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ABSTRACT

This dissertation concerns the development of retrospective cost adaptive control

(RCAC) and the application of RCAC to the active noise control (ANC) problem.

We further the development of RCAC by presenting an alternative interpretation the

retrospective performance variable. The retrospective performance decomposition

is derived which separates the retrospective performance into the sum of a pseudo-

performance term and a model-matching error term. We demonstrate an experimental

application of RCAC by applying it to the broadband feedback road noise suppression

problem in a vehicle. We show that RCAC is able to suppress the primary modes of the

road noise at the performance microphone location. However, qualitative evaluation

of the noise at the location of the driver was poor. This leads to the question, if you

suppress the noise at the performance microphone, what is effect at the actual ear of

the driver where you may not be able to place a sensor. The concept of spatial spillover

is explored, where we develop an operator that relates relative suppression at the per-

formance microphone to relative suppression at the evaluation microphone, which we

denote as the spatial spillover function. The properties of the spatial spillover func-

tion are then validated numerically and experimentally. Finally, the framework of

RCAC is extended to the feedforward control problem. Comparisons of RCAC feed-

forward control are made to linear-quadratic-Gaussian (LQG) control. It is shown that

under certain conditions, RCAC is able to match the performance of LQG. Further-

more, we compare RCAC to the filtered-x/filtered-u least-mean-square (Fx/FuLMS)

and the filtered-x/filtered-u recursive-least-square (Fx/FuRLS) algorithms and demon-

xiv



strate numerically that RCAC is able to achieve better asymptotic performance that

FuRLS. The RCAC feedforward control algorithm is demonstrated in an acoustic ex-

periment. We demonstrate experimentally that if the ideal feedforward controller is

implementable, the RCAC controller is able to recover the frequency response of the

ideal controller.
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CHAPTER 1

Introduction

1.1 Active Noise Control

The problem of undesirable acoustic noise is prevalent in both commercial and indus-

trial applications. Traditional methods of noise control have largely been passive in the

form of enclosures, barriers, and insulating materials to reflect or absorb noise. Active

noise control (ANC) [1, 2] is the principle of canceling a sound wave with an anti-wave of

the same magnitude, 180◦ out of phase. The combined sum of the two sound waves leads

to the attenuation of both noises. The appeal of active noise control over traditional passive

methods is the ability to provide significant noise reduction with smaller, lighter, and at

times, cheaper solutions. Early methods involved model-based robust control design, but

with the advent of more powerful digital signal processing (DSP) hardware that can meet

real-time requirements, the switch to adaptive filtering/control methods has become the

norm. Some of the motivators for this switch from model-based to adaptive control can be

attributed to difficulty in modeling sound fields with multiple sources, the variability of the

system under environmental conditions such as temperature, and the non-stationary nature

of the noise in certain applications. This naturally leads to the need for control methods to

be adaptive. Some of the earliest such examples were active cancellation of harmonic noise

in a duct using adaptive filtering methods [3]. The use of adaptive control algorithms based

on adaptive filtering have extended the range of harmonic noise suppression applications,

the most recognizable being the filtered-x least-mean-squares (FxLMS) algorithm [4–6].
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Some of the most successful current applications of active noise control include suppres-

sion of fan noise in heating, ventilation, and air conditioning (HVAC) systems, suppression

of engine noise in a vehicle, and noise canceling headsets. In the field of Aerospace Engi-

neering, active noise control has been applied to reduction of helicopter rotor noise using

headsets, which was an early precursor to noise canceling headsets. Applications to noise

reduction in an aircraft cabin has been explored in [7], however obtaining global suppres-

sion of the noise within the entire cabin remains a challenge as the increased size of the

enclosure, relative to ground vehicles, increases the complexity of the acoustics.

Currently, the applications of ANC are still largely limited to low-frequency noise,

relative to the range of human hearing. The challenge of extending the bandwidth of ANC

comes from the increased complexity of higher order acoustic modes and the increased

difficulty in implementation of algorithms at higher sampling rates. This is coupled to the

fact that passive methods are shown to be more effective in most cases at high frequencies

[5]. The other aspect limiting bandwidth is the ability to suppress noise at locations where

a measurement is not directly available. Suppression of noise at a sensing location can

potentially lead to amplification of noise at other locations of interest. We refer to this

phenomenon as spatial spillover. Spatial spillover is tied, in part, to the size and complexity

of acoustic space and the distribution of sensing and actuation, but also becomes more

difficult to avoid at higher frequencies.

1.2 Spatial Spillover

Due to restrictions in the design of a system, a performance microphone may not always

be placeable at all locations in where it is desirable to suppress noise. Thus, in the design

phase, it is crucial to understand the relation between where the performance microphone

is placed and evaluation locations where it is desirable to suppress noise [8]. This has led

to the development alternative performance metrics beyond the sound pressure level (SPL).
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In [9,10], acoustic energy density at performance microphone locations is considered as an

alternative performance metric that provides better global suppression.

In the present dissertation, we develop the notion of spatial spillover, which concerns

the decrease in the noise amplitude at the location of the performance microphone z rela-

tive to its open-loop level as compared to the decrease in noise amplitude at the location

of the evaluation microphone e relative to its open-loop level for a linear system. Conse-

quently, spatial spillover is a measure of the relative effectiveness of the control at different

locations. This notion is distinct from the fact, as shown in Figure 1.1, that the sum of

two unit-amplitude sinusoidal waves of the same frequency may possess any amplitude

between 0 and 2 depending on the relative phase shift of the waves. Consequently, a dis-

turbance sinusoid and a control-speaker sinusoid may add destructively at one location and

constructively at another location depending on the phase shift between the waves at these

locations. This notion is sometimes used to estimate the bandwidth in which control is

effective within an acoustic space. However, this phenomenon per se says nothing about
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Figure 1.1: Amplitude of the sum of two unit-amplitude sinusoids with identical frequency
ω and relative phase φ. For φ = 180 deg, perfect cancellation occurs, and thus, the ampli-
tude of the sum is zero. For φ = 180 ± 60 deg, the amplitude of the sum is 1. The plot is
based on the fact that sin(ωt) + sin(ωt + φ) = 2cos(φ/2)sin(ωt + φ/2).

the relationship between open- and closed-loop noise levels at a given location, and thus
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is not relevant to spatial spillover as defined and analyzed in the present work. In this dis-

sertation, we define a spatial spillover function, which relates the relative performance at

the performance microphone z to the relative performance at an evaluation microphone e

for both feedforward and feedback control. It turns out that the spatial spillover function

has the same functional form for both feedforward and feedback control and, in addition, is

independent of the controller in the case of scalar control. The contributions of the present

work in this regard are the following:

• The derivation of the spatial spillover function for feedback and feedforward distur-

bance rejection in the case where z, e, and the disturbance w are scalars.

• Numerical validation and experimental measurement of the spatial spillover function

for feedback and feedforward disturbance rejection.

Some of the spatial spillover results in this dissertation appear in [11].

1.3 Feedback and Feedforward Active Noise Control

In the context of ANC, algorithms can roughly be classified as either feedforward or

feedback. Feedforward algorithms assume that a direct or indirect measurement of the dis-

turbance is available. The assumption is that the disturbance measurement is not corrupted

by the control speaker output, which means that the transfer function from the control input

to the disturbance measurement is zero. Consequently, the only feedback in the system is

the adaptation loop, which typically operates at a much slower rate than the time constant

of the acoustics. The absence of a fast feedback loop means that these algorithms are less

susceptible to instability. [2, 5]

In some applications, however, it is difficult to measure the disturbance either directly

or indirectly. For example, in the case of interior noise in a ground vehicle which arises

from the tire-road contact, current solutions for feedforward control rely on accelerometers
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placed on the drivetrain as an indirect measurement of the noise. It can be challenging

designing these systems since performance can be largely influenced by the degree of cor-

relation between the accelerometer measurements and the actual acoustical noise, which,

beyond placement of the sensors, is affected by the structural dynamics of the vehicle. In

this situation, feedback control, which does not require an external measurement of the dis-

turbance, can be a more appropriate architecture since feedback would rely only on internal

microphones measurements in the control loop. However, feedback control is more chal-

lenging to implement due to its greater susceptibility to instability in the event of model

errors.

Aside from these limitations, the two architectures differ in their performance relative

to the disturbance spectrum. Both architectures perform well in the presence of narrowband

(for example, tonal) disturbances [5, 12]. However, suppressing broadband disturbances is

challenging for both methods. The achievable performance in broadband feedforward con-

trol is limited by two aspects. An overall limiting causality constraint exists in broadband

feedforward control, where a delay in the transfer function from the control input to the

performance microphone must be compensated for by a delay of at least equal length in

the transfer function from the disturbance to the performance microphone. Furthermore,

the existence of nonminimum phase (NMP) zeros in the transfer function from the control

input to the performance microphone can limit the achievable performance [5]. Although

feedback control can suppress broadband noise, feedback architectures are limited by the

Bode integral constraint, which implies that reducing the magnitude of the frequency re-

sponse is impossible at all frequencies [13–15]. For narrowband disturbances, this does

not present a problem since the noise spectrum is confined to a limited bandwidth. How-

ever, for broadband disturbances, it is inevitable that, at least in some frequency range, the

closed-loop noise level is amplified relative to the open-loop noise level. The challenge is

thus to shape the closed-loop response so that spectral spillover has minimal effect on the

closed-loop performance. In active noise control, this is especially challenging due to the
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A-weighting effect of human hearing, which emphasizes the high-frequency range.

1.4 Retrospective Cost Adaptive Control

One of the focuses of this dissertation is the application of the retrospective cost adap-

tive control (RCAC) algorithm to feedforward and feedback broadband active noise con-

trol problems. RCAC was originally developed within the context of feedback active noise

control experiments in an acoustic duct for both tonal and broadband disturbances [16].

Broadband feedback disturbance rejection using RCAC is further considered in [17–20].

In [21, 22], connections between broadband feedback disturbance rejection using RCAC

and linear-quadratic-Gaussian (LQG) control, an H2 optimal method, are considered. The

contributions of the present work in this regard are the following:

• An experimental application of RCAC feedback active noise control applied to broad-

band road-noise disturbance rejection in a ground vehicle. Some of the results appear

in [23].

• Extension of RCAC to broadband feedforward disturbance rejection with connec-

tions to LQG through numerical simulation and experimental results.

• Comparison of RCAC to the Filtered-x/Filtered-u least-mean-square (F-x/F-u LMS)

and the Filtered-x/Filtered-u recursive-least-squares (F-x/F-u RLS) algorithms [4, 5,

24, 25].

We also extend the work in [20, 22] on the filter Gf for RCAC, which contains the

necessary modeling information for the algorithm. In [20, 22], Gf is regarded as a target

model for a specific closed-loop transfer function G̃zũ, which is called the intercalated

transfer function. Part of the contribution is the derivation and interpretation of Gf and G̃zũ

in the context of feedforward disturbance rejection. The other major contribution of this

dissertation is a new interpretation of the retrospective performance variable ẑ(k, θ̂) based
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on the work in [20, 22]. In particular, we decompose ẑ(k, θ̂) to show that the retrospective

performance variable is the sum of a performance-like term and a target model-matching

error term.

1.5 Dissertation Outline

This dissertation is organized as follows.

Chapter 2 Summary

In Chapter 2, we derive the spatial spillover function for feedback and feedforward con-

trol in the case where z, e, and the disturbancew are scalar signals. We show that the spatial

spillover function can be expressed as a ratio of transmissibility functions. For illustrative

2 degree of freedom (DOF) models, we compute the spatial spillover function in numeri-

cal simulations. The study is repeated experimentally in a broadband disturbance rejection

acoustic experiment. In certain applications, obstructions that are difficult to model may

be present in the acoustic space, for example, passengers in a vehicle. We thus introduce

obstructions between the performance and evaluation microphones in order to determine

the effect on the spatial spillover function.

Chapter 3 Summary

In Chapter 3, we present the framework for the standard problem and the equations of

the RCAC algorithm.

Chapter 4 Summary

In Chapter 4, we present the interpretation of the target model Gf in the context of

RCAC feedback control and derive the RCAC performance decomposition. What follows
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is an experimental implementation of broadband feedback road noise suppression using

RCAC. We incorporate the concepts of spatial spillover developed in Chapter 2 to the

experiment and analyze suppression at evaluation microphone locations in the context of

the spatial spillover function.

Chapter 5 Summary

In Chapter 5, we present the framework of the feedforward disturbance rejection prob-

lem and the ideal feedforward controller Ĝc. The equations of LQG and properties of

high-authority LQG for feedforward disturbance rejection are reviewed. Next, the role of

Gf and G̃zũ are derived in the context of RCAC feedforward control. We show that RCAC

is able to recover LQG controllers for various cases in a series of numerical examples.

The controller update equations of RCAC are compared to the Fx/FuLMS and Fx/FuRLS

algorithms. RCAC is then compared numerically to the FuRLS algorithm. Finally, we

implement RCAC in a feedforward acoustic experiment.

In Chapter 6, we summarize the conclusions and contributions of this dissertation, and

discuss future work.
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CHAPTER 2

Spatial Spillover

In this chapter, we derive the spatial spillover function for feedforward control and

numerically demonstrate its properties. The spatial spillover function is then derived for

feedback control and numerically demonstrated. We show that the spatial spillover function

has the same function form regardless of control architecture. An alternative formulation

of the spatial spillover function involving the ratio of transmissibilities is then presented.

We then demonstrate the determination of the spatial spillover function for feedforward

and feedback control in an acoustic experiment and examine the effect of obstructions

within the acoustic space on the spatial spillover function.

2.1 Spatial Spillover Function for Feedforward Control

Consider the feedforward control problem shown in Figure 2.1, where z ∈ R is the

performance variable, e ∈ R is the evaluation variable, w ∈ R is the disturbance, and

u ∈ Rlu is the control input. Note that z, e, and w are scalar signals and that u may be

either a scalar or vector signal depending on whether lu = 1 or lu > 1, respectively. The

dynamics and signals may be either continuous time or discrete time.
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Figure 2.1: Feedforward control block diagram. The dynamics and signals may be either
continuous time or discrete time.

It follows from Figure 2.1 that

z = Gzuu+Gzww, (2.1)

e = Geuu+Geww, (2.2)

where the feedforward control u is given by

u = Gcw. (2.3)

Therefore,

z = G̃zww, (2.4)

e = G̃eww, (2.5)

where

G̃zw , GzuGc +Gzw, (2.6)

G̃ew , GeuGc +Gew. (2.7)
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Define the spatial spillover function Gss by

Gss ,

G̃ew

Gew

− 1

G̃zw

Gzw

− 1

. (2.8)

Note that, if GzuGc = 0, then G̃zw = Gzw, and thus the spatial spillover function is unde-

fined. We therefore assume that GzuGc 6= 0. Gss relates the performance of the controlled

system relative to the uncontrolled system at e to the performance of the controlled system

relative to the uncontrolled system at z. It follows from (2.6) and (2.7) that

G̃zw

Gzw

− 1 =
GzuGc

Gzw

, (2.9)

G̃ew

Gew

− 1 =
GeuGc

Gew

, (2.10)

and thus (2.8)–(2.10) implies that

Gss =
GeuGcGzw

GzuGcGew

. (2.11)

In the case where u is scalar, that is, lu = 1, it follows that

Gss =
GeuGzw

GzuGew

, (2.12)

which is independent of Gc. Note that Gss is a rational function of the Laplace or Z-

transform variable. However, Gss is not a transfer function since it may be improper and

does not have input and output signals that can be specified in terms of z, e, w, and u.
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2.2 Feedforward Control Numerical Examples

In this section, we demonstrate the spatial spillover function for feedforward control

in numerical simulation. Feedforward controllers are designed to provide suppression at

the z location in order to compute the spatial spillover function. Consider a discrete-time

state-space representation of (2.1), (2.2) given by

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (2.13)

z(k) = E1x(k), (2.14)

e(k) = Cx(k), (2.15)

where

Gzw(z) = E1(zI − A)−1D1, (2.16)

Gzu(z) = E1(zI − A)−1B, (2.17)

Gew(z) = C(zI − A)−1D1, (2.18)

Geu(z) = C(zI − A)−1B, (2.19)

and the state-space representation of the feedforward controller (2.3) given by

xc(k + 1) = Acxc(k) +Bcw(k), (2.20)

u(k) = Ccxc(k) +Dcw(k), (2.21)

where

Gc(z) = Cc(zI − Ac)
−1Bc +Dc, (2.22)

xc ∈ Rnc .
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In the subsequent feedforward numerical examples, the discrete-time state-space sys-

tems are chosen arbitrarily as a 4th-order system with two modes. We assume that w is

zero-mean Gaussian white noise with standard deviation 1. Feedforward controllers are

designed to suppress the effect of w at z. No considerations are made in the controller de-

sign to suppress the effect of w at e. The details of the controller design are omitted since

they are not relevant to the analysis.

In each example we compare the spatial spillover function for two different feedforward

controller designs applied to the same system. The spatial spillover function is computed

using (2.8) which is a function of Gzw, Gew, G̃zw given by (2.6), and G̃ew given by (2.7).

We demonstrate that, if lu = 1, then (2.8) is independent of Gc, whereas if lu > 1, then

(2.8) is not independent of Gc.

Example 2.1: Gss for feedforward control with scalar control u. Consider the 4th-order

system

A =



0.45 1 0 0

−0.05 0.45 −0.37 −0.66

0 0 0.38 1

0 0 −0.76 0.38


, B =



0

1.01

0

0.76


, D1 =



−1.53

0

−1.11

−1.04


,

(2.23)

E1 =

[
−0.15 0.99 0 0

]
, C =

[
0.99 0.26 −0.38 0.17

]
. (2.24)

Assuming that this discrete-time model arises from sampling a continuous-time system

at the sample rate of 1 kHz, the corresponding continuous-time modal frequencies are

ωn1 = 132 Hz and ωn2 = 185 Hz with damping ratios ζ1 = 0.831 and ζ2 = 0.043,
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respectively. We apply two different feedforward controllers to this system, namely,

Ac =


0.52 0.74 0

−0.74 0.52 0

0 0 −0.30

 , Bc =


−0.70

−1.14

0.49

 , (2.25)

Cc =

[
0.59 −0.23 −0.17

]
, Dc = −0.12 (2.26)

and

Ac =



0.62 0.67 0 0

−0.67 0.62 0 0

0 0 −0.54 0

0 0 0 −0.01


, Bc =



1.39

2.15

−0.94

0.56


, (2.27)

Cc =

[
−0.56 0.18 0.15 0.21

]
, Dc = −0.18. (2.28)

For both controllers, Figure 2.2 shows the frequency response of the controlled and uncon-

trolled system at z and e as well as the frequency response of Gss. Since u is scalar, Gss is

the same for both controllers.

Example 2.2: Gss for feedforward control with vector control u ∈ R2. Consider the
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4th-order system

A =



0.66 1 0 0

−0.46 0.66 0.38 0.59

0 0 0.90 1

0 0 −0.09 0.90


, B =



0 0

1.07 1

0 1

0.66 0


, D1 =



−0.57

−0.31

0.27

1.33


,

(2.29)

E1 =

[
0.53 0.93 0 0

]
, C =

[
0.93 0.17 −0.69 −0.72

]
. (2.30)

Assuming that this discrete-time model arises from sampling a continuous-time system at

the sample rate of 1 kHz, the corresponding continuous-time modal frequencies are ωn1 =

52 Hz and ωn2 = 127 Hz with damping ratios ζ1 = 0.162 and ζ2 = 0.069, respectively. We

apply two different feedforward controllers to this system, namely,

Ac =


−0.62 0 0

0 0.26 0.18

0 −0.18 0.26

 , Bc =


−1.02

−0.47

−3.18

 , (2.31)

Cc =

−1.26 0.05 0.61

0.20 1.14 −0.13

 , Dc =

0.19

0.18

 (2.32)
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and

Ac =



−0.95 0 0 0

0 −0.51 0.64 0

0 −0.64 −0.51 0

0 0 0 0.33


, Bc =



4.22

−1.16

3.16

0.86


, (2.33)

Cc =

−0.75 0.74 0.20 −1.89

0.14 0.28 0.19 −1.77

 , Dc =

0.29

0.27

 . (2.34)

For both controllers, Figure 2.3 shows the frequency response of the controlled and uncon-

trolled system at z and e as well as the frequency response of Gss. Note that, since u is a

vector, Gss depends on Gc.

2.3 Spatial Spillover Function for Feedback Control

Consider the feedback control architecture shown in Figure 2.4, where z ∈ R is the

performance variable, e ∈ R is the evaluation variable, w ∈ R is the disturbance, and

u ∈ Rlu is the control input. The system may be either continuous time or discrete time.

It follows from Figure 2.4 that

z = Gzuu+Gzww, (2.35)

e = Geuu+Geww, (2.36)

where the feedback control u is given by

u = Gcz. (2.37)
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Using (2.35) and (2.37) we obtain

z = G̃zww, (2.38)

where

G̃zw ,
Gzw

1−GzuGc

. (2.39)

In addition, it follows from (2.36), (2.37), and (2.38) that

e = G̃eww, (2.40)

where

G̃ew , GeuGcG̃zw +Gew =
GeuGcGzw

1−GzuGc

+Gew. (2.41)

For feedback control, we define the spatial spillover function Gss by

Gss ,

G̃ew

Gew

− 1

G̃zw

Gzw

− 1

, (2.42)

which is identical in form to Gss defined by (2.8) for feedforward control. As in the case of

feedforward control, we assume that GzuGc 6= 0. However, G̃zw and G̃ew defined by (2.39)

and (2.41) for feedback control are different from G̃zw and G̃ew defined by (2.6) and (2.7)
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for feedforward control. It follows from (2.39) and (2.41) that

G̃zw

Gzw

− 1 =
GzuGc

1−GzuGc

, (2.43)

G̃ew

Gew

− 1 =
GeuGcGzw

Gew(1−GzuGc)
. (2.44)

Therefore, (2.42) implies that

Gss =

GeuGcGzw

Gew(1−GzuGc)

GzuGc

1−GzuGc

=
GeuGcGzw

GzuGcGew

. (2.45)

Note that (2.45) has the same form as Gss given by (2.11) for feedforward control. In the

case where u is scalar, it follows that

Gss =
GeuGzw

GzuGew

, (2.46)

which is independent of Gc and coincides with (2.12) for feedforward control.

2.4 Feedback Control Numerical Examples

In this section, we demonstrate the spatial spillover function for feedback control in

numerical simulation. Feedback controllers are designed to provide suppression at the z

location in order to compute the spatial spillover function. Consider a discrete-time state-

space representation of the system (2.35), (2.36) given by (2.13)–(2.19) and the state-space

representation of the feedback controller (2.37) given by

xc(k + 1) = Acxc(k) +Bcz(k), (2.47)

u(k) = Ccxc(k) +Dcz(k), (2.48)
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where

Gc(z) = Cc(zI − Ac)
−1Bc +Dc. (2.49)

In the subsequent feedback numerical examples, we consider the same plants as in the

feedforward numerical examples section. We assume that w is zero-mean Gaussian white

noise with standard deviation 1. Feedback controllers are designed to suppress the effect of

w at z. No considerations are made in the controller design to suppress the effect of w at e.

The details of the controller design are omitted since they are not relevant to the analysis.

In each example we compare the spatial spillover function for two different feedback

controller designs applied to the same system. The spatial spillover function is computed

using (2.42) which is a function ofGzw,Gew, G̃zw given by (2.39), and G̃ew given by (2.41).

We demonstrate that, if lu = 1, then (2.42) is independent of Gc, whereas if lu > 1, then

(2.42) is not independent of Gc.

Example 2.3: Gss for feedback control with scalar control u. Consider the system

(2.23), (2.24) with scalar control u. We apply two different feedback controllers to this

system, namely,

Ac =



−1.02 0 0 0

0 0.44 0.66 0

0 −0.66 0.44 0

0 0 0 0.47


, Bc =



0.49

0.42

1.08

1.12


, (2.50)

Cc =

[
−0.97 0.17 0.02 0.10

]
, Dc = 0 (2.51)
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and

Ac =



−1.35 0 0 0 0

0 0.60 0.65 0 0

0 −0.65 0.60 0 0

0 0 0 0.58 0

0 0 0 0 −0.34


, Bc =



−0.87

1

−1.72

−1.46

−0.54


, (2.52)

Cc =

[
0.84 −0.17 −0.13 −0.09 −0.04

]
, Dc = 0. (2.53)

For both controllers, Figure 2.5 shows the frequency response of the controlled and uncon-

trolled system at z and e as well as the frequency response of Gss. Since u is scalar, Gss is

the same for both controllers.

Example 2.4: Gss for feedback control with vector control u. Consider the system

(2.29), (2.30), where u ∈ R2. We apply two different feedback controllers to this system,

namely,

Ac =


−1.35 0 0

0 −0.01 0.34

0 −0.34 −0.01

 , Bc =


−1.49

0.78

−2.16

 , (2.54)

Cc =

−0.62 0.61 0.47

−0.58 −0.56 0.20

 , Dc =

0

0

 (2.55)
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and

Ac =



−1.96 0 0 0

0 0.38 0.37 0

0 −0.37 0.38 0

0 0 0 0.16


, Bc =



−1.98

4.27

−4.60

4.26


, (2.56)

Cc =

−0.46 0.18 −0.29 −0.70

−0.75 0.74 −1.26 0.05

 , Dc =

0

0

 . (2.57)

For both controllers, Figure 2.6 shows the frequency response of the controlled and uncon-

trolled system at z and e as well as the frequency response of Gss. Note that, since u is a

vector, Gss depends on Gc.

2.5 Spatial Spillover as a Ratio of Transmissibilities

Consider the case where z, e, w, and u are scalar signals and introduce the notation

Gzw =
Nzw

Dzw

, Gew =
New

Dew

, Gzu =
Nzu

Dzu

, Geu =
Neu

Deu

. (2.58)

Assume that Dzw = Dew and Dzu = Deu. The transmissibility [26–28] from z to e driven

by w is given by

Tez,w ,
Gew

Gzw

=

New

Dew

Nzw

Dzw

=
New

Nzw

. (2.59)
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Similarly, the transmissibility from z to e driven by u is given by

Tez,u ,
Geu

Gzu

=
Neu

Nzu

. (2.60)

Therefore, it follows from (2.12) and (2.46) that

Gss =
GeuGzw

GzuGew

=
NeuNzw

NzuNew

=

Neu

Nzu

New

Nzw

=
Tez,u
Tez,w

. (2.61)

Hence Gss can be expressed as the ratio of two transmissibility functions.

2.6 Experimental Results

2.6.1 Experimental Setup

We apply feedforward and feedback controllers to an acoustic experiment to inves-

tigate the spatial spillover function. Omni-directional microphones are used as sensors,

and mid-bass woofers are used as the actuation. Real Time Workshop (RTW) and MAT-

LAB/Simulink is used with a dSPACE DS1104 board to implement the designed con-

trollers. Additional hardware used in implementation included speaker amplifiers, mi-

crophone amplifiers, and anti-aliasing filters. A diagram of the microphone and speaker

placement is shown in Figure 2.7. The approximate dimensions of the acoustic space are 6

ft× 3 ft× 3 ft. We consider three microphone locationsm1, m2, andm3, and three speaker

locations s1, s2, and s3. In the subsequent experiments, one microphone is chosen as the

performance microphone z, a separate microphone is chosen as the evaluation microphone

e, one speaker is chosen to produce a disturbance w, and either one or both of the remain-

ing speakers are chosen as the control speaker u. The frequency range of interest for this
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study is from 50 Hz to 500 Hz, with all data sampled at 1 kHz. Each data set is run for

10,000 samples and multiple runs are repeated to check for consistency. In all experimental

examples, the disturbance w is chosen as zero-mean Gaussian white noise.

2.6.2 Experimental Determination and Validation of the Spatial

Spillover Function

In the subsequent feedforward control experiments, two methods for estimating the

spatial spillover function Gss are compared. We estimate Gss using both (2.8) and (2.11).

The Blackman-Tukey spectral analysis method [29] with a Hanning window is applied to

input-output data in order to estimate the frequency response of various transfer functions

in Gss.

Determining Gss using (2.8) requires estimates of Gzw, Gew, G̃zw, and G̃ew. The fre-

quency response of Gzw and Gew are estimated by exciting the system with a known broad-

band input w and sampling the z microphone and e microphone outputs. The frequency

response of G̃zw and G̃ew are estimated by applying the controller to the system with a

known disturbance w and similarly obtaining measurements of the output signals z and

e. Determining Gss using (2.11) requires estimates of Gzw, Gew, Gzu, and Geu, and, in

the case where u is a vector, depends on the design of Gc. The frequency response of

Gzw and Gew are estimated as described above. The frequency response of Gzu and Geu

are estimated by exciting the system with a known broadband input u and sampling the z

microphone and e microphone outputs.

Note that Gss estimated as (2.8) requires applying the controller to the system, whereas

Gss estimated as (2.11) does not. The goal of the experimental examples is to show that the

estimated frequency response of (2.8) and (2.11) agree, despite the fact that one method

requires applying the controller to the system. In practice, it may be more advantageous

to estimate Gss as (2.11) since the identification of Gzu and Geu is of lower order and the

expression is less complex than G̃zw and G̃ew. Similar logic applies to the feedback case
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between estimating Gss as (2.42) and (2.45). The details of the controller design are again

omitted since they are not relevant to the analysis of Gss. We note that in all experimental

examples, the matching between Gss estimated using the two methods degrades as the

Nyquist rate is approached. Furthermore, it was observed that if G̃ew
Gew
≈ 1, the matching

between the two methods can be adversely effected.

2.6.3 Experimental Results Using Feedforward Control

Example 2.5: Comparison of Gss for feedforward control with scalar control u. We

choose m2 as z, m1 as e, s1 as w, and s2 as u. A feedforward controller is designed to

suppress the effect of w at z. Figure 2.8 shows the frequency response of the controller, the

controlled and uncontrolled system at z and e, and Gss estimated using (2.8) and (2.11).

The magnitude and phase of Gss estimated using (2.8) and (2.11) are within 5 dB and 10

deg from 50 Hz to 380 Hz, and within 12 dB and 60 deg from 250 Hz to 500 Hz.

Example 2.6: Comparison of Gss for feedforward control with vector control u ∈ R2.

We choose m2 as z, m1 as e, s1 as w, s2 as u1, and s3 as u2. A feedforward controller

is designed to suppress to suppress the effect of w at z. Figure 2.9 shows the frequency

response of the controller, the controlled and uncontrolled system at z and e, and Gss es-

timated using (2.8) and (2.11). The magnitude and phase of Gss estimated using (2.8) and

(2.11) are within 5 dB and 10 deg from 50 Hz to 250 Hz, and within 12 dB and 60 deg from

250 Hz to 500 Hz.

2.6.4 Experimental Results Using Feedback Control

Example 2.7: Comparison of Gss for feedback control with scalar control u. Consider

the same choice of microphones and speakers as in Example 2.5. A feedback controller

is designed to suppress the effect of w at z. Figure 2.10 shows the frequency response of

the controller, the controlled and uncontrolled system at z and e, and Gss estimated using

(2.42) and (2.45). The magnitude and phase of Gss estimated using (2.42) and (2.45) are
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within 5 dB and 20 deg from 50 Hz to 250 Hz, and within 12 dB and 40 deg from 250 Hz

to 500 Hz.

Example 2.8: Comparison of Gss for feedback control with vector control u ∈ R2.

Consider the same choice of microphones and speakers as in Example 2.6. A feedback

controller is designed to suppress the effect of w at z. Figure 2.11 shows the frequency

response of the controller, the controlled and uncontrolled system at z and e, and Gss es-

timated using (2.42) and (2.45). The magnitude and phase of Gss estimated using (2.42)

and (2.45) are mismatched from 50 Hz to 100 Hz, and from 200 Hz to 250 Hz, where the

difference between the two estimates exceeds 15 dB and 60 deg. At other frequencies, the

magnitude and phase are within 5 dB and 20 deg. The large mismatch is partially due to

the fact that G̃ew ≈ Gew across those bands, and thus the numerator of (2.42) becomes

approximately zero causing the numerical accuracy of the estimate to degrade.

2.6.5 Computing Gss as a Ratio of Transmissibilities

Consider the case where u is a scalar. Gss can be estimated using (2.61), which is a ratio

of transmissibility functions. The advantage of this method is that estimating the frequency

response of a transmissibility function does not explicitly require the input to be known,

but only needs measurements of the ouptut. Hence, if a measurement of disturbance w is

unavailable, an estimate of Gss is still obtainable using only measurements of z and e. The

disadvantage of estimating Gss using (2.61) is that in order to estimate Tez,u, the system

must be excited only by u without the presence of w and vice versa when estimating Tez,w.

We compare Gss estimated using (2.12) and (2.61), which are expected to agree.

Example 2.9: Gss as a ratio of Transmissibilities. We choose m1 as e, m2 as z, s1 as

w, and s3 as u. Figure 2.12 compares the frequency response of Gss estimated using (2.12)

and (2.61). The magnitude and phase of Gss estimated as (2.12) and (2.61) are within 5 dB

and 20 deg from 50 Hz to 450 Hz, and within 9 dB and 50 deg from 450 Hz to 500 Hz.
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2.6.6 Gss in the Presence of Obstructions

We examine Gss in the presence of obstructions by comparing the estimate of Gss be-

tween sensors with and without the presence of an obstruction. In the subsequent examples,

Gss estimated as (2.12), where we assume u is a scalar, using methods described above.

Figure 2.13 shows a diagram of the two configurations considered in the acoustic space.

In each example, one microphone is chosen as z, one speaker is chosen as w, two e

locations, denoted as e1 and e2, are chosen, and two separate locations for u are considered.

The spatial spillover function is estimated for the pair z and e1 and the pair z and e2 for

both choices of u. In certain cases, the presence of obstruction can significantly shift the

magnitude and phase of the spatial spillover function relative to when the obstruction is not

present.

Example 2.10: Comparison of Gss with and without a height-wise obstruction. We

choose m2 as z, s1 as w, and two e locations, with m1 as e1 and m3 as e2. We consider

two choices of u, where for the first system we choose s3 as u, and the second system

we choose s2 as u. Comparison of Gss with and without a height-wise obstruction in the

acoustic space for both choices of u is shown in Figure 2.14. Of the four cases considered in

the example, a noticeable or significant shift in the magnitude and phase of Gss is observed

in three cases.

Example 2.11: Comparison of Gss with and without a length-wise obstruction. We

consider the same choices of speakers and microphones as in Example 2.10, and place a

length-wise obstruction in the acoustic space. Comparison ofGss with and without a length-

wise obstruction in the acoustic space for both choices of u is shown in Figure 2.15. Of the

four cases considered in the example, a noticeable or significant shift in the magnitude and

phase of Gss is observed in one case.
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2.7 Conclusions

In this chapter, the spatial spillover function was validated in both numerical and ex-

perimental studies, and it was shown that the expression for Gss is the same for both feed-

forward and feedback control. In the case where u is a scalar signal, the spatial spillover

function is independent of the controller, and Gss can be interpreted as a ratio of trans-

missibility functions. It was found that obstructions in the acoustic space may give rise to

significant shifts in the magnitude and phase of Gss.
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Figure 2.2: Example 2.1: Comparison of Gss computed as (2.8) for feedforward control
with scalar control u. (a) and (b) show the controlled and uncontrolled frequency response
of the system (2.23), (2.24) using the controller (2.25), (2.26) denoted in the above legend
as Gc,1; (c) and (d) show the controlled and uncontrolled frequency response of the system
(2.23), (2.24) using the controller (2.27), (2.28) denoted in the above legend as Gc,2. Note
that, since u is scalar, Gss is independent ofGc, and thus (e), which shows the frequency re-
sponse of Gss for the controller (2.25), (2.26), is identical to (f), which shows the frequency
response of Gss for the controller (2.27), (2.28).

28



0 :=4 :=2 3:=4 :

-10
0
10
20
30

M
a
g
n
it
u
d
e
(d
B
)

0 :=4 :=2 3:=4 :

Frequency (rad/sample)

-180

-90

0

90

180

P
h
a
se

(d
eg
)

GzweGzw;Gc;1

(a)

0 :=4 :=2 3:=4 :

-10
0
10
20
30

M
a
g
n
it
u
d
e
(d
B
)

0 :=4 :=2 3:=4 :

Frequency (rad/sample)

-180

-90

0

90

180

P
h
a
se

(d
eg
)

GeweGew;Gc;1

(b)

0 :=4 :=2 3:=4 :

-10

0

10

20

30

M
a
g
n
it
u
d
e
(d
B
)

0 :=4 :=2 3:=4 :

Frequency (rad/sample)

-180

-90

0

90

180

P
h
a
se

(d
eg
)

GzweGzw;Gc;2

(c)

0 :=4 :=2 3:=4 :

-10

0

10

20

30

M
a
g
n
it
u
d
e
(d
B
)

0 :=4 :=2 3:=4 :

Frequency (rad/sample)

-180

-90

0

90

180
P
h
a
se

(d
eg
)

GeweGew;Gc;2

(d)

0 :=4 :=2 3:=4 :

-10

0

10

M
a
g
n
it
u
d
e
(d
B
)

0 :=4 :=2 3:=4 :

Frequency (rad/sample)

-180

-90

0

90

180

P
h
a
se

(d
eg
)

Gss;Gc;1

(e)

0 :=4 :=2 3:=4 :

-10

0

10

M
a
g
n
it
u
d
e
(d
B
)

0 :=4 :=2 3:=4 :

Frequency (rad/sample)

-180

-90

0

90

180

P
h
a
se

(d
eg
)

Gss;Gc;2

(f)

Figure 2.3: Example 2.2: Comparison of Gss computed as (2.8) for feedforward control
with vector control u ∈ R2. (a) and (b) show the controlled and uncontrolled frequency
response of the system (2.29), (2.30) using the controller (2.31), (2.32) denoted in the above
legend as Gc,1; (c) and (d) show the controlled and uncontrolled frequency response of the
system (2.29), (2.30) using the controller (2.33), (2.34) denoted in the above legend asGc,2.
Note that, since u is a vector, Gss depends on Gc, and thus (e), which shows the frequency
response ofGss for the controller (2.31), (2.32), differs from (f), which shows the frequency
response of Gss for the controller (2.33), (2.34).
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Figure 2.4: Feedback control block diagram. The dynamics and signals may be either
continuous time or discrete time.
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Figure 2.5: Example 2.3: Comparison of Gss computed as (2.42) for feedback control with
scalar control u. (a) and (b) show the controlled and uncontrolled frequency response of
the system (2.23), (2.24) using the controller (2.50), (2.51) denoted in the above legend as
Gc,1; (c) and (d) show the controlled and uncontrolled frequency response of the system
(2.23), (2.24) using the controller (2.52), (2.53) denoted in the above legend as Gc,2. Note
that, since u is scalar, Gss is independent ofGc, and thus (e), which shows the frequency re-
sponse of Gss for the controller (2.50), (2.51), is identical to (f), which shows the frequency
response of Gss for the controller (2.52), (2.53).
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Figure 2.6: Example 2.4: Gss for feedback control with vector control u ∈ R2. (a) and
(b) show the controlled and uncontrolled frequency response of the system (2.29), (2.30)
using the controller (2.54), (2.55) denoted in the above legend as Gc,1; (c) and (d) show
the controlled and uncontrolled frequency response of the system (2.29), (2.30) using the
controller (2.56), (2.57) denoted in the above legend as Gc,2. Note that, since u is a vector,
Gss depends on Gc, and thus (e), which shows the frequency response of Gss for the con-
troller (2.54), (2.55), differs from (f), which shows the frequency response of Gss for the
controller (2.56), (2.57).
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Figure 2.7: Sensor and actuator placement for the experimental evaluation of the spatial
spillover function.
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Figure 2.8: Example 2.5: Comparison of Gss for feedforward control with scalar control u.
(a) and (b) show the controlled and uncontrolled frequency response at z and e; (c) shows
the frequency response of the controller. (d) comparesGss estimated using (2.8) and (2.11).
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Figure 2.9: Example 2.6: Comparison of Gss for feedforward control with vector control
u ∈ R2. (a) and (b) show the controlled and uncontrolled frequency response at z and e; (c)
shows the frequency response of both channels the controller. (d) compares Gss estimated
using (2.8) and (2.11).
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Figure 2.10: Example 2.7: Comparison of Gss for feedback control with scalar control
u. (a) and (b) show the controlled and uncontrolled frequency response at z and e; (c)
shows the frequency response of the controller. (d) compares Gss estimated using (2.42)
and (2.45).
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Figure 2.11: Example 2.8: Comparison of Gss for feedback control with vector control
u ∈ R2. (a) and (b) show the controlled and uncontrolled frequency response at z and e; (c)
shows the frequency response of both channels the controller. (d) compares Gss estimated
using (2.42) and (2.45).
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Figure 2.12: Example 2.9: Comparison of Gss for scalar control u, estimated as (2.12),
shown in black, and (2.61), shown in red.
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Figure 2.13: Diagram of two different obstructions tested in acoustic space for the exper-
imental evaluation of the spatial spillover function. (a) shows a height-wise obstruction,
and (b) shows a length-wise obstruction
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Figure 2.14: Example 2.10: Comparison of Gss with and without a height-wise obstruction
in the acoustic space. (a) shows Gss for z and e1 with s3 as u, and (b) shows Gss for z and
e2 with s3 as u. Note that in (a), the magnitude and phase of Gss noticeably shifts due to
the obstruction. In (b), the magnitude of Gss slightly shifts due to the obstruction while
the phase of Gss significantly shifts due to the obstruction. (c) shows Gss for z and e1 with
s1 as u, and (d) shows Gss for z and e2 with s1 as u. Note that in (c), the magnitude and
phase of Gss slightly shifts due to the obstruction. In (d), the magnitude and phase of Gss

significantly shifts due to the obstruction.
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Figure 2.15: Example 2.11: Comparison of Gss with and without a length-wise obstruction
in the acoustic space. (a) shows Gss for z and e1 with s3 as u, and (b) shows Gss for z and
e2 with s3 as u. Note that in both (a) and (b), the magnitude and phase of Gss does not shift
across the low and mid frequencies, but noticeably shifts at high frequencies due to the
obstruction. (c) shows Gss for z and e1 with s1 as u, and (d) shows Gss for z and e2 with s1

as u. Note that in (c), the magnitude and phase of Gss does not shift due to the obstruction.
In (d), the magnitude and phase of Gss significantly shifts due to the obstruction.
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CHAPTER 3

Retrospective Cost Adaptive Control

In this chapter, we present the equations of the RCAC algorithm. We first introduce the

discrete-time linear time-invariant standard problem. Then we state the equations of RCAC

in its variations. Although both fixed-window and cumulative cost functions and gradient

and recursive least square (RLS) based optimization versions of RCAC are presented, the

examples in this dissertation use only the cumulative-cost RLS-based recursive controller

update equations.

3.1 The Standard Problem

Consider the discrete-time, linear time-invariant standard problem with state-space rep-

resentation

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (3.1)

y(k) = Cx(k) +D0u(k) +D2w(k), (3.2)

z(k) = E1x(k) + E2u(k) + E0w(k), (3.3)

where x(k) ∈ Rn is the state, y(k) ∈ Rly is the measurement, u(k) ∈ Rlu is the control

input, w(k) ∈ Rlw is the exogenous input, and z(k) ∈ Rlz is the measured performance

variable. The components of w can represent either a command signal r to be followed, a

disturbance d to be rejected, or sensor noise v that corrupts the measurements. The plant
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(3.1)-(3.3) may represent a continuous-time, linear time-invariant plant sampled at a fixed

rate. Using the time-domain forward shift operator q, (3.1)-(3.3) can be written as

z(k) = Gzw(q)w(k) +Gzu(q)u(k), (3.4)

y(k) = Gyw(q)w(k) +Gyu(q)u(k), (3.5)

where

Gzw(q)
4
= E1(qI − A)−1D1 + E0, Gzu(q)

4
= E1(qI − A)−1B + E2, (3.6)

Gyw(q)
4
= C(qI − A)−1D1 +D2, Gyu(q)

4
= C(qI − A)−1B +D0. (3.7)

Furthermore, consider the strictly proper discrete-time, linear time-invariant controller with

state-space representation

xc(k + 1) = Acxc(k) +Bcy(k), (3.8)

u(k) = Ccxc(k), (3.9)

where xc(k) ∈ Rnc is the controller state. We can rewrite (3.8), (3.9) as

u(k) = Gc(q)y(k), (3.10)

where

Gc(q)
4
= Cc(qI − Ac)

−1Bc +Dc. (3.11)
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The transfer function from w to z of the system (3.4), (3.5) with the controller (3.10) is

given by

z(k) = G̃zw(q)w(k), (3.12)

where

G̃zw(q) , Gzu(q)Gc(q)[Ily −Gyu(q)Gc(q)]−1Gyw(q) +Gzw(q). (3.13)

In the case where y, z, u, and w are scalar signals, the transfer functions (3.6), (3.7), and

Gc(q) can be written as

Gzw(q) =
Nzw(q)

D(q)
, Gzu(q) =

Nzu(q)

D(q)
, Gyw(q) =

Nyw(q)

D(q)
, Gc(q) =

Nc(q)

Dc(q)
,

(3.14)

where it follows from (3.14) that (3.13) can be written as

G̃zw(q) =
Nzw(q)

D(q)
+

Nzu(q)Nyw(q)Nc(q)

D(q)[D(q)Dc(q)−Nyu(q)Nc(q)]
. (3.15)

Figure 3.1 shows a block diagram of the standard problem with the controller (3.10).

Note that q is a time-domain operator that accounts for both the free response and the forced

response. Hence, although (3.6), (3.7), and (3.11) are written as transfer functions, these

expressions represent time-domain dynamics. For pole-zero analysis, q can be replaced by

the Z-transform complex variable z, in which case (3.4), (3.5), and (3.10) do not account

for initial conditions.
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Gzw(q)

Gyw(q) Gzu(q)Gc(q)

w(k) z(k)

u(k)

Gyu(q)

y(k)

Figure 3.1: Block diagram of the standard problem (3.4), (3.5) with the controller Gc given
by (3.10).

3.2 Retrospective Cost Adaptive Control Algorithm

We now review the equations of the RCAC algorithm [16, 18, 20, 22, 30]. For the adap-

tive standard problem shown in Figure 3.2 with the time-dependent adaptive controller

Gc,k, z can be written as

z(k) = G̃zw,k(q)w(k), (3.16)

where

G̃zw,k(q) , Gzu(q)Gc,k(q)[Ily −Gyu(q)Gc,k(q)]−1Gyw(q) +Gzw(q). (3.17)

Gzw(q)

Gyw(q) Gzu(q)Gc,k(q)

w(k) z(k)

u(k)

Gyu(q)

y(k)

Figure 3.2: Block diagram of the discrete-time adaptive standard problem with controller
Gc,k in terms of the forward shift operator q.
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3.2.1 Controller Structure

Consider the linear, time-varying dynamic compensator

u(k) =
nc∑
i=1

Pi(k)u(k − i) +
nc∑
i=kc

Qi(k)y(k − i), (3.18)

where Pi(k) ∈ Rlu×lu and Qi(k) ∈ Rlu×ly are time-dependent controller coefficient ma-

trices, nc is the controller order, and kc ≥ 0. For controller startup, we implement (3.18)

as

u(k) =


0, k < kw,

Φ(k)θ(k), k ≥ kw,

(3.19)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=



u(k − 1)

...

u(k − nc)

y(k − kc)

...

y(k − nc)



T

⊗ Ilu ∈ Rlu×lθ , (3.20)

kw ≥ nc is an initial waiting period during which Φ(k) is populated with data, and the

controller coefficient vector θ(k) is defined by

θ(k)
4
= vec

[
P1(k) · · · Pnc(k) Qkc(k) · · · Qnc(k)

]T ∈ Rlθ , (3.21)

lθ
4
= l2unc+luly(nc+1−kc), “⊗” is the Kronecker product, and “vec” is the column-stacking

operator. Note that kc = 0 allows an exactly proper controller, whereas kc ≥ 1 yields a
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strictly proper controller of relative degree kc. In terms of the forward-shift operator q, the

time-domain transfer function of (3.18) from y to u is given by

Gc,k(q) =
(
Iluqnc − P1(k)qnc−1 − · · · − Pnc(k)

)−1 (
Qkc(k)qnc−kc + · · ·+Qnc(k)

)
,

(3.22)

where the coefficients of Gc,k are given by the components of θ. If y and u are scalar

signals, then (3.22) can be written as

Gc,k(q) =
Qkc(k)qnc−kc + · · ·+Qnc(k)

qnc − P1(k)qnc−1 − · · · − Pnc(k)
. (3.23)

Note that (3.22) is an infinite-impulse-response (IIR) controller. A finite-impulse-

response (FIR) controller structure can be enforced by removing u(k − 1), . . . , u(k − nc)

from (3.18) yielding

u(k) =
nc∑
i=kc

Qi(k)y(k − i), (3.24)

where Φ(k), θ(k), and lθ are redefined as

Φ(k)
4
=


y(k − kc)

...

y(k − nc)


T

⊗ Ilu ∈ Rlu×lθ , θ(k)
4
= vec

[
Qkc(k) · · · Qnc(k)

]T ∈ Rlθ ,

(3.25)

and lθ
4
= luly(nc + 1− kc). In this case, (3.22) specializes to

Gc,k(q) =
1

qnc

(
Qkc(k)qnc−kc + · · ·+Qnc(k)

)
. (3.26)
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3.2.2 Retrospective Performance Variable

The retrospective performance variable is defined by

ẑ(k, θ̂)
4
= z(k)−Gf(q)u(k)−Gf(q)Φ(k)θ̂, (3.27)

where θ̂ ∈ Rlθ and the nz × nu filter Gf has the form

Gf(q)
4
= Df(q)−1Nf(q), (3.28)

where Df is an lz × lz polynomial matrix with leading coefficient Ilz and Nf is an lz × lu
polynomial matrix. The filter Gf serves as the target model and is detailed in subsequent

chapters. By defining the filtered regressor and filtered control Φf(k) ∈ Rlz×lθ and uf(k) ∈

Rlz by

Φf(k)
4
= Gf(q)Φ(k), uf(k)

4
= Gf(q)u(k), (3.29)

(3.27) can be written as

ẑ(k, θ̂) = z(k)− uf(k)− Φf(k)θ̂. (3.30)

Note that implementation requires kw ≥ max(nc, nf), where nf is the McMillan degree of

Gf .

3.2.3 RCAC Controller Update Law

In [16], the RCAC controller update is based on minimization of a sliding-window cost

function using a recursive gradient-based update of the controller parameters. In [18], a

modified sliding-window cost function is considered with a sliding-window batch-least-

squares update law. More recently, an update law based on a cumulative cost function
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using RLS is considered in [20, 22, 30].

3.2.4 Sliding-window Retrospective-Cost-Based Update Laws

In [16] a sliding-window retrospective cost is considered, given by

JO(k, θ̂)
4
= Ẑ(k, θ̂)TẐ(k, θ̂), (3.31)

where

Ẑ(k, θ̂)
4
=


ẑ(k, θ̂)

...

ẑ(k − p− 1, θ̂)

 (3.32)

and p is the window size. Defining

Z(k)
4
=


z(k)

...

z(k − p− 1)

 , Uf(k)
4
=


uf(k)

...

uf(k − p− 1)

 , Φ̃f(k)
4
=


Φf(k)

...

Φf(k − p− 1)

 ,
(3.33)

it follows that (3.32) can be written as

Ẑ(k, θ̂) = Z(k)− [Uf(k)− Φ̃f(k)θ̂]. (3.34)

The retrospective cost (3.31) is minimized using the gradient-based recursive controller

update law

θ(k + 1) = θ(k)− µ(k)

2

dJO

dθ̂
(k, θ(k)), (3.35)

where µ(k) is a time-varying step size. It follows from (3.31) and (3.35) that the recursive
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controller coefficient update law is given by

θ(k + 1) = θ(k)− µ(k)Ẑ(k, θ(k))TΦ̃f(k). (3.36)

The choice of µ(k) is discussed in [16].

In [18], the sliding-window retrospective cost (3.31) is extended to include additional

weights for the control input Φ(k)θ̂ and rate of change of the controller coefficients θ̂−θ(k),

where

JW(k, θ̂)
4
= Ẑ(k, θ̂)TRZ(k)Ẑ(k, θ̂) + 2Ẑ(k, θ̂)TRZu(k)(Φ(k)θ̂)

+ (Φ(k)θ̂)TRu(k)(Φ(k)θ̂)T + (θ̂ − θ(k))TR∆(k)(θ̂ − θ(k)), (3.37)

where RZ(k) ∈ Rplz×plz , Ru(k) ∈ Rlu×lu , and RZu(k) ∈ Rplz×lu are such that the matrix

RZ(k) RZu(k)

RT
Zu(k) Ru(k)

 (3.38)

is positive semidefinite, and R∆(k) ∈ Rlθ×lθ is positive semidefinite. The subsequent

sliding-window batch-least-squares recursive update controller update law is obtained by

taking dJW
dθ̂

, setting the derivative equal to zero, and solving for θ̂.
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3.2.5 Cumulative Retrospective-Cost-Based Update Law

In [20,22,30], a cumulative retrospective cost function is considered with weighting on

the filtered control Φf(k)θ̂ of the form

JC(k, θ̂)
4
=

k∑
i=1

λk−i[ẑT(i, θ̂)Rz(i)ẑ(i, θ̂) + (Φf(i)θ̂)
TRuf (i)Φf(i)θ̂ + (Φ(i)θ̂)TRu(i)Φ(i)θ̂]

+ (θ̂ − θ(k − 1))TR∆(k)(θ̂ − θ(k − 1)) + λk(θ̂ − θ(0))TRθ(θ̂ − θ(0)),

(3.39)

where λ ∈ (0, 1] is the forgetting factor, Rθ ∈ Rlθ×lθ is positive definite, and, for all k ≥ 1,

R∆(k) is positive semidefinite, Rz(k) ∈ Rlz×lz is positive definite, and Ruf (k) ∈ Rlz×lz

andRuf (k) ∈ Rlu×lu are positive semidefinite. For all k ≥ 0, define the augmented weights

Ra(k)
4
=

Rz(k) +Ruf (k) 0lz×lu

0lu×lz Ru(k)

 , R′a(k)
4
=

Rz(k) 0lz×lu

0lu×lz Ru(k)

 , (3.40)

Φa(k)
4
=

Φf(k)

Φ(k)

 , za(k)
4
=

z(k)− uf(k)

0lu×1

 . (3.41)

Proposition: Let P (0) = R−1
θ , let k ≥ 1, and let θ̂∗ denote the minimizer of (3.39).

Then,

θ̂∗ = θ(k)− P (k)ΦT
a (k)Υ−1(k)[Φa(k)θ(k) +R−1

a (k)R′a(k)za(k)]

+ P (k)R∆(k)[ΦT
a (k)Υ(k)−1Φa(k)P (k)− Ilθ ](θ(k − 1)− θ(k)), (3.42)

P (k + 1) =
1

λ
P (k)− 1

λ
P (k)ΦT

a (k)Υ−1(k)Φa(k)P (k), (3.43)

where

Υ(k)
4
= λR−1

a (k) + Φa(k)P (k)ΦT
a (k). (3.44)
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Defining θ(k + 1)
4
= θ̂∗, (3.42) yields the recursive controller coefficient update

θ(k + 1) = θ(k)− P (k)ΦT
a (k)Υ−1(k)[Φa(k)θ(k) +R−1

a (k)R′a(k)za(k)]

+ P (k)R∆(k)[ΦT
a (k)Υ(k)−1Φa(k)P (k)− Ilθ ](θ(k − 1)− θ(k)). (3.45)

If Ru = 0lu×lu , Ruf = 0lz×lz , and R∆ = 0lθ×lθ , then (3.45) and (3.43) become

θ(k + 1) = θ(k)− P (k)ΦT
f (k)Υ−1(k)[Φf(k)θ(k) + z(k)− uf(k)], (3.46)

P (k + 1) =
1

λ
P (k) − 1

λ
P (k)ΦT

f (k)Υ−1(k)Φf(k)P (k), (3.47)

where

Υ(k)
4
= λR−1

z (k) + Φf(k)P (k)ΦT
f (k). (3.48)

Note that, if λ = 1, then the covariance P (k) decreases monotonically, and thus the rate

of adaptation of RLS decreases. To maintain adaptation in cases where the plant or exoge-

nous signals are changing, the covariance can be reset using suitable logic. Alternatively,

choosing the forgetting factor λ < 1 prevents monotonic decrease of P (k), but can lead to

instability in the presence of noise and in the absence of persistency [31, 32].

Consider the covariance update equation (3.43) with the additional positive-semidefinite

matrix Q(k)Rlθ×lθ on the right-hand side of the form

P (k + 1) = P (k)− P (k)ΦT
f (k + 1)Υ−1(k)Φf(k)P (k) +Q(k), (3.49)

where λ = 1 in (3.49). Note that (3.46) and (3.49) are the discrete-time Kalman predictor

state-estimate update and error-covariance update equations [33], where the state-estimate

is θ(k), the dynamics matrix is A = Ilθ , the output matrix is C(k) = Φf(k), the prediction
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error is ẑ(k) given by (3.30), and process-noise covariance is Q(k). Consequently, the

controller update can be viewed as a state-estimation problem, where observability in (3.49)

is determined by the time-varying system (Ilθ ,Φf).
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CHAPTER 4

Feedback Disturbance Rejection

In this chapter, we present the RCAC performance decomposition and discuss the nec-

essary modeling information required in the target model Gf for feedback disturbance re-

jection.

Then RCAC is applied to the problem of broadband road noise suppression a vehicle

using a feedback control architecture. We discuss how to experimentally obtain the neces-

sary modeling information forGf . Next we present a series of examples on the performance

of RCAC for various microphone and speaker configurations.

We also examine the relation between suppression of noise at the performance micro-

phone in relation to the suppression of noise at evaluation microphones placed at drivers’

ears and attempt to correlate the behavior to the spatial spillover function presented in

Chapter 2.

4.1 The Target Model Gf and the RCAC Performance De-

composition

The target model Gf is a key feature of RCAC. In [18], Gf is chosen to capture the

relative degree, leading coefficient of the numerator, and NMP zeros of Gzu. In [19], Gf is

viewed as a closed-loop transfer function involving an ideal feedback controller. In [20,22]

Gf is interpreted as a target model for the closed-loop transfer function G̃zũ, known as
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the intercalated transfer function defined by (4.3) below. In this section, we extend the

work in [20, 22] to formulate the retrospective performance ẑ(k, θ) as a combination of

the pseudo-performance and the model-matching error to obtain the RCAC performance

decomposition.

Consider the minimizer θ̂∗ of the cumulative retrospective cost function (3.39) at step

k, which is applied at step k + 1, yielding the recursive update (3.45). Evaluating the

retrospective performance (3.27) at the minimizer θ̂∗ = θ(k + 1) yields

ẑ(k, θ(k + 1)) = z(k)−Gf(q)u(k)− [Gf(q)Φ(k)]θ(k + 1). (4.1)

In (4.1), the notation [Gf(q)Φ(k)]θ(k+ 1) indicates that Gf(q) operates on Φ(k) but not on

θ(k + 1). This restriction arises from the fact that, in the definition (3.27) of ẑ(k, θ̂), θ̂ is a

constant that is not affected by Gf(q). Therefore, although the optimal value θ(k+ 1) = θ̂∗

of θ̂ depends on k, θ(k + 1) in (4.1) is constant with respect to the operator Gf(q). For

convenience in writing subsequent expressions, (4.1) is written as

ẑ(k, θ(k + 1)) = z(k)−Gf(q)[u(k)− Φ(k)θ(k + 1)], (4.2)

where θ(k + 1) indicates that θ(k + 1) is constant with respect to Gf(q). By defining the

virtual external control perturbation [22]

ũ(k, θ̂)
4
= u(k)− Φ(k)θ̂, (4.3)

(4.2) can be written as

ẑ(k, θ(k + 1)) = z(k)−Gf(q)ũ(k, θ(k + 1)). (4.4)
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Replacing θ̂ in (4.3) by θ(k + 1) yields

u(k) = ũ(k, θ(k + 1)) + Φ(k)θ(k + 1)

= ũ(k, θ(k + 1)) +
nc∑
i=1

Pi(k + 1)u(k − i) +
nc∑
i=kc

Qi(k + 1)y(k − i). (4.5)

It follows from (4.5) that

u(k)−
nc∑
i=1

Pi(k + 1)u(k − i) = ũ(k, θ(k + 1)) +
nc∑
i=kc

Qi(k + 1)y(k − i), (4.6)

and thus

(
Ilu −

nc∑
i=1

Pi(k + 1)
1

qi

)
u(k) = ũ(k, θ(k + 1)) +

(
nc∑
i=kc

Qi(k + 1)
1

qi

)
y(k). (4.7)

Introducing the notation

θ̂
4
= vec

[
P̂1 · · · P̂nc Q̂kc · · · Q̂nc

]T ∈ Rlθ , (4.8)

Nc,θ̂(q)
4
= qnc−kcQ̂kc + · · ·+ Q̂nc , (4.9)

Dc,θ̂(q)
4
= qncIlu − qnc−1P̂1 − · · · − P̂nc , (4.10)

(4.7) can be written as

u(k) = Gp,θ(k+1)(q)ũ(k, θ(k + 1)) +Gc,θ(k+1)(q)y(k), (4.11)

where

Gc,θ(k+1)(q)
4
= D−1

c,θ(k+1)(q)Nc,θ(k+1)(q), (4.12)

Gp,θ(k+1)(q)
4
= D−1

c,θ(k+1)(q)qnc . (4.13)
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It follows from (3.4), (3.5), and (4.11) that

z(k) = Gzw(q)w(k) +Gzu(q)Gp,θ(k+1)(q)ũ(k, θ(k + 1)) +Gzu(q)Gc,θ(k+1)(q)y(k),

(4.14)

y(k) = Gyw(q)w(k) +Gyu(q)Gp,θ(k+1)(q)ũ(k, θ(k + 1)) +Gyu(q)Gc,θ(k+1)(q)y(k).

(4.15)

Solving (4.15) for y(k) and substituting y(k) into (4.14) yields

z(k) = G̃zw,θ(k+1)(q)w(k) + G̃zũ,θ(k+1)(q)ũ(k, θ(k + 1)), (4.16)

where

G̃zw,θ(k+1)(q)
4
= Gzw(q) +Gzu(q)Gc,θ(k+1)(q)(Ily −Gyu(q)Gc,θ(k+1)(q))−1Gyw(q),

(4.17)

G̃zũ,θ(k+1)(q)
4
= [Gzu(q) +Gc,θ(k+1)(q)(Ily −Gyu(q)Gc,θ(k+1)(q))−1]Gp,θ(k+1)(q).

(4.18)

If y, z, u, and w are scalar signals, then, using the notation (3.14), (4.18) can be written as

G̃zũ,θ(k+1)(q) =
Nzu(q)qnc

D(q)Dc,θ(k+1)(q)−Nyu(q)Nc,θ(k+1)(q)
. (4.19)

In [22], the retrospective performance ẑ(k, θ(k+ 1)) given in (4.4) is seen as a residual

fit between z(k) and the output of Gf(q)ũ(k, θ(k + 1)). However it follows from (4.16)

that the actual transfer function from ũ(k, θ(k + 1)) to z(k) is G̃zũ,θ(k+1)(q). Hence it was

viewed that RCAC chooses the controller coefficient vector θ(k + 1) so as to optimally fit

G̃zũ,θ(k+1) toGf . Using this argument, the modeling information required inGf was derived

based on G̃zũ,θ(k+1).

In the present work, we present a different interpretation of the retrospective perfor-
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mance ẑ(k, θ(k+1)). While it is agreed thatGf(q) is a model for G̃zũ,θ(k+1), the interpreta-

tion of the meaning of minimizing ẑ(k, θ(k+1)) differs, leading to the RCAC performance

decomposition.

4.1.1 RCAC Performance Decomposition

It follows that in substituting (4.16) into (4.4), the retrospective performance ẑ(k, θ(k+

1)) can be written as

ẑ(k, θ(k + 1)) = G̃zw,θ(k+1)(q)w(k) + [G̃zũ,θ(k+1)(q)−Gf(q)]ũ(k, θ(k + 1)). (4.20)

Note that ẑ(k, θ(k + 1)) given by (4.20) consists of two terms. The first term, we define as

the pseudo-performance ẑpp, where

ẑpp(k, θ(k + 1))
4
= G̃zw,θ(k+1)(q)w(k). (4.21)

The pseudo-performance is the performance of the system assuming that the constant con-

troller coefficient vector θ(k + 1) had been used at step k. The second term, we define as

the model-matching error ẑmm, where

ẑmm(k, θ(k + 1))
4
= [G̃zũ,θ(k+1)(q)−Gf(q)]ũ(k, θ(k + 1)). (4.22)

The model-matching error can be viewed as the residual between between the filter Gf and

G̃zũ,θ(k+1) subject to the virtual external control perturbation ũ(k, θ(k + 1)). We note the

virtual external control perturbation is not an exogenous signal and persistency depends on

θ(k + 1). If θ(k) converges after step k0, that is, θ(k + 1) = θ(k) for all k > k0, then

ũ(k, θ(k + 1)) is zero for all k > k0. In this case, the model-matching term is zero, and
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(4.20) reduces to

ẑ(k, θ(k + 1)) = G̃zw,θ(k+1)(q)w(k) = G̃zw(q)w(k), (4.23)

where, after convergence, ẑ(k, θ(k + 1)) = z(k). It is not entirely clear that the tran-

sient response provides sufficient excitation such that G̃zũ,θ(k+1)(q)−Gf(q) is minimized.

However it has been shown [22] numerically that under certain conditions, the frequency

response of G̃zũ,θ(k+1) after convergence approximates the frequency response of Gf . We

also validate this numerically for in Chapter 5 in the case of feedforward disturbance rejec-

tion.

The performance decomposition presents a new angle on the retrospective cost, where

ẑ(k, θ(k + 1)) = ẑpp(k, θ(k + 1)) + ẑmm(k, θ(k + 1)). (4.24)

The retrospective performance can thus be viewed as the sum of a performance-like term

and a model residual.

4.2 Modeling Information Required for Gf

In this section, we discuss the modeling information required for Gf motivated by the

fact that RCAC is, in part, attempting to minimize the residual between Gf and G̃zũ,θ(k+1).

For simplicity, we limit the discussion to the case where y, z, u, and w are scalar signals.

4.2.1 Relative degree

Since G̃zũ,θ(k+1) approximates Gf , it is advantageous to choose the relative degree of

Gf to be equal to the relative degree of G̃zũ,θ(k+1). It follows from (4.19) that the relative

degree of G̃zũ,θ(k+1) is equal to the relative degree of Gzu. We thus choose the relative

degree of Gf to be equal to the relative degree of Gzu.
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4.2.2 NMP zeros

In [19], the target model Gf is chosen such the NMP zeros of Gzu are modeled in the

numerator of Gf . As can be seen from (4.19), a key feature of G̃zũ,θ(k+1) is the factor Nzu

in its numerator and Dc,θ(k+1)(q) in its denominator. Since RCAC adapts Gc,θ(k+1) in order

to minimize the residual between G̃zũ,θ(k+1) and Gf , RCAC may cancel NMP zeros in Gzu

that are not included in the numerator of Gf in order to remove them from G̃zũ,θ(k+1) which

leads to unstable pole-zero cancellation. This observation motivates the desire to capture

all NMP zeros of Gzu in the numerator of Gf .

4.2.3 FIR Target Model

Let the numerator of Gzu be factored as

Nzu(q) = HdzuNzu,s(q)Nzu,u(q), (4.25)

where Hdzu is the leading nonzero numerator coefficient of Gzu, or first nonzero Markov

parameter, and the monic polynomials Nzu,s and Nzu,u represent the minimum-phase zeros

and NMP zeros of Gzu, respectively. In the case where Gzu is minimum phase, we define

the FIR target model

Gf(q)
4
=
Hdzu

qdzu
, (4.26)

where dzu is relative degree ofGzu. In the case whereGzu is NMP, we define the FIR target

model

Gf(q)
4
=
HdzuNzu,u(q)

qdzu+deg(Nzu,u)
, (4.27)

The target models (4.26) for whenGzu is minimum phase, and (4.27) for whenGzu is NMP,

represent the modeling information required by RCAC for feedback control.
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4.2.4 High-Authority LQG Target Model

In [21, 22], a target model which recovers the high-authority LQG performance is de-

rived for feedback control in the case when the controller order is equal to the order of the

plant, that is, nc = n. We extend the analogies between RCAC and high-authority LQG to

the broadband feedforward disturbance rejection problem in Chapter 5.

4.3 RCAC Feedback Active Noise Control Applied to Road

Noise Suppression in a Vehicle

We present an experimental study done in collaboration with Ford Motor Company on

the applications of RCAC to broadband road noise suppression in a vehicle using feedback

control. Current applications of road noise suppression rely on feedforward control archi-

tectures which require accelerometer measurements placed on the vehicle suspension to

provide an indirect measurement of the disturbance. One of the motivators of this project

was to evaluate the effectiveness of an RCAC feedback control architecture in order to po-

tentially eliminate the need for feedforward measurements. Aside from eliminating the cost

of the accelerometers themselves, this would also significantly reduce engineering time re-

quired in their placement. In this section, we present our results and discuss the potential

issues which arose due to spatial spillover.

4.3.1 Spectral Spillover and the Bode Integral Constraint

A fundamental limitation of feedback control that is not present in feedforward control

is spectral spillover which is related to the Bode integral constraint [13–15]. Roughly

speaking, whenever there is suppression in the closed-loop transfer function G̃zw relative

the open-loop transfer function Gzw across a certain band, amplification will occur across

other bands.
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In implementing feedback active noise control, one of the challenges is to avoid con-

centration of the amplification to narrow bands, and instead spread the effect across the

entire spectrum.

4.3.2 Experimental Setup

Real Time Workshop (RTW) in the MATLAB/Simulink environment with a dSPACE

DS1005 Autobox was used to implement RCAC in the vehicle. A DS2004 I/O board and

DS2102 I/O board were used for A/D and D/A conversions. Acoustic sensing was provided

by omni-directional microphones with rated bandwidth from 50 Hz to 16 kHz. Acoustic

actuation was provided by car audio speakers mounted on the vehicle doors. Additional

hardware included microphone amplifiers and two low pass analog filters to avoid aliasing.

A block diagram of the system components in the control loop is shown in Figure 4.1. All

data was sampled at 1 kHz.

Figure 4.1: Block diagram of hardware components in the control loop.

We consider only SISO feedback control where the controlled plant is from a single

speaker to a single microphone. Two evaluation microphones are placed on the driver seat

headrest to evaluate qualitative cancellation for a person in the driver seat. We denote the

left headrest as LH and the right headrest as RH. We consider five locations, p1, p2, p3, RH,
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and LH, to place the z microphone. Four door speakers are available as either the control

speaker or to provide the disturbance. We denote these by front driver speaker FDS, front

passenger speaker FPS, rear driver speaker RDS, and rear passenger speaker RPS. Figure

4.2 shows the approximate locations of the microphones and speakers in the vehicle.

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒

𝒑𝟐

𝒑𝟑

𝒑𝟏
𝑭𝑷𝑺

𝑹𝑷𝑺𝑹𝑫𝑺

𝐋𝐇

𝑭𝑫𝑺

𝐑𝐇

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑖𝑐𝑟𝑜𝑝ℎ𝑜𝑛𝑒

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

Figure 4.2: Vehicle microphone and speaker placement.

4.3.3 Experimentally Determining the Required Modeling Informa-

tion

In this section, we discussion experimental constructing the FIR target model for NMP

systems (4.27) for the vehicle.

4.3.3.1 Determining dzu and Hdzu

The relative degree and first nonzero Markov paramter of Gzu are obtained from the

impulse response. The impulse response from front driver side speaker to p1 is shown in

Figure 4.3. ‘

61



(a) (b)

Figure 4.3: The impulse response from FDS to p1 is shown in (a) and (b). The plots show

the speaker input and the microphone response. In (b) we look at the first peak in the

microphone response after the impulse is applied to obtain an estimate of dzu and Hdzu .

4.3.3.2 NMP zeros of Gzu

In order to experimentally determine the NMP zeros of Gzu in the vehicle, we tried

estimating them using a Laurent expansion based on the Markov parameters [16,18]. It was

found that this technique was unable to produce accurate estimates for the given amount

of sensor noise. Hence, rather than attempting to identify the system using open-loop

methods, we used RCAC to retroactively ID the NMP zeros of Gzu. The controller poles of

RCAC will attempt to cancel any unmodeled NMP zeros of Gzu, however this will cause

the system to diverge due to unstable pole-zero cancellation. We use this fact by allowing

RCAC to perform unstable pole-zero cancellation and let the system to diverge. Afterward

we check the controller for unstable poles and place them in Gf . The process is repeated

till a stabilizing filter is obtained.

4.3.3.3 Known DC zeros

In acoustic applications, there is no DC response due the propagation of sound as waves.

In discrete-time, a system which lacks at DC corresponds to a zero on the unit circle at 1.
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These DC zeros are present in the transfer function of every microphone speaker pair. If the

DC zero is not modeled in Gf , RCAC will attempt to cancel out the zero in Gzu by placing

a controller pole at 1 and the controller builds a discrete time integrator. While the closed-

loop system in this case can still be asymptotically stable in this case, we noted that, over

time, the integrator in the controller was sensitive to electrical bias in the system and tended

to cause output of the controller to diverge and hit actuator saturation. As the actuator is

unable to respond to the saturation since there is no DC response, the control fails. Hence,

in this case model the zeros at DC inGf to avoid controller poles at DC. We noted two zeros

are DC in the system, one due to the speaker, and one due to the microphone. The zeros

at DC can also be obtained experimentally using retroactive ID with RCAC. An example

of the retroactive ID method using RCAC is shown in Figure 4.4 which identifies the DC

zeros and potential NMP zeroes.

(a) (b)

Figure 4.4: Retroactive ID of NMP zeros in Gzu. Controller gains are shown in (a), where

the top plot shows the numerator gains and the bottom plot shows the denominator gains.

The pole-zero map of the controller at t = 5 is shown in (b). Although not shown, the

system in this example was noted to begin diverging at around t = 1. In (b) we note the

possible locations of NMP and DC zeros in the system based on the pole-zero map of the

controller.
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4.3.4 Static Test

In this section, we present a series of static examples in the vehicle for a single speaker

to a single performance microphone as the control-loop. Two evaluation microphones are

placed on either side of the driver headrest to check the qualitative performance. All fre-

quency domain data is sampled at 1kHz with 1 Hz resolution and is A-weighted [34] to

better account for the qualitative perception of noise. The disturbance profile that we con-

sidered was measured from the vehicle driving over a Glen Eagle type surface. The profile

has two distinct modes that we would like to suppress centered around 140 Hz and 200 Hz.

We place the z microphone at p1, p2 and p3 and check the closed-loop performance at the

evaluation microphones.

Example 4.1: Closed-loop performance of RCAC with the z microphone placed at p1,

FPS as the control speaker, and RPS as the disturbance speaker. Figure 4.5 shows the

closed-loop power spectral density of the performance and evaluation microphones.

Example 4.2: Closed-loop performance of RCAC with the z microphone placed at p2,

FPS as the control speaker, and RPS as the disturbance speaker. Figure 4.6 shows the

closed-loop power spectral density of the performance and evaluation microphones.

4.3.5 Static Test with Spatial Spillover

Note that in both Example 4.1 and 4.2, RCAC is able to suppress the peak modes of

interest at the performance microphone. However, the suppression at the evaluation micro-

phones varied, and in some cases showed large amplification relative to open-loop noise

levels. The notion of spatial spillover presented in Chapter 2 was motivated by this work.

In this study, we estimate the spatial spillover function and attempt to correlate the suppres-

sion relative to the open-loop between the performance microphone z and the evaluation

microphones LH, and RH in terms of the spatial spillover function. An effort was made

to qualitatively accesses relative suppression in terms of the magnitude and phase of the

spatial spillover function which is outlined in Table 4.1. We admit that the observations
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Figure 4.5: Example 4.1: Closed-loop performance of RCAC with the z microphone placed
at p1, FPS as the control speaker, and RPS as the disturbance speaker. At z, the peak in
the open-loop response centered at 140 Hz is suppressed from 115 Hz to 155 Hz in closed
loop, with 6.8 dB power suppression at the center frequency 140 Hz. The peak in the open-
loop response centered at 200 Hz is suppressed from 195 Hz to 220 Hz in closed loop,
with 5.1 dB power suppression at the center frequency 200 Hz. At LH, suppression of the
open-loop response centered at both peaks is minimal. At RH, the peak in the open-loop
response centered at 140 Hz is suppressed from 115 Hz to 145 Hz in closed loop, with 3.9
dB power suppression at the center frequency 140 Hz. Suppression of the peak centered at
200 Hz is minimal.

are mostly qualitative and subjective, and some examples fall slightly outside the predicted

trends, however in a large number of cases, the results do agree with the Table 4.1.

Example 4.3: Spatial spillover at the evaluation microphones with the z microphone

colocated with LH , FPS as the control speaker, and RPS as the disturbance speaker.

Figure 4.7 shows the closed-loop power spectral density of the performance and evaluation

microphones, as well as Gss between z and the evaluation microphones.
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Figure 4.6: Example 4.2: Closed-loop performance of RCAC with the z microphone placed
at p2, FPS as the control speaker, and RPS as the disturbance speaker. At z, the peak in the
open-loop response centered at 140 Hz is suppressed from 110 Hz to 150 Hz in closed loop,
with 6.2 dB power suppression at the center frequency 140 Hz. The peak in the open-loop
response centered at 200 Hz is suppressed from 195 Hz to 220 Hz in closed loop, with 6.3
dB power suppression at the center frequency 200 Hz. Spectral spillover primarily occurs
from 150 Hz to 195 Hz. At LH, the peak in the open-loop response centered at 140 Hz is
suppressed from 105 Hz to 150 Hz in closed loop, with 3.5 dB power suppression at the
center frequency 140 Hz. Suppression of the peak centered at 200 Hz is minimal. At RH,
the peak in the open-loop response centered at 140 Hz is suppressed from 115 Hz to 150
Hz in closed loop, with 9.1 dB power suppression at the center frequency 140 Hz. The
peak in the open-loop response centered at 200 Hz is suppressed from 200 Hz to 220 Hz
in closed loop, with 7.1 dB power suppression at the center frequency 200 Hz. However,
there is sharp amplification at 196 Hz.

Example 4.4: Spatial spillover at the evaluation microphones with the z microphone

colocated with RH , FPS as the control speaker, and RPS as the disturbance speaker.

Figure 4.8 shows the closed-loop power spectral density of the performance and evaluation
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Table 4.1: Observations on the performance and spatial spillover of the evaluation micro-
phone relative to the z microphone.

|Geu
Gzu
| > 2|Gew

Gzw
| |Geu

Gzu
| ≈ |Gew

Gzw
| 2|Geu

Gzu
| < |Gew

Gzw
|

|∠Gss| < 10◦ 1. Good suppres-
sion

2. Good suppres-
sion

3. Fair suppres-
sion

10◦ < |∠Gss| < 30◦ 4. Good suppres-
sion

5. Fair suppres-
sion

6. Limited sup-
pression

30◦ < |∠Gss| < 60◦ 7. Fair suppres-
sion

8. Limited sup-
pression

9. Limited sup-
pression

60◦ < |∠Gss| 10. Minimal
Spillover

11. Some
Spillover

12. Large
Spillover

microphones, as well as Gss between z and the evaluation microphones.

Example 4.5: Spillover at the evaluation microphones for Example 4.4. Figure 4.9

shows Gss between z and the evaluation microphones for Example

Example 4.6: Spatial spillover at the evaluation microphones with the z microphone

placed at p3, FPS as the control speaker, and RPS as the disturbance speaker. Figure

4.10 shows the closed-loop power spectral density of the performance and evaluation mi-

crophones, as well as Gss between z and the evaluation microphones.
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Figure 4.7: Example 4.3: Spatial spillover at the evaluation microphones with the z micro-
phone colocated with LH, FPS as the control speaker, and RPS as the disturbance speaker.
At z/LH, both the peak at 140 Hz and 200 Hz are suppressed. At RH, for the peak at 140
Hz, cases 2 and 5 apply, resulting in good suppression in this range as expected. For the
peak at 200 Hz, case 12 applies, resulting in sharp amplification in this range as expected.
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Figure 4.8: Example 4.4: Spatial spillover at the evaluation microphones with the z micro-
phone colocated with RH, FPS as the control speaker, and RPS as the disturbance speaker.
At the z/RH microphone, both the peak at 140 Hz and 200 Hz are suppressed. At LH, for
the peak at 140 Hz case 5 applies, resulting in some suppression as expected. For the peak
at 200 Hz, case 10 applies, and resulting in very little to no spatial spillover in this range as
expected.
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Figure 4.9: Example 4.5: Spatial spillover at the evaluation microphones for Example 2.
At LH, for the peak at 140 Hz, cases 2 and 5 apply, resulting in suppression in this range
in Example 2 as expected. For the peak at 200 Hz, case 7 applies and we expect to see
fair suppression in this range, however, the actual suppression in Example 2 is limited. At
RH, for the peak at 140 Hz, cases 2 and 5 apply resulting in suppression in this range
as expected. For the peak at 200 Hz, case 12 applies, resulting in sharp amplification as
expected.
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Figure 4.10: Example 4.6: Spatial spillover at the evaluation microphones with the z mi-
crophone placed at p3, FPS as the control speaker, and RPS as the disturbance speaker.
At z, both the peak at 140 Hz and 200 Hz are suppressed. At LH, for the peak at 140 Hz,
cases 6 and 9 apply, resulting in limited suppression as expected. For the peak at 200 Hz,
cases 8 and 11 apply. We expect to see limited suppression with some spatial spillover, but
none was observed. At RH, for the peak at 140 Hz, case 8 applies, and we expect to see
limited suppression, but the actual suppression is fair. For the peak at 200 Hz, cases 11 and
12 apply, and we expect to see large spillover, but limited spillover is observed.
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4.4 Conclusions

In this chapter, we derive the performance decomposition for the retrospective perfor-

mance ẑ(k, θ(k + 1)), where we show that RCAC seeks to minimize the sum of a pseudo-

performance term and a model-matching error term. An experimental study on the applica-

tion of feedback active noise control for suppression of broadband road noise is presented.

For all locations of the performance microphone, RCAC suppressed the noise at the primary

disturbance peaks, however additional evaluation microphones placed at the ear locations

of the driver showed that suppression at the performance microphone does not always lead

to suppression at the driver ear locations and can sometimes lead to amplification. We an-

alyze this behavior between the performance microphone and the evaluation microphone

in the context of spatial spillover and show that it is possible to predict qualitative trends

based on the magnitude and phase of the spatial spillover function.
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CHAPTER 5

Feedforward Disturbance Rejection

In this section, we apply RCAC to the feedforward disturbance rejection problem. Al-

though the equations for the feedforward control problem were discussed in Chapter 2, no

distinction is made between continous time and discrete time.

We first present a more rigorous set of equations for the discrete-time feedforward dis-

turbance rejection problem. The concept of an ideal feedforward controller and conditions

in which the ideal feedfoward controller can be implemented is then discussed. Next, we

present the equations of discrete-time LQG for feedforward disturbance rejection, and con-

sider the solution to the high-authority LQG problem as an alternative in cases when the

ideal controller is cannot be implemented.

The necessary modeling information required in the target model Gf for feedforward

disturbance rejection is discussed, followed by the definition of a choice of Gf that can

recover the high-authority LQG performance in the case of nc = n. Numerical examples

demonstrating the relation between RCAC and high-authority LQG are then presented.

Next, we show the relation between RCAC and the variations of the FxLMS algorithm,

followed by a numerical study comparing performance and convergence between RCAC

and Filtered-u RLS.

Finally, we leverage the acoustic experiment used for the spatial spillover experimental

study in Chapter 2 to test RCAC feedforward control.
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5.1 Feedforward Control Problems

5.1.1 Feedforward Disturbance Rejection

Consider the discrete-time feedforward disturbance rejection problem, a specialization

of the standard problem where we make the assumption that that the measurement y is

unaffected by the control u, or equivalently Gyu(q) = 0. Hence,

y(k) = Gyw(q)w(k). (5.1)

It follows from (3.4), (3.10), and (5.1) that

G̃zw(q) = Gzu(q)Gc(q)Gyw(q) +Gzw(q). (5.2)

Note that, unlike feedback control, the controllerGc in (2.6) cannot stabilize G̃zw, and thus,

if either Gzu, Gyw, or Gzw is not asymptotically stable, then (2.6) is not asymptotically sta-

ble. We therefore assume for this problem that Gzu, Gyw, and Gzw are asymptotically

stable. Furthermore, if Gc is unstable, then G̃zw is unstable, and thus all controllers imple-

mented for the feedforward disturbance rejection problem must be asymptotically stable.

Figure 5.1 shows a block diagram of the feedforward disturbance rejection problem as a

special case of Figure 3.1. In the case where y, z, u, and w are scalar signals, (2.6) can be

Gzw(q)

Gyw(q) Gzu(q)Gc(q)

w(k) z(k)

u(k)y(k)

Figure 5.1: Block diagram of the discrete-time feedforward disturbance rejection problem
with controller Gc.
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written as

Gzw(q) =
Nzu(q)Nc(q)Nyw(q) +Nyw(q)

D(q)Dc(q)
. (5.3)

5.1.2 Direct Feedforward Disturbance Rejection

We denote the direct feedforward disturbance rejection problem as a specialization of

the feedforward disturbance rejection problem with Gyw(q) = Ilw . In this case, we assume

that the disturbance is measured directly and without delay. Hence,

y(k) = w(k). (5.4)

It follows from (3.4), (3.10), and (5.4) that

G̃zw(q) = Gzu(q)Gc(q) +Gzw(q). (5.5)

Since it is difficult in practice to measure the disturbance exactly and without delay, this

problem can be viewed as an idealization. This idealization provides the framework in [5]

for the FxLMS feedforward control problem.

5.2 Ideal Controller for Feedforward Disturbance Rejec-

tion

In this section, we review the equations of the ideal controller for the feedforward dis-

turbance rejection problem [2, 5]. For simplicity we assume that y, z, u, and w are scalar

signals.

Denote the ideal feedforward controller Ĝc as the controller that exactly suppresses

the disturbance for all time, that is, z(k) = 0 for all k. Equivalently, the ideal controller
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satisfies G̃zw(q) = 0. By setting G̃zw(q) = 0, it follows from (2.6) that

Ĝc(q)
4
= − Gzw(q)

Gzu(q)Gyw(q)
. (5.6)

Using the notation (3.14), (5.6) can be written as

Ĝc(q) =
N̂c(q)

D̂c(q)
= −

Nzw(q)D(q)

Nzu(q)Nyw(q)
. (5.7)

Note that Ĝc is a ratio involving the numerators and denominators of Gzu, Gzw, and

Gyw, and thus may be strictly proper, exactly proper, or improper. In particular, Ĝc is

strictly proper if and only if dzu + dyw < dzw, where dzu, dyw, and dzw denote the relative

degrees of Gzu, Gyw and Gzw, respectively. Because of communication and computational

delays, exactly proper controllers are difficult to implement in practice and thus are not

considered in this dissertation. In addition, Ĝc may be unstable depending on the zeros of

Gzu and Gyw; in particular, Ĝc is asymptotically stable if and only if Gzu and Gyw are both

minimum phase.

The ideal controller Ĝc is implementable if it is both strictly proper and asymptotically

stable. In the case of direct feedforward disturbance rejection, it follows from (5.5) that

Ĝc(q) = −Gzw(q)

Gzu(q)
= −

Nzw(q)

D(q)

Nzu(q)

D(q)

= −
Nzw(q)

Nzu(q)
. (5.8)

The ideal direct feedforward controller (5.8) is implementable if and only if dzu < dzw and

Gzu is minimum phase.
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5.3 Discrete-Time LQG Control for Broadband Feedfor-

ward Disturbance Rejection

We now review the equations of the discrete-time LQG controller for the standard prob-

lem [35, p. 878], where w is zero-mean Gaussian white noise; the analogous continuous-

time case is considered in [36, 37]. The LQG feedforward controller provides a baseline

for assessing the asymptotic performance of RCAC considered in later sections.

Consider the nth-order strictly proper dynamic compensator (3.8), (3.9) applied to the

standard problem (3.1)–(3.3). The dynamics of the controlled system can be written as

x̃(k + 1) = Ãx̃(k) + D̃w(k), (5.9)

z(k) = Ẽx̃, (5.10)

where

x̃(k)
4
=

 x(k)

xc(k)

 , Ã
4
=

 A BCc

BcC Ac +BcD0Cc

 , (5.11)

D̃
4
=

 D1

BcD2

 , Ẽ
4
=

[
E1 E2Cc

]
. (5.12)

Define

R1
4
= ET

1 E1 ∈ Rn×n, R12
4
= ET

1 E2 ∈ Rn×lu , R2
4
= ET

2 E2 ∈ Rlu×lu , (5.13)

V1
4
= D1D

T
1 ∈ Rn×n, V12

4
= D1D

T
2 ∈ Rn×ly , V2

4
= D2D

T
2 ∈ Rly×ly , (5.14)

ÂR
4
= A−BR−1

2 RT
12, R̂1

4
= R1 −R12R

−1
2 RT

12, (5.15)

ÂE
4
= A− V12V

−1
2 C, V̂1

4
= V1 − V12V

−1
2 V T

12, (5.16)

and assume that the following conditions are satisfied:
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i) (A,B) is stabilizable.

ii) (ÂR, R̂1) has no unobservable eigenvalues on the unit circle.

iii) (A,C) is detectable.

iv) (ÂE, V̂1) has no uncontrollable eigenvalues on the unit circle.

Then the strictly proper controller

Ac = A+BCc −BcC −BcD0Cc, (5.17)

Bc = (AQCT + V12)(V2 + CQCT)−1, (5.18)

Cc = −(R2 +BTPB)−1(RT
12 +BTPA) (5.19)

asymptotically stabilizes the system (5.9), (5.10) and minimizes the LQG cost function

J(Ac, Bc, Cc)
4
= lim

k→∞
E

[
1

k

k∑
i=0

zT(i)z(i)

]
= lim

k→∞
E[zT(k)z(k)]. (5.20)

The matrices P ∈ Rn×n andQ ∈ Rn×n in (5.17)–(5.19) are the unique positive-semidefinite

solutions of the discrete-time algebraic Riccati equations

P = ÂT
RPÂR − ÂT

RPB(R2 +BTPB)−1BTPÂR + R̂1, (5.21)

Q = ÂEQÂ
T
E − ÂEQC

T(V2 + CQCT)−1CQÂT
E + V̂1. (5.22)

With the controller (5.17)–(5.19), the poles of the controlled system (5.9), (5.10) are the

eigenvalues of Ã, which, due to separation, are given by

mspec(Ã) = mspec(A+BCc) ∪mspec(A−BcC), (5.23)

where “mspec” denotes the set of eigenvalues including multiplicity.
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5.3.1 Specializion of LQG to Feedforward Disturbance Rejection

Assuming Gyu(q) = 0ly×lu as in the feedforward disturbance rejection problem, it

follows that Gyu given by (3.7) implies that there exists a state space basis for (3.1) – (3.3)

such that A, B, C, D0 have the form

A =

 A11 0nz×ny

0ny×nz A22

 , B =

 Bz

0ny×lu

 , C =

[
0ly×nz Cy

]
, D0 = 0ly×lu ,

(5.24)

where A11 ∈ Rnz×nz , A22 ∈ Rny×ny , Bz ∈ Rnz×lu , and Cy ∈ Rly×ny . Note that nz + ny =

n.

Assume that R12 = 0n×ly and V12 = 0n×lu . Partitioning P =

P11 P12

PT
12 P22

 , where

P11 ∈ Rnz×nz , P12 ∈ Rnz×ny , and P22 ∈ Rny×ny , (5.19) and (5.24) imply

Cc = −(R2 +BT
z P11Bz)

−1

[
BT
z P11A11 BT

z P12A22

]
. (5.25)

Note that Cc depends only on P11 and P12, which satisfy

P11 = AT
11P11A11 + AT

11P11Bz(R2 +BT
z P11Bz)

−1BT
z P11A11 +R1,11, (5.26)

P12 = AT
11P12A22 + AT

11P11Bz(R2 +BT
z P11Bz)

−1BT
z P12A22 +R1,12, (5.27)

where R1 =

R1,11 R1,12

RT
1,12 R1,22

 . Hence Cc is completely described by the reduced solution

(5.25)–(5.27). Likewise, partitioning Q =

Q11 Q12

QT
12 Q22

 , where Q11 ∈ Rnz×nz , Q12 ∈
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Rnz×ny , and Q22 ∈ Rny×ny , (5.18) and (5.24) imply

Bc =

A11Q12C
T
y

A22Q22C
T
y

 (V2 + CyQ22C
T
y )−1, (5.28)

where Q12 and Q22 satisfy

Q12 = A11Q12A
T
22 + A11Q12C

T
y (V2 + CyQ22C

T
y )−1CyQ22A

T
22 + V1,12, (5.29)

Q22 = A11Q12A
T
22 + A22Q22C

T
y (V2 + CyQ22C

T
y )−1CyQ22A

T
22 + V1,22, (5.30)

and V1 =

V1,11 V1,12

V T
1,12 V1,22

 .
Introducing the notation

Bc =

Bc1

Bc2

 , Cc =

[
Cc1 Cc2

]
, (5.31)

it follows from (5.23) that the eigenvalues of Ã are given by

mspec(Ã) = mspec


A11 +BzCc1 BzCc2

0ny×nz A22


 ∪mspec


 A11 −Bc1Cy

0ny×nz A22 −Bc2Cy




(5.32)

= mspec (A) ∪mspec(A11 +BzCc1) ∪mspec(A22 −Bc2Cy). (5.33)

Hence (5.33) and (5.17) imply that

mspec(Ã) = mspec (A) ∪mspec (Ac) . (5.34)

Note that the eigenvalues of Ã do not depend on Cc2 and Bc1. If R12 = 0n×ly and V12 =
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0n×lu so that Cc and Bc are given by (5.25) and (5.28), then the eigenvalues of Ã are fully

described by A11, A22, Bz, Cy, P11, and Q22 and the LQG weightings.

5.3.2 Specializion of LQG to Direct Feedforward Disturbance Rejec-

tion

For direct feedforward disturbance rejection, y(k) = w(k) and

C = 0ly×n, D2 = Ilw , D0 = 0ly×lu . (5.35)

Using (5.35), the controller (5.17)–(5.19) can be written as

Ac = A+BCc, (5.36)

Bc = V12V
−1

2 = D1, (5.37)

Cc = −(R2 +BTPB)−1(RT
12 +BTPA). (5.38)

Note that Bc is given directly by D1 and thus does not require the solution of a Riccati

equation.

5.4 Analysis of the High-Authority LQG Feedforward Con-

troller

We now consider the LQG feedforward controller in the case where y, z, u, and w are

scalar signals and the LQG weights satisfy

R2 = ET
2 E2 = 0, V2 = D2D

T
2 = 0. (5.39)
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The weights (5.39) indicate the high-authority discrete-time LQG control problem. Proper-

ties of the high-authority LQG controller for continuous-time systems are given in [37, pp.

281-289]; analogous properties in discrete-time are considered in [21]. It follows from

(5.39) that Gzu and Gyw are strictly proper.

Defining the characteristic polynomial D̃zw of the closed-loop system (5.9)–(5.12) by

D̃zw(z)
4
= det(zI − Ã), (5.40)

it follows from (5.23) that (5.40) can be factored as

D̃zw(z) = D̃zw,LQR(z)D̃zw,LQE(z), (5.41)

where

D̃zw,LQR
4
= det(zI − (A+BCc)), D̃zw,LQE

4
= det(zI − (A−BcC)). (5.42)

The poles of the closed-loop system are given by the roots of D̃zw,LQR (the linear-quadratic

regulator) and D̃zw,LQE (the linear-quadratic estimator). In order to analyze D̃zw,LQR and

D̃zw,LQE, we factor Nzu defined by (3.14) as

Nzu(z) = HdzuNzu,s(z)Nzu,u(z), (5.43)

where Hdzu is the leading nonzero numerator coefficient of Gzu and the roots of the monic

polynomialsNzu,s andNzu,u are the minimum-phase (open-unit-disk) zeros and NMP zeros

of Gzu, respectively.

If R2 = 0, then the high-authority LQR design places the roots of D̃zw,LQR at

D̃zw,LQR = zdzuNzu,s(z)Nzu,u(z−1), (5.44)
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where the roots of Nzu,u(z−1) are the reciprocals of the NMP zeros of Gzu. Similarly, if

V2 = 0, then the high-authority LQE design places the roots of D̃zw,LQE at

D̃zw,LQE(z) = zdywNzw,s(z)Nyw,u(z−1), (5.45)

where the roots of Nyw,u(z−1) are the reciprocals of the NMP zeros of Gyw. It follows that

if R2 = 0 and V2 = 0, then

D̃zw(z) = zdzuNzu,s(z)Nzu,u(z−1)zdywNzw,s(z)Nyw,u(z−1). (5.46)

5.4.1 High-Authority LQG Controller for Feedforward Disturbance

Rejection

In the case of feedforward disturbance rejection, it follows from (5.34) that (5.40) can

be factored as

D̃zw(z) = Dc(z)D(z), (5.47)

where

Dc(z)
4
= det(zI − Ac), D(z)

4
= det(zI − A). (5.48)

Furthermore, it follows from (5.24) that (5.48) can be factored as

D(z) = Dz(z)Dy(z), (5.49)

where

Dz(z)
4
= det(zInz×nz − A11), Dy(z)

4
= det(zIny×ny − A22). (5.50)
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Proposition 1: Consider the feedforward disturbance rejection problem, where y, z,

u, and w are scalar signals. Then there exist polynomials N zu and Nyw such that the

numerators of Gzu and Gyw can be expressed as

Nzu(z) = N zu(z)Dy(z), Nyw(z) = Nyw(z)Dz(z). (5.51)

Lemma 1: Let A ∈ Rl×l, B ∈ Rl×m, C ∈ Rm×l, and D ∈ Rm×m. If A is nonsingular,

then

det


A B

C D


 = det(A)det(D − CA−1B). (5.52)

If, m = 1, then

det


A B

C D


 = (D + 1)det(A)− det(A+BC). (5.53)

Proof of Proposition 1: Consider the Rosenbrock system matrix (RSM) forGzu, where

RSM(z) =

zI − A B

E1 E2

 . (5.54)

Since (5.54) is square, the zeros of Gzu can be obtained from the characteristic polynomial

of the RSM. Using Lemma 1, the characteristic polynomial of (5.54) can be written as

Nzu(z) = det(RSM(z)) = (E2 + 1)det(zI − A) + det(zI − A+BE1). (5.55)

Introduce the notation

E1 =

[
E1z E1y

]
, (5.56)
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where E1z ∈ Rlu×nz , and E1y ∈ Rlu×ny . Using (5.24) and (5.56), (5.55) can be written as

Nzu(z) = (E2 + 1)det


zInz×nz − A11 A12

0ny×nz zIny×ny − A22


+

det


zInz×nz − A11 +BzE1z A12 +BzE2z

0ny×nz zIny×ny − A22


 . (5.57)

Exploiting the structure of upper block triangular matrices, (5.57) is equivalent to

Nzu(z) = (E2 + 1)Dz(z)Dy(z) + det(zInz×nz − A11 +BzE1z)Dy(z). (5.58)

It follows that (5.58) can be written as

Nzu(z) = N zu(z)Dy(z), (5.59)

where

N zu(z) = (E2 + 1)Dz(z) + det(zInz×nz − A11 +BzE1z). (5.60)

Introduce the notation

D1 =

D1z

D1y

 , (5.61)

where D1z ∈ Rnz×ly , D1y ∈ Rny×ly . Following the same arguments, it can be seen that

Nyw(z) can be written as

Nyw(z) = Nyw(z)Dz(z), (5.62)
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where

Nyw(z) = (D2 + 1)Dz(z) + det(zInz×nz − A22 +D1yCy). (5.63)

Proposition 1 shows that the numerator and denominator of Gzu given by (3.6) are not

coprime. It also shows that the numerator and denominator of Gyw given by (3.7) in the

case of feedforward disturbance rejection are not coprime. Furthermore, it follows from

Proposition 1 that

Gzu(z) =
Nzu(z)

D(z)
=
N zu(z)

Dz(z)
, Gyw(z) =

Nyw(z)

D(z)
=
Nyw(z)

Dy(z)
. (5.64)

Since, for the feedforward disturbance rejection problem, the roots of D are assumed to be

contained in the open unit disk, it follows from (5.51) that

Nzu,u(z) = N zu,u(z), Nyw,u(z) = Nyw,u(z), (5.65)

that is, all NMP zeros of Gzu and Gyw are roots of N zu and Nyw, respectively. It follows

from (5.46)–(5.65) that

Dc(z)D(z) = zdzuN zu,s(z)N zu,u(z−1)Dy(z)zdywN zw,s(z)Nyw,u(z−1)Dz(z), (5.66)

Dc(z) = zdzuN zu,s(z)N zu,u(z−1)zdywN zw,s(z)Nyw,u(z−1), (5.67)

where (5.67) give the denominator of the high-authority LQG controller.

The denominator of the high-authority LQG controller given by (5.67) indicates the

locations of the controller poles in the case where the ideal feedforward controller (5.6) is

unstable. In particular, if eitherGzu orGyw is NMP and thus the ideal controller is unstable,

then the high-authority LQG design places the poles of the controller at the reciprocals of

the unstable poles of the ideal controller. Note that, if the ideal controller has at least one
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unstable pole, then it is not implementable. However, the LQG design is implementable in

all cases.

5.4.2 High-Authority LQG Controller for Direct Feedforward Distur-

bance Rejection

For direct feedforward disturbance rejection, the LQE gain (5.37) does not involve the

solution of the Riccati equation (5.22). In this case, the high-authority LQG problem cor-

responds to R2 = 0 with Bc = D1. It follows from (5.67) that the denominator of the

high-authority LQG controller is given by

Dc(z) = zdzuN zu,s(z)N zu,u(z−1). (5.68)

5.5 Modeling Information Required to Construct the Tar-

get Model Gf in Feedforward Disturbance Rejection

The derivation of the retrospective performance decomposition (4.20) in Section 4.1

was largely independent of whether the control architecture is feedback or feedforward.

We specialize the equations in Section 4.1 to the feedforward control problem below.

Consider (4.14), where y(k) for feedforward control is given by (5.1). Substituting

(5.1) into (4.14) yields

z(k) = G̃zw,θ(k+1)(q)w(k) + G̃zũ,θ(k+1)(q)ũ(k, θ(k + 1)), (5.69)

87



where

G̃zw,θ(k+1)(q)
4
= Gzw(q) +Gzu(q)Gc,θ(k+1)(q)Gyw(q), (5.70)

G̃zũ,θ(k+1)(q)
4
= Gzu(q)Gp,θ(k+1)(q). (5.71)

If y, z, u, and w are scalar signals, then (4.18) can be written as

G̃zũ,θ(k+1)(q) =
Nzu(q)qnc

D(q)Dc,θ(k+1)(q)
. (5.72)

Furthermore, using (5.49) and (5.51), (5.72) becomes

G̃zũ,θ(k+1)(q) =
N zu(q)qnc

Dz(q)Dc,θ(k+1)(q)
. (5.73)

5.6 Constructing the Target Model Gf

We consider modeling information required for Gf in the feedforward disturbance re-

jection problem. Note that as the functional form of the performance decomposition (4.20)

has not changed, we still view Gf as a target model for G̃zũ,θ(k+1).

5.6.1 Relative degree

We again choose the relative degree ofGf to be equal to the relative degree of G̃zũ,θ(k+1).

It follows from (5.72) that the relative degree of G̃zũ,θ(k+1) is still equal to the relative degree

of Gzu. We thus choose the relative degree of Gf to be equal to the relative degree of Gzu.

5.6.2 NMP zeros

We note that the numerator of G̃zũ,θ(k+1) for feedback (4.19) and feedforward (5.72)

are the same. Hence the risk of RCAC canceling NMP zeros in Gzu that are not included
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in the numerator of Gf in order to remove them from G̃zũ,θ(k+1) remains. This observation

motivates the desire to again capture all NMP zeros of Gzu in the numerator of Gf .

5.6.3 FIR Target Model

Despite having different formulations, on the issue of relative degree and NMP zeros,

G̃zũ,θ(k+1) for feedback and feedforward agree. Hence, in terms of the required modeling

information, the FIR target models (4.26) for when Gzu is minimum phase, and (4.27)

for when Gzu is NMP, also represent the modeling information required by RCAC for

feedforward control.

5.6.4 Optimal Target Model G∗f

The optimal target model G∗f is the target model that recovers the high-authority LQG

performance, assuming the conditions for high-authority LQG are satisfied. Consider

Gzũ,θ(k+1) given by (5.73) and a target model Gf chosen as

Gf(q) =
HdzuN zu(z)qnc

Dz(q)Dc,LQG(q)
, (5.74)

where Dc,LQG is given by (5.67). It follows that in minimizing the model-matching error

between (5.73) and (5.74), RCAC places the roots of Dc,θ(k+1)(q) at Dc,LQG. Hence, if Gzu

is minimum phase, then

G∗f (q) =
Hdzuqn+deg(Nyw)−dzu

Dz(q)Nyw,s(q)Nyw,u(q−1)
, (5.75)

whereas, if Gzu is NMP, then

G∗f (q) =
HdzuN zu,u(q)qn+deg(Nyw)−(dzu+deg(Nzu,u))

Dz(q)N zu,u(q−1)Nyw,s(q)Nyw,u(q−1)
. (5.76)
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For direct feedforward disturbance rejection, (5.75) reduces to

G∗f (q) =
Hdzuqn−dzu

Dz(q)
, (5.77)

and (5.76) reduces to

G∗f (q) =
HdzuN zu,u(q)qn−(dzu+deg(Nzu,u))

Dz(q)N zu,u(q−1)
. (5.78)

5.6.5 Choice of Gf for nc,RCAC > n

For sufficiently high controller order, it is possible for the RCAC controller to approx-

imate the frequency response of the high-authority LQG feedforward controller in steady

state without using the ideal filter G∗f as long as the required modeling information is satis-

fied. In the subsequent numerical examples, we demonstrate that, for nc,RCAC > n, RCAC

is able to approximate the frequency response of the high-authority LQG feedforward con-

troller using only the FIR target model (4.26) in the case where Gzu is minimum phase and

the FIR target model (4.27) in the case where Gzu is NMP.

5.6.6 Target model Gf for FIR Controller Structures

Consider the case where the controller structure is restricted to be FIR. In this case,

Dc,θ(k+1) = qnc for all k, and thus (5.73) reduces to

G̃zũ,θ(k+1)(q) =
N zu(q)

Dz(q)
. (5.79)

Since G̃zũ,θ(k+1)(q) does not depend on θ(k + 1), it follows that the residual between Gf

and G̃zũ is constant. Therefore, to minimize the retrospective performance (4.20), it is

90



advantageous to choose

G∗f (q) = Gzu(q) =
N zu(q)

Dz(q)
. (5.80)

Note that, since Gzu is assumed to be asymptotically stable, the filter (5.80) can be

represented as a Laurent expansion based on the Markov parameters of Gzu. In particular,

for each complex number z whose absolute value is greater than the spectral radius of A, it

follows that Gzu has the Laurent expansion

Gzu(z) = E1(zI − A)−1B =
∞∑

i=dzu

Hi

zi
, (5.81)

where H0
4
= E2 and, for all i ≥ 1, the ith Markov parameter of Gzu is given by

Hi
4
= E1A

i−1B. (5.82)

The frequency response ofGzu can be approximated using the truncated Laurent expansion

Gzu(z) ≈
n∑

i=dzu

Hi

zi
. (5.83)
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5.7 RCAC and High-authority LQG Numerical Examples

Example 5.1: RCAC with an IIR controller, where Gzu is minimum phase, Ĝc is imple-

mentable, and Gf is the optimal target model (5.75). Consider

Gzw(z) =
z− 0.2

(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
, Gyw(z) =

z− 0.9

z2 − 1.71z + 0.81
,

(5.84)

Gzu(z) =
(z− 0.7)(z2 − 1.26z + 0.81)

(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
, Gyu(z) = 0. (5.85)

Figure 5.2 shows the pole-zero map of the plant and the ideal controller Ĝc given by (5.6)

for (5.84) and (5.85). Note that Ĝc is strictly proper and asymptotically stable, and thus is

implementable. We apply RCAC with an IIR controller of order nc = n = 6. The optimal

target model (5.75) is given by

Gf(z) =
z4

(z− 0.9)(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
. (5.86)

Figure 5.3 shows the performance of RCAC, compares the frequency responses of the ideal

controller Ĝc, the high-authority LQG controller Gc,LQG, and the final RCAC controller

Gc,500, and compares the frequency response of the target model Gf with the frequency

response of the transfer function G̃zũ,500. By selecting the optimal target model, RCAC

approximates the high-authority LQG controller with nc = n. �
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Figure 5.2: The pole-zero maps of (5.84) and (5.85) are shown in (a). The pole-zero map of
the ideal controller Ĝc given by (5.6) is shown in (b). The ideal controller is strictly proper
and asymptotically stable, and thus is implementable.
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Figure 5.3: Example 5.1: RCAC with an IIR controller applied to (5.84) and (5.85) with
nc = n = 6 with the target model Gf given by (5.86). The performance and control
input are shown in (a), where zu denotes the uncontrolled performance and z denotes the
performance with RCAC. The controller gains and the pseudo-performance and model-
matching error of the retrospective performance decomposition (4.20) are shown in (b). (c)
compares the frequency responses of the final RCAC controller Gc,500, Gc,LQG, and Ĝc.
Note that the frequency response of Gc,500 approximates the frequency response of Ĝc. (d)
compares the frequency response of Gf with the frequency response of G̃zũ,500. Note that
the frequency response of G̃zũ,500 approximates the frequency response of Gf .

94



Example 5.2: RCAC with an IIR controller, where Gzu is minimum phase, Ĝc is not

implementable, and Gf is the FIR target model (4.26). Consider

Gzw(z) =
z2 − 0.7z + 0.49

(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
, Gyw(z) =

z− 1.2

z2 − 1.71z + 0.81
,

(5.87)

Gzu(z) =
z2 − 1.26z + 0.81

(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
, Gyu(z) = 0. (5.88)

Figure 5.4 shows the pole-zero map of the plant and the ideal controller Ĝc given by (5.6)

for (5.87) and (5.88). Note that Ĝc is strictly proper, but, since Gyw is NMP, it is unstable,

and thus is not implementable. We apply RCAC with an IIR controller of order nc = 16.

The FIR target model (4.26) is given by

Gf(z) =
1

z2
. (5.89)

Figure 5.5 shows the performance of RCAC, compares the frequency responses of the ideal

controller Ĝc, the high-authority LQG controller Gc,LQG, and the final RCAC controller

Gc,2000, and compares the frequency response of the target model Gf with the frequency

response of the transfer function G̃zũ,2000. For a sufficiently high controller order, RCAC

approximates the high-authority LQG controller using the nominal modeling information

given by the FIR target model (4.26). �
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Figure 5.4: The pole-zero maps of (5.87) and (5.88) are shown in (a). The pole-zero map of
the ideal controller Ĝc is shown in (b). The ideal controller is strictly proper but unstable,
and thus is not implementable.
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Figure 5.5: Example 5.2: RCAC with an IIR controller applied to (5.87) and (5.88) with
nc = 16 and the target model Gf given by (5.89). The performance and control input are
shown in (a), where zu denotes the uncontrolled performance and z denotes the perfor-
mance with RCAC. The controller gains and the pseudo-performance and model-matching
error of the performance decomposition (4.20) are shown in (b). (c) compares the frequency
responses of the final RCAC controller Gc,2000, Gc,LQG, and Ĝc. Note that the frequency
response of Gc,2000 approximates the frequency response of Gc,LQG. (d) compares the fre-
quency response of Gf with the frequency response of G̃zũ,2000. Note that the frequency
response of G̃zũ,2000 approximates the frequency response of Gf .
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RCAC with an IIR controller, where Gzu is NMP, Ĝc is not implementable, and the

target models (4.26) and (4.27) are compared. Consider

Gzw(z) =
z− 0.2

(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
, Gyw(z) =

z− 0.9

z2 − 1.71z + 0.81
,

(5.90)

Gzu(z) =
(z− 0.7)(z2 − 1.54z + 1.21)

(z2 − 1.62z + 0.81)(z2 − 0.72z + 0.81)
, Gyu(z) = 0. (5.91)

Figure 5.6 shows the pole-zero map of the plant and the ideal controller Ĝc given by (5.6)

for (5.90) and (5.91). Note that Ĝc is not strictly proper and, since Gzu is NMP, is unstable;

hence Ĝc is not implementable. We apply RCAC with an IIR controller of order nc = 16.

The FIR target model (4.26) is given by

Gf(z) =
1

z
, (5.92)

which does not include the NMP zero of Gzu. Figure 5.7 shows the performance of RCAC

using the target model (5.92), the pole-zero map of the RCAC controller Gc,350, and com-

pares the frequency response of the target model Gf with the frequency response of the

transfer function G̃zũ. Note that, since the NMP zeros of Gzu are not included in Gf ,

RCAC places controller poles at the NMP zeros in an attempt to match the frequency re-

sponse of Gf and G̃zũ. This cancellation causes G̃zw to be unstable, as shown in Figure

5.7.

Alternatively, consider the FIR target model (4.27) given by

Gf(z) =
z2 − 1.68z + 1.44

z3
, (5.93)

which includes the NMP zero ofGzu. Figure 5.8 shows the performance of RCAC using the

target model (5.93), compares the frequency responses of the ideal controller Ĝc, the high-

authority LQG controller Gc,LQG, and the final RCAC controller Gc,2000, and compares
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the frequency response of the target model Gf with the frequency response of the transfer

function G̃zũ,2000. In this case, the NMP zeros of Gzu are included in Gf , and the RCAC

controller approximates the frequency response of the high-authority LQG controller as

shown in Figure 5.8. Consequently, no unstable pole-zero cancellation occurs as in the

case of Gf given by (5.92). �
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Figure 5.6: Example 5.3: The pole-zero map of (5.90) and (5.91) is shown in (a). The ideal
controller is shown in (b). The ideal controller is not strictly proper and unstable, and thus
is not implementable.
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Figure 5.7: Example 5.3: RCAC with an IIR controller applied to (5.90) and (5.91) with
nc = 16 and the target model Gf given by (5.92), which does not include the NMP zeros
of Gzu. The performance and control input are shown in (a), where zu denotes the un-
controlled performance and z denotes the performance with RCAC. The controller gains
and the pseudo-performance and model-matching error of the performance decomposition
(4.20) are shown in (b). (c) shows the pole-zero map of Gzu and Gc,350. Note that RCAC
places controller poles at the unmodeled NMP zeros of Gf , which produces an unstable
controller. (d) compares the frequency response of Gf with the frequency response of
G̃zũ,350. Note that the frequency response of G̃zũ,350 approximates the frequency response
of Gf .
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Figure 5.8: Example 5.3: RCAC with an IIR controller applied to (5.90) and (5.91) with
nc = 16 and the target model Gf given by (5.93), which includes the NMP zeros of Gzu.
The performance and control input are shown in (a), where zu denotes the uncontrolled per-
formance and z denotes the performance with RCAC. The controller gains and the pseudo-
performance and model-matching error of the performance decomposition (4.20) are shown
in (b). (c) compares the frequency responses of the final RCAC controller Gc,2000, Gc,LQG,
and Ĝc. Note that the frequency response ofGc,2000 approximates the frequency response of
Gc,LQG. (d) compares the frequency response ofGf with the frequency response of G̃zũ,2000.
Note that the frequency response of G̃zũ,2000 approximates the frequency response of Gf .
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5.8 RCAC and Filtered-x/Filtered-u Feedforward Algorithms

In this section, we compare RCAC with Fx/FuLMS and Fx/FuRLS [4, 5, 24, 25]. This

comparison focuses on the recursive controller coefficient updates in the respective algo-

rithms; a numerical comparison is given in the next section.

5.8.1 RCAC and Fx/FuLMS

For p = 1, the RCAC sliding-window gradient-based controller update law (3.36) spe-

cializes to

θ(k + 1) = θ(k)− µ(k)[z(k)− (uf(k)− Φf(k)θ(k))]TΦf(k). (5.94)

Furthermore, omitting the term uf(k)− Φf(k)θ(k), the update equation (5.94) becomes

θ(k + 1) = θ(k)− µ(k)zT(k)Φf(k), (5.95)

where (5.95) is the update equation for the FuLMS algorithm given in [5,24]. If, in addition,

the controller is constrained to be FIR such that Φ(k) and θ(k) are given by (3.25), then

(5.95) is the update equation for the FxLMS algorithm in [4, 5].

5.8.2 RCAC and FxRLS/FuRLS

Consider the RCAC cumulative-cost RLS-based controller update law (3.43) and (3.45).

LetRu = 0lu×lu , Ruf = 0lz×lz , R∆ = 0lθ×lθ , andRz = Ilz . If the terms uf(k) and Φf(k)θ(k)

are omitted from the update equation (3.45), then (3.43) and (3.45) become

θ(k + 1) = θ(k)− P (k)ΦT
f (k)Υ−1(k)z(k), (5.96)

P (k + 1) =
1

λ
P (k) − 1

λ
P (k)ΦT

f (k)Υ−1(k)Φf(k)P (k), (5.97)
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where

Υ(k)
4
= λIlz + Φf(k)P (k)ΦT

f (k). (5.98)

The equations (5.96), (5.97), and (5.98) are the update equations of the FuRLS algorithm.

If the controller is constrained to be FIR such that Φ(k) and θ(k) are given by (3.25), then

(5.96), (5.97), and (5.98) are the update equations for the FxRLS algorithm given in [5,25]

Note that Φf , which is given by (3.29) in terms of the filterGf , appears in the Fx/FuLMS

update equation (5.95) and the Fx/FuRLS update equations (5.96), (5.97), and (5.98). In

the context of Fx/FuLMS and Fx/FuRLS, Gf is a model of the secondary path transfer

function Gzu [5].

5.9 Numerical Comparison of RCAC and FuRLS

In this section, we compare the performance of cumulative-cost, RLS-based RCAC

using an IIR controller with FuRLS. We consider direct feedforward disturbance rejection

assuming that the ideal controller is implementable.

Two metrics are considered. The instantaneous controller difference

∆Gc,k
4
= ||Gc,k − Ĝc||2, (5.99)

where || · ||2 denotes the H2 norm, measures the closeness of the controller Gc,k at step k to

the ideal controller Ĝc. Additionally, the instantaneous performance

J̃k
4
= ||G̃zw,k||2 (5.100)

measures the performance of the controlled system at step k. Note that both metrics are

meaningful at step k only ifGc,k is asymptotically stable. All of the RCAC examples in this
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section use the tuning parameters kc = 1, Ru = 0lu×lu , kw = 60, λ = 1, and Q = 0lθ×lθ .

Example 5.4: Comparison of RCAC and FuRLS, where Gf for RCAC is the optimal

target model (5.77) and Gf for FuRLS is Gzu. Consider

Gzw(z) =
z2 − 1.71z + 0.81

(z2 − 1.62z + 0.81)(z2 − 1.52z + 0.90)
, (5.101)

Gzu(z) =
(z2 − 1.35z + 0.81)(z− 0.7)

(z2 − 1.62z + 0.81)(z2 − 1.52z + 0.90)
. (5.102)

Figure 5.9 shows the pole-zero map and the ideal controller Ĝc. Note that Ĝc is strictly

proper and asymptotically stable, and thus is implementable. We apply RCAC with an IIR
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Figure 5.9: Example 5.4: The pole-zero map of (5.101) and (5.102) is shown in (a). The
ideal controller is shown in (b). The ideal controller is strictly proper and asymptotically
stable, and thus is implementable.

controller and FuRLS with nc = n = 4. For RCAC, the optimal target model (5.77) is

given by

Gf(z) =
z3

(z2 − 1.62z + 0.81)(z2 − 1.52z + 0.90)
, (5.103)

with P (0) = R−1
θ = 10Ilθ , and R∆ = 0lθ×lθ . For FuRLS, Gf = Gzu given by (5.102).

We consider the response of FuRLS for several values of P (0). Figure 5.10 shows the per-

formance of both algorithms and compares the instantaneous performance and the instan-
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taneous controller difference. Note that RCAC provides lower values of the instantaneous

performance and instantaneous controller difference than FuRLS. �

Example 5.5: Comparison of RCAC and FuRLS, where Gf for RCAC is the FIR target

model (4.26) and Gf for FuRLS is Gzu. Consider the system (5.101) and (5.102) defined

in Example 5.4. We apply RCAC with an IIR controller and FuRLS. For RCAC, the FIR

target model (4.26) is given by

Gf(z) =
1

z
, (5.104)

with P (0) = R−1
θ = Ilθ , and R∆ = 100Ilθ . We consider the response for several values of

nc. For FuRLS, Gf = Gzu is given by (5.102) with P (0) = 0.1Ilθ and nc = 10, which was

found to provide the best response.

Figure 5.11 shows the performance of both algorithms and compares the instantaneous

performance and instantaneous controller difference. Note that, for sufficiently high con-

troller order, RCAC with the FIR target model (4.26) yields lower values of the instanta-

neous performance and instantaneous controller difference than FuRLS. �
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Figure 5.10: Example 5.4: Comparison of RCAC with an IIR controller and FuRLS ap-
plied to the system (5.101) and (5.102) with nc = n = 4. For RCAC, the target model Gf

is given by (5.103) and P (0) = 10Ilθ and R∆ = 0lθ×lθ . For FuRLS, Gf = Gzu, and three
values of P (0) are compared. The instantaneous performance is compared in (a). The in-
stantaneous controller difference is compared in (b). Note that, in (a) and (b), J̃k and ∆Gc,k

are undefined at some steps due to the instability of Gc,k. (c) and (d) show the time-domain
performance. In (a) and (b), the instantaneous performance and instantaneous controller
difference of FuRLS improves as P (0) increases to 0.01, but degrades for larger values of
P (0). RCAC yields lower values of the instantaneous performance and the instantaneous
controller difference than FuRLS.
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Figure 5.11: Example 5.5: Comparison of RCAC with an IIR controller and FuRLS applied
to the system (5.101) and (5.102). For RCAC, the target model Gf is given by (5.104) with
P (0) = Iθ and R∆ = 100Ilθ . Three values of nc are compared. For FuRLS, Gf =
Gzu, nc = 10, and P (0) = 0.1Ilθ . The instantaneous performance is compared in (a).
The instantaneous controller difference is compared in (b). (c) and (d) show the time-
domain performance. Note that, in (a) and (b), for sufficiently high controller order, RCAC
with the FIR target model (4.26) yields lower values of the instantaneous performance and
instantaneous controller difference than FuRLS.
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5.10 Experimental Implementation

In this section, we present the implementation of RCAC in an acoustic experiment.

Omni-directional microphones are used as sensing, and mid-bass woofers are used as the

actuation, both of which are placed in an enclosed space. Additional hardware used in

implementation included speaker amplifiers, microphone amplifiers, and low-pass anti-

aliasing filters for both the speaker inputs and the microphone outputs. RCAC is im-

plemented in Real Time Workshop (RTW) and MATLAB/Simulink is using a dSPACE

DS1104 board. The dSPACE board is also used to generate the digital disturbance signal

w, which is zero-mean Gaussian white noise. A diagram of the microphone and speaker

placement is shown in Figure 5.12. The approximate dimensions of the acoustic space are

Figure 5.12: Sensor and actuator placement for the experimental implementation of RCAC
in direct feedforward disturbance rejection.

6 ft × 3 ft × 3 ft. We designate one speaker as the disturbance speaker w and one speaker

as the control speaker u. Two locations are considered for the performance microphone z,

denoted as m1 and m2. We limit the bandwidth of the signals in the system to 250 Hz. The

controller and subsequently all data is implemented and sampled at 1kHz. In this study,

we consider the direct feedforward disturbance rejection problem and we assume that the

disturbance w is measured directly and without delay, that is y = w.
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5.10.1 Constructing the Target Model

The target model is chosen to be the FIR target model (4.27) for NMP systems. For each

location of the z microphone, we obtain the first Markov parameter Hdzu and the relative

degree dzu from the impulse response as seen in Figure 5.13.

0 1000 2000 3000 4000 5000
0

2

4

6

0 1000 2000 3000 4000 5000
-0.02

0

0.02

0.04

(a)

0 10 20 30 40 50
0

2

4

6

0 10 20 30 40 50
-0.02

0

0.02

0.04

X: 6
Y: -0.01331

(b)

Figure 5.13: The impulse response of the transfer function from u to m1. In reduce the
effect of sensor noise, the discrete-time impulse has amplitude 5 V. (b) shows that dzu ≈ 4.
In fact, dzu = 6 with H6 ≈ −0.01331/5 yields the best performance.

Two NMP zeros were identified in the system, both of which are attributed to the hard-

ware. We note that both the microphone and the speaker have zero response at DC due to

the nature of the acoustics. In discrete-time, this corresponds to a zero on the unit circle

at 1. In order to prevent controller poles being placed at DC, we model two zeros at 1 in

the target model Gf , one representing the speaker, the other representing the microphone.

No other NMP zeros were found for the microphone locations tested. The target model for

each example is given by

Gf(z) =
Hdzu(z− 1)2

zdzu+2
. (5.105)
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5.10.2 The Ideal Controller

In the subsequent experimental examples, we compare the converged RCAC controller

to the ideal controller Ĝc for the direct feedforward disturbance rejection problem (5.8). We

use the Blackman-Tukey spectral analysis method [29] with a Hanning window to estimate

the frequency response of Gzw and Gzu and construct an estimate of Ĝc. Despite the fact

thatGzu is NMP, the NMP zeros at DC are also present inGzw. The ideal controller Ĝc (5.8)

has exact pole-zero cancellation at DC. Since no other NMP zeros of Gzu were observed

when implementing RCAC we conjecture that the ideal controller is asymptotically stable.

Thus, whether or not the ideal controller is implementable depends on the relative degree

dzu and dzw.

5.10.3 RCAC Implementation

We first evaluate the signal-to-noise ratio of the experiment without control. Next, two

experimental setups are considered, where dzu < dzw in the first case and dzu > dzw in

the second case. Figure 5.14 shows the time-domain response and frequency content of

the sensor noise and as well as the microphone measurement of the disturbance without

control. We note that, below 50 Hz, the sensor noise is dominant.

Example 5.6: Performance of RCAC for nc = 5 and nc = 10 with the z microphone

placed at m1 such that dzu < dzw. Figure 5.15 shows the impulse response of Gzu and Gzw

as well as the performance of RCAC for nc = 5 and nc = 10. Figure 5.15 also shows the

frequency content of the performance signal and compares the frequency response of the

converged controllers with the estimated frequency response of the ideal controller. In this

case, the data suggest that the ideal controller is implementable, and the RCAC controller

closely matches the frequency response of the ideal controller, except at low frequencies,

where sensor noise is dominant. �

Example 5.7: Performance of RCAC for nc = 5 and nc = 10 with the z microphone

placed at m2 such that dzu > dzw. Figure 5.16 shows the impulse response of Gzu and Gzw
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Figure 5.14: Signal-to-noise ratio of the RCAC broadband feedforward disturbance-
rejection experiment. The time-domain data is shown in (a), and the frequency content
of (a) is shown in (b), which indicates a large amount of sensor noise at low frequencies,
particularly below 50 Hz.

as well as the performance of RCAC for nc = 5 and nc = 10 and the frequency content of

the performance signal. Figure 5.16 also compares the frequency response of the converged

controllers with the estimated frequency response of the ideal controller. In this case, the

ideal controller is known to be not implementable. Consequently, the performance is poor

relative to Example 5.6, and the frequency response of the ideal controller is not matched.

�

5.11 Conclusions

The equations of the feedforward disturbance rejection problem are presented which

lead to the formulation of an ideal feedforward controller which provides perfect cancel-

lation. The conditions under which the ideal controller is implementable are given. The

equations of the LQG control problem and high-authority LQG are applied to the feed-

forward control problem. In the case when the ideal controller is unstable, and hence not

implementable, high-authority LQG reflects the unstable controller poles across the unit

circle.
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Figure 5.15: Example 5.6: Performance of RCAC for with the z microphone placed at m1.
Controller orders nc = 5 and nc = 10 are considered. (a) shows the impulse response of
Gzu and Gzw. Note that dzu < dzw, which suggests that, in this case, the ideal controller
is implementable. (b) shows the performance of RCAC for both controller orders. (c)
compares the frequency content of the performance between t = 7.5 and t = 10. (d)
compares the frequency response of both controllers at t = 10 with the estimated frequency
response of the ideal controller. (c) shows improvement in the suppression across several
bands due to increasing the controller order from nc = 5 to nc = 10. Further increasing of
the controller order (not shown) does not yield noticeable improvement. (d) shows that both
RCAC controllers approximate the estimate of the ideal controller above 50 Hz. Below 50
Hz, the matching is poor, likely due to the sensor noise in that range.

113



0 10 20 30 40 50

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

X: 6
Y: 0.02597

X: 8
Y: -0.01407

(a) (b)

0 50 100 150 200 250 300
-60

-55

-50

-45

-40

-35

-30

-25

(c) (d)

Figure 5.16: Example 5.7: Performance of RCAC with the z microphone placed at m2.
Two controller orders nc = 5 and nc = 10 are considered. (a) shows the impulse response
of Gzu and Gzw. Note that dzu > dzw, and thus the ideal controller is not implementable.
(b) shows the performance of RCAC for both controller orders. (c) shows the frequency
content of the performance from t = 7.5 to 10. (d) shows the frequency response of the
controller at t = 10 for both controllers and compares the frequency response of both
controllers with the estimated frequency response of the ideal controller. (c) shows that
the suppression is significantly worse than in Example 5.6. Increasing the controller order
from nc = 5 to nc = 10 (not shown) does not improve the performance. (d) shows that the
frequency response of the RCAC controllers are approximately the same; however, they do
not approximate the estimated frequency response of the ideal controller.
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The target model Gf for RCAC in feedforward disturbance rejection is analyzed. A

target model G∗f which recovers the high-authority LQG performance when nc,RCAC = n

is derived and demonstrated numerically. We show numerically that for sufficiently high

controller order, RCAC is able to recover the high-authority LQG performance with G∗f .

The RCAC update equations are compared to Fx/FuLMS and Fx/FuRLS. A numeri-

cal comparison of RCAC and FuRLS for an example when the ideal controller is imple-

mentable showed that RCAC is able to better suppress broadband disturbances.

RCAC is applied to a direct feedforward experimental study. When the ideal controller

is believed to be implementable, the RCAC controller was able to approximate the fre-

quency response of the ideal controller. When the ideal controller was known to be not im-

plementable, the performance was poor and the frequency response of the ideal controller

was not matched. The experimental study agrees with what was observed in simulation.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

The purpose of the present work is to extend both theoretical boundaries and practical

applications of retrospective cost adaptive control (RCAC). We extend our understand-

ing of RCAC by developing an alternative interpretation of the retrospective performance

ẑ(k, θ(k+ 1)). Previously, it was believed that the retrospective performance represented a

residual between a certain closed-loop transfer function Gzũ,θ(k+1) and the target model Gf .

In minimizing the retrospective performance, RCAC was attempting to fit Gzũ,θ(k+1) to Gf .

This led to a breakthrough in determining the exact role of Gf . However, what was lacking

in this explanation was how this residual minimization is actually achieving good closed-

loop performance. While the closed-loop poles were shared between G̃zw and Gzũ,θ(k+1),

the transfer functions had inherently different frequency responses in steady-state.

With the formulation of the retrospective performance decomposition, we now know

that ẑ(k, θ(k+1)) is a combination of a performance-like term zpp(k, θ(k+1)) and a model-

matching residual zmm(k, θ(k + 1)), where the closed-loop performance is accounted for

in zpp(k, θ(k + 1)). This can potentially be seen as a trade-off. When choosing θ(k + 1) in

order to minimize ẑ(k, θ(k + 1)), reducing zpp(k, θ(k + 1)) may inflate zmm(k, θ(k + 1))

or vice versa.

The model-matching residual can be seen as one of the key features of RCAC. Since
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the model-matching residual is a function of θ(k + 1), this implies that the controller has

a certain amount of leeway in ”correcting” a poor choice of Gf . There is evidence for this

in the RCAC literature. It has been observed that RCAC can match the performance high-

authority LQG in both feedback and feedforward control. Sometimes, for minimum-phase

systems, this can be done with very little modeling information, specifically, what is needed

is an estimate of the first Markov parameter and relative degree of Gzu. The caveat is that

we need sufficiently high controller order to achieve this, which can typically be 2 or 3

times the order of the plant.

In the context of the retrospective performance decomposition, when a ”bad” choice

of Gf is chosen, the only way to minimize both zpp(k, θ(k + 1)) and zmm(k, θ(k + 1)) is

to overparameterize the problem with higher-controller order. The benefit being that very

little is needed to be known about the system. Put in another way, RCAC has a certain

built-in method to account for the lack of modeling information.

As for extending the applications and improving the practical aspect of RCAC, in this

dissertation, we’ve applied all the framework that we have built with feedback control

to feedforward. The two biggest lessons that we have applied are what we know about

the target model and the relationship between RCAC and LQG. What we found is that

the lessons that we learned in feedback apply directly to feedforward. In some aspects

this is not surprising as the feedforward disturbance rejection problem can be viewed as a

specialization of the feedback disturbance rejection problem. In a lot of ways, feedback is

harder than feedforward, as you need to guarantee close-loop stability and are limited by

the bode integral constraint.

The demonstration of RCAC in a real world application such as broadband feedback

road noise suppression opened our eyes to a lot the more practical aspects of actually im-

plementing a controller. The limitations of the hardware coupled with the computational

complexity of the algorithm made making real-time in an acoustic application a challenge.

Furthermore, in such an application when the system is unknown, being able to tell if an

117



instability was due to unstable-pole zero cancellation due to poorly modeled NMP zeros,

closed-loop instability, controller instability, or bias integration and saturation was some-

times difficult. However, we also showed that RCAC does work. Specifically, for all cases

considered in the experiment, RCAC was able to suppress the disturbance at the perfor-

mance microphone. This implies that as long as there is sensing, RCAC can suppress the

noise at that location, the caveat being whether this is true in the multiple-input-multiple-

output (MIMO) case.

Finally, we develop the spatial spillover function based on the work on the road noise

suppression problem. In the case where z, e, and w are scalar signals, we found an operator

which relates relative suppression at z to relative suppression at e that was independent of

control architecture. In the case where u is also scalar, this operator no longer depends on

the controller. While requirement of scalar signals is very limiting, the implication of such

an operator could be very useful in determining whether a microphone placement configu-

ration is good without actually having to implement a controller and check the performance

experimentally. The work in this dissertation primarily focused on identifying the spatial

spillover function experimentally. An attempt was made to try and use the magnitude and

phase of the spatial spillover function to predict relative performance in the road noise

suppression problem.

6.2 Future Work

In terms of the performance decomposition, the future development, there are some ex-

isting questions. We noted that in the model-matching error, ũ(k, θ(k+ 1)), is treated as an

input, but is not an exogenous signal, hence, persistency is not guaranteed. Another area of

research is that we sometimes observe in feedback control that RCAC will at times, during

the transient response, be in favor of allowing the closed-loop to go unstable. The transient

response of RCAC for a given case can potentially be explained using the performance
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decomposition.

In terms of hardware and experimental implementation of RCAC, computational com-

plexity remains a challenge. Recursive-least-squares is a fairly computationally expensive

algorithm. There is already an on going effort to attempt to optimize the RCAC code or

find hardware that implement the code faster, such as an field-programmable gate array

(FPGA). The other aspect would be to explore alternative optimization methods to min-

imize the retrospective cost that could be computationally cheaper. There may likely be

trade-offs on metrics such as convergence speed.

In terms of the spatial spillover function, one of the main priorities is to better under-

stand for a given level of relative suppression at z, what are the conditions under which

you can expect either good or poor relative relative suppression at e. Some current work is

already being done on being able to identify the spatial spillover function when the distur-

bance w is unknown and unable to be shut off. Finally, extensions to MIMO where z, e,

and w are not assumed to be scalar is untouched.
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