
4D Nucleome of Cancer

by

Laura A Seaman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Bioinformatics)

in The University of Michigan
2017

Doctoral Committee:

Assistant Professor Indika Rajapakse, Chair
Professor Brian D. Athey
Professor Daniel M. Burns, Jr.
Professor Alfred O. Hero III
Professor Thomas Ried, National Cancer Institute
Professor Max S. Wicha



Laura A Seaman

laseaman@umich.edu

ORCID iD: 0000-0001-9111-9776

© Laura A Seaman 2017

All Rights Reserved



ACKNOWLEDGEMENTS

Without the support and eternal optimism of my advisor, Indika Rajapakse, this

work literally would not have been possible. Thank you to the rest of my committee

members as well, Al Hero, Brian Athey, Dan Burns, Thomas Ried, and Max Wicha

as well as former members Vijay Nair and Colin Duckett whose advice and enthusi-

asm kept me going. I would like to thank my lab mates for helping in so many ways

including answering many, many questions: Haiming Chen, Scott Ronquist, Walter

Meixner, Sijia Liu, Geoff Patterson, and Jie Chen. Thank you to all of my collab-

orators and research associates including Thomas Ried, Markus Brown, Darawalee

Wangsa, Jordi Camps, Gilbert Omenn, John Snyder, Max Wicha, Yongyou Zhu,

Ryan Mills, Rich McEachin, and Alexy Nesvizhskii, Brandon Govindarajoo, Tony

Chun, Daysha Ferrer-Torres, Stephen Lindsly, Cyrus Najarian, Nicholas Comment,

Teal Guidici, Shweta Ramadas, and anyone else I may have missed. Special shout

out to Julia Eussen provided constant guidance and kept everything moving.

Thank you to all of my fellow graduate students for their support and at times

much needed distractions. In particular, I would like to thank Teal Guidici and

Shweta Ramadas for joining me during our (very roughly) weekly study meet-ups

over the last two years that helped keep me sane. Thank you Taylor Pratt for all of

your love and support over the last year. You have helped me stay both focused and

distracted as I have needed it.

Finally, I would like to thank my family: Karen, Claude, Charlie, and Katie.

You are all amazing. Mom, thank you for being my rock and constantly listening.

ii



Dad, thank you for constantly supporting me to the point of putting my published

papers in your office where no one understands them. Charlie, thank you for being

an amazing big brother. I'm finally doing something before you! Katie, thanks for

being the best sister ever. I wouldn't trade our year as roomies for anything and I'm

so proud of you. Danielle, Allie, and Cara, thank you for your support as well. The

steady supply of facetime chats, pictures, and videos never fail to make me smile.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research overview . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Nuclear structure in cancer . . . . . . . . . . . . . . . . . . . 4
1.3 Genome wide chromosome conformation capture . . . . . . . 5
1.4 Comparing nuclear structure and function . . . . . . . . . . . 8
1.5 The Laplacian framework . . . . . . . . . . . . . . . . . . . . 9
1.6 Detecting topologically associating domains . . . . . . . . . . 11
1.7 Changes in nuclear shape . . . . . . . . . . . . . . . . . . . . 13

II. Periodicity of nuclear morphology in human fibroblasts . . . 15

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Ellipsoidal modeling . . . . . . . . . . . . . . . . . . 17
2.3.2 Period estimation . . . . . . . . . . . . . . . . . . . 21

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Sample preparation . . . . . . . . . . . . . . . . . . 23
2.4.2 Volume verification by thresholding . . . . . . . . . 24
2.4.3 Bootstrapping . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Variance analysis over time . . . . . . . . . . . . . . 25

iv



2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Ellipsoid model captures variability in nuclear shape 25

2.6 Nuclear shape changes over time . . . . . . . . . . . . . . . . 26
2.6.1 Periodicity of the nuclear shape matches cell cycle

and circadian rhythm timing. . . . . . . . . . . . . . 26
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

III. Chromosome conformation and gene expression patterns dif-
fer profoundly in human fibroblasts grown in spheroids versus
monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Differentially expressed genes between 3D and 2D cell
cultures . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Validation of RNA-seq results with TaqMan assays . 41
3.3.3 Relationship between chromosome conformation and

gene expression level changes . . . . . . . . . . . . . 42
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Materials and methods . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Hi-C and RNA-seq data collection . . . . . . . . . . 49
3.5.2 RNA-seq data analysis . . . . . . . . . . . . . . . . 49
3.5.3 Validation of differentially expressed genes identified

with edgeR . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Hi-C analysis . . . . . . . . . . . . . . . . . . . . . . 50

IV. Nucleome Analysis Reveals Structure-function Relationships
for Colon Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Experimental protocols . . . . . . . . . . . . . . . . 54
4.3.2 Normalization of Hi-C matrices . . . . . . . . . . . 54
4.3.3 Hi-C matrices for translocated chromosomes . . . . 55
4.3.4 Two-way ANOVA . . . . . . . . . . . . . . . . . . . 57

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Interpretation of Hi-C with aberrant cancer genomes 57
4.4.2 A novel copy number based normalization method . 59
4.4.3 Structure and function of the HSR . . . . . . . . . . 60
4.4.4 Hi-C provides high resolution maps of translocations 62
4.4.5 Translocations increase entropy . . . . . . . . . . . 63
4.4.6 Sample differences . . . . . . . . . . . . . . . . . . . 64

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



4.6 4D Nucleome analysis toolbox . . . . . . . . . . . . . . . . . 75
4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 75
4.6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . 79

V. Cancer stem cell nucleome . . . . . . . . . . . . . . . . . . . . . 80

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 Sample preparation . . . . . . . . . . . . . . . . . . 81
5.3.2 Hi-C and RNA-seq processing . . . . . . . . . . . . 81
5.3.3 Normalization and TAD identification . . . . . . . . 82
5.3.4 Quantification of structural changes . . . . . . . . . 83
5.3.5 Centrality and principle component analysis . . . . 84

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.1 Identifying changes in structure . . . . . . . . . . . 84
5.4.2 Changes in centrality . . . . . . . . . . . . . . . . . 86

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

VI. Allele specific structure and function . . . . . . . . . . . . . . . 92

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Experimental methods . . . . . . . . . . . . . . . . 94
6.3.2 Allele specific RNA-seq and Bru-seq methods . . . . 94
6.3.3 TAD analysis . . . . . . . . . . . . . . . . . . . . . 97

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.1 Allele specific RNA-seq . . . . . . . . . . . . . . . . 97
6.4.2 Allele specific Bru-seq . . . . . . . . . . . . . . . . . 98
6.4.3 Location based consistency in MAE . . . . . . . . . 100

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VII. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 106

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

vi



LIST OF FIGURES

Figure

1.1 Hi-C methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Image segmentation and ellipsoid fitting . . . . . . . . . . . . . . . . 29

2.2 Nuclear shape dynamics . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Frequency spectrums for nuclear shape . . . . . . . . . . . . . . . . 32

2.4 Optimal fits over all individuals . . . . . . . . . . . . . . . . . . . . 33

3.1 Volcano plot of gene expression changes . . . . . . . . . . . . . . . . 44

3.2 Differences in structure and function across chromosomes . . . . . . 45

4.1 Chromosomal aberrations in Hi-C data . . . . . . . . . . . . . . . . 68

4.2 Normalization accounting for copy number changes . . . . . . . . . 69

4.3 Genome wide HSR interactions . . . . . . . . . . . . . . . . . . . . 70

4.4 Translocations in Hi-C . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 TADs on chromosomes affected by translocations . . . . . . . . . . 72

4.6 Visualization with NAT . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Selection of changing regions . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Regions that change . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Centrality and Principle Component Analysis . . . . . . . . . . . . 91

vii



6.1 Monoallelic expression analysis . . . . . . . . . . . . . . . . . . . . . 102

6.2 Monoallelic expression of RNA through the cell cycle . . . . . . . . 103

6.3 Monoallelic nascent expression through the cell cycle . . . . . . . . 104

6.4 Allelic consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

S1 Ellipsoid volume box plots by sample . . . . . . . . . . . . . . . . . 121

S2 Threshold volume box plots by sample . . . . . . . . . . . . . . . . 122

S3 Eccentricity box plots by sample . . . . . . . . . . . . . . . . . . . . 123

S4 Random sample nuclear shape dynamics . . . . . . . . . . . . . . . 124

S5 Random sample frequency spectrums . . . . . . . . . . . . . . . . . 125

S6 Threshold volume over time separated by individual . . . . . . . . . 126

S7 Spectrums from threshold volume for thresholds . . . . . . . . . . . 126

S8 Chromatin interactions for differentially expressed gene sets. . . . . 127

S9 Copy number based normalization method . . . . . . . . . . . . . . 128

S10 Translocation 2− 15 at read level . . . . . . . . . . . . . . . . . . . 129

S11 Translocation 3− 12 at read level . . . . . . . . . . . . . . . . . . . 130

S12 Translocation 5− 6 at read level . . . . . . . . . . . . . . . . . . . . 131

S13 Translocation 6− 14 at read level . . . . . . . . . . . . . . . . . . . 132

S14 Translocation 19− 17 at read level . . . . . . . . . . . . . . . . . . 133

S15 Translocated chromosome analysis from Hi-C data . . . . . . . . . . 134

S16 Fibroblast Genome-wide Hi-C matrix . . . . . . . . . . . . . . . . . 135

S17 Interchromosomal matrices for translocations . . . . . . . . . . . . . 136

S18 Comparison of normalization methods . . . . . . . . . . . . . . . . . 137

S19 Normalization methods on K562 data . . . . . . . . . . . . . . . . . 138

viii



S20 Measuring size of chromosome 8 territories . . . . . . . . . . . . . . 139

S21 Interactions with the HSR for all samples . . . . . . . . . . . . . . . 140

S22 Interactions between the HSR and chromosome 2 . . . . . . . . . . 140

S23 Read level interactions between chromosomes 17 and 22 . . . . . . . 141

S24 Structural stability and gene expression of der(2; 15) in HT-29 . . . 142

S25 Structural stability and gene expression of ins(3; 12) in HT-29. . . . 143

S26 Structural stability and gene expression of ins(3; 12) in HT-29 . . . 144

S27 Structural stability and gene expression of der(5; 6) in HT-29 . . . . 145

S28 Structural stability and gene expression of t(6; 14) in HT-29 . . . . 146

S29 Structural stability and gene expression of t(6; 14) in HT-29 . . . . 147

S30 Structural stability and gene expression of der(19;17) in HT-29 . . . 148

S31 Structural stability and gene expression of der(1; 18) in K562 . . . . 149

S32 Structural stability and gene expression of der(2; 22) in K562 . . . . 150

S33 Structural stability and gene expression of der(3; 10) in K562 . . . . 151

S34 Structural stability and gene expression of der(6; 16) in K562 . . . . 152

S35 Structural stability and gene expression of der(6; 16) in K562 . . . . 153

S36 Structural stability and gene expression of der(9; 22) in K562 . . . . 154

S37 Structural stability and gene expression of der(12; 21) in K562 . . . 155

S38 Centrality Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

ix



LIST OF TABLES

Table

2.1 Sampling Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Periodic fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 TaqMan verification of RNA-seq . . . . . . . . . . . . . . . . . . . . 46

4.1 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Characterization of HT-29 translocations . . . . . . . . . . . . . . . 67

5.1 Scoring changing regions . . . . . . . . . . . . . . . . . . . . . . . . 89
S1 Best fit frequency and phase for all individuals . . . . . . . . . . . . 116
S2 Best fit frequency and phase for each individual . . . . . . . . . . . 118
S3 All nuclei axis lengths for all the nuclei . . . . . . . . . . . . . . . . 120

S4 Normalization parameters . . . . . . . . . . . . . . . . . . . . . . . 156
S5 Copy number correlation . . . . . . . . . . . . . . . . . . . . . . . . 157

S6 Chromosome territory quantification . . . . . . . . . . . . . . . . . 159

S7 K562 translocations . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
S8 2D and 3D differences . . . . . . . . . . . . . . . . . . . . . . . . . . 161
S9 Time point differences . . . . . . . . . . . . . . . . . . . . . . . . . 162

S10 2D and 3D enriched GO terms . . . . . . . . . . . . . . . . . . . . . 166

S11 Time point enriched GO terms . . . . . . . . . . . . . . . . . . . . . 167

x



LIST OF ABBREVIATIONS

2D two dimensional

3D three dimensional

4D four dimensional

ANOVA analysis of variance

BAC Bacterial artificial chromosome

BAM binary sequence alignment map

bp base pairs

Bru-seq bromouridine sequencing

CGH comparative genomic hybridization

CRC colorectal cancer

CSC cancer stem cell

DAVID database for annotation, visualization, and integrated discovery

DE differentially expressed

EASE expression analysis systematic explorer

FC fold change

FDR false discovery rate

FISH fluorescent in situ hybridization

FPKM fragments per kilobase of transcript per million mapped reads

FPM fragments per million

GO gene ontology

xi



Hi-C genome wide chromosome conformation capture

HMM hidden markov model

HSR homogeneously staining region

ICE iterative correction and eigenvector decomposition

kb kilobase

lncRNA long non-coding RNA

MAE monoallelic expression

Mb megabase

MSE mean squared error

NAT 4D Nucleome Analysis Toolbox

PC principle component

PCA principle component analysis

PSNR peak signal-to-noise ratio

RE restriction enzyme

RNA-seq deep sequencing of RNA transcripts

SAM sequence alignment map

SKY spectral karyotyping

SNP single nucleotide polymorphism

TAD topologically associating domains

TFBS Transcription factor binding site

WGS Whole genome sequencing

xii



ABSTRACT

Chromosomal translocations and aneuploidy are hallmarks of cancer genomes;

however, the impact of these aberrations on the nucleome (i.e., nuclear structure and

gene expression) are not yet understood. This dissertation aims to understand the

changes in nuclear structure and function that occur as a result of cancer, i.e., the

4D nucleome of cancer. Understanding of nuclear shape and organization and how it

changes over time in both healthy cells as well as cancer cells is an area of exploration

through the 4D nucleome project.

First, I explore healthy cells including periodic changes in nuclear shape as fibrob-

lasts cells grow and divide. Shape and volume changed significantly over the time

series including a periodic frequency consistent with the cell cycle. Next, combined

analysis of genome wide chromosome conformation capture and RNA-sequencing data

identified regions with different expression or interactions in cells grown in 2D or 3D

cell culture. Next, I elucidate how chromosomal aberrations affect the nucleome of

cancer cells. A high copy number region is studied, and we show that around sites

of translocation, chromatin accessibility more directly reflects transcription. The

methods developed, including a new copy number based normalization method, were

released in the 4D nucleome analysis toolbox (NAT), a publicly available MATLAB

toolbox allowing others to use the tools for assessment of the nucleome.

Finally, I describe continuing projects. By comparing cancer stem cells to non-

stem cell like cancer cells, a bin on chromosome 8 was identified that includes two stem

cell related transcription factors, POU5F1B and MYC. Then tools for evaluating allele

xiii



specific expression are developed and used to measure how allele specific structure

and function varies through the cell cycle. This work creates a foundation for robust

analysis of chromosome conformation and provides insight into the effect of nuclear

organization in cancer.
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CHAPTER I

Introduction

1.1 Research overview

Cancer is the second most common cause of death in the United States behind only

heart disease [1]. 1.6 million cases of cancer will be diagnosed this year and almost

600, 000 people will die from cancer in the United States alone [2]. Research has

shown that cancer is caused by the combination of a number of hallmarks, including

genetic and epigenetic changes that cause unregulated cell proliferation [47]. The

availability of high throughput sequencing has led to extensive characterization of

the mutations that lead to this deregulation of cell proliferation.

The four dimensional (4D) nucleome is studied by integrating dynamical features

of three dimensional (3D) architecture with the dynamical gene expression landscape

and consequent changes in cellular differentiation and disease. One of the most pow-

erful tools for studying the nucleome is genome wide chromosome conformation cap-

ture (Hi-C), which was originally described in 2009 [73]. Since that time, research

has shown that the genome can be partitioned into active, i.e. euchromatic regions,

and inactive, i.e. heterochromatic regions. Additionally, the genome can be further

divided into megabase sized domains called topologically associating domains (TAD)s

separated by small boundary regions [31]. These ideas have been used to explore dy-

namical changes in the nucleome that occur because of the cell cycle [16] and how to

1



control the genome and therefor the cell by understanding these processes [105].

Whole genome sequencing (WGS) has provided new a opportunity for detecting

translocations and mutations, both of which provide insight into how cancers occur

and potential therapeutic opportunities using personalized medicine. Similarly to

how WGS advanced the understanding of genetic mutations underlying cancer, Hi-C

provides an opportunity to learn about nuclear organization of cancer cells and its

biological relevance. This dissertation aims to lay out some key findings and many

tools for exploring the biological structure and function of cancer.

This chapter provides an overview of the work covered in this dissertation and a

literature review of relevant work that has provided a foundation for this research.

Chapter II studies the unperturbed shape of the nucleus over a 75 hour time course

in cell-cycle synchronized primary human fibroblasts. By modeling the nucleus as an

ellipsoid, we derived simple time-varying shape properties that were fit to a range of

frequencies to extract the primary oscillations. We found two peak frequencies one of

which was consistent with the cell cycle. This work provides a statistical framework

for analyzing populations of fixed cells and shows that a single sample in time provides

an incomplete picture of nuclear shape.

Chapter III examines genome structure and gene expression of fibroblasts grown in

two dimensional (2D) and 3D cell culture conditions. The combined analysis of Hi-C

and deep sequencing of RNA transcripts (RNA-seq) datasets showed a large number

of differentially expressed genes many of which are localized in genomic regions that

displayed structural changes. We also find that gene expression of 3D cultured cells

more closely resembles native tissue than 2D cultured cells for a set of skin-specific

genes. This confirms previous observations that 3D cell culture more closely resembles

native tissues. This work shows that nuclear structure and function depend on the

cellular environment including cell culture conditions.

In Chapter IV, this analysis is extended from normal cellular populations to can-
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cer. We explore the 4D nucleome of cancer by analyzing nuclear structure and function

of HT-29, a human colorectal cancer cell line, grown in 2D and 3D culture for two

different time points. A new copy number-based normalization method for Hi-C data

was developed and used to determine that around sites of translocation, chromatin

accessibility more directly reflects transcription. Additionally, a high copy number

region containing the oncogene MYC is composed of open chromatin and interacts

strongly with an amplified region containing the oncogene STARD7. The methods

described can be used to asses the nucleome of any cell type regardless of karyotype.

4D Nucleome Analysis Toolbox (NAT), a MATLAB package was released containing

tools for loading data, normalization, defining topological domains, exploring translo-

cations, and analyzing time series datasets.

Chapter V covers results from ongoing projects focusing on cancer stem cells.

We explore the structural and functional signature of cancer stem cell (CSC)s by

comparing genetically identical cellular populations. A number of regions with CSC

specific Hi-C structural interactions are identified including a region containing MYC

and POUF51B, two stem cell related transcription factors. These results show that

cellular subpopulations have unique structures. Learning more about these unique

structures can help elucidate more effective ways to target difficult to kill CSCs that

often allow cancer to evade treatments.

One of the limitations of most Hi-C analysis is that different copies of a region,

including the two copies of each chromosome, cannot be distinguished. Chapter VI

presents initial analysis of Hi-C, RNA-seq, and bromouridine sequencing (Bru-seq)

of a genotyped cell line, allowing assignment of reads covering a single nucleotide

polymorphism (SNP) to be assigned to the correct parent of origin. We compared

the maternal and paternal expression within a cell and analyzed how they varied

through the cell cycle. The methods developed provide the opportunity to identify

gene expression and nascent transcription that are specific to a single allele.

3



1.2 Nuclear structure in cancer

All cancers have chromosomal aberrations. They can be structural (transloca-

tions, insertions, deletions, inversions) or numerical (aneuploidy) [47, 41]. These

aberrations are a hallmark of cancer and change nuclear structure by disrupting the

normal patterns of folding and organization. The aberrations cause cancers by activat-

ing tumor-promoting pathways or inactivating tumor-suppressing signaling pathways

[47]. However, the interplay between chromosomal aberrations (structure) and gene

expression (function) is not fully understood [48, 40, 80, 101].

One method for measuring chromosomal aberrations is spectral karyotyping (SKY),

which uses chromosome specific probes to stain each chromosome with a different flu-

orophore [112]. SKY allows visual identification of large scale genetic changes and

estimation of cellular heterogeneity by quantifying observed changes in multiple cells.

To estimate where the chromosomal alterations occur, SKY relies on chromosome

bands. Chromosome bands are naturally occurring patterns of genomic regions that

lead to consistent coloring differences that can be used to estimate genomic location

at low resolution [124, 63].

Techniques that rely on the genetic sequence to determine genetic location are

much higher resolution. Array based comparative genomic hybridization (CGH) is an

array based technique for estimating copy number. CGH hybridizes the total genomic

DNA content of both test and reference cellular populations to an array then uses

fluorescent detection of the relative abundance of the probes to estimate copy number

[92]. With as many as 20, 000 loci per array, CGH gives a much more quantitative

measure of the relative abundance of genomic loci as well as the boundaries of the

amplified regions.

Another genomic technique for characterizing cancer is WGS which uses sequenc-

ing to determine genetic changes [82]. Historically, WGS has focused on character-

ization of mutations and small insertions and deletions (≤ 100 base pairs (bp)) in
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cancer samples. More recently, WGS has been used to detect larger alterations like

translocations or copy number alterations with the use of very deep sequencing [19].

Copy number alterations can be detected by measuring the relative number of reads

mapped to a region in test and control samples in essentially the same way fluorescent

differences indicate copy number alternations in CGH [19]. Unlike CGH, WGS can

detect balanced translocations if reads are sequenced that span the junction. One

difficulty of WGS is that it requires large amounts of sequencing and as a result

can be quite expensive, especially if the goal is to gather enough reads to detect

translocations.

1.3 Genome wide chromosome conformation capture

The development of chromosome conformation capture techniques provide un-

precedented insight into spatial chromatin organization and long-range chromatin

interactions in the interphase nucleus [73]. Hi-C generates matrices that reflect chro-

matin interactions by using proximity-based ligation followed by sequence analysis

as shown in Figure 1.1A [73]. More specifically, Hi-C requires crosslinking cells to

fix the DNA, then cutting DNA with a restriction enzyme. After marking exposed

ends with biotin, ligation is used to create chimeric molecules in which DNA that was

in physical proximity is now linearly connected. The DNA is then sheared, biotin

marked pieces are purified, and paired end sequencing is used to identify pieces of

DNA that were in physical proximity.

These pairs are then compiled into matrices of predetermined resolution (often

100 kilobase (kb) or 1 megabase (Mb)) by adding up the number of reads that were

sequenced between each pair of loci. The first step in making the matrices is to

align the reads to a reference genome for which multiple tools are available [69, 71].

During alignment the paired end nature of the reads are ignored since paired end

aligners assume a fixed insertion size and linear proximity of the sequences, which is
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Figure 1.1: Hi-C experimental computational methods. A) Experimentally, Hi-C re-
quires crosslinking DNA and digesting it with a restriction enzyme. The
hanging ends are then labeled with biotin, then ligated at low concentra-
tion so that they form connections with other sequences that are nearby
in 3D space. Next, the DNA is purified and sheared before biotin is
pulled down and paired end sequencing is used to measure pairs of loci in
physical proximity. B) After initial normalization, Hi-C can be compared
to RNA-seq by calculating the Laplacian and from that the Fiedler vec-
tor (top) or by calculating the correlation matrix then the first principle
component (bottom).

6



not present in Hi-C data. Next, Homer is used to match the separately aligned reads

with their pair, organize them by chromosome and locus, and count the number of

interactions in each pair of loci for the resolution selected [57]. The text files Homer

creates can then be loaded into other software and downstream analysis can begin.

Because of the linear order of DNA and the limitations on folding that imposes,

there are far more interactions observed between neighboring DNA sequences than

there are between opposite ends of a single chromosome. This results in raw Hi-C

matrices that are highly diagonally dominant [73]. Since the goal is to study in-

teractions at a wide range of distances, as opposed to just short range interactions,

this diagonal dominance needs to be adjusted. A number of methods have been

develop to do so. One of the first methods developed was iterative correction and

eigenvector decomposition (ICE) which assumes that all genomic regions should have

equal visibility and uses an iterative method to correct the matrix creating a map of

the relative probabilities between pairs of loci [55]. Another method, called Toeplitz

normalization, assumes that the expected value for any two loci is monotonic with

distance [16]. As a result, normalization is performed by dividing the diagonal and

parallels of the diagonal by the average of the non-zero elements of the parallel. The

assumptions used by both of these methods are violated by the chromosomal aber-

rations present in cancer cells and thus a newly developed normalization method is

described in Chapter IV.

Chapter IV focuses on using Hi-C and RNA-seq to understand the cancer nu-

cleome by exploring the relationship between its structure and function. Previous

studies of cancer genomes using Hi-C showed long range interactions between known

risk loci for the development of colorectal cancer (CRC) and regulatory regions [58],

demonstrated proto-oncogene activation by disruption of chromosome neighborhoods

[51], determined changes in inter-chromosomal interaction frequency in breast cancer

[7], and showed that changes in genomic copy number subdivide the domain structure
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of chromosomes [119]. In Chapter IV, I extended this work through a comprehensive

analysis of the CRC cell line HT-29 including analyzing how chromosomal aberrations

affect the nucleome by integrating Hi-C and RNA-seq analyses.

1.4 Comparing nuclear structure and function

To measure how nuclear structure and organization affect the cell, Hi-C data

must be compared to a measure of cellular function. Often, gene expression, mea-

sured by RNA-seq, is used for this purpose. RNA-seq uses sequencing to measure

what transcripts are present in a cell and estimate the abundances [122, 127]. Since

transcription is the most direct output of DNA, comparing Hi-C to RNA-seq pro-

vides a method for determining the biological relevance of changes in structure. To

compare the two data types, they must be converted to represent the same genomic

units. Traditionally, expression is measured for each gene while structure is measured

for bins of a fixed size. One common approach to comparing the two data sets is

to summarize the expression within each bin. This can be done by adding up the

expression of all of the genes in a bin, and when a large gene spans multiple bins,

dividing its output among the bins proportionally to the amount of the gene in each

bin [16].

Once Hi-C and RNA-seq have been calculated for the same genomic units, cor-

relation can be used to compare them. In order to compare the structure measured

by the Hi-C matrix (two dimensional), to DNaseI hypersensitivity or gene expression

(one-dimensional), Hi-C data is converted to a vector. In the original Hi-C publica-

tion, these data types were compared by first calculating the correlation matrix of the

normalized Hi-C data, which describes the correlation between each pair of genomic

regions. Eigendecomposition was then used to extract the first principal component,

which identifies the vector that best approximates the matrix. The correlation be-

tween this vector and the gene expression vector is a measure of the strength of the
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structure-function relationship. Additionally, regions within the first principle com-

ponent that have the same sign (positive or negative values) were defined as A and B

compartments. These compartments divide the genome and correlate with the pres-

ence of open or closed chromatin as measured by DNaseI hypersensitivity and active

or repressed gene expression, respectively [73]. Another method for relating nuclear

structure is to use the Laplacian framework as described below.

1.5 The Laplacian framework

The key mathematical operator in our analysis of Hi-C data is the graph Laplacian.

The goal is to uncover partitioning within Hi-C matrices and to correlate that with

function. The Laplacian represents diffusion or consensus among a discrete number of

entities and has been used when discrete entities reach a consensus without direction

[88]. Examples of this includes movements of groups of animals including flocking

birds and emergence of language in primitive civilizations [26].

In the case of Hi-C data, the normalized Hi-C matrix can be interpreted as an

adjacency matrix, A, in which the nodes represent genomic segments and the edges

are weighted by the number of interactions seen between them. Within the adjacency

matrix,

(A)i,j = w(ni, nj) (1.1)

where the weight function w, must be symmetric, i.e. w(ni, nj) = w(nj, ni), and

non-negative, w(ni, nj) ≥ 0. The Laplacian is defined as

L = D−A (1.2)

,

where the degree matrix is the sum of the weights surrounding each node, i.e. D =
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diag(d1, d2, ..., dk) and d1 = Σk
j=iai,j. The normalized Laplacian is

L̄ = D−1/2(D−A)D−1/2 (1.3)

,

and has the added benefit of being scale invariant. The second smallest eigenvalue

of this matrix is called the Fiedler number and the corresponding eigenvector is the

Fiedler vector.

The sign of the Fiedler vector partitions the graph into two components, so that

the cost of the cuts required to separate the two components is minimized [22]. In

the case of Hi-C matrices, this partitioning defines A/B compartments similarly to

how the first principle component of the correlation matrix can also be used to define

A/B compartments [16]. In fact, the Fiedler vector is very similar to the first princi-

ple component of the correlation matrix and both are strongly correlated with gene

expression. The parallels between the two methods are shown in Figure 1.1B. In both

cases the normalized Hi-C matrix is used to calculate the an additional matrix that

captures the connectivity within the graph: the correlation matrix and the Lapla-

cian matrix for the Lieberman-Aiden et. al. and Chen et. al. methods respectively

[73, 16]. Then these matrices are summarized with a single vector that captures A/B

compartments. Both the principle component (PC) and Fiedler vector relate strongly

to function as measured with RNA-seq as shown in Figure 1.1B (r = 0.67 and 0.64

for the PC and Fiedler vector, respectively).

One benefit of the Laplacian framework is that in addition to using the Fiedler

vector to partition the genome, the Fiedler number can be used to understand the

connectivity and compare regions or samples. The Fiedler number is maximized in a

fully connected graph and falls to zero in an unconnected graph [22]. In the context

of understanding Hi-C data, the Fiedler number reflects the underlying stability of

the topology of the genomic region for which it is calculated, at any scale.
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In addition to Fiedler number, to understand genomic stability the entropy of a

Hi-C matrix can be calculated. Traditionally, Shannon entropy is defined as

−Σpi log pi (1.4)

,

where pi are probabilities [91]. However, this has been extended to matrices through

Von Neumann entropy or

−Σλi log λi (1.5)

,

where λi are the eigenvalues of a matrix [91]. Entropy measures the amount of

disorder in a system so the higher the Von Neumann entropy, the more disordered

the matrix. In the context of understanding the 4D nucleome, high Von Neumann

Entropy reflects large amounts of disorder in the system indicating that the structure

is unstable.

1.6 Detecting topologically associating domains

TADs are linear chromatin domains within the genome that show increased inter-

actions within the domain and decreased interactions with neighboring domains [31].

TADs vary in size from approximately 200 kb up to a few Mb and have been shown

to be consistent across cell types [18]. Several methods have been developed to define

TADs in Hi-C data. The first definition used a directionality index based on the χ2

statistic to quantify the proportion of a loci’s interactions that are either upstream or

downstream of the region [31]. An hidden markov model (HMM) was used to identify

genomic regions whose directionality index indicated groups of loci that interact with

each other. These regions can be separated by small boundary regions that have few
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interactions on either side and within which the directionality index switches sign.

The model was used to predict the states underlying the genome as TAD, boundary,

or neither and identified 2, 200 TADs in the mouse genome that averaged 880 kb in

size and covered approximately 91% of the mouse genome [31]. One benefit of this

method is that it allows prediction of boundaries of different sizes as well as unor-

ganized regions. However, HMMs are computationally inefficient compared to newer

methods.

Computationally efficient methods include a community detection based algorithm

and an iterative Laplacian based method. The community detection based method

formulates the identification as a maximization problem by maximizing the total

reads within a domain using a scaled density of the subgraph between two potential

TAD boundaries [36]. This methods uses a dynamic programming algorithm to solve

the problem with a given scale parameter [36]. The community detection method

also has the benefit that the size of the domains can be tuned which helps identify

the hierarchical domain structure of the genome by comparing domains found with

different scale parameters.

Finally, the iterative Laplacian algorithm works by using the Laplacian framework

to identify domain structures. The iterative Laplacian algorithm assumes the genome

can be understood as a network whose adjacency matrix is the normalized Hi-C matrix

[18]. The Laplacian algorithm starts by initializing TADs as regions the Fiedler

vector that have a continuous sign, i.e. contiguous regions of A/B compartments

[18]. The regions are then subdivided to maximize the connectivity of each domain.

The algorithm subdivides regions using the sign of the Fiedler vector of each region to

define increasingly small domains until the Fiedler number of each domain is greater

than a tunable threshold [18]. This method has the benefit of being computational

efficient since it relies on calculating a single eigenvector and eigenvalue for each

domain for which efficient algorithms have been developed. Additionally, as with

12



the community detection algorithm, by changing a tuning parameter, in this case

selecting a smaller or larger Fiedler number threshold, domains of a variety of sizes

can by explored.

1.7 Changes in nuclear shape

The shape of the nucleus is tightly regulated and changes as a cell differentiates,

generally starting out spherical and ending more oblong. Abnormal shape and size

are linked with a number of diseases such as cancer and progeria [59]. Misshapen

or lobulated nuclei are used to identify cancerous tissue and estimate cancer grade

[21]. Lamin gene mutations, called laminopathies, lead to misshapen nuclei and

cause muscular dystrophy or premature aging in the case of progeria by disrupting

the structural network lamin forms around the nuclear periphery [27].

In addition to changes in shape related over time due to cell cycle or other factors,

cell culture itself causes massive morphological changes in nuclear shape. Growing

mammalian cells in vitro is an indispensable technique for cell biology and biomedical

research. Conventionally, human cells have been derived to grow in defined medium

either in suspension or as an adherent monolayer. Adherent monolayer (2D) cell

cultures do not resemble the natural 3D structures of body tissues, and as a result cells

grown in 2D may have considerable discordances in cellular morphology, physiology,

pathology, cell-cell interaction and communication compared with natural tissues.

Increasing evidence shows that in vitro 3D culture captures natural tissue com-

plexity better than 2D cultures [46, 3, 20, 108]. Advances in 3D culture techniques

open new avenues for in vitro modeling of human organ development, tissue mor-

phogenesis, pathogenesis of diseases, cellular response to drugs or other perturba-

tions, and screening for novel therapeutics [108, 23]. Human cell-based 3D models in

pharmaceutical research can complement animal models, which often fail to predict

the efficacy and toxicities of new drugs. 3D human-cell models may also provide
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more effective and economical screening of new drugs than the use of animal models

[117, 128]. Furthermore, in vitro 3D modeling of native tissue provides tools for regen-

erative medicine. However, understanding the fundamental cell biology is critical in

translating in vitro discoveries into clinical applications, e.g., functional replacement

of damaged tissue.

Tissue-specific gene expression is the molecular basis of cellular function. It is

not fully established how closely in vitro 3D tissue culture mimics native tissue.

We hypothesize that the interplay between genome structure and function, i.e., the

nucleome, is the key component of tissue-specific gene expression. Chapter III studies

how the nucleome changes between 3D- and 2D- grown cells. We previously observed

chromosome conformation changes between human fibroblasts grown as spheroids vs.

monolayer cultures [17].
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CHAPTER II

Periodicity of nuclear morphology in human

fibroblasts

2.1 Abstract

Motivation: Morphology of the cell nucleus has been used as a key indicator

of disease state and prognosis, but typically without quantitative rigor. It is also

not well understood how nuclear morphology varies with time across different genetic

backgrounds in healthy cells. To help answer these questions we measured the size

and shape of nuclei in cell-cycle-synchronized primary human fibroblasts from six

different individuals at 32 time points over a 75 hour period.

Results: The nucleus was modeled as an ellipsoid and its dynamics analyzed.

Shape and volume changed significantly over this time. Two prominent frequencies

were found in the six individuals: a 17 hour period consistent with the cell cycle and a

26 hour period. Our findings suggest that the shape of the nucleus changes over time

and thus any time-invariant shape property may provide a misleading characterization

of cellular populations at different phases of the cell cycle. The proposed methodology

provides a general method to analyze morphological change using multiple time points

even for non-live-cell experiments.
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2.2 Introduction

Whether form follows function or function follows form is an ongoing debate in

biology. Nuclear shape is known to play a role in mechanotransduction, in which

cells convert physical forces into chemical signals through connections between the

cytoskeleton, nuclear envelope and lamina [27]. Recent results by Rangamani et. al.

suggest that changes in cell shape induce local gradients of receptors or signaling

molecules which amplify signals during differentiation [97]. Nuclear shape may play

a similar signaling role in transcription and other cellular processes. To confirm

and understand such phenomena, the first step is studying how nuclear morphology

changes over time.

The shape of the nucleus is tightly regulated and changes as a cell differentiates,

generally starting out spherical and ending more oblong. Abnormal shape and size

are linked with a number of diseases such as cancer and progeria [59]. Misshapen

or lobulated nuclei are used to identify cancerous tissue and estimate cancer grade

[21]. Lamin gene mutations, called laminopathies, lead to misshapen nuclei and

cause muscular dystrophy or premature aging in the case of progeria by disrupting

the structural network they form around the nuclear periphery [27].

Several studies have compared nuclear shape under different conditions, such as

diseased versus healthy or differentiated versus undifferentiated [35, 44]. None have

examined how nuclear morphology normally varies over time within a cellular state

(e.g. healthy fibroblasts). Our paper considers primary human fibroblasts synchro-

nized to start at G1 in the cell cycle. We created a program which fits ellipsoids to

data from confocal image stacks, then analyzed the resulting shape properties to test

the statistical significance of their time variation and extract periodic behavior.

The cell cycle is an obvious explanation for changes in nuclear shape: as the cell

grows leading to replication and then cell division, the volume of the nucleus might

be expected to increase and then decrease. It is also known that the cell rounds
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during mitosis as the spindle poles form, allowing chromosomes to line up for division

[66]. For primary human fibroblasts, the cell cycle lasts between 16 and 28 hours

with a mean of 20 hours [121]. Recent exploration of transcription factories and the

hypothesis that genes physically move into and out of these regions as their expression

levels change suggests that cyclically-expressed genes might be an additional cause

for changes in nuclear shape [99]. One such set are clock genes controlling circadian

rhythm for which a 24 hour or longer cycle would be expected [116]. Another set

are genes related to ultradian rhythms for which we would expect to shorter periods

often of 8− 10 hours [110].

In this study, we probed the unperturbed shape of the nucleus over 75 hours in

cell-cycle synchronized primary human fibroblasts from six different individuals. Fi-

broblasts were chosen because of their applications to cellular reprogramming, wound

healing, and ease of access [28, 131, 77]. Nuclei were stained with DAPI at 32 time

points and then captured with 3D confocal microscopy. By modeling the nucleus as

an ellipsoid, we derived simple time-varying shape properties including volume and

eccentricity, i.e., roundness or flatness. This is an extension from most current meth-

ods that only calculate volume without other shape parameters. The resulting data

was then fit to a range of frequencies to extract its primary oscillations. We found

two peak frequencies one of which was consistent with the cell cycle.

2.3 Algorithms

2.3.1 Ellipsoidal modeling

We built a general analysis tool which fits ellipsoids to 3D volumetric data. Al-

though the tool can handle multiple ellipsoids, in this case each volumetric dataset

is cropped to contain just a single nucleus, to which a single ellipsoid is fit. As well

as allowing visualization in 3D of a nuclei and its fitted ellipse, shown in Figure 2.1,
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the tool’s outputs are the lengths and directions of the ellipsoid’s three primary axis,

from which other properties such as volume and eccentricity are easily calculated.

To reduce background noise, we clamped all pixels with an intensity less than 1%

of the maximum to 0. The set of images from each nucleus was considered as a

three-dimensional volumetric distribution, denoted P (p), with a fluorescent intensity

associated with each 3D position p. Point pi = (xi, yi, zi)
T represents a sample, i.e.,

pixel in a single z-slice image, dot in right side of Figure 2.1B) in the volumetric grid

with corresponding intensity wi.

Our method is based on the data’s first- and second-order moments (mean and

covariance). It is similar to alternatives such as Gaussian mixture models, but models

intensity using a quadratic rather than exponential function. In brief, our method

first computes the quadratic distance function best representing the falloff in measured

intensities over the nuclear volume, and then optimally thresholds this distance to

yield an approximating 3D ellipsoid.

Squared distance at an arbitrary point p is defined as

D2(p,Q) = (p− o)TQ−1(p− o) (2.1)

where o is the distance origin and Q is a symmetric, positive definite 3 × 3 matrix.

Expressing Q in an eigen-decomposition yields

Q = RQ


a2
Q 0 0

0 b2
Q 0

0 0 c2
Q

RT
Q (2.2)

where a2
Q, b2

Q, and c2
Q are the eigenvalues (representing axis scale factors), and RQ

is a 3 × 3 rotation matrix, representing axis directions. Q (in boldface) denotes the

set of all parameters determining the anisotropic distance metric: Q = 〈o,Q〉 =

〈o,RQ, aQ,bQ, cQ〉.
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Unconstrained minimization of equation 2.1 causes aQ, bQ, and cQ to increase

without bound. We therefore constrain the anisotropy so that the sum of axis scale

factors raised to some power equals the dimensionality:

aγQ + bγQ + cγQ = 3. (2.3)

Note that the identity transformation (Q = I) satisfies this constraint. As γ → 0,

anisotropy is unconstrained; highly eccentric shapes like needles or pancakes are freely

permitted. As γ → ∞, the ellipsoid is forced to be completely spherical. We used

the normalization power γ = 1 to balance between these extremes for robust model

fitting.

We then seek the Q yielding minimal sum of intensity-weighted squared distances

over P

Q∗(P) = arg min
Q

(∑
pi∈P

wi D
2(pi,Q)

)
(2.4)

subject to the constraint in equation 2.3. It can be calculated in terms of the volu-

metric datasets mean vector, p̄(P ), a weighted average of the dataset, and covariance

matrix

C(P ) =

∑
pi∈P wi (pi − p̄)⊗ (pi − p̄)∑

pi∈P wi
, (2.5)

See A.1 for the detailed derivation of optimal ellipsoid, which we summarize in the

following.

The optimal origin in Q∗ is given by the mean of the dataset: o∗ = p̄(P ). Let the

covariance matrix, C(P ), be decomposed into its eigenvectors and eigenvalues via
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C(P ) = RC


a2
C 0 0

0 b2
C 0

0 0 c2
C

 RT
C (2.6)

The method of Lagrange multipliers can then be used to show that the optimal Q∗ has

rotation identical to the covariance’s eigen-rotation; that is, R∗ = RC . The optimal

scale factors a2
∗, b

2
∗, c

2
∗ are proportional to the exponentiated eigenvalues of C(P ) via

a2
∗ = α a

4/(γ+2)
C ,

b2
∗ = α b

4/(γ+2)
C ,

c2
∗ = α c

4/(γ+2)
C ,

(2.7)

where

α =

(
3

a
2γ/(γ+2)
C + b

2γ/(γ+2)
C + c

2γ/(γ+2)
C

)2/γ

(2.8)

and, as mentioned earlier, we fix γ = 1. An approximating ellipsoid can then be

computed from this anisotropic distance metric by thresholding squared distance

via D2(p,Q∗) ≤ d2, for some appropriate threshold d. It is computed so that an

arbitrarily-scaled version of the binary function

B(p,Q∗,d) =

 1 : D2(p,Q∗) ≤ d2,

0 : otherwise,
(2.9)

has least squared error compared to the actual volume of intensities wi. More pre-

cisely,

d∗ = arg min
d

∑
pi∈P

(τ B(pi,Q∗,d)−wi)
2 , (2.10)
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where the optimal scale factor τ is given by

τ =

∑
pi∈P B(pi,Q∗,d) wi∑
pi∈P B(pi,Q∗,d)

. (2.11)

Note that we can remove the square in the denominator above usually present in

least-squares projection because B is a binary function, so B2 = B. Finally, the

lengths of the approximating ellipsoid’s three axes are given by

a = d∗ a
−1
∗ ,

b = d∗ b
−1
∗ ,

c = d∗ c
−1
∗ .

(2.12)

Figure 2.1 shows an example.

2.3.2 Period estimation

We examined six measures of nuclear shape including volume from ellipsoid fit-

ting, V = 4π
3
a b c, volume by direct counting of voxels whose intensity exceeds a

threshold, and eccentricity, ε =
√

1− c2/a2, where c is the shortest and a the longest

ellipsoid axis. Eccentricity reflects the roundness or flatness of a shape; a sphere has

an eccentricity of 0 while a needle or pancake shape has an eccentricity close to 1.

Finally, we measured the three axis lengths themselves, yielding a total of six differ-

ent shape properties. Sampling each property over time for one of the six individuals

yields a time series fi, i = 1, 2, . . . , n, sampled at n = 32 different time points denoted

ti. These times were not sampled uniformly over the 75 hours (see Table 2.1), com-

plicating spectral analysis. The non-uniform sampling and limited number of time

points made Fourier analysis ineffective. Each time series value, fi, was calculated by

averaging over the 20 cell nuclei sampled per time point.
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To extract prominent frequencies in these time series, we fit them to a single-

frequency pair of harmonic basis functions using least squares, considering frequency

as a continuous parameter. We first centered the data by subtracting the mean of

each time series, giving f̃i, i = 1, 2, . . . , n. Given a frequency ω, we minimized the

mean squared error (MSE) between the resulting data, f̃i, and the basis functions,

α sinωti + β cosωti, by solving a 2×2 linear system in the coefficients α and β:

α

n∑
i=1

sin2 ωti + β
n∑
i=1

sinωti cosωti =
n∑
i=1

f̃i sinωti,

α
n∑
i=1

sinωti cosωti + β
n∑
i=1

cos2 ωti =
n∑
i=1

f̃i cosωti.

(2.13)

In addition to looking at prominent frequencies, the phase of the basis function,

θ = tan−1(α/β), reflects the relative timing.

The spectrum was represented by the amount of squared energy accounted for by

this fit; that is, the difference between the squared signal energy in the original time

series data and the squared residual (unfit) energy, given by

F (ω) =
n∑
i=1

f̃ 2
i − (f̃i − α sinωti − β cosωti)

2. (2.14)

We then swept the basis function frequency ω and looked for peaks in F (ω), indicating

a relatively good fit at that frequency. To reduce noise and identify frequencies

prevalent across individuals, we also plotted the average fit power, F , over all six

individuals.

Our method is similar to the Lomb periodogram [76, 93], a standard procedure for

analyzing periodicities in an irregularly-sampled time series. It is a simple extension

of the related least-squares spectral analysis [78] which unlike Lomb analysis keeps the

phase information of the basis functions. Our method differs by directly evaluating
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the squared signal energy represented by the basis rather than its squared coefficients,

α2(ω) + β2(ω). 1

2.4 Methods

2.4.1 Sample preparation

Human primary fibroblasts from 6 normal male newborns (discarded foreskin tis-

sue, passage 3) were cultured in complete media: MEM medium (Life Technologies,

10370 − 088) supplemented with 10% fetal bovine serum (VWR, SH30071.03), 2

mM L-glutamine (Life Technologies, 25030081), and 1× Antibiotic-Antimycotic (Life

Technologies, 15240−062), at 37◦C with 5% CO2. On the day before the experiment,

cells were trypsinized, 5×105 of them re-suspended in 15 ml complete media as de-

scribed above, and seeded into T75 flasks [67]. Inspecting cells under the microscope

24 hours later, confluency was found to range from 30 − 50%. (We wanted to avoid

100% confluency with its likely inhibition of cell division.)

Cells were washed with 15 ml pre-warmed PBS twice, and serum-free MEM

medium (2 mM L-glutamine, and 1× Antibiotic-Antimycotic) was added to each

flask to begin cell synchronization. Cells were incubated at 37◦C with 5% CO2. After

24 hrs, each flask of cells were re-suspended with 2 mls 0.25% trypsin-EDTA, followed

by 10 mls of complete media to inactivate the trypsin treatment, centrifuged at 750

rpm for 5 minutes, and each cell set re-suspended in 12 mls of serum-free media. Cell

counts were performed, and 150µls (∼30K cells) placed on Fisher superfrost slides in

petri dishes. Cells were allowed to settle for 2 hrs at 37◦C with 5% CO2. 15 mls of

complete media were then added to each petri dish, sample slides taken at the time

shown in Table 2.1, rinsed briefly in PBS, fixed in 4% paraformaldehyde for 8 minutes,

1Note that the two basis functions are not in general orthogonal over the irregularly-sampled
time series:

∑n
i=1 sinωti cosωti 6= 0. Thus the energy fit by each of the two basis functions should

not be considered to be independent, as is implicit in the measure α2(ω) + β2(ω).
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and rinsed 3×5 minutes in PBS. 15µl of Prolong Gold (p36941 Life Technologies) with

DAPI was placed on each slide, an 18×18 mm coverslip applied, sealed, and stored at

-20◦C until imaging. The sample from individual 3 at time point 5 was unusable due

to a lack of cells. All imaging was completed on a Zeiss LSM 710 Microscope with a

63× Oil DIC objective, 0.2µm x and y resolution, 0.5µm z resolution, an oversampled

pixel size of 0.132 µm x and y and 0.320 µm z, and 24 µm pinhole. Excitation was

by a 405 nm laser with an emission collection band from 411 to 486 nms.

A volumetric dataset for each individual nucleus was formed by cropping a z-

stack of images from confocal microscopic measurements. Ellipsoidal approximation

(described in the Algorithms section) was performed on 20 nuclei from each individual

at each time point.

2.4.2 Volume verification by thresholding

We used MATLAB to calculate the volume of nuclei by thresholding to validate

our ellipsoid fitting. The 3D images were loaded into MATLAB, and thresholded with

a cutoff of 5% of the maximum. Any holes that could not be reached from the outside

of the image were filled to prevent nucleoli or other internal structures from being

missed. The volume of all selected pixels was then integrated over all images in the z-

stack. Images from 20 nuclei for each individual and time point were analyzed as was

done for the ellipsoid fitting. To verify that the choice of threshold did not determine

the periodic results, we tried multiple thresholds (0.04, 0.045, 0.05, 0.055, 0.06, 0.065)

and calculated spectrums for each.

2.4.3 Bootstrapping

To see how consistent our periodicity results were, we took 100 random samples

with replacement (bootstrapping) of half the data (10 out of 20 nuclei from each

time point and individual) and used this limited data set to rerun the periodicity
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calculations described in 2.3.2.

2.4.4 Variance analysis over time

We used analysis of variance (ANOVA) to show that changes over time in volume

or eccentricity cannot adequately be explained by sampling from a single distribution.

Each time point was considered a category with 20 observations (nuclei) and the test

was run separately on each of the six individuals. A p-value of .05 was used to

test the null hypothesis that all of the variability seen between time points was due

to random chance and that the eccentricity and volume were each drawn from a

single distribution. The alternate hypothesis was that the distributions changed over

time. Bonferroni correction was used to account for multiple tests: 6 individuals ×2

properties [9].

2.5 Results and Discussion

2.5.1 Ellipsoid model captures variability in nuclear shape

Nuclear shape and volume of primary human fibroblasts that had been cell-cycle

synchronized by two-days serum starvation was analyzed. Nuclear shape and volume

were analyzed at 32 time points over 75 hours (sampling regime in Table 1) for cells

from six different individuals. For each time point and individual, confocal microscopy

was used to get 3D volumetric distributions of 20 nuclei stained by DAPI. An analysis

and visualization tool performed the ellipsoidal approximation for each nucleus and

calculated the three lengths of the ellipsoid axes as shown in Figure 2.1. 2

The lengths of the three axes, a, b, and c, were then used to calculate each nuclei’s

volume, V = 4π
3
a b c, and eccentricity, ε =

√
1− c2/a2. We also calculated volume

2This tool was originally developed to spatially approximate homologous chromosome territories
in the nucleus, where a pair of such territories was expected to be present simultaneously in the
volumetric data. We applied the same tool to approximate an entire nucleus as a single ellipsoid.
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independently by counting non-zero voxels after thresholding the images in MATLAB,

yielding a total of six different shape indicators.

In Figure 2.2A, xy and xz projections of the time course for each individual and

the average of the individuals show fluctuation in the nuclear shape over time. The

ellipsoid volume, threshold volume and ellipsoid eccentricity are also shown over the

time course in Figure 2.2B, 2.2C, and 2.2D respectively.

2.6 Nuclear shape changes over time

To show that the fluctuations in nuclear size and shape, seen in Figure 2.2, can not

be explained by random chance, we performed ANOVA on the data for three shape

properties: ellipsoidal volume, thresholded volume, and eccentricity. ANOVA tests

whether data from different categories, in this case time points, can be explained by

a single distribution or whether it requires different per-category distributions. Box

plots of the distributions for each individual are shown in Supplemental Figures S1,

S2, and S3 respectively. The null hypothesis was that a single distribution explains

all of the variability. We were able to reject the null hypothesis at a p ≤ 0.05 level for

all three shape properties (eccentricity, ellipsoidal volume, and thresholded volume)

and for all individuals.

2.6.1 Periodicity of the nuclear shape matches cell cycle and circadian

rhythm timing.

By fitting a set of single-frequency basis functions to mean-centered ellipsoid vol-

ume, threshold volume, eccentricity, and three axis lengths, as described in 2.3.2, we

computed the extent to which each was fit by a range of different frequencies. Figure

2.3B shows how well each parameter was fit by the basis functions for each individual.

Results varied significantly over individuals, but a few frequencies were seen consis-

tently across the 6 individuals and 6 nuclear shape indicators. The most prominent
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peak, marked with red dots on Figure 2.3A, has a mean of 17.3 hours (min 16.5, max

18.3) and is the highest peak in the spectrums for four of the six measures. For the

two measures of shortest axis length and eccentricity, it was the second highest peak.

Best fit basis functions for each shape property are shown in Figure 2.4 A-F.

Supplemental Table S1 reports the basis function parameters we calculated, along

with normalized MSE (MSE divided by the mean squared energy of the original

signal), and peak signal-to-noise ratio (PSNR). The fit for eccentricity, shown in

Figure 2.4B, has a 17 hour period and matches the data fairly well, yielding normalized

MSE of 0.0045 and PSNR of 12.7. Such a low value for normalized MSE and high

value for PSNR indicates that the fit captures much of the variability in the time

series, and supports the hypothesis that this prominent peak reflects the cell cycle.

Cells become rounder during mitosis so we expect a dip in eccentricity as mitosis

begins and an increase after the cells finish dividing [13]. In addition, nuclear volume

is expected to increase through the cell cycle leading up to division. We looked at the

phase of the top fits (all those included in Supplemental Tables 2.1 and 2.2) that had

periods according with the cell cycle (15− 22 hours) and found that the eccentricity

had an average phase of 0.6645 rad, meaning it peaked 1.5 hours after serum was

returned to the cells (and every ' 17 hours after that). The average phase of the

volume was −0.1143 rad, meaning it peaked about 10 hours after serum was re-added

to the cells. Both observations are consistent with an initial stalling of the cells in

the G0/G1 phase due to a lack of serum, followed by later attainment of maximal

volume as the cells prepare to divide.

Across individuals and shape features, we also observed a second period at roughly

26 hours (min 23.5, max 28.9). This peak was weaker than the 17.3 hour cycle in

all shape measures except for the shortest axis length. It could be a result of the

circadian rhythm that controls humans’ internal clock and sleep schedule. Although

not as prevalent as the cell cycle period across all individuals and shape features,
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it yielded fits with a median normalized MSE of 0.0041 and PSNR of 15.5 for the

individuals and shape features for which it was one of the top two peaks, indicating

an even better fit there than the first (cell cycle) period.

The spectrum for thresholded volume, based on a threshold of 5% of the dataset’s

maximum intensity, is mostly consistent with the other ellipsoid-based shape parame-

ters and includes peaks at both of the above frequencies. However, the spectrum also

includes a peak (in fact its tallest) not seen in the other spectrums at 11.3 hours. Os-

cillation at a single frequency explains the observed time variation only imperfectly,

suggesting that multiple complex traits affect nuclear shape. In addition, although

the cells are initially synchronized to the same place in the cell cycle, natural varia-

tion in cell division time leads to progressively less synchronization over the 75 hours.

Different individuals are not necessarily in the same phase; see supplementary Tables

2.1 and 2.2. They are almost all within the same half cycle, but each peak at different

times. This may be due to a combination of 1) differences across individuals in the

time needed for cells in serum to return to growth and therefore begin dividing, and

2) progressively degrading synchronization over the roughly 4 cell cycles within our

observation window.

We also tried other volume thresholds (0.04, 0.045, 0.055, 0.06, 0.065) and found

they agreed better with periods extracted from other shape properties. We observed

peaks at the same three frequencies in all cases (see Supplemental Figures S6 and

S7). In fact, the 0.05 threshold was the only one in which the 11.3 hour peak was

tallest. In four of the alternate thresholds, the 11 hour peak was second tallest after

the 17 hour peak, and in one it fell below both the 17 and 26 hour peaks.

To verify that these periods were not accidental, we used bootstrapping (ran-

dom sampling with replacement of 10 out of 20 nuclei per time point) and extracted

dominant periodicities from this data subset. After doing this 100 times, we made

histograms of the top two peaks seen in each sample for each of the six shape features.
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Five examples of the dynamics and spectrums of these random samples are shown in

Supplemental Figures S4 and S5. As seen in Figure 2.4 G-L, the histograms all have

strong peaks in the 14 − 18 hour bin as well as another split between the 22 − 26

and 26 − 30 hour bins depending on the feature. These peaks are weakest in panel

H, corresponding to thresholded volume, as it is dominated by a peak in the 10− 14

hour bin, consistent with the peak at 11.3 hours observed across the full dataset.

Figure 2.1: Image segmentation and ellipsoid fitting. A) A single xy slice from a raw
z-stack containing multiple DAPI-stained nuclei. B) An xy slice with
xz and yz projections after segmentation into an individual nucleus. C)
Ellipsoidal fit described by the lengths of three axes. Fits of 20 nuclei for
each individual and time point were then analyzed.

2.7 Conclusion

Using a simple model of nuclear shape in which the nucleus is modeled as an ellip-

soid represented by its three axis lengths and derived from DAPI-stained images, we

find that both the eccentricity and volume of primary human fibroblast nuclei change

significantly over time. A single sample in time provides an incomplete picture. This

result has significant impact for studies comparing cell populations, where normal

time variation can be conflated with differences between cell types. Observations at

multiple time points seem to be necessary to establish that any size or shape differ-

ences are due to intrinsic differences rather than natural oscillations. By comparing

29



Table 2.1: Sampling Schedule. The time points imaged and analyzed for each of the
six individuals.

time index i time from start ti (hr) interval ti − ti−1 (hr)

1 5 5
2 8 3
3 11 3
4 14 3
5 17 3
6 20 3
7 23 3
8 26 3
9 29 3
10 31 2
11 33 2
12 35 2
13 37 2
14 39 2
15 41 2
16 43 2
17 45 2
18 47 2
19 49 2
20 51 2
21 53 2
22 55 2
23 57 2
24 59 2
25 61 2
26 63 2
27 65 2
28 67 2
29 69 2
30 71 2
31 73 2
32 75 2
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Figure 2.2: Nuclear shape dynamics. A) xy (left) and xz (right) projections, shown
averaged over all individuals (top row) and for each individual (bottom
six rows). The long axis is time with each cross-section forming an ellipse
defined by the average length plus standard deviation for the outer and
average length minus standard deviation for the inner ring, at each time
point. B) Ellipsoidal volume, C) threshold volume, and D) eccentricity
over time, separated by individual.
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Figure 2.3: Frequency spectrums for nuclear shape. A) The average amount of
squared signal energy fit from the six individuals for shape properties rep-
resenting volume, threshold volume, eccentricity, and lengths of the three
ellipsoid axes. Red dots mark the (generally strongest) peak around 17
hours. Blue dots mark the (somewhat weaker) first peak around 26 hours.
B) The spectrums for all individuals.
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Figure 2.4: Optimal fits over all individuals The blue lines are the average of the
mean-centered data for A) volume, B) threshold volume C) eccentricity,
D) longest, E) middle, and F) shortest axis lengths. The red lines show
the fit at the strongest detected frequencies of 18.3, 17.1, 16.5, 17.1, and
24.6 hours, respectively. G-L show histograms recording the top two
peaks from each of 50 random samples of half the data for G) volume, H)
threshold volume, I) eccentricity, J) longest, K) middle, and L) shortest
axis lengths, respectively.
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Table 2.2: Periodic fit results. Average ± standard deviation for each feature and
individual.

Threshold Ellipsoid Eccentricity
Volume (µm3) Volume (µm3)

Sample 1 951± 387 649± 352 0.949± 2.47e− 4
Sample 2 877± 299 492± 301 0.967± 9.20e− 5
Sample 3 960± 464 883± 519 0.941± 8.37e− 5
Sample 4 872± 332 748± 305 0.943± 6.91e− 5
Sample 5 1090± 488 836± 406 0.940± 1.19e− 4
Sample 6 1300± 608 1010± 497 0.936± 1.17e− 4
All Samples 1010± 466 769± 438 0.946± 1.49e− 4

Axis 1 (µm) Axis 2 (µm) Axis 3 (µm)
Sample 1 2.55± 0.691 6.68± 1.32 8.56± 1.20
Sample 2 2.02± 0.620 6.42± 1.37 8.36± 1.32
Sample 3 2.91± 0.397 7.61± 1.56 8.87± 1.70
Sample 4 2.78± 0.376 7.22± 1.09 8.55± 1.20
Sample 5 2.91± 0.400 7.40± 1.34 8.76± 1.48
Sample 6 3.17± 0.606 7.83± 1.34 9.15± 1.40
All Samples 2.72± 0.644 7.19± 1.43 8.71± 1.41

multiple nuclei sampled at different time points, conclusions can be drawn about the

dynamics of nuclear shape without measuring it as a continuous property in a single

cell.

The methodologies provided in this paper are straightforward and simple to ap-

ply. Our statistical methodology has the benefit of being applicable to non-live, i.e.,

sacrificial, protocols. Although the initial steps in data analysis required some user

input, they can easily be fully automated to simplify future studies or translational

work.

The strongest oscillatory signal, as shown through basis fitting, is at 17 hours and

is consistent with the length of the cell cycle of primary human fibroblasts. Addi-

tionally, the phasing of volume and eccentricity is consistent with serum starvation

synchronization. Further studies with live cell imaging would help clarify the exact

causes of the oscillations by monitoring nuclear volume and shape in single cells as
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they grow and divide. Another weaker signal was seen at 26 hours. This signal is

hypothesized to relate to circadian rhythm. A future study including RNA sequenc-

ing and nuclear shape measurements could clarify its role by looking for correlation

between the changes in nuclear shape and expression of CLOCK, other circadian

rhythm genes, or any other cyclically expressed genes.

Much previous work on the shape and structure of the nucleus has examined its

pathology in diseases such as progeria and cancer. Looking at the dynamics of these

systems and how their time course differs from healthy cell dynamics can provide

more insight into the role of structure and shape in these diseases. Additionally,

the interplay between nuclear shape and chromatin organization and dynamics can

be further explored by studying how these shape changes correlate with chromatin

conformation as observed through fluorescent in situ hybridization (FISH) or Hi-C.

Rangimini et. al. showed that changes in cellular shape might lead to local chemical

gradients and thus to amplification of signals including transcriptional regulation at

a cellular level. At the nuclear level, a similar mechanism might be at work where

changes in nuclear shape influence the distribution of chemicals at different times in

the cell cycle, leading to transcriptional changes.
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CHAPTER III

Chromosome conformation and gene expression

patterns differ profoundly in human fibroblasts

grown in spheroids versus monolayers

3.1 Abstract

Human cells derived for in vitro cultures are conventionally grown as adherent

monolayers (2D) which do not resemble the natural 3D tissue architecture. We ex-

amined genome structure with chromosome conformation capture and gene expression

with RNA-seq in fibroblasts derived from human foreskin grown in 2D and 3D con-

ditions. Our combined analysis of Hi-C and RNA-seq data shows a large number of

differentially expressed genes between 2D and 3D cells, and that these changes are

localized in genomic regions that displayed structural changes. We also find a trend

of expression in a subset of skin-specific genes in fibroblast cells grown in 3D that

resembles those in native tissue.

3.2 Introduction

Growing mammalian cells in vitro is an indispensable technique for cell biology

and biomedical research. Conventionally, human cells have been derived to grow in
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defined medium either in suspension or as an adherent monolayer. For examples,

lymphoblastoid cells derived from human blood are grown in suspension while fibrob-

lasts derived from human skin and many cancer cell lines are grown in monolayers.

Adherent monolayer (2D) cell cultures do not resemble the natural 3D structures of

body tissues, and as a result cells grown in 2D may have considerable discordances in

cellular morphology, physiology, pathology, cell-cell interaction and communication

compared with natural tissues.

Increasing evidence shows that in vitro 3D culture captures natural tissue com-

plexity better than 2D cultures [46, 3, 20, 108]. Advances in 3D culture techniques

open new avenues for in vitro modeling of human organ development, tissue morpho-

genesis, pathogenesis of diseases, cellular response to drugs or other perturbations,

and screening for novel therapeutics [108, 23]. Modeling organogenesis and develop-

ment has been advanced by generating human micro-tissues in vitro [65]. For example,

human pluripotent stem cells can differentiate into a midbrain-like structure in 3D

cultures consisting of neurons expressing midbrain markers such as neuromelanin,

and producing dopamine [60]. Alzheimer disease pathology has been recapitulated

in 3D neural culture, which demonstrated a more matured neuronal and glial differ-

entiation, and increased expression of adult tau isoform protein levels in 3D culture

compared with 2D culture [20]. Human cell-based 3D models in pharmaceutical re-

search can complement animal models, which often fail to predict the efficacy and

toxicities of new drugs. 3D human-cell models may also provide more effective and

economical screening of new drugs than the use of animal models [117, 128]. Further-

more, in vitro 3D modeling of native tissue provides tools for regenerative medicine.

However, understanding the fundamental cell biology is critical in translating in vitro

discoveries into clinical applications, e.g., functional replacement of damaged tissue.

Tissue-specific gene expression is the molecular basis of cellular function. It is

not fully established how closely in vitro 3D tissue culture mimics native tissue. We
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hypothesize that the interplay between genome structure and function, i.e., the nu-

cleome (https://commonfund.nih.gov/4Dnucleome/index), is the key component of

tissue-specific gene expression. Hi-C provides a tool to study genome structure by

allowing measurement of genomic regions that are physically close together in cell

nuclei [73]. Analysis of Hi-C data suggests that mammalian chromatin is partitioned

into two compartments, corresponding to transcriptionally active euchromatin and

inactive heterochromatin regions [73]. In addition, Hi-C analysis identified that mam-

malian chromosomes are organized into local chromatin interaction domains, called

TADs [31]. The nucleome of a cell type can be investigated by combining analysis of

Hi-C with RNA-seq [16]. We are interested in studying how the nucleome changes

between 3D- and 2D- grown cells. We previously observed chromosome conformation

changes between human fibroblasts grown as spheroids vs. monolayer cultures [17].

Here we extend our investigation into how genome conformation (structure) changes

affect changes in genome- wide transcription (function). We focus on the nucleome

of human fibroblasts grown in 3D and 2D cultures for 48 hours. We find that more

than three thousand genes change expression levels greater than 2-fold (false discovery

rate (FDR) 0.05) between 2D and 3D cultures without other perturbations. Analysis

of Hi-C data shows that these genes are localized in genomic regions with different

spatial configuration between cells grown in 3D and 2D cultures.

3.3 Results

3.3.1 Differentially expressed genes between 3D and 2D cell cultures

We analyzed the expression profiles between 3D and 2D cultures with the edgeR

software [104], and identified 3297 genes that changed expression levels greater than 2-

fold between the two groups (FDR ≤ 0.05). Among these changes, 1253 genes showed

increased expression levels, and 2044 genes showed decreased expression levels in the
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3D group relative to the 2D samples (Figure 3.1, Table A.4). We identified biologic

themes from the lists of up- and downregulated genes using the expression analysis

systematic explorer (EASE) software for gene ontology (GO) annotation [53]. We

used a FDR threshold ≤ 0.05 to call significant gene set enrichment under any GO

term.

Among the genes with increased expression levels in the 3D samples, we iden-

tified functional gene sets that significantly clustered under 113 GO terms (Table

A.4). These functional gene sets are part of several important biologic processes,

including those for chromosome structure/chromatin assembly; transcription or reg-

ulation of transcription; apoptosis; responses to stress, defense, inflammatory, or

wound healing; responses to unfold protein or protein stimulus; signal transduction;

and cytokine-cytokine receptor interaction. In addition, several gene sets are iden-

tified under GO terms in the ”Cellular Component” system, including genes whose

protein products are localized in cellular subcompartments, i.e., enriched under GO

terms of nucleus, chromosome, chromatin, nucleosome, and extracellular space (Table

A.4). The preferential cellular component localization suggests that the upregulated

genes are non-randomly distributed in cellular sub-compartments. Two examples of

the coordinated expression of these functionally related genes follow.

First, we looked at the 131 genes clustered under the GO term ”transcription”

(Table A.4). For example, more than 21 genes encode DNA binding zinc finger tran-

scription factors; 11 genes (GTF2A1, GTF2B, NR1D1, NR2C2, NR4A2, NR4A3,

POLR2H, PPARA, TAF13, TAF7, TBP) encode factors involved in transcription

initiation or transcription elongation from RNA polymerase II promoters; 9 genes

(AHR, ARNTL, ATF4, CRY1, CREM, NPAS2, NR1D1, PPARA, RELB) encode

transcription factors that are known components critical for circadian regulation of

gene expression. Second, in a cluster of 111 genes under the GO term ”cell differ-

entiation” many of them are likely to be regulated by the transcription factors from
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the ”transcription” cluster described above. The ”cell differentiation” related genes

were expressed at higher levels in the 3D samples relative to 2D samples (Table A.4).

For instance, 14 of these genes encode cytokines or growth factors and are secreted

into the extracellular space; 12 genes encode for proteins participating in signaling

pathways, such as the TNF, NF-kappa B signaling, and cytokine-cytokine receptor

pathways, likely leading to increased activity of these pathways.

We separately performed GO annotation for the downregulated genes in 3D cells

relative to 2D cells. We identified gene clusters significantly enriched under 116 GO

terms (Table A.4). The main biologic themes extracted from the downregulated genes

include cell cycle control; cell growth regulation; and cytoskeleton organization and

biogenesis. For example, we found 102 genes significantly clustered under the GO

term of ”cell cycle”. To name a few, genes encoding cyclins (CCNA2, CCNB1, and

CCNE1 ) and cyclin dependent kinase 6 (CDK6) are significantly downregulated. The

expression of these genes is cell cycle regulated, and promotes G1 progression, G1/S

and G2/M phase transitions. As another example, we found 228 genes clustered un-

der the GO term of ”anatomic structure development” (Table A.4). Among the 228

genes, for instance, there are sub-clusters encoding signal peptides (89 genes), secreted

proteins (62 genes), glycoproteins (88 genes), or proteins for extracellular matrix or-

ganization (22 genes), or extracellular space (57 genes). In addition, from the list

of downregulated genes we found that GO terms in the ”Cellular Component” sys-

tem enriched with genes whose protein products were predominantly localized outside

the 170 nucleus, and formed significant clusters for basement membrane, cytoskele-

ton, extracellular matrix, intracellular membrane-bound organelles, mitochondrion,

and cytoplasm. These cellular sub-component distributions are different from those

upregulated in 3D cells.
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3.3.2 Validation of RNA-seq results with TaqMan assays

We tested the expression levels of 8 genes with TaqMan assays [52] for validating

differential gene expression between 2D and 3D cells identified from edgeR analysis.

We found that all the genes tested were differentially expressed as shown in the

RNA-seq result (3.1). The log2 fold change (FC)s between TaqMan and RNA-seq are

highly correlated (r = 0.997, p ≤ 3.467E − 8). This analysis confirmed the list of

differentially expressed genes identified from our RNA-seq experiment.

Taken together, we show that the upregulated genes in 3D cells compared with

2D cells whose products are mostly transcription factors, growth factors, signaling

proteins, or proteins involved in chromosome assembly. The downregulated genes

are related to cell cycle control, cytoskeleton organization and cellular structure mor-

phogenesis, formation of extracellular matrix, or they are signaling peptides. The

coordinated expression of a large number of genes suggests that the nucleome is re-

configured in 3D samples to adapt to the dense growing environment in spheroids.

Previous results suggest that 3D cultures are closer to native tissues [46, 3, 20,

108]. In our experiments we analyzed gene expression in human foreskin fibroblasts.

Therefore, the nearest native tissue to compare is human skin. A recent study of gene

expression profiles in human tissues by Edqvist et. al. identified 106 skin-specific

genes known to be involved in skin development and differentiation [34]. Comparing

the top 50 skin-specific genes available from this publication[36], we found that in

both 3D and 2D samples 37 of them were not detectable at the current sequencing

depth, 30 genes were expressed at low levels (fragments per kilobase of transcript

per million mapped reads (FPKM) < 1) either in 3D or 2D cells, and 3 genes were

called expressed. All 3 expressed genes (ASPRV1, KRT10, and SERPINB7 ) showed

increased expression levels in 3D cells relative to 2D cells. Among the 30 low level

expression genes, 20 showed higher levels in 3D cells (Table A.4). This trend of higher

expression of skin-specific genes in 3D cells suggests that 3D cultures are closer to
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native tissues.

3.3.3 Relationship between chromosome conformation and gene expres-

sion level changes

To gain insights into how genome structure affects gene expression patterns ob-

served in 3D cells, we explored chromosome conformation changes from Hi-C data for

the respective culturing conditions. First, we calculated the Fiedler number for each

of the differentially expressed genes [16]. In the context of Hi-C analysis, the magni-

tude of the Fiedler number is a measure of the underlying stability of the topology of

the genomic region, in this case a gene with defined linear sequence coordinates. A

high Fiedler number suggests a high conformational stability, i.e., few alterations be-

tween chromatin states that may be important for regulation of gene expression. We

found that the Fiedler number changes in 91% of the differentially expressed genes,

while for the entire genome, this number changed in 86% of the genes (p ≤ 0.001).

Figure S8 shows the interaction matrices for 4 sets of genes clustered under GO terms

transcription (131 genes), cell differentiation (111 genes), anatomic structure devel-

opment (228 genes), and cell cycle (102 genes) for the 3D and 2D samples, as well as

the difference between them. These plots show that the connections within a set of

related genes change between 3D and 2D growth. This, in combination with the ob-

servation that the Fiedler number of these regions changes, shows that differentially

expressed genes also undergo structural changes between 3D and 2D culture.

We also wanted to explore more generally how changes in structure are related to

changes in expression. It is known that the genome is partitioned into transcriptional

active or inactive regions [73], and further organized into TADs [31]. We found 2, 487

TADs in the 3D sample and 3, 018 TADs in the 2D sample (Table A.4, also see supple-

mental method). Three quarters of the TAD boundaries defined in the 3D samples

were also present in the 2D samples. Interestingly, the TADs on chromosomes 18
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were the most consistent between the samples while the TADs on chromosome 19

changed the most between 3D and 2D culture (also 3, 6, 11, and 21). It has previ-

ously been shows that chromosome 18 had increased intra-chromosomal interactions

while the chromosomes whose TADs changed the most, including 19, had decreased

intra-chromosomal interactions [17]. Additionally, chromosome 19 has the highest

gene density while chromosome 18 has the lowest, which further suggests that gene

expression and chromosomal structure are tightly coupled. Figure 3.2 shows the gene

expression and Fiedler vectors for chromosomes 18 and 19, as well as a portion of the

Hi-C matrix with the TAD boundaries overlaid and the strong interactions within the

region in both 3D and 2D growth conditions. The small number of bins whose Fiedler

vector flips sign in chromosome 18 compared with the large number that change in

chromosome 19 indicates that the very gene poor chromosome does not change struc-

ture nearly as much as the very gene rich chromosome between 3D and 2D cells. This

is consistent with the interaction plots (Figure 3.2D and H) in which chromosome 19

had far fewer connections that did not change between samples than chromosome 18

(14 and 125, respectively).

In summary, we present here a comprehensive comparison of both genome struc-

ture, as measured using Hi-C, and function as established by RNA-seq. Our results

show massive changes between 3D and 2D cultured isogenic cells in both structure

and function and we conclude that 3D cultures more faithfully recapitulate patterns

observed in primary tissues.

3.4 Discussion

We report here a larger number of genes that are differentially expressed between

3D and 2D cells due to a simple difference in the growth condition of a flat surface

or spheroids. Among the 1253 genes that increase expression levels in 3D cells, gene

ontology annotation shows clusters of genes significantly enriched under GO terms
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Figure 3.1: Volcano plot of gene expression changes. A volcano plot shows the up-
regulated genes (red dots) and downregulated genes (green dots) in 3D
cells relative to 2D cells. The X-axis shows log2 FC, and Y-axis indicates
log10 P value.
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Figure 3.2: Differences in structure and function across chromosomes. The 1 Mb
gene expression (top) and Fiedler vectors (middle), and part of the 100
kb Hi-C matrix with TAD boundaries (green) for chromosome 18 in (A)
2D culture, (B) 3D culture, and (C) the difference between the cultures.
(D) Strong interactions within the same region in the 2D sample (red),
3D sample (yellow), and both samples (blue). The same data for a dif-
ferent region in chromosome 19 in E) 2D culture F) 3D culture, (G) the
difference, and (H) the strong interactions in each.
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Table 3.1: Comparison of TaqMan assay-based real-time quantitative PCR and
RNA-seq analyses of 8 genes differentially expressed between 2D and 3D
cells. TaqMan P is the t-test p value from TaqMan data analysis for each
gene. The log2 FC correlation coefficient between TaqMan and RNA-seq
is 0.997 (P ≤ 3.467× 10−8).

Gene RNA-seq TaqMan mean TaqMan p

Gene log2FC log2FC Bonferroni

ATP5O −1.02 −0.83 1.14× 10−2

BDH2 −2.28 −2.80 2.88× 10−3

COL5A2 −3.58 −4.06 4.12× 10−6

DEPDC1 −5.09 −5.09 7.72× 10−5

FKBP8 −1.02 −1.49 3.51× 10−4

IL6 7.55 7.18 1.73× 10−5

NFIL3 2.77 2.73 4.03× 10−5

TFRC 1.60 1.63 5.29× 10−5

related to transcription, chromosome assembly, and signaling pathways. There are

also 2044 downregulated genes whose protein products are primarily localized in the

cytoplasm, extracellular matrix, extracellular space, and are related to cell cycle and

cellular signaling. We validated a subset of 8 genes using the TaqMan method [52].

Our gene expression data show increased expression of genes (e.g., CDKN1C,

CCNT1, and CCNT2 ) inhibiting G1 progression, G1/S and G2/M transition in the

cell cycle, or decreased expression of genes (e.g., CCNA2, CCNB1, CCNE1, and

CDK6 ) promoting proliferation. This suggests the 3D cells may have reduced pro-

liferation rates compared with 2D cells. It is currently undetermined whether cells

grown in 3D are quiescent or senescent. However, the increased expression of 111

genes related to cell differentiation suggests fibroblasts grown in 3D may transition

toward a more differentiated state compared with the more proliferating state in 2D.

A comparison to the top 50 skin-specific genes from previously published work [34]

showed a trend of higher expression of skin-specific genes (23 out of 50) in 3D cells

relative to 2D cells. For the remaining 27 genes, 17 were not detected in our samples,

and 10 showed lower expression levels in the 3D samples. This discrepancy might be
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explained due to the relatively short period of tissue culture (48 hour). At this early

stage the 3D spheroid is immature and has not developed into a skin-like structure.

Nevertheless, the fact that more skin-specific genes show higher expression levels in

the 3D samples suggests that 3D cultures might be closer to native tissues.

We also compared these changes in gene expression to changes in the structure of

the genome as measured by Hi-C. We found that differentially expressed genes were

significantly more likely to have changes in their structural stability, as measured by

Fiedler number, than expected from a random change. Of the differentially expressed

genes 71% showed decreases and 18% showed increases in Fiedler number from 2D

to 3D. This indicates that the genes that change functionally, i.e., expression levels,

also have corresponding changes in their chromatin organization.

In our analysis of Hi-C data to infer chromosome conformation, we use the Fiedler

vector for chromatin compartment partition and TAD identification [16, 18]. This

method performs equally well compared with other methods [73, 31, 36]. In general,

we observed TAD boundaries changing and Fiedler vector sign switching between 3D

and 2D cells genome-wide. These observations suggest that chromosome conformation

is reconfigured in 3D cells when 2D cells were used as the baseline. Interestingly,

the most gene dense chromosome, chromosome 19, has one of the greatest changes

in structure while the least gene dense chromosome, chromosome 18, has the least

change in structure between 2D and 3D culture. This may be due to the fact that

chromosome 19 is gene rich and transcriptionally active, therefore significant changes

in structure are required for the changes in gene expression between 3D and 2D

growth. Chromosome 18 is gene poor, and transcriptionally inactive, thus might not

need to undergo as many structural changes.

We notice that TADs identified by our method do not exactly match those from

other studies [31, 36]. See detailed comparison in our previous publication by Chen

et. al. [18]. However, the majority of TADs are approximately within the same
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genomic regions given a boundary between TADs in sizes from 40 kb to 400 kb [31].

It is possible that a TAD found by another method might decompose into several

TADs obtained by our method. This is not surprising, since we take into account

the connectivity of Hi-C while finding TADs. To be specific, if one TAD defined by

other methods does not meet our connectivity criterion (namely, greater than λ0),

[18] it would further split into TADs of reduced size in our approach. We feel that our

method is reasonable since one can adjust the parameter λ0 to find TADs of proper

size [18], and a high connectivity indicates a large modularity of community structure

in Hi-C [87].

A Hi-C matrix naturally associates a graph to the genome, where nodes are defined

by binned loci in the genome, and the edge weight between a pair of loci is proportional

to their contact frequency. Consequently, a topological domain (or a community

structure) is a compact region that can often be visually distinguished as a diagonal

block in the Hi-C matrix [18]. We emphasize that our proposed topological domains

are strongly connected graph components having strong intra-connections and weak

inter-connections, which could be sub-regions of the commonly-used TADs. We are

aware of the fact that no standard criteria are applicable to the selection of significant

genes from genome-scale expression analyses. We believe that the use of FC ≥ 2 plus

FDR ≤ 0.05 is a reasonable control to compensate for false positives.

In summary, we find a large number of differentially expressed genes between cells

grown in 3D and 2D. Genes that show significantly increased expression levels in 3D

cells are responsible for the regulation of transcription, for chromatin assembly, and for

the production of cytokines and growth factors. Those that are significantly decreased

in 3D cells are enriched in cell cycle control, proliferation, cytoskeleton organization

and cellular morphogenesis. We observed that genes that changed expression levels

were co-localized in genomic regions with structural changes as seen in sign switching

in the Fiedler vectors and in changing of TAD boundaries between 3D and 2D cells. In
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addition, our data add evidence to previous observations that 3D cultures recapitulate

the environment of native tissues more faithfully than 2D cultures.

3.5 Materials and methods

3.5.1 Hi-C and RNA-seq data collection

We grew human foreskin fibroblasts (BJ, ATCC number CRL−2522) in 150mm

dishes (2D) and in hanging drops in a 96-well PERFECTA3D plate (3D) (3D Bioma-

trix, Ann Arbor, MI). After 48-hours of growth, we sampled the cells for Hi-C and

RNA-seq analyses. Hi-C libraries were constructed from 20 million cells for each

culturing condition as described by Chen et. al. [17]. Briefly, we used the HindIII

restriction enzyme (RE) for chromatin digestion. RE created DNA fragment ends

were marked with biotin-dCTP (Cat# 19518−018, Life Technologies) and re-ligated.

After reverse cross-linking, the DNA is fragmented for paired-end sequencing on the

Illumina HiSeq2500 platform. Meanwhile, 3 biologic replicates were collected from

2D and 3D culture conditions for RNA-seq analysis as described by Chen et. al. [16].

3.5.2 RNA-seq data analysis

We used Tophat (version 2.0.9)[122] and Bowtie (version 2.1.0.0) [69] to align

the RNA-seq reads to the reference transcriptome (HG19). The average number of

sequence reads generated from each sample is 35.6 million, and the average read

genome alignment rate is 83.51%. We generated quantification counts from RNA-seq

reads for a set of 23599 unique transcripts of RefSeq definition by NCBI. FPKM

values were calculated for each gene. We used an average FKPM value ≤ 1 in either

the 2D or the 3D group to call a gene as expressed, which identifies a set of 13907

genes for subsequent analysis. We used the edgeR software package [104] to identify

differentially expressed genes between 2D and 3D cells. A gene is called differentially
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expressed given an absolute FC ≥ 2 with FDR ≤ 0.05. We performed functional

annotation of significant genes identified using the EASE software package [53].

3.5.3 Validation of differentially expressed genes identified with edgeR

We performed real-time quantitative polymerase chain reaction (RT-qPCR) using

the TaqMan method [52] to verify a subset of differentially expressed genes. Eight

TaqMan assays were purchased from Thermo Fisher (Cat # 4331182). All TaqMan

assays were performed using a 2-step procedure according to the supplier manual

(Part Number 4454239 Rev. A). First, we performed single-stranded cDNA synthesis

from total RNA SuperScript®III First-Strand Synthesis System (cat # 18080051,

Thermo Fisher). Second, we performed TaqMan RTqPCR assays according to the

manufacturer’s recommended conditions (ABI) on a 7900HT Fast Real-Time PCR

System (ABI). We used SDS2.2.1 software (ABI) for quantification analysis in con-

junction with the 2−∆∆Ct method [75] using GAPDH as the reference control for

normalization. The same biologic replicates for 2D and 3D RNA-seq analysis were

used for TaqMan assays. The log2FC was derived from 3 Taq-Man replicates for

each biologic sample in each group. For significance testing, we performed 2-tailed

unpaired t test and adjusted the p-values using Bonferroni correction.

3.5.4 Hi-C analysis

Initial processing and normalization were performed as described by Chen et. al.

[16]. Genome-wide TADs were defined using the iterative methods of maximizing the

Fiedler number of Hi-C matrices as described by Chen et. al. [18]. A boundary was

considered unchanged if it moved by less than two bins to account for uncertainty in

the boundaries based on previous work that allowed variation in the boundary size

[31]. At gene level analysis, an adjacency matrix for a gene was generated by the

method described by Chen et. al. [18], and the Fiedler number corresponding to
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each gene matrix was derived. The Fiedler number is a graph theory based measure

of how well connected a graph is, with a more connected graph leading to a higher

Fiedler number. Interaction matrices for the gene sets were extracted from the genome

wide 1 Mb resolution Hi-C map by picking the rows and columns with the relevant

differentially expressed genes in them. In line with Hi-C 1 Mb resolution maps,

RNA-seq data are combined into the corresponding 1 Mb regions along a chromosome,

and the gene expression level of each bin is the sum of FPKM values for all the genes

in a bin Strong Hi-C interactions are those above the 95th percentile of all interactions

on that chromosome.
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CHAPTER IV

Nucleome Analysis Reveals Structure-function

Relationships for Colon Cancer

4.1 Abstract

Chromosomal translocations and aneuploidy are hallmarks of cancer genomes;

however, the impact of these aberrations on the nucleome (i.e., nuclear structure and

gene expression) are not yet understood. Here, the nucleome of the CRC cell line HT-

29 was analyzed using Hi-C to study genome structure, complemented by RNA-seq

to determine consequent changes in genome function. Importantly, translocations

and copy number changes were identified at high resolution from Hi-C data and the

structure-function relationships present in normal cells were maintained in cancer. In

addition, a new copy number-based normalization method for Hi-C data was devel-

oped to analyze the effect of chromosomal aberrations on local chromatin structure.

The data demonstrate that at the site of translocations the correlation between chro-

matin organization and gene expression increases; thus, chromatin accessibility more

directly reflects transcription. Additionally, the homogeneously staining region of

chromosome band 8q24 of HT-29, which includes the MYC oncogene, interacts with

various loci throughout the genome and is composed of open chromatin. The meth-

ods described herein, can be applied to the assessment of the nucleome in other cell
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types with chromosomal aberrations. These tools created are packaged as NAT,a

user-friendly and powerful MATLAB toolbox for time series analysis of Hi-C data

and RNA-seq data. NAT can load and normalize data, define topologically associ-

ating domains, analyze translocations, produce visualization, and study time course

data.

Implications: Findings show that chromosome conformation capture identifies

chromosomal abnormalities at high resolution in cancer cells and that these abnor-

malities alter the relationship between structure and function.

4.2 Introduction

All cancers have chromosomal aberrations. These aberrations can be structural

(translocations, insertions, deletions, inversions) or numerical (aneuploidy) [47, 41].

Such aberrations may activate tumor-promoting or inactivate tumor-suppressing sig-

naling pathways [47]. However, the interplay between chromosomal aberrations (struc-

ture) and gene expression (function) is not fully understood [48, 40, 80, 101]. The

development of chromosome conformation capture techniques provides unprecedented

insights into spatial chromatin organization and long-range chromatin interactions in

the interphase nucleus [73]. Hi-C generates matrices that reflect chromatin interac-

tions by using proximity-based ligation followed by sequence analysis [73]. Hi-C data

confirmed that the human genome is partitioned into regions of open and closed chro-

matin [73]. The first step in identifying these regions is to calculate the correlation

matrix of the normalized Hi-C data, which describes the correlation between each pair

of genomic regions. In order to compare the structure measured by the Hi-C matrix

(two dimensional), to DNase I hypersensitivity or gene expression (one-dimensional),

Hi-C data are converted to a vector using eigendecomposition (Table 4.1) to extract

the first principal component, which identifies the vector that best approximates the

matrix. Lieberman-Aiden et. al. showed that the sign of the first principal com-
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ponent (positive and negative regions) divides the genome into two compartments

that correlate with the presence of open or closed chromatin as measured by DNase

I hypersensitivity and active or repressed gene expression, respectively [73].

Previous studies of cancer genomes using Hi-C showed long range interactions

between known risk loci for the development of CRC and regulatory regions [58],

demonstrated proto-oncogene activation by disruption of chromosome neighborhoods

[51], determined changes in inter-chromosomal interaction frequency in breast cancer

[7], and showed that changes in genomic copy number subdivide the domain structure

of chromosomes [119]. We have extended this work through a comprehensive analysis

of the CRC cell line HT-29 to analyze how chromosomal aberrations affect nuclear

structure and gene expression, i.e., the nucleome, by integrating Hi-C and RNA-seq

analyses.

4.3 Methods

4.3.1 Experimental protocols

Hi-C, RNA-seq, and FISH data were collected from human fibroblasts and the

CRC cell line, HT-29, cell lines as described by Chen et. al. [16]. Cell culture in 2D

and 3D growth was performed as described by Chen et. al. [17]. Extended protocols

for RNA-seq, Hi-C and FISH are in the supplemental methods.

4.3.2 Normalization of Hi-C matrices

The method of Toeplitz normalization used by Chen et. al. was adapted to

account for uneven genomic copy number [18]. The method, outlined in Figure S9,

includes using the total number of reads in each bin of the Hi-C intrachromosomal

region as a measure of the genomic copy number. A band-pass filter (Butterworth,

order 4, 10−6 resolution) was applied to remove the high frequency noise. Breakpoints
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were defined as changes in the signal greater than a threshold, and separated by

at least 1/8th the chromosome length (Table S4). Each matrix was divided into

submatrices based on these breakpoints and independently normalized as described

by Chen et. al. [18]. The submatrices were put back together to form the final,

normalized matrix. The Toeplitz normalization and iterative correction methods

described by Chen et. al. [18] and Wu et. al. [134] were implemented for comparison.

The normalized matrix is used to calculate TADs, as previously described by Chen

et. al., using the Fiedler vector [18]. Briefly, the Fiedler vector is the second smallest

eigenvalue of the normalized Laplacian, L̄ = D−1/2(D − A)D−1/2, where A is the

adjacency matrix, in this case a chromosome’s normalized Hi-C matrix, and D is the

degree matrix [22]. The Fiedler vector divides the chromosome into two regions, one

mostly active, the other mostly inactive and was used to calculate structure-function

correlations. These regions are then subdivided into TADs by calculating the Fiedler

vector of the submatrix including one of these regions until the Fiedler number of the

submatrix was above the threshold of 0.6. All figures showing raw matrices are on

log2 scale.

4.3.3 Hi-C matrices for translocated chromosomes

To create Hi-C matrices for translocated chromosomes, interchromosomal Hi-C

matrices were visualized to identify where translocations occurred; then the exact

location was refined using the read level data (Figures S10-S24). To construct Hi-C

matrices for the translocated chromosomes, the information organized according to

chromosome number and the traditional reference chromosomes (hg19) needs to be

rearranged. To do this, each chromosome is viewed as a matrix that can be decom-

posed into submatrices. Based on the location of a translocation, four submatrices

are created as diagrammed in the top of Figure S15. Any two intrachromosomal

matrices, A and B, can be represented as
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CA =

 CA(1, 1)m×m CA(1, 2)m×n

CA(2, 1)n×m CA(2, 2)n×n

 (4.1)

CB =

 CB(1, 1)r×r CB(1, 2)r×s

CB(2, 1)s×r CB(2, 2)s×s

 (4.2)

where m is the location of the translocation (in number of 100 kb bins) and n is

the length between the translocation and the end, such that m+n is the length of

chromosome A. Similarly, chromosome B has a translocation at r and total length

r + s. Their interchromosomal space can be written as follows:

CAB =

 CAB(1, 1)m×r CAB(1, 2)m×s

CAB(2, 1)n×r CAB(2, 2)n×s

 (4.3)

From these definitions, the Hi-C matrix for the translocated chromosome AB can

be pulled out:

TAB =

 CA(1, 1)m×m CAB(1, 2)m×s

CAB(2, 1)s×m CB(2, 2)s×s

 (4.4)

Note, due to the symmetry of the Hi-C matrix, CAB(2, 1)s×m = CAB(1, 2)Tm×s. The

same notation can be used on more complex translocations like T3−12, which includes

three pieces with breaks at both of the translocations. Matrices were normalized with

a forced breakpoint at the translocation location.

Gene expression and banding structures were created for each translocated chro-

mosome by piecing together the relevant parts of each chromosome. Neighborhoods

were defined as submatrices centered on the translocation of a given size defined

by other criteria (either 300 kb, TAD encompassing, or gene encompassing). TAD

encompassing were defined as the maximum across the samples of the smallest size
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required to cover a TAD boundary with a single size being chosen for each transloca-

tion. Gene encompassing was the minimum size required to include a gene on both

sides of the breakpoint. The significance of the change in structure-function corre-

lation was calculated by randomly selecting 1000 sets of locations and constructing

matrices representing fake-translocations. The observed change in correlation for the

real translocations was compared to the average change in correlation for the same

sized regions of the randomly placed fake-translocations. The von Neumann Entropy

of these regions was calculated as
∑d

i=1 λi log2 λi, where d is the sizes of the matrix

and λi are the eigenvalues calculated from the submatrix describing the neighborhood

of the normalized Hi-C matrix [91].

4.3.4 Two-way ANOVA

Two-way ANOVA analysis was performed to identify genes with expression level

change between 2D and 3D cultures, between 12-hour and 5 day cultures. GO analysis

was performed using database for annotation, visualization, and integrated discovery

(DAVID) [54] with official gene symbols and the default background set for human

analysis. The statistical test comparing the sample was performed as described by

Chen et. al. [17].

4.4 Results

4.4.1 Interpretation of Hi-C with aberrant cancer genomes

We analyze the nucleome of the CRC cell line HT-29 using Hi-C to character-

ize chromatin organization and RNA-seq to understand consequent changes to the

cellular transcriptome. Hi-C and RNA-seq datasets were generated for HT-29 cells

grown on a flat surface (2D) or as spheroids (3D) for 12 hours or 5 days (indexed

as 2D12hr, 2D5day, 3D12hr, and 3D5day). The time-points and culture conditions
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were chosen to assess how growth conditions and cell density affect genome struc-

ture and gene expression. In normal cells, chromosomes are organized as distinct

territories, which appear as diagonal dominant blocks for each chromosome in the

genome-wide Hi-C contact matrix (Figure S16). However, in solid tumors, chromoso-

mal aberrations are common, which is evident from the SKY of HT-29 (Figure 4.1A).

The genome of HT-29 is near-triploid (mean = 70 chromosomes). Structural aber-

rations, such as translocations, deletions and inversions, rearrange the chromosomes.

Such aberrations are readily visible on the Hi-C matrix as distinctive L or X shaped

patterns for unbalanced and balanced translocations, respectively (Figure 4.1B). The

translocations found by SKY (Figure 4.1A), e.g., the balanced translocation between

chromosomes 6 and 14 (black arrow in Figure 4.1B) and the insertion of chromosome

12 material into the p arm of chromosome 3 (black arrow), are clearly visible. En-

larged representations for each of the translocated chromosomes are shown in Figure

S17. Cytogenetic analysis detected a homogeneously staining region (HSR) on chro-

mosome 8q that contains the MYC oncogene [101, 14]. The blue arrows in Figure

4.1B mark increased interactions between the whole genome and high copy number

regions like the HSR and a smaller amplification on chromosome 2 (Figure 4.1B). The

smaller amplification on chromosome 2 was confirmed by interphase FISH analysis.

The recapitulation of cytogenetic changes in interphase Hi-C maps is reflected in the

contact maps of chromosome 3, where the short arm (∼ 2 copies) has fewer contacts

than the long arm (∼ 5 copies).

We compare genomic copy number with the total number of Hi-C reads for each

gene and gene expression patterns based on the observation that high copy number

regions have more contacts in the genome wide Hi-C matrix. Figure 4.1C shows the

copy numbers, log2-FC gene expressions (relative to fibroblasts), and total Hi-C reads

(FPKM) for each gene averaged for each chromosome arm (Table A.6). Genomic copy

number and gene expression exhibit a strong correlation (Pearson r = 0.65, p ≤ 10),
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consistent with previous work [101]. The correlation between copy number and the

total Hi-C contacts is 0.81 (p ≤ 10), indicating that the total number of reads per

bin can be used as an approximation for copy number. Therefore, the numbers of

reads are a direct reflection of the likelihood that chromosome contacts occur in the

interphase nucleus.

4.4.2 A novel copy number based normalization method

In cancer cells, the interpretation of Hi-C data is complicated by the presence of

copy number alterations, which can affect read frequencies. Therefore, we developed

a novel approach for the normalization of Hi-C data for cell lines with complex kary-

otypes. We validated our new approach by comparing it to high resolution molecular

cytogenetic analyses of HT-29 by SKY, FISH, and array-based CGH. For instance,

in HT-29 the MYC oncogene is present in multiple copies in an HSR at the distal

end of the q-arm of chromosome 8 (Figure 4.2). Figure 4.2B shows the total num-

ber of raw Hi-C reads per bin as well as the genomic copy number as measured by

CGH. Genomic copy number directly and strongly influences the total number of

Hi-C reads per bin (r = 0.77). Based on this finding, the total number of reads per

bin was used to create a new normalization method in which the Hi-C matrix was

divided into sub-matrices with a constant genomic copy number (blocks in Figure

4.2C). The blocks were normalized independently as described by Chen et. al. [18],

then combined to form the normalized matrix as shown in Figure 4.2C. To verify our

method, we compared it to previously published methods: Toeplitz normalization

and ICE [18, 134]. We found that the correlation between structure and function

was highest after copy number based normalization (Figure S18, r = 0.60, 0.53 and

0.17 for copy number, Toeplitz and iterative, respectively). Additionally, the method

performed well on all of the HT-29 samples (r = 0.59, 0.59, 0.63, and 0.54 for 2D12hr,

2D5day, 3D12hr, and 3D5day). We also tested the method on chromosome 20 from
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the myelogenous leukemia cell line K562 [98, 24] and again found that the correlation

between structure and function was highest after copy number based normalization

(Figure S19, r = 0.63, 0.59, and0.20 for copy number, Toeplitz and iterative, respec-

tively). Similar to Wu and Michor [134], our method can be used for any Hi-C matrix

without requiring copy number information through other approaches such as CGH.

4.4.3 Structure and function of the HSR

To further explore the effect of genomic copy number changes on genome structure,

we focused our analysis on the HSR, a highly amplified 27 Mb region on chromosome

band 8q24 containing MYC and 107 other genes that appears as a bright red band in

the Hi-C matrix (Figure 4.1B). If we assume the two normal copies of the region in

the HSR provide about the same number of reads as the two copies of the first third

of chromosome 8, then of the reads coming from the amplified region of chromosome

8, 86% derive from the HSR, while 14% are accounted for by the unamplified copy of

the region. The HSR is visualized on metaphase and interphase cells by FISH with a

genomic probe for MYC in Figure 4.3A. We calculated the volume of the chromosome

8 territories using 3D-FISH; the chromosomes with the HSR were 2.5 times larger

than the normal copies (Figure 4.3A top insert, S20, Table S6).

To quantify genome organization, we define the adjacency matrix (a sub-matrix of

the normalized Hi-C matrix) for a region of interest. Then we calculate the eigenvalues

of the adjacency matrix to quantify genome organization through approximating the

entropy (a measure of the distribution of chromatin state) in chromosomal regions.

A similar approach has previously been used to show that, during differentiation,

entropy initially increases before a progressive decline as the cell approaches its dif-

ferentiated state [95]. Here, we use eigenvalues of the Hi-C matrix to estimate the

entropy of chromosomal regions, which is inversely proportional to order. Since chro-

mosomal aberrations disrupt the baseline distribution of the local chromatin state,
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we hypothesize that the entropy near these alterations should increase.

To quantify the structure of the HSR from Hi-C data, we calculated the entropy

of the adjacency matrix that represents the contacts in the HSR. We define entropy

as
∑d

i=1 λi log2 λi, where d is the sizes of the matrix and λi are the eigenvalues of the

adjacency matrix [91]. The degree of entropy reflects the frequency with which chro-

matin states change in a given region. Only 6% of randomly selected regions in the

HT-29 genome have lower entropy than the HSR, indicating that the HSR is highly

interconnected and ordered. Since the structural conformation of a DNA region is

dictated by the sequence, we expect consistency in conformation across the ampli-

fied region [91, 4]. Thus, the HSR, which contains multiple copies of the sequence,

has a highly ordered structure. We measured the structure-function relationships by

calculating the correlation between gene expression and chromatin state, i.e., hete-

rochromatin or euchromatin, using the Fiedler vector. The sign of the Fiedler vector

(positive or negative values) divides the genome into regions of heterochromatin and

euchromatin [16]. The structure-function correlation of the HSR is greater than in

60% of the rest of the genome. In summary, our analysis showed that the chromosome

containing the HSR is larger than the normal chromosome as seen with 3D-FISH (Fig-

ure 4.3A). The HSR itself is highly organized, i.e., is less entropic, and has a strong

structure-function relationship.

We next explored how the HSR interacts with the rest of the genome. At 1 Mb

resolution, we analyzed genome-wide interactions and interactions within the HSR

(Figure 4.3B). We identified a single region in chromosome 2 that interacts strongly

with the HSR in all of the HT-29 samples (p ≤ 10 in all samples, Figure S21). The

region includes six genes (STARD7, TMEM127, CIAO1, SNRNP200, ITPRIPL1,

LOC285033 ) and its interactions with the HSR were verified with FISH (Figure S14).

STARD7 has been previously implicated in choriocarcinoma, CRC, breast and lung

cancers [38]. This strong interaction between the amplified regions on chromosomes
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2 and 8 had not been recognized before.

4.4.4 Hi-C provides high resolution maps of translocations

In addition to understanding how numerical aberrations affect chromatin orga-

nization, we explored the consequences of chromosomal translocations. As shown in

Figure 4.1B, translocations generate L or X shaped patterns in the genome wide Hi-C.

Hi-C allowed identification of translocations too small to be detected by molecular cy-

togenetic techniques, e.g., the unbalanced translocation between chromosomes 2 and

15 shown in Figure 4.4A. We confirmed this aberration using FISH (Figure 4.4B).

Additionally, the balanced translocation t(6; 14) is clearly visible in the 100 kb matrix

(Figure 4.4C). By viewing the translocation in the read level data, the resolution at

which the breakpoint was identified increased to 1 kb. Figure 4.4D shows a single

break in chromosome 14 as well as two breaks in chromosome 6. The top right shows

many reads connecting the portion of chromosome 14 proximal to the breakpoint to

the portion of chromosome 6 distal to the breakpoint. The bottom left portion shows

reads where one of the pairs mapped to the portion of chromosome 6 proximal to

the breakpoint, while the other mapped to portion of chromosome 14 distal to the

breakpoint. Since there is a single horizontal line dividing the locations of the reads

on chromosome 14, there is a single breakpoint, as expected for a balanced transloca-

tion. However, along chromosome 6 there is a 65 kb region between the two vertical

lines that is contained in both translocated chromosomes thus it interacts with both

the distal and proximal portions of chromosome 14. This was confirmed using FISH

with Bacterial artificial chromosome (BAC) clones that hybridize to the translocation

(Figure 4.4E). Hence, this seemingly balanced translocation is in fact unbalanced.
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4.4.5 Translocations increase entropy

In order to explore the structure and function of translocated chromosomes, we

constructed the Hi-C matrices representing the translocated chromosomes (Figure

S15). Hi-C matrices representing the seven translocated chromosomes in HT-29 (Ta-

ble 4.2) and the normal chromosomes from which they originate were constructed

from raw reads (Figure S10-S14). The insertion ins(17; 22) was not used due to the

presence of at least eight different configurations with unknown frequencies and pair-

ings (Figure S23).

After constructing the Hi-C matrices for the translocated chromosomes, we ana-

lyzed the neighborhoods surrounding the breakpoints. Figure 4.5 shows the regions

surrounding the breakpoints for the translocation t(6; 14). Additional translocations

are presented in Figure S24-S30. Each Hi-C matrix shows a 6 Mb region centered

on the translocation breakpoint with the natural domain structure of the genome,

i.e., TADs) overlaid. The two plots below the Hi-C matrices show three different

neighborhoods, the gene expression for a region that contains three TADs. Each

neighborhood represents a different region surrounding the breakpoint: the smallest

possible neighborhood, a TAD encompassing neighborhood sized to include a TAD

boundary, and a gene encompassing neighborhood sized to encompass one gene on

both sides of the translocation. The last two neighborhoods vary in size for the ana-

lyzed translocations, with TAD encompassing neighborhoods varying from 700 kb to

1.7 Mb. The entropy was calculated for the TAD encompassing neighborhood for each

translocation (Table 4.2). Unlike in the HSR, the entropy in the region surrounding

translocations was higher than at the same regions of the wild type chromosomes for 5

of the 7 translocations, including t(6; 14) (avg 1.89 and 2.03 for wild type and translo-

cated chromosomes, respectively). This suggests that the translocations reduce local

stability.

To explore whether the results were specific to HT-29, or a reflection of more
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general phenomena in tumors, we analyzed publicly available Hi-C and RNA-seq data

from the myelogenous leukemia cell line K562 [98, 24]. We constructed Hi-C matrices

for the six translocated chromosomes in K562 (Table SS7). Figure S31-S37 shows

the Hi-C map, neighborhoods, and gene expression for each of the translocations

and the normal chromosomes from which they were derived. The average entropy of

the neighborhoods surrounding the breakpoints on the normal chromosomes in K562

is 1.68, while the entropy of the seven translocated chromosomes averages 1.93, a

15% increase, and each translocation has higher entropy than either of the normal

chromosomes (Table SS7). These results suggest a general pattern in cancer cells.

In addition, we analyzed the structure-function relationship, i.e., the correlation

between Fiedler vector and gene expression, for TAD-sized neighborhoods surround-

ing the translocations. For HT-29, the structure-function correlation is slightly greater

in the translocated regions (Table 4.2, r = 0.36 and 0.34, respectively). The same

applies for K562 (Table SS7, r = 0.43 and 0.32, respectively). Compared to random

locations, this is a greater increase in correlation than expected (p < 0.09). In conclu-

sion, our results indicate that translocations both increase entropy and the strength

of the structure-function relationship.

4.4.6 Sample differences

We previously observed differential chromatin interactions of human fibroblasts

cultured in 2D or 3D conditions [17], and now explore whether such differences can

be observed in HT-29, as well as differences between the time points. The percent

of intrachromosomal reads that fall along the diagonal is 89% for the 3D5day sample

whereas it is 72% or less for the others. Additionally, the 3D5day sample had only

48% of its total reads as intrachromosomal, whereas for the other samples 55% or

more of their reads were intrachromosomal. One explanation is that the Hi-C reads

are distributed differently due to changes in the cell cycle. This indicates that the
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3D5day sample is far more diagonally dominated but less intrachromosomal than the

12 hr samples. This is consistent with previous results showing the same patterns in

fibroblasts grown in 2D and 3D cultures [17].

Two-way ANOVA (see Methods) was performed on the RNA-seq data and showed

that 287 genes were significantly differentially expressed between 2D and 3D cultures

(p ≤ 0.05, Table S8). We also explored whether cell density influences gene expres-

sion. We found 661 genes that changed between the 12 hr and 5 day time points

(Table S9), of which 178 also change with growth conditions. DAVID analysis [54] of

these data sets identified a number of significantly enriched GO terms including cell

cycle processes, cell cycle phase, cell cycle checkpoints, regulation of cell cycle, DNA

repair, and DNA-dependent DNA replication, suggesting the changes in expression

are mostly related to the cell cycle (Tables S10, S11).
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Table 4.1: Glossary of Terms
Term Definition
Adjacency Matrix square matrix with (A)ij = w(ni,nj). If there is an edge

between nodes i and j, the entry is the edge’s weight,
otherwise it is 0.

Aneuploidy an abnormal number of chromosomes, i.e., different from
46 chromosomes for human cells.

Degree Matrix a diagonal matrix (D)ij =
∑k

j=1(A)i,j, the total number
of edges attached to each node.

Eigenvalues and
Eigenvectors

a set of numbers associated with linear systems. The
decomposition into eigenvalues and eigenvectors is called
as eigendecomposition. Eigenvalues are represented by
λ and eigenvectors by x. Ax = λx with x 6= 0.

Entropy a measure of uncertainty or disorder,
∑
λi log2 λi where

λi are eigenvalues.
Fiedler number
and vector

the Fiedler number is the second smallest eigenvalue of
the Laplacian and a measure of the connectivity of a
graph. The corresponding eigenvector is the Fiedler vec-
tor, whose sign can be used to divide a graph into two
regions.

Karyotype the number and appearance of the chromosomes in a
cell.

Laplacian a symmetric matrix, L = D − A, normalized as L̄ =
D−1/2(D−A)D−1/2.

TAD a region of a chromosome with increased local contacts
and decreased contacts with its neighbors.

4.5 Discussion

We investigated how genome structure and function are altered by chromosomal

aberrations in cancer cells by analyzing Hi-C and RNA-seq data from the colorectal

cancer cell line HT-29. Cells were grown in 2D and 3D conditions for 12 hrs and 5

days. We showed that Hi-C captures chromosomal aberrations, including genomic

copy number changes and chromosomal translocations, some of which were previ-

ously unknown. Next, we mapped the translocations using read level Hi-C data and

identified the breakpoints at kb resolution. This allowed us to describe a previously
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Table 4.2: The first column indicates which chromosome the translocations are on.
Read Loc tells the best estimate of the location of the translocation.
Ent Fib and Ent HT-29 report the von Neumann Entropy of the TAD-
encapsulating neighborhoods from the 100 kb Hi-C data centered on
the translocation in fibroblasts and HT-29 (average), respectively. After
translocation the entropy increases on average and for 5 of the 7 transloca-
tions. S-F Fib and S-F HT-29 show the correlation between the structure
(Fiedler vector) and function (RNA-seq) for TAD encompassing neighbor-
hoods for the average of the HT-29 samples and the fibroblast sample,
respectively. No t avg and t avg refer to the average of all of the translo-
cated and non-translocated chromosomes respectively.

Chr Read Loc Ent Fib Ent HT-29 S-F Fib S-F HT-29

2− 15 2.52 0.45
2 236760000 2.73 2.65 0.43 0.43
15 96682000 3.03 2.39 0.29 0.29
3− 12p 1.86 0.03
3 83410000 2.04 1.64 0.00 0.00
12 34435000 1.64 1.65 0.26 0.38
3− 12q 1.84 0.95
12 21057000 1.91 1.78 0.08 0.24
3 89440000 2.13 1.64 0.62 0.94
5− 6 2.26 0.30
5 546620000 2.59 2.03 0.67 0.58
6 162295000 2.44 1.96 0.28 0.15
6− 14 1.93 0.26
6 13285000 2.13 1.78 0.02 0.15
14 36508800 1.94 1.87 0.50 0.71
14− 6 2.04 0.30
14 36508800 1.94 1.87 0.50 0.71
6 132890000 2.13 1.78 0.02 0.15
19− 17 1.79 0.22
19 24600000 1.89 1.83 0.45 0.38
17 22253300 1.98 1.57 0.03 0.06
No t Avg 2.18 1.89 0.32 0.34
t Avg 2.03 0.36
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Figure 4.1: Chromosomal aberrations in Hi-C data. A) HT-29 karyotype adapted
from Knutsen et. al. [64]. The numbers above chromosomes are the
percent of the 21 analyzed cells in which that chromosome was seen.
HT-29 averages 70 chromosomes per cell. B) Genome-wide Hi-C matrix
for 2D12hr HT-29 cells at 1 Mb resolution. The X pattern marking the
t(6; 14) translocation and the region of high contacts marking ins(3; 12)
are identified by black arrows (see Figure S17 all translocations). The
blue arrows identify amplified regions including the HSR on chromosome
8q and the amplification of a small region on chromosome 2 that interacts
strongly with the HSR. The uneven copy number between the p and q
arms of chromosome 3 ( 2 p arms, 5 q arms) can also be seen by the fact
that the first half of chromosome 3 in the acHi-C matrix are a lighter red
than the second half. C) The average log2 FC gene expression (green),
change in Hi-C reads (red), and genomic copy number (blue) for each
chromosome arm (p-arm first), also in Table SA.6.

68



Figure 4.2: Normalization accounting for copy number changes. A) The raw chromo-
some 8 matrix in which regions of different genomic copy number can be
seen by the differences in brightness. The HSR the box at the bottom
right. B) These changes are measured by the changes in the total reads
in each bin of the Hi-C matrix (bright red, HT-29 12hr2D), which follow
closely the genomic copy number measured by CGH (blue). The normal-
ization breakpoints are shown in dark green and the location of MYC is
shown in bright green. The total reads in each bin for chromosome 8 in
fibroblasts are shown in dark red. C) Each block created by the transi-
tions between copy number regions was normalized independently then
pieced back together to create the normalized matrix.
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Figure 4.3: Genome wide HSR interactions. A) A metaphase spread and 2D inter-
phase nucleus (lower inset) with MYC labeled in green allowing visualiza-
tion of the two normal copies of the gene as well as multiple copies in the
HSR. The 3D interphase image (upper inset) was used to calculate the
volume of the chromosome 8 territories. B) A graph of the total genomic
interactions for each interchromosomal bin against their interactions with
just the HSR for 2D12hr. The red line shows the best-fit line for a re-
gion’s interactions with the HSR. The red point is the amplified region
on chromosome 2 that interacts more strongly than any other region in
all HT-29 samples (Figure S21).
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Figure 4.4: Translocations in Hi-C. A) An unbalanced translocation in which the
end of chromosome 15 was added to the end of chromosome 2 at 1 Mb
resolution. The inset zooms in on the relevant region. B) The translo-
cation (yellow arrow), was verified by chromosomal painting. Because of
the small size, this translocation was previously unidentified. Chromo-
some 2 is red while chromosome 15 is green. No chromosome 15 contains
chromosome 2 material, verifying the translocation is unbalanced. C) A
seemingly balanced translocation between chromosomes 6 and 14 shown
at 100 kb resolution. D) The read level Hi-C data for the translocation,
showing the breakpoint in chromosome 14 and two breakpoints in chro-
mosome 6 marked by red lines. The hybridization locations of the probes
are shown around the perimeter. The cyan and yellow probes mark chro-
mosome 14 before and after the translocation. Parts of both the red and
green probes on chromosome 6 are in the duplicated region. E) FISH ver-
ification of the translocation location, which is different than previously
published via SKY. Because of the duplication of a 65 kb segment, both
translocated chromosomes contain parts of both probes.
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Figure 4.5: TADs on chromosomes affected by translocation t(6; 14). For each region
around the translocation, the Hi-C matrix and TAD boundaries (green)
are shown. The matrices show a 6 Mb region with the site of translocation
at the center. The line below shows the site of the translocation and three
different neighborhoods: a small 300 kb neighborhood, a neighborhood
that contains a TAD boundary, and the neighborhood that contains a
gene on each side of the translocation. The bar plot shows gene expres-
sion. These features are shown for A) chromosome 6 and b) chromosome
14 in the 2D12hr sample, C) the translocated chromosome containing the
beginning of chromosome 6 and the end of chromosome 14 in the 2D12hr
sample, D) the translocated chromosome containing the beginning of chro-
mosome 14 and the end of chromosome 6 in the 2D12hr sample as well as
E) chromosome 6 and F) chromosome 14 in the healthy fibroblast sample.
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unknown unbalanced translocation, der(2), which was too small to be identified by

SKY or high-resolution aCGH. Additionally, we refined the location of the seem-

ingly balanced translocation t(6; 14) and showed that it is in fact unbalanced [14].

Therefore, in addition to providing information on the 3D organization and local

chromatin stability, we showed that Hi-C can identify translocations with unprece-

dented resolution. It is remarkable to see the extent to which structural and numerical

chromosomal aberrations are recapitulated in the interphase nucleus.

We found that the HSR on chromosome 8q interacts with many other genomic

regions and is highly organized, i.e., less entropic. Entropy reflects the frequency

with which chromatin states change in a given region. The HSR has a stronger rela-

tionship between structure and function, i.e., gene expression, than other regions in

the genome, indicating that chromatin accessibility more directly reflects transcrip-

tion. The HSR consists of open chromatin, making it conducive for transcription.

We identified a small amplified region in chromosome 2 that interacts very strongly

with the HSR. This finding was confirmed using FISH. The previously unidentified

region contains STARD7, which has been previously implicated in cancers [38]. One

limitation of Hi-C and RNA-seq is that different alleles of the same region cannot be

distinguished. For the HSR analysis, reads from the unamplified copy of the region

cannot be differentiated from those originating from the HSR. Of the reads coming

from the amplified region of chromosome 8q, 86% derive from the HSR, while 14%

are accounted for by the unamplified copy of the region. Thus, we expect properties

of the HSR to dominate the analysis.

We analyzed local chromatin stability at translocation breakpoints in HT-29 and

K562 neighborhoods and showed that regions around translocations have increased

entropy compared to the corresponding regions on the normal chromosomes. This

increase in entropy near breakpoints suggests that translocations decrease the local

stability of adjacent neighborhoods around the translocation. The entropy in fibrob-
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lasts was higher than the entropy in HT-29 or K562, which could be a reflection of the

non-terminal differentiation status of fibroblasts. We also found that translocations

increase the structure-function relationship in the neighborhood flanking the break-

point compared to the equivalent regions on normal chromosomes. This might be a

reflection of their role in tumorigenesis. We analyzed the BCR-ABL translocation

between chromosomes 9 and 22 present in K562. Like most translocations it showed

increased entropy as compared to the non-translocated regions. Unlike most of the

translocations we analyzed in HT-29 and K562, the structure function correlation

for the BCR-ABL translocation is lower than either of the normal chromosomes it

comes from. This might be due to the fact that the BCR-ABL fusion protein exhibits

constitutive activity and therefore does not require increased expression. We submit

that decreasing local stability and increasing the structure-function relationship is a

common phenomenon of translocations in cancer cells.

Finally, we characterized the differences between 2D and 3D cell growth and 12 hr

and 5 day time points. We found that genes differentially expressed between 2D and

3D growth were primarily related to cell cycle regulation and DNA repair. We also

found that the 3D5day sample was different from the other HT-29 Hi-C matrices as

measured by the correlation of interchromosomal reads. The 3D samples had a higher

percentage of intrachromosomal reads that fell on the diagonal and lower percentage

of all reads that were intrachromosomal. Change in the distribution of counts in Hi-C

matrices is consistent with previous results showing the same patterns in fibroblasts

grown in 2D and 3D cultures [17]. In contrast to the 12 hr samples, the 5 day samples

were completely confluent. The reason the 5 day samples are more intrachromosomal

and less diagonally dominant than the 12 hr sample could be because the cells in

the 12 hr sample did not have enough time to complete nuclear reorganization into

a 3D growth pattern. Previous results have shown that mitotic cells lead to purely

diagonal matrices since the chromosomes are organized in tight rods during mitosis
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[86]. This suggests some of the differences may be related to cell cycle, as supported

by the strong significance of cell cycle and mitosis related GO terms.

In summary, our analysis identifies undetected chromosomal aberrations and pro-

vides novel insight into the nucleome of cancer cells.
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4.6 4D Nucleome analysis toolbox

4.6.1 Introduction

Understanding 3D genomic organization and how it changes over time (4th dimen-

sion) will lead to increased understanding of development and disease as supported by

the 4D Nucleome project (http://www.4dnucleome.org/). A popular tool for probing

genome organization is Hi-C [73]. A limiting factor in the use of Hi-C is the complex

analysis required to produce biologically meaningful results.

Understanding the nucleome requires powerful and user-friendly analysis tools.

Most currently available tools focus on alignment and initial read processing [32,

70, 115] or visualization in the form of browsers [33, 70, 111]. Some of these tools

[33, 70] can perform some analysis including defining domains, however, they are not
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easily customized or extended to perform additional analysis. Here we introduce 4D

Nucleome Analysis Toolbox (NAT), a MATLAB toolbox for analysis and visualization

of Hi-C data. Unlike previously available packages, we include methods capable of

processing time series experiments [16] and data from abnormally karyotyped cells,

which are common in cancer [113]. Additionally, since NAT is written in MATLAB,

it can be readily extended to include customized analysis based on the questions of

interest in any dataset.

4.6.2 Methods

We created NAT, an open-source MATLAB toolbox (https://github.com/ lasea-

man/ 4D Nucleome Analysis Toolbox) for Hi-C data analysis including time series

and karyotypically abnormal cell types. The toolbox includes functions necessary to

1) load Hi-C matrices into MATLAB, 2) normalize data using three different meth-

ods, 3) define TADs using three different methods, 4) visualize translocations, and 5)

analyze time series data.

NAT can load Hi-C matrices produced by Homer into MATLAB [57]. Pro-

vided functions read data into MATLAB while simultaneously detecting chromosome

boundaries. Loading data allows users to save data in .mat format, speeding up

further analysis. Three different methods can then be used to normalize matrices

(example in Load Normalize.m). ICE normalization works under the assumption

that genomic regions (bins) should have equal coverage and therefore the same total

number of reads [55]. Toeplitz normalization reduces the diagonal dominance of Hi-C

matrices to create an adjacency matrix for graph-based analysis [18]. Copy number

normalization extends Toeplitz normalization for use on karyotypically abnormal cell

lines by normalizing constant copy-number submatrices defined from Hi-C data [113].

After normalization, one of three different methods can be used to define TADs.

TADs are genomic regions with many intra-domain interactions defined from Hi-C
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matrices and are sub-regions of A/B compartments [31, 73]. First, the directional-

ity index uses an HMM to define domains and boundaries [31]. Second, dynamic

programming is used to define TADs whose scale can be easily adjusted though a

tuning parameter [36]. Third, the iterative method is based on graph partitioning

using network properties. TAD methods.m includes examples of all three methods

on chromosome 22 from human fibroblasts.

For cells with abnormal karyotypes, translocations can be visualized and analyzed

(examples in TranslocationAnalysis). Sites of translocations are found by plotting

the interchromosomal matrix at 100 kb and read resolution (Figure 4.6 A-B). The X

pattern indicates the site of translocation and shows the interactions between nor-

mally separate chromosome arms. Combining portions of the chromosome 6 and

14 matrices creates a matrix representing the translocated chromosome [113] (Figure

4.6C). Additional visualization tools plot the chromosome contact matrices with TAD

boundaries overlaid, the A/B compartments, and gene expression (Figure 4.6D).

NAT also includes functions to visualize time series structure and function data

(Figure 4.6E) and analyze the dynamics of structure and function simultaneously

using a phase plane (Figure 4.6F) at multiple genomic scales (chromosome, TAD,

and gene level) [16]. In the phase plane, the X-axis represents structure and the

Y-axis represents function. The Hi-C matrix and RNA-seq vector from a single time

point in Figure 4.6E becomes a single point in Figure 4.6F. The x-coordinate shows

the structure as is measured by Fiedler number or vonn Neumann entropy of Hi-C

matrices, while the y-axis shows function as measured by gene expression. Figure 4.6F

is a phase plane for Chromosome 22 using time series data from human fibroblasts

(PhasePlane.m). PhasePlane.m also includes an example loading RNA-seq data and

and converting it to bins, making it easy to compare to Hi-C data.
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Figure 4.6: A) A portion of the interchromosomal matrix showing the interactions be-
tween chromosome 6 and 14 focused on a translocation in the colorectal
cancer cell line HT-29 at 100 kb resolution. B) Read level data show-
ing t(6; 14) at high resolution. Each dot represents a read pair and red
lines indicate translocation breakpoints. C) The Hi-C matrix representing
t(6; 14) at 100 kb resolution with green lines indicating the translocation
sites. D) Hi-C matrix with TAD overlay (green boxes), A/B compart-
ments (red and blue bars), and gene expression (top bars) for t(6; 14). E)
Chromosome 22 time series Hi-C and RNA-seq data at 100kb resolution
from a fibroblast time series [16]. F) Chromosome 22 phase plane show-
ing how structure and function, measured with Fiedler number and gene
expression, vary dynamically [16].
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4.6.3 Conclusions

NAT provides easy to use and flexible functions to help with analysis of Hi-C

datasets and other genomic features including RNA-seq. NAT can form a foundation

for analyzing Hi-C time series data from any species or cell type, including those

with altered karyotypes. The availability of robust and easy to use analysis tools, like

NAT, helps move the field forward.
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CHAPTER V

Cancer stem cell nucleome

5.1 Abstract

Cancer stem cells are a subpopulation of cancer cells with distinct properties that

are thought to be particularly important to therapeutic resistance and metastasis.

This chapter covers an ongoing project that extends the analysis of nuclear structure

and function to cancer stem cells. These preliminary results show nucleome analysis of

CSCs identifies CSC specific nuclear interactions illuminating how CSCs are distinct

from the general cancer cell population.

5.2 Introduction

CSCs are a subpopulation of cancer cells with the abilities of stem cells including

the ability to self-renew and differentiate eventually recreating a heterogeneous tumor

composition [83, 136, 132]. Because of this, CSCs are believed to be responsible for

metastasis which is the ultimate cause of 90% of cancer related deaths [81]. Addi-

tionally, many CSCs have the ability to become quiescent, i.e. enter a dormant state,

allowing them to avoid therapeutics that target rapidly dividing cells [83]. Recent

studies have also shown that a tumor’s similarity to normal stem cells is predictive

of outcome [102] further validating the importance of cancer stem cells to survival.
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Previous work has used expression of specific markers, like ALDH1A1 or CD44

to distinguish a stem cell like subpopulation within a tumor sample [94, 15]. In this

study we collected Hi-C and RNA-seq from subpopulations of SUM-159, a breast

carcinoma cell line, selected for high and low expression of ALDH1A1, a marker of

stemness. The development of chromosome conformation capture techniques, includ-

ing Hi-C, provides unprecedented insights into spatial chromatin organization and

long-range chromatin interactions in the interphase nucleus [73]. By measuring the

nuclear structure in CSCs and genetically matched non-CSCs, we can directly com-

pare the datasets and identify interactions that are unique to or missing in CSC

nuclei.

5.3 Methods

5.3.1 Sample preparation

The breast cancer cell line SUM 159 was cultured in 2D cell culture, then flow

cytometry was used to sort cells with the top 10% and bottom 10% expression of

ALDH1A1, a previously established method for distinguishing CSC-like and non-

CSC-like cellular populations. Hi-C and RNA-seq samples were collected and pro-

cessed as described in [113].

5.3.2 Hi-C and RNA-seq processing

Hi-C and RNA-seq analysis were performed as described in Seaman et. al. [113].

Briefly, for RNA-seq, Tophat was used to align the reads to the reference transcrip-

tome (HG19) with parameter settings: ”–b2-very-sensitive”, ”–no-coverage-search”,

and ”–no-novel-juncs” [122]. Cufflinks/Cuffdiff was used for expression quantification

and differential expression analysis with parameter settings: ”–multi-read-correct”

and ”–upper-quartile-norm” [123]. A locally developed R script using CummeRbund
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was used to format the Cufflinks output [43]. Gene level analysis was performed using

FPKM and log2 FC with pseudocounts, i.e. log2 FC = log2(CSC+10−20)− log2(non-

CSC+10−20), for comparisons of samples and properties. Bin level gene expression

vectors were calculated by adding up the raw counts for all the genes in each bin then

normalizing by million reads to convert to fragments per million (FPM).

For Hi-C analysis, we used a standardized in house pipeline. Paired-end reads

were mapped to the reference human genome (HG19) using Bowtie2 [68], with ”-

very-sensitive-local”, which produced a sequence alignment map (SAM) formatted

file for each member of the read pair (R1 and R2). HOMER was used to develop the

contact matrix with ”makeTagDirectory”, ”tbp 1”. Then analyzeHiC is used with

the ”-raw” and ”-res 1000000” settings to produce the raw contact matrix at 1Mb

resolution, or with the ”-res 100000” settings to produce contact matrix at 100kb

resolution.

5.3.3 Normalization and TAD identification

Due to the abnormal karyotype of SUM-159, copy number based normalization

[113] was used. For 1 Mb matrices, a threshold of 4000 was used on all chromo-

somes except 5, 9, 10, and 17 which used thresholds of 3600, 3000, 2000, and 1500,

respectively. For 100 kb matrices, a threshold of 120 was used on all chromosomes

except 1, 9, 16, and 17 and which used thresholds of 410, 70, 140 and 50, respectively.

Interchromosomal matrices were normalized by dividing all entries by the mean of

non-zero entries for that chromosome pair. TADs were defined using the iterative

method described by Chen et. al. [18] with an algebraic connectivity threshold of

0.6. TADs are considered active if the sign of the Fiedler vector for that region is

positive. The Fiedler vector is standardized to so that the correlation with gene

expression is positive.
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5.3.4 Quantification of structural changes

To find CSC specific genomic interactions, we identified regions where structure

changes between CSC and non-CSC samples. First, the normalized 1 Mb whole

genome non-CSC matrix was subtracted from the CSC matrix. The difference ma-

trix was then filtered to reduce noise and help identify regions with large changes

rather than single points that are likely to be outliers. For intra-chromosomal re-

gions, any bin whose absolute value was above the threshold of 0.6 (> 4 standard

deviations above average) were selected as significantly changed (Figure 5.1). For

inter-chromosomal regions, large structural variations like translocations and copy

number increases were masked, then regions whose absolute value was above 4 were

selected (> 6 standard deviations above average). For statistical purposes, random

sets of the same number of regions were chosen from across the genome 10, 000 times.

During random selection the sizes of the regions and the numbers of intra- and inter-

chromosomal interactions were kept consistent.

Transcription factor binding site (TFBS) were identified by scanning the genome

for known motifs as previously described [105]. Briefly, TFBS were scanned across

the genome using FIMO [45] to look for binding sites for transcription factors found

in a number of databases [79, 106, 129, 103, 126, 114]. By looking for binding sites

within 5 kb of gene transcription start sites, the genes that can be bound by each

transcription factor were identified. A Hi-C interaction is bound by a transcription

factor if at least one gene in each of the genomic regions that forms the interaction

has a binding site for a given transcription factor.

The regions whose interactions changed were ranked according to a combination

of their Hi-C, RNA-seq, long non-coding RNA (lncRNA), and TFBS as described

in Table 5.1. Points were given for large changes in absolute as well as log2 fold

change Hi-C and RNA-seq to balance the focus on large fold changes while wanting

to avoid focusing on regions with small absolute expression (or Hi-C) levels. For a
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region to get higher points for RNA-seq, the genes in both regions must change (as

opposed to one changing while the other has no expression). Points were also given for

having many TFBS as well as having binding sites for differentially expressed (DE)

transcription factors since these are most likely to be biologically important to the

differences between CSCs and normal cancer cells. Finally, points were awarded for

regions that containing DE lncRNA since they are also thought to be important to

CSC properties. Combining the points from all of these measures leads to a maximal

possible score of 22.

5.3.5 Centrality and principle component analysis

Centrality measures how important or central each node is within a graph. A num-

ber of different measures for this have been developed 8 different types of which were

calculated for the Hi-C data (see /refsup:cent for more information). For each node a

total of 14 different centralities were calculated: eigenvector centrality, degree central-

ity, local Fiedler vector centrality, betweenness, closeness, local clustering coefficient

centrality, 1 − 5 hop walk centralities, and 3 distance to reference node centralities.

These measures of centrality can be written as an matrix (nbins × nCentrality+1)

when combined with the expression vector [74]. principle component analysis (PCA)

was used to reduce the dimension of the data since many of the measure of central-

ity are correlated. The distance moved by each genomic bin was calculated as the

Euclidean or straight line distance, d =
√
x2 + y2.

5.4 Results

5.4.1 Identifying changes in structure

We collected Hi-C and RNA-seq datasets from stem cell like (CSC) and non-stem

cell like (non-CSC) breast cancer cells by sorting SUM-159 cells by their ALDH1A1
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abundance. Analysis of RNA-seq data identified 1660 genes differentially expressed

between CSC-like and non-CSC SUM-159 samples.

Overall, the Hi-C matrices appear very similar and the same translocations and

copy number changes are visible as is expected since the samples are genetically

identical (Figure S38). However, there are some interactions that are visible in only

one of the samples (Figure 5.1 A-B). In order to identify these regions systematically

genome wide, we first subtracted the normalized 1 Mb Hi-C non-CSC matrix from

the CSC matrix (Figure 5.1C). We next median filtered the difference then selected

regions above a threshold as regions whose interactions change (Figure 5.1 D-E).

This process identified 99 intra-chromosomal and 128 inter-chromosomal regions

that change interaction between CSC and non-CSC nuclei. Figure 5.2 shows where the

regions occur, which sample had the stronger interaction, and how the gene expression

of the region changed. Of the 227 regions, 183 have stronger interaction in CSC than

non-CSC while 44 have weaker interactions. 45 and 47 regions have increased and

decreased expression in CSC relative to non-CSC, respectively. Chromosomes 20, 21,

and 2 are the most over-represented while chromosomes 4 and 14 are the most under-

represented.

In order to further characterize these regions, we used an iterative method to define

TADs [18] and characterized their activity level based on the sign of the Fiedler vec-

tor. 49% of changing regions are in active TADs, 43% are in inactive TADs, and 7% of

the changing regions split TAD boundaries. There are statistically significantly fewer

regions that split a boundary than expected if the regions were randomly distributed

across the genome. This is consistent with the idea that TADs have increased in-

teractions within the TAD and long-range interactions are likely to be between pairs

of TADs. Additionally, the 217 regions whose interactions change include 39 DE

lncRNA genes and 233 other DE genes which is significantly more than are found in

random regions of the same size and number (p ≤ 0.001 and 0.031 respectively).
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In order to determine which regions change the most and are most biologically

interesting, we developed a ranking system that scores each region based on the size

of the change in Hi-C and RNA-seq as well as the presence of shared TFBS and DE

lncRNAs. The maximum possible score was 22 while the average actually seen was

7. A total of 6 regions had a score greater than 15 and they are marked with stars

around the perimeter of Figure 5.2. Of these regions, 5 have increasing Hi-C and

RNA-seq while the sixth has decreasing Hi-C and RNA-seq. Interestingly, 4 of the

top 6 regions involve either the beginning of chromosome 6 or the end of chromosome

11, including the top region which involves both. The region involving chromosome 11

and contains the cell cycle gene ATM. The region on chromosome 6 contains many DE

histone genes (HIST1H2AG, HIST1H2AH, HIST1H2AI, HIST1H2AJ, HIST1H2AK,

HIST1H2AL, HIST1H2AM, HIST1H2BJ, HIST1H2BK, HIST1H2BL, HIST1H2BM,

HIST1H2BN, HIST1H2BO, HIST1H3H, HIST1H3J, HIST1H ). Histone genes have

previously been shown to be important for stem cell properties in cancer [61], making

their change in structure potentially biologically important. Additional work will

explore how these regions and their interactions are important for CSC properties.

5.4.2 Changes in centrality

Centrality is used to determine how important or central to a graph a node in a

network is (See Appendix A.7.5). In the case of Hi-C data, we used several different

measures of centrality to determine how well connected each 1 Mb bin is in the

network. The centrality measures were combined with gene expression and used in

PCA to reduce the dimension of the data while maintaining as much of the variability

as possible. Projections of each bin onto the first two PCs are show in Figure 5.3.

In order to quantify which genomic regions change most, the distance between a

bin’s projection in PC space for the CSC and non-CSC samples was calculated. The

bins whose centrality changed the most are highlighted with green lines in Figure
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5.3. Of these 11 bins, 8 of them were also selected as having changing interactions

using the filter and threshold based method described above. This indicates that

although these methods take very different approaches to finding changes in genomic

structure, both successfully find large changes since they have such a strong overlap

(p < 0.0002).

Further validating this finding, two of the bins whose centrality changes most are

on the end of chromosome 11 in the region whose interaction with chromosome 6

changed more than any other. This suggests that further work should explore the

importance of cell cycle in distinguishing CSCs from non-CSCs and in particular

focus on ATM ’s role in the process. Previous work has shown that CSCs can enter

a quiescent or not actively dividing state which is part of what makes them resistant

to traditional cancer therapies like chemotherapy [83].

Another interesting region in the list of those whose centrality changes a lot are

two bins on chromosome 8 that contain a number of genes known to be related to

cancer including MYC, POU5F1B, PCAT1, and PVT1. The presence of MYC and

POU5F1B among these are particularly interesting as they have been related to the

function of stem cells in a healthy population. MYC is one of the four transcrip-

tion factors shown to cause healthy differentiated cells to revert to a stem cell state

[120]. POU5F1B is a pseudogene for OCT4. OCT4 is another of the four stem cell

reprogramming transcription factors. Additionally, the pseudogene POU5F1B has

been shown to be amplified and expressed in some gastric cancers [50]. As reflected

by selection of this bin as one whose centrality changes significantly, the degree of

the bin changes significantly more than other regions in the genome using either the

change in the normalized Hi-C matrix or the log2 fold change (p ≤ 0.0172 and 0.0041

respectively).
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5.5 Discussion

By sorting SUM-159 cells based on their expression of ALDH1A1, we were able

to collect Hi-C and RNA-seq from CSC-like and non-CSC samples of a breast cancer

cell line. Analysis of RNA-seq data identified 1660 genes differentially expressed

between CSC-like and non-CSC SUM-159 samples. Analysis of Hi-C data identified

217 interactions that changes significantly between CSC and non-CSC samples as well

as 11 genomic regions whose centrality changed significantly.

Within these regions are a number of genes whose function and relationship to

stem cell properties and cancer stem cells in particular needs to be further explored. A

region on chromosome 6 that contains 16 histone genes was found to have a changing

interaction with a region on chromosome 11 that contains the cell cycle checkpoint

gene ATM. ATM was also found in one of the regions whose centrality changed a lot

between the CSC and non-CSC samples. Also in regions whose centrality changed the

most were two bins on chromosome 8 that contain 4 genes previously associated with

cancer (MYC, POU5F1B, PCAT1, and PVT1 ), the first two of which are known to

be related to stem cell properties in normal cells including the ability to reprogram

healthy cells into stem cells.

This work shows that there are important differences between the genomic struc-

ture and function of cancer stem cells and cancer cells. Further work will help eluci-

date the role of these differences in the CSC phenotype.
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Figure 5.1: Selection of changing regions. The normalized 1 Mb resolution Hi-C ma-
trix of chromosome 9 from the A) CSC and B) non-CSC samples. The
blue circles show an interaction present in the CSC sample that is not
present in the non-CSC sample. Regions that change interactions were
found by C) subtracting the normalized matrices, D) median filtering
the matrix to remove noisy changes, then E) selecting regions above the
threshold.

Table 5.1: Thresholds used for scoring regions whose Hi-C interactions changed. Each
row indicates a different category that was scored. 0 points were given if
the actual number for a region falls below the first value listed in the
thresholds column, 1 point was given if it is between the first and second
values, continuing up to the maximal points if the true value was larger
than the last listed threshold.
Max Points Thresholds Category

4 Intra: .6, 1.5, 3.5, 7 Absolute change in Hi-C
Inter: 8, 25, 60, 120

4 .6, .75, .9, 1.4 log2 FC Hi-C
2 80, 1200 Absolute change in RNA-seq
2 0.04, 0.25 log2 FC RNA-seq
2 1, 30 DE TFBS
2 1, 300 total TFBS
2 1, 2 DE lncRNA
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Figure 5.2: Regions that change. The outer circle shows the 22 chromosomes analyzed
and each line represents an interaction that changed between the CSC and
non-CSC samples. The thickness indicates the magnitude of the change
while the color indicates weather the interaction was up or down in CSC
relative to non-CSC and if RNA-seq is up, minimally changing, or down
in CSC relative to non-CSC. Stars mark the interactions of interest based
on a high score
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Figure 5.3: Centrality and Principle Component Analysis of the whole genome. D)
Projection of all 1 Mb bins onto first two PCs calculated from a feature
matrix measuring centrality and gene expression of all bins in the genome.
Black lines connect the same bin in the two different samples. Green lines
mark the 11 bins with the largest change in centrality.

91



CHAPTER VI

Allele specific structure and function

6.1 Abstract

Every normal human somatic cell contains two copies of each chromosome folded

inside the nucleus yet almost all studies of genomic folding ignore this, analyzing

the combination of the chromosomes instead. The presence of single nucleotide dif-

ferences between the chromosomes, called SNPs, allows assignment of reads to the

maternal or paternal copy of each chromosome. To identify monoallelic structures and

gene expression within the nucleus, we collected Hi-C, RNA-seq, and Bru-seq from

B-lymphocytes in which all of the SNPs had been sequenced and phased. This chap-

ter presents preliminary analysis of this data focusing on characterizing monoallelic

expression measured with RNA-seq and Bru-seq.

6.2 Introduction

Microscopic studies of the interphase nucleus reveal that individual chromosomes

are spatially confined in chromosome territories [25]. Hi-C analysis suggests that chro-

mosomes compartmentalize into regions of euchromatin and heterochromatin [73], and

further organize into TADs that are cell type invariant and conserved in vertebrates

[31].
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One limitation of most Hi-C analysis is that it is unable to detect which copy

of a chromosome reads come from. Because of this, most currently available Hi-C

matrices represent chromatin interactions from both homologous chromosomes. It is

not clear whether both homologues have the same spatial conformation, or contribute

equally to functional output measured by the abundance of gene transcripts.

Alleles of parental autosomal genes presumably contribute compatibly to the

abundance of each correspondent transcript in human diploid cells. However, there

are exceptions to this assumption leading to monoallelic expression (MAE). One

of the exceptions is the MAE of X-linked genes due to inactivation of one of the

X chromosomes in females [133]. The mechanism of X inactivation is known to be

driven by the transcript of XIST exclusively expressed from the inactivated chromo-

some [12, 11]. Another exception is the discovery of genomic imprinting that sets

forward a clear mechanism of parental-specific and epigenetically inheritable MAE

[100]. There are a total of 215 human genes experimentally detected or predicted to

be expressed under the imprinting mechanism [5, 6, 107]. In addition, genome wide

transcriptomics analyses reveal that approximately 20% of human genes experience

MAE [85, 109]. MAE appears to be stochastic and independent of parental origin in

single cells [10, 29].

Although a large number of genes have been identified or predicted as MAE,

there is not any comprehensive analysis of such genes throughout the cell cycle. A

proliferating cell goes through the several stages of the cell cycle during which its

genome is replicated and divided into two daughter cells. It is currently not clear how

is MAE maintained in the cell cycle phases G1, S, and G2/M when the cell is growing,

replicating DNA, and dividing, respectively. While genetic and epigenetic mechanisms

have been identified as underlying mechanisms in controlling MAE [62, 85, 89], it is

also important to explore the role of three dimensional chromatin organization in

controlling of gene expression including MAE.
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To see if regions with MAE also have allele specific structures and interactions, we

collected data about genomic structure using Hi-C, gene expression using RNA-seq,

and nascent gene expression using Bru-seq. Bru-seq is a technique for identifying

recently transcribed sequences by tagging new transcripts with bromouridine then

isolating the new transcripts from the wider population before sequencing [90]. Here

I present preliminary analysis of the RNA-seq and Bru-seq data including detailing

the bioinformatics methods developed for analysis.

6.3 Methods

6.3.1 Experimental methods

All experiments use cells at cell cycle phases G1, S, and G2/M. We grow the

NA12878 cells for live cell flow cytometry sorting to obtain cell fractions at these

phases. Fractions of the sorted live cells are used for RNA-seq and acBru-seq analyses.

Subsequently, RNA-seq library construction was carried out in the sequencing core

facility, and sequence reads of 50-base in length were generated on an Illumina HiSeq

2500 station.

For Bru-seq, we performed 5′-bromouridine incorporation in live cells for 30 min-

utes, and the bromouridine-labeled cells were then subjected to flow cytometry sorting

to isolated G1, S, and G2/M phase cells. We isolated total RNA for bromouridine-

labeled transcripts pulldown with an anti-bromouridine antibody [90], and generated

sequence reads at 125-base length.

6.3.2 Allele specific RNA-seq and Bru-seq methods

The pipeline developed for estimating allele specific expression from RNA-seq and

Bru-seq is outlined in Figure 6.1. The left side shows the normal flow of a non-allele

specific RNA-seq or Bru-seq pipeline which is combined at the end with results from
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the allele specific portion of the pipeline to get abundance estimates for the maternal

and paternal copy of each gene.

The normal RNA-seq and Bru-seq analysis were performed as previously described

[113, 90]. As shown on the left side of Figure 6.1, Bru-seq reads were aligned using

Tophat (v1.3.2) without de novo slice junction calling after checking quality with

FastQC. A custom gene annotation file was used in which introns are included but

preference to overlapping genes is given on the basis of exon locations and stranding

where possible (See [90] for full details). Similarly, in the RNA-seq data processing,

the raw reads were checked with FastQC (version 0.10.1). Tophat (version 2.0.11) and

Bowtie (version 2.1.0.0) were used to align the reads to the reference transcriptome

(HG19). Cufflinks/Cuffdiff (version 2.2.1) was used for expression quantification and

differential expression analysis, using UCSC hg19.fa and hg19.gtf as the reference

genome and transcriptome. A locally developed R script using CummeRbund was

used to format the Cufflinks output.

GSNAP was used to align reads without biasing against SNP positions for the

allele specific portion Bru-seq and RNA-seq data analysis as indicated along the right

column of Figure 6.1. The gene annotation file was used to create the files for mapping

to splice sites, with the −s option. Optional inputs to perform SNP aware alignment

were included. Specifically, −v was used to include the list of heterozygous SNPs

(ftp://platgene ro@ussd-ftp.illumina.com/2016-1.0/hg19/ small variants/ NA12878/

NA12878 variants/NA12878/NA12878.vcf.gz) and –use − sarray = 0 was used to

prevent bias against non-reference alleles.

After alignment, the output SAM files were converted to binary sequence align-

ment map (BAM) files, sorted and indexed using SAMTOOLs [72]. The number of

each base that were observed at each of the heterozygous SNP locations was quan-

tified using bam-readcounter (D. Larson et. al., https://github.com/genome/bam-

readcount). The statistical significance of allele specific expression for each SNP was
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then quantified by a binomial test with a null probability of 0.5.

Gene allele specificity was then assessed by combining all of the SNPs in each

gene. For RNA-seq the total number of maternal and paternal alleles were calculated

by adding up all of the allele of each type in all exonic SNPs within a gene. For

Bru-seq exonic SNPs were counted first, and then non-exonic SNPs were counted if

they were in a gene’s intronic region. Paternal and maternal abundance of each gene

were calculated by multiplying the overall abundance estimate by the fraction of the

SNP-covering reads that were paternal and maternal, respectively. Genes with less

than 5 reads containing SNPs per sample were not used for allele specific estimation

of expression or testing of MAE since they do not have enough data to estimate the

allele specific abundances accurately.

Gene level significance of MAE for each gene in each cell cycle stage was evaluated

using a negative binomial model. Variance estimation is improved through a local

regression relating variance to the mean (https://www.mathworks.com/help/bioinfo/

ref/ nbintest.html). The same method was used to determine differential gene expres-

sion between the overall abundance in different cell cycle stages. ANOVA was used

on the log2 FPKM values to determine what genes changed over the cell cycles as

well as between maternal and paternal alleles.

RNA-seq and Bru-seq were binned into 100 kb and 1 Mb bins to match the

resolution of the Hi-C data. This was done separately using the maternal and paternal

expression estimates by adding the expression of the genes in a bin and when necessary

dividing a genes counts according the proportion of the bin in each gene. About 75%

of genes could not be assessed for allele specific expression due to a lack of SNPs in

the gene body. When binning RNA-seq and Bru-seq, an assumption of 50% maternal

and paternal expression was made for genes lacking SNPs to avoid losing that data.
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6.3.3 TAD analysis

In order to test if there is any statistical evidence that genes in the same TAD,

tend to express the same allele, genes were randomly generated to have paternal,

maternal, or biallelic expression with the same frequencies observed in the data. The

genes were then grouped into TADs to match the distribution of genes per TAD. The

number of real TADs with strong paternal expression was compared to the number

of random TADs with strong paternal expression. A TAD was considered strongly

paternally expressed if over 90% of the genes in the TAD were paternally expressed.

The same was done for maternal and biallelic expression of TADs as well. TADs

on chromosome X were excluded due to the strong preference for all of genes on

chromosome X to show strong paternal expression regardless of TAD.

6.4 Results

6.4.1 Allele specific RNA-seq

Differential expression analysis of the FPKM normalized RNA-seq data with the

software package edgeR [103] identified 480 genes that were differentially expressed

between G1, S, or G2/M (FDR < 0.05) regardless of MAE. Functional annotation of

the 480 genes showed that genes were significantly enriched under GO terms exclu-

sively related to the cell cycle. Since there is no other perturbation to the cells except

cell cycle based sorting, it is expected that the changes in gene expression between

the cell cycle phases are cell cycle related. The cell cycle stage-specific expression of

correspondent genes confirms that the cells isolated from flow cytometry sorting are

indeed in G1, S, and G2/M (Figure 6.2A). For the comparison between maternal and

paternal alleles, only 5, 080 genes in which maternal and paternal expression could

be separately estimated were included. For comparing cell cycle stages regardless of

MAE, all 19, 267 genes were used. The results are summarized in the figure 6.2B-C
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(FDR < 0.05).

As an alternative approach, we also performed two-way ANOVA on the log2

FPKM values. Using ANOVA with an FDR < 0.05 cut off, 1, 762 genes showed

a significant change in expression between the maternal and paternal alleles (914

paternal higher, 848 maternal higher). Additionally, 1, 789 genes showed a signifi-

cant change across the cell cycle stages (regardless of MAE). In total, 2, 838 genes

showed significant change with either allele or cell cycle stage, and 713 genes showed

significant change with both. The ANOVA test is far less conservative than the nega-

tive binomial based test which could be counteracted through a more stringent FDR

threshold. The chromosome distribution of the 1, 762 MAE genes identified from the

ANOVA is shown in Figure 6.2D.

6.4.2 Allele specific Bru-seq

Bru-seq is a technique that gives a short-term view of active progressive gene

transcription [90]. Bru-seq results were obtained for NA12878 cells at G1, S, and

G2/M in collaboration with Dr. Ljungman. Non-allelic pair-wise comparisons, S

vs G1, G2/M vs G1, and G2/M vs S revealed large numbers of genes significantly

changed nascent transcription. In the S vs G1 comparison, 568 significant genes

were identified (FDR < 0.05) among which 492 genes increased expression and 76

decreased expression levels in S phase. The G2/M vs G1 comparison resulted in

417 significant genes (FDR < 0.05), of which 348 genes were up-regulated, and 69

were down-regulated in G2/M phase. In the G2/M vs S comparison, we identified 34

significant genes, of which only one (CCNB1 ) was upregulated and rest were down-

regulated in G2/M phase. As expected, DAVID analysis shows that many of the

genes are related to changes in cell cycle stage.

Analysis of allele specific Bru-seq results showed that because Bru-seq includes

introns, many more SNPs have some coverage from the reads sequenced. In fact,
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there were 266,899 SNPs with at least 5 reads across all of the samples in the Bru-seq

data while there were only 65,676 SNPs in RNA-seq data. Despite this, many of the

SNPs have too low read depth to be statistically evaluated. Figure 6.3A shows that

Bru-seq has far more SNPs with very low coverage.

When we look only at SNPs with at least 5 reads per sample, then RNA-seq

and Bru-seq had very similar numbers, with 19, 394 and 19, 998 SNPs, respectively.

Because of this, the number of genes with enough reads to analyze allele specific

expression (> 5 reads) for Bru-seq is only slightly larger than for RNA-seq with

6, 168 and 5, 065 genes, respectively.

A single gene, MTRNR2L2, was a strong outlier and was removed from analysis.

The correlation matrix shown in figure 6.3 is calculated without the outlier showing

that when the outlier is removed the replicates and samples are all highly correlated

as expected. The first replicate, especially in the G2 sample, is different from the

other replicates. Statistical tests were run with and without the replicate but there

were minimal differences in gene level significance. The reduction in statistical power

from losing a replicate was comparable to that gained from the reduced variance.

With all replicates included, two way ANOVA identified 393 genes with MAE and

247 genes whose expression changed through the cell cycle.

Pairwise comparisons (G1 maternal versus paternal for example) using the nega-

tive binomial test introduced in the RNA-seq analysis revealed a very small number

of genes that changed (≤ 10 for each pair). This is due to the increased variability

between replicates in the Bru-seq data compared to the RNA-seq data. As a result,

for the purpose of comparing Bru-seq to RNA-seq or Hi-C within a cell cycle stage,

another method of identifying genes with allele specific expression was performed on

the Bru-seq data. For this purpose we subtracted the expression values of each gene

in the maternal sample from those in the paternal sample and created a histogram of

the amount of change for each gene. We then selected a threshold above which the
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genes were considered to have large differences in allelic expression. The threshold

was selected by fitting the histogram of genes with differences less than 4 (cutting off

the extreme values in the tail) to a exponential. The exponential was then used to

calculate the theoretical 95% cutoff which was used as the threshold. This method

identified 565 genes with allele specific expression in G1, 594 with MAE in S, and 610

with MAE in G2.

6.4.3 Location based consistency in MAE

Previous work has shown that there is no preference for genes on a single chro-

mosome to have the same allele expressed except for the well studied chromosome X

inactivation [42]. To test if there was any preference for genes on the same chromo-

some to have the same parental expressed allele in our dataset, a binomial test was

run to see if the percent of paternally expressed genes was significantly different than

50%. Figure 6.4A shows the number of maternal, paternal, and biallelic genes on each

chromosome. Chromosomes 5 and 22, were significant at a nominal p-value ≤ 0.05

indicating a slight allele imbalance. The three stars above chromosome X mean that

the result was highly significant with p ≤ 10−6 as is expected for chromosome X based

on its inactivation.

Next, we tested if there is any statistical evidence that genes in the same TAD,

tend to express the same allele. There are a total 1056 TADs with more than a single

gene (out of 2347). Figure 6.4B shows the number of genes with maternal, paternal,

or biallelic expression in each TAD along chromosome 22 (those in which MAE could

not be evaluated are not included).

To test for grouping genes with the same expressed allele, random sets of genes

were grouped into TADs and the number of TADs in which more than 90% of the

genes expressed a single allele was counted. The histogram in Figure 6.4 show the

number of TADs with strong paternal, maternal, or biallelic expression in red lines
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as well as the random distribution. TADs on chromosome X were excluded due to

the strong allelic preference for all of the genes on the chromosome. There is no

evidence of a tendency for genes with MAE to be clustered in TADs with other

similarly MAE genes. Interestingly, TADs containing genes with biallelic expression

are statistically significantly more likely to contain almost purely genes with biallelic

expression (p ≤ 0.0005).

The same analysis was repeated using cell cycle specific definitions of monoallelic

expression. As described above, this was determined through a negative binomial

test comparing maternal and paternal expression of each gene. This test is more con-

servative, and identifies less genes as MAE, thus smaller number of TADs experience

purely paternal or maternal expression. A single TAD had strongly maternal expres-

sion in S and G2/M while no other TADs had strong monoallelic expression in any

cell cycle stage. During each cell cycle stage between 915 and 925 TADs had strong

biallelic expression all of which are strongly within the expected range (p ≥ 0.40).

This shows that there is no evidence that MAE clusters within TADs.There are only

162 and 73 genes that show paternal and maternal expression, respectively, making

it very unlikely that they are clustered in the same TAD.

6.5 Discussion

Studying allele specific structure and function within the nucleus will be criti-

cal to forming a deep understanding of the principles guiding genomic organization.

This work will be combined analysis of allele specific genomic interactions to help

understand the differences between the two copies of each chromosome.

1, 762 genes with MAE during the cell cycle were identified as well as 1, 789 genes

that change expression through the cell cycle using RNA-seq data. Bru-seq identified

393 genes whose nascent expression was stronger for a single allele and 247 genes

whose nascent transcription changed through the cell cycle stages. Consistent with
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previous work exploring allele specific gene expression, this indicates that there are

widespread differences in allelic expression beyond the well studied chromosome X

inactivation.

Further work will identify genomic regions with different structures between the

two copies of each chromosome. Once these regions are identified we can compare

the structural changes to the functional changes to identify regions of overlapping or

diverging difference. We will also further explore how these allele specific structures

and functions change through the cell cycle.

Figure 6.1: Bioinformatic processing pipeline for analyzing MAE in RNA-seq and
Bru-seq datasets. The green boxes indicate the steps involved in standard
non-allele specific analysis of RNA-seq or Bru-seq data including align-
ment and gene expression quantification. Blue boxes indicate the steps
that are unique to allele specific analysis and estimation of maternal and
paternal specific expression levels of each gene.
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Figure 6.2: MAE of RNA through the cell cycle. A) Flow cytometry enrichment of
G1, S, and G2/M cells (blue regions) and correspondent gene expression
changes (insert). B) Venn diagram indicating the number of maternally
and paternally expressed genes for each sample. C) Venn diagram in-
dicating the number of genes differentially expressed between each pair
of cell cycle stages. D) The number of genes on each chromosome with
MAE.
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Figure 6.3: Monoallelic nascent expression through the cell cycle measured with
Bru-seq. A) Histograms of the number of reads spanning a SNP for all of
the SNPs with at least 5 reads for Bru-seq (top) and RNA-seq (bottom)
shows that Bru-seq has many more SNPs with small numbers of reads.
B) The correlation between gene expression replicates and samples shows
high overall correlation between the samples with some replicates that
are less similar than others.
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Figure 6.4: Allelic consistency. A) A histogram showing that most chromosomes have
similar numbers of maternally expressed genes (blue) and paternally ex-
pressed genes (green) as well as far more genes with biallelic expression
(yellow). *** indicates that chromosome X has a highly significant ten-
dency towards paternally expressed genes (p ≤ 10−6). * indicates that
chromosomes 5 and 21 have a slight bias towards a single allele (p ≤ 0.05).
B) A histogram of the number of genes with paternal (blue), maternal
(green), and biallelic (yellow) expression in each TAD along chromosome
22. The observed number of TADs in which at least 90% of genes showed
C) paternal, D) maternal, or E) biallelic expression compared to the ex-
pected number. The number of TADs with many genes with biallelic
expression is more than expected (p ≤ 0.0005).
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CHAPTER VII

Concluding Remarks

As the second most common cause of death in the United States [1], understanding

and identifying treatments for cancer is a high priority with the biomedical research

community. This dissertation aims to further that goal by applying new technologies

for understanding genome organization to cancer cells. A number of challenges face

the field some of which were addressed here. The goal is to help understand how

genetic changes in cancer lead to the cancer phenotype through changes in the 4D

nucleome.

One such challenge is that quantitative rigor generally was not used when studying

nuclear morphology as a diagnostic for cancer or other genetic diseases [59, 21, 27]. In

Chapter II, nuclear shape was measured for cell-cycle synchronized primary human

fibroblasts from six different individuals at 32 time points over a 75 hour period. An

algorithm was developed to calculate the dimensions of an approximating ellipsoid

for each nucleus and used to determine what periodicities were present in the dataset.

Two prominent frequencies were found: a 17 hour period consistent with the cell cy-

cle of these cells and a 26 hour period that might be related to the natural circadian

rhythms of the cells. The work shows that the shape of the nucleus changes naturally

over time and thus any time-invariant shape property may provide a misleading char-

acterization of cellular populations. The algorithm developed provides a statistical
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framework for analyzing populations of fixed cell and shows that a single sample in

time provides an incomplete picture especially if the cells are not all in the same

cell cycle phase. Previous work showed that changes in cellular shape might lead to

local chemical gradients and thus to amplification of signals including transcriptional

regulation at a cellular level [97]. At the nuclear level, a similar mechanism might

be at work where changes in nuclear shape influence the distribution of chemicals

at different times in the cell cycle, leading to transcriptional changes. Future work

should further explore changes in nuclear shape and expand the body of knowledge

on the mechanisms and importance of these changes.

Another challenge in the biomedical community is the significant differences be-

tween model systems including various types of cell culture [135, 56]. Growing mam-

malian cells in vitro is an indispensable technique for cell biology and biomedical

research. However, 2D cell cultures do not resemble the natural 3D structures of

body tissues, and as a result cells grown in 2D have considerable discordances in

cellular morphology, physiology, pathology, cell-cell interaction and communication

compared with natural tissues [46, 3, 20, 108]. In Chapter III the effect of 2D and 3D

cell culture was explored with chromosome conformation capture and gene expression

in fibroblasts derived from human foreskin. The analysis of RNA-seq data identified

large numbers of differentially expressed genes between the culture conditions. By

combining this analysis with analysis of Hi-C data it was shown that many of the

changes in gene expression are localized to genomic regions that display structural

changes. Additionally, the nuclear structure and function of 3D cultured cells was

more similar to native skin tissue indicating that 3D culture might be a better model

system for understanding how real tissues respond. This leads more support to the

trend of working with better research models including using 3D culture to help with

drug discovery and translational work [56, 125, 37].

Chromosomal translocations and aneuploidy are hallmarks of cancer genomes;
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however, the impact of these aberrations on the nucleome are not yet understood

[47, 41]. Previous studies of cancer genomes using Hi-C showed long range interac-

tions between known risk loci for the development of CRC and regulatory regions

[58], demonstrated proto-oncogene activation by disruption of chromosome neighbor-

hoods [51] and showed that changes in genomic copy number subdivide the domain

structure of chromosomes [119]. In Chapter IV, the nucleome of colorectal cancer

cell line HT-29 was analyzed through collection of Hi-C to measure genome struc-

ture and RNA-seq to measure consequent changes in function. A new normalization

method that can correct for non-constant copy number was developed and the sites of

translocation and copy number changes were determined at high resolution from the

Hi-C data. The data show that the relationship between structure and function that

is well studied in normal cells is maintained in cancer samples. Additionally, for a

small region around the translocation, the correlation between structure and function

increases indicating that chromatin accessibility more directly reflects transcription.

By analyzing a high copy number region on chromosome 8 that contains the onco-

gene MYC, we show that the region interacts with many regions across the genome in

different cells and strongly interacts with an amplified region on chromosome 2 that

contains the oncogene STARD7.

The methods developed in IV chapter can be used to identify chromosomal ab-

normalities at high resolution and allow analysis regardless of karyotype. These tools

have been released as part of a MATLAB package that contains functions for loading

data, normalization, defining topologically associating domains, exploring transloca-

tions, and analyzing time series datasets. It is important for tools to be publicly

available for a number of reasons including to increase reproducibility of data, in-

creasing the rate of progress by sharing work, and allowing comparison of the tools to

determine which work best. A first attempt at comparing many of the tools developed

for defining TADs was recently published [39] and more studies of this kind focusing
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on various steps in the analysis pipeline are needed.

Cancer stem cells are a subpopulation of cancer cells with distinct properties that

are thought to be particularly important to therapeutic resistance and metastasis

[83, 136, 132]. Chapter V covers an ongoing project that extends the analysis of

nuclear structure and function to cancer stem cells. By gathering Hi-C and RNA-seq

datasets for genetically identical CSC and non-CSC populations, we explore struc-

tural and functional signatures of CSCs. Regions with CSC specific interactions are

identified including a region that contains MYC and POUF51B, two transcription

factors associated with reprogramming healthy cells into stem cells. These results

show that cellular subpopulations have unique structures that might be important

for the understanding how cancer cells evade therapeutics and go on to cause often

deadly metastasis.

As more Hi-C experiments are performed on a variety of cancer subpopulations,

cancer types, and cell lines, the Analyses used in this dissertation can be used to

extend the results to new areas and draw new conclusions on how nuclear structure

and function interplay in cancer. Analysis of larger sets of translocations and copy

number alterations will help verify the conclusions drawn from this exploration of

HT-29 and K562. This work can be extended to explore mechanisms by collecting

datasets from a cancer development model system at multiple stages [49] and by

studying more subpopulations and the distinct properties they display [130, 84]. One

technology that will undoubtedly extend the ability to analyze nuclear structure that

is particularly interesting for cancer, is single cell Hi-C [96, 118]. By studying in-

dividual cells, the heterogeneity of nuclear structure in cancer can be studied and

previously uncharacterized subpopulations will likely be identified.

One of the biggest difficulties with Hi-C arises from the fact that most Hi-C

cannot distinguish between copies of the same region. The genome is composed of

two copies of each chromosome folded inside each cell yet almost all studies of genomic
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folding ignore this instead analyzing the combination of the chromosomes. Chapter

VI explores how SNPs can be used to distinguish the two copies of each chromosome

to study allele specific structures and functions. Preliminary results on overall and

nascent gene expression identify over one thousand genes with monoallelic expression

in B-lymphocytes including some that change through the cell cycle. Work in this

area [98, 30] is also important for cancer studies. If this work on distinguishing the

two copies in each cell can be extended to work on high copy number regions or

translocations then many of the simplifying assumptions required for current analysis

of chromosomal aberrations could be removed or reduced. Instead of studying the

general properties of a high copy number region, it would be possible to look at the

copies individually, study how they interact, and what differences there are between

copies.

Projects with the goal of characterizing the full dynamics of the cancer nucleome to

help identify the best paths for reprogramming them are beginning. Current projects

have explored how to reprogram a fibroblast into a myotube [74] and have developed

an algorithm to predict what transcription factors will reprogram a fibroblast into

any other cell type [105]. With more study of cancerous systems and their dynamics,

these algorithms will be extended to the diseased state. The goal is to use ongoing

experiments along with the information gathered here to reprogram cancer cells to

make them die, make them more like normal cells, or make them more susceptible to

traditional therapeutics.
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APPENDIX A

Supplemental Materials

A.1 Nuclear morphology: supplemental proof

Using the method of Lagrange multipliers, the appropriate objective function is

given by the following sum of two terms

F , FD + Fλ. (S1)

FD represents the weighted sum of squared distances from equation 2.4 in the paper:

FD ,
∑
pi∈P

wiD
2(pi,Q∗), (S2)

and Fλ represents the constraint from equation 2.3 in the paper weighted by the

Lagrange multiplier λ:

Fλ , λ (aγ∗ + bγ∗ + cγ∗ − 3). (S3)
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The first term can be expanded via

FD =
∑
pi∈P

wi (pi − o∗)T Q−1
∗ (pi − o∗)

=
∑
pi∈P

wi (pi − o∗)T R∗


a−2
∗ 0 0

0 b−2
∗ 0

0 0 c−2
∗

RT
∗ (pi − o∗)

=


∑

pi∈P wi x
′2
i∑

pi∈P wi y
′2
i∑

pi∈P wi z
′2
i

 ·


a−2
∗

b−2
∗

c−2
∗

 = p
′2 ·


a−2
∗

b−2
∗

c−2
∗



(S4)

where

p′i ,


x′i

y′i

z′i

 , RT
∗ (pi − o∗) (S5)

and

p
′2 ,


∑

pi∈P wi x
′2
i∑

pi∈P wi y
′2
i∑

pi∈P wi z
′2
i

 . (S6)

Taking derivatives of F with respect to the components of o∗ and setting them

to 0, it is easy to verify that
∑

pi∈P wi (pi − o∗) must yield the null vector. But the

matrix Q−1
∗ is non-singular, so

o∗ = p̄ ,

∑
pi∈P wi pi∑
pi∈P wi

, (S7)

verifying equation 2.5 in the paper.

Furthermore, the particular rotation RC diagonalizes all the squared energy in the

sum of outer products of transformed points p′i from equation S5. In other words, by
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choosing

R∗ = RC (S8)

where RC is derived from an eigenanalysis of the dataset’s covariance matrix C (equa-

tions 2.6 and 2.7 in the paper), we extremize each coordinate of the vector p
′2 which

forms the diagonal of this outer product. More concretely, defining C ′ as the weighted

sum of outer products of transformed points p′, we have

wC ′ ,
∑
pi∈P

wi p
′
i ⊗ p′i

=
∑
pi∈P

wiR
T
C (pi − p̄) (pi − p̄)T RC

= RT
C

(∑
pi∈P

wi (pi − p̄)⊗ (pi − p̄)

)
RC

= RT
C C RC

= RT
C

RC


a2
C 0 0

0 b2
C 0

0 0 c2
C

RT
C

RC

=


a2
C 0 0

0 b2
C 0

0 0 c2
C



(S9)

where the covariance matrix C is given by equation 2.7 in the paper:

wC ,
∑
pi∈P

wi (pi − p̄)⊗ (pi − p̄) (S10)
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and w ,
∑

pi∈P wi. Thus

p
′2 = w diag(C ′) = w


a2
C

b2
C

c2
C

 (S11)

and the first term of the objective reduces to

FD = w


a2
C

b2
C

c2
C

 ·


a−2
∗

b−2
∗

c−2
∗

 (S12)

by equation S4. Taking derivatives,

∂F

∂a∗
= −2w a2

C a
−3
∗ + λ γ aγ−1

∗ , (S13)

and equating to 0 we obtain

a2
C =

λ γ

2w
aγ+2
∗ (S14)

so that

a2
∗ ∝ a

4
γ+2

C . (S15)

The derivation is similar for the other optimal scale factors b∗ and c∗, with the same

constant of proportionality, yielding equation 2.8 in the paper. Finally, applying the

constraint (equation 2.3) yields equation 2.9 in the paper.
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A.2 Nuclear morphology: supplemental tables

Table S1: Best fit frequency and phase for all individuals.

The phase θ, nMSE (MSE/
∑
fi2), PSNR, α, and β for

each individual for each measurements’ best two frequen-

cies, ω, based on the average of the periodograms shown

in the left panel of Figure 3A. Ellip, thresh, eccen stand

for ellipsoid, threshold, and eccentricity, respectively.

Best Frequency

ω α β θ nMSE PSNR

Ellip S1 0.0446 −55.3 −63.52 0.7163 0.0003 4.44

Volume S2 0.1166 51.8 58.44 0.7255 0.0006 0.172

S3 0.0566 105 −54.6 −1.092 0.0087 −13.5

S4 0.1506 76.4 −38.37 −1.105 0.0004 2.87

S5 0.0566 −43.1 56.75 −0.6494 0.0049 −9.92

S6 0.0546 −12.7 192.9 −0.0658 0.0083 −14.5

Thresh S1 0.0866 146 −0.9363 −1.564 0.0074 −12.1

Volume S2 0.1106 −0.428 93.19 −0.0046 0.0012 −3.87

S3 0.0566 91.1 −73.05 −0.895 0.0014 −5.23

S4 0.0446 105 8.879 1.487 0.0013 −3.93

S5 0.0566 15.2 134.5 0.1125 0.0005 −0.876

S6 0.0866 262 −31.78 −1.45 0.0079 −15.6

Eccen S1 0.0726 −0.0029 0.0052 −0.515 0.0009 36

S2 0.1166 −0.0007 −0.0037 0.188 0.0011 37.3

S3 0.0586 −0.0051 −0.0057 0.7337 0.0066 27.8

S4 0.0306 −0.0082 −0.0037 1.152 0.0045 29.2

S5 0.0566 −0.0084 −0.0072 0.8565 0.0070 24.7

S6 0.0426 −0.0057 −0.0057 0.7887 0.0018 31.8

Short S1 0.0446 −0.115 −0.1486 0.6598 0.0061 17.5

Axis S2 0.1166 0.0766 0.1483 0.4766 0.0005 25.8

S3 0.0566 0.134 0.0589 1.157 0.0046 20.4

S4 0.0386 −0.16 −0.0235 1.425 0.0053 18.4

S5 0.0566 0.0616 0.1516 0.3859 0.0001 26.3

S6 0.0406 −0.062 0.2327 −0.2604 0.005 16.5

Middle S1 0.0426 −0.0512 −0.2856 0.1772 0.0030 15.4
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Axis S2 0.0326 −0.331 0.1015 −1.274 0.0029 16.5

S3 0.0566 0.26 −0.2617 −0.7828 0.0079 12.7

S4 0.0646 −0.208 0.1868 −0.8401 0.0010 22.8

S5 0.0606 −0.12 0.3135 −0.3655 0.0103 11.6

S6 0.0546 −0.0255 0.4535 −0.0562 0.0065 11.9

Long S1 0.0726 −0.195 0.2225 −0.7197 0.0017 20.4

Axis S2 0.1386 0.219 0.2171 0.7898 0.0007 22

S3 0.0606 −0.171 −0.462 0.3551 0.0111 10.4

S4 0.0646 −0.308 0.1774 −1.048 0.0062 15.1

S5 0.0526 −0.221 −0.2828 0.6643 0.0069 12.3

S6 0.0546 −0.0597 0.4008 −0.1479 0.0040 15.4

Second Frequency

ω α β θ nMSE PSNR

Ellip S1 0.1006 −51.6 15.97 −1.27 0.0042 −7.74

Volume S2 0.0326 −71.8 25.99 −1.224 0.0028 −6.17

S3 0.0346 −61.2 57.28 −0.8185 0.0029 −8.8

S4 0.0666 −24.8 64.39 −0.367 0.0017 −3.66

S5 0.0406 38.3 55.96 0.5998 0.0042 −9.22

S6 0.0386 −119 62.13 −1.091 0.0043 −11.6

Thresh S1 0.0466 −87.8 57.38 −0.9921 0.0015 −5.31

Volume S2 0.0726 −71.6 25.14 −1.233 0.0003 2.32

S3 0.0346 −56.3 95.04 −0.5349 0.0063 −11.6

S4 0.1606 −73.7 11.08 −1.422 0.0002 3.59

S5 0.1226 78.7 −1.591 −1.551 0.005 −10.9

S6 0.0366 −230 −75.2 1.255 0.0063 −14.6

Eccen S1 0.0866 −0.0042 −0.0019 1.154 0.0049 28.8

S2 0.0686 0.0031 0.0004 1.452 0.0002 44.1

S3 0.1386 0.0043 0.0058 0.6367 0.0022 32.6

S4 0.1406 0.0063 0.002 1.265 0.0058 28.1

S5 0.0926 −0.0006 0.0072 −0.0811 0.0031 28.2

S6 0.0766 −0.0005 0.008 −0.0653 0.0041 28.1

Short S1 0.0866 0.093 0.03664 1.196 0.0009 25.7

Axis S2 0.0706 −0.122 0.07048 −1.047 0.0006 25.8

S3 0.0386 0.01 0.1302 0.0770 0.0068 18.7

S4 0.1426 −0.116 0.0597 −1.095 0.0016 23.7
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S5 0.1646 0.0153 0.1506 0.1011 0.0054 18.9

S6 0.0546 −0.0468 0.2182 −0.2112 0.0039 17.2

Middle S1 0.0746 −0.166 0.1931 −0.7101 0.0011 19.9

Axis S2 0.0666 −0.299 0.0808 −1.307 0.0045 14.7

S3 0.0326 −0.264 0.1109 −1.173 0.0050 14.7

S4 0.1486 0.263 −0.0271 −1.468 0.0007 24.7

S5 0.0386 −0.0682 0.2203 −0.3002 0.0041 15.5

S6 0.0846 0.322 0.1044 1.258 0.0037 14.5

Long S1 0.0306 −0.186 −0.1315 0.9555 0.0010 22.6

Axis S2 0.0346 −0.298 0.0806 −1.306 0.0034 15.3

S3 0.1426 0.321 −0.0486 −1.42 0.0020 17.8

S4 0.1106 0.249 0.0639 1.319 0.0026 18.8

S5 0.0386 −0.0122 0.3259 −0.0373 0.0058 13.1

S6 0.0826 0.216 0.2564 0.701 0.0036 15.9

Table S2: Best fit frequency and phase for each indi-

vidual. The phase θ, squared residual energy, F (ω), α,

and β for each sample for each measurements’ best two

frequencies, ω. Ellip, thresh, eccen stand for ellipsoid,

threshold, and eccentricity, respectively.

Best Frequency

ω α β θ nMSE PSNR

Ellip S1 0.0546 12.8 9.075 0.9543 0.0003 4.44

Volume S2 22.9 −15.17 −0.9866 0.0007 0.172

S3 118 14.39 1.449 0.0087 −13.5

S4 −0.149 24.09 −0.0062 0.0004 2.87

S5 −65.2 26.97 −1.179 0.0049 −9.92

S6 −12.7 192.9 −0.066 0.0083 −14.5

Thresh S1 0.0886 116 −77.42 −0.9842 0.0074 −12.1

Volume S2 −28.4 28.09 −0.7909 0.0012 −3.87

S3 −43.8 −33.4 0.919 0.0015 −5.23

S4 28.5 −39.76 −0.6211 0.0013 −3.93

S5 9.33 37.39 0.2446 0.0005 −0.876

S6 184 −187.5 −0.7761 0.0079 −15.6

Eccen S1 0.0586 −0.002 −0.0022 0.7365 0.0009 36
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S2 −0.0021 −0.0003 1.452 0.0011 37.3

S3 −0.0051 −0.0057 0.7337 0.0066 27.8

S4 −0.0042 −0.0051 0.686 0.0045 29.2

S5 −0.0105 −0.0028 1.307 0.0070 24.7

S6 −0.0048 0.0019 −1.189 0.0018 31.8

Short S1 0.0406 0.0626 −0.1551 −0.3837 0.0061 17.5

Axis S2 0.013 0.0531 0.2403 0.0005 25.8

S3 0.0688 0.1031 0.5881 0.0046 20.4

S4 −0.128 0.0988 −0.9145 0.0053 18.4

S5 0.0575 −0.0370 −0.9988 0.0001 26.3

S6 −0.062 0.2327 −0.2604 0.0046 16.5

Middle S1 0.0586 −0.156 −0.1725 0.7347 0.0031 15.4

Axis S2 −0.114 −0.2592 0.4141 0.0029 16.5

S3 0.0529 −0.3635 −0.1446 0.0079 12.7

S4 −0.0774 −0.1056 0.6328 0.0010 22.8

S5 −0.243 0.2255 −0.8232 0.0103 11.6

S6 0.333 0.2163 0.9943 0.0066 11.9

Long S1 0.06057 −0.0769 −0.1109 0.606 0.0017 20.4

Axis S2 −0.0912 −0.0951 0.7641 0.0007 22

S3 −0.171 −0.462 0.3551 0.0111 10.4

S4 −0.266 −0.1971 0.9338 0.0069 15.1

S5 −0.205 0.2559 −0.6761 0.0069 12.3

S6 0.309 0.0244 1.492 0.0040 15.4

Second Frequency

ω α β θ nMSE PSNR

Ellip S1 0.0386 53.2 −32.39 −1.024 0.0042 −7.74

Volume S2 −5.03 58.56 −0.0856 0.0028 −6.17

S3 7.62 70.72 0.1074 0.0029 −8.8

S4 −39.2 31.36 −0.8966 0.0017 −3.66

S5 2.98 67.08 0.0444 0.0042 −9.22

S6 −119 62.13 −1.091 0.0043 −11.6

Thresh S1 0.0546 61.6 15.1 1.33 0.0015 −5.31

Volume S2 18.3 6.91 1.209 0.0003 2.32

S3 115 −9.334 −1.49 0.0063 −11.6

S4 19.3 6.909 1.228 0.0002 3.59
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S5 −53.2 110.3 −0.4493 0.005 −10.9

S6 −50.2 227.4 −0.2173 0.0063 −14.6

Eccen S1 0.0426 0.0008 0.0067 0.1175 0.0049 28.8

S2 −0.0009 0.0004 −1.107 0.0002 44.1

S3 −0.0041 −0.0010 1.328 0.0022 32.6

S4 0.0030 −0.0068 −0.4134 0.0058 28.1

S5 0.0033 0.0064 0.4798 0.0031 28.2

S6 −0.0057 −0.0057 0.7887 0.0041 28.1

Short S1 0.0566 0.0534 0.0383 0.9483 0.0009 25.7

Axis S2 0.0523 0.0096 1.39 0.0005 25.8

S3 0.134 0.0589 1.157 0.0068 18.7

S4 0.0312 0.0856 0.35 0.0016 23.7

S5 0.0616 0.1516 0.3859 0.0054 18.9

S6 0.116 0.1924 0.542 0.0039 17.2

Middle S1 0.0346 0.0134 0.134 0.0997 0.0011 19.9

Axis S2 −0.275 0.2085 −0.9215 0.0045 14.7

S3 −0.195 0.2175 −0.7308 0.0050 14.7

S4 −0.0295 0.099 −0.29 0.0006 24.7

S5 −0.184 0.1135 −1.019 0.0041 15.5

S6 −0.271 −0.1068 1.195 0.0037 14.5

Long S1 0.0366 −0.0298 0.1026 −0.2825 0.0010 22.6

Axis S2 −0.236 0.1598 −0.976 0.0034 15.3

S3 −0.0512 0.2102 −0.2389 0.0020 17.8

S4 −0.0726 0.2069 −0.3375 0.0026 18.8

S5 −0.173 0.2626 −0.5834 0.0058 13.1

S6 −0.266 −0.0909 1.242 0.0036 15.9

Table S3: All nuclei axis lengths for all the nuclei. Avail-

able as SuppTable3.csv, http://www.tandfonline.com

/doi/full/10.1080/ 19491034.2015.1095432
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A.3 Nuclear morphology: supplemental figures

Figure S1: Ellipsoid volume box plots by sample. The box plots showing the distri-
bution of ellipsoid volumes for each sample over time. The fact that the
boxes do not all line up shows that the distribution changes significantly
over time for all 6 individuals.

A.4 Spheroids versus monolayers: supplementary materials

All supplementary materials for this paper including Tables S1-5 are available at

http://www.tandfonline.com/doi/ full/10.1080/19491034.2017.1280209

A.5 Nucleome analysis: supplemental figures
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Figure S2: Threshold volume box plots by sample. The box plots showing the distri-
bution of threshold volumes for each sample over time. The fact that the
boxes do not all line up shows that the distribution changes significantly
over time for all 6 individuals.
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Figure S3: Eccentricity box plots by sample. The boxplots showing the distribution
of eccentricities for each sample over time. The fact that the boxes do not
all line up shows that the distribution changes significantly over time for
all 6 individuals.
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Figure S4: Random sample nuclear shape dynamics. Each column holds either the
ellipsoid volume, threshold volume, or eccentricity over time. Each row
is a different random sample of half the data. These data were used to
validate the consistency of the periodicities seen.
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Figure S5: Random sample frequency spectrums. the columns are the average spec-
trum for the A) ellipsoid volume, B) threshold volume, C) eccentricity, D)
shortest axis, E) middle axis, and F) longest axis. Each row’s spectrums
were calculated from corresponding the random sample of half the data
whose dynamics are shown in figure S4.
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Figure S6: Threshold volume over time separated by individual for thresholds of A)
0.04, B) 0.045, C) 0.05, D) 0.55, E) 0.06, and F) 0.065. C is a repeat of
Figure 2C since 0.05 was the threshold used in the rest of the paper.

Figure S7: Spectrums from threshold volume for thresholds of A) 0.04, B) 0.045, C)
0.05, D) 0.55, E) 0.06, and F) 0.065. C is repeated from Figure 3A since
0.05 was the threshold used in the rest of the paper. The highest peak is
marked in magenta and the second highest is marked in cyan.
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Figure S8: Chromatin interactions for differentially expressed gene sets. A) The
chromatin interactions at 1 Mb resolution for four sets of differentially
expressed genes clustered under GO terms A) ”transcription”, B) ”cell
differentiation”, C) ”anatomical structure development”, and D) ”cell cy-
cle”. The first two showed decreased expression while the last two showed
increased expression in 3D culture relative to 2D culture. The left panel
is the 2D cell matrix, the center one is the 3D cell matrix, and the right
panel shows the difference between the two.
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Figure S9: Copy number based normalization method. Chromosome 8 from the HT-
29 2D12hr sample is shown as the example.
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Figure S10: Translocation 2 − 15 at read level. The 200 kb surrounding the two
breakpoints in the t(2; 15) translocation at read level. The top row shows
the reconstructed chromosome in HT-29 2D12hr. The middle row shows
the non-translocated chromosomes in HT-29 2D12hr while the bottom
shows the same chromosomes in fibroblasts. Boxes indicate the locations
of genes colored by their expression in the appropriate cell line (red =
off, orange = low expression, green = high expression) and the magenta
lines across the top indicates CTCF binding sites.
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Figure S11: Translocation 3−12 at read level. The 200 kb surrounding the two break-
points in the t(3; 12) translocation at read level. The top row shows
the reconstructed chromosome in HT-29 2D12hr. The p indicates the
translocation closer to the p-end (lower genomic coordinate) while the
q indicates the translocation closer the q terminal (higher genomic co-
ordinate). The middle row shows the non-translocated chromosomes in
HT-29 2D12hr while the bottom shows the same chromosomes in fibrob-
lasts. Boxes indicate the locations of genes colored by their expression
in the appropriate cell line (red = off, orange = low expression, green =
high expression.
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Figure S12: Translocation 5 − 6 at read level. The 200 kb surrounding the break-
point in the t(5; 6) translocation at read level. The top row shows the
reconstructed chromosome in HT-29 2D12hr. The middle row shows
the non-translocated chromosomes in HT-29 2D12hr while the bottom
shows the same chromosomes in fibroblasts. Boxes indicate the locations
of genes colored by their expression in the appropriate cell line (red =
off, orange = low expression, green = high expression).
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Figure S13: Translocation 6 − 14 at read level. The 200 kb surrounding the t(6; 14)
and t(14; 6) breakpoints at read level. The top row shows the recon-
structed chromosome in HT-29 2D12hr. The p indicates the transloca-
tion closer to the p-end (lower genomic coordinate) while the q indicates
the translocation closer the q terminal (higher genomic coordinate). The
middle row shows the non-translocated chromosomes in HT-29 2D12hr
while the bottom shows the same chromosomes in fibroblasts. Boxes indi-
cate the locations of genes colored by their expression in the appropriate
cell line (red = off, orange = low expression, green = high expression).
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Figure S14: Translocation 19 − 17 at read level. The 200 kb surrounding the two
breakpoints in the t(19; 17) translocation at read level. The top row
shows the reconstructed chromosome in HT-29 2D12hr. The middle row
shows the non-translocated chromosomes in HT-29 2D12hr while the bot-
tom shows the same chromosomes in fibroblasts. The lack of reads on the
right and bottom of each region is due to the presence of the centromeres
to which reads cannot be aligned. Boxes indicate the locations of genes
colored by their expression in the appropriate cell line (red = off, orange
= low expression, green = high expression) and the magenta lines across
the top indicates CTCF binding sites.
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Figure S15: Translocated chromosome analysis from Hi-C data. A) A diagram of
chromosomes 6 and 14 divided into sections based on the translocation’s
location. In addition to the two original chromosomes, two translocated
chromosomes were formed by combining the relevant sections of the orig-
inal chromosomes with parts of the inter-chromosomal matrix. We la-
beled the two t(6; 14) chromosomes with A and B. A denotes the larger
one (with the beginning of chromosome 6) while B denotes the smaller
chromosome (with the beginning of chromosome 14).
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Figure S16: Genome-wide Hi-C matrix for 2D-cultured human fibroblast cells.
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Figure S17: Interchromosomal matrices for translocations. A) the matrix showing the
interactions between chromosomes 2 and 15, B) chromosomes 3 and 12
C) chromosomes 6 and 14, D) chromosomes 5 and 6, and E) chromosomes
17 and 19 at 100 kb resolution in the HT-29 2D12hr sample. Blue Ls
indicate the sites of translocations.
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Figure S18: Comparison of normalization methods. A) The Hi-C matrix for chromo-
some 8 of the 2D12 hour sample of HT-29 in which three distinct copy
number regions can been seen. B) The matrix after new block based
normalization described in Figure 1E in which underlying patterns can
be seen over the copy number blocks. C) The matrix after Toeplitz nor-
malization [18]. D) The matrix after ICE [55]. The structure-function
correlation as measured using block, Toeplitz and ICE normalization is
0.60, 0.57, and 0.16 respectively.
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Figure S19: Normalization methods on K562 data. A) The Hi-C matrix for chromo-
some 20 of the K562 sample in which the first have is present at two copies
while the second only has a single copy. B) The matrix after new block
based normalization described in Figure 1E. C) The matrix after Toeplitz
normalization [16]. D) The matrix after ICE [55]. The structure-function
correlation as measured using block, Toeplitz and ICE normalization is
0.63, 0.59, and 0.20. respectively.
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Figure S20: Measuring size of chromosome 8 territories. A) The overlay showing
stained nuclei in blue, chromosome 8 territories in red, and MYC in
bright blue/white. B) The locations of the MYC gene alone. C) The
chromosome territories alone. D) The binarized image from which terri-
tory areas were calculated.
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Figure S21: Interactions with the HSR for all samples. Graphs of the total genomic
interactions for each interchromosomal bin against their interactions with
just the HSR for the A) 3D12, B) 3D5day C) 2D12hr and D) 2D5day
samples. The red line shows the best-fit line for a region’s interactions
with the HSR. The red point shows the point with the largest residual
in each sample which in all cases is the amplified region on chromosome
2.

Figure S22: Interactions between the HSR and chromosome 2.The MYC locus within
the HSR on chromosome 8 is shown in blue and a locus on chromosome 2
is shown in red. The chromosome 2 region was found to interact strongly
with the HSR which is supported by these images that show that the
region is amplified giving it more opportunities to interact with the HSR.
The same loci are shown in DLD-1 where they are not near each other
as a negative control.
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Figure S23: Read level interactions between chromosomes 17 and 22 indicate there
several breakpoints between the chromosomes. The top shows all inter-
actions between chromosomes 17 and 22. Each dot represents a single
paired end read. There are at least 8 different translocations that occur
between the two chromosomes each of which is marked with a red dot.
The bottom images zoom in on the regions where the translocations oc-
cur. Due to the difficulty of knowing which ones combine together to
create chromosomes which combination occur in the cells, this translo-
cation was not analyzed elsewhere in the paper.
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Figure S24: Structural stability and gene expression of der(2; 15) in HT-29. der(2; 15)
and the normal copies of the chromosomes in CRC (HT-29 cell line),
fibroblasts (BJ cell line). The heat maps show the raw Hi-C matrix
at 100 kb resolution for a 3 Mb region centered on the translocation.
The number line shows the site of translocation, TAD boundaries, and
neighborhoods encompassing 300 kb, the closest TAD boundary, and a
gene on each side for a region including 3 TADs. The blue bar plot
shows the gene expression for each gene in the 3 TAD region with the
boundaries of the blocks representing the edges of the genes.
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Figure S25: Structural stability and gene expression of ins(3; 12) in HT-29. ins(3; 12)
and the normal copies of the chromosomes in HT-29 and fibroblasts for
the first (more p-terminal) break in ins(3; 12). The heat maps show the
raw Hi-C matrix at 100 kb resolution for a 3 Mb region centered on the
translocation. The number line shows the site of translocation, TAD
boundaries, and neighborhoods encompassing 300 kb, the closest TAD
boundary, and a gene on each side for a region including 3 TADs. The
blue bar plot shows the gene expression for each gene in the 3 TAD region
with the boundaries of the blocks representing the edges of the genes.
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Figure S26: Structural stability and gene expression of ins(3; 1) in HT-29. ins(3; 12)
and the normal copies of the chromosomes in HT-29 and fibroblasts for
the second (closer to the centromere) break in ins(3; 12). The heat maps
show the raw Hi-C matrix at 100 kb resolution for a 3 Mb region centered
on the translocation. The number line shows the site of translocation,
TAD boundaries, and neighborhoods encompassing 300 kb, the closest
TAD boundary, and a gene on each side for a region including 3 TADs.
The blue bar plot shows the gene expression for each gene in the 3 TAD
region with the boundaries of the blocks representing the edges of the
genes.
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Figure S27: Structural stability and gene expression of der(5; 6) in HT-29. der(5; 6)
and the normal copies of the chromosomes in HT-29 and fibroblasts.
The heat maps show the raw Hi-C matrix at 100 kb resolution for a 3
Mb region centered on the translocation. The number line shows the
site of translocation, TAD boundaries, and neighborhoods encompassing
300 kb, the closest TAD boundary, and a gene on each side for a region
including 3 TADs. The blue bar plot shows the gene expression for each
gene in the 3 TAD region with the boundaries of the blocks representing
the edges of the genes.
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Figure S28: Structural stability and gene expression of t(6; 14) in HT-29. The 6− 14
chromosome of the seemingly balanced t(6; 14) and the normal copies
of the chromosomes in HT-29 and fibroblasts. The heat maps show the
raw Hi-C matrix at 100 kb resolution for a 3 Mb region centered on the
translocation. The number line shows the site of translocation, TAD
boundaries, and neighborhoods encompassing 300 kb, the closest TAD
boundary, and a gene on each side for a region including 3 TADs. The
blue bar plot shows the gene expression for each gene in the 3 TAD region
with the boundaries of the blocks representing the edges of the genes.
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Figure S29: Structural stability and gene expression of t(6; 14) in HT-29. The 14− 6
chromosome of the seemingly balanced t(6; 14) and the normal copies
of the chromosomes in HT-29 and fibroblasts. The heat maps show the
raw Hi-C matrix at 100 kb resolution for a 3 aMb region centered on
the translocation. The number line shows the site of translocation, TAD
boundaries, and neighborhoods encompassing 300 kb, the closest TAD
boundary, and a gene on each side for a region including 3 TADs. The
blue bar plot shows the gene expression for each gene in the 3 TAD region
with the boundaries of the blocks representing the edges of the genes.
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Figure S30: Structural stability and gene expression of der(19; 17) in HT-29.
der(19; 17) and the normal copies of the chromosomes in HT-29 and
fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb res-
olution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.
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Figure S31: Structural stability and gene expression of der(1; 18) in K562. A)
der(1; 18) and the normal copies of the chromosomes in chronic myel-
ogenous leukemia (K562 cell line), and fibroblasts (BJ cell line). The
heat maps show the raw Hi-C matrix at 100 kb resolution for a 3 Mb
region centered on the translocation. The number line shows the site
of translocation, TAD boundaries, and neighborhoods encompassing 300
kb, the closest TAD boundary, and a gene on each side for a region in-
cluding 3 TADs. The blue bar plot shows the gene expression for each
gene in the 3 TAD region with the boundaries of the blocks representing
the edges of the genes.
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Figure S32: Structural stability and gene expression of der(2; 22) in K562. A)
der(2; 22) and the normal copies of the chromosomes in K562 cell line,
and fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb
resolution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.
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Figure S33: Structural stability and gene expression of der(3; 10) in K562. A)
der(3; 10) and the normal copies of the chromosomes in K562 cell line,
and fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb
resolution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.
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Figure S34: Structural stability and gene expression of der(6; 16) in K562. A) The
first of two der(6; 16) and the normal copies of the chromosomes in K562
and fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb
resolution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.
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Figure S35: Structural stability and gene expression of der(6; 16) in K562. A) The
second of two der(6; 16) and the normal copies of the chromosomes in
K562 and fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb
resolution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.

153



Figure S36: Structural stability and gene expression of der(9; 22) in K562. A)
der(9; 22) and the normal copies of the chromosomes in K562 cell line,
and fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb
resolution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.
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Figure S37: Structural stability and gene expression of der(12; 21) in K562. A)
der(12; 21) and the normal copies of the chromosomes in K562 cell line,
and fibroblasts. The heat maps show the raw Hi-C matrix at 100 kb
resolution for a 3 Mb region centered on the translocation. The number
line shows the site of translocation, TAD boundaries, and neighborhoods
encompassing 300 kb, the closest TAD boundary, and a gene on each
side for a region including 3 TADs. The blue bar plot shows the gene
expression for each gene in the 3 TAD region with the boundaries of the
blocks representing the edges of the genes.
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A.6 Nucleome analysis: supplemental tables

Table S4: The threshold and number of segments for each chromosome during nor-
malization.

Chr Threshold Num Segments

1 50 1
2 70 1
3 42 2
4 40 1
5 38 2
6 20 2
7 95 1
8 24 3
9 110 1
10 60 1
11 65 1
12 50 1
13 40 2
14 25 1
15 70 1
16 68 1
17 65 1
18 26 2
19 40 2
20 60 1
21 20 2
22 22 3

156



Table S5: Copy number, gene expression, and Fiedler

number by chromosome arm for 2D12hr sample as well

as the correlation between each pair (bottom).

Chr Arm RNA-seq Hi-C CGH

1p −0.15 5.3× 1017 1.06

1q −0.22 1.2× 1018 1.00

2p −0.31 1.2× 1018 1.02

2q −0.31 9.8× 1017 0.99

3p −0.44 2.3× 1017 0.77

3q −0.28 1.2× 1017 1.12

4p −0.24 8.5× 1016 0.96

4q −0.52 1.9× 1017 0.88

5p −0.32 4.3× 1017 1.10

5q −0.46 1.0× 1018 0.96

6p −0.24 5.1× 1017 0.97

6q −0.64 6.7× 1017 0.89

7p −0.14 1.4× 1018 1.22

7q 0.01 1.8× 1018 1.30

8p −0.51 7.8× 1017 0.58

8q 0.11 7.4× 1017 0.96

9p −0.15 8.6× 1017 1.61

9q −0.25 9.3× 1017 0.89

10p −0.32 1.1× 1018 0.97

10q −0.30 7.0× 1017 0.96

11p −0.05 6.9× 1017 1.26

11q −0.22 2.9× 1018 1.21

12p −0.37 1.0× 1018 1.03

12q −0.14 7.0× 1017 0.99

13q −0.30 3.0× 1016 1.21

14q −0.43 1.2× 1018 0.72

15q −0.16 1.2× 1018 0.31

16p 0.09 6.4× 1017 1.01

16q −0.12 1.2× 1018 1.00

17p −0.26 9.5× 1017 0.80
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17q 0.03 1.1× 1018 1.16

18p −0.54 3.7× 1016 1.13

18q −0.46 4.1× 1017 0.72

19p −0.31 1.6× 1018 0.87

19q −0.11 1.5× 1018 1.33

20p 0.01 4.8× 1017 1.07

20q 0.26 1.2× 1018 1.45

21q −0.24 7.3× 1016 0.67

22q −0.25 1.0× 1018 0.91

RNA & Hi-C 0.269

Hi-C& CGH 0.275

RNA & CGH 0.648
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Table S6: Chromosome territory quantification. The size of chromosome territories
in µm2. Two sets of single territories were unable to be separated and
treated as a small territory in analysis.

Nucleus Area µm2 Description

1 3.8 HSR
1.4
1.5

2 5.0 HSR
0.3
1.4

3 5.3 HSR
3.2
3.6

4 8.5 HSR
3.0 2 single

5 4.8 HSR
2.2
2.7

6 6.9 HSR
4.5 2 single

7 5.3 HSR
1.7
2.8

8 4.0 HSR
2.2 2 single

9 4.5 HSR
0.9
1.4

10 6.8 HSR
1.3
2.5
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Table S7: Translocations in K562.
Chr Loc Entropy Fib Entropy K562 S-F Fib S-F K562

9− 22 237 1.80 0.16
9 1137 2.49 1.65 0.03 0.40
22 237 2.29 1.51 0.77 0.33

6− 16 857 2.07 0.67
6 168 2.92 1.78 0.04 0.85
16 857 2.86 1.95 0.10 0.00

6− 16 1130 2.02 0.55
6 382 2.78 1.72 0.37 0.16
16 783 2.62 1.96 0.55 0.56

12− 21 1112 2.80 0.42
12 228 3.10 2.39 0.63 0.00
21 256 3.10 2.17 0.32 0.00

3− 10 483 1.89 0.69
3 483 2.50 1.84 0.26 0.47
10 879 2.21 1.56 0.83 0.69

2− 22 518 1.86 0.36
2 1518 2.60 1.40 0.59 0.94
22 229 2.44 1.50 0.70 0.13

1− 18 553 1.05 0.15
1 553 1.84 1.06 0.70 0.08
18 221 1.78 0.95 0.06 0.28

No Trans Avg 2.54 1.68 0.43 0.32
Trans Avg 1.93 0.43
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Table S8: ANOVA genes that changed between 2D and

3D samples.

TRABD2A GPR128 DONSON RDH11 SLC6A8

STRIP2 CENPK CENPL TRMT11 LIN54

LOC654433 RNF144B RAD54L CCNE2 GINS4

KRT18 HEXA-AS1 KRT8 WDHD1 ARNTL2

MYT1 UBQLN1 ADAMTSL2 NKD1 IL1R2

FGFR2 RRM2 PTPRO E2F7 NCAPG

ARHGAP11A CEP78 HAT1 GINS1 RRM1

CANX RBMS2 ANKRD32 BIRC5 KLK12

CYFIP2 KIAA1211 RAD18 MT1B SHCBP1

LINC00857 FAM105A CERK ADH6 NEIL3

MTHFD2 DCLRE1B MTFR2 SKP2 WDR76

TPPP3 EPC1 RFC3 SRP54 CRLF3

ESCO2 CFTR ARL4C SCAMP5 DHFR

GAS2L3 KIF11 SKA1 HNF4A CDK1

PKD2L1 SLC11A2 S100A16 TYMS SKA2

DNAJC21 SNRPD1 MAST4 CCNB1 IBTK

PLEKHG4 PLK4 ATF4 SYP ACTL7A

ANLN TTK HFE ZMIZ2 KIF18B

KIAA1524 HPRT1 ECT2 STARD8 MAD2L1

MLK7-AS1 TCF19 TUBB SASS6 PDIA6

MIS18BP1 GPR126 KDM1B PSMD10 RANBP9

ATP6V0A1 KIAA1875 PCNXL2 UBR7 RAD51AP1

FGFBP1 FBXO5 ASPH SPATS2L TSPAN32

TYRO3 COQ3 ADCY5 PDE2A HPS3

SLC39A10 DCBLD2 SLC10A2 SLC31A1 RARRES1

NUSAP1 SBF2-AS1 TMEM178B TMEM198 CTTNBP2

TMEM106C IPO8 HSD11B2 IDUA DEPDC1B

CENPI SLC25A43 PLEKHB1 C15orf41 AADAC

LINC00669 KIF18A KIF14 KPNA2 GTSE1

EPC2 CDC7 CCNA2 BRSK2 DNA2

FLJ12825 SPC25 NCAPG2 DTL KANSL1

C1orf112 C5orf34 AHCYL2 NUP43 HMGB1

LOC93432 ADRBK2 MT1H SEMA3E XKRX
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RAD54B CENPQ CHEK1 ZDHHC1 EPOR

SLC23A3 IYD ASPM NUP37 DEK

PBK MNT IAH1 EXO1 PPM1H

NXF4 UBE2V2 KLF15 BTBD11 CHST3

KIAA0101 UGT2B7 DEPDC1 WNK4 TXNDC17

MASTL PPM1L GPRIN3 NUPL1 CLK1

PUM1 ALDH7A1 NOSTRIN CNIH4 DUOX1

LOC286467 MELK NOX1 MIS18A GPN3

HAUS6 NOTCH1 MFSD6 BTBD9 ANP32E

FLJ13197 AJUBA ZNF367 GPSM2 CBFA2T3

RNASE4 MECOM RNF103 CLSTN3 SMC4

NAALADL2 FOXL1 PRPS2 SKIV2L2 STT3B

SEMA3A KAP2 BRIP1 TNFAIP8 H2AFV

RNASEH2A PIGR R3HDML STMN1 MAD2L2

IHH CENPH PCLO AP5Z1 SGOL1

HNRNPH3 TUBA1B CENPA SLC26A1 PER3

PSMA3 RBL1 TNFRSF11A NPM2 PRIM2

SPATA25 SENP1 HMGB3 AURKA FGD6

FBXL19-AS1 MUC1 MAP2K6 LMNB1 BUB1

NUP205 PROM1 NR5A2 RTTN C9orf64

ATAD2 BMP7 IDNK FFAR2 ACSL1

LOC100287314 ATP1A3 BARD1 TFRC PGAM1

TTC3P1 RHNO1 TLE1 POLE2 SUV39H2

LOC253039 POC1A MAP3K6 CDK2 RASD2

GALNT8 NUCKS1

Table S9: ANOVA genes that changed between samples

with 12 hr or 5 day growth.

RNASE4 PRPS2 IL13RA1 STIL CSPG5

TRABD2A GPD2 PRIM2 MCM6 USP14

ESCO2 NCAPG2 CENPO KLHDC2 DEPDC1

WDHD1 TPPP3 CCNE1 CENPP CSE1L

E2F7 TTK IL18 LMNB1 MTFR2

KIAA1524 FGFBP1 CEP78 TIMM8B INTS7

LINC00857 RBL1 HMGN1 RDH11 PCNA-AS1
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PHKB PTPRB HMGB1 S100A2 RGS7

DTL SLC39A10 TYMS SMC4 LMNB2

DNA2 CHEK1 ZDHHC6 CHST3 TRA2A

C1orf112 KIAA0101 GEN1 CASC5 WNK4

IL1R2 BARD1 SKA3 DHRS2 NAMPT

KRT18 EXO1 DDX5 TRMT11 NUP43

RRM2 SKA1 NXF4 SLC10A2 DNMT3B

DHFR MELK LRP8 APAF1 ABCB8

HPRT1 NUP205 PLK1S1 PSMA1 GMFG

CCNE2 ARNTL2 TUBA1B ZWILCH HMGB3

CENPI RELT LIN54 GINS4 C6orf48

RAD54B ATF4 TK1 SUV39H2 SKP2

PGAM1 CENPK TNFAIP8 BRCA2 FAM192A

ATAD2 CPOX C4orf21 CKAP2 UBR7

ANLN MCM4 RRM1 NUP155 RPP30

TCF19 CENPQ E2F1 STK3 DLD

SKIV2L2 DCLRE1B SLC39A8 UHRF1 DEK

CDC7 SGOL1 KIF18B PGM2 CDC6

CDK2 E2F8 RTKN2 VPS29 HNRNPU

ZNF367 SNRPD1 NEIL3 SH3KBP1 CDK1

RAD54L LDHA NUPL1 ASPH PPME1

FBXO5 HERPUD1 UGT1A6 PBX2 SHCBP1

MASTL DONSON GTSE1 SF3B3 GINS1

CCNA2 LIPG ADPRM TUBB ISPD

PKD2L1 EIF1B TXNDC17 LGALSL MAD2L1

ARRDC4 DCBLD2 RNASEH2A MILR1 ITM2C

NCAPG FAM111B TMOD3 ANP32E ASPM

SPC25 HFE C9orf64 ESPL1 CDC5L

DERA HAT1 LYRM1 SPATS2L LUC7L2

XPO1 KIF18A IL36RN RAD18 BLM

PLK4 HELLS SMC2 USP28 ZDHHC1

KIF11 DARS ENO1 POLR2G YWHAB

WDR76 NEO1 MGST1 SNRPF PSMC2

SPRY4 TCN1 RMI1 PSMA2 CPSF3

STRIP2 E2F2 SASS6 BBX IARS2

PBK C15orf41 GPR110 MIS18BP1 MSH6
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BRIP1 CEP76 STMN1 MCM5 ANKRD32

RFC3 DSCC1 FAM115C UNC13D SKAP2

PKD1P1 KLHL24 CYB5R4 KIF14 CENPM

NAGPA FANCL NCBP1 SQLE UBALD1

KCNMB4 PANK1 MT1B HADH RMI2

KIF20B VIMP CCNB1 CLOCK PTAFR

GSTCD APOL1 C19orf66 SYNGAP1 SDCBP

NCAPD3 PM20D2 TPP1 AURKA LIN9

DHRS9 COX20 CENPH API5 SRGAP3

TRPV1 NUP107 NHLRC4 FBXL5 ACER3

IL1RAP AJUBA CACYBP RASSF4 MTHFD2

PPIH HMGB2 FBXO32 SBF2-AS1 CDCA2

CENPL TRA2B BRCA1 SMAP2 BORA

BIRC5 BANF1 HMGN2 IDUA COQ3

PCNA POLQ ACTL6A EI24 FOXM1

PGD TPM3 GINS3 XYLB ERGIC2

VBP1 NUP50 HMGCR SENP1 ERCC6L

CIRBP UBE2V2 MCM2 CCDC109B IPO11

C7orf41 SMC1A MTMR10 SLC11A2 INCENP

DVL3 SNRPG XRCC2 UNKL NUCKS1

PGPEP1 KLHL3 ZFP91 KIAA1875 SLC25A42

SLC9A2 POC1A MRAP2 IPO9 RRAGB

TEX30 PARPBP GATS RABAC1 MMS22L

ATP5G1 CLCC1 DAZAP1 C10orf91 NAP1L4

GGH RPE C12orf36 RPA1 RHOB

S100A16 NIT2 TRIP13 WHSC1 CXCL11

RNASEH2B ZRANB1 HMGCS1 PSMD11 DQX1

CLSTN3 CDC45 ALDH9A1 CELF6 CCDC126

CAPNS1 BRI3BP PIR DLGAP5 FMR1

CENPW PPP2R1B FANCA CFL1 RALB

HAUS6 FAM120A HAS3 SMARCA5 RPS6KA4

PKNOX1 TP53INP1 GPHN SOSTDC1 HNRNPM

NDUFA9 GPR115 FAM83D TUG1 VWA5B2

IDS SKA2 TPT1-AS1 RQCD1 TMEM194B

PTGES3 EIF5A PPIA LOC729966 SRD5A3

PKHD1 NUDCD1 RACGAP1 ACTL7A MYBL2
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CTNS TFDP2 GGT7 C14orf80 NMU

COQ2 ZNF860 NUP37 LDHB HPSE

HMMR CDCA4 MALL PSMD14 CDCA5

WDR81 RASA4 HNRNPC GAS2L3 WDR54

CPSF1 TFDP1 GOT2 CHAF1B THNSL1

KDM6B C17orf103 HNRNPL PDPR PTGES

PROCR TICRR ABCG2 FBXO4 GPR153

LRRCC1 BTBD11 ASRGL1 SENP7 SLC4A11

SGOL1-AS1 KLF15 TMEM5 GPR126 NICN1

UBQLN1 RNF41 CEBPD AADAC KLHL2

STT3B SAE1 NRGN NRM SYTL5

DHX15 ACOX3 C5orf34 AP4B1 SRGAP2

APOE EED WDR67 FHL3 CST6

NPAT CDC25B CNIH4 CYP1A1 KNTC1

EXOSC3 FFAR2 MAP2K1 RPAIN ENOPH1

DNAJC21 SYTL4 ECT2 NDUFA6 XPO7

ASCC1 KIF23 SLC16A14 SNORA40 METTL21D

SPATA20 RBM8A FIGNL1 SAAL1 DDX46

ACAT2 FAM111A CAPRIN1 HJURP CLCN7

WDR62 COX7B PI3 CKS2 RB1

BUB1B AGPAT5 ZNF655 EIF1 LINC00669

ADK TTC9 H2AFV PHLPP1 CEACAM19

BMP7 PRTFDC1 ACOT7 RASA1 LOC154761

NCAPH LRR1 MIS18A CDKN3 HIST1H2BK

HSPE1 IHH PRDX1 CANX LOC100287314

MRPL51 HSD17B7 POLA1 CDCA3 APOBEC3B

RNF123 PACS2 BUB3 C6orf15 KIAA1841

SCEL VRK1 RNF169 CAMLG MAPKAPK2

XRCC5 UBA6 RPA3 EXOC6 LOC100505666

FAM105B MATR3 WDR45 IL1RN LOC286467

ZNF215 LMO2 GLO1 WDR6 TMEM106C

DPH1 GPSM2 MT1F ATP5J2 KRT8

MTBP GAS5 DEPDC1B YWHAQ MAPRE1

USP1 JAK3 MTFP1 MEF2D SPRY2

MCMBP PAICS YBX1 ME2 RAD51

NDC80 BUB1 POLE2 ZW10 NUSAP1
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MT1H ADORA2B KLK12 ANKRD22 KPNA2

PFKFB4 SEMA3A PIK3CG POLA2 PLK1

DPP3 ENOSF1 ZNF525 CENPA TPMT

F8 EZH2 RFC4 CTSE FRRS1

OLA1 RAD51AP1 CKLF PSMA3 NUP188

TFR2 TUBGCP3 RASD2 PDK1 POLD2

COTL1 MLF1IP TMEM48 RBBP7 FPR3

ARHGAP11A TMEM167B WNT2B EPT1 MMP7

LOC100130744 DYNLT1 RFC5 CACNA2D2 PAIP2

LOC100507118 C11orf82 FANCB HNRNPD FEN1

ZNF283 PKM YWHAE SFXN2 ARL4C

TIMELESS HINT1 ANP32A GINS2 ALDH3B2

TMPO PIK3R3 UBE2T EGR2 IDI1

BTBD10 VPS4B SFR1 EPOR PGP

G3BP1 FDPS CSTF3 FIBP UBASH3B

THSD4 DTYMK DHCR24 XRCC3 NDUFB2

HNRNPA2B1 PRPS1 TTC26 FH

Table S10: Gene ontology enrichment terms for genes differentially expressed between
2D and 3D growth.

GO term No. genes Bonferroni P
Cell cycle process 27 7.91× 10−7

M phase 19 1.31× 10−6

Cell cycle 29 2.81× 10−6

Mitotic cell cycle 19 8.09× 10−6

Cell cycle phase 20 1.08× 10−5

Cell cycle checkpoint 10 4.92× 10−5

Mitosis 15 1.06× 10−4

M phase of mitotic cell cycle 15 1.28× 10−4

Regulation of progression through cell cycle 18 3.22× 10−4

Regulation of cell cycle 18 3.43× 10−4

Regulation of mitosis 9 9.44× 10−4
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Table S11: Gene ontology enrichment terms for genes differentially expressed between
12 hr and 5 day growth.

GO term No. genes Bonferroni P
Cell cycle 66 5.45E-16

Cell cycle phase 44 2.99E-14
M phase 39 3.80E-14

Cell cycle process 56 1.06E-13
Mitotic cell cycle 39 2.01E-12

DNA metabolic process 59 5.29E-11
DNA replication 31 8.19E-11

Cell division 31 4.86E-10
Mitosis 29 3.11E-09

Response to DNA damage stimulus 35 3.40E-09
M phase of mitotic cell cycle 29 4.53E-09

Cell cycle checkpoint 17 1.33E-08
DNA repair 31 1.35E-08

Response to endogenous stimulus 37 7.10E-07
DNA-dependent DNA replication 17 8.60E-06

Regulation of progression through cell cycle 31 2.58E-05
Regulation of cell cycle 31 2.86E-05

Interphase 16 2.58E-04
Interphase of mitotic cell cycle 15 9.61E-04

Regulation of mitosis 12 3.09E-03
Mitotic cell cycle checkpoint 9 5.97E-03

DNA recombination 14 1.04E-02
Regulation of DNA metabolic process 10 1.78E-02

Cellular metabolic process 221 3.34E-02
Nucleobase, nucleoside, nucleotide and 120 4.59E-02

nucleic acid metabolic process
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A.7 Nucleome analysis: supplemental methods

A.7.1 K562 analysis

K562 data used were publicly available from GSE63525 (Hi-C) and long RNA from

ENCODE (GSM765405). In order to make the analysis more comparable with our

previous analysis of HT-29, the Hi-C data were down sampled by randomly extracting

one tenth of the reads from each chromosome pair. The same analysis methods were

used as described for HT-29.

A.7.2 Cell culture and cross-linking of chromatin

HT-29 human colorectal adenocarcinoma cells (Cat # HTB-38, ATCC, Manassas,

VA) were propagated in growth medium, composed of McCoy’s 5A medium (Life

Technologies), 10% fetal bovine serum, and 1% penicillin/streptomycin solution. Cells

grown in T-75 flasks were dissociated with 0.25% trypsin to single cell suspension for

replating into culture plates for 2D or 3D growth. For 2D cultures, 4 × 106 cells

were plated in each 150mm dish. For 3D spheroids, 2× 105 cells were plated in each

well of a 96-well PERFECTA3D R○ Hanging Drop Plate (3D Biomatrix, Ann Arbor,

MI). 2D and 3D cultures were incubated for 12 hours or 5 days in growth medium

at 37◦ C with 5% CO2. Cells grown in 2D were cross-linked with 1% formaldehyde

in serum free-medium for 15 minutes at room temperature, and then quenched with

glycine to a final concentration of 0.128 M. Spheroids from one hanging drop plate

were harvested, cross-linked and quenched as described above. Cross-linked cells were

flash frozen in liquid nitrogen and then stored at −80◦ C until the construction of

Hi-C libraries. Fibroblast data is the merged 2D 48 hr samples from Chen H 2015

[17].
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A.7.3 RNA isolation and RNA-seq

We used RNeasy product (Qiagen) to extract RNA from cells grown in 6-well

plates or 96-well PERFECTA3D R○ Hanging Drop Plate. Total RNA was treated

with RNAse-free DNaseI, then submitted to the University of Michigan sequencing

Core lab for library construction and RNA-seq on the Illumina Hiseq-2000 platform.

Single-end 50-base sequence reads were generated at a multiplex of 4 per sequencing

lane.

In RNA-seq data process, the raw reads were checked with FastQC (version 0.10.1)

to identify potential quality problems in the reads data. Tophat (version 2.0.11) and

Bowtie (version 2.1.0.0) were used to align the reads to the reference transcriptome

(HG19). Default parameter settings were used for alignment, with the exception of:

”–b2-very-sensitive” as well as ”–no-coverage-search” and ”–no-novel-juncs” to limit

the search to known transcripts. A second round of quality assessment was per-

formed using FastQC on the aligned reads. The data is of overall excellent quality.

Cufflinks/CuffDiff (version 2.2.1) were used for expression quantification and differ-

ential expression analysis, using UCSC hg19.fa and hg19.gtf as the reference genome

and transcriptome. For the CuffDiff analysis, the following parameter settings were

used: ”–multi-read-correct” to adjust expression (FPKM) calculations for reads that

map in more than one locus, and ”–upper-quartile-norm” for normalization across

samples. A locally developed R script using CummeRbund was used to format the

Cufflinks output.

Gene level analysis was performed using FPKM values outputted by Cufflinks

and log2 FC with pseudocounts, log2 FC = log2(HT-29 + 10−20) − log2(fib+10−20),

for comparisons of samples and properties. Bin level gene expression vectors were

calculated using raw counts outputted by Cufflinks and adding up the counts for all

the genes in each bin then normalizing by million reads to convert them to FPM.

Gene length normalization was not performed for bin level since each bin is the same
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size.

A.7.4 Generation of Hi-C libraries for sequencing

For each Hi-C library generation [8], approximately 20 × 106 cells were cross-

linked and resuspended in 1mL lysis buffer, consisting of 10mM Tris-HCl, 10mM

NaCl, 0.2% Igpel (Cat #8896− 50mL, Sigma-Aldrich), and 10 mL protease inhibitor

cocktail (Cat # P8340− 1ml, Sigma-Aldrich), incubated on ice for 15 minutes. Cells

were homogenized in a Dounce homogenizer on ice with pestle A, and the lysate was

transferred to a 1.7mL tube. Cells were collected by spinning for 5 minutes at 2, 000xg,

then washed twice in 500µL of ice cold 1× NEB buffer 2. Cells were distributed

between 41.7 ml centrifuge tubes (50µL per tube). Chromatin was digested with

400u of restriction enzyme HindIII (Cat # R0104M, New England BioLabs, Ipswich,

MA) in 1× NEB buffer 2 at 37◦C overnight on a spin wheel.

After HindIII digestion, restriction site overhanging ends were filled and labeled

with biotin with DNA polymerase I large (Klenow) fragment (Cat # M0210L, New

England BioLabs) in a reaction containing dATP, dGTP, dTTP, and biotin-14-dCTP

(Cat #19518− 018, Life Technologies) in each of the 4 HindIII digestion tube. DNA

fragments labeled biotin-14-dCTP from each of the 4 tubes were ligated at 16◦ C

for 4 hours in an 8.23 mL reaction containing 1× ligation buffer, 1% Triton X-100

(Cat # T8787 − 250ML, Sigma-Aldrich), 1 mg/ml Bovine serum albumin (Cat #

BP9706 − 100, Fisher Scientific), 10 mM ATP (Cat # A9187 − 1g, Sigma-Aldrich),

and 50u T4 DNA ligase (Cat #15224− 025, Life Technologies).

Reverse cross-linking was performed in two steps. First, 50 µ of 10 mg/ml pro-

teinase K (Cat #25530− 015, Life Technologies) was added to each ligation reaction

tube and incubated at 65◦C for 4 hours. Then, another 50 µl of proteinase K were

added and continued incubating at 65◦C overnight. Next, DNA was extracted with

saturated phenol:chloroform (1 : 1) (Cat #1100631, Fisher Scientific), and desalted
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by using AMICONA R○ Ultra Centrifugal Filter Unit (Cat # UFC503024, Millipore,

Billerica, MA) with 1× TE buffer. The final volume of desalted DNA was adjusted

to 100µL in 1× TE buffer.

Removal of Biotin from un-ligated ends was carried out in 8 individual reactions

each of 50 µL containing 5 µg of Hi-C DNA, 1 mg/ml Bovine serum albumin,1×

NEB buffer 2, 25 nM dATP, 25 nM dGTP, and 15u T4 DNA polymerase at 20◦C

for 4 hours. The Hi-C DNA was then pooled in a single tube, purified with single

phenol extraction, and precipitated by ethanol. The DNA was re-dissolved in 105

µl of water, and transferred to a microTUBE AFA tube (Cat #520045, Covaris,

Woburn, Massachusetts). DNA fragmentation was performed in a Sonicator (Covaris

S2, Covaris). The DNA fragments in a size of 200 − 400 bp were recovered with

Agencourt AMPure R○ XP mixture (Cat # A63880, Beckman Coulter, Indianapolis

IN) following the manufacturer’s protocols.

DNA fragment ends were repaired in a 70 µL reaction containing 1× ligation buffer

(Cat # B0202, New England BioLabs), 0.25 mM of dNTP mixture, 7.5u of T4 DNA

polymerase (Cat # M0203L, New England BioLabs), 25u of T4 polynucleotide kinase

(Cat # M0201S, New England BioLabs), 2.5u of DNA polymerase I large fragment

at 20◦ C for 30 minutes. The reaction is purified with a MinElute column (Cat 28204,

Qiagen, Valencia, CA). The DNA is eluted in 32 µL of elusion buffer for A-tailing,

which was performed in a 50 µL reaction containing purified DNA (5 µg), 1× NEB

buffer 2, 0.2 mM dATP, 15u Klenow fragment (3′ → 5′ exo-) (Cat # M0212L, New

England BioLabs). The reaction was incubated at 37◦C for 30 minutes, then at 65◦C

for 20 minutes to inactivate Klenow (exo-).

For Streptavidin pull-down, the biotinylated Hi-C ligation products are mixed

with MyOne C1 streptavidin bead solution (Cat #65001, Life Technologies). Non-

specifically binding DNA was removed by washing with 1× binding buffer (5 mM Tris-

HCl (pH8.0), 0.5 mM EDTA, and 1 M NaCl), then with with 1× T4 Ligation buffer
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(Cat #46300− 018, Life Technologies). The DNA-bound beads were resuspended in

38.75µl of 1× ligation buffer for adapter ligation.

Illumina adapter ligation was performed in a 50 µL reaction by adding to the

DNA-bound beads suspension of 1× T4 ligation buffer, 90 pM of Illumina paired end

adapter, 3u of T4 DNA ligase (Cat #15224 − 025, Life Technologies). The reaction

was incubated at room temperature for 2 hours. The beads were reclaimed, and the

supernatant discarded. The beads were washed twice in Tween Wash Buffer (5 mM

Tris-HCl pH8.0, 0.5 mM EDTA, 1 M NaCl, 0.05% Tween 20), and once in 1× binding

buffer (5 mM Tris-HCl (pH8.0), 0.5 mM EDTA, and 1 M NaCl), and twice in 1×

NEB buffer 2. After the last wash, the beads were resuspended in 20µl of 1X NEB

buffer 2.

The Hi-C DNA sample was amplified by 16 PCR cycles (optimized in the log

amplification phase) for Illumina HiSeq sequencing. Each PCR reaction in 25 l, 1.5µl

of Bead-bound Hi-C DNA, 0.35µl of PE primer 1.0, 0.35 µl of PE primer 2.0, 0.2 µl

of 25mM dNTP, 2.5 µl of 10X PfuUltra buffer, 19.6 µl of H2O, and 0.5 µl of PfuUltra

Fusion DNA polymerase. The PCR cycling parameters were 98◦ for 30 seconds,

followed by 15 cycles at 98◦C for 10 seconds, 65◦C for 30 seconds, and 72◦C for 30

seconds, and a final extension at, 72◦C for 7 minutes. PCR products pooled from the

supernatant of multiple reactions were subjected to AMpure XP beads purification

to remove primer dimers. A standard quality control procedure was performed on the

purified PCR products (Hi-C library). Each Hi-C library passed the QC procedure

was then sequenced in a single lane of a flow cell on a HiSeq 2000 sequencer to generate

paired-end sequence reads at 100 bases per end read.

A.7.5 Fluorescence in situ hybridization

Metaphase chromosomes were prepared by incubating the cells for 1− 2 hours to

0.02 mg/ml Colcemid (Invitrogen; Grand Island, NY). The cells were then incubated
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in a 0.075M hypotonic solution for twenty minutes before fixation in methanol/acetic

acid (3:1). The cells were washed with fixative three times and dropped in a con-

trolled humidity chamber. Interphase cells were prepared the same way except for

the addition of Colcemid.

BACs were purchased from BAC/PAC Resources (Oakland, CA) for MYC (8q24)

and to confirm the translocation of chromosome 6 and 14. The BAC clone contig for

MYC consisted of 3 overlapping BAC clones anchored to the gene of interest, labeled

with Spectrum Orange-dUTP (Abbott Molecular Inc, IL) using nick translation. To

confirm the t(6; 14) translocation, BACs were ordered on 6q23.2 before 132890000

(RP11 − 951D6) and after 132825000 (RP11 − 295F4). On chromosome 14q13.2,

BACs were ordered before and after 36508800 (CTD-2326N4 and RP11 − 266A10,

respectively). The extracted DNA was labeled via nick-translation with Dy590 (Dy-

omics; Jena, Germany) for RP11 − 951D6; Dy505 (Dyomics; Jena, Germany) for

RP11− 295F4; Dy415 (Dyomics; Jena, Germany) for CTD-2326N4; and Dy547 (Dy-

omics; Jena, Germany) for RP11 − 266A10. Whole chromosome paint probes were

generated in-house using PCR labeling techniques for the following chromosomes: 2

(Spectrum Orange dUTP), 8 (Dy505) and 15 (Dy505).

We followed our standard FISH protocol for hybridization and detection [127]. Ap-

proximately 20 metaphase nuclei were imaged using the Leica DM-RXA fluorescence

microscope (Leica; Wetzlar, Germany) equipped with custom optical filters and a 40×

objective. All slides were counterstained with 4′, 6−diamidino−2−phenylindole. Area

measurements for chromosome territories were completed using a simple threshold.

A.8 CSC nucleome: introduction to centrality

Centrality measures how central or important a node is within a graph. This can

be measured a number of different ways but one of the simplest is degree centrality.

The degree centrality of a node is the number of edges surrounding the node (its
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degree). Graphs can be written as an adjacency matrix (A) in which each row and

column represents a node and each entry is 1 if an edge connects the two nodes and

0 otherwise. An example graph is shown in Figure S38.

Figure S38: The same graph is shown with node labels and the degree of each node
labeled on the left and right copies of the graph, respectively.

A =

a b c d e f



0 1 0 0 0 0 a

1 0 1 0 0 0 b

0 1 0 1 1 1 c

0 0 1 0 1 1 d

0 0 1 1 0 1 e

0 0 1 1 1 0 f

(S16)

The letters around adjacency matrix are not part of the matrix; they indicate

which node that row or column represents. The degree centrality of a node is the

number of edges surrounding the node. Graphically this is simply the number of black

lines surrounding the node and algebraically this is the column sum of the adjacency

matrix, both of which are shown below.

deg(A) = sum(A) = [1 2 4 3 3 3] (S17)

For this particular graph, it shows that node c is the most central since it has a

degree of 4, the highest in the graph, while node a is the least central since its degree
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of 1 is the smallest. The example used here was an unweighted graph but the concept

can be easily extended to weighted graphs (edges have weights wi instead of just 0 or

1) with the degree still being the sum of the adjacency matrix.

Another measure of centrality is betweenness which measure the number of short-

est paths between all pairs of nodes cross the node of interest. Additionally, closeness

is the sum of the shortest paths from the selected node to all other nodes. The goal

of all of these measures is to determine how central the node is to the graph.

A.9 CSC nucleome: types of centrality

8 different types of centrality were used for analysis of the genomic network as

measured by Hi-C. They are:

• degree centrality - the nodal degree is defined as the sum of the edge weights,

i.e. Hi-C, contacts surrounding each node,

degree(i) =
n∑
j=1

[A]i,j (S18)

, This indicates the spatial proximity between node i and all of the other nodes.

• eigenvector centrality - the eigenvector centrality is defined as the principal

eigenvector of the adjacency matrix corresponding to its largest eigenvalues, i.e.

eig(i) = [v]i =
1

λ1(A)

n∑
j=1

[A]i,j[v]j (S19)

, where λ1(A) is the maximum eigenvalue of A in magnitude, and v is the

associated eigenvector. Eigenvector centrality relies on the principle that a

node is important it if it connected to many other important nodes, thus it

accounts for the full network centrality more than degree centrality.
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• local Fiedler vector centrality (LFVC) - LFVC evaluates a node’s importance

by evaluating the network centrality through the Fiedler vector,

LFVC(i) =
∑

j∈edges

([y]i − [y]j)
2 (S20)

, where y is the Fiedler vector. Since the Fiedler vector partitions the net-

work into well separated clusters, i.e. A/B compartments, LFVC characterizes

network partitioning and the nodal significance.

• closeness - closeness is defined by the shortest-path distance between a node

and all other nodes,

close(i) =
1∑n
j=1

ρ(i, j) (S21)

where ρ(i, j) is the shortest-path distance between nodes i and j. The closeness

reflect how far a node is from the center of the network.

• betweenness - betweenness is defined as the fraction of the number of shortest

paths passing through a node relative to the total number of shortest paths,

betw(i) =
n∑
j=1

n∑
k=1

σk,j(i)

σk,j
(S22)

where σk,j is the total number of shortest paths from node k to j and σk,j(i)

is the number of such shortest paths crossing through node i. Betweenness

characterizes nodes that might make the network disconnect if removed because

they are hub nodes.

• local clustering coefficient - local clustering coefficient measures how intercon-

nected a nodes neighbors are,

LCC =
2|(j, k)|(j, k) ∈ edges,∀j, k ∈ Ni|

|Ni|(|Ni| − 1)
, (S23)
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where Ni is the direct neighbors of node i, and numerator denotes the num-

ber of edges in the neighborhood of node i. The local clustering coefficient

characterized the local connectedness.

• h-hop walks. The h-hop walk is defined as the number of the edge weights

associated with the paths departing from the node and traversing through h

edges, which can be computed iteratively,

w(h+1) = Ad(h) + Bw(h), d(h) = Ad(h−1), d(0) = 1,w(1) = A1, h = 1, 2, ...,

(S24)

where w(h) is the vector of h-hop walk weights, and B is the binary Hi-C matrix

with [B]i,j = 1 if [A]i,j > 0, and [B]i,j = 0 otherwise. This accounts for indirect

interactions among nodes. hops between 1 and 5 in length were used in this

analysis.

• distance to a reference node - given a set of nodes of interest, the distance to

each node can be measured and used as a structural feature.
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