al-

beit mostly driven by the results from one center, the PLCO trial was non-conclusive

at face value. Prostate cancer incidence in the US was considerably higher than

in Europe before the introduction of screening, likely reflecting earlier adoption of

PSA test diagnosis. The PLCO used shorter screening intervals, had a higher PSA

threshold for biopsy referral and stopped regular screening after 6 rounds. The US

practice setting also contributed to a lower frequency of receipt of biopsy and higher

frequency of routine screening in the control arm compared with the ERSPC. Conse-

quently, comparison of intervention and control arms in the PLCO reflects effects of

an organized screening program relative to opportunistic screening rather than effects

of screening versus no screening. (Berg, 2011; Andriole, 2012)
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In chapter 2 we have built a model that provides a quantitative link between

dissemination of cancer control processes incorporating random PSA test schedules

and cancer incidence. When trial subjects are recruited from the general population,

the model may provide guidance on the level of screening occurring in the control arm

(contamination). In this chapter we aim to develop a model to estimate contamination

of the control arm of screening trials from trial data that are longitudinal and consist

of a mixture of schedules performed per protocol in the screening (intervention) arm

and random screening occurring in the control arm, before recruitment into the trial,

and after the screening protocol has ended (long term follow-up).

Our proposed approach performs model-based joint integrative analysis of popu-

lation and trials data in cancer screening. The model is developed under the premise

of unobserved screening schedules (population patterns) for subjects in the control

arm and subjects in the screening arm when they are off trials, with specific screening

schedules N sc
scr following protocols during trials. The population screening patterns

are modeled as an unobserved non-homogeneous Poisson process N c
scr, with intensity

hscr that depends on age following the longitudinal study. For both arms, subjects

are assumed to be screened with the same intensity as the population hscr before they

enter trials due to randomization. For subjects in the control arm during the trial, the

intensity may change if recruitment into the trial has an effect on subjects’ screening

patterns (Gulati et al., 2012; Pinsky et al., 2010) and the intervention effect persists

after subjects exiting the trial. Hence we set the intensity as r1hscr with the risk ratio

r1. For subjects in the screening arm during the trial, the test schedules are discrete

and fixed and they return to random after exiting the trial with the intensity r2hscr,

where the risk ratio r2 models the difference v.s. the population intensity (see Fig-

ure 3.1 for illustration). The screening risk ratio r3 models the difference in screening
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utilizations between screening arm and control arm after the trial. We have:

r3 =
r2hscr
r1hscr

=
r2

r1

(3.1)

The model for the observed data is an average over the unobserved onset time (S),

the screening process (N c
scr), and the mode of diagnosis (SDx vs. CDx), where the

schedules and mode of diagnosis are unknown.

PopulationPopulation

Control arm Entry Exit
hscr r1hscr r1hscr

Screening arm Entry Exit
hscr Fixed schedule r2hscr

Figure 3.1: An illustration of screening risk (intensity) in different intervals for screening arm and
control arm.

In Section 2 we define the joint models with screening for both control and screen-

ing arms and derive their essential distributional characteristics. In Section 3 we

derive the likelihood function with marked endpoint of diagnosis (SDx or CDx) and

the nonparametric maximum likelihood estimators using the iterative reweighting al-

gorithm (Chen, 2009). We apply the method to PLCO trial data in Section 4. Finally,

we discuss the results in Section 5.

3.2 Statistical Framework

3.2.1 Joint model with screening for the control arm

For control arm, subjects are screened following population pattern of random

schedules with intensity hscr before entering the trial. To specify the joint model

during the trial we follow the semi-parametric joint model of time to terminal event

affected by a latent progression event by Rice and Tsodikov (2016). Similarly, we
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identify the latent event with tumor onset at the age of S, and the terminal event

with diagnosis at the age of T and S ≤ T . The hazard rate associated with the r.v.

T , dΛ(t) = λ(t)dt, where t is age at diagnosis (CDx), Λ is the cumulative hazard, λ is

its instantaneous counterpart. We assume that population screening pattern behind

periods of unobserved screening schedules is stationary (no trend in calender time)

because the trial falls on a relatively short and stable period in calender time. The

time to the latent onset event S follows the Cox model dΛ0(t|Zt), given covariates Zt,

with predictor θ(Zt), and the baseline cumulative hazard H(t). The terminal event

in the absence of screening (CDx) follows the Cox model dΛ1(t|Zt, S) with predictor

η(Zt) and same baseline cumulative hazard H(t), and constrained to show zero risk

before the latent event by means of a multiplicative indicator process I(t ≥ S) that

depends on the latent r.v. S.

dΛ0(t|Zt) = lim
ε→0

Pr(S ∈ [t, t+ ε]|S ≥ t, Zt)

ε
= θ(Zt)dH(t), (3.2)

dΛ1(t|Zt, S) = lim
ε→0

Pr(T ∈ [t, t+ ε]|T ≥ t, S, Zt)

ε
= I(t ≥ S)η(Zt)dH(t). (3.3)

The relative relationship between θ and η governs the duration of the sojourn time.

Exponential parameterization of predictors using regression coefficients β =
(
β0,β

′
η,β

′
θ

)′
gives η = η(β;Zt) = eβ0+Z′tβη and θ = θ(β;Zt) = eZ

′
tβθ . Still in the sequel we may

suppress some of the arguments for brevity, for example writing η(t) for η(β;Zt).

Let the counting process N c
scr(t) count the number of screen tests performed on the

subject by the age of t, with the screening schedule expressed by the [0, t]-trajectory

N̄ c
scr(t). With the risks of CDx and SDx competing, we assume that CDx and SDx

are independent given covariates Z̄t, tumor onset S and N̄ c
scr(t). Then the conditional

diagnosis-free survival function is

Gd(t|Z̄t, S, N̄ c
scr(t)) = GCDx(t|Z̄t, S)GSDx(t|Z̄t, S, N̄ c

scr(t)),
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where GCDx(t|Z̄t, S) = e−
∫ t
0 I(ξ≥S)η(ξ)dH(ξ) is the potential conditional survival function

for time to CDx in the absence of screening from (3.3). Given a subject’s screening

schedule at times τi, the the potential time to SDx survival function becomes

GSDx(t|Z̄t, S, N̄ c
scr(t)) =

∏
i:S<τi≤t

(1− α(τi))

= exp

[∫ t

0

I(ξ ≥ S) log(1− α(ξ))dN c
scr(ξ)

]
,

(3.4)

where α is the sensitivity of screening. Let Ae and Ax be the ages of entry into and

exit from the trial protocol respectively. Note that the follow-up period starts at

Ae and generally extends beyond Ax. When subjects enter the control arm of the

trial from the population, the screen counts (assumed to follow a non-homogeneous

Poisson process) change their intensity from hscr(ξ) to r1hscr(ξ). We have N c
scr(t) ∼

Poisson
(∫ t

0
r
I(ξ≥Ae)
1 hscr(ξ)dξ

)
. Here r1 is the risk ratio of screening for subjects of

control arm in the trial compared to the population screening intensity. I(ξ ≥ Ae) = 1

if ξ ≥ Ae and I(ξ ≥ Ae) = 0 if ξ < Ae. Using the Laplace functional of a Poisson pro-

cess with intensity (Serfozo (2009); Shiryaev (1960)), we obtain the marginal survival

function incorporating risks of screening and clinical diagnosis as the expectation over

the distribution of latent event time S and screening pattern N c
scr for subjects in the

control arm. Let πc(t|Z̄t) be the averaged probability of no diagnosis at time t. For

subjects in the population before recruitment into the trial,

πc(t|Z̄t) =

∫ t

0

e−
∫ t
s [η(ξ)dH(ξ)+α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s).

During the trial when Ae ≤ t ≤ Ax,

πc(t|Z̄t) =

∫ Ae

0

e−
∫ t
s [η(ξ)dH(ξ)+α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

+

∫ t

Ae

e−
∫ t
s [η(ξ)dH(ξ)+r1α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s).
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The first term in the above expression averages the probability of no diagnosis before

the trial entry, while the second term averages the probability of no diagnosis after

the trial entry. After exiting the trial with the same screening risk, t > Ax,

πc(t|Z̄t) =

∫ Ae

0

e−
∫ t
s [η(ξ)dH(ξ)+α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

+

∫ Ax

Ae

e−
∫ t
s [η(ξ)dH(ξ)+r1α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

+

∫ t

Ax

e−
∫ t
s [η(ξ)dH(ξ)+r1α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s).

The sum of the first and second terms in the above expression averages the prob-

ability of no diagnosis before exiting the trial protocol at the age of Ax, while the

third term averages the probability of no diagnosis during the follow-up after Ax. Let

Gc
d(t) be the marginal survival function of the time to diagnosis T for the control

arm. Elaborating further on the model quantities we have

Gc
d(t|Z̄t) = E

[
GCDx(t|Z̄t, S)GSDx(t|Z̄t, S, N̄ c

scr(t))
]

= e−
∫ t
0 θ(ξ)dH(ξ) + πc(t|Z̄t), (3.5)

and the corresponding hazard function is :

dΛc(t|Z̄t) = −dG
c
d(t|Z̄t)

Gc
d(t|Z̄t)

= Ψc(t|Z̄t)×
[
η(t)dH(t) + r

I(t≥Ae)
1 α(t)dHscr(t)

]
,

Ψc(t|Z̄t) =
{
π∗c (t|Z̄t)−1 + 1

}−1
,

(3.6)
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where

π∗c (t|Z̄t) =



∫ t
0
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+α(ξ)dHscr(ξ)]θ(s)dH(s), t < Ae,∫ Ae

0
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+α(ξ)dHscr(ξ)]θ(s)dH(s)

+
∫ t
Ae
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+r1α(ξ)dHscr(ξ)]θ(s)dH(s), Ae ≤ t ≤ Ax,∫ Ae

0
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+α(ξ)dHscr(ξ)]θ(s)dH(s)

+
∫ Ax
Ae

e−
∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+r1α(ξ)dHscr(ξ)]θ(s)dH(s)

+
∫ t
Ax
e−

∫ t
s [(η(ξ)−θ(ξ)dH(ξ)+r1α(ξ)dHscr(ξ)]θ(s)dH(s), t > Ax.

(3.7)

The function Ψc summarizes the dependence between times to the two potential

points of diagnosis (SDx and CDx), and a departure from additive independent risks

for subjects in the control arm.

3.2.2 Joint model with screening for the screening arm

In terms of the screening arm, subjects were recruited from the population into

a specific screening schedule N sc
scr. While the detection mode (CDx or SDx) in the

control arm is unknown, in the screening arm the detection mode is available during

the trial protocol period [Ae, Ax] until loss of follow-up. Let Iscr be the indicator of

diagnosis by screening,

Iscr =

1, screening diagnois,

0, clinical diagnosis.

It is natural to assume that subjects in all arms share the same disease natural

history model (in particular, the same hazard function (3.3)). For the screening arm

before Ae and after Ax (period off trial), the intensities of screening are hscr and

r2hscr, respectively. When r1 = 1 and r2 = 1, subjects in all arms, outside of the

period of screening per protocol in the screening arm, have the same intensity as the
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population they were recruited from.

Let πsc(t|Z̄t) be the averaged probability of no diagnosis at time t for subjects in

the screening arm. Before recruitment, t < Ae,

πsc(t|Z̄t) =

∫ t

0

e−
∫ t
s [η(ξ)dH(ξ)+α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s).

During the period of screening per protocol, when Ae ≤ t ≤ Ax,

πsc(t|Z̄t) =

∫ Ae

0

e−
∫ t
s [η(ξ)dH(ξ)+α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

+

∫ t

Ae

e−
∫ t
s [η(ξ)dH(ξ)−log(ᾱ(ξ))dNsc

scr(ξ)]−
∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s).

In subsequent follow-up when t > Ax,

πsc(t|Z̄t) =

∫ Ae

0

e−
∫ t
s [η(ξ)dH(ξ)+α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

+

∫ Ax

Ae

e−
∫ t
s [η(ξ)dH(ξ)−log(ᾱ(ξ))dNsc

scr(ξ)]−
∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

+

∫ t

Ax

e−
∫ t
s [η(ξ)dH(ξ)+r2α(ξ)dHscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s).

Let Gsc
d (t) be the marginal survival function of the time to diagnosis T for the

screening arm, and f(t, Iscr = k), k = 0, 1 be the two sub-distribution (crude) proba-

bility density functions (pdf) by mode of diagnosis. Elaborating further on the model

quantities (see Appendix B), we have

Gsc
d (t|Z̄t) = E

[
Gsc
d (t|Z̄t, S, N̄ sc

scr(t), N̄
c
scr(t))

]
= e−

∫ t
0 θ(ξ)dH(ξ) + πsc(t|Z̄t),

f(t, Iscr = 0|Zt) = πsc(t|Z̄t)η(t)dH(t),

f(t, Iscr = 1|Zt) = πsc(t|Z̄t)dΛSDx(t),

(3.8)

30



where

dΛSDx(t) =


α(t)dHscr(t), t < Ae

− log(ᾱ(t))dN sc
scr(t), Ae ≤ t ≤ Ax

r2α(t)dHscr(t), t > Ax.

The corresponding mode-specific hazards are

dΛ0(t|Zt) =
f(t, Iscr = 0|Zt)

Gsc
d (t|Zt)

= Ψsc(t|Z̄t)η(t)dH(t),

dΛ1(t|Zt) =
f(t, Iscr = 1|Zt)

Gsc
d (t|Zt)

= Ψsc(t|Z̄t)dΛSDx(t),

(3.9)

where

Ψsc(t|Z̄t) =
{[
π∗sc(t|Z̄t)

]−1
+ 1
}−1

, (3.10)

π∗sc(t|Z̄t) =



∫ t
0
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+α(ξ)dHscr(ξ)]θ(s)dH(s), t < Ae,∫ Ae

0
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+α(ξ)dHscr(ξ)]θ(s)dH(s)

+
∫ t
Ae
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)−log(ᾱ(ξ))dNsc

scr(ξ)]θ(s)dH(s), Ae ≤ t ≤ Ax,∫ Ae
0
e−

∫ t
s [(η(ξ)−θ(ξ))dH(ξ)+α(ξ)dHscr(ξ)]θ(s)dH(s)

+
∫ Ax
Ae

e−
∫ t
s [(η(ξ)−θ(ξ))dH(ξ)−log(ᾱ(ξ))dNsc

scr(ξ)]θ(s)dH(s)

+
∫ t
Ax
e−

∫ t
s [(η(ξ)−θ(ξ)dH(ξ)+r2α(ξ)dHscr(ξ)]θ(s)dH(s), t > Ax.

(3.11)
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3.3 Estimation and Hypothesis Testing

3.3.1 Likelihood

The joint log-likelihood function for both control and screening arm is

` = `c + `sc

=

∫ υ

0

∑
j∈Rc(t)

log(dΛc(t|Ztj))dN c(t|Ztj)− dΛc(t|Ztj)

+

∫ υ

0

∑
i∈Rsc(t)

1∑
Iscr=0

{
log dΛIscr(t|Zti)dN Iscr(t|Zti)− dΛIscr(t|Zti)

} (3.12)

where υ is the maximum follow up time, R(t) is the risk set at time t specific to

the arm (c for control, sc for screening), dN(t|Ztj) is the counting process of cancer

diagnosis for subject j. For the screening arm, we adapt the likelihood with marked

endpoint (T, Iscr) from Hu and Tsodikov (2014b). In screening arm, for subject i in

the risk set Rsc(t) at time t, dΛ0(t|Zti) = f(t,Iscr=0|Zti)
Gscd (t|Zti) is the crude hazard of clinical

diagnosis; and dN0(t|Zti) is the counting process of clinical diagnosis in subject i.

Similarly, dΛ1(t|Zti) = f(t,Iscr=1|Zti)
Gscd (t|Zti) is the crude hazard of screening diagnosis and

dN1(t|Zti) is the counting process of screening diagnosis in subject i. The parameter

set Ω = {β, r1, r2, α,H,Hscr} enters the likelihood through θ, η,Ψc,Ψsc, with observed

data {Rc,Rsc, Iscr, Ae, Ax, N,N
sc
scr}.

With the appropriate filtration Ft− for subject i ∈ Rc(t) or Rsc(t), we construct

the orthogonal martingale at the true model:

dM c(t|Zti) = dN c(t|Zti)− dΛc(t|Zti), E
[
dN c(t|Zti)

∣∣Ft−] = dΛc(t|Zti),

dM Iscr(t|Zti) = dN Iscr(t|Zti)− dΛIscr(t|Zti),

E
[
dN Iscr(t|Zti)

∣∣∣Ft−] = dΛIscr(t|Zti), Iscr = 0, 1.
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3.3.2 Score equations

Define the partial derivatives of Ψc(t|Z̄t),Ψsc(t|Z̄t) w.r.t dH(τ), dHscr(τ)as

Ψc
dH(τ)(t|Z̄t) =

∂Ψc(t|Z̄t)
∂dH(τ)

,Ψsc
dH(τ)(t|Z̄t) =

∂Ψsc(t|Z̄t)
∂dH(τ)

(3.13)

Ψc
dHscr(τ)(t|Z̄t) =

∂Ψc(t|Z̄t)
∂dHscr(τ)

,Ψsc
dHscr(τ)(t|Z̄t) =

∂Ψsc(t|Z̄t)
∂dHscr(τ)

. (3.14)

respectively. Given the maximum follow-up time υ, differentiating the log-likelihood

we arrive at the following score equations for dH(τ), dHscr(τ) and β, α(τ), r1, r2, where

τ ∈ (0, t] (See Appendix B.2 for details).

UdH(τ) =
∑

j∈Rc(τ)

ηj(τ)dN c(τ |Zτj)
ηj(τ)dH(τ) + r

I(τ≥Aej)
1 α(τ)dHscr(τ)

−
∑

j∈Rc(τ)

Ψc(τ |Z̄τj)ηj(τ)wcdH(τ)

+
∑

i∈Rsc(τ)

∑
Iscr=0

dN Iscr(τ |Zτi)
dH(τ)

−
∑

i∈Rsc(τ)

∑
Iscr=0

Ψsc(τ |Z̄τi)ηi(τ)wscdH(τ),

(3.15)

where

wcdH(τ) = 1−

∫ υ
τ

∑
j∈Rc(t)

Ψc
dH(τ)

(t|Z̄tj)
Ψc(t|Z̄tj)

dM c(t|Z̄tj)∑
j∈Rc(τ) Ψc(τ |Z̄τj)ηj(τ)

,

wscdH(τ) = 1−

∫ υ
τ

∑
i∈Rsc(t)

∑1
Iscr=0

Ψsc
dH(τ)

(t|Z̄ti)
Ψsc(t|Z̄ti)

dM Iscr(t|Z̄ti)∑
i∈Rsc(τ)

∑
Iscr=0 Ψsc(τ |Z̄τi)ηi(τ)

.

(3.16)
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UdHscr(τ) =
∑

j∈Rc(τ)

r
I(τ≥Aej)
1 α(τ)dN c(τ |Zτj)

ηj(τ)dH(τ) + r
I(τ≥Aej)
1 α(τ)dHscr(τ)

−
∑

j∈Rc(τ)

Ψc(τ |Z̄τj)r
I(τ≥Aej)
1 α(τ)wcdHscr(τ)

+
∑

i∈Rsc(τ)

∑
Iscr=1

I(τ < Aei, τ > Axi)dN
Iscr(τ |Zτi)

dHscr(τ)

−
∑

i∈Rsc(τ)

∑
Iscr=1

Ψsc(τ |Z̄τi)
[
I(τ < Aei)α(τ) + I(τ > Axi)r2α(τ)

]
wscdHscr(τ),

(3.17)

where I(τ < Aei, τ > Axi) = 1 if τ < Aei or τ > Axi; 0 otherwise.

wcdHscr(τ) = 1−

∫ υ
τ

∑
i∈Rc(t)

Ψc
dHscr(τ)

(t|Z̄tj)
Ψc(t|Z̄tj)

dM c(t|Z̄tj)∑
j∈Rc(τ) Ψc(τ |Z̄τj)r

I(τ≥Aej)
1 α(τ)

,

wscdHscr(τ) = 1−
∫ υ
τ

∑
i∈R(t)

∑1
Iscr=0

Ψsc
dHscr(τ)

(t|Z̄ti)
Ψsc(t|Zti) dM Iscr(t|Zti)∑

i∈Rsc(τ)

∑
Iscr=1 Ψsc(τ |Z̄τi)

[
I(τ < Aei)α(τ) + I(τ > Axi)r2α(τ)

] .
(3.18)

The scores for β, r1, r2, α(τ) are

Uβ =

∫ υ

0

∑
j∈Rc(t)

∂ log dΛc(t|Z̄tj)
∂β

dM c(t|Ztj) +

∫ υ

0

∑
i∈Rsc(t)

1∑
Iscr=0

∂ log dΛIscr(t|Z̄ti)
∂β

dM Iscr(t|Zti),

(3.19)

Ur1 =

∫ υ

0

∑
j∈Rc(t)

∂ log dΛc(t|Z̄tj)
∂r1

dM c(t|Ztj), (3.20)

34



Ur2 =

∫ υ

0

∑
i∈Rsc(t)

1∑
Iscr=0

∂ log dΛIscr(t|Z̄ti)
∂r2

dM Iscr(t|Zti), (3.21)

Uα(τ) =

∫ υ

τ

∑
j∈Rc(t)

∂ log dΛc(t|Z̄tj)
∂α(τ)

dM c(t|Ztj) +

∫ υ

τ

∑
i∈Rsc(t)

1∑
Iscr=0

∂ log dΛIscr(t|Z̄ti)
∂α(τ)

dM Iscr(t|Zti).

(3.22)

The scores for β, r1, r2, α(τ) are martingales at the true model, same as the score

functions for H,Hscr(see Appendix B for details). We have the weighted Breslow-type

estimators dH and dHscr from the NPMLE, with weights w = (wcdH , w
sc
dH , w

c
dHscr

,

wscdHscr) that have expectation of 1, given filtration Ft− . The optimal weights depend

on martingale residuals evaluated over the future of the subject ensure the efficiency

of the NPMLE. To enhance the robustness of the parameters in our model, we also

include cancer incidence data from the Surveillance, Epidemiology, and End Results

(SEER, 2017) into the estimating procedure. Data before PSA screening began in

the US can be used to estimate the baseline hazard dH in the absence of screening,

treated as another control arm without screening contamination. While data after

screening test was introduced can be used to estimate the screening risk r4hscr in the

population from SEER, treated as another intervention arm. Here r4 denotes the risk

ratio of screening in the population from SEER.

3.3.3 Estimating algorithm and Hypothesis tests

Similar to Chapter 2, we keep adapting the Weighted Breslow Estimator algorithm

(Chen, 2009) to maximize the likelihood by iteratively updating the weights. While

a set of recurrent score equations emerges similar to the computationally efficient

martingale estimating equations (Chen et al., 2002). The weights are treated as

known at the inner loop of the algorithm. For simplicity we assume constant screening
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sensitivity α. Set initial values for Ω = (β, r1, r2, r4, α) and initial weights w(0) as 1,

use Nelson-Aalen estimator as initial values for dH and dHscr. For iteration count

k = 0, 1, ..., we repeat the following steps until convergence to maximize the likelihood

over the two hazards and obtain the profile likelihood `pr(Ω):

1. Fix weights w(k) and given (dH(k), dH
(k)
scr), obtain the solution (dH(k+1), dH

(k+1)
scr )

from the score equations for dH and dHscr.

2. Update the weights w(k+1) using (3.16) and (3.18) with (dH(k+1), dH
(k+1)
scr ).

Maximization of the profile likelihood `pr(Ω) is obtained using the above algorithm.

We arrive at the final MLEs with general maximization methods such as conjugate

gradients applied to `pr. Given the MLEs of our proposed estimators, we construct

the likelihood ratio test (LRT) for our hypotheses.

Hypothesis 1. The recruitment into the trial did not change the ad-hoc screening

patterns, control arm.

H0 : r1 = 1 vs. H1 : r1 6= 1

Hypothesis 2. Being on trial’s protocol did not change ad-hoc screening patterns,

screening arm.

H0 : r2 = 1 vs. H1 : r2 6= 1

Hypothesis 3. No difference in ad-hoc screening patterns between arms.

H0 : r3 = 1(r1 = r2) vs. H1 : r3 6= 1
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Hypothesis 4. All ad-hoc screening patterns in the trial are the same as in the

population.

H0 : r1 = r2 = r3 = 1 vs. H1 : at least one ri 6= 1

Hypothesis 5. Population in SEER have the same screening pattern as the general

one.

H0 : r4 = 1 vs. H1 : r4 6= 1

3.4 Data Analysis Example

3.4.1 PLCO and SEER data analysis

The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial is

a large population-based randomized trial evaluating screening programs for these

cancers. The primary goal of this long-term trial of the National Cancer Institute’s

(NCI) Division of Cancer Prevention (DCP) is to determine the effects of screening

on cancer-related mortality and on secondary endpoints. Ten screening centers lo-

cated across the United States enrolled 76,685 men and 78,216 women, ages 55 to

74, and randomized them to an intervention arm, which received trial screening, or

control arm, which received standard care (can still receive screening test following

the population pattern). Participants included in the intervention arm of the trial

received yearly screening per protocol cancer during their first 6 years of participation

in the trial, and follow-up continued for at least 7 additional years: 39,105 women and

38,340 men were in this part of the trial. In the first 6 years, men received PSA blood

tests. Participants in the control arm were followed for 13 years after enrollment, but

did not receive any planned screening examinations: 38,111 women and 38,345 men
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were in the control arm. Eligibility requirements included age (between 55 and 74

at enrollment), and no previous history of any PLCO cancer (PLCO, 2016). To fit

the model we use the incidence data of both control and screening arms from PLCO

trial, including age at randomization, age at diagnosis, screening schedule and mode

of diagnosis during the protocol phase and follow-up time for both arms.

The Surveillance, Epidemiology, and End Results (SEER) Program of the National

Cancer Institute provides information on cancer statistics in an effort to reduce the

cancer burden among the U.S. population. SEER is supported by the Surveillance

Research Program, which provides national leadership in the science of cancer surveil-

lance as well as analytical tools and methodological expertise in collecting, analyzing,

interpreting, and disseminating reliable population-based statistics (SEER, 2017). We

use cancer incidence data from 9 main cancer registries. The SEER 9 registries are

Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland,

Seattle-Puget Sound, and Utah. Data are available for cases diagnosed from 1973

and later for these registries with the exception of Seattle-Puget Sound and Atlanta.

The Seattle-Puget Sound and Atlanta registries joined the SEER program in 1974

and 1975, respectively. For the control arm, we use cancer incidence data with pop-

ulation by age from 1982-1986, just before PSA screening began in the US. And for

the intervention arm data is from 1991-2001.

Set θ = eZ
′βθ = 1, η = eβ0+Z′βη = eβ0 , and initial values β0 = 0.5, α = 0.9, r1 =

1, r2 = 1, r4 = 1. Following the algorithm we obtain the MLEs η̂, ˆ(α), r̂1, r̂2, r̂3, r̂4,

dĤ, dĤscr. Table 3.1 summarizes the MLEs with 95%CI from the likelihood ratio

tests. The estimated screening sensitivity α̂ = 0.87, that is when a patient is receiv-

ing a screening test, the chance of having positive result is 87%, given tumor onset.

This is consistent with Gulati et al. (2010). r̂1 = 1.04, 95%CI=(0.94,1.14). Within

the trial control arm, the screening intensity is slightly yet not significantly higher

during the trial compared with the population screening pattern, reflecting the oppor-
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tunistic screening pattern (Berg, 2011; Andriole, 2012). r̂2 = 3.04, 95%CI=(2.89,3.19)

indicates that the screening intensity in the screening arm after 6 years is significantly

higher than that in the population, approximately three times higher screening risk

than the population pattern, which reflects the non-compliance and contamination

that were previously described in Gulati et al. (2012). r̂4 = 0.94, 95%CI=(0.92,0.95)

shows that the screening intensity in the population from SEER is slightly lower than

the general population. Table 3.2 summarizes the Hypotheses testing results. The re-

cruitment into the trial did not change the ad-hoc screening patterns for control arm

(Hypothesis 1); while being on trial’s protocol did change ad-hoc screening patterns

for screening arm (Hypothesis 2); there exists significant difference in ad-hoc screen-

ing patterns between arms (Hypothesis 3); ad-hoc screening patterns in the trial are

different from the population (Hypothesis 4); screening risk in the population from

SEER is slightly lower from the general population pattern (Hypothesis 5).

Table 3.1: Maximized likelihood estimators with 95%CI

Parameter µ̂ 95%lower 95%upper
η 1.73 1.71 1.75
α 0.87 0.86 0.88
r1 1.04 0.94 1.14
r2 3.04 2.89 3.19
r4 0.94 0.92 0.95

η: predictor for terminal event; α: screening test sensitivity

Table 3.2: Hypotheses testing results of screening risk ratios

Hypothesis χ2 DF P-value
r1 = 1 0.61 1 0.43
r2 = 1 710.54 1 < 0.0001

r3 = 1(r1 = r2) 245.86 1 < 0.0001
r1 = r2 = r3 554.25 2 < 0.0001
r4 = 1 61.47 1 < 0.0001

DF : degree of freedom; χ2 statistics from Likelihood ratio test

Figure 3.2 displays the incidence comparison between arms and within arms for

PLCO trial. Observed incidence in the screening arm is higher than that in the
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control arm and merge at age 80, showing continued elevated incidence for older

ages with the introduction of PSA testing. If subjects in the screening arm resumed

screening pattern as the population after trial’s 6-year intervention period (r2 = 1),

the incidence would be still higher than the control arm, but lower than observed

incidence in screening arm (null predicted incidence, screening arm, PLCO). While

subjects in the control arm resumed screening pattern as the population after trial’s

follow up period, the incidence is approximately the same as the observed one (null

predicted incidence, control arm, PLCO). In terms of model fit, the observed and

predicted incidence of both arms match well in Figure 3.2. Figure B.1 in Appendix

B is the corresponding Kaplan-Meier curves associated with subjects’ diagnosis-free

survival by age.
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Figure 3.2: Observed incidence and predicted incidence by age for PLCO trial; null incidence with
risk ratio as 1.

Figure 3.3 displays the incidence comparison between arms and within arms of

SEER. Observed incidence in the screening arm is higher than that in the control

arm and converge at age 80, showing continued elevated incidence for older ages with
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the introduction of PSA testing. When subjects in the screening arm follow the

same screening pattern as the population (r4 = 1), the incidence is approximately

the same as the observed one (null predicted incidence, screening arm, SEER). The

observed and predicted incidence of both arms match well in Figure 3.3. Figure B.2

in Appendix B is the corresponding Kaplan-Meier curves associated with subjects’

diagnosis-free survival by age.
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Figure 3.3: Observed incidence and predicted incidence by age for SEER; null incidence with risk
ratio as 1.

3.5 DISCUSSION

The model we formulated provides a quantitative link between screening with a

combination of unknown and random population pattern and specific trial known

schedules and their impact on cancer incidence. We quantify the relationships and

differences in prostate cancer incidence between arms in both PLCO trial and SEER

in terms of model parameters (β, α, r1, r2, r3, r4, dH, dHscr) and perform inference on

these parameters. The model can estimate ad-hoc screening intensity (contamination)
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jointly with the disease natural history, given specific screening schedules for cancer

screening trials during the protocol phase, and perform hypotheses tests of screening

intensities between and within intervention and control arms.

The model can assess the effects of screening intended utilization and unintended

contamination on the results of survival and screening trials. In particular, when trial

patients are recruited from the general population, the model evaluates the level of

screening occurring in the control arm and after the protocol phase in the screening

arm (contamination) using trial data that are longitudinal follow-up and consist of

a mixture of periods of known and unknown schedules. The proposed approach can

easily be extend to perform model-based joint integrative analysis of population and

trials data in cancer screening settings.

Current marginal approaches to the analysis of screening trials rely on compar-

isons of mortality between arms but fail to utilize the information available from

observations of cancer incidence. Mostly importantly, they fail to adjust for unin-

tended screening contamination. The proposed joint model gives the foundation for

the analysis of mortality and the effects of early detection on survival, adjusted for

contamination. With the extended models, it might be possible to resolve the conflict-

ing results of current screening trials in the USA and Europe by careful adjustment

for contamination of the control arm, and allowing for some mortality benefit in the

control arm from ad-hoc screening.
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CHAPTER IV

Marginal Analysis of Cancer Screening Effect on

Mortality Adjusting for Screening Contamination

4.1 Introduction

More than two decades after prostate-specific antigen (PSA) screening for prostate

cancer entered clinical practice, the US Preventive Services Task Force (USPSTF)

determined there was very low probability of preventing a death from prostate cancer

in the long term and recommended against routine use of the test (Moyer and Force,

2012). Since then, PSA screening rates and prostate cancer incidence rates in the

United States have declined significantly (Jemal et al., 2015, 2016).

The USPSTF recommendation relied heavily on results from the European Ran-

domized Study of Screening for Prostate Cancer (ERSPC; ISRCTN49127736) and the

Prostate, Lung, Colorectal, and Ovarian cancer screening trial (PLCO; NCT00002540).

However, the trials produced apparently conflicting results, with the ERSPC report-

ing a 21% reduction in prostate cancer mortality (Schroder et al., 2009, 2012, 2014)

and the PLCO finding no mortality difference between the trial arms (Andriole, 2009,

2012). Interpreting results of these trials is complicated by differences in their imple-

mentations, including design and adherence, and practice settings. The PLCO used

shorter screening intervals (annual screening versus every 2-4 years), had a higher
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PSA threshold for biopsy referral (4.0 g/L versus 3.0 g/L in most ERSPC centers

and rounds), and stopped regular screening after 6 rounds. Prostate cancer incidence

in the US was higher than in Europe before the trials started, reflecting different pop-

ulations and clinical diagnosis patterns. The US practice setting also contributed to a

higher frequency of screening in the control arm and a lower frequency of biopsy com-

pared with the ERSPC. Consequently, the PLCO compared effects of an organized

screening program relative to opportunistic screening rather than effects of screening

versus no screening (Berg, 2011; Andriole, 2012; Pinsky et al., 2016). Nonetheless,

the PLCO results have been viewed as more relevant to the US setting.

The perceived inconclusiveness of the trial results about screening efficacy persists

despite studies indicating that differences in their implementation might explain at

least some of the variability in their results. A prior investigation by Gulati et al.

(2012) indicates that the trial results may be more consistent than they appear.

However, these studies did not formally evaluate whether screening efficacy differed

between trials when implementation details such as screening patterns are taken into

account. In this chapter we use a two-step approach to formally test whether screening

efficacy differs between the ERSPC and PLCO using mean lead time as a surrogate of

screening intensity. Lead time is the time by with diagnosis of cancer is advanced due

to screening in patients who would be detected anyway in the absence of screening

tests, can be expressed by TCDx−TSDx where T is the r.v of time to diagnosis (Tsodikov

et al., 2006). First, the mean lead time is estimated in each trial arm as a proxy for

the intensity of screening. Second, the association is quantified between the mean

lead time and prostate cancer mortality and tested whether it differs between trials.

The objectives of this chapter are to (1) formally test whether the effects of screen-

ing on prostate cancer mortality differed between the ERSPC and PLCO after ac-

counting for differences in implementation and practice settings and (2) to estimate

the effects of screening in both trials relative to no screening.In Section 2 we derive
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the mean lead time based on the semiparametic transformation model for screening.

In Section 3 we fit the regression model of cancer mortality with prediction of mean

lead time given trials and SEER data. Finally, we discuss the results in Section 4.

4.2 Methods

This study used individual records from both trials in a collaboration between

trial investigators and the Cancer Intervention and Surveillance Modeling Network

(CISNET) prostate cancer working group. In the intervention arms, these records

included age and year of randomization, enrollment center, dates and results of PSA

tests and rectal exams, whether biopsy was performed, date of cancer diagnosis, and

date and cause of death. In the control arms, the records included age and year

of randomization, enrollment center, date of cancer diagnosis, and date and cause

of death. For consistency with prior publications, ERSPC data included men aged

55-69 years at randomization, while PLCO data included men aged 55-74 years at

randomization.

We first examined a traditional statistical analysis that combined data from both

trials and compared hazards of prostate cancer death in the intervention versus con-

trol arms adjusting for participant age and trial setting. However, this analysis is

questionable due to remaining differences in implementation between trials. To over-

come this limitation, we also examined extended analyses that accounted for variable

screening and diagnostic workup (hereafter screening intensity) in each trial arm,

which we operationalized in terms of mean lead times (MLTs). The MLTs quan-

tify the magnitude of increased prostate cancer incidence relative to a baseline level

expected in the absence of screening, thus capturing differences in both design and

adherence (see below). We estimated the MLTs both empirically and using analytic

or microsimulation models; using multiple approaches allowed us to assess robustness

of results to this uncertain quantity.
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4.2.1 Estimating mean lead times

Lead time is usually defined as the amount of time by which clinical diagnosis (i.e.,

diagnosis without screening) is advanced by screening. In this chapter we define:

LT =

 0, TCDx ≤ TSDx

TCDx − TSDx, TCDx > TSDx.
(4.1)

Here TCDx is the time from randomization to clinical diagnosis and TSDx is the time

from randomization to screen detection. Under complete follow-up (i.e., where all

pre-clinical cases are eventually diagnosed in the no-screening setting), the MLT cor-

responds to the difference in areas under two survival curves for time from random-

ization to diagnosis (mean survival time to diagnosis): one in the absence of screening

minus one in the presence of screening . From (4.1)

MLT = E
[
max(0, TCDx − TSDx)

]
= E(TCDx)− E

[
min(TCDx, TSDx)

]
. (4.2)

Under limited follow-up time Tmax, we can define a restricted version of the MLT

as an analogous difference in areas under survival curves up to a specified time point

(Uno et al., 2014). Restricting to the duration of the trial recognizes that events after

the trial period cannot affect the mortality during the trial. Specifically, the time of

screen detection becomes T
′
SDx = min(Tmax, TSDx),and the time of clinical diagnosis

becomes T
′
CDx = min(Tmax, TCDx). To make estimates between trials comparable,

follow-up was restricted to 11 years. We have the restricted lead time

LT =

 0, T
′
CDx ≤ T

′
SDx

T
′
CDx − T

′
SDx, T

′
CDx > T

′
SDx.

(4.3)
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Correspondingly, the mean restricted lead time

MLT = E
[
max(0, T

′

CDx − T
′

SDx)
]

= E(T
′

CDx)− E
[
min(T

′

CDx, T
′

SDx)
]

=

∫ Tmax

0

GCDx(ξ)−Gd(ξ)dt,

(4.4)

where GCDx is the survival function for time to clinical diagnosis in the absence of

screening and Gd is the survival function for time to diagnosis with screening.

Finally, to standardize the measure across trial arms in this study, we scaled each

estimated MLT by a common baseline probability of (screen or clinical) diagnosis

during follow-up Tmax, making the MLT a conditional average given any mode of

prostate cancer diagnosis during the trial,

MLT =

∫ Tmax

0
GCDx(ξ)−Gd(ξ)dt

1−Gd(Tmax)
. (4.5)

Please not that this version of lead time is only defined in patients who are detected

by screening and who, in the absence of screening, would be clinically diagnosed. This

definition excludes overdiagnosed patients (i.e., patients detected by screening who

would not be clinically diagnosed in the absence of screening), patients clinically

diagnosed, and patients without any diagnosis. Our goal here, however, is to derive a

generic surrogate of the intensity of screening and diagnosis in a given population that

is amenable to empirical (model-free, robust) estimation and prediction. Nevertheless,

due to its close theoretical relationship with the mean lead time (described below),

we adopt this terminology.

In a screening trial, the time from randomization to screen detection and the

time from randomization to clinical diagnosis are competing risks that are never

both observed for the same patient. Consequently, their full joint distribution is

non-identifiable without specific modeling assumptions (Tsiatis, 1975). However, the

mean lead time (i.e., the mean time difference TCDx − TSDx , which is non-zero only
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if TSDx < TCDx) is identifiable and can be calculated empirically.

Note that our estimates of the MLTs are different from other estimates in the

literature that can be interpreted as the average time by which screening advances

diagnosis among cases that would have been clinically diagnosed (Draisma et al.,

2009). Our MLTs are designed to represent proxies for the intensity of screening and

diagnosis, with higher values reflecting higher attendance rates at screening exams,

more frequent screening exams, less conservative criteria for biopsy referral, and/or

higher frequencies of biopsy. Thus, accounting for variable MLTs across trial arms

captures in a single measure important differences in the trial screening protocols,

participant adherence to those protocols in the intervention arms, and control arm

screening. We estimated the MLTs empirically, without any model assumptions about

cancer progression and diagnosis, and also using three models of cancer natural his-

tory and diagnosis. The empirical approach estimated the MLTs by calculating the

difference between survival curves for time from randomization to diagnosis in each

trial arm relative to an assumed baseline level. The assumed baseline probability

of diagnosis in the absence of screening was derived using incidence rates from the

Surveillance, Epidemiology, and End Results (SEER) program in 1986, just before

PSA screening began in the US, adjusted to reflect distributions of age at random-

ization in each trial. Additionally, one analytic model (UMICH) and two simulation

models (FHCRC and MISCAN) estimated distributions of ages at onset of latent dis-

ease and diagnosis in the absence and presence of screening using individual patient

attendance, screening, and incidence data. The fitted models then estimated MLTs

as in the empirical approach but using projected instead of observed incidence rates.

Additional details are described in the Supplementary Materials C.
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4.2.2 Effects of screening on prostate cancer mortality

We used Cox regression to model survival from randomization to prostate cancer

death, censoring individuals who died of other causes or were alive at last follow-up.

We examined both a traditional statistical analysis and extended analyses that incor-

porated the measure of screening intensity captured by the estimated MLTs. Both

types of analysis included participant age at randomization and a trial setting indi-

cator (PLCO versus ERSPC), which allowed for a different baseline risk of prostate

cancer death in the absence of screening between the two trial settings.

4.2.2.1 Traditional statistical analysis

We first conducted a traditional analysis to test whether the effect of screening

differed between trials. Specifically, we tested the effect of being randomized to the

intervention arm (relative to the control arm) on the risk of prostate cancer death

and all cause of death. For the prostate specific survival model, the exponential of the

coefficient for the trial arm indicator is the hazard ratio for prostate cancer death in

the intervention arm relative to the control arm; in other words, it reflects the effect

of screening on prostate cancer mortality in an intent-to-screen analysis. We fitted

this model with and without allowing separate effects of screening in each trial (i.e.,

with and without interaction between the trial arm and trial indicator), then used a

likelihood ratio test to evaluate evidence of differential effects of screening between

trials.

4.2.2.2 Extended statistical analysis

Next we replaced the trial arm indicator with the corresponding MLT estimated

empirically or using a model-based approach and fit both prostate specific survival

model and overall survival model with all cause of death. For the prostate specific

survival model, the exponential of the coefficient for the MLT represents the hazard
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ratio for prostate cancer death per additional year of MLT; in other words, it reflects

screening efficacy standardized by screening intensity. As in the traditional analy-

sis, we fitted this model with and without allowing separate effects of screening on

prostate cancer mortality in each trial (i.e., with and without interaction between the

MLT and trial indicator), then used a likelihood ratio test to evaluate evidence of

differential effects of screening between trials. Our extended analyses are consistent

with the analyses in the trial publications (Schroder et al., 2009; Andriole, 2009) with

two important differences. First, rather than relying on an intent-to-treat effect of

screening determined by the assigned arm in a single trial, we explicitly included a

covariate (MLT) to capture the intensity of screening in each arm. This represents a

transition from thinking about screening as all or nothing, corresponding to an inter-

vention and control arm, to a continuous metric of screening intensity, with resulting

coefficient estimates interpreted relative to a no-screening setting (i.e., a setting where

MLT=0). Second, we used combined data from both trials in a single analysis, adding

an indicator for trial to capture differences between trials in baseline cancer-specific

survival without screening and an interaction term to test whether screening efficacy

(per year of MLT) differed between trials.

4.3 Data Analysis

Table 4.1 summarizes participants, follow-up, and prostate cancer cases and deaths

in the two trials using all available follow-up and restricted to 11 years of follow-

up. The data under all available follow-up differ modestly from published results

(Schroder et al., 2009; Andriole, 2012) due to additional cleaning and updating.

Nonetheless, the cleaned and updated data restricted to 11 years of follow-up yielded

values similar to published prostate cancer incidence rate ratios (PLCO: 1.12 vs 1.12;

ERSPC: 1.68 vs 1.63) and mortality rate ratios (PLCO: 1.02 vs 1.09; ERSPC: 0.79

vs 0.79) and preserve the greater effects of screening on prostate cancer incidence and
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mortality rates in the ERSPC relative to the PLCO.

Table 4.1: Summary of participants, follow-up, and prostate cancer cases and deaths in the ERSPC
and PLCO under all available follow-up or restricted to 11 years of follow-up.

ERPSC PLCO

Control Screening Control Screening

No. of participants 88,921 72,473 38,343 38,340
Age at randomization (years)

median 59 60 62 62
range 55-69 55-69 55-74 55-74

All available follow-up
Follow-up from randomization (years)

median 11.0 11.1 12.5 12.5
range 0.4-17.5 0.4-17.3 0.0-13.0 0.0-13.0

No. of prostate cancer cases 5,398 6,967 4,040 4,430
Person-years of follow-up for incidence 933,854 740,775 403,955 400,008
No. of deaths 17,019 13,652 7,149 6,940

other causes 16,557 13,353 7,003 6,788
prostate cancer 462 299 146 152

Person-years of follow-up for mortality 990,678 827,148 426,720 427,824
Restricted to 11 years of follow-up

Follow-up from randomization (years)
median 11.0 11.0 11.0 11.0
range 0.4-11.0 0.4-11.0 0.0-11.0 0.0-11.0

No. of prostate cancer cases 4,961 6,586 3,641 4,038
Person-years of follow-up for incidence 868,834 686,766 368,844 365,129
No. of deaths 13,207 10,397 5,880 5,798

other causes 12,822 10,150 5,771 5,687
prostate cancer 385 247 109 111

Person-years of follow-up for mortality 890,581 725,997 387,027 387,861

ERSPC=European Randomized Study of Screening for Prostate Cancer; PLCO=Prostate, Lung, Colorectal,
and Ovarian cancer screening trial

To compare the screening intensity in the intervention and control arms of the

two trials, Figure 4.1 illustrates MLTs estimated empirically or using a model-based

approach. All estimation approaches found similar ordering and relative magnitudes

of MLTs across trial arms. The ERSPC and PLCO intervention arms had similar

MLTs, while the PLCO control arm had substantially longer MLTs than the ERSPC

control arm, consistent with more intensive screening (i.e., greater contamination) in

the PLCO control arm. Table 4.2 reports results of the traditional analysis. A like-

lihood ratio test associated with this analysis modestly suggested different effects of
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Figure 4.1: Estimated mean lead times (years) in the intervention and control arm of the ERSPC and
PLCO relative to a hypothetical no-screening setting (where lead time is always zero). Estimated
MLTs are visualized as increasing to the left to suggest the extent to which prostate cancer diagnosis
is advanced by more intensive screening and diagnostic workup.

screening on mortality between trials (P=0.09). Under a common effect of screening,

screening was estimated to reduce the risk of prostate cancer death by 16% (95% CI

4-27%; P=0.01) after accounting for different baseline risks of prostate cancer death

in the PLCO setting relative to the ERSPC setting and participant age at random-

ization. This result essentially corresponds to a weighted average of the effect in each

trial with the relative sizes of the trials as weights.

Table 4.2 also presents our extended analyses, which account for the MLT in each

trial arm estimated empirically or using a model-based approach. The analyses are

highly consistent and indicate no evidence of different effects of screening on mortal-

ity between trials (P=0.37-0.47 for interaction, range across estimation approaches).

Under a common effect of screening, all approaches indicated strong evidence that a

longer MLT was associated with a lower risk of prostate cancer death after account-

ing for differential baseline risks of prostate cancer death between trial settings and

participant age at randomization (P=0.0027-0.0032). These analyses showed that

screening was estimated to confer a 7-9% lower risk of prostate cancer death per year
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Table 4.2: Results of traditional and extended Cox regression analyses of prostate cancer death and
estimated mortality reductions in the settings of the ERSPC and PLCO intervention arms relative
to no screening.

Estimated mortality reduction relative to no screening
Cox regression analysis Setting of ERSPC intervention arm Setting of PLCO intervention arm

Covariate HR 95% CI P MLT Reduction 95% CI MLT Reduction 95% CI
Traditional analysis

PLCO setting 0.53 (0.45-0.62) <0.0001
Age 1.13 (1.11-1.14) <0.0001

Intervention arm 0.84 (0.73-0.96) 0.0099 n/a 16% (4-27%) n/a 16% (4-27%)
Extended analyses

Empirical PLCO setting 0.57 (0.48-0.67) <0.0001
Age 1.13 (1.11-1.14) <0.0001
MLT 0.92 (0.87-0.97) 0.0027 3.96 29% (11-43%) 4.02 29% (11-44%)

FHCRC PLCO setting 0.58 (0.49-0.69) <0.0001
Age 1.13 (1.11-1.14) <0.0001
MLT 0.93 (0.88-0.97) 0.0029 4.00 27% (10-40%) 4.10 27% (10-41%)

MISCAN PLCO setting 0.63 (0.51-0.77) <0.0001
Age 1.13 (1.11-1.14) <0.0001
MLT 0.92 (0.87-0.97) 0.0032 3.49 25% (9-38%) 4.62 32% (12-47%)

UMICH PLCO setting 0.57 (0.48-0.68) <0.0001
Age 1.13 (1.11-1.14) <0.0001
MLT 0.91 (0.85-0.97) 0.0029 3.83 31% (12-45%) 4.01 32% (12-47%)

HR=hazard ratio; CI=confidence interval; PLCO setting=indicator of PLCO setting relative to the ERSPC
setting to account for differential baseline risk of prostate cancer death; Age=participant age at randomization
(continuous); Intervention arm=indicator of randomization to intervention arm; MLT=mean lead time (continuous)
estimated in each trial arm by the specified estimation approach; FHCRC=Fred Hutchinson Cancer Research Center;
MISCAN=Erasmus University Medical Center Microsimulation Screening Analysis; UMICH=University of Michigan

of MLT. Let Rrisk be the risk reduction in the expected risk of prostate cancer death

by lead time, using the formula

Rrisk = 1−HRMLT , (4.6)

this would translate into an estimated 25-31% and 27-32% reduction in the expected

risk of prostate cancer death in the setting of screening as performed in the ERSPC

and PLCO intervention arms, respectively, over 11 years of follow-up relative to no

screening.

Table 4.3 presents both traditional and extended analyses of all cause of death

survival models, accounting for the MLT in each trial arm estimated empirically

or using a model-based approach. The analyses are highly consistent and indicate

no evidence of different effects of screening on mortality of all death between trials

(P=0.36-0.91 for interaction, range across estimation approaches). Under a common

effect of screening, all approaches indicated that a longer MLT was associated with a
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slightly lower risk of prostate cancer death (hazard ratio 0.96-0.98) after accounting

for differential baseline risks of cancer death between trial settings and participant

age at randomization. These analyses showed that screening test reduced the risk of

prostate cancer death specifically, instead of all cause of cancer death.

Table 4.3: Results of traditional and extended Cox regression analyses of all cause of cancer death.

Cox regression analysis
Covariate HR 95% CI P-value

Traditional analysis
PLCO setting 0.53 (0.52-0.54) <0.0001

Age 1.10 (1.09-1.11) <0.0001
Intervention arm 0.96 (0.94-0.98) <0.0001

Extended analyses
Empirical PLCO setting 0.54 (0.53-0.55) <0.0001

Age 1.10 (1.09-1.11) <0.0001
MLT 0.98 (0.97-0.99) <0.0001

FHCRC PLCO setting 0.54 (0.53-0.55) <0.0001
Age 1.10 (1.09-1.11) <0.0001
MLT 0.98 (0.97-0.99) <0.0001

MISCAN PLCO setting 0.55 (0.53-0.56) <0.0001
Age 1.10 (1.09-1.11) <0.0001
MLT 0.98 (0.97-0.99) <0.0001

UMICH PLCO setting 0.53 (0.52-0.55) <0.0001
Age 1.10 (1.09-1.10) <0.0001
MLT 0.97 (0.96-0.98) 0.0029

HR=hazard ratio; CI=confidence interval; PLCO setting=indicator of PLCO setting relative to the ERSPC setting
to account for differential baseline risk of cancer death; Age=participant age at randomization (continuous);

Intervention arm=indicator of randomization to intervention arm; MLT=mean lead time (continuous) estimated in
each trial arm by the specified estimation approach; FHCRC=Fred Hutchinson Cancer Research Center;

MISCAN=Erasmus University Medical Center Microsimulation Screening Analysis; UMICH=University of Michigan

Figure 4.2 illustrates prostate cancer survival from randomization in each trial

arm obtained by Kaplan-Meier estimation and predicted under a common effect of

screening given MLTs estimated by the empirical approach. Predictions obtained

using MLTs estimated by the model-based approaches (not shown) are similar. The

predicted curves closely reproduce observed differences in prostate cancer survival

between the intervention and control arms in both trials, showing that screening

intensity as captured by the MLT is highly informative about between-arm differences
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in risks of prostate cancer death in both trials.

Figure 4.2: Prostate cancer survival from randomization in the ERSPC and PLCO estimated by
Kaplan-Meier or Cox regression model using mean lead time estimated by the empirical approach.

4.4 Discussion

The USPSTF is currently updating its recommendations about PSA screening

and it has looked at the ERSPC and PLCO at the main sources of evidence about

screening benefit in the past. Primary publications from these high-quality random-

ized controlled trials are irreplaceable for evaluating causal effects of screening for

prostate cancer. Yet analyses like the one in this article that attempt to overcome

limitations of traditional statistical analyses critically complement the empirical trial

findings, including informing about whether the evidence from the trials is compat-

ible and about the expected reduction in prostate cancer mortality relative to no

screening.

Rather than comparing the trial arms as if they represent screened and non-

screened populations, this study estimated the intensity of screening in each arm rel-

ative to no screening. This framework allowed us to formally assess whether screening

55



effects differed between the trials when accounting for differential screening intensity

between arms in each trial. By decoupling screening intensity from trial arm labels

and investigating how benefit depends on screening intensity, we concluded that dif-

ferences between the ERSPC and PLCO results are largely attributable to differences

in screening intensities between arms within each trial. Finding no evidence of differ-

ent effects of screening on prostate cancer mortality between trials given the screening

intensities, we estimated a common effect of screening on mortality using pooled data

on 19,226 prostate cancer cases. The pooled estimate demonstrates a highly signifi-

cant benefit of screening. This is the first time that data from both trials have been

harnessed to estimate screening benefit.

It is possible that this analysis had insufficient power to detect a significant differ-

ence in screening efficacy between trials. Thus, while there is no evidence of different

screening efficacies, we cannot unequivocally conclude they were identical. Neverthe-

less, our combined analysis of both trials permits the most powerful examination of

this question to date.

Our analysis indicates that the baseline risk of prostate cancer death differed

between trials. This could be due to different incidence, stage distributions, and

treatment patterns in the trial populations in the absence of screening. A lower-than-

expected mortality (relative to pre-PSA-era survival) was observed in the PLCO,

possibly due to participants being healthier or reflecting an era with improved disease-

specific survival (Pinsky et al., 2007). By quantifying screening efficacy as a func-

tion of screening intensity, we projected that screening lowered the expected risk of

prostate cancer mortality in both PLCO arms.

We used multiple approaches to estimate screening intensity. The empirical ap-

proach reflects catch-all differences in the risk of prostate cancer diagnosis between

arms and calculates the MLT most consistent with incidence in each arm relative to

a common baseline level. In contrast, the model-based approaches explicitly account
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for trial protocols and practice settings details that are known or can be quantified,

e.g., age distributions, enrollment and attendance patterns, and screening and biopsy

frequencies within each ERSPC center. As expected, the estimates are shorter than

in other studies (Draisma et al., 2009) due to the different estimation approach and

because we restricted to 11 years of follow-up. In general, results are highly consistent

across estimation approaches and suggest robustness of our conclusions to these ways

of estimating screening intensity.

The finding that effects of screening on mortality appear to be consistent between

trials after accounting differences in implementation and practice setting corroborate

other analyses. For example, a prior investigation of the PLCO found that control arm

screening substantially limited the power of that trial to detect a clinically important

reduction in prostate cancer mortality (Gulati et al., 2012). However, that study

did not formally evaluate whether effects of screening on prostate cancer mortality

differed between the ERSPC and PLCO when implementation and setting details are

taken into account.

A limitation of this study is that we do not explicitly account for differences be-

tween trials in characteristics of cancer cases (e.g., clinical stage or Gleason score) or

primary treatments. Any differences in these factors between trials will be absorbed

into the trial-specific baseline risks of prostate cancer death. Also, the model-based

approaches to estimate lead times assume that cancers are progressive, although they

allow heterogeneity in progression risk across individuals. Ultimately, it is impossible

to know whether some cancers could remain indolent indefinitely or regress sponta-

neously and permanently. However, all estimation approaches closely match incidence

trends in each trial arm. We also assume that incidence in the absence of screening

was constant across calendar years before and after the trials began. This too is a

simplification. Finally, we consider only the mean lead time as a surrogate for screen-

ing intensity. It is possible that other metrics could have different associations with
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risk of prostate cancer death than we found.

In conclusion, taken together, the data from the two screening trials do not pro-

vide evidence that screening efficacy differed between the ERSPC and PLCO after

accounting for differences in implementation between arms in the trials. Our estima-

tion results of the common effect of screening suggest that screening can significantly

reduce the risk of prostate cancer death. However, as for all interventions, the benefit

of screening must be weighed against its potential harms for informed clinical and

shared decision making.

58



CHAPTER V

Conclusion and Future Work

In this dissertation, we have formulated cancer incidence and mortality models

by incorporating cancer screening patterns with disease progression to the events of

cancer diagnosis and death. With these model-based methodologies, we are able to

estimate cancer screening effect on both cancer incidence and mortality using cancer

registries and screening trial data, especially when the screening patterns are ran-

dom and unobserved. Instead of intent-to-screen analysis, which is less powerful to

evaluate causal effect of cancer screening on reducing risk of death and prolonging

post-diagnosis survival with screening contamination in the control arm, we proposed

the term mean lead time to quantify the screening intensities and estimate the screen-

ing efficacy after adjusting for the contamination. The mean lead time is predicted

by the incidence models with diagnosis-free survival functions with and in the ab-

sence of screening, incorporated with both disease progression features and screening

patterns.

In Chapter II, we have proposed a general model to quantitatively link cancer

control processes in the population with unknown schedules to the impact on cancer

incidence, jointly with the disease natural progression stages. Three baseline risks

are nonparametrically specified to the latent tumor onset (S), cancer detection by

symptoms (CDx) and screening (SDx) respectively. Given tumor onset, the two
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modes of diagnoses are dependent with a shared frailty term A. We demonstrated an

example with a proportional hazards assumption between S and CDx and a gamma

frailty model between CDx and SDx. As the model is generally specified, independent

specification of these baseline hazards and more complex frailty model with larger

frailty effect can be adapted into the data analysis, given sufficient identifiability of

model parameters.

Given the basis work in Chapter II, we extended the joint model with a mixture

of cancer screening schedules to the analysis of cancer screening trials data. The

extended model enables us to estimate ad-hoc screening intensity (contamination)

jointly with the disease natural history an perform hypotheses testing for the screening

patterns across trial until loss of follow up. In addition, we can obtain the diagnosis-

free survival functions by adapting the trial settings and mixture of screening patterns,

as well as the natural disease progression features. For model simplification, in this

chapter we have assumed the common baseline hazard between tumor onset S and

clinical diagnosis CDx, and conditional dependence between CDx and SDx given S.

The two assumptions may be released by specifying different baseline hazard and

introducing frailty term into the model.

To link the formulated incidence models to mortality models for evaluating screen-

ing effect on reducing the risk of cancer death, we used the term mean lead time as the

proxy of screening intensity. By fitting the prostate cancer specific survival models,

we found that screening can significantly reduce the risk of prostate cancer death. As

the lead time was predicted with the incidence models, its standard error can also be

estimated for statistical inference purpose. In addition, because of the dependency

between time to CDx and time to SDx, more distributional characteristics can be

studied on the mean lead time with copula models.
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APPENDIX A

Supplementary Materials for Chapter II

A.1 Derivation of Model Quantities

The p.d.f of tumor onset S is:

f(s)ds = G(s)dΛ0(s) = e−
∫ s
0 θ(ξ)dH0(ξ)θ(s)dH0(s). (A.1)

Generally, when the conditional hazard function for a survival time T is a stochastic

process λ(t), then the marginal survival function G(t) = E[e−
∫ t
0 λ(ξ)dξ]. Extending the

formulation of Rice and Tsodikov (2016) to time-dependent predictors, we obtain the

marginal clinical diagnosis-free survival function in the form

Gd(t|Z̄tx) = E
[
e−

∫ t
0 dΛ1(ξ|Zξx,S)

]
=

∫ t

0

e−
∫ t
s η(ξ)dH1(ξ)f(s)ds+

∫ ∞
t

e−
∫ t
s η(ξ)dH1(ξ)f(s)ds

=

∫ t

0

e−
∫ t
s η(ξ)dH1(ξ)−

∫ s
0 θ(ξ)dH0(ξ)θ(s)dH0(s) +

∫ ∞
t

e−
∫ s
0 θ(ξ)dH0(ξ)θ(s)dH0(s)

= e−
∫ t
0 θ(ξ)dH0(ξ) +

∫ t

0

e−
∫ t
s η(ξ)dH1(ξ)−

∫ s
0 θ(ξ)dH0(ξ)θ(s)dH0(s).

(A.2)
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We obtain the marginal survival function incorporating risks of screening and clin-

ical diagnosis as the expectation over the distribution of latent event time S, frailty

termA and screening patternNscr. Let Λ̃s,t =
∫ t

0
I(ξ ≥ s)

[
η(Zξx)dH1(ξ) + α(ξ|x)dHscr(ξ|x)

]
.

Gd(t|Z̄tx) = ES,A,Nscr

[
e−

∫ t
0(dΛ1(ξ|Zξx,S,A)+dΛ2(ξ|Zξx,S,A,Nscr))

]
= ES,A,Nscr

[
e−

∫ t
0 AI(ξ≥S)[η(ξ)dH1(ξ)−log(1−α(ξ|x))dNscr(ξ|x)]

]
= ES

{
EA

[
e−

∫ t
0 AI(ξ≥S)[η(ξ)dH1(ξ)+α(ξ|x)dHscr(ξ|x)]

]}
= ES

{
L(0)(Λ̃s,t)

}
= e−Λ0(t) +

∫ t

0

L(0)(Λ̃s,t)e
−Λ0(s)dΛ0(s).

(A.3)

The the corresponding p.d.f is:

gd(t|Z̄tx) =− dGd(t|Z̄t)
dt

=−

{
−e−Λ0(t)dΛ0(t) +

∫ t

0

L(0)′(Λ̃s,t)e
−Λ0(s)dΛ0(s) + L(0)(0)e−Λ0(t)dΛ0(t)

}

=−

{∫ t

0

L(0)′(Λ̃s,t)e
−

∫ s
0 θ(Zsx)dH0(s)θ(Zsx)dH0(s)

}

=−
∫ t

0

L(1)(Λ̃s,t)e
−Λ0(s)dΛ0(s)

[
η(Ztx)dH1(t) + α(t|x)dHscr(t|x)

]
,

(A.4)

and

λ(t|Z̄tx) =
gd(t|Z̄tx)
Gd(t|Z̄xt)

= Ψ(t|Z̄tx)
[
η(Ztx)dH1(t) + α(t|x)dHscr(t|x)

]
, (A.5)

where

Ψ(t|Z̄tx) =
−
∫ t

0
L(1)(Λ̃s,t)e

−Λ0(s)dΛ0(s)

e−Λ0(t) +
∫ t

0
L(0)(Λ̃s,t)e−Λ0(s)dΛ0(s)

.
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A.2 Derivation of Score Equations

` =
∑
x

∫ υ

0

∑
i∈R(t|x)

log
(
dΛ(t|Z̄txi)

)
dN(t|Z̄txi)− dΛ(t|Z̄txi),

Follow (Rice and Tsodikov, 2016), we impose a proportional hazards (PH) assumption

linking dH1 and dH0 into a common dH. Given the maximum follow-up time υ,

differentiating the log-likelihood (2.10) we arrive at the following score equations for

dH(τ), dHscr(τ |x), where τ ∈ (0, t].

UdH(τ) =
∂`

∂dH(τ)

=
∑
x

∑
i∈R(τ |x)

∂ log dΛ(τ |Z̄τxi)
∂dH(τ)

dN(τ |Z̄τxi)−
∂dΛ(τ |Z̄τxi)
∂dH(τ)

+

∫ υ

τ+

∑
j∈R(t|x)

∂ log dΛ(t|Z̄txj)
∂dH(τ)

dN(t|Z̄txj)−
∂dΛ(t|Z̄txj)
∂dH(τ)

=
∑
x

∑
i∈R(τ |x)

(
ΨdH(τ)(τ |Z̄τxi)

Ψ(τ |Z̄τxi)
+

ηi(τ)

ηi(τ)dH(τ) + dHscr(τ |x)

)
dN(τ |Z̄τxi)

−
ΨdH(τ)(τ |Z̄τxi)

Ψ(τ |Z̄τxi)
dΛ(τ |Z̄τxi)−Ψ(τ |Z̄τxi)ηi(τ)

+

∫ υ

τ+

∑
j∈R(t|x)

ΨdH(τ)(t|Z̄txj)
Ψ(t|Z̄txj)

dN(t|Z̄txj)−
ΨdH(τ)(t|Z̄txj)

Ψ(t|Z̄txj)
dΛ(t|Z̄txj)

=
∑
x

∑
i∈R(τ |x)

ηi(τ)dN(τ |Z̄τxi)
ηi(τ)dH(τ) + dHscr(τ |x)

−
∑

i∈R(τ |x)

Ψ(τ |Z̄τxi)ηi(τ)

1−

∫ υ
τ

∑
j∈R(t|x)

ΨdH(τ)(t|Z̄txj)
Ψ(t|Z̄txj)

dM(t|Z̄txj)∑
i∈R(τ |x) Ψ(τ |Z̄τxi)ηi(τ)


=
∑
x

∑
i∈R(τ |x)

ηi(τ)dN(τ |Z̄τxi)
ηi(τ)dH(τ) + dHscr(τ |x)

−
∑

i∈R(τ |x)

Ψ(τ |Z̄τxi)ηi(τ)wdH(τ),
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and

ΨdH(τ)(t|Z̄txi) =
adHB − AbdH{

e−Λ0(t) +
∫ t

0
L(0)(Λ̃s,t)e−Λ0(s)dΛ0(s)

}2 =
adHb− abdH

b2
, (A.6)

where

adHb− abdH =

{
−
∫ τ

0

(1 + φ)(1 + φΛ̃s,t)
− 1
φ
−2η(τ)e−Λ0(s)dΛ0(s)− (1 + φΛ̃τ,t)

− 1
φ
−1e−Λ0(τ)dΛ0(τ)

+(1 + φΛ̃τ,t)
− 1
φ
−1e−Λ0(τ) −

∫ t

τ+
(1 + φΛ̃s,t)

− 1
φ
−1e−Λ0(s)dΛ0(s)

}

·

{
e−Λ0(t) +

∫ t

0

(1 + φΛ̃s,t)
− 1
φ e−Λ0(s)dΛ0(s)

}
−

{∫ t

0

(1 + φΛ̃s,t)
− 1
φ
−1e−Λ0(s)dΛ0(s)

}

·
{
−e−Λ0(t) −

∫ τ

0

(1 + φΛ̃s,t)
− 1
φ
−1η(τ)e−Λ0(s)dΛ0(s)− (1 + φΛ̃τ,t)

− 1
φ e−Λ0(τ)dΛ0(τ)

+(1 + φΛ̃τ,t)
− 1
φ e−Λ0(τ) −

∫ t

τ+
(1 + φΛ̃s,t)

− 1
φ e−Λ0(s)dΛ0(s)

}
.

Similarly, for the screening intensity dHscr of x-birth cohort,

UdHscr(τ |x) =
∂`

∂dHscr(τ |x)

=
∑

i∈R(τ |x)

∂ log dΛ(τ |Z̄τxi)
∂dHscr(τ |x)

dN(τ |Z̄τxi)−
∂dΛ(τ |Z̄τxi)
∂dHscr(τ |x)

+

∫ υ

τ+

∑
j∈R(t|x)

∂ log dΛ(t|Z̄txj)
∂dHscr(τ |x)

dN(t|Z̄txj)−
∂dΛ(t|Z̄txj)
∂dHscr(τ |x)

=
∑

i∈R(τ |x)

(
ΨdHscr(τ |x)(τ |Z̄τxi)

Ψ(τ |Z̄τxi)
+

1

ηi(τ)dH(τ) + dHscr(τ |x)

)
dN(τ |Z̄τxi)

−
ΨdHscr(τ |x)(τ |Z̄τxi)

Ψ(τ |Z̄τxi)
dΛ(τ |Z̄τxi)−Ψ(τ |Z̄τxi)

+

∫ υ

τ+

∑
j∈R(t|x)

ΨdHscr(τ |x)(t|Z̄txj)
Ψ(t|Z̄txj)

dN(t|Z̄txj)−
ΨdHscr(τ |x)(t|Z̄txj)

Ψ(t|Z̄txj)
dΛ(t|Z̄txj)

=
∑

i∈R(τ |x)

dN(τ |Z̄τxi)
ηi(τ)dH(τ) + dHscr(τ |x)
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−
∑

i∈R(τ |x)

Ψ(τ |Z̄τxi)

1−

∫ υ
τ

∑
j∈R(t|x)

ΨdHscr(τ |x)(t|Z̄txj)
Ψ(t|Z̄txj)

dM(t|Z̄txj)∑
i∈R(τ |x) Ψ(τ |Z̄τxi)


=

∑
i∈R(τ |x)

dN(τ |Z̄τxi)
ηi(τ)dH(τ) + dHscr(τ |x)

−
∑

i∈R(τ |x)

Ψ(τ |Z̄τxi)wdHscr(τ |x),

and

ΨdHscr(τ |x)(t|Z̄txi) =
adHscrb− abdHscr{

e−Λ0(t) +
∫ t

0
L(0)(Λ̃s,t)e−Λ0(s)dΛ0(s)

}2 =
adHscrb− abdHscr

b2
,

(A.7)

where

adHscrb− abdHscr =

{
−
∫ τ

0

(1 + φ)(1 + φΛ̃s,t)
− 1
φ
−2e−Λ0(s)dΛ0(s)

}
·

{
e−Λ0(t) +

∫ t

0

(1 + φΛ̃s,t)
− 1
φ e−Λ0(s)dΛ0(s)

}
−

{∫ t

0

(1 + φΛ̃s,t)
− 1
φ
−1e−Λ0(s)dΛ0(s)

}

·
{
−
∫ τ

0

(1 + φΛ̃s,t)
− 1
φ
−1e−Λ0(s)dΛ0(s)

}
.

A.3 Asymptotics Properties of NPMLE Estimators

A.3.1 Martingale properties

We write the score functions for Ω = (β, {dH}, {dHscr}) as martingales (at the

true Ω0). Let γτiH(t) =
ΨdH(τ)(t|Z̄txi)

Ψ(t|Z̄txi)
, γτiHscr(t|x) =

ΨdHscr(τ |x)(t|Z̄txi)
Ψ(t|Z̄txi)

. For simplicity, let

dΛi(t) = dΛ(t|Z̄txi), dNi(t) = dN(t|Z̄txi), dMi(t) = dM(t|Z̄txi),Ψi(t) = Ψ(t|Z̄txi).

Here x is dropped from arguments except when it indexes a parameter, i.e. dHscr(t|x).

Uβ =
∑
x

∫ υ

0

∑
i∈R(s|x)

∂ log dΛi(s)

∂β
dMi(s),

and
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UH(t) =

∫ t

0

∑
x

∑
i∈R(s|x)

dMi(s) +

∫ υ

s+

∑
j∈R(u|x)

γsiH(u)dMj(u)
[
ηi(s)dH(s) + dHscr(s|x)

] ,

UHscr(t|x) =

∫ t

0

∑
i∈R(s|x)

dMi(s) +

∫ υ

s+

∑
j∈R(u|x)

γsiHscr(u|x)dMj(u)
[
ηi(s)dH(s) + dHscr(s|x)

] ,

Exchanging the integrals, we have:

UH(t) =
∑
x

∫ υ

0

∑
i∈R(u|x)

εi(u, t,H;β)dMi(u), (A.8)

UHscr(t|x) =

∫ υ

0

∑
i∈R(u|x)

εi(u, t,Hscr;β)dMi(u), (A.9)

where εi(u, t,H;β) = I(u ≤ t) +
[∫ u∧t

0
ηi(s)dH(s) + dHscr(s|x)

]
γsiH(u);

ε(u, t,Hscr;β) = I(u ≤ t) +
[∫ u∧t

0
ηi(s)dH(s) + dHscr(s|x)

]
γsiHscr(u|x) .

Properties of martingale transform. (A.8) and (A.9) are martingales as εi(u, t,H;β)dMi(u)

and εi(u, t,Hscr;β)dMi(u) do not depend on t for u ≤ t. Let Vi(t) =
∫ υ

0
εi(u, t,H;β)dMi(u).

Consider an increment of the martingale transform

dVi(t) =

∫ υ

0

εi(u, t+ dt)dMi(u)− ε(u, t)dMi(u) =

∫ υ

0

dtεi(u, t)dMi(u),

where dt is the partial differential of ε(u, t) with respect to t. Taking an expectation

given filtration Ft−,

E
[
dVi(t)|Ft−

]
=

∫ υ

0

E
[
dtε(u, t)dMi(u)|Ft−

]
=

∫ υ

0

dtε(u, t)E
[
dMi(u)|Ft−

]
=

∫ υ

0

dtε(u, t)dMi(u).
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By definition, when u < t, dtε(u, t) = 0 then we have E
[
dVi(t)|Ft−

]
=0. Therefore

Vi(t) is a martingale. Same proof can be derived forHscr with Vi(t) =
∫ υ

0
εi(u, t,Hscr;β)dMi(u).

Therefore, the score functions Uβ, UH(t) and UHscr(t|x) are martingales at the true

model.

A.3.2 Consistency

We now present the consistency and weak convergence results for the proposed

NPMLE estimators Ω̂ = (β̂, Ĥ(t), Ĥscr(t|x)), mainly adapted from Hu and Tsodikov

(2014b). Let ‖·‖l∞[0,υ] denote the supremum norm in [0, υ] and ‖ω‖V [0,υ] the total

variation of ω(t) in [0, υ]. Define Q = {ω(t) : ‖ω‖V [0,υ] < ∞} such that Ĥ(t) and

Ĥscr(t|x) may be regarded as a bounded linear functional in l∞[Q], and ∆Ω̂0 =

{β̂ − β0, dĤ(t) − dH0(t), dĤscr(t|x) − dH0
scr(t|x)} a random element in the metric

space Sp × l∞[Q], where p is the dimension of β0. We denote H as the compact

convex set in the metric space Sp × l∞[Q] in which Ω0 is contained.

Proof. To establish the consistency result from Proposition II.1: ‖Ĥ(·)−H0(·)‖l∞[0,υ]
p→

0, ‖Ĥscr(·|x)−H0
scr(·|x)‖l∞[0,υ]

p→ 0 and ‖β̂ − β0‖ p→ 0, the following conditions are

verified:

1. Identifiability condition: The model is identifiable so that Λ = Λ0 uniformly

over Ω implies Ω = Ω0, which will ensure that for any sequence Ωn ∈ H, the

compact convex set in the metric space Sp × l∞[Q], lim infn→∞ `(Ωn) ≥ `(Ω0)

implies ‖Ωn − Ω0‖ p→ 0.

2. Uniform convergence condition: for any sequence Ω ∈ H we have uniform

convergence,

sup
Ω∈H
|`n(Ω)− `(Ω)| p→ 0.

With these two conditions, since `n(Ω̂) = supΩ∈H`n(Ω)+op(1), then based on Theorem

2.12 in Kosorok (2008), we have ‖Ω̂− Ω0‖ p→ 0. We use three steps to verify these
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two conditions.

Step 1 Convexity and unique maximum of the likelihood function `.

Let dΛ(t) = dΛ(t|Z̄tx), the model can be characterized through corresponding hazard

function as

dΛ(t) = Ψ(Ω)
[
η(t) · dH(t) + dHscr(t|x)

]
,

which are all functionals that depend on the processes H(·) and H(·|x) on [0, t]. Let

F (t) be the cumulative incidence function , R(t) be the survival function respectively.

Thus dF (t) = R(t)dΛ(t), we can rewrite the true likelihood as

`(Ω,Ω0) = E
∫ υ

0

log dΛ(t)dF 0(t)−R0(t)dΛ(t),

where R0 and F 0 denote the corresponding true quantities respectively and the ex-

pectation is taken with respect to the covariate process Ztx.

Consider the negative true Kullback-Leibler distance,

D = `(Ω,Ω0)− `(Ω0,Ω0).

We have

D = E
∫ υ

0

[
log

dΛ(t)

dΛ0(t)
− dΛ(t)

dΛ0(t)
+ 1

]
dF 0(t).

consider a non-positive concave function f(t) = log t − t + 1, t = 1 is the unique

maximizer and f(1) = 0. Therefore, D has a uniformly unique maximum when

dΛ(t|x) = dΛ0(t|x).

Step 2 Identifiability conditions.

Since Λ is assumed to be a differentiable functional of H and Hscr, so is the likelihood

function `(Ω). Step 1 suggests that Ω0 = argmaxΩ∈H`(Ω) is unique, and `(Ω,Ω0) is

identifiable so that Λ = Λ0 uniformly over Ω implies Ω = Ω0. Therefore, based on
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Lemma 14.3 of Kosorok (2008), we have lim infn→∞ `(Ωn) ≥ `(Ω0), thus the identifi-

ability condition is satisfied.

Step 3 Uniform convergence condition.

Assume that Ω is in the class of functions of bounded variation with integrable en-

velope, which implies that H and Hscr are bounded. Therefore, H belongs to a

Glivenko-Cantelli class, whose ε-entropy with bracketing number is bounded by A/ε,

where A is some constant. By the assumption of continuity of the functionals Λ

and `(Ω), and the integrability of the envelope of Ω, the integrand in `(Ω) is also

Glivenko-Cantelli. Therefore, we apply the uniform law of large numbers for the

empirical process counterpart of D and ` as

Dn = `n(Ω,Ω0)− `n(Ω0,Ω0)

where

`n(Ω,Ω0) = n−1
∑
x


∫ υ

0

∑
i∈R(t|x)

[
log(η(t)dH(t) + dHscr(t|x)) + log Ψ(H(t), Hscr(t|x);β)

]
dNi(t)

−Ψ(H(t), Hscr(t|x);β)[ηi(t)dH(t) + dHscr(t|x)]
}
,

and n =
∑

x

∥∥R(t|x)
∥∥,

Such that

sup
Ω∈H
|Dn(Ω)−D(Ω)| p→ 0, sup

Ω∈H
|`n(Ω)− `(Ω)| p→ 0.

and this completes the verification of uniform convergence condition in Proposition

II.1.
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A.3.3 Weak convergence

Consider a linear functional

n1/2

[
a′(β̂ − β0) +

∫ υ

0

b(t)d
(
Ĥ(t)−H0(t)

)
+

∫ υ

0

e(t|x)d
(
Ĥscr(t|x)−H0

scr(t|x)
)]

,

where a is a real vector and b(t), e(t|x) are functions with bounded total variation.

Let B denote the vector consisting of the values of b(t) evaluated at the observed

failure times corresponding to the set {dH}, let E denote the vector consisting of

the values of e(t|x) evaluated at the observed failure times corresponding to the set

{dHscr} for cohort x; let E ′ = (a′,B′,E′). We have Proposition II.2.

Proof. Our proof closely follows that of Hu and Tsodikov (2014a, Supplementary

Materials C) and Rice and Tsodikov (2016, Supplementary Materials E). Denote the

scores as U(Ω) =
(
U ′β,UH(t),UHscr(t|x)

)′
, and the proposed NPMLE Ω̂ be the solution

to the equation U(Ω) = 0. Note that in our case this solution involves the profile

likelihood for β:

`pr(β) = sup
H,Hscr

`(H(·), Hscr(·|·);β),

where ` is defined in equation (2.10) and the estimate of H,Hscr are obtained using

the iterative reweighted algorithm of Chen (2009). Asymptotically, this is equivalent

to solving the marginal score directly.

Based on the martingale representation of U(Ω0) where Ω0 is the set of true param-

eters, and the fact that Ni(t), i = 1, ..., n are orthogonal, it follows by the martingale

central limit theorem that n−1/2U(Ω0) converges weakly to U(t) =
(
U′β, UH(t), UHscr(t|x)

)′
,

where Uβ is a mean-zero p-variate normal random variable and UH(t), UHscr(t|x) are

mean-zero Gaussian processes. The variance-covariance function of U(t) can be char-

acterized by covariance functions σ2
Hscr

(s, t;β0, H0, H0
scr), σ

2
H(s, t;β0, H0, H0

scr), σ
2
β(β0),

σ2
Hscr,H

(s, t;β0, H0, H0
scr), σ

2
H,β(t;β0, H0, H0

scr), and σ2
Hscr,β

(t;β0, H0, H0
scr).
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The predictable variation process for the score process UH(t) in (A.8) (scaled by

n−1/2) is

Var
(
n−1/2 UH(t)

∣∣Fu−) =
1

n
Var

∑
x

∫ υ

0

∑
i∈R(t|x)

εi(u, t,H;β)dMi(u)

∣∣∣∣∣∣Fu−


=
1

n

∑
x

∫ υ

0

∑
i∈R(t|x)

ε2
i (u, t,H;β) Var

[
dMi(u)|Ft−

]
=

1

n

∑
x

∫ υ

0

∑
i∈R(t|x)

ε2
i (u, t,H;β)Ψi(u)

[
ηi(u)dH(u) + dHscr(u|x)

]
,

which converges weakly as n→∞ to a mean-zero Gaussian process with covariance

function

σ2
H(s, t;β0, H0, H0

scr) =
∑
x

∫ υ

0

ε(u, s,H;β)ε(u, t,H;β)P (T ≥ u)Ψ (u) [η(u)dH(u)+dHscr(u|x)],

for s, t ∈ [0, υ]. Similarly, n−1/2UHscr(t|x), n
−1/2Uβ are martingales converging to the

mean-zero Gaussian processes with covariance functions

σ2
Hscr(s, t;β

0, H0, H0
scr) =

∫ υ

0

ε(u, s,Hscr;β)ε(u, t,Hscr;β)P (T ≥ u)Ψ (u) [η(u)dH(u)+dHscr(u|x)],

σ2
β(β0) =

∑
x

∫ υ

0

Ψ2
β (u)

Ψ (u)
P (X ≥ u) [η(u)dH(u) + dHscr(u|x)].

In addition,n−1/2UHscr(t|x),H(s), n
−1/2UHscr(t|x),β and n−1/2UH(t),β are martingales that

converge to mean-zero Gaussian processes with covariance functions

σ2
Hscr,H(s, t;β0, H0, H0

scr) =

∫ υ

0

ε(u, s,H;β)ε(u, t,Hscr;β)P (T ≥ u)Ψ (u) [η(u)dH(u)+dHscr(u|x)],

σ2
Hscr,β(t;β0, H0, H0

scr) =

∫ υ

0

ε(u, t,Hscr;β)Ψβ(u)P (T ≥ u)Ψ (u) [η(u)dH(u)+dHscr(u|x)],
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σ2
H,β(t;β0, H0) =

∑
x

∫ υ

0

ε(u, t,H;β)Ψβ(u)P (T ≥ u) [η(u)dH(u) + dHscr(u|x)].

Let the limit in probability of the likelihood function (2.10) normalized as `/n, be

`∞. Define a linear information operator as

I∞(t, s|x) =
∂U0

∂Ω
= −


∂2`∞
∂β∂β′

∂2`∞
∂β∂dH(s)

∂2`∞
∂β∂dHscr(s|x)

∂2`∞
∂dH(u)∂β′

∂2`∞
∂dH(t)∂dH(s)

∂2`∞
∂dH(t)∂dHscr(s|x)

∂2`∞
∂dHscr(t|x)∂β′

∂2`∞
∂dHscr(t|x)∂dH(s)

∂2`∞
∂dHscr(t|x)∂dHscr(s|x)


Ω=Ω0

,

(A.10)

where U0 =
(
∂`∞
∂β′

, ∂`∞
∂dH(t)

, ∂`∞
∂dHscr(t|x)

)′
. The operator I∞ acts on an arbitrary vector

function element Ωt =
(
β′, dH(t), dHscr(t|x)

)′
as

I∞(t, s)Ωs =

−


∂2`∞
∂β∂β′

β +
∫ υ

0
∂2`∞

∂β∂dH(s)
dH(t) +

∫ υ
0

∂2`∞
∂β∂dHscr(s|x)

dHscr(s|x)

∂2`∞
∂dH(t)∂β′

β +
∫ υ

0
∂2`∞

∂dH(t)∂dH(s)
dH(s) +

∫ υ
0

∂2`∞
∂dH(t)∂dHscr(s|x)

dHscr(s|x)

∂2`∞
∂dHscr(t|x)∂β′

β +
∫ υ

0
∂2`∞

∂dHscr(t|x)∂dH(s)
dH(s) +

∫ υ
0

∂2`∞
∂dHscr(t|x)∂dHscr(s|x)

dHscr(s|x)

 .
(A.11)

With this notation, expanding the score U(Ω̂) about the true parameter Ω0, we have

I∞(t, s)n1/2
(

Ω̂s − Ω0
s

)
= U(t) + op(1). (A.12)

Assuming that the Fredholm operator expressed by the kernel I∞ of the Fredholm

integral equation (A.12) of the first kind is square integrable, and that the equation

I∞Ω = 0 has only the trivial solution Ω = 0, then equation (A.12) has a unique

solution. By Theorem 3.3.1 of van der Vaart and Wellner (1996), there exists an

inverse information operator I−1
∞ (s, t) such that

n1/2
(

Ω̂t − Ω0
t

)
= I−1

0 (u, t)U(t) + op(1).
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Upon differentiation of the equation E
[
U(Ω0)

]
= 0 with respect to Ω at the truth

Ω0, we obtain the usual equivalence between I∞ represented by second derivatives

and

I∞(t, s) =


∂`∞
∂β

∂`∞
∂β′

∂`∞
∂β

∂`∞
∂dH(s)

∂`∞
∂β

∂`∞
∂dHscr(s|x)

∂`∞
∂dH(t)

∂`∞
∂β′

∂`∞
∂dH(t)

∂`∞
∂dH(s)

∂`∞
∂dH(t)

∂`∞
∂dHscr(s|x)

∂`∞
∂dHscr(t|x)

∂`∞
∂β′

∂`∞
∂dHscr(t|x)

∂`∞
∂dH(s)

∂`∞
∂dHscr(t|x)

∂`∞
∂dHscr(s|x)


Ω=Ω0

,

which represents the variance of the normalized score Gaussian process U(t). By the

functional delta method (Kosorok, 2008, Section 2.2.4), for a differentiable functional

F (Ω), n1/2
[
F (Ω̂)− F (Ω0)

]
converges weakly to a mean-zero Gaussian process with

variance-covariance function Ḟ (Ω0)′I−1
0 Ḟ (Ω0), where Ḟ (Ω) = ∂F

∂Ω
and the operator

products are defined similarly to (A.11). Applying this to (A.3.3) and replacing

operator products by matrix algebra, and I∞ by its consistent (matrix) estimator

n−1În, we obtain the weak convergence results.

A.4 Likelihood Hessian and the information matrix

Using direct algebraic manipulation, we have the following expression for the

normalized observed information matrix

In,ΩΩ′ =
1

n

∑
x

∫ υ

0

∑
i∈R(t|x)

{
∂2 log dΛi(t)

∂Ω∂Ω′
dMi(t)−

∂ log dΛi(t)

∂Ω

∂ log dΛi(t)

∂Ω′
dΛi(t)

}
,

where Λ(t) is the subject-specific cumulative hazard, R(t|x) is the cohort x at risk

process, Ni(t) is the subject’s failure counting process, and dMi = dNi − dΛi is a

martingale increment under the true model for i ∈ R(t|x). We note that given t > s,

∂Λ(s)/∂dH(t) = 0, ∂Λ(s)/∂dHscr(t|x) = 0 so terms corresponding to dH(t) and

dHscr(t|x) functional component of Ω under the integral are zero until t. Therefore as

the martingale term turns into an op(1), and the first term into a consistent estimate
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of the covariance of the normalized score, we have

Cov
(√

nU0
)

= I∞ + op(1).

Now, since
√
n
(

Ω̂− Ω0
)

= I−1
∞
√
nU0 + op(1),

we have the variance operator

Var

[√
n
(

Ω̂− Ω0
)]

= I−1
∞ Cov

(√
nU0

)
I−1
∞

= I−1
∞ I∞I−1

∞

= I−1
∞ .
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APPENDIX B

Supplementary Materials for Chapter III

B.1 Derivations of Model Quantities

The conditional diagnosis-free survival functions for each mode (CDx and SDx):

GCDx(t|Z̄t, S) = e−
∫ t
0 I(ξ≥S)η(ξ)dH(ξ),

GSDx(t|Z̄t, S, N̄scr(t)) = exp

[∫ t

0

I(ξ ≥ S) log(1− α(ξ))dNscr(ξ)

]
.

The marginal diagnosis-free survival function for screening arm is:

Gsc
d (t|Z̄t) = E

[
GCDx(t|Z̄t, S)GSDx(t|Z̄t, S, N̄scr(t))

]
= e−

∫ t
0 θ(ξ)dH(ξ) + πsc(t|Z̄t)

Marginal density:

f(t|Zt) = −∂G
sc
d (t|Z̄t)
∂t

= f(t, Iscr = 0|Z̄t) + f(t, Iscr = 1|Z̄t)

f(t, Iscr = 0|Z̄t) = ES,Nscr
{
fCDx(t|Zt, S)GSDx(t|Z̄t, S, N̄scr(t))

}
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= ENscr

{∫ t

0

η(t)dH(t)e−
∫ t
s [η(ξ)dH(ξ)−log(ᾱ(ξ))dNscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

}

= η(t)dH(t)πsc(t|Z̄t),

f(t, Iscr = 1|Z̄t) = ES,Nscr
{
fSDx(t|Zt, S,Nscr(t))GCDx(t|Z̄t, S)

}
= ENscr

{∫ t

0

dΛSDx(t|Zt)e−
∫ t
s [η(Zξ)dH(ξ)−log(ᾱ(ξ))dNscr(ξ)]−

∫ s
0 θ(ξ)dH(ξ)θ(s)dH(s)

}

= dΛSDx(t|Z̄t)πsc(t|Z̄t).

B.2 Derivation of Score Equations

The joint log-likelihood function for both control and screening arm is:

` = `c + `sc

=

∫ υ

0

∑
j∈Rc(t)

log(dΛc
i(t|Ztj))dN c

j (t|Ztj)− dΛc
j(t|Zti)

+

∫ υ

0

∑
i∈Rsc(t)

1∑
Iscr=0

{
log dΛIscr

i (t|Zti)dN Iscr
i (t|Zti)− dΛIscr

i (t|Zti)
}
.

Given the maximum follow-up time υ, differentiating the log-likelihood (3.12) we

arrive at the following score equations for dH(τ), dHscr(τ), where τ ∈ (0, t].

UdH(τ) =
∂`

∂dH(τ)

=
∑

j∈Rc(τ)

∂ log dΛc(τ |Z̄τj)
∂dH(τ)

dN c(τ |Z̄τj)−
∂dΛc(τ |Z̄τj)
∂dH(τ)

+

∫ υ

τ+

∑
k∈Rc(t)

∂ log dΛc(t|Z̄tk)
∂dH(τ)

dN c(t|Z̄tk)−
∂dΛc(t|Z̄tk)
∂dH(τ)

+
∑

i∈Rsc(τ)

∂ log dΛIscr(τ |Z̄τi)
∂dH(τ)

dN Iscr(τ |Z̄τi)−
∂dΛIscr(τ |Z̄τi)

∂dH(τ)

+

∫ υ

τ+

∑
l∈Rsc(t)

∂ log dΛIscr(t|Z̄tl)
∂dH(τ)

dN Iscr(t|Z̄tl)−
∂dΛIscr(t|Z̄tl)
∂dH(τ)
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=
∑

j∈Rc(τ)

(
Ψc
dH(τ)(τ |Z̄τj)
Ψc(τ |Z̄τj)

+
ηj(τ)

ηj(τ)dH(τ) + r
I(τ≥Aej)
1 αdHscr(τ)

)
dN c(τ |Z̄τj)

−
Ψc
dH(τ)(τ |Z̄τj)
Ψc(τ |Z̄τj)

dΛc(τ |Z̄τj)−Ψc(τ |Z̄τj)ηj(τ)

+

∫ υ

τ+

∑
k∈Rc(t)

Ψc
dH(τ)(t|Z̄tk)
Ψc(t|Z̄tk)

dN c(t|Z̄tk)−
Ψc
dH(τ)(t|Z̄tk)
Ψc(t|Z̄tk)

dΛc(t|Z̄tk)

+
∑

i∈Rsc(τ)

∑
Iscr=0

(
Ψsc
dH(τ)(τ |Z̄τi)
Ψsc(τ |Z̄τi)

+
1

dH(τ)

)
dN Iscr(τ |Z̄τi)

−
Ψsc
dH(τ)(τ |Z̄τi)
Ψsc(τ |Z̄τi)

dΛIscr(τ |Z̄τi)−Ψsc(τ |Z̄τi)ηi(τ)

+

∫ υ

τ+

∑
l∈Rsc(t)

∑
Iscr=0

Ψsc
dH(τ)(t|Z̄tl)
Ψsc(t|Z̄tl)

dN Iscr(t|Z̄tl)−
Ψsc
dH(τ)(t|Z̄tl)
Ψsc(t|Z̄tl)

dΛIscr(t|Z̄tl)

=
∑

j∈Rc(τ)

ηj(τ)dN c(τ |Z̄τj)
ηj(τ)dH(τ) + r

I(τ≥Aej)
1 αdHscr(τ)

−
∑

j∈Rc(τ)

Ψc(τ |Z̄τj)ηj(τ)

1−

∫ υ
τ

∑
k∈Rc(t)

Ψc
dH(τ)

(t|Z̄tk)

Ψc(t|Z̄tk)
dM c(t|Z̄tk)∑

j∈Rc(τ) Ψc(τ |Z̄τj)ηj(τ)


+

∑
i∈Rsc(τ)

∑
Iscr=0

dN Iscr(τ |Z̄τi)
dH(τ)

−
∑

i∈Rsc(τ)

∑
Iscr=0

Ψsc(τ |Z̄τi)ηi(τ)

1−

∫ υ
τ

∑
l∈Rsc(t)

Ψsc
dH(τ)

(t|Z̄tl)
Ψsc(t|Z̄tl)

dM sc(t|Z̄tl)∑
i∈Rsc(τ)

∑
Iscr=0 Ψsc(τ |Z̄τi)ηi(τ)


=
∑

j∈Rc(τ)

ηj(τ)dN c(τ |Z̄τj)
ηj(τ)dH(τ) + r

I(τ≥Aej)
1 αdHscr(τ)

−
∑

j∈Rc(τ)

Ψc(τ |Z̄τj)ηj(τ)wcdH(τ)

+
∑

i∈Rsc(τ)

∑
Iscr=0

dN Iscr(τ |Zτi)
dH(τ)

−
∑

i∈Rsc(τ)

∑
Iscr=0

Ψsc(τ |Z̄τi)ηi(τ)wscdH(τ).

UdHscr(τ) =
∂`

∂dHscr(τ)

=
∑

j∈Rc(τ)

∂ log dΛc(τ |Z̄τj)
∂dHscr(τ)

dN c(τ |Z̄τj)−
∂dΛc(τ |Z̄τj)
∂dHscr(τ)

+

∫ υ

τ+

∑
k∈Rc(t)

∂ log dΛc(t|Z̄tk)
∂dHscr(τ)

dN c(t|Z̄tk)−
∂dΛc(t|Z̄tk)
∂dHscr(τ)
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+
∑

i∈Rsc(τ)

∂ log dΛIscr(τ |Z̄τi)
∂dHscr(τ)

dN Iscr(τ |Z̄τi)−
∂dΛIscr(τ |Z̄τi)
∂dHscr(τ)

+

∫ υ

τ+

∑
l∈Rsc(t)

∂ log dΛIscr(t|Z̄tl)
∂dHscr(τ)

dN Iscr(t|Z̄tl)−
∂dΛIscr(t|Z̄tl)
∂dHscr(τ)

=
∑

j∈Rc(τ)

(
Ψc
dHscr(τ)(τ |Z̄τj)
Ψc(τ |Z̄τj)

+
r
I(τ≥Aej)
1

ηj(τ)dH(τ) + r
I(τ≥Aej)
1 αdHscr(τ)

)
dN c(τ |Z̄τj)

−
Ψc
dH(τ)(τ |Z̄τj)
Ψc(τ |Z̄τj)

dΛc(τ |Z̄τj)−Ψc(τ |Z̄τj)r
I(τ≥Aej)
1

+

∫ υ

τ+

∑
k∈Rc(t)

Ψc
dHscr(τ)(t|Z̄tk)
Ψc(t|Z̄tk)

dN c(t|Z̄tk)−
Ψc
dHscr(τ)(t|Z̄tk)
Ψc(t|Z̄tk)

dΛc(t|Z̄tk)

+
∑

i∈Rsc(τ)

∑
Iscr=1

(
Ψsc
dH(τ)(τ |Z̄τi)
Ψsc(τ |Z̄τi)

+
I(τ < Aei, τ > Axi)

dHscr(τ)

)
dN Iscr(τ |Z̄τi)

−
Ψsc
dHscr(τ)(τ |Z̄τi)
Ψsc(τ |Z̄τi)

dΛIscr(τ |Z̄τi)−Ψsc(τ |Z̄τi)
[
I(τ < Aei)α + I(τ > Axi)r2α

]
+

∫ υ

τ+

∑
l∈Rsc(t)

∑
Iscr=1

Ψsc
dHscr(τ)(t|Z̄tl)
Ψsc(t|Z̄tl)

dN Iscr(t|Z̄tl)−
Ψsc
dHscr(τ)(t|Z̄tl)
Ψsc(t|Z̄tl)

dΛIscr(t|Z̄tl)

=
∑

j∈Rc(τ)

r
I(τ≥Aej)
1 αdN c(τ |Z̄τj)

ηj(τ)dH(τ) + r
I(τ≥Aej)
1 αdHscr(τ)

−
∑

j∈Rc(τ)

Ψc(τ |Z̄τj)r
I(τ≥Aej)
1 α

1−

∫ υ
τ

∑
k∈Rc(t)

Ψc
dHscr(τ)

(t|Z̄tk)

Ψc(t|Z̄tk)
dM c(t|Z̄tk)∑

j∈Rc(τ) Ψc(τ |Z̄τj)r
I(τ≥Aej)
1 α


+

∑
i∈Rsc(τ)

∑
Iscr=1

I(τ < Aei, τ > Axi)dN
Iscr(τ |Z̄τi)

dHscr(τ)

−
∑

i∈Rsc(τ)

∑
Iscr=1

Ψsc(τ |Z̄τi)
[
I(τ < Aei)α + I(τ > Axi)r2α

]

∗

1−

∫ υ
τ

∑
l∈Rsc(t)

Ψsc
dHscr(τ)

(t|Z̄tl)
Ψsc(t|Z̄tl)

dM sc(t|Z̄tl)∑
i∈Rsc(τ)

∑
Iscr=1 Ψsc(τ |Z̄τi)

[
I(τ < Aei)α + I(τ > Axi)r2α

]


=
∑

j∈Rc(τ)

r
I(τ≥Aej)
1 αdN c(τ |Z̄τj)

ηj(τ)dH(τ) + r
I(τ≥Aej)
1 αdHscr(τ)

−
∑

j∈Rc(τ)

Ψc(τ |Z̄τj)r
I(τ≥Aej)
1 αwcdHscr(τ)

+
∑

i∈Rsc(τ)

∑
Iscr=1

I(τ < Aei, τ > Axi)dN
Iscr(τ |Zτi)

dHscr(τ)
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−
∑

i∈Rsc(τ)

∑
Iscr=1

Ψsc(τ |Z̄τi)
[
I(τ < Aei)α + I(τ > Axi)r2α

]
wscdHscr(τ).

The score equations UdH(τ) and UdHscr(τ) are martingales at the true model:

UdH(τ) =
∂`

∂dH(τ)

=
∑

j∈Rc(τ)

ηj(τ)dM c(τ |Z̄τj)
ηj(τ)dH(τ) + r

I(τ≥Aej)
1 αdHscr(τ)

+

∫ υ

τ

∑
j∈Rc(t)

Ψc
dH(τ)(t|Z̄tj)
Ψc(t|Ztj)

dM c(t|Z̄tj)

+
∑

i∈Rsc(τ)

∑
Iscr=0

dM0
i (τ |Zτi)
dH(τ)

+

∫ υ

τ

∑
i∈Rsc(t)

1∑
Iscr=0

Ψsc
dH(τ)(t|Z̄ti)
Ψsc(t|Zti)

dM Iscr(t|Z̄ti)

UdHscr(τ) =
∂`

∂dHscr(τ)

=
∑

j∈Rc(τ)

r
I(τ≥Aej)
1 αdM c(τ |Z̄τj)

ηj(τ)dH(τ) + r
I(τ≥Aej)
1 αdHscr(τ)

+

∫ υ

τ

∑
j∈Rc(t)

Ψc
dHscr(τ)(t|Z̄tj)
Ψc(t|Ztj)

dM c(t|Z̄tj)

+
∑

i∈Rsc(τ)

∑
Iscr=1

I(τ < Aei, τ > Axi)dM
1
i (τ |Zτi)

dH(τ)

+

∫ υ

τ

∑
i∈Rsc(t)

1∑
Iscr=1

Ψsc
dHscr(τ)(t|Z̄ti)
Ψsc(t|Zti)

dM Iscr(t|Z̄ti)

B.3 Data analysis results
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Figure B.1: Kaplan-Meier curves for predicted and observed survival from diagnosis by age for
control arm and screening arm, PLCO.
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Figure B.2: Kaplan-Meier curves for predicted and observed survival from diagnosis by age for
control arm and screening arm, SEER.
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APPENDIX C

Supplementary Materials for Chapter IV

C.1 The mean lead time and empirical estimation

Lead time is usually defined as the amount of time by which clinical diagnosis

(i.e., diagnosis without screening) is advanced by screening. This version of lead time

is only defined in patients who are detected by screening and who, in the absence

of screening, would be clinically diagnosed. This definition excludes overdiagnosed

patients (i.e., patients detected by screening who would not be clinically diagnosed

in the absence of screening), patients clinically diagnosed, and patients without any

diagnosis. Our goal here, however, is to derive a generic surrogate of the intensity of

screening and diagnosis in a given population that is amenable to empirical (model-

free, robust) estimation and prediction. Nevertheless, due to its close theoretical

relationship with the mean lead time (described below), we adopt this terminology.

In a screening trial, the time from randomization to screen detection (TSDx) and

the time from randomization to clinical diagnosis (TCDx) are competing risks that are

never both observed for the same patient. Consequently, their full joint distribution

is non-identifiable without specific modeling assumptions (Tsiatis, 1975). However,
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the mean lead time (i.e., the mean time difference TCDx − TSDx , which is non-zero

only if TSDx < TCDx) is identifiable and can be calculated empirically. Formally, the

mean lead time is equal to the difference between the mean time to diagnosis without

screening minus the mean time to diagnosis with screening:

E
(
min(0, TCDx − TSDx)

)
= E(TCDx)− E

(
min(TCDx, TSDx)

)
The two terms on right-hand side can be estimated empirically as the areas under

the survival curves for diagnosis in the absence and in the presence of screening.

Further, this empirical approach for estimating the mean lead time extends to a trial

with finite follow-up (Tmax). Specifically, the time of screen detection becomes T
′
SDx =

min(Tmax, TSDx), the time of clinical diagnosis becomes T
′
CDx = min(Tmax, TCDx) , and

the mean times from randomization to diagnosis in the absence and in the presence

of screening can be estimated as the areas under the survival curves for diagnosis

up to the landmark Tmax (Appendix Figure C.1). Restricted survival times have

been used in medical statistics and this time-restricted version of the mean lead time

corresponds exactly to the so-called restricted mean survival time (Uno et al., 2014)

when the survival event of interest is cancer diagnosis.

Note that the mean lead time estimated in this way is not interpretable as the mean

lead time for non-overdiagnosed screen-detected cases who would have been clinically

diagnosed in the absence of screening (within the follow-up of the trial). Rather,

this version of the mean lead time is a population-level measure for all participants

in the trial arm, and greater magnitudes can indicate both greater numbers of non-

overdiagnosed cases detected early as well as greater numbers of overdiagnosed cases.

Because this version of the mean lead time is positively related to the number of

non-overdiagnosed cases, it is an acceptable surrogate for the intensity of screening

and diagnostic workup for our analyses. After all, if greater magnitudes were only
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Figure C.1: (A) Mean time from randomization to diagnosis without screening, (B) mean time from
randomization to diagnosis with screening, and (C) mean lead time, each restricted to 11 years of
follow-up, correspond to areas under the associated diagnosis-free survival curves or to the difference
between these areas.

attributable to greater numbers of overdiagnosed cases, there would be no observed

prostate cancer mortality reduction that could be associated with this measure.

Finally, to standardize the measure across trial arms in this study, we scaled each

estimated MLT by a common baseline probability of (screen or clinical) diagnosis

during follow-up, 1/Pr(diagnosis in [0, Tmax]), making the MLT a conditional average

given any mode of prostate cancer diagnosis during the trial.
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C.2 Descriptions of three prostate cancer natural history

models, adaptations to trial settings, and estimation

methods

Three models of prostate cancer development, progression, and detection were

used to estimate MLTs associated with prostate-specific antigen (PSA) screening

in each arm of the European Randomized Study of Screening for Prostate Cancer

(ERSPC) and the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screen-

ing trial. Two of the models are microsimulation models that generate individual

life histories comprised of cancer natural history and diagnosis; the third is an ana-

lytic mathematical model that represents corresponding events in an integrated set

of analytic probability models. The models previously estimated age-specific risks of

onset of latent cancer, transitions through histologic stages and grades, and clinical

diagnosis in the absence of screening (Appendix Figure C.2) in the general US popu-

lation (https://resources.cisnet.cancer.gov/registry/site-summary/prostate). For this

study, the models were adapted using data on screening and biopsy behavior before

and after the start of each trial and prostate cancer incidence data during the trials,

including age, stage, and grade at diagnosis and mode of detection. Details for each

model are given below. The adapted models closely reproduced incidence patterns

observed in intervention and control arms of both trials. These incidence patterns ob-

tained from the models were then used in place of observed incidence data to estimate

the MLT in each trial arm using the empirical approach described above.

In the intervention arms, the models implemented center-specific screening and

biopsy-referral protocols subject to observed adherence, which implied an average of

2.1-3.3 (ERSPC) or 6.9-7.5 (PLCO) tests per person during 11 years of follow-up

(ranges across models). In the PLCO control arm, the models assumed screening test

frequencies by age and birth year as previously reconstructed for the US population
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Figure C.2: Health states and modeled transitions between states in the FHCRC, MISCAN, and
UMICH models.

with increased tests during the intervention period as previously noted (Pinsky et al.,

2010; Gulati et al., 2012), which implied an average of 3.8-5.1 tests per person. In the

ERSPC control arm, the models assumed screening occurred at 5% of the frequency

of PSA screening in the US population over the same calendar period as the trial,

which implied an average of 0.2-0.4 tests per person.

C.2.1 The Fred Hutchinson Cancer Research Center (FHCRC) model

The FHCRC model consists of two connected pieces: PSA growth and disease

progression. PSA growth is linear on the log scale, with a larger slope after dis-

ease onset. PSA growth rates were estimated using serial screening results from the

placebo arm of the Prostate Cancer Prevention Trial (Thompson et al., 2003). Dis-

ease progression encompasses tumor onset, metastatic spread, and clinical diagnosis
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that would occur in the absence of screening. The risk of onset increases with age

and risks of progression to subsequent events increase with PSA levels. All cancers

are T-stage ≤ T2a at onset and can progress to T-stage > T2a and to T4 or M1.

Cancer grade (Gleason score 2-6, 7, or 8-10) is fixed at onset. To estimate progression

risk parameters for the US population, we superimposed PSA screening and biopsy

frequencies using published patterns and determined the parameter values (using sim-

ulated maximum likelihood) so that model incidence closely matched incidence in the

Surveillance, Epidemiology, and End Results (SEER) program by age, year, stage,

and grade (Gulati et al., 2010).

To adapt the model to the PLCO, we assumed eligible men underwent PSA screen-

ing based on our reconstruction for general US population, ensured all men were un-

diagnosed at entry into the trial, and specified enrollment, attendance, and follow-up

patterns to match observed data for all men ages 55-74 years at enrollment. Men ran-

domized to the intervention arm underwent 6 years of annual DRE and PSA screening,

while men randomized to the control arm underwent more intensive screening than

in the general population (Pinsky et al., 2010). Men in either arm with suspicious

DRE or PSA>4.0 ng/mL received biopsies based on observed frequencies in the in-

tervention arm by age and PSA level, and we assumed the sensitivity of a biopsy to

detect latent cancer improved from 80% in 1993 to 93% in 2000 and later (Gulati et al.,

2010). After the trials 6-year intervention period, men were randomized to either arm

resumed screening according to population screening patterns. Model assumptions

of non-compliance and contamination were previously described (Gulati et al., 2012).

While the model for the general US population projected incidence that matched ob-

served incidence reasonably well without adjustment, we re-estimated risks of onset

and of progression to produce modestly improved fit. The modest changes are con-

sistent with a cohort enriched for healthy behavior and higher socioeconomic status

(Pinsky et al., 2010).
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Adaptation to the ERSPC core age group (ages 55-69 years at enrollment) was

similar except that enrollment, attendance, follow-up, DRE and PSA screening, PSA

threshold for biopsy, and receipt of biopsy were modeled for each center individually

to reflect heterogeneity in recruitment and protocols. We assumed the control arm un-

derwent less intensive screening than the US population (receiving 5% of screens), con-

sistent with contamination reported for several centers (Ciatto et al., 2003; Bokhorst

et al., 2014). As for the PLCO, while the model projected incidence that matched

observed incidence reasonably well without adjustment, we re-estimated risks of on-

set and of progression to produce modestly improved fit. In particular, allowing for

differential risks of clinical presentation for each stage and grade, the model achieved

a noticeably improved fit for metastatic incidence.

C.2.2 The Erasmus University Medical Center MIcrosimulation SCreen-

ing ANalysis (MISCAN) model

The MISCAN model is also a microsimulation model of individual life histories.

The risk of onset increases with age, and risks of cancer progression are modeled as

a semi-Markov process over a sequence of tumor states. There are 18 preclinical de-

tectable states determined by combinations of histologic grade (SEER categories well,

moderately, and poorly differentiated), clinical T-stages (American Joint Committee

on Cancer stages T1, T2, and T3), and clinical M-stages (M0 and M1). Risks of stage

and grade progression are both modeled and allowed to vary across combinations and

from a preclinical to clinical state. The chance of a screen protocol detecting a pre-

clinical tumor depends on screening frequency, attendance rates, the PSA threshold

for a positive test, and, after a positive PSA test, biopsy compliance and sensitivity.

Baseline model parameters were originally estimated using data from the Rotter-

dam section of the ERSPC (Draisma et al., 2003). For adaptation to the US popula-

tion, we re-estimated the PSA test sensitivity parameters and a modified stage-specific
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risk of clinical diagnosis to capture different pre-PSA disease diagnosis patterns. US-

specific estimates for the parameters were obtained by calibrating the model to the

observed age-specific incidence and age-specific SEER stage distribution using maxi-

mum likelihood (Wenver et al., 2010).

Adaptations of the US model to the PLCO and of the Rotterdam model to the

ERSPC were similar to those for the FHCRC model. Specifically, after accounting

for differences in settings and protocols, we re-estimated model parameters in each

trial arm to match observed incidence by age and year, and the associated stage

distribution, by minimizing a sum of the chi-square errors. The minimization was

achieved using an adapted version of the Nelder-Mead simplex algorithm. The algo-

rithm was initially run using small sample sizes (i.e., 20,000 men) then repeated with

larger sample sizes (i.e., 2,000,000 men) when the initial optimization step could not

be further improved. For this analysis, we first re-estimated the disease progression

rates and the PSA test sensitivity relative to stage- and grade-specific incidence of

clinical cancers in the control arms and then relative to screen-detected and interval

cancers in the intervention arms.

C.2.3 The University of Michigan (UMICH) model

The model is similar with the models in Chapter 2 and Chapter 3, which is an an-

alytic model comprised of three components. A marginal incidence model (Tsodikov

et al., 2006) is a two-stage model for a given individual screening schedule (a point

process A). The first stage is defined by the hazard of the first PSA test for a man at

a given age and calendar time. A second hazard is defined for men who already had

their first PSA test. Both hazards of PSA testing rely on a retrospective analysis of

PSA testing. Cancer diagnosis is defined as a result of two competing risks, clinical

diagnosis (CDx) and diagnosis due to screening (SDx), whichever comes first. The

risks are dependent based on a common natural history of the disease, with both risks
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equal to zero until the onset of a detectable tumor. Estimation is based on parametric

maximum likelihood, which averages over the unobserved screening schedule and nat-

ural history processes. Once the stochastic process mixed model is fit, predictions for

lead time, overdiagnosis, age of tumor onset, and other characteristics in the patient

and the population are predicted using Bayesian conditional probabilities.

Cancer stage and grade are represented as a categorical mark (Z) on the incident

cancer. We use a mixed multinomial model to specify the distribution of stage and

grade at diagnosis, where the mixing variables represent key unobserved features of

latent disease progression (e.g., age at onset), predicted as conditional distributions,

given results of the marginal incidence model. Stage and grade are modeled using

a mixed multinomial model. The model is estimated by maximum likelihood. We

developed a special method of artificial mixtures and the quasi-EM algorithm to deal

with the curse of dimensionality in complex models (Tsodikov et al., 2014). Appli-

cations of the multinomial model and the stage- and grade-specific incidence model

have been previously described (Tsodikov and Chefo, 2008; Chefo and Tsodikov, 2009;

Wang and Tsodikov, 2010). Given age, year, stage, and grade at diagnosis, the model

projects unobserved characteristics of disease natural history and clinical diagnosis in

the absence of screening.

Finally, disease progression is modeled as a stochastic process Z(ξ) as a function

of time ξ measured from the point of onset. Given the two potential competing risks

of clinical and screening diagnosis, we can define the corresponding potential values

of the cancer development process Z(ξSDx) and Z(ξCDx) for the same individual. Let

ISDx be 1 for screening and 0 for clinical diagnosis and define the vector V = (a, z)

combine age, stage, and grade at diagnosis. The disease progression model defines

the probability of disease progression between these two potential points of diagnosis

by the transition model [V0|V1]. For a screen-detected patient, let fV (V0|V1, x) be

the joint pdf of disease presentation at CDx (with characteristics V0) given observed
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characteristics V1 at SDx and birth cohort x. The transition probabilities between

the two points of diagnosis (SDx, CDx) are modeled as functions of the lead time

ξL, pb(z0|z1, ξL), summarized as a progression probability matrix (PPM). Under the

null hypothesis of no screening benefit, the baseline PPM probabilities pb are not

affected by intervention applied at the point of SDx. Thus, we consider two model

predictions for cancer incidence: (1) λI(a, z|S̄) under no screening and (2)λI(a, z|IS)

under ignored screening (no effect of early detection). The first scenario does not

involve the PPM, while the second scenario uses PPM. Making the two counterfac-

tual incidence predictions as close as possible using a Poisson-type distance measure

provides a robust estimating procedure.

To estimate mean lead times in this study, only the marginal incidence model

needed to be estimated. Because screening intensities for the trial populations are

only partially known, the competing risk of screen diagnosis during the follow-up

period was estimated nonparametrically and jointly with the parametric natural his-

tory model as a matrix by age and follow-up time using maximum likelihood. Thus,

in contrast to the MISCAN and FHCRC microsimulation models, which combined

empirical data with trial protocols, the UMICH model directly incorporated empiri-

cal patterns of enrollment, attendance, and follow-up; PSA screening and receipt of

biopsy; and age, year, stage, grade, and mode of detection for incident cancers into

the aggregate data-driven nonparametric risk of screening diagnosis and paramet-

ric risk of clinical diagnosis. The resulting version of the marginal incidence model

was used to generate the expected incidence in each trial arm. Lead times in each

trial arm were predicted using the method similar to the empirical approach, except

that the model-based incidence predictions in each trial arm were used instead of

the empirical time to diagnosis survival curves. Comparable assumptions were made

concerning prior screening for both trials.
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