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Abstract 

The development and maintenance of pair bonds in the socially monogamous 

prairie vole is regulated in part by the mesolimbic dopamine system. My dissertation work 

investigates dopamine signaling mechanisms involved in the development of these 

selective social attachments, the adaptations of this system in the maintenance of such 

bonds, and finally, how oxytocin may interact with dopamine in these processes.  

 I first replicate findings showing that the mixed D2/D3 receptor agonist, quinpirole 

when infused into the nucleus accumbens shell, induces robust partner preferences. I 

subsequently sought to determine if selective activation of D2 or D3 receptors within the 

this region, via infusions of the specific D2R agonist 5,6,7,8-Tetrahydro-6-(2-propenyl)-

4H-thiazolo[4,5-d]azepine-2-amine dihydrochloride (B-HT 920) or the specific D3R 

agonist R(+)-2-Dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphthalene hydrobromide 

(7-OH-DPAT), influenced partner preference formation. Partner preference testing 

showed that selective activation of D3 receptors is sufficient to induce partner preferences 

while D2 receptor activation is not.  

In a second set of experiments I utilized these same drugs in combination with fast 

scan cyclic voltammetry to measure DA release inhibition via autoreceptors in the 

striatum. B-HT 920 had highest effect in the dorsal striatum whereas quinpirole was more 

effective in the nucleus accumbens shell at inhibiting dopamine release than either the 

selective D2 or D3 agonist. Surprisingly, 7-OH-DPAT, showed similar effects in both 

regions examined. This result was unanticipated as inhibition of dopamine release by 

agonists is thought to reflect receptor distribution and reports in other species show 

greater density D3 receptors in the nucleus accumbens shell compared with dorsal 

striatum. Our results suggest that the prairie vole shows a unique response to quinpirole 

compared to other species or that the distribution of D3 receptors in the prairie vole may 

not follow the same pattern as other species. 

In a final set of experiments, I utilized fast scan cyclic voltammetry to measure 
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dopamine release dynamics in the nucleus accumbens shell of sexually naïve and 28-

day pair bonded prairie voles. We demonstrate that pregnancy status is reflected in 

dopamine release in males after 28 days of pairing such that males from pairs that 

became pregnant quickly after pairing show the largest increases. Additionally, we test 

the effects of the dopamine D2/D3 receptor agonist, quinpirole, on electrically stimulated 

dopamine release in the dorsal striatum and nucleus accumbens as a measure of 

dopamine autoreceptor functionality. Interestingly, dose response curves to treatment 

with quinpirole showed that pair bonded prairie voles show subsensitive dopamine 

autoreceptor activity. In a final experiment, we show that increased oxytocin tone can 

mimic this effect of pair bonding at the dopamine autoreceptor in sexually naïve animals.   

Together, these data provide support for an essential role for the DA D3 receptor 

subtype in regulating the development of social attachments in male prairie voles. 

Additionally, these data show a long-term adaptation in DA signaling in pair bonded prairie 

voles, which is both sex-specific and fecundity-dependent. Finally, I show that oxytocin 

facilitates this neuroadaptation in prairie voles that have not yet been pair bonded. These 

data represent an important advance for the field since these signaling mechanisms may 

be valid therapeutic targets to treat social deficits in humans. Taken together, these 

research findings have provided valuable insight into the role of the DA and oxytocin 

systems in affiliative behavior and also have broad implications for our understanding of 

social bonding as a motivated behavior. 
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Chapter 1 

Introduction 

 

General Introduction 

 

Animals are drawn to seek natural rewards such as food, shelter, and sex. 

Dopamine (DA) signaling within the mesolimbic system is known to encode the learning 

and motivational properties of these rewards1–4. Social bonding utilizes this same circuitry 

for the positive reinforcement of social interactions including the motivated approach of 

other sex conspecifics and maintenance of relationships with mating partners and 

offspring5. Specifically, activation of this system underlies the development of selective 

social attachments whereas neuroplasticity of this circuitry underlies their maintenance. 

In certain highly prosocial species, such as prairie voles, oxytocin (OT) signaling functions 

within this “reward” network to regulate social behavior6–9. Specifically, it has been 

suggested that the coordinated action of OT and DA within striatal circuitry functions to 

attribute salience to social stimuli in a context-dependent fashion8,10.  Additionally, it is 

theorized that DA may work in conjunction with endogenous opioids to mediate the 

hedonic properties of social interactions and may motivate approach of familiar partners 

and rejection of novel conspecifics during the pair bond maintenance phase11–15. Thus, 

the DA system is actively engaged in motivating social behavior and is uniquely 
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positioned within striatal reward circuitry to influence the learning and hedonic properties 

of social incentives via its interaction with the OT and opioid systems.  

Here, I review evidence for the function of mesolimbic DA in the regulation of social 

attachments (i.e., “pair bonds”) in the socially monogamous prairie vole. I will first discuss 

the prairie vole’s natural history and how their social structure poses benefits for the study 

of social attachment as well as how these behaviors are studied in the laboratory. I will 

then discuss how DA regulates affiliative behaviors in the early development of pair 

bonds, caretaking behaviors directed toward pups, and the aggressive behaviors 

characteristic of later stages of bonding. Finally, I will discuss how DA may function in 

mesolimbic circuits to attribute salience to stimuli that have either positive or negative 

valence, via its interaction with the OT and opioid systems. I briefly discuss some 

evolutionary considerations that must be kept in mind in our interpretation of these 

findings and consider how the study of the neurochemical convergence between DA and 

OT may facilitate our understanding of motivated behavior of a social nature.  

 

The Prairie Vole as an Animal Model of Social Attachment 

The socially monogamous prairie vole (Microtus ochrogaster) is a strong model for 

the study of social bonding due to its highly prosocial mating strategy16–21. Prairie voles 

form lifelong pair bonds that are characterized by a preference for a familiar partner, 

rejection of novel conspecifics, and equal distribution of caretaking responsibilities such 

as nest guarding, food gathering, and offspring care7. In particular, their offspring 

caretaking strategy is unique in that the male and female equally share tasks such as 

huddling, brooding, and retrieving pups which is not common in males of other species22.  
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Importantly, prairie voles show a readily observable behavioral transition from the 

highly affiliative pair bond “development” phase to the aggressive and territorial pair bond 

“maintenance” phase. Affiliative displays such as allogrooming and huddling are 

characteristic of the development phase while aggressive displays that include biting, 

chasing, and lunging at novel conspecifics are characteristic of the pair bond maintenance 

phase23. Importantly, the data gathered using this model have shown that the biological 

systems regulating social attachment in voles also underlie the expression of social 

relationships in humans24. These characteristics make the prairie vole an optimal 

translational model to study the neuroscience of social attachment25–31. 

 

Prairie Vole Behavior  
 

Prairie voles are burrowing rodents native to the Midwestern United States and 

Canada32. They are a philopatric species, meaning that offspring will often remain in the 

parental nest into adulthood and help rear subsequent litters22,33–37. Female prairie voles 

do not ovulate spontaneously and instead require prolonged exposure to the pheromones 

present in male urine to induce sexual receptivity (i.e., behavioral estrus), and subsequent 

mating to achieve ovulation38. Importantly, while in the nest, the presence of the mother 

inhibits the younger females’ sexual maturation even when they are in the presence of 

the appropriate stimulus39–41.  Thus, sexually naïve adult female prairie voles remain 

functionally prepubescent until prolonged exposure to a non-related male outside of the 

parental nest induces their first ovulatory cycle42. This social structure results in 

multigenerational nests that consist of one breeding pair, multiple litters, and often, 

additional non-reproductive adults22,36. 
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Pair Bond Development and Affiliative Contact 

Upon encountering a novel conspecific of the other sex, prairie voles will often 

approach and engage in olfactory investigation, grooming, and ultimately settle into their 

unique side-by-side “huddling” behavior18. Huddling is considered a central characteristic 

of prairie vole pair bonds43–45. Indeed, non-monogamous vole species, such as the 

montane vole, do not show this contact proneness and instead choose to stay away from 

novel conspecifics even when in enclosed habitats16,23. Importantly, neuroanatomical 

differences in the expression of OT receptors within striatal circuitry among prairie and 

montane voles reflect their different social organization, suggesting a role for this 

neuropeptide in the regulation of pair bonding46,47. 

The high level of contact present during early interactions among prairie voles is 

theorized to maximize the amount of pheromone transfer and the induction of female 

sexual receptivity48. This unique feature of the prairie vole ovulatory cycle provides further 

support for the importance of social contact in monogamous species. It has been 

observed that while regular estrous cycles are absent in most Microtus prior to exposure 

to male stimuli, non-monogamous species do not rely on extended affiliative contact to 

effectively induce estrus49. In fact, time to induced estrus and time in affiliative contact 

vary in a predictable stepwise function so that monogamous species require longer 

exposure to male stimuli to achieve behavioral estrus50–54. This suggests, then, that 

prolonged motivation to remain in close contact to the female is imperative for male prairie 

voles.  
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Upon interaction with a non-related male outside of the natal nest, female prairie 

voles will achieve behavioral estrus within 24 but up to 72 hours (variation that has 

meaningful significance and is discussed below) and will mate for a period of 

approximately 30 hours42,48,50,55,56. The pair remains together throughout gestation and 

the female will give birth to a litter at 21-23 days. In the presence of a male, female prairie 

voles go into post-partum estrus and will typically achieve pregnancy within 48 hours of 

parturition55,57.  In fact, after the first copulation, the majority of subsequent pregnancies 

will result from copulations during subsequent post-partum estrus periods. Thus, the initial 

interactions that induce behavioral estrus and ovulation are crucial for setting in place, 

both behaviorally and neurohormonally, the long-term success of the bond. This male-

female association (i.e., pair bond), will continue throughout multiple breeding seasons 

until a member of the pair dies58.  

 

Pair Bond Maintenance and Aggressive Rejection of Novel Conspecifics 

Once prairie voles have mated and achieved pregnancy they will remain together 

throughout their lifetimes. That is, they will continue to engage in social monogamy with 

the same partner throughout multiple mating seasons until a member of the pair dies. 

During this time, prairie voles are known to actively defend their home territory against 

novel conspecifics via aggressive displays that include chasing, lunging, and biting23. 

These aggressive displays are directed at both sexes which suggests that the behavior 

serves both to protect the current bond and prevent the establishment of new 

bonds17,49,59–63. Based on these observations, it is theorized that at this stage in pair 

bonding, voles remain highly sensitive to social stimuli, however new conspecifics are 
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now perceived as aversive and motivated behaviors are directed toward aggressive 

rejection or avoidance rather than the previous investigation and close contact that are 

associated with the development phase15.  

 

Pair Bonding and Biparental Offspring Care  

Prairie voles give birth to altricial young that depend on both parents for 

nourishment, thermoregulation, and shelter. Among most mammals male parental care 

is sparse or completely absent64. From an evolutionary perspective, for the male, caring 

for young is most advantageous when there is a guarantee that the male is caring for his 

own offspring. In monogamous mating pairs, most pups are generally exclusively sired 

by the same two partners, and so remaining in the nest to ensure survival of the young 

can present a direct fitness benefit for that male65.  

Prairie voles engage in biparental care of offspring and both the male and female 

have been seen to engage in caretaking behaviors, including nest maintenance and 

construction, caching food, runway construction, care of the young, grooming, retrieval, 

and brooding (Figure 1.1)22.  Interestingly,  male voles have been seen to have higher 

survivorship when living alone than when living in pairs, and they have also been 

observed to lose weight during the trajectory of their pair bonds showing that the male 

takes on substantial energetic costs in exchange for the opportunity to rear offspring66,67. 

Importantly, for the male, the increased survivorship of offspring reared byparentally 

outweighs the costs of long term monogamy.   

Some parenting behaviors such as nursing can solely be expressed by new 

mothers and represent a sequence of adaptive action patterns that include licking, 
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grooming, nursing, and huddling which are reliably triggered by specific cues in the 

environment such as pup sounds, smells, and tastes68. For example, ultrasonic 

vocalizations reliably trigger pup retrieval and exposure to pup scent can induce 

caretaking behaviors69–71. It has been hypothesized that the maternal prairie vole brain 

experiences similar neuroplasticity as has been observed in the rat such as sensitized 

sensory processing of infant cues such as pup odor and ultrasonic vocalizations (USVs) 

making the mother more likely to effectively determine her pups’ needs and protect them 

from harm 72,73. New mothers vary in the amount of affiliative interaction they display with 

their pups, and individual differences in the manifestation of these behaviors (i.e., licking, 

grooming, and feeding) displayed by mothers can have lifelong and even multi-

generational effects on offspring74. 

 

Measuring Pair Bonding Behavior in the Laboratory 

As discussed above, pair bond development is characterized by affiliative social 

interactions that include huddling, mating, and grooming and can be assayed via the 

partner preference test75. The pair bond maintenance phase is characterized by 

aggressive rejection of novel conspecifics and can be measured via the resident intruder 

test50,75–78. The measurement of partner preferences and aggressive displays toward a 

home “intruder” have been established as reliable assays for the measure of the 

existence of a pair bond as well as pair bond strength, respectively, and when combined 

with the breadth of tools at a neuroscientists’ and behaviorists’ disposal, these serve as 

powerful tools to study the neurobiology of social attachment30,31,77. Figure 1.2 illustrates 

these two behavioral assays, which are explained in detail below.  
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Partner Preference Test to Measure Pair Bond Development 

The “partner preference” is considered to be the first observable measure of pair 

bond development75,79. This test borrows from traditional reward learning paradigms like 

conditioned place preference (CPP) to test the rewarding properties of an unconditioned 

stimulus80,81. In the CPP paradigm, each chamber of a two chambered apparatus is 

designed to have different contextual cues and is subsequently paired with an either 

rewarding or neutral unconditioned stimulus. During conditioning sessions the rewarding 

stimulus will be continually paired with one chamber, while the neutral stimulus will be 

paired with the other chamber. After repeated pairings, the environment paired with the 

rewarding stimulus is imbued with secondary rewarding value and itself can act as a 

conditioned stimulus to elicit approach behavior. Whereas the chamber paired with the 

neutral stimulus will not elicit such behavior. On test day, the test animal is allowed to 

roam both chambers freely and time spent in the reward paired or neutral chamber are 

recorded82. From these measurements it is inferred that if the unconditioned stimulus was 

potentially rewarding, the animal will choose to spend time in the reward-paired chamber 

and this is termed a “conditioned place preference” (CPP). 

A similar paradigm is used to measure pair bonding in prairie voles. The “partner 

preference” test consists of placing a test subject (of either sex) in a three-chamber 

apparatus in which two of the chambers house tethered stimulus animals. One chamber 

contains the “partner” (animal with whom the test subject has been paired; i.e., a 

conspecific that is familiar to the subject) another chamber contains a novel “stranger” 

(with which the subject is not familiar), and a third chamber that remains empty during the 
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test. For three hours the test animal is allowed to roam freely among all the chambers 

and cage entries, time spent in cage, and time in side-by-side contact (scored in minutes 

for a total of 180 total maximum time in contact) are quantified. When time spent in side-

by-side contact with the partner exceeds time spent in contact with the novel animal, an 

animal is said to have developed a “partner preference”83–86. Importantly, under these test 

conditions, most animals, as has been observed with several species of birds and 

chimpanzees, would choose the novel animal, having already mated with one animal, 

they explore alternative “pairs” to increase their odds of reproduction87–89. Monogamous 

species, such as the prairie vole, however, show a reliable preference for their familiar 

partner during this test which is displayed via huddling behavior75. Importantly, two 

limitations should be kept in mind when interpreting data from this paradigm. First, without 

any adaptations, this paradigm does not isolate aspects of the individual stimuli, for 

example, it cannot rule out that an animal may just show a preference for a familiar partner 

based on scent (e.g., animal “smells” like home). Second, it should be kept in mind that 

while this assay is reliably able to determine if a long-term bond has been developed, or 

has the potential to be developed (in some variations of the paradigm), it is unlikely to 

decipher more nuanced variations of bonding behavior and also limits our interpretation 

of the interaction to the point of view of the test subject. That is, this assay provides little 

information on the behavior of the stimulus animals and how that impacts the subject 

animal’s choice. Future incorporation ultrasonic vocalization recordings during the partner 

preference test and deeper behavioral analysis of the interactions between each of the 

members of the chamber, not only measurements of side by side huddling, will provide 

us with a richer dataset on how the reciprocal interactions between the stimulus animal 
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and test subject impact an animal’s decision to remain with their partner or explore other 

options.  

 

Resident-Intruder Test: Aggression as an Index of Pair Bond Strength 
 

Sexually naïve prairie voles show high levels of affiliation. However, if they have 

cohabitated for as little as 24 hours, both males and females will begin to display 

aggressive behavior toward novel conspecifics9,90. These displays are referred to as 

“selective aggression” and are measured via the “resident-intruder test” and the data 

gathered are used as an index of pair bond strength77,79,91,92. In the laboratory, animals 

will be paired for two weeks of cohabitation and mating in which they will naturally 

establish this home cage as their “territory”. The resident-intruder test consists of 

measuring aggressive interactions for a short period of time (typically 10 minutes) 

between the subject animal “resident” and an unfamiliar “intruder” that is introduced into 

the home cage62. Intruders and residents can be of any sex as both sexes display 

selective aggression behavior93. Aggressive behaviors such as lunges, attacks, offensive 

rearing, biting, and chasing are recorded23,59,90.  

 

Dopamine Signaling and Pair Bonding 

As discussed above, prairie voles show an impressive behavioral plasticity in the 

transition from sexually naïve to pair bonded. The incentive to first develop a 

monogamous bond and remain in contact with a mating partner and offspring as well as 

the drive to aggressively reject novel partners requires strongly motivated behaviors that 

are a result of activation of the mesolimbic DA system94–96. Studies on the prairie vole 
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have shown that activation of this system and subsequent neuroplasticity of this circuitry 

supports the trajectory from sexually naïve to fully pair bonded status in prairie vole 

pairs59,97.  It is important to note however, as I will review below, that while DA itself is 

broadly involved in motivated behaviors it is through its interaction with other systems 

(i.e., OT, opioids) that it can effectively focus motivational action on specific facets of 

social reward such as that associated with social exploration, mating, and 

parental/maternal care. 

 

DA Signaling Mechanisms 

The mesolimbic DA system is central to motivational processing and learning1,2,98. 

DA is a slow acting neuromodulator (i.e., binding results in activation of intracellular 

cascades via second messengers rather than engaging direct effects on opening of ion 

channels) that can bind to one of 5 known receptor subtypes which are classified as either 

D1-like or D2-like based on their activation or inhibition of adenylate cyclase, 

respectively99,100. The D1 class of receptors includes the D1 and D5 receptor subtypes 

while the D2 class of receptors includes D2, D3, and D4 subtypes. Both the D1 and D2 

class of receptors are expressed on striatal medium spiny neurons (MSNs)100–103. MSNs 

that express D1 receptors project directly to the substantia nigra pars reticulate from the 

direct pathway while D2 expressing MSNs project to the external part of the globus 

pallidus via the indirect pathway101,102. Comparatively, the D1 receptor has a lower affinity 

for DA than the D2 receptor. Thus, D1 receptors require higher levels of DA to be released 

for them to become activated, such as those levels observed during burst firing. The D1 

receptor is expressed on medium spiny neurons that contain dynorphin (the endogenous 
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ligand for kappa-opioid receptors) and activation of these receptors increases the release 

of dynorphin104–107. Comparatively, the D2 class of receptors has a higher affinity for DA 

meaning that it can be activated by lower levels of the ligand such as those released 

during tonic firing. Additionally, D2-like receptors are expressed on neurons that contain 

enkephalin (endogenous ligand for mu-opioid receptors) that mediate positive hedonics 

generally, and in particular, positive associations to a mating experience in the prairie 

vole11,12,108–111. Uniquely, despite their opposing intracellular effects and expression, 

these receptors often work together to facilitate the expression of diverse behaviors 

relating to motor behavior, motivation, and learning, and as we review below, complex 

social behaviors such as pair bonding in the socially monogamous prairie vole112.  

 

Role of DA Signaling in Pair Bond Formation 

In female prairie voles, mating during estrus results in an increase of extracellular 

DA in the NAc of up to 51%113. Importantly, only a minor increase in DA release is 

observed when females are not sexually receptive and exposed to a male. Yet, it must 

be noted that DA increases during mating are also observed among other non-

monogamous species such as the rat and the Syrian hamster suggesting that although 

DA is necessary for the formation of a pair bond, it is not sufficient114,115. Additionally, 

nonspecific blockade of DA receptors inhibits the development of partner preferences 

even in the presence of mating116–118.  Thus, a combination of female receptivity and DA 

activation during mating are key components in the development of partner preferences.  

Experimentally targeting of specific DA receptor classes has shown that activation 

of D2-like receptors and subsequent inhibition of cAMP signaling, in the rostral NAc shell, 
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but not the dorsal shell or core, induces partner preferences even in the absence of 

mating, whereas blockade of these receptors in this same region blocks partner 

preferences even after 24 hours of mating (Figure 1.3)59,117,119. Additionally, blockade of 

D2-like receptors, but not D1 receptors, inhibits the development of partner preferences 

in both sexes, while activation of D1 receptors prevents the development of pair 

bonds116,117. Considered in light of the knowledge of receptor affinities in each class, these 

data suggest that low levels of DA that preferentially activate D2 like receptors are 

important for the development of pair bonds.  

 

Role of DA Signaling in Pair Bond Maintenance 

As mentioned above, the pair bond maintenance phase is characterized by high 

levels of aggression toward novel conspecifics and this aggression is also considered a 

motivated behavior15. This behavior is regulated by the activation of DA D1 type receptors 

within the NAc shell. Importantly, blockade of these receptors has shown to block 

selective aggression and activation of these receptors in sexually naïve animals blocks 

the development of partner preferences59. An upregulation of D1 receptors is observed 

in the NAc shell and not other regions of the striatum in males that are have cohabitated 

for two weeks and successfully achieved pregnancy. And this upregulation is correlated 

with the amount of selective aggression exhibited by the males of the pair, suggesting 

that this upregulation in receptor expression prevents affiliative social contact with novel 

animals thereby protecting the established bond15,59. That is, due to the higher expression 

of D1 receptors (which mediate aggressive behaviors toward novel conspecifics) the 

activation of these receptors prevents the development of new pair bonds.  Because DA 
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D1 type receptors are the low affinity type that require high levels of DA to be activated, 

this suggests that burst firing in the presence of novel social stimuli, can result in the 

activation of D1 neurons and subsequent activation of kappa-opioid receptors via the 

release of dynorphin, resulting in aggressive rejection of novel conspecifics63.  

Additionally, another form of neuroplasticity has been observed in pair bonded 

prairie voles. Specifically, stimulated DA release is enhanced within the NAc shell of pair 

bonded male prairie voles. However, these increases are correlated with pregnancy onset 

in the female such that males from pairs that became pregnant sooner, displayed the 

largest DA increases97. In light of the findings discussed above, the increased DA release 

that is induced by pair bonding may serve to preferentially activate DA D1 receptors and 

lead to aggressive rejection of novel mating partners.  

 

Role of DA in Mother-Infant Attachment 

 It is theorized mother-infant bonding could be an evolutionary precursor to pair 

bonding and that the neurocircuitry for familial attachments has adapted to accommodate 

the development of attachments with mating partners120. Importantly, maternal behaviors, 

much like pair bonding, are highly motivated actions that come at a high energetic cost 

for the mother. As such, the DA system has been shown to be recruited in the invigoration 

of caretaking behaviors as well as the neural plasticity that accompanies motherhood. 

Thus, the study of DA in maternal attachments can provide insights into how DA regulates 

pair bonding.   

Research on this topic has established that DAergic circuitry within the ventral 

tegmental area (VTA) and nucleus accumbens (NAc) are key to the expression of 
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maternal caregiving. During licking and grooming EEG shows increased activity in the 

VTA121. Microdialysis has shown increases in DA release in the NAc during pup 

interactions122. DA release within the NAc has been correlated with “quality of maternal 

behavior” in the rat in particular with pre-weaning contact between the mother and 

pups123–125. Additionally, in vivo voltammetric measurement of dopamine release during 

maternal behavior shows that DA release is highest in those mothers that are considered 

“high licking and grooming”126. Blocking of DA signaling by damage to DA cell bodies via 

6-hydroxydopamine lesions or radiofrequency lesions within the VTA block the 

expression of maternal behaviors demonstrating that DA originating from the VTA 

projections onto the NAc is required for the expression of maternal behavior127–129.  

It is believed that the VTA is invigorating maternal behavior via its interactions with 

the OT system especially within the MPOA130. Direct infusion of OT into the VTA 

increases DA release in the NAc suggesting a mechanism by which social interaction can 

impact DA signaling131. Additionally, high licking and grooming mothers show increased 

OT expression in the mPOA and the paraventricular nucleus of the hypothalamus and 

increased projections of OT cells from both of these regions into the VTA131. D1 receptor 

agonist treatment into the MPOA or NAc can stimulate the onset of maternal behavior. 

Further, maternal behavior can be triggered by pup scent and this form of “maternal 

memory” for pup cues has been shown to be mediated by olfactory discrimination 

processes mediated by DA D2 like receptors132.  

 

Role of DA in Male Parental Behavior 
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Because male parental behavior is rare in mammals, its study has been limited to 

the few species which display this behavior and only until recently has DA regulation of 

this behavior in prairie voles been investigated. Sexually naïve and pair bonded prairie 

voles will both display pup caretaking behaviors. Pair-bonded prairie voles, however, 

display greater pup caretaking133. Pair bonded males show similar c-Fos expression as 

females after experience with a pup suggesting that the same regions that regulate 

maternal behavior may also regulate paternal caregiving in this species as well134. Pair 

bonding also increases the expression of a specific dopamine receptor mRNA (D3) in the 

NAc but not in the VTA, which is the source of NAc DA133. Non-selective blockade of DA 

receptors results in decreased pup licking and grooming in males, increased duration of 

huddling behaviors and decreased latency to approach pups135. 

 

DA Interactions with Other Systems 

Opioid Systems in Pair Bonding 

As a whole, the aforementioned data suggest that the DA system may work to 

invigorate motivation for the seeking of a mate, maintenance and defense of a bond and 

offspring, however we cannot account for valence attributions that are made toward these 

social stimuli. DA signaling on its own can only account for the motivational and learning 

properties of these social rewards and as I will discuss below, it is only when DA acts in 

conjunction with the opioid system that hedonic valences are applied to these 

stimuli24,63,136,137. The interaction of DA with opioid systems is important for the main 

behavioral transitions discussed above, that is, positive hedonics associated with social 

contact and mating with a partner will reinforce the maintenance of this social proximity 
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with the partner while negative hedonics associated with new social conspecifics prevents 

from the establishment of new bonds138–140. 

 

Μu-opioid receptor and the attribution of positive hedonics to the mating partner 

Opioid signaling within the striatum is shown to contribute to the hedonic 

processing of rewards110,136,137,141. In particular, positive rewards are mediated via the 

activation of μ-opioid receptors (MORs) within the ventral pallidum and the rostro-

dorsomedial NAc142. In regards to social rewards, the activation of MORs within DA 

circuitry mediates the positive hedonic aspects of mating and affiliative social 

interactions143–145. 

In the prairie vole, the development of pair bonds relies on the attribution of positive 

hedonics to experiences with the mating partner. Blockade of MORs within the dorsal 

striatum, but not within the NAc shell prevent partner preference formation12. Peripheral 

activation of these receptors results in an increase in affiliation in sexually naïve prairie 

voles while blockade of these receptors decreases the number of mating bouts in newly 

paired voles and inhibits the development of pair bonds12,146.  At the time these were 

published, these data suggested that the NAc shell was not necessary for the attribution 

of positive hedonics to the mating partner. However, upon further examination, Resendez 

(2013) and colleagues found that the involvement of MORs was segregated to the specific 

regions of the NAc known to be involved in the attribution of positive hedonics to social 

stimuli (i.e., rostro-dorsomedial NAc)11.  

 

k-opioid Regulation of Aggressive Rejection 



	

	 18 

Once a pair bond has been established, prairie voles will perceive novel 

conspecifics entering the home territory as “intruders” and will aggressively reject and 

avoid interaction18,147,148. Importantly, kappa-opioid receptor (KOR) activation in the NAc 

shell is necessary for selective aggression behavior in prairie voles13,15. Importantly, 

activation of KORs is associated with negative affect, aversion, and attenuated value of 

rewards149–156. Aversive stimuli will activate these receptors within the NAc, and their 

activation via site specific pharmacology results in conditioned place aversions151. 

Importantly, this behavioral transition in which a previously rewarding stimulus is now 

perceived as aversive is similar to that which prairie voles experience from their transition 

from sexually naïve to pair bonded (transition from acceptance of novel social interactions 

to aggressive rejection)15.  

 

Oxytocin Systems in Pair Bonding 

Oxytocin (OT) is synthesized primarily in magnocellular neurons of the 

paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus, and is 

transported to the posterior pituitary where it is released into the periphery157,158. 

Secretory vesicles containing OT are present within PVN and SON neurons and are 

capable of somatodendritic release into the extracellular space. This property allows for 

the diffusion of OT to distant targets via volume transmission157,159. Additionally, a smaller 

subset of parvocellular OT neurons in the PVN send direct projections to the amygdala, 

hippocampus, NAc, ventral tegmental area (VTA), and brainstem157,160. Critically, it has 

been demonstrated that the distribution of OT receptors in the brain is both species 
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dependent and correlated with within species differences in social behaviors such as pair 

bonding46,161.  

 

OT, DA, and Social Salience 

As mentioned above, the interaction of DA and OT systems within the NAc shell is 

necessary for the development of pair bonds in female prairie voles, and blockade of one 

with activation of the other is not conducive of a pair bond162. OT has been shown to 

impact a variety of social behaviors of both positive and negative valence depending on 

the context in which these are presented163. Thus, while oxytocin is often regarded for its 

role in mother infant bonding, empathy, trust, and in-group preference, it has also been 

shown to play a role in aggression, punishment, and envy163. One parsimonious account 

of how OT can accomplish such varied roles is via its coordinated action with DA which 

allows it to modulate attentional control toward a social stimulus and contextual cues. 

Indeed, OT and DA circuitry overlap in regions relevant to the processing of rewards and 

threats (Figure 1.4) supporting the idea that OT may be “tuning” social salience.  

 

Evolutionary Considerations  

Monogamous mating strategies influence reproductive success across the lifespan 

and thus have been influenced by the same evolutionary pressures for reproduction that 

regulate polygyny. Thus, it is important to consider the interplay between evolutionary 

constraints and benefits to understand how monogamy is an adaptive strategic option 

weighed against promiscuity (i.e. one potential answer to an evolutionary problem of 

survival and reproduction). 
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For the female prairie vole, male presence is not only important for raising and 

protecting offspring, it is also beneficial during pregnancy; a female prairie vole is less 

likely to carry a pregnancy to term if separated from her partner50. For this reason, it is 

advantageous for the male to remain with the female not only for some time after mating 

(to ensure paternity and to ward off potentially infanticidal males) but also to protect and 

feed the female throughout gestation to ensure successful delivery164 and successful 

post-partum care of pups. Increased survival of genetically-related offspring is a likely 

evolutionarily-maintained benefit for species in which males remain with the female 

throughout pregnancy. Additionally, during the postpartum estrus period, familiar pairs 

are more likely to successfully impregnate the female57. 

Additionally, behaviors characteristic of the vole social structure such as the 

presence of juveniles in the nest appears to have several positive effects on the health of 

the nest as a whole, such as higher rates of survival and earlier eye opening for new 

pups, increased opportunities for parents to leave the nest and forage (and thus more 

food resources for the new litter), and more opportunities for social contact during early 

development165.  

Thus, a strategy in which a high-quality mate is attained can afford both members 

of the bond stable mating opportunities, greater assurance of paternity, increased 

likelihood of raising healthy offspring, and security of food and territory. There is an 

important caveat, however: the male’s individual commitment to the bond is impacted by 

the pairs’ reproductive potential. It has been recorded that male pair-bonded prairie voles 

that fail to efficiently impregnate their partner are more likely to leave a current bond to 

form another and it has been observed that plasticity in the dopamine system associated 
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with pair bonding is also correlated to the timely pregnancy of the female166. That is to 

say, a successful pair bond that has a likelihood of persisting and induces plasticity of the 

DA system (and perhaps motivation to remain in the nest) is defined by both mating and 

pregnancy, and by the timing of these events as well (which suggests reproductive 

compatibility). Importantly, despite these observations, we know very little about how the 

individual neurobiological processes such as the variations in a male’s ability to induce 

and a female’s ability to achieve estrous as well as the processes that contribute to the 

expression of associated neuro and behavioral plasticity and their timing impacts male 

fidelity.   

Introduction to the Experiments in the Dissertation 

 DA plays a role in the development and maintenance of pair bonds, and its 

interaction OT and opioid systems are well known to influence learning and hedonic 

aspects of rewards. The neural circuitry implicated in pair bonding and affiliative behavior 

in the prairie vole shares many similarities with that of reward and addiction24. The 

mesolimbic DA system has been proposed to have evolved to mediate incentive 

behaviors associated natural rewards167. It has been shown that drugs of abuse exert 

their effects on this same system, essentially “hijacking” adaptive circuitry to produce a 

slew of maladaptive behaviors 30. As discussed herein, pair bonds are regulated by 

activation of the DA system and interactions between drug reward and social reward have 

been observed in prairie voles.  

Male prairie voles pretreated with amphetamine fail to show mating induced 

partner preferences and conversely, the presence of social bonds reduces the rewarding 

properties of amphetamine168,169. Importantly, this illustrates the bidirectional relationship 
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through which healthy social attachment can attenuate the rewarding properties of drugs 

of abuse and addiction can reduce the rewarding properties of social attachments.  

The studies in this dissertation utilize the prairie vole to investigate the DA signaling 

mechanisms and adaptations involved in the development of selective social 

attachments. Insight into the role of the DA system in this context has implications for our 

understanding of social bonding as a motivated behavior.  Future work on this model will 

undoubtedly provide a unique perspective on comorbidities between drug addiction and 

social deficits, as well as an understanding of how healthy social attachment can 

decrease vulnerability to drug use.  

 

Overview of this Dissertation 
Evolutionary selection pressures have shaped monogamous mating strategies in 

a variety of species. Mammals are unique in that only an estimated 3%-9% of mammal 

species adopt a monogamous mating structure in which individuals mate with one partner 

over an extended period of time and both partners actively care for offspring. The 

development of this behavior across evolutionary time would have shaped biological 

systems that energized seeking of and remaining in prolonged contact with a mating 

partner and offspring. Indeed, monogamous species such as the socially monogamous 

prairie vole, express neurochemical systems that process social interaction as highly 

rewarding. Of particular interest is the regulation of social behavior by the 

neurotransmitter dopamine (DA). As discussed above activation of DA receptors and 

neuroplasticity in mesolimbic DAergic circuitry underlies the development and 

maintenance of the prairie voles’ monogamous attachments, termed “pair bonds”.   
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My dissertation studies utilize this animal model to: (1) investigate the DA signaling 

mechanisms involved in the development of selective social attachments; (2) determine 

the adaptations of this system after the development of such bonds; (3) characterize the 

interaction of the traditional bonding neuropeptide, OT, on DA signaling within the NAc. 

Together, these research findings provide valuable insight into the role of the DA system 

in this context and have broad implications for our understanding of social bonding as a 

motivated behavior.  

The goal of my dissertation work was to increase our understanding of the DAergic 

mechanisms that regulate pair bonding in particular in relation to the activation of the DA 

system necessary for the development of pair bonds, and the plasticity associated with 

pair bond maintenance in the socially monogamous prairie vole. Because previous data 

suggest that low levels of DA that preferentially activate the D2 class of receptors are 

necessary for the development of pair bonds, and the DA D3 receptor has the highest 

affinity for DA within the D2 class, is highly localized to the NAc shell (region important 

for pair bonding and association of positive hedonics with a mating partner), and is shown 

to be involved in social recognition processes, we hypothesize that the DA D3 receptor 

mediates pair bond development in the socially monogamous prairie vole. Additionally, 

previous data show that DA release within the NAc of pair bonded voles is increased after 

2 weeks of pairing. We hypothesize that this adaptation will persist after 28 days of pairing 

(at which point prairie voles are caring for first litter) and that this adaptation may underlie 

the sustained motivation required for the maintenance of a long-term bond.  Further, while 

increases in DA release have been measured, the mechanism responsible for this is not 

known. By incorporating data gathered from the field of drug addiction which addresses 
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the various DA adaptations that can arise from drug abuse, we hypothesize that pair 

bonding increases DA release via an alteration in DA autoreceptor function. Finally, we 

investigate a possible role for OT in this neuroplasticity. 

 

Summary of the following chapters: 
 

Chapter 2: This chapter shows a key role for the DA D3 receptor subtype in the regulation 

of pair bond formation in male prairie voles. I utilize site-specific pharmacology to 

demonstrate that selective DA D3 receptor activation can induce partner preferences in 

sexually naïve male prairie voles. Importantly, subtype specific activation of D2 receptors 

did not have an effect on pair bonding behavior.  

 

Chapter 3: Chapter 2 utilized a variety of selective DA agonists to induce partner 

preference behavior. Here, I utilize fast-scan cyclic voltammetry to characterize the 

functional activity and selectivity of these drugs in the prairie vole brain. The data collected 

show that these drugs have high efficacy in the striatum. However, unexpectedly, we did 

not replicate findings that the putative DA D3 receptor agonist is most effective in the NAc 

shell than the DS (as shown elsewhere170). This discrepancy may be a result of the 

following: (1) the agonist is not as selective for the D3 receptor subtype or not selective 

at the doses used in this study, or (2) the DA D3 receptor is not as dense in this region in 

the prairie vole as has been measured in mice and rats. These findings should be 

interpreted cautiously in relation to the behavioral data presented in Chapter 1 due to the 

fact that FSCV experiments in slices can only determine terminal regulation of DA 

release. Thus, these findings do not invalidate behavioral data that have been collected, 
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but instead suggest that perhaps post synaptic mechanisms may be important for the 

regulation of this behavior.  

 

Chapter 4: Here I present data that support findings that prairie voles show pair bonding 

dependent increases in DA release in the rostral nucleus accumbens shell (Resendez et 

al., 2016). Importantly, while the previous work had demonstrated this adaptation after 2 

weeks of pairing, I show that this adaptation is maintained beyond the birth of the first 

litter (and into the active biparental caretaking phase). Additionally, I characterize 

adaptations in autoreceptor function as the neuroplasticity that underlies the observed DA 

increase. I then combine these novel findings of DA system adaptations in pair bonding 

with the broad database of research that has shown a role for the oxytocin system in the 

regulation of prairie vole pair bonding by demonstrating that increased oxytocin tone can 

mimic the effect of pair bonding at the DA terminal.  

 

Chapter 5: Here I discuss the broader implications and limitations of this collection of 

work.  I will propose future directions to continue the study of DA regulation of pair 

bonding, especially in regards to the characterization of the neuroplasticity associated 

with this behavior.  
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Figure 1.1. Parental behaviors in prairie voles. Prairie voles engage in biparental care 
of offspring and both the male and female have been seen to engage in caretaking 
behaviors, including nest maintenance and construction, caching food, runway 
construction, care of the young, grooming, retrieval, and brooding. (A) Sleeping posture 
exhibited only by mated pairs (B) Male or female retrieving pup (C) Male or female 
grooming a pup (D) Mated pair brooding a litter. 
 
Illustration from Thomas, J. A. & Birney, E. C. Parental care and mating system of the 
prairie vole, Microtus ochrogaster. Behav. Ecol. Sociobiol. 5, 171–186 (1979). 
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Figure 1.2. Measuring Pair Bonding. (A) Partner Preference Test. The test consists 
of placing a test subject (of either sex) in a three-chamber apparatus in which two of the 
chambers house tethered stimulus animals. One chamber contains the “partner” (animal 
with whom the test subject has been paired; i.e., a conspecific that is familiar to the 
subject) another chamber contains a novel “stranger” (with which the subject is not 
familiar), and a third chamber that remains empty during the test. For three hours the test 
animal is allowed to roam freely among all the chambers and cage entries, time spent in 
cage, and time in side-by-side contact are quantified. If time spent in side-by-side contact 
(in minutes; for a maximum total of 180 minutes) with the partner exceeds time spent in 
contact with the novel animal, an animal is said to have developed a “partner preference”. 
(B) Resident Intruder Test. Pair bonded prairie voles show high levels of aggression 
toward novel conspecifics from which we can infer pair bond strength. After two weeks of 
pairing, the resident-intruder test is conducted and will consist of measuring aggressive 
interactions for a short period of time (typically 10 minutes) between the subject animal 
“resident” and an unfamiliar “intruder” that is introduced into the home cage. Aggressive 
behaviors such as lunges, attacks, offensive rearing, biting, and chasing are recorded.  
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Figure 1.3 Dopamine signaling and pair bond formation. Pair bond formation is 
facilitated by decreased activity of the cAMP system (left panel Gi -> AC prevented), 
whereas increased activity of this system (right panel) prevents this behavior. Because 
D2-like activation and subsequent decreases in cAMP activity and facilitate pair bond 
formation. Abbreviations: DA, dopamine; D2R, D2 Receptor; D1R, D1 receptor; Gi, 
inhibitory g protein; Gs, stimulatory g protein; AC, adenylate cyclase; ATP, adenosine 
triphosphate ;cAMP, cyclic adenosine monophosphate ; PKA, protein kinase A 
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Figure 1.4. Oxytocin and DA Signaling in Pair Bonding/Motivation. Simplified 
illustration of DA and OT signaling. The regions depicted here are thought to participate 
in the processing of motivation and social stimuli. DAergic fibers within the 
mesocorticolimbic pathway (light blue) project from the ventral tegmental area VTA are 
key regulators of motivation. These DAergic projections onto the VP are the major output 
of this pathway which then connects to motor regions to invigorate behavior. Activity 
within this pathway can be modulated by OT (dark blue). Abbreviations: Amyg, amygdala; 
Hipp, hippocampus; Hypo, hypothalamus; NAc, nucleus accumbens; PFC, prefrontal 
cortex; VP, ventral pallidum; VTA, ventral tegmental area. 
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Chapter 2 

Dopamine D3 Receptors Within the Nucleus Accumbens Shell 

Mediate Pair Bond Formation 

 

Abstract 

In the socially monogamous prairie vole, activation of D2-like dopamine receptors within 

the rostral nucleus accumbens shell promotes pair bond formation. However, the specific 

dopamine receptor (i.e., D2 or D3) responsible for this remains unknown. Here, we first 

replicate findings showing that a mixed D2/D3 receptor agonist, quinpirole (.04 ng), when 

infused into the nucleus accumbens shell, induces robust partner preferences. We 

subsequently sought to determine if selective activation of D2 or D3 receptors within the 

rostral nucleus accumbens shell, via infusions of the specific D2R agonist 5,6,7,8-

Tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepine-2-amine dihydrochloride (BHT-920; 

3 ng) or the specific D3R agonist R(+)-2-Dipropylamino-7-hydroxy-1,2,3,4-

tetrahydronaphthalene hydrobromide (7-OH-DPAT; 3 ng), influences partner preference 

formation. Indeed, selective activation of D3 receptors is sufficient to induce partner 

preferences while selective D2 receptor activation is not. Importantly, activation of D3 

receptors increased general affiliative contact during the cohabitation period. Together, 

these findings show a sufficient role for the D3 receptor in the development of partner 
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preferences in male prairie voles and have broad implications for our understanding of 

how dopamine mediates an adaptive motivated behavior. 
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Introduction 

The socially monogamous prairie vole (Microtus ochrogaster) serves as an 

ethologically sound model for the study of social bonding1,2. Unlike most mammals, prairie 

voles establish life-long pair bonds in which both male and female show a stable 

preference for each other, reject novel mating partners, and equally share in offspring 

and nest caretaking2–6. Development and maintenance of these bonds relies on activation 

of the mesolimbic dopamine (DA) system, which is centrally involved in reward processing 

and the generation of motivated behavior7–10. Specifically, activation of D2-like DA 

receptors within the rostral nucleus accumbens (NAc) shell promotes partner preference 

formation in sexually naïve prairie voles7,11. However, the D2-like class of receptors 

includes D2, D3, and D4 subtypes, and the specific receptor(s) responsible for promoting 

partner preference formation are not yet known.  

Determining the individual contributions of these receptors poses unique 

challenges due to their similar binding affinity and overlapping expression12,13. Both D2 

and D3 receptors are expressed in the striatum and share a high degree of homology 

(75%) in their binding sites14. However, D3 receptors are strong candidates for mediating 

the rewarding properties of social interactions due to their more concentrated expression 

within the NAc shell (the specific region of the striatum known to be important for pair 

bonding behavior), compared to D2 expression, which is dense throughout the whole of 

the striatum (i.e., dorsal and ventral striatum)15–19. Additionally, it has been suggested that 
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low levels of DA which preferentially act on D2-like receptors may be responsible for the 

development of pair bonds. Within the D2 class, D3 receptors show the highest affinity 

for DA, making them a likely target of the low levels of DA theorized to be released during 

partner preference formation. Further, D3 receptors are known to influence motivated 

behaviors including social recognition, male parental behavior, and addiction20–25. These 

qualities make the D3 receptor a strong candidate for mediating the development of pair 

bonds in the prairie vole. 

In the current study we examined the role of D2 and D3 receptors in the regulation 

of partner preference behavior via site specific administration of DA subtype specific 

agonists. We first replicated findings showing that the administration of a mixed D2/D3 

receptor agonist (quinpirole; .04 ng) into the rostral NAc shell induces robust partner 

preferences (huddling, rejection of novel mating partners, pup care)7. In a separate set of 

sexually naïve animals, we subsequently administered D2 and D3 selective agonists (7-

OH-DPAT and BHT 920; 3 ng) to target these receptor subtypes and found that activation 

of DA D3 receptors was sufficient to induce partner preferences in sexually naïve animals 

in the absence of mating while activation of D2 receptors was not. These data are the first 

to show a role for the DA D3 receptor subtype in development of partner preferences in 

male prairie voles and perhaps a role for coactivation of D2 and D3 receptors in these 

processes. 

 

Materials and Methods 

Subjects. Subjects were sexually naïve adult male prairie voles (60-150 days old) bred at 

the University of Michigan (UM), weaned at 21 days and housed in single-sex sibling 
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pairs. Test subjects were randomly assigned to a test condition. Animals were on a 14:10h 

light-dark cycle and all experiments were conducted between 0800h and 1800h. All 

procedures were conducted in accordance with the UM animal care guidelines and 

approved by the UM Institutional Animal Care and Use Committee.  

 

Stereotaxic Cannulation. For all surgeries, subjects were anesthetized with 100 mg/kg 

ketamine and 10 mg/kg xylazine mixture at 0.1% body weight. Animals received 

stereotaxic surgery and were implanted with a 26-gauge bilateral guide cannula (Plastics 

One, Roanoke, VA) aimed at the NAc shell (+1.7 mm A/P; ±1 mm M/L; dorsomedial: −4.2 

mm D/V; ventral: −4.5 mm D/V) as described in Resendez, et al., 2012. 10 mg/kg 

ketoprofen analgesic was provided preemptively, after surgery, and 24 hours after the 

first dose was administered. Animals were given 3-5 days to recover in their home cage 

with their cage mate. Additional pain relief was provided as needed. 

 

Microinfusion. On test day, a 33-gauge stainless steel injector was used to infuse 200 

nl/side at a rate of 200 nl/min of either vehicle or vehicle + drug mixture. For partner 

preference induction experiments animals received infusions of either aCSF (n=7) or 

aCSF containing .04 ng of quinpirole (n=4), 3 ng BHT-920 (n=6), or 3 ng 7-OH-DPAT 

(n=6) into the rostral NAc shell. Injectors were left in place for one minute after injection 

to ensure diffusion into the desired region (See “Verification of Cannula Placements”).  

 

Cohabitation. Upon site-specific infusions of drug or vehicle, male subjects were paired 

with a novel ovariectomized female (thus, not sexually receptive) and allowed to cohabit 
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for 6 hours in the absence of mating. It has been determined that this length of pairing, in 

the absence of mating, does not induce a partner preference8,26. Thus, when used in 

combination with targeted pharmacological manipulations, this paradigm provides a 

reliable method to examine the neurobiological mechanisms that underlie partner 

preference formation. The first 10 minutes of every hour during the initial 6-hour pairing 

period were scored for affiliative behavior (olfactory investigation, friendly follow, 

anogenital sniffing, active contact, allogrooming, huddling) and locomotion (cage 

crosses). Additionally, the full 6-hour cohabitation period was scored for mating behavior 

and no animals were observed to mate during this time27–29. 

 

Partner Preference Testing. After the 6-hour cohabitation period, partner preference tests 

were conducted using a partner preference apparatus that consists of three chambers 

separated by 2 inch partitions (Figure 2.1). These partitions separate chambers that 

house on either side a tethered stimulus female (i.e., partner or stranger), and an empty 

center chamber. The subject (sexually naïve prairie vole) is then allowed to roam freely 

among the three chambers for a total of 3 hours (for further detail see 30). “Partners” were 

females with which the test subjects had been paired for the 6-hour period, and 

“strangers” were age and weight matched ovariectomized females that had not previously 

encountered the subject.  Subject animals were placed in the center compartment and 

were allowed to roam all three chambers for 3 hours (180 min)31,32. Video recordings were 

scored for huddling behavior in Behavior Tracker 1.0 Software 

(www.behaviortracker.com) at 4x speed by experimenters blind to treatment group 

assignment and inter-observer reliability was confirmed at 95%. Total time in side-by-side 
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contact with partner and stranger were compared and partner preferences were 

determined by statistical comparison of mean time spent with partner with mean time 

spent with stranger (see “Statistics and Data Analysis”)32–34. 

 

Verification of Cannula Placements:  Following the partner preference test in which 

huddling behavior with a partner and stranger animal is scored, animals received 

infusions of 200 nl/min/side of 20% Chicago Sky Blue 6B solution (Sigma Aldrich St. 

Louis, MO) in 0.9% saline for verification of cannula placements post mortem. Subjects 

were killed via rapid decapitation and brains were snap frozen in powdered dry ice and 

stored at -80°C until sectioning. Cannula placements were determined by an 

experimenter blind to treatment condition and only subjects whose cannula placements 

were in the rostral region of the NAc were included in analyses.  

 

Statistics and Data Analysis. All statistical analyses were carried out using GraphPad 

Prism (Version 7, GraphPad Software, Inc., San Diego, CA) and the Statistical Package 

for the Social Sciences (SPSS version 21; IBM SPSS Inc., Chicago, Illinois). Data from 

partner preference experiments were analyzed using a two-way ANOVA in which stimulus 

animal (partner or stranger) and treatment were used as factors. In addition, within 

treatment analysis to compare time in contact with the partner and stranger was 

performed with a paired t-test.  In order to determine if drug treatment affected affiliative 

or locomotor activity during the cohabitation period, a two-way ANOVA (treatment x time) 

followed by Tukey’s post hoc test was used27,31. Additionally, a two-way ANOVA 

(treatment x chamber) followed by Tukey’s post hoc test was also used to determine if 
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drug treatment affected total amount of time spent in each individual chamber during the 

partner preference test. Total contact time during partner preference testing and during 

cohabitation period were compared via one way-ANOVA. In all cases, statistical 

significance was set at p < 0.05. 

 

Results 

D2/D3 Receptor Induced Partner Preferences 

Previous work utilizing a mixed D2/D3 receptor agonist to induce partner 

preferences showed a key role for D2-like receptors in the development of pair bonds7. 

Analysis of the overall data set using a 2-way ANOVA revealed a significant main effect 

of stimulus animal F (1,38) = 35.78, p = 0.0001, and an interaction effect between 

treatment and stimulus animal F (3, 38) = 6.62, p = 0.0010. In order to determine which 

groups preferentially spent time in contact with partners over strangers, Student’s t-tests 

were performed. We first replicated these data showing that animals that received 

injections of .04 ng of the mixed D2/D3 receptor agonist, quinpirole, into the rostral NAc 

shell formed robust partner preferences in the absence of mating t(4)=6.703, p = 0.0068 

(Figure 2.2). Animals treated with quinpirole did not differ significantly in locomotor 

behavior during the 6 hour cohabitation period F(5, 60) = 0.27, p = 0.9268 (Table 2.2), 

nor did they differ from controls in their total amount of affiliation during the 6 hour 

cohabitation period F(1, 48) = 2.76, p = 0.1030 (Table 2.1). Animals treated with 

quinpirole, did vary significantly in their total contact time (i.e., contact with “partner” and 

“stranger”) during the partner preference test F(1, 5) = 13.83, p = 0.0137. These results 

are logical as this is mostly a reflection of the high amount of contact with the partner 
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during the partner preference test. Importantly, while they showed high levels of contact 

with their partner, they did not differ significantly in the amount of time spent in each 

chamber of the apparatus F(2, 24) = 4.12, p = 0.0291 (Figure 2.2), showing that they 

investigated the additional options.  

Our replication of D2/D3 induced partner preferences in the rostral NAc shell 

emphasizes the importance of this region in the expression of this behavior; however, 

concluding that the responsible receptor subtype or subtypes can be identified based on 

these findings is not possible due to the use of a non-selective D2-like agonist. In fact, 

while quinpirole is regarded as a mixed agonist, its affinity for D3 receptors has been 

shown to be higher, at times, than that of D214,35. Thus, in order to determine the receptor 

subtype(s) (D2R or D3R) responsible for pair bonding, the selective D2 receptor agonist 

BHT-920 (3 ng) and the selective D3 agonist 7-OH-DPAT (3 ng) were administered into 

the rostral NAc shell in the subsequent experiment.   

 

D2 receptor activation does not induce partner preferences 

In order to determine whether D2 receptor activation is responsible for pair 

bonding, the selective D2 receptor agonist BHT-920 was administered into the rostral 

NAc shell in a second cohort of sexually naïve male prairie voles. This agonist has been 

shown to be selective for the D2 subtype via fast scan cyclic voltammetry (FSCV) in 

mouse striatal slices36. Unlike treatment with quinpirole, males treated with the selective 

D2 agonist were not significantly different in their partner preference than those treated 

with vehicle t(6) = 0.740, p = 0.4922 (Figure 2.2). Treatment with the D2 agonist did not 

impact total contact time F(1, 5) = 0.41, p = 0.5500 or total time spent in each chamber 
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of the partner preference apparatus F(2, 30) = 0.03, p = 0.9731. Treatment with B-HT 920 

showed a trend toward increasing affiliative behaviors during the 6 hour cohabitation 

period F(1, 48) = 2.93, p = 0.0934. Treatment with the D2 receptor agonist did, however, 

decrease locomotion during the 6 hour cohabitation period (F (1, 60) = 6.35, p = 0.0144 

(Table 2.2). This is not surprising as D2 receptors are highly involved in motor behavior 

and the use of other DA agonists in other species has been shown to impact locomotion 

via its actions at the Nac37,38. Importantly, this demonstrates that even at a physiologically 

relevant dose, partner preference behavior was not affected. These findings may provide 

some additional insight in that there are two known isoforms of the DA D2 receptor which 

are expressed mainly at pre (D2 short; D2S) or post synaptic sites (D2 long; D2L) and 

drug effects on locomotion are mediated via D2L receptors, suggesting that B-HT 920 

may selectively activate post synaptic (i.e., D2L) receptors in the prairie vole39. 

  

D3 receptor activation induces partner preferences 

In order to asses the contribution of the D3 receptor to pair bond formation we 

used the selective D3 agonist 7-OH-DPAT and infused it into the rostral NAc shell in a 

third set of sexually naïve male prairie voles. Males treated with the selective D3 agonist 

in the rostral shell showed significant partner preferences t(6) = 4.275, p = 0.0079 (Figure 

2.2). Animals treated with 7-OH-DPAT did not differ significantly in their total contact time 

(i.e., contact with either animal) F(1, 4) = 0.06, p = 0.8137 during partner preference test 

or locomotion as assessed by cage crosses during the cohabitation period F(5, 60) = 

1.80, p = 0.1270 (Table 2.2), although they did show a slight trend for exploring the partner 

chamber of the apparatus F(2, 27) = 2.74, p = 0.08 (Figure 2.2). Importantly, this 
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experimental group was the only group to show a significant increase in affiliative 

behavior during the 6 hour cohabitation period F(1, 54) = 4.34, p = 0.0420 (Figure 2.3). 

Additionally, this affiliative behavior showed an increase throughout the 6 hours of pairing 

F(5, 54) = 5.53, p = 0.0004. The results allow us to conclude that the ability of D3 receptor 

agonist treatment to induce partner preferences may be via increased social investigation 

during the cohabitation period. Importantly, the fact that the animals showed only a trend 

for the partner chamber of the apparatus demonstrates that despite developing a pair 

bond, the animals investigated the novel options.  

 

Discussion 

DA in Partner Preference Formation 

The development of monogamous pair bonds in the prairie vole is a motivated 

behavior important for reproduction. Thus, it is not surprising that the DA system, which 

regulates motivation to seek natural rewards such as food and shelter, also mediates 

behaviors relevant to the pursuit, development, and maintenance of pair 

bonds7,8,11,27,28,40–43.  The present findings expand on previous work from Aragona (2006) 

to show for the first time that within the D2-like class of DA receptors, it is the NAc DA D3 

receptors that are critically involved in the development of partner preferences in the 

socially monogamous prairie vole.  

Here, we first replicate findings showing that the mixed D2/D3 receptor agonist, 

quinpirole, when injected into the rostral NAc shell, can induce partner preferences under 

short cohabitation periods in the absence of mating. We then follow up by showing that a 
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selective D3 receptor agonist (7-OH-DPAT) injected into this same region can induce 

partner preferences but a selective D2 receptor agonist (B-HT 920) cannot. These 

findings suggest that the mixed D2/D3 agonist, quinpirole may be inducing its effects 

either by binding to D3 receptors, or that it may be activating both D2 and D3 receptors 

concurrently. Indeed, it is known that D2/D3 receptors can form dimers (i.e., receptor 

complexes) and that these have higher affinity for DA than either receptor on its own44. 

This hypothesis can be tested via brain collection after the cohabitation period 

subsequent assaying of heterodimers within the NAc via immunoprecipitation for D2 and 

D3 receptor complexes. An alternative explanation for the efficacy of the mixed D2/D3 

agonist is the observation that transient activation of D3 receptors can increase agonism 

efficacy at D2 receptors44,45. That is, the transient activation of D3 receptors may “prime” 

D2 receptors to more efficiently activate intracellular signaling after binding of DA.  

DA Activation and Affiliative Behavior 

Animals treated with the selective D3 receptor agonist, 7-OH-DPAT, showed 

increased affiliative behaviors such as olfactory investigation, friendly following, 

anogenital sniffing, active contact, allogrooming, and huddling. Because pairing was 

ended at 6 hours, we cannot know how long this effect on affiliation persisted, and future 

research should investigate these parameters. Interestingly, while D2 receptor activation 

did not induce partner preferences, there was a slight trend for increased affiliation in 

animals treated with B-HT 920 (D2 agonist). The fact that both D2 and D3 receptors 

increased affiliative behaviors, yet only D3 receptor activation was able to induce pair 

bonds, suggests that D3 receptors may be working with other systems within this circuitry, 
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or that they are unique in other properties that contribute to social behaviors. Oxytocin 

and opioid circuitry are known to interact with DA in this region and are theorized to 

contribute to the attribution of hedonic value to salient stimuli, such as meeting a potential 

mating partner46,47. Future work should determine the interactions of D3 receptors with 

hedonic processing systems present within the NAc48,49. 

 

DA D3 Receptors in Motivated Behavior 

The NAc 

Autoradiography is the most common way to measure receptor expression. While 

it has been shown that the D3 receptor is highly expressed in the more limbic regions of 

the NAc in rats, mice, and humans, we do not have measures of these receptors in prairie 

voles50. If these receptors are similarly expressed in prairie voles, then this would support 

the assumption that DA is working in concert with other systems to mediate pair bonding 

behavior. In fact, DA receptor expression and signaling measurements in prairie voles 

have shown that they are consistent with that of other rodents, whereas the expression 

of OT differs significantly among monogamous and non-monogamous species7,51,52. 

Based on these observations, it may be possible to assume that it is the action of DA in 

relation to the restricted expression of OT receptors in this region that underlies the 

development of pair bonds. Future work on this model should characterize the specific 

mechanisms of such interactions by determining the existence of receptor complexes and 

coactivation of these receptors during the cohabitation period.  

 

Drug Taking 
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In recent studies, the D3 receptor has being targeted for the treatment of drug 

addiction as well as other psychiatric disorders such as Parkinson’s disease53,54. In 

particular, the D3 receptor has been implicated in the learning and salience attribution 

processes present during the binging and intoxication stages of addiction55,56. 

Additionally, D3 receptors are expressed within circuitry that mediates drug-, cue-, and 

stress-induced reinstatement of drug seeking57–59. Further, Individuals that have died 

from cocaine overdose show heightened D3 receptor expression in the striatum , and rats 

treated with D3 receptor antagonists will stop self-administering cocaine60,61. Antagonist 

treatment abolishes conditioned place preference (CPP) for cocaine and morphine62. 

Further, blockade of D3 receptors blocks cue-induced reinstatement of cocaine seeking, 

and deletion of the D3 receptor gene results in attenuation of cocaine-induced place 

preferences in rats63–68. It has been established that social bonding processes share 

many neurobiological mechanisms with other motivated processes like addiction, and the 

D3 receptor may underlie aspects of this connection.  

 

Conclusion 

In the prairie vole, the development of pair bonds is an adaptive and highly 

motivated behavior regulated by mesolimbic DA circuitry69. The present study 

demonstrates a role for the DA D3 receptor in the development of a preference for a 

familiar partner. These receptors are highly expressed within the NAc which is the region 

of the striatum that regulates pair bonding behavior and can be activated by low levels of 

DA which are hypothesized to be released during the highly affiliative stages that are 

characteristic of the early development of pair bonds12,50. Interestingly, receptors in this 
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region have been implicated in salience attribution processes in drug addiction, and thus, 

determining the mechanism by which D3 receptors may mediate salience attributions for 

an adaptive behavior such as pair bonding in the prairie vole, can help inform our 

understanding of these processes in maladaptive conditions. 
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Figure 2.1. Illustration of Partner Preference Test. The test consists of placing a test 
subject (male) in a three-chamber apparatus in which two of the chambers house tethered 
stimulus animals (ovariectomized females). The partner is that animal with whom the test 
subject has been paired and the stranger is a novel conspecific. For three hours the test 
animal is allowed to roam freely among all the chambers and cage entries, time spent in 
cage, and time in side-by-side contact are scored in minutes for a total maximum of 180 
minutes. If time spent in side-by-side contact with the partner exceeds time spent in 
contact with the novel animal, an animal is said to have developed a “partner preference”.  
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Figure 2.2. Activation of DA D3 receptors in the NAc shell induces partner 
preferences in sexually naïve males. (A) Animals that received injections of .04 ng of 
the mixed D2/D3 receptor agonist, quinpirole, into the rostral NAc shell formed robust 
partner preferences in the absence of mating t(4)=6.703, p = 0.0068. Animals treated with 
B-HT 920 (D2 Agonist). Unlike treatment with quinpirole, males treated with the selective 
D2 agonist were not significantly different in their partner preference than those treated 
with vehicle t(6) = 0.740, p = 0.4922. Males treated with the selective D3 agonist in the 
rostral shell showed significant partner preferences t(6) = 4.275, p = 0.0079. (B) Animals 
treated with quinpirole, did vary significantly in their total contact time (i.e., contact with 
“partner” and “stranger”) during the partner preference test F(1, 5) = 13.83, p = 0.0137. 
Animals treated with B-HT 920 (D2 Agonist) did not differ in their total contact time F(1, 
5) = 0.41, p = 0.5500. Animals treated with 7-OH-DPAT did not differ significantly in their 
total contact time (i.e., contact with either animal) F(1, 4) = 0.06, p = 0.8137 during partner 
preference test. (C) Animals treated with quinpirole did not differ significantly in the 
amount of time spent in each chamber of the apparatus F(2, 24) = 4.12, p = 0.0219, 
showing that they investigated the additional options. Animals treated with B-HT 920 (D2 
Agonist) did not differ in their time spent in each chamber of the partner preference 
apparatus F(2, 30) = 0.03, p = 0.9731. Animals treated with 7-OH-DPAT showed a slight 
trend for exploring the partner chamber of the apparatus F(2, 27) = 2.74, p = 0.0824. In 
all cases, statistical significance was set at p < 0.05. 
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Figure 2.3. Affiliative behavior during the cohabitation period. Animals treated with 
7-OH-DPAT (D3 Agonist) showed a significant increase in affiliative behavior during the 
6 hour cohabitation period F(1, 54) = 4.34, p = 0.0420 (Figure 2.3). Additionally, this 
affiliative behavior showed an increase throughout the 6 hours of pairing F(5, 54) = 5.53, 
p = 0.0004. The results allow us to conclude that the ability of D3 receptor agonist 
treatment to induce partner preferences may be via increased social investigation during 
the cohabitation period. Only the first 10 minutes of every hour are scored for affiliation, 
thus the maximal score for each hour is 10. Affiliative behaviors scored included olfactory 
investigation, friendly follow, anogenital sniffing, active contact, allogrooming, and 
huddling.  In all cases, statistical significance was set at p < 0.05. 
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Table 2.1. Locomotor behavior during 6 hour cohabitation period. Animals treated 
with quinpirole did not differ significantly in locomotor behavior during the 6 hour 
cohabitation period F(5, 60) = 0.27, p = 0.9268. Treatment with the D2 receptor agonist 
did, however, decrease locomotion during the 6-hour cohabitation period (F (1, 60) = 6.35, 
p = 0.0144. This is not surprising as D2 receptors are highly involved in motor behavior 
and the use of other DA agonists in other species has been shown to impact locomotion 
via its actions at the Nac37,38. Importantly, this demonstrates that even at a physiologically 
relevant dose, partner preference behavior was not affected. Animals treated with 7-OH-
DPAT did not differ significantly in their locomotion as assessed by cage crosses during 
the cohabitation period F(5, 60) = 1.80, p = 0.1270. All data are presented as mean ± 
standard error of the mean (SEM). In all cases, statistical significance was set at p < 0.05. 
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Table 2.2. Affiliative Behaviors during 6 hour cohabitation period. Animals treated 
with quinpirole did not vary significantly in the amount of affiliation during the 6 hour 
cohabitation period F(1, 48) = 2.76, p = 0.1030. Treatment with B-HT 920 showed a trend 
toward increasing affiliative behaviors during the 6 hour cohabitation period F(1, 48) = 
2.93, p = 0.0934. Animals treated with 7-OH-DPAT (D3 Agonist) showed a significant 
increase in affiliative behavior during the 6 hour cohabitation period F(1, 54) = 4.34, p = 
0.0420 (Figure 2.3). Additionally, this affiliative behavior showed an increase throughout 
the 6 hours of pairing F(5, 54) = 5.53, p = 0.0004. The results allow us to conclude that 
the ability of D3 receptor agonist treatment to induce partner preferences may be via 
increased social investigation during the cohabitation period. Only the first 10 minutes of 
every hour are scored for affiliation, thus the maximal score for each hour is 10. All data 
are presented as mean ± standard error of the mean (SEM). In all cases, statistical 
significance was set at p < 0.05. 
 

 

 

 

 

 

 

 

 



	

	 65 

 

 

References 

 
1. Lieberwirth, C. & Wang, Z. The neurobiology of pair bond formation, bond 

disruption, and social buffering. Curr Opin Neurobiol 40, 8–13 (2016). 
 

2. Aragona, B. J. & Wang, Z. The prairie vole (Microtus ochrogaster): an animal model 
for behavioral neuroendocrine research on pair bonding. ILAR J 45, 35–45 (2004). 
 

3. Carter, C. S., DeVries, A. C. & Getz, L. L. Physiological substrates of mammalian 
monogamy: the prairie vole model. Neurosci Biobehav Rev 19, 303–314 (1995). 
 

4. Gavish, L., Carter, C. S. & Getz, L. L. Further evidences for monogamy in the 
prairie vole. Anim Behav 29, 955–957 (1981). 
 

5. Getz, L. L., Carter, C. S. & Gavish, L. The mating system of the prairie vole, 
Microtus ochrogaster: Field and laboratory evidence for pair-bonding. Behav Ecol 
Sociobiol 8, 189–194 (1981). 
 

6. Getz, L. L. & Hofmann, J. E. Social organization in free-living prairie voles, Microtus 
ochrogaster. Behav Ecol Sociobiol 18, 275–282 (1986). 
 

7. Aragona, B. J. et al. Nucleus accumbens dopamine differentially mediates the 
formation and maintenance of monogamous pair bonds. Nat Neurosci 9, 133–139 
(2006). 
 

8. Curtis, J. T., Liu, Y., Aragona, B. J. & Wang, Z. Dopamine and monogamy. Brain 
Res 1126, 76–90 (2006). 
 

9. Ikemoto, S., Glazier, B. S., Murphy, J. M. & McBride, W. J. Role of dopamine D1 
and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17, 
8580–8587 (1997). 
 

10. Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated 
behavior: a unifying interpretation with special reference to reward-seeking. Brain 
Res Brain Res Rev 31, 6–41 (1999). 
 

11. Gingrich, B., Liu, Y., Cascio, C., Wang, Z. & Insel, T. R. Dopamine D2 receptors in 
the nucleus accumbens are important for social attachment in female prairie voles 
(Microtus ochrogaster). Behav Neurosci 114, 173–183 (2000). 
 

12. Lévesque, D. et al. Identification, characterization, and localization of the dopamine 



	

	 66 

D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc 
Natl Acad Sci U S A 89, 8155–8159 (1992). 
 

13. Waters, N., Svensson, K., Haadsma-Svensson, S. R., Smith, M. W. & Carlsson, A. 
The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor 
activity. J Neural Transm Gen Sect 94, 11–19 (1993). 
 

14. Platania, C. B. M., Salomone, S., Leggio, G. M., Drago, F. & Bucolo, C. Homology 
modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and 
docking evaluation. PLoS ONE 7, e44316 (2012). 
 

15. Bouthenet, M. L. et al. Localization of dopamine D3 receptor mRNA in the rat brain 
using in situ hybridization histochemistry: comparison with dopamine D2 receptor 
mRNA. Brain Res 564, 203–219 (1991). 
 

16. Rankin, M. L. et al. Molecular Pharmacology of the Dopamine Receptors. 
Dopamine Handbook 63 (2010). 
 

17. Sokoloff, P. et al. The dopamine D3 receptor: a therapeutic target for the treatment 
of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5, 25–43 (2006). 
 

18. Weiner, D. M. & Brann, M. R. The distribution of a dopamine D2 receptor mRNA in 
rat brain. FEBS Lett 253, 207–213 (1989). 
 

19. Yokoyama, C., Okamura, H., Nakajima, T., Taguchi, J. & Ibata, Y. Autoradiographic 
distribution of [3H]YM-09151-2, a high-affinity and selective antagonist ligand for the 
dopamine D2 receptor group, in the rat brain and spinal cord. J Comp Neurol 344, 
121–136 (1994). 
 

20. Beaulieu, J.-M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology 
of dopamine receptors. Pharmacol Rev 63, 182–217 (2011). 
 

21. Leggio, G. M. et al. Dopamine D(3) receptor as a new pharmacological target for 
the treatment of depression. Eur J Pharmacol 719, 25–33 (2013). 
 

22. Nakajima, S. et al. The potential role of dopamine D₃ receptor neurotransmission in 
cognition. Eur Neuropsychopharmacol 23, 799–813 (2013). 
 

23. Paterson, N. E., Vocci, F., Sevak, R. J., Wagreich, E. & London, E. D. Dopamine 
D3 receptors as a therapeutic target for methamphetamine dependence. Am J Drug 
Alcohol Abuse 40, 1–9 (2014). 
 

24. Baldessarini, R. J. in The Dopamine Receptors (eds. Neve, K. A. & Neve, R. L.) 
457–498 (Humana Press, 1997). doi:10.1007/978-1-4757-2635-0_15 
 

25. Elsworth, J. D. & Roth, R. H. in The Dopamine Receptors (eds. Neve, K. A. & Neve, 



	

	 67 

R. L.) 223–265 (Humana Press, 1997). doi:10.1007/978-1-4757-2635-0_8 
 

26. Williams, J. R., Catania, K. C. & Carter, C. S. Development of partner preferences 
in female prairie voles (Microtus ochrogaster): the role of social and sexual 
experience. Horm Behav 26, 339–349 (1992). 
 

27. Aragona, B. J., Liu, Y., Curtis, J. T., Stephan, F. K. & Wang, Z. A critical role for 
nucleus accumbens dopamine in partner-preference formation in male prairie voles. 
J Neurosci 23, 3483–3490 (2003). 
 

28. Curtis, J. T. & Wang, Z. Ventral tegmental area involvement in pair bonding in male 
prairie voles. Physiol Behav 86, 338–346 (2005). 
 

29. Liu, Y. & Wang, Z. X. Nucleus accumbens oxytocin and dopamine interact to 
regulate pair bond formation in female prairie voles. Neuroscience 121, 537–544 
(2003). 
 

30. Resendez, S. L., Kuhnmuench, M., Krzywosinski, T. & Aragona, B. J. κ-Opioid 
receptors within the nucleus accumbens shell mediate pair bond maintenance. J 
Neurosci 32, 6771–6784 (2012). 
 

31. Curtis, J. T., Liu, Y. & Wang, Z. Lesions of the vomeronasal organ disrupt mating-
induced pair bonding in female prairie voles (Microtus ochrogaster). Brain Res 901, 
167–174 (2001). 
 

32. Cushing, B. S., Okorie, U. & Young, L. J. The effects of neonatal castration on the 
subsequent behavioural response to centrally administered arginine vasopressin 
and the expression of V1a receptors in adult male prairie voles. J Neuroendocrinol 
15, 1021–1026 (2003). 
 

33. Bales, K. L., Mason, W. A., Catana, C., Cherry, S. R. & Mendoza, S. P. Neural 
correlates of pair-bonding in a monogamous primate. Brain Res 1184, 245–253 
(2007). 
 

34. Cho, M. M., DeVries, A. C., Williams, J. R. & Carter, C. S. The effects of oxytocin 
and vasopressin on partner preferences in male and female prairie voles (Microtus 
ochrogaster). Behav Neurosci 113, 1071–1079 (1999). 
 

35. Levant, B., Grigoriadis, D. E. & De Souza, E. B. Relative affinities of dopaminergic 
drugs at dopamine D2 and D3 receptors. Eur J Pharmacol 278, 243–247 (1995). 
 

36. Maina, F. K. & Mathews, T. A. A functional fast scan cyclic voltammetry assay to 
characterize dopamine D2 and D3 autoreceptors in the mouse striatum. ACS Chem 
Neurosci 1, 450–462 (2010). 
 

37. Van Ree, J. M. & Wolterink, G. Injection of low doses of apomorphine into the 



	

	 68 

nucleus accumbens of rats reduces locomotor activity. Eur J Pharmacol 72, 107–
111 (1981). 
 

38. Radhakishun, F. S. & Van Ree, J. M. The hypomotility elicited by small doses of 
apomorphine seems exclusively mediated by dopaminergic systems in the nucleus 
accumbens. Eur J Pharmacol 137, 41–47 (1987). 
 

39. Usiello, A. et al. Distinct functions of the two isoforms of dopamine D2 receptors. 
Nature 408, 199–203 (2000). 
 

40. Wang, Z. et al. Dopamine D2 receptor-mediated regulation of partner preferences in 
female prairie voles (Microtus ochrogaster): a mechanism for pair bonding? Behav 
Neurosci 113, 602–611 (1999). 
 

41. Smeltzer, M. D., Curtis, J. T., Aragona, B. J. & Wang, Z. Dopamine, oxytocin, and 
vasopressin receptor binding in the medial prefrontal cortex of monogamous and 
promiscuous voles. Neurosci Lett 394, 146–151 (2006). 
 

42. Aragona, B. J., Detwiler, J. M. & Wang, Z. Amphetamine reward in the 
monogamous prairie vole. Neurosci Lett 418, 190–194 (2007). 
 

43. Liu, Y., Young, K. A., Curtis, J. T., Aragona, B. J. & Wang, Z. Social bonding 
decreases the rewarding properties of amphetamine through a dopamine D1 
receptor-mediated mechanism. J Neurosci 31, 7960–7966 (2011). 
 

44. Scarselli, M. et al. D2/D3 dopamine receptor heterodimers exhibit unique functional 
properties. J Biol Chem 276, 30308–30314 (2001). 
 

45. Zapata, A. & Shippenberg, T. S. Lack of functional D2 receptors prevents the 
effects of the D3-preferring agonist (+)-PD 128907 on dialysate dopamine levels. 
Neuropharmacology 48, 43–50 (2005). 
 

46. Shamay-Tsoory, S. G. & Abu-Akel, A. The social salience hypothesis of oxytocin. 
Biol Psychiatry 79, 194–202 (2016). 
 

47. Love, T. M. Oxytocin, motivation and the role of dopamine. Pharmacol Biochem 
Behav 119, 49–60 (2014). 
 

48. Peciña, S. & Berridge, K. C. Hedonic hot spot in nucleus accumbens shell: where 
do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25, 
11777–11786 (2005). 
 

49. Peciña, S. & Berridge, K. C. Opioid site in nucleus accumbens shell mediates 
eating and hedonic “liking” for food: map based on microinjection Fos plumes. Brain 
Res 863, 71–86 (2000). 
 



	

	 69 

50. Heidbreder, C. A. & Newman, A. H. Current perspectives on selective dopamine 
D(3) receptor antagonists as pharmacotherapeutics for addictions and related 
disorders. Ann N Y Acad Sci 1187, 4–34 (2010). 
 

51. Insel, T. R. & Shapiro, L. E. Oxytocin receptor distribution reflects social 
organization in monogamous and polygamous voles. Proc Natl Acad Sci U S A 89, 
5981–5985 (1992). 
 

52. Resendez, S. L. et al. Dopamine and opioid systems interact within the nucleus 
accumbens to maintain monogamous pair bonds. elife 5, (2016). 
 

53. Beninger, R. J. & Banasikowski, T. J. Dopaminergic mechanism of reward-related 
incentive learning: focus on the dopamine D(3) receptor. Neurotox Res 14, 57–70 
(2008). 
 

54. Heidbreder, C. Rationale in support of the use of selective dopamine D₃ receptor 
antagonists for the pharmacotherapeutic management of substance use disorders. 
Naunyn Schmiedebergs Arch Pharmacol 386, 167–176 (2013). 
 

55. Koob, G. F. & Le Moal, M. Drug abuse: hedonic homeostatic dysregulation. Science 
278, 52–58 (1997). 
 

56. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: 
from actions to habits to compulsion. Nat Neurosci 8, 1481–1489 (2005). 
 

57. Shaham, Y., Shalev, U., Lu, L., De Wit, H. & Stewart, J. The reinstatement model of 
drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 
168, 3–20 (2003). 
 

58. Everitt, B. J. & Wolf, M. E. Psychomotor stimulant addiction: a neural systems 
perspective. J Neurosci 22, 3312–3320 (2002). 
 

59. McFarland, K. & Kalivas, P. W. The circuitry mediating cocaine-induced 
reinstatement of drug-seeking behavior. J Neurosci 21, 8655–8663 (2001). 
 

60. Mugnaini, M. et al. Occupancy of brain dopamine D3 receptors and drug craving: a 
translational approach. Neuropsychopharmacology 38, 302–312 (2013). 
 

61. Newman, A. H. et al. Medication discovery for addiction: translating the dopamine 
D3 receptor hypothesis. Biochem Pharmacol 84, 882–890 (2012). 
 

62. Vorel, S. R. et al. Dopamine D3 receptor antagonism inhibits cocaine-seeking and 
cocaine-enhanced brain reward in rats. J Neurosci 22, 9595–9603 (2002). 
 

63. Ashby, C. R., Rice, O. V., Heidbreder, C. A. & Gardner, E. L. The selective 
dopamine D3 receptor antagonist SB-277011A significantly accelerates extinction 



	

	 70 

to environmental cues associated with cocaine-induced place preference in male 
Sprague-Dawley rats. Synapse 69, 512–514 (2015). 
 

64. Ashby, C. R., Rice, O. V., Heidbreder, C. A. & Gardner, E. L. The selective 
dopamine D₃ receptor antagonist SB-277011A attenuates drug- or food-deprivation 
reactivation of expression of conditioned place preference for cocaine in male 
Sprague-Dawley rats. Synapse 69, 336–344 (2015). 
 

65. Galaj, E., Ananthan, S., Saliba, M. & Ranaldi, R. The effects of the novel DA D3 
receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-
induced locomotor activity in rats. Psychopharmacology (Berl) 231, 501–510 
(2014). 
 

66. Hu, R., Song, R., Yang, R., Su, R. & Li, J. The dopamine D3 receptor antagonist 
YQA14 that inhibits the expression and drug-primed reactivation of morphine-
induced conditioned place preference in rats. Eur J Pharmacol (2013). 
doi:10.1016/j.ejphar.2013.10.026 
 

67. Rice, O. V., Heidbreder, C. A., Gardner, E. L., Schonhar, C. D. & Ashby, C. R. The 
selective D₃ receptor antagonist SB-277011A attenuates morphine-triggered 
reactivation of expression of cocaine-induced conditioned place preference. 
Synapse 67, 469–475 (2013). 
 

68. Song, R. et al. Dopamine D(3) receptor deletion or blockade attenuates cocaine-
induced conditioned place preference in mice. Neuropharmacology 72, 82–87 
(2013). 
 

69. Aragona, B. J. & Wang, Z. Dopamine regulation of social choice in a monogamous 
rodent species. Front Behav Neurosci 3, 15 (2009). 
 

 
 
 

 

 

 

 

 

 



	

	 71 

 

 

 

Chapter 3 

Functional Fast Scan Cyclic Voltammetry Assay to Characterize 

Dopamine D2 and D3 Autoreceptors in the Prairie Vole Striatum 

 

Abstract 

Presynaptic dopamine D2 and D3 receptors can control the synthesis and release of 

dopamine via their function as autoreceptors. In mice and rats these receptors have been 

shown to exhibit a restricted expression that differs in a meaningful way— the D2 receptor 

is dense throughout the striatum while the expression of the D3 receptor is highly localized 

to the nucleus accumbens shell. With the use of fast scan cyclic voltammetry in striatal 

slices, we can take advantage of these unique signaling and expression properties to 

characterize the selectivity and functional activity of putative D2 and D3 selective agonists 

in the prairie vole brain based on their ability to quickly and completely inhibit dopamine 

release in these regions. Here, we measured the efficacies of the D2-selective agonist 

5,6,7,8-Tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepine-2-amine dihydrochloride 

(B-HT 920), the D3 selective agonist R(+)-2-Dipropylamino-7-hydroxy-1,2,3,4-

tetrahydronaphthalene hydrobromide (7-OH-DPAT), and the mixed D2/D3 receptor 

agonist, quinpirole. B-HT 920 had highest efficacy in the dorsal striatum whereas 

quinpirole was more effective in the nucleus accumbens shell at inhibiting dopamine 
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release than either the selective D2 or D3 agonist. Surprisingly, the D3 agonist, 7-OH-

DPAT, showed similar effects in both regions examined. This result was unanticipated as 

inhibition of dopamine release by agonists is thought to reflect receptor distribution and 

reports in other species show greater density D3 receptors in the nucleus accumbens 

shell compared with dorsal striatum. Our results suggest that the prairie vole shows a 

unique response to quinpirole compared to other species and that the distribution of D3 

receptors in the prairie vole may not follow the same pattern as in other species.  
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Introduction 

Unlike most mammals, the socially monogamous prairie vole (Microtus 

ochrogaster) forms a lifelong bond characterized by sexual exclusivity, aggressive 

rejection of novel mating partners, and biparental care of offspring1–6. Motivation to seek 

out and engage with a potential mating partner and further remain in the nest to care for 

offspring is necessary for the development and maintenance of these bonds and so, it is 

not surprising that dopamine (DA) D2-like receptor signaling within the mesocorticolimbic 

system, which regulates the expression of motivated behavior, mediates the expression 

of the prairie vole’s unique sociality as well7–12.  

The use of D2-like receptor agonists to manipulate pair bonding behavior have 

elucidated many aspects of prairie vole pair bonding, however, the functional properties 

of these agonists in the prairie vole brain have not been tested. Importantly, receptors 

within the D2 class are highly homologous, thus, determining their functional activity is 

imperative for the analysis of behavioral data. Here, we characterize the effects of drugs 

that bind the 2 DA receptor subtypes and provide surprising and useful insights for the 

interpretation of behavioral studies that have used these pharmacological agents.  

 

DA Signaling 

DA signaling within the nucleus accumbens (NAc) regulates the development and 

maintenance of pair bonds in this species7,13. Neuroanatomical studies of this region in 



	

	 74 

other species have determined that this is a heterogeneous region composed of individual 

components known to regulate a variety of behaviors relating to motivation and hedonic 

processing10,14. In particular, the striatum can be subdivided into the dorsal striatum (DS), 

and the ventral striatum (VS) or NAc, which itself is comprised of distinct shell and core 

regions. The DA cell bodies innervating the DS and NAc regions originate from two 

distinct components of the midbrain, the Substantia nigra (SN) innervates the DS while 

the ventral tegmental area (VTA) innervates the NAc15. For the prairie vole, it is the VTA 

projection onto the rostral NAc, but not the caudal NAc that regulates the development 

and maintenance of pair bonds in this species7.  

Additionally, these regions display different dopamine signaling characteristics. 

The DS expresses high levels of extracellular DA and higher rates of DA uptake than the 

NAc16–18. The individual regions of the NAc also display distinct DA signaling. Specifically, 

the core has been shown to have higher levels of extracellular DA  and higher levels of 

electrically evoked DA release and uptake than the shell region19–21.  

DA binds to any of 5 receptors which are categorized as D1-like or D2-like based 

on their activation or inhibition of adenylate cyclase, respectively. The D1 class of 

receptors includes the D1 and D5 receptors which are low affinity receptors activated by 

high levels of dopamine release22. The D2 class of receptors includes D2, D3, and D4 

receptors which are high affinity receptors, that is they are sensitive to low levels of DA 

release such as that present during tonic signaling22. It is theorized that low levels of DA 

release, such as those levels present during tonic firing, are important for the 

development of pair bonds in the prairie vole, as pharmacological manipulations that 

selectively target these receptors within the NAc can induce partner preferences in 
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sexually naïve prairie voles of both sexes13,23–25. The ability of slow DA signaling to 

produce dramatic and long lasting effects on behavior such as pair bonding, highlight the 

many ways in which DA can impact behavior via variations in release and uptake 

mechanisms that are further fine-tuned within the regions and receptors on which it is 

acting. 

 

FSCV for the study of drug selectivity and autoreceptor functionality 

When expressed at the presynaptic DA terminal, the D2 and D3 receptor subtypes 

function as autoreceptors26–28. Autoreceptors are homeostatic regulators of dopamine 

release which modulate extracellular levels of DA through a negative feedback loop. 

Increasing extracellular concentrations of DA result in a reduction of further DA release 

via the autoreceptors. Measurements in rats, mice, and humans have shown that the D2 

autoreceptor is dense throughout the DS and NAc while the D3 autoreceptor is most 

dense in the NAc29–34. This unique property allows for the study of the functional 

properties, and in particular, the selectivity of drugs that target these receptors by 

measuring the ability of these drugs to inhibit DA release in discrete regions of the striatum 

known to exhibit different densities of D2 and D3 receptor expression, like the DS and 

NAc 

In slice preparations, bath application of selective agonists activates D2 and D3 

autoreceptors, subsequently reducing the amount of stimulated DA release26. More 

effective agonists induce full DA inhibition more quickly, and at lower doses. Thus, bath 

application of agonists followed by FSCV measures in discrete brain areas known to 

express different receptor subtypes provides a means by which to characterize 
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pharmacological agents as either D2 or D3 preferring35,36. If the prairie vole brain is 

assumed to have similar distribution of D2 and D3 receptors as other species such as 

mice and rats31,35,37–39, then D2 preferring agonists that bind to autoreceptors should show 

similar efficacy in the DS and NAc while D3 preferring agonists should show higher 

efficacy within the NAc shell.  

 Here, we test the effects of DA D2 and D3 agonists that have been previously used 

in behavioral studies of prairie vole pair bonding via FSCV measures of electrically 

stimulated DA release in the prairie DS and NAc. We measured the efficacies of the DA 

D2-selective agonist, B-HT 920, the selective D3 agonist, 7-OH-DPAT, and the mixed 

D2/D3 receptor agonist, quinpirole at inhibiting DA release within the DS and NAc. B-HT 

920 showed the highest efficacy in the DS, whereas quinpirole was the most effective 

drug tested in the NAc shell, inhibiting DA release to a greater extent than either the 

selective D2 or selective D3 agonists alone. These results suggest that quinpirole, is 

particularly well suited because of its high efficacy for dopamine receptors in the nucleus 

accumbens shell of the prairie vole which would support findings showing that this is a 

highly effective manipulation in prairie vole behavioral studies.  

 

Materials and Methods 

Subjects. Subjects were sexually naïve adult male prairie voles (60-150 days old) bred at 

the University of Michigan (UM), weaned at 21 days and housed in single-sex sibling 

pairs. Test subjects were randomly assigned to a drug condition. Animals were on a 

14:10h light-dark cycle and all experiments were conducted between 0800h and 1800h. 
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All procedures were conducted in accordance with the UM animal care guidelines and 

approved by the UM Institutional Animal Care and Use Committee.  

 

Slice preparation. Animals were killed via rapid decapitation and one hemisphere of the 

brain was used for FSCV experiments40. Left/right hemispheres used for FSCV were 

counter balanced. FSCV hemisphere was place in pre-cooled preoxygenated (95% 

O2/5% CO2) high sucrose-aCSF buffer for 10 min. High sucrose aCSF consisted of 180 

mM sucrose, 30 mM NaCl, 4.5 mM KCl, 1 mM MgCl2, 26 mM NaHCO3, 1.2 mM NaH2PO4, 

and 10 mM d-glucose (aCSF followed same recipe without addition of sucrose; both 

solutions were made in house and stored for use within 2 weeks)41. 400 μm-thick coronal 

striatal slices that included sections of the DS and VS were taken with a vibrating tissue 

slicer (Leica, Buffalo Grove, IL). Slices were maintained in oxygenated aCSF at room 

temperature for 1 h. After 1 hour a slice was transferred to a custom-made submersion 

recording chamber (Custom Scientific, Denver, CO) for recording and perfusion with 

selective agonists.  

 

FSCV. In order to determine the functional activity of selective D2 and D3 receptor 

agonists, we conducted FSCV as previously described35,36. During experiments, a bipolar 

stimulating electrode and carbon fiber recording electrode (produced in house) and 

calibrated to a known DA concentration as described previously42,43 were placed in the 

DS or rostral Nacc shell. Using software written in LABVIEW (National Instruments, 

Austin, TX; Tarheel CV University of North Carolina, Chapel Hill) a triangular ramp 

sweeping from -0.4V to +1.2V versus a Ag/AgCl reference was applied to the carbon-
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fiber electrode at a rate of 10Hz. Once DA release was stabilized, the slice was bathed in 

increasing concentrations of quinpirole, B-HT 920, or 7-OH-DPAT (0.001, 0.01, 0.03, 0.1, 

0.3, 1, 3, 10μM). Fifteen second recordings consisting of a 1 pulse 350μA stimulation at 

the 5 second mark were made at regular 5 minute intervals for a total of 6 recordings per 

drug dose (30 minutes per dose). 

 

Statistics and Data Analysis. Data analysis and quantification of stimulated DA release 

was conducted as described previously35,44. Current versus time plots and electrically 

stimulated DA release rates were determined via use of Michaelis-Menten equations as 

described in19. All statistical analyses were carried out using GraphPad Prism (Version 7, 

GraphPad Software, Inc., San Diego, CA) and the Statistical Package for the Social 

Sciences (SPSS version 21; SPSS Inc., Chicago, IL). Data are presented as the mean ± 

standard error of the mean (SEM). For dose response experiments, the change in DA 

peak was compared to pre-drug values for each individual animal producing percent 

change in stimulated DA release. Percent change was then plotted against concentration 

(M). Data were assessed with a one-way ANOVA comparing drugs within each region 

(NAc shell or DS) followed by a Bonferroni post hoc test. In all cases, statistical 

significance was set at P < 0.05. 

 

Chemicals. B-HT 920, 7-OH-DPAT were purchased from Tocris Bioscience (Minneapolis, 

MN), Quinpirole hydrochloride was purchased from Sigma Aldrich (St. Louis, MO). All 

drugs were made the morning of the experiment and dissolved in aCSF  
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Results 

Bath-applying agonists to slice preparations results in a reduction in stimulated DA 

release. More effective agonists induce full DA inhibition more quickly, and at lower 

doses. Thus, bath application of agonists followed by FSCV measures in discrete brain 

areas known to express distinct receptor subtypes provides a means by which to 

characterize pharmacological agents as either D2 or D3 preferring35. As an example, 

representative release traces in the absence and presence of three doses of quinpirole 

(0 μM, 0.03 μM, 1 μM) are shown in Figure 3.1a. We hypothesized that D3 preferring 

agonists would show highest efficacy (i.e., strongest inhibition of DA release stimulated 

by a single electrical pulse) in the NAc shell region where D3 receptor expression has 

been found to be high in mice and rats30,31, while D2 preferring agents would show similar 

inhibition in both regions as it is expressed densely throughout the dorsal and ventral 

striatum.  

 

Maximal Response Compared at 1µM 

To make a direct comparison between drugs within these regions, the 

concentration of 1µM was chosen as treatment with this concentration produced effects 

in all slices. Table 3.1 summarizes the maximal DA release at this concentration for each 

of the three drugs on both brain regions. Efficacy values are expressed as percent of drug 

effect in relation to pre-drug value defined as 100%. Because these are expressed as a 

percentage of pre-drug value, lower percentages (i.e., lower amount of DA release 

compared to baseline) reflect greater effect of the agonist within the specified region.  
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The mixed D2/D3 receptor agonist, quinpirole, exhibited the greatest DA release 

inhibition at 1 µM in the NAc shell with 18.77% release compared to baseline, although it 

also showed relatively greater inhibitory efficacy in the DS at 20.90% release compared 

to baseline. The inhibition effect of 1µM of the D3 receptor agonist was not significant in 

the NAc or DS with 49.67% and 46.06% release from baseline, respectively (although 

larger variation was observed in DS responses). Interestingly, the DA inhibition effect of 

the selective D3 agonist, 7-OH-DPAT, observed here was similar to those recorded in the 

DS of mice35. Finally, B-HT 920 DA inhibition (D2 receptor agonist) was comparable to 

that of the D3 receptor agonist in the shell with 42.56%, however treatment with B-HT 

920 within the DS showed the maximum inhibition effect for this region with 12.21%. 

 

FSCV Assay of D2/D3 Agonists in the Prairie Vole Striatum 

Agonist efficacy was evaluated by measuring its effects on stimulated DA release 

within the NAc and the DS. All drugs inhibited DA release in a concentration dependent 

fashion that could be fitted to a monophasic curve (Figure 3.1, 3.2). Based on previous 

autoradiography and FSCV studies, we expected B-HT 920 to be equally effective at 

inhibiting DA release within the DS and NAc shell, as the expression of the D2 receptors 

within these regions has been observed to be relatively homogenous31,35,45–48. Per region 

analysis via a two-way ANOVA revealed a significant main effect of drug treatment F (2, 

135) = 31.34, p = 0.0001  and drug dose F (8, 135) = 84.19, p = 0.0001 in the NAc shell. 

Post hoc analysis indicated that quinpirole was more effective at inhibiting DA release in 

the NAc shell at all doses administered compared to either of the drugs that bind to the 

D2 or D3 receptors wih a higher affinity. In the DS, analysis via a two-way ANOVA 
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revealed a significant main effect of drug treatment F (2, 71) = 11.55, p = 0.0001 and drug 

dose F (8, 71) = 34.50, p = 0.0001. Post hoc analysis indicated that B-HT920 was more 

effective at inhibiting DA release in the DS from treatment with .03uM and higher. These 

results were surprising as previous measurements of B-HT920 inhibition effects in the 

mouse brain showed comparable results in these regions.  

 

Discussion 

 

Here, we test the effects of DA D2 and D3 agonists that have been previously used 

in behavioral studies of prairie vole pair bonding via FSCV measures of electrically 

stimulated DA release in the prairie vole DS and NAc. We measured the efficacies of the 

D2-selective agonist, B-HT 920, the selective D3 agonist, 7-OH-DPAT, and the mixed 

D2/D3 receptor agonist, quinpirole, at inhibiting DA release within the DS and NAc shell. 

B-HT 920 had highest efficacy in the DS. We report here that quinpirole was more 

effective at inhibiting DA release within the NAc shell than either of the subtype selective 

agonists supporting the idea that this drug is particularly effective in the prairie vole NAc. 

These results suggest that quinpirole, is particularly well suited because of its high 

efficacy for dopamine receptors in the nucleus accumbens shell of the prairie vole. 

The D3 agonist, 7-OH-DPAT, showed similar effects in both brain regions 

examined, the NAc shell and DS. This result was unanticipated as reports on other 

species show a higher density of the D3 DA receptor in the NAc shell49. This discrepancy 

may be a result of the following: (1) the agonist is not selective for the D3 receptor subtype 

or not selective at the doses used in this study in the prairie vole, or (2) the DA D3 receptor 

is not as dense or functionally active in this region in the prairie vole as it is in other 
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species. It should be noted, that these findings would not invalidate behavioral data 

acquired from the use of these drugs. Instead, these data should be interpreted with a 

sensitivity to the fact that FSCV experiments in slices investigate only one part of this 

system, that is, FSCV can only determine terminal regulation of DA release and cannot 

account for activity of these receptors in behavioral experiments on which it acts on an 

intact system. Additionally, FSCV can only infer drug selectivity and receptor functionality 

and not receptor density, thus, it is imperative to measure D3 receptor expression in the 

prairie vole striatum to determine if the limited effects of D3 activation are a result of low 

receptor density. 

 Additionally, the effect of B-HT 920 in the DS was also unexpected as previous 

measurements of B-HT 920 in the mouse brain showed comparable inhibition with this 

drug in the DS and NAc. Behavioral observations (see Chapter 2) have shown that use 

of this drug in prairie voles impacts locomotion. Locomotor behavior at D2 receptors in 

the NAc is mainly mediated by activation of post-synaptic D2L receptors. FSCV is limited 

in that it can only determine the effects of this drug on terminal release via activation of 

autoreceptors. However, the data included in Chapter 2 suggest that in the prairie vole, 

this drug may have a greater affinity for the post-synaptic receptors, rather than pre-

synaptic receptors, which do not directly regulate DA release. Additionally, we 

demonstrate that the selective D2 agonist is most effective at inhibiting DA release within 

the DS and this may be either a result of varied expression or functionality of these 

receptors within the NAc and DS of prairie voles. 

The mixed D2/D3 agonist, quinpirole, showed the greatest effect at the NAc, 

compared to the selective D2 and D3 agonists tested. Importantly, this region mediates 
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pair bonding behavior as well as the attribution of positive hedonics to a mating 

partner50,51.  Because quinpirole is a mixed agonist, and neither agonist alone could 

produce as strong responses in the NAc, this suggests that quinpirole is particularly well 

formulated to exploit meaningful functional differences within this region (perhaps by 

concurrent activation of both D2 and D3 receptors). These findings are consistent with 

the robust partner preferences that are induced via quinpirole treatment in prairie voles7.  

Future work can determine if this is the case by utilizing quinpirole in the presence of 

selective D2 and D3 antagonists in slice preparations.  

 

Conclusions 

These data provide further evidence that the unique signaling properties of the 

striatum can be used in combination with techniques such as FSCV to measure the 

selectivity of drugs for the D2 and D3 autoreceptor. Two interesting findings suggest that 

DA D2-like receptor expression and/or functionality is unique in prairie voles compared to 

other rodent species. Indeed, future work on this model should characterize the 

expression of these receptors in the prairie vole brain, and determine whether concurrent 

activation of D2 and D3 receptors results in meaningful functional differences. 
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Figure 3.1. Effect of increasing concentrations of quinpirole on maximal evoked dopamine release 
in the DS  
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Figure 3.2. Effect of increasing concentrations of Quinpirole, B-HT 920 and 7-OH-DPAT on maximal 
evoked dopamine release in the striatum. NAc shell (a) and DS (b) the log concentration of drug is 
graphed on the horizontal axis versus the amount of dopamine released expressed as a percentage of the 
baseline (prior to agonist exposure).  
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 Region 
Drug  Shell DS 

  mean±SEM effect (%) mean±SEM effect (%) 
    

Quinpirole 18.77±2.20 20.90±0.96 
    

7-OH-DPAT 49.67±5.41 46.06±13.69 
    

B-HT 920 42.56±3.78 12.21±2.90 

 

 

Table 3.1. Maximal Inhibition Effect at 1uM doses of Dopamine D2 and D3 Agonists Direct 
comparisons of DA release inhibition were made at 1uM doses of Quinpirole, 7-OH-DPAT, and 
B-HT 920. Percentages represent percent decrease in DA response from baseline. 
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Chapter 4 

Dopamine Autoreceptor Subsensitivity Underlies Pair Bonding 

Induced Increases in Stimulated Dopamine Release in the Prairie Vole 

 

Abstract 

 

The expression of monogamous pair bonds in the prairie vole is regulated in part via 

dopamine signaling within the nucleus accumbens shell region of the striatum. We have 

previously shown that a 14-day pairing period results in increased stimulated dopamine 

release within this region in a manner that reflects reproductive compatibility of the pair. 

Here, we utilize fast scan cyclic voltammetry to measure dopamine release dynamics in 

the nucleus accumbens shell of sexually naïve and 28-day pair bonded prairie voles. We 

demonstrate that similar to the 14-day pair bonding period point, pregnancy status is 

reflected in dopamine release in males after 28 days of pairing such that males from pairs 

that became pregnant quickly after pairing show the largest increases. Additionally, we 

test the effects of the dopamine D2/D3 receptor agonist, quinpirole, on electrically 

stimulated dopamine release in the dorsal striatum and nucleus accumbens as a measure 

of dopamine autoreceptor functionality. Interestingly, pair bonded prairie voles show 

subsensitive dopamine autoreceptor activity, as demonstrated by a quinpirole dose effect 

curve analysis. Together, our findings show that pair bonding increases stimulated 

dopamine release in regions relevant to reward processing and motivation in male prairie 
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voles in a fecundity dependent fashion and suggests that alterations in dopamine 

autoregulation either via reduced dopamine autoreceptor expression or functionality may 

underlie these increases.  In a final experiment, we show that increased oxytocin tone 

can mimic this effect of pair bonding at the dopamine autoreceptor in sexually naïve 

animals.  Together, these data provide valuable information on how the dopamine system 

can be reorganized based on experience. 
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Introduction 

The development and maintenance of social bonds is a critical component of 

human well-being, however, we do not have a comprehensive understanding of the 

neurobiological mechanisms that underlie these processes1. The socially monogamous 

prairie vole is a useful research model for the study of social bonding because it develops 

lifelong pair bonds in which both male and female contribute equally in pup caretaking 

and aggressively reject novel conspecifics2. Furthermore, while a variety of species 

express monogamous strategies only through breeding seasons or while offspring are in 

the nest, few mammals form lifelong pair bonds like the prairie vole3–8.  The mechanisms 

that underlie the long term nature of prairie vole pair bonding are not fully characterized 

however, the mesolimbic dopamine (DA) system has been found to play a central role in 

these processes9–14. Specifically, plasticity within this circuitry has been implicated in the 

behavioral transition during which prairie voles will stop engaging in affiliative 

investigation of novel social stimuli as occurs during the pair bond development phase 

and begin to express the highly aggressive behavior typical of the maintenance phase 

during which prairie voles reject novel conspecifics11,12. This behavioral transition reliably 

reflects the strength of a given pair bond and is correlated with that prairie vole pairs’ 

reproductive success12. That is, males from pairs that became pregnant quickly after 

pairing show higher levels of aggression and a higher likelihood to remain with that mate 

than those that become pregnant after a delay11,15.  
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In particular, it has been shown that pair bonding increases stimulated DA release 

within the nucleus accumbens (NAc) in prairie voles that have cohabitated for two 

weeks13. Because D1 receptors are the low affinity type that require high levels of DA to 

be activated, this adaptation is hypothesized to bias DA signaling to activate D1 type 

receptors16–18. Activation of D1 receptors subsequently activates kappa opioid receptors 

(KORs) via the release of dynorphin11,12. KORs are known to be involved in aversive 

processing19–26, and thus, it is hypothesized the DAergic adaptations thought to bias this 

network toward the activation of aversive hedonic processing underlies the transition from 

affiliation to aggressive rejection observed in prairie voles12. Because this behavioral 

transition is reflective of pair bond strength and predicts the long-term maintenance of the 

bond, this suggests that the DAergic neuroplasticity that underlies these processes may 

be the mechanism that results in the enduring nature of prairie vole pair bonds.  

 

Determining a Mechanism 

 The mechanism by which DA release is increased in the prairie vole is not known, 

however, plentiful research within the field of drug addiction has measured alterations of 

DA signaling after drug experience, and these provide a theoretical scaffolding on which 

to make predictions about the mechanisms regulating the observed increase in DA 

release in pair bonded prairie voles.  

 

Drug Use Induced Neuroplasticity 

 All drugs that are abused by humans alter DAergic signaling and repeated use of 

these substances will result in adaptations of this circuitry27–30. Specifically, drug reward 
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is regulated by activity within the mesolimbic DA projections originating in the ventral 

tegmental area (VTA) and synapsing onto the NAc31. Importantly, these neural 

adaptations also underlie the behavioral transition from which a drug can go from casual 

use and the induction of positive hedonic states to the habitual use of these substances 

despite negative consequences30. One reported mechanism by which drugs of abuse can 

alter DA signaling (and perhaps long-term drug reinforcement) is via their alteration of DA 

autoreceptor function32–34. 

 

DA Autoreceptors 

D2 and D3 DA autoreceptors are located presynaptically on nerve terminals within 

the NAc and dorsal striatum (DS) as well as in somatodendritic regions within the VTA 

itself35.  DA D2 and D3 DA autoreceptors are a key homeostatic mechanism within this 

circuitry36–38. These receptors operate in a negative feedback manner to inhibit DA 

release, DA synthesis, and DA neuronal firing35,37,38. Extended access to amphetamine 

(AMPH) has been shown to reduce the ability of DA autoreceptors to inhibit DA release 

in rats39. Importantly, in the extended access paradigm used in this study, animals can 

regulate their own intake and it was observed that escalation of intake paralleled the 

reduced function of D2/D3 receptors39. Additionally, priming with AMPH or repeated 

systemic treatment with AMPH has been shown to increase VTA neuron firing via the 

reduced function of D2 autoreceptors40–44. Because AMPH experience results in a similar 

adaptation as pair bonding (i.e., increased DA release) and this effect is mediated at the 

level of the DA autoreceptor, we hypothesized that these same adaptations underlie the 

observed increase in DA release in pair bonded prairie voles.  
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Measuring Autoreceptor Function via Fast Scan Cyclic Voltammetry (FSCV) in Striatal 

Slices 

In slice preparations, application of selective agonists activates presynaptic D2 and 

D3 DA autoreceptors, which regulate extracellular levels of DA through a negative 

feedback loop (i.e., increased levels of extracellular DA inhibit further release via the DA 

autoreceptors)38. Bath-applying agonists to slice preparations results in a reduction in 

stimulated DA release that reflects agonist potency. That is, more effective agonists 

induce full DA inhibition. Therefore, application of DA agonists known to reliably activate 

these receptors followed by FSCV measures provides a means by which to characterize 

DA autoreceptor function45,46. 

Previous work from our lab has shown that plasticity within the DA system of male 

prairie voles underlies behavioral transitions that are necessary for the long-term 

maintenance of pair bonds, and that these are correlated with the timing of pregnancy in 

the female. Based on these data, we propose to investigate whether this adaptation is 

maintained at 28 days post-pairing. Additionally, because AMPH use results in a similar 

adaptation as pair bonding (i.e., increased DA release in the NAc) and this is mediated 

via alterations in DA autoreceptor function, we hypothesized that these same adaptations 

underlie the observed increase in DA release in pair bonded prairie voles. 

 

Materials and Methods 

 

Subjects. Subjects were sexually naïve adult prairie voles (60-150 days old) bred at the 

University of Michigan (UM), weaned at 21 days and housed in single-sex sibling pairs. 
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Test subjects were randomly assigned to a drug condition. Animals were on a 14:10h 

light-dark cycle and all experiments were conducted between 0800h and 1800h. All 

procedures were conducted in accordance with the UM animal care guidelines and 

approved by the UM Institutional Animal Care and Use Committee.  

 

Determining Pregnancy: After 28 days of pairing males with adult females, and prior to 

FSCV recordings, we determined pair fecundity and grouped pairs into the following 

categories: not pregnant, sub-optimally pregnant, or optimally pregnant. We determined 

pregnancy status based on the average neonatal weight of offspring as described 

previously11,15. Briefly, our lab has determined that weights of 0.3g correspond to lengths 

of 10mm and 10 days of pregnancy (optimal pregnancy), 0.165g correspond to lengths 

of 5mm and 3-5 days of pregnancy (suboptimal pregnancy). Thus, animals were 

categorized as either optimally pregnant (with neonatal weight of 0.3g or above or 

suboptimally pregnant from 0-0.3g. For animals that had already had one litter, we used 

the weight of the second pregnancy for group assignment. To do this we used the day of 

the first litter’s birth as day 0 in pairing. It should be noted that all animals that had 

successfully had one litter became optimally pregnant immediately after parturition.   

 

Slice preparation. Animals were killed via rapid decapitation and one hemisphere of the 

brain was used for FSCV experiments11. Right/left hemispheres used for FSCV were 

counter balanced. FSCV hemisphere was place in pre cooled preoxygenated (95% 

O2/5% CO2) high sucrose-aCSF buffer for 10 min. High sucrose aCSF consisted of 180 

mM sucrose, 30 mM NaCl, 4.5 mM KCl, 1 mM MgCl2, 26 mM NaHCO3, 1.2 mM NaH2PO4, 
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and 10 mM d-glucose47. 400 μm-thick coronal striatal slices that included sections of the 

DS and VS were taken with a vibrating tissue slicer (Leica, Buffalo Grove, IL). Slices were 

maintained in oxygenated aCSF at room temperature for 1 h. After 1 hour at room 

temperature the slice was transferred to a custom-made submersion recording chamber 

(Custom Scientific, Denver, CO) 

 

FSCV. During experiments, a bipolar stimulating electrode and carbon fiber recording 

electrode (produced in house and calibrated to a known DA concentration as in48,49 were 

placed in the dorsal striatum (DS) or rostral Nacc shell. Using software written in 

LABVIEW (National Instruments, Austin, TX; Tarheel CV University of North Carolina, 

Chapel Hill) a triangular ramp sweeping from -0.4V to +1.2V versus a Ag/AgCl reference 

was applied to the carbon-fiber electrode at a rate of 10Hz. Once DA release was 

stabilized, the slice was bathed in increasing concentrations of quinpirole (0.001, 0.01, 

0.03, 0.1, 0.3, 1, 3, 10, 20, 30, 300μM). Fifteen second recordings consisting of a 1 pulse 

350μA stimulation at the 5 second mark were made at regular 5 minute intervals for a 

total of 6 recordings per drug dose (30 minutes per dose). For animals receiving OT 

treatment, baseline DA recordings were made for 30m prior to the addition of a .1uM dose 

of OT to the bath. After addition of oxytocin these slices underwent a quinpirole dose response 

as described above.  

 

Statistics and Data Analysis. Data analysis and quantification of stimulated DA release 

was conducted as in45,50. Current versus time plots and electrically stimulated DA release 

rates were determined via use of Michaelis-Menten equations as previously described 51. 

All statistical analyses were carried out using GraphPad Prism (Version 7, GraphPad 
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Software, Inc., San Diego, CA) and the Statistical Package for the Social Sciences (SPSS 

version 21; SPSS Inc., Chicago, IL). Data are presented as the mean ± standard error of 

the mean (SEM). For dose response experiments, the change in DA peak was compared 

to predrug values for each individual animal producing percent change in stimulated DA 

release. Percent change was then plotted as dose-response curve in log concentration 

(M). Data were fitted using nonlinear regression curve fit to determine log EC50 values. 

Data for pairing status (sexually naïve, pair bonded), and quinpirole dose-response curve 

were analyzed by a two-way analysis of variance (ANOVA) with Bonferroni post hoc test 

to compare group differences. Differences in baseline DA release were assessed with t-

test. In all cases, statistical significance was set at P < 0.05. 

 

Chemicals. All drugs were made the morning of the experiment and dissolved in aCSF. 

Quinpirole hydrochloride was purchased from Sigma Aldrich (St. Louis, MO).  

 
Results 

Increased DA Release at 28 days post-pairing 

In order to measure whether increased DA release within the NAc shell was 

maintained at 28 days post-pairing, we completed real time DA measures via FSCV in 

brain slices. As hypothesized, following 28 days of cohabitation and mating, pair bonded 

males F (3, 15) = 5.089, p = 0.0011 showed increases in DA release with post hoc 

analysis showing that successful breeders showed higher levels of DA release in the NAc 

shell than both sibling housed controls and paired animals that had not become pregnant 

(p = 0.0178; p= 0.0424). Females did not show this same effect F (3, 17) = 1.717, p = 

0.2013 Previous data had shown that both males and females showed increases in DA 
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after two weeks of pairing, but increases in females were much lower than those observed 

in males. Our data suggest that the minimal increase in females at 14 days may not be 

sustained at 28 days post pairing, further emphasizing that this neurosplasticity is 

important for the maintenance of pair bonds in males.  

 

DA Autoreceptor Function 

To determine the functional activity of D2 and D3 DA autoreceptors to inhibit 

stimulated DA release, we bathed striatal slices from sexually naïve and pair bonded 

prairie voles in the D2/D3 DA receptor agonist quinpirole to establish a dose response 

curve. Pre-drug values were defined as 100% and subsequent measures were expressed 

as percent of drug effect in relation to pre-drug value. A two-way ANOVA revealed a 

significant main effect of quinpirole dose F(7, 84) = 83.7 p = 0.00  for pair-bonded males 

(Figure 4.2). Additionally, there was also an interaction (dose x pairing status) effect F(7, 

84) = 3.10 p = 0.00. Post hoc Bonferroni analysis indicated that quinpirole was less 

effective at inhibiting DA release at 1, 3, 10, 20, 30, 300 μM doses in pair bonded animals.  

 

OT Treatment Impairs Autoreceptor Function in Sexually Naïve Males 

In the above section we determined that pair bonding altered autoreceptor function 

in male prairie voles. In order to determine if this effect could be mediated by OT 

receptors, we bathed slices from sexually naïve animals in 0. 1 μM dose of OT in aCSF 

during the entire dose response experiment. Pre-drug (OT and quinpirole) were defined 

as 100% and subsequent measures were expressed as percent of drug effect in relation 

to pre-drug value. A two-way ANOVA revealed a significant interaction effect (quinpirole 
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dose x oxytocin treatment) F(8, 88) = 13.69 p = 0.00 and post hoc Bonferroni analysis 

indicated that quinpirole was less effective at inhibiting DA release at doses higher than 

0.03 μM in slices that contained a .1 μM dose of OT in the bath (Figure 4.3).  

 

Discussion 

 

A marked behavioral plasticity has been shown to be a hallmark in prairie vole pair 

bonding. Sexually naïve prairie voles that first encounter a potential mating partner will 

investigate the novel animal and perceive this social stimulus as rewarding. After animals 

have pair bonded, however, they transition to perceiving novel social stimuli as aversive 

and aggressively reject or avoid new potential partners. Increases in DA release that 

preferentially activate D1 receptors, and subsequently KORs via dynorphin release, are 

thought to underlie this behavioral transition. This transition is necessary for the 

maintenance of long term pair bonds12. Here, we characterize a potential mechanism by 

which these increases are mediated: a subsensitive DA autoreceptor dose-response 

curve that results in enhanced increases in extracellular DA during neuronal firing in pair 

bonded males.  Furthermore, since OT mimics this effect, the results taken together 

suggest that OT plays a role in mediating this process. 

 

Motivational Significance of 28 Days 

Unlike most mammals, prairie voles engage in biparental care of offspring which 

includes behaviors like nest maintenance and construction, foraging and feeding, 

grooming, and brooding. Investigations into prairie vole parental behavior have shown 

that males take on significant costs in exchange for caring for offspring such as weight 
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loss and increased mortality52,53. The costs accrued by the male suggest that the drive to 

remain in the nest despite negative consequences must be a highly motivated behavior 

with the ultimate motive to increase pup survivorship and thus produce a net benefit of 

reproduction for the male.  

The female prairie vole gives birth 21-23 days after becoming pregnant. In the 

presence of a male (which is most often the case), female prairie voles go into post-

partum estrus and will typically achieve pregnancy within 48 hours of parturition54,55. Thus, 

at 28 days, a successful pair will most often have one litter in the nest that is completely 

dependent on the parents, and is also expecting a second litter within 3 weeks.  This cycle 

will continue throughout the breeding seasons and across the prairie vole’s lifetime.  

 

Oxytocin Signaling in Pair Bonding 

Autoradiographical studies comparing monogamous species of vole with non-

monogamous montane voles56 found stark differences in the expression of oxytocin 

receptors, setting the stage for the extensive research that has discovered a key role for 

this neuropeptide in the regulation of pair bonding behavior. Diffuse OT receptor blockade 

via antagonist treatment in female prairie voles blocks mating induced partner preference 

formation, while administration of OT facilitates the formation of partner preferences in 

the absence of mating57. Blockade of OT receptors via antagonist treatment prevents 

partner preferences induced by D2-like receptor agonists, while administration of a D2-

llike antagonist prevents the formation of OT induced partner preferences. These findings 

suggest a reciprocal relationship exists between the OT and DA systems in pair bonding, 

however, the mechanisms of their interaction in relation to this behavior are not clear. 
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Observations that direct infusion of OT into the VTA of rats can modulate DA 

release in the NAc demonstrated a direct role for OT to modulate mesocorticolimbic 

projections58. Recent reports have shown receptor complexes between D2-Like DA 

receptors and OT receptors in the striatum after social experience in rats59. Additionally, 

upon binding OT, the affinity of DA for the D2 receptor was observed to increase 

intracellular signaling via the CREB signaling pathway (illustrated in Figure 4.4 adapted 

from59). As both of these receptors are g-protein coupled receptors binding inhibitory g 

proteins, they may work synergistically upon co activation by altering cAMP singling, 

inhibition of which induces partner preferences in the absence of mating60,61.  

 
Conclusion 

The data presented here suggest a potential mechanism for the increased DA 

release seen in pair bonded prairie vole males, and we suggest that this may underlie the 

sustained motivation required to remain in a lifelong pair bond. Specifically, we 

demonstrate that increased DA release in pair bonded males is maintained at 28 days 

post-pairing in a manner that reflects female pregnancy status. Additionally, we 

characterize subsensitive DA autoreceptor function in pair bonded males, suggesting this 

as a possible mechanism regulating the observed increased DA release that may be 

mediated by OT.  
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Figure 4.1 Increased baseline DA release in males 28 days post-pairing. Following 28 days 
of cohabitation and mating, pair bonded males (a) showed increases in DA release F (3, 15) = 
5.089, p = 0.0011 with post hoc analysis showing that successful breeders showed higher 
levels of DA release in the NAc shell than both sibling housed controls and paired animals 
that had not become pregnant (p = 0.0178; p= 0.0424). Females (b) did not show this 
same effect F (3, 17) = 1.717, p = 0.2013. 
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Figure 4.2 Altered DA autoreceptor function in pair bonded males. To determine the 
functional activity of D2 and D3 DA autoreceptors to inhibit stimulated DA release, we bathed 
striatal slices from sexually naïve and pair bonded prairie voles in the D2/D3 DA receptor 
agonist, quinpirole to establish a dose response curve. Pre-drug values were defined as 100% 
and subsequent measures were expressed as percent of drug effect in relation to pre-drug 
value. A two-way ANOVA revealed a significant interaction (dose x pairing status) effect F(7, 84) 
= 3.10 p = 0.00. Post hoc Bonferroni analysis indicated that quinpirole was less effective at 
inhibiting DA release at 1, 3, 10, 20, 30, 300 μM doses in pair bonded animals suggesting 
subsensitivity of autoreceptor function. Data are expressed as mean ± SEM. 
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Figure 4.3 OT Treatment impairs DA autoreceptor function in sexually naïve males. 
Slices from sexually naïve males were bathed in 0.1 μM dose of OT in aCSF during the entire 
quinpirole dose response experiment. Pre-drug (0 μM OT and quinpirole) were defined as 100% 
and subsequent measures were expressed as percent of drug effect in relation to pre-drug 
value. A two-way ANOVA revealed a significant interaction effect (quinpirole dose x oxytocin 
treatment) F(8, 88) = 13.69 p = 0.00 and post hoc Bonferroni analysis indicated that quinpirole 
was less effective at inhibiting DA release at doses higher than 0.03 μM in slices that contained 
a 0.1 μM dose of OT in the bath suggesting that the presence of OT can alter DA autoreceptor 
function in sexually naïve prairie voles in a manner similar to that of pair bonded animals. Data 
are expressed as mean ± SEM. 
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Figure 4.4. OT/DAD2 Heterodimers increase intracellular signaling via CREB 
Heterodimer complexes have enhanced activation of the Gi/o mediated, inhibition of the AC-
PKA-pCREB   
 
Illustration adapted from Romero-Fernandez, W., Borroto-Escuela, D. O., Agnati, L. F. & Fuxe, K. 
Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal 
striatum with facilitatory receptor-receptor interactions. Mol Psychiatry 18, 849–850 (2013). 
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Chapter 5 

Discussion 

 

General Summary 

The development of social bonds is an evolutionarily adaptive behavior that is 

thought to have developed because it afforded humans higher likelihood of offspring 

survival and group living afforded resources in the form of defense, food, offspring care1–

4. In modern humans, the development and stability of these bonds is correlated with 

resilience in mental health and shown to reduce the rewarding properties of drugs of 

abuse 5–9. Alternatively, a physical or perceived lack of such bonds, referred to as 

‘loneliness’, increases perceptions of stress, impairs immune and cognitive function, and 

is correlated with risk-taking behavior and a variety of psychiatric diagnoses such as drug 

abuse10–13.  Additionally, disorders such as scizhophrenia and autism have marked social 

deficits that impact daily functioning.  For these reasons, it is of great public health 

relevance to better understand the neural mechanisms underlying the development and 

maintenance of social attachments. The study of the neurobiology underlying social 

bonding requires an animal model that displays selective social attachments. 

The socially monogamous prairie vole has emerged as a useful model system to 

study social attachments as it demonstrates selective social bonds in its life history 

strategy14,15. Prairie voles form lifelong pair bonds that are characterized by the sharing 

of a home territory, biparental care of offspring, and mate guarding14,16,17. DA signaling 

within the NAc has been discovered to be important for the regulation of these motivated 
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behaviors18–20. In particular, selective activation of high affinity receptors via tonic DA 

signaling underlies the pair bond maintenance phase, while plasticity within this system 

that increases DA release to bias the system to activate low affinity D1 receptors18,20,21. 

This system is centrally involved in reward processing and the generation of 

motivated behavior and thus, it is not surprising that it is also critical for the processing of 

social reward 22–25 In this system, DA containing neurons project from the ventral 

tegmental area (VTA) in the midbrain onto D1-like or D2-like expressing medium spiny 

neurons (MSNs) in the NAcc26. D1 receptors are postsynaptic, excitatory, low affinity type 

receptors that require high levels of DA to be activated, such as during fast “phasic” burst 

firing 24,25,27–30. In contrast, DA D2-like receptors are found both postsynaptically on target 

cells and presynaptically on dopaminergic neurons, they are inhibitory and have a high 

affinity for DA, allowing them to respond to low “tonic” DA concentrations25,27.  

 

DA in the NAc signals reward 

In particular, the NAc region of the striatum is involved in the processing of natural 

rewards such as mating or the consumption of a palatable food and these reliably trigger 

DA release within this region, whereas the blockade of NAc DA receptors disrupts reward 

seeking31–34. Not surprisingly, this region is also involved in the rewarding processing of 

other rewards such as drugs of abuse35,36. The activity of DA within this region for 

reinforcing natural and artificially concentrated rewards such as drugs of abuse may 

underlie the protective nature of social attachments against the development of 

addictions. Additionally, the processes that underlie salience attributions to cues that 

predict a natural reward (such as the presence of a mating partner or other social contact), 
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or a drug reward, can all be dysregulated in conditions such as addiction, schizophrenia, 

and autism spectrum disorders, demonstrating the value of the study of these processes 

in the prairie vole to characterize effective treatments for these conditions.  

 

Contribution of This Dissertation 

The goal of my dissertation work was to increase our understanding of the role of 

DA system activation and neuroplasticity in the development and maintenance of pair 

bonds in the socially monogamous prairie vole. Previous work on this model system has 

demonstrated that activation of D2 like receptors is necessary for the development of pair 

bonds while activation of D1 like receptors is necessary for their maintenance. Based on 

the affinity of DA for different DA receptors (D2, high; D1, low,), we can infer that low 

levels of DA that activate D2 receptors are necessary for the development phase while 

high levels of DA which selectively activate D1 receptors are important regulators of the 

maintenance phase. This suggests that the preferential activation of D1-like or D2-like 

receptors may reflect dynamic DA signaling across the early and late stages of pair 

bonding —suggesting a model in which tonic DA signaling facilitates the development of 

the bond while phasic DA signaling facilitates pair bond maintenance. In order to begin to 

parse out the activational and neuroplastic processes involved in pair bonding we 

conducted the following studies: 

 

Study 1: DA D3 Receptor in Partner Preference Formation 
As mentioned above, low levels of DA that preferentially activate the D2 class of 

receptors are thought to mediate pair bonding behavior. The DA D3 receptor subtype has 

the highest affinity for DA within the D2 class, is highly localized to the NAc shell (region 
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important for pair bonding and association of positive hedonics with a mating partner), 

and is shown to be involved in social recognition processes37,38.  Thus, we hypothesized 

that the DA D3 receptor mediates pair bond development in the socially monogamous 

prairie vole.  

In the lab, pair bonding is operationally defined as preferential side by side 

contact with an opposite sex conspecific39,40. Preferential contact is referred to as a 

‘partner preference’. Partner preferences are induced in the lab via extended 

cohabitation periods and tested via a ‘partner preference test’. Alternatively, 

experimental manipulations can allow for induction of a partner preference under 

conditions that normally would not induce pair bonding such as short cohabitation 

periods in the absence of mating39.  

Animals treated with a mixed D2/D3 receptor agonist (quinpirole) or a D3 agonist 

(7-OH-DPAT) alone into the NAc shell showed development of partner preferences in the 

absence of mating and under short cohabitation periods. Importantly, selective activation 

of D2 receptors via site specific injections of B-HT 920 were not able to induce partner 

preferences in sexually naïve prairie voles.  

Two main points can be gathered from these data. First, these findings suggest 

that the mixed D2/D3 agonist, quinpirole may be inducing its effects either by binding to 

D3 receptors, or that it may be activating both D2 and D3 receptors concurrently. Indeed, 

it is known that D2/D3 receptors can form dimers (i.e., receptor complexes) and that these 

have higher affinity for DA than either receptor on its own41. This hypothesis can be tested 

via brain collection after the cohabitation period and subsequent assaying of heterodimers 

within the NAc via immunoprecipitation for D2 and D3 receptor complexes. An alternative 
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explanation for the efficacy of the mixed D2/D3 agonist is the observation that transient 

activation of D3 receptors can increase agonism efficacy at D2 receptors41,42. That is, the 

transient activation of D3 receptors may “prime” D2 receptors to more efficiently activate 

intracellular signaling after binding of DA.  

A second point to be made from these data are that the animal’s social behavior 

varied based on drug treatment. Animals treated with the selective D3 receptor agonist 

showed increased affiliative behaviors such as olfactory investigation, friendly following, 

anogenital sniffing, active contact, allogrooming, and huddling. Interestingly, while D2 

receptor activation did not induce partner preferences, there was a trend for increased 

affiliation in animals treated with B-HT 920 (D2 agonist). The fact that both D2 and D3 

receptors had the capacity to increase general affiliation, yet only D3 receptor activation 

was able to induce pair bonds, suggests that D3 receptors may be working with other 

systems within this circuitry, or that they are unique in other properties that contribute to 

social behaviors. Oxytocin and opioid circuitry are known to interact with DA in this region 

and are theorized to contribute to the attribution of hedonic value to salient stimuli, such 

as meeting a potential mating partner43,44. Future work should determine the interactions 

of D3 receptors with hedonic processing systems present within the NAc45,46. 

Autoradiography is the most common way to measure receptor expression. While 

it has been shown that the D3 receptor is highly expressed in the more limbic regions of 

the NAc in rats, mice, and humans, we do not have measures of these receptors in prairie 

voles37. If these receptors are similarly expressed in prairie voles, then this would support 

the assumption that DA is working in concert with other systems to mediate pair bonding 

behavior. In fact, DA receptor expression and signaling measurements in prairie voles 



	

	 119 

have shown that they are consistent with that of other rodents, whereas the expression 

of OT differs significantly among monogamous and non-monogamous species18,47,48. 

Based on these observations, it may be possible to assume that it is the action of DA in 

relation to the restricted expression of OT receptors in this region that underlies the 

development of pair bonds. Future work on this model should characterize the specific 

mechanisms of such interactions by determining the existence of receptor complexes and 

coactivation of these receptors during the cohabitation period.  

Schizophrenia and the attribution of salience 

It is believed that phasic DA release mediates behaviorally relevant responses, 

whereas tonic release mediates the amplitude of these responses49. DA functions via 

volume transmission across long distances and in the process of reaching its distal 

targets it can be diluted50. D3 receptors can be activated by these low levels of DA, such 

as those present during tonic firing, due to their high affinity for the neurotransmitter51. 

Thus, it is suggested that D3 receptor sensitivity may underlie excessive attributions of 

salience to certain stimuli. In the case of schizophrenia, it is theorized that heightened D3 

receptor sensitivity results in a state of “aberrant salience” 52. Specifically, it is believed 

that when the DA system is hyper responsive, an individual cannot differentiate relevant 

from irrelevant stimuli, and thus will assign high salience to stimuli which should be 

ignored52,53. This is unique in that in the prairie vole, it is believed that the mating partner 

is imbued with high salience, however, in the case of the vole this salience attribution is 

highly adaptive. Likewise, high salience attributions to drug related cues are only aberrant 

when these guide behavior so that an individual pursues drugs despite negative 
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consequences. Based on these arguments, future research should investigate whether 

there is plasticity in the signaling of D3 receptors in pair bonded prairie voles. Additionally, 

studies of mate associated cues can be combined with direct D3 manipulations to 

determine the ability of the D3 receptor to direct salience attributions toward these stimuli.  

 

Study 2: FSCV Assay of DA D2/D3 Selective Drugs in the Prairie Vole Striatum 

Here, we test the effects of DA D2 and D3 agonists that have been previously used 

in behavioral studies of prairie vole pair bonding via FSCV measures of electrically 

stimulated DA release in the prairie vole DS and NAc. We measured the efficacies of the 

D2-selective agonist, B-HT 920, the selective D3 agonist, 7-OH-DPAT, and the mixed 

D2/D3 receptor agonist, quinpirole, at inhibiting DA release within the DS and NAc. B-HT 

920 had highest efficacy in the DS, whereas quinpirole was most effective at inhibiting 

DA release within the NAc shell than either the subtype selective agonists. These results 

were surprising as the expression of DA D3 receptors is dense in the NAc shell of other 

species, thus we expected to see increased efficacy of 7-OH-DPAT within this region. 

Two surprising findings suggest that DA D2-like receptor expression or functionality is 

unique in prairie voles compared to other rodent species. Indeed, future work on this 

model should characterize the expression of these receptors in the prairie vole brain, and 

determine whether concurrent activation of D2 and D3 receptors results in meaningful 

functional differences.  

The D3 agonist, 7-OH-DPAT, showed similar effects in both regions examined. 

This result was unanticipated as reports on other species show a high density of this 

receptor in the NAc shell37. This discrepancy may be a result of the following: (1) the 
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agonist is not as selective for the D3 receptor subtype or not selective at the doses used 

in this study, or (2) the DA D3 receptor is not as dense or functionally active in this region 

in the prairie vole as it is in other species. It should be noted, that these findings should 

not invalidate behavioral data acquired from the use of these drugs. Instead, the data 

here should be interpreted with a sensitivity to the fact that FSCV experiments in slices 

investigate only one part of this system, that is, FSCV can only determine terminal 

regulation of DA release and cannot account for activity of these receptors in behavioral 

experiments on which it acts on an intact system. Additionally, FSCV can only infer drug 

selectivity and receptor functionality and not receptor density, thus, it is imperative to 

measure D3 receptor expression in the prairie vole striatum to determine if the limited 

effects of D3 activation are a result of low receptor density. 

 Additionally, the effect of B-HT 920 in the DS was also unexpected as previous 

measurements of B-HT 920 in the mouse brain showed similar inhibition effects for the 

DS and NAc suggesting that the expression of these receptors was homogenous 

throughout the whole of the striatum. Behavioral observations (see Chapter 2) have 

shown that use of this drug in prairie voles impacts locomotion. Locomotor behavior at 

D2 receptors in the NAc is mainly mediated by activation of post-synaptic D2L receptors. 

FSCV is limited in that it can only determine the effects of this drug on terminal release 

via activation of autoreceptors. However, the data included in Chapter 2 suggest that in 

the prairie vole, this drug may have highest affinity for the post synaptic receptors which 

do not directly regulate DA release.  

The mixed D2/D3 agonist, quinpirole, showed the highest effect at the NAc 

compared to selective D2 and D3 agonists. Importantly, this region mediates pair bonding 
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behavior as well as the attribution of positive hedonics to a mating partner48,54.  Because 

quinpirole is a mixed agonist, and neither agonist alone could produce as strong 

responses in the NAc, we believe quinpirole may have a unique profile of activity, 

exploiting meaningful functional differences within this region (perhaps by concurrent 

activation of both D2 and D3 receptors). These findings are consistent with the robust 

partner preferences that are induced via quinpirole treatment in prairie voles18.  Future 

work can determine if this is the case by utilizing quinpirole in the presence of selective 

D2 and D3 antagonists in slice preparations.  

 

Study 3: Partner Preferences Lead to Subsensitivity of DA D2/D3 Autoreceptors 

Here I present data that support findings that prairie voles show pair bonding 

dependent increases in DA release in the rostral nucleus accumbens shell (Resendez et 

al., 2016). Importantly, while the previous work had demonstrated this adaptation after 2 

weeks of pairing, I show that this adaptation is maintained beyond the birth of the first 

litter (and into the active biparental caretaking phase). Additionally, I characterize a 

subsensitivity in autoreceptor function as the possible neuroplasticity that underlies the 

observed DA increase. I then combine these novel findings of DA system adaptations in 

pair bonding with the broad database of research that has shown a role for the oxytocin 

system in the regulation of prairie vole pair bonding by demonstrating that increased 

oxytocin tone can mimic the effect of pair bonding at the DA terminal.  The observations 

of neuroplasticity in this system have high translational value. In the vole, this 

neuroplasticity underlies salience attributions that mediate the long term motivation to 

remain with one partner. However, in other conditions, such as drug addiction, these 
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salience attributions can contribute to persistent maladaptive behaviors such as drug 

seeking despite negative consequences. Thus, the characterization of these changes can 

give insight into how drugs of abuse can impact motivation and additionally, how social 

bonding can help buffer the rewarding effects of drugs of abuse.  

DA in Partner Preference Formation 

The development of monogamous pair bonds in the prairie vole is a motivated 

behavior important for reproduction. Thus, it is not surprising that the DA system, which 

regulates motivation to seek natural rewards such as food and shelter, also mediates 

behaviors relevant to the pursuit, development, and maintenance of pair bonds7,18,20,55–

60.  The present findings expand on previous work from the Aragona18 laboratory to show 

for the first time that within the D2-like class of DA receptors, the NAc DA D3 receptors 

are critically involved in the development of partner preferences in the socially 

monogamous prairie vole.  

 

Social Attachments and Drug Reward 

The neural circuitry implicated in pair bonding and affiliative behavior in the prairie 

vole shares many similarities with that of reward and addiction 5,7,61. The mesolimbic DA 

system has been proposed to have evolved to mediate incentive behaviors associated 

natural rewards and reproduction62. It has been shown that drugs of abuse exert their 

effects on this same system, essentially “hijacking” adaptive circuitry to produce a slew 

of maladaptive behaviors6. As surveyed here, pair bonds are regulated by activation of 

several structures in this system, demonstrating significant overlap with the effects of 
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drugs of abuse on these systems. This is further demonstrated by evidence showing that 

male prairie voles pretreated with amphetamine fail to show mating induced partner 

preferences and conversely, the presence of social bonds reduces the rewarding 

properties of amphetamine63,64.  Specifically, the neuroplasticity associated with pair 

bonds (but not other social experiences such as a short term exposure) underlie a 

protective effect by which psychostimulant effects of amphetamine are attenuated. In 

particular, the increases in DA release after pair bonding selectively activate DA D1 

receptors resulting in the activation of KOR via dynorphin and the alterations in this 

system also buffer against the rewarding properties of AMPH. Importantly, this illustrates 

the bidirectional relationship through which healthy social attachment can attenuate the 

rewarding properties of drugs of abuse and addiction can reduce the rewarding properties 

of social attachment. Future work on this model will undoubtedly provide a unique 

perspective on comorbidities between drug addiction and social deficits, as well as an 

understanding of how healthy social attachment can decrease vulnerability to drug use.  

 

Integration with knowledge of D1 and D2 like receptor function 

 It must be addressed that the data presented in this dissertation seem to 

demonstrate opposite roles for D1 and D2 receptors than the traditional conceptualization 

of striatal D1 and D2 function65,66. When activated optogenetically, striatal neurons 

expressing D1 receptors have been shown to enhance reward learning whereas 

activation of D2 like receptors in this region are shown to reduce reward learning. From 

these observations, a general dogma has been established that D1 and D2 receptors 

play opposing roles in reward learning67. The data presented here however, show that 
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DA D2-like receptors, namely, DA D3 receptors, mediate the learning of a social reward. 

Thus, we must address how these seemingly opposing results can be incorporated into 

the current knowledge base.  First, we must consider that it is possible that DA receptor 

function may differ in the prairie vole. However, this is unlikely as DA release dynamics 

and receptor expression (thus far only D1 like and D2 like receptor expression has been 

measured) are consistent to that expressed in mice and rats18,48. A more likely 

explanation could be that other systems which are known to mediate aspects of social 

behavior in the prairie vole may impact DA processing to facilitate more nuanced 

behavioral outputs. Indeed, recent work has found that coordinated action of oxytocin, 

serotonin, and dopamine mediate social learning in the mouse68. In agreement, the data 

presented in this dissertation suggest that interactions with OT may be able to mediate 

the learning of a socially rewarding stimulus via the D2 DA receptor in the prairie vole.  

The future of the field should expand toward a systems approach to better determine how 

DA can produce novel effects on behavior based on region of release, amount of release, 

temporal pattern, receptor binding, and other systems with which it interacts. This field of 

research has been limited as targeting these systems in a cell specific manner has proven 

to be very technically difficult. However, recent data from Calipari and colleagues have 

begun to test critical aspects of the established model69. Lemos and colleagues have also 

found that behavioral experience such as stress can produce interactions between 

corticotropin releasing factor (CRF) and dopamine systems to switch CRF action in the 

nucleus accubens from appeitive to aversive, further demonstrating how the DA system 

can adapt after experience70.  
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It is believed that DA acts as a single “neural currency” for the learning of 

motivationally relevant stimuli including that of a social nature71,72. It is logical that such a 

diversely used neurotransmitter should be fine-tuned via interactions with other systems 

as well as via neuroplasticity based on experience so as to allow a single neural modulator 

to produce nuanced behavioral effects with the ultimate goals of increasing evolutionary 

fitness. Thus, while at first glance, our data could be interpreted as contradicting the 

current dogma, a more likely narrative is that as the field expands our use of a variety of 

behavioral paradigms (of which social bonding represents only a small portion of research 

in the field of DA) we will find that it is the various interactions of DAergic, neurohormonal, 

and opioid signaling that can produce these nuanced effects on behavior.  

 

Future Directions 

 Several experiments should explore the possibility of DA and OT receptor 

complexes and their expression across the development of a pair bond. Ideally, brain 

collection should be completed soon after meeting and later on in pairing (e.g., 3 hour, 6 

hour, 12 hour, 1 week, 2 week post pairing), in order to gain an understanding of whether 

these receptor complexes are being formed and whether the timeline of their expression 

may impact the strength of a bond. Additionally, as we have observed here, the strength 

of a bond is correlated to the pregnancy status of the female. Thus, it follows that we 

should determine whether the expression of these receptor complexes is correlated to 

the pregnancy status of the female and if so, what neurochemical, hormonal, or sensory 

signals trigger the expression of these receptors? Finally, along this same vein, as female 

pregnancy status is correlated to increased DA release in male prairie voles and this 
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neuroplasticity is believed to underlie the maintenance of these relationships, it is 

imperative to determine how the male of the pair becomes aware of the reproductive 

success of the pair. One possible mechanism to determine this sequence of events it to 

have sexually receptive females (estrogen primed) that are physiologically incapable of 

becoming pregnant. After pairing, mating bouts and male DA release could be correlated 

to determine if this DA release is correlated instead to the male’s perception of successful 

copulation, rather than fertilization. Indeed, these data will increase our understanding of 

social bonding in a monogamous rodent and have implications for our understanding of 

human relationships. 

 

Conclusion 

Social bonding utilizes reward circuitry in combination with valence processing to 

direct behavior in adaptive ways toward social stimuli that are rewarding, and away from 

stimuli that may pose a threat. As discussed above, the neural circuitry for the processing 

of natural rewards such as the development of pair bonds can be hijacked by drugs of 

abuse. It is interesting that pair bonding induces adaptations at the autoreceptor similar 

to those induced by treatment with AMPH, and that pair bonding has been seen to 

attenuate drug reward7,64. Many paradigms used to test the reinforcing properties of drugs 

of abuse do not adequately model the type of drug use that exists in humans. When 

addressing this question, Calipari and colleagues found some interesting results: the 

temporal pattern of cocaine intake can produce biphasic effects at the DA transporter 

(DAT)73. While continuous intake, and presumed sustained high levels of drug, results in 

tolerance, intermittent short access results in sensitization. While it is clear that pair 
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bonding, much like drug addiction, results in long lasting changes in DA 

neurotransmission, little is known of the effects of pair bonding on the DAT and how this 

contributes to the enduring nature of these ties. In an effort to better understand the 

neuroplasticity associated with this adaptive behavior, as well as understand how these 

systems are also altered in disease states, future work should seek to determine whether 

pair bond induced alterations in DAT function are characteristic of sensitized or tolerant 

DAT systems. 
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