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algorithm randomly generates the starting point (within the unit cell). As 
each ion moves through the crystal lattice, molecular dynamics is used to 
calculate its trajectories. At each new ion position in the crystal lattice, the 
close-encounter probability of the ion and atom of interest is calculated and 
recorded. Finally, the depth-dependent close-encounter probability is 
convoluted with the energy-dependent cross section to determine the 
predicted yield vs. energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 

 
Figure 2.13 A zincblende GaAs structure, with Ga (As) shown as white (green). The 

primitive cell is outlined in red and the unit cell is outlined by the grey box. 
For the simulation, we use the red primitive cell, modified to include Nsub, 
(N-N)As, or (N-As)As replacing an As atom within the cell  . . . . . . . . . . . .60 

 
Figure 2.14 Example ball-stick model for a 2x2x2 cell of GaAs (white/blue) for 

simulation of complex compositions and defect combinations with various 
Bi (red) and N blue) interstitials. For example, the (N-N)As, (N-As)As, NAs, 
BiGa,  and BiAs defects is shown in the diagram. Since each unit cell includes 
4 defect sites, the 2x2x2 cell has 32 sites and 5x5x5 cell has 500 sites  . . 61 

 
Figure 3.1  Plots of high resolution x-ray rocking curves (Intensity vs ∆) for GaAsN 

layers on GaAs. For both plots, the GaAs substrate peak position is set to 
∆=0 arcsecond, thereby facilitating comparison of ∆ between the GaAs 
substrate and GaAsN epilayers. Using a linear interpolation of the binary 
elastic constants described by Vegard’s Law and lattice parameter for GaN 
and GaAs leads to a nitrogen fraction of x = 0.016 (Copyright 2015, AIP 
Publishing LLC).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 

 
Figure 3.2  A zincblende GaAs structure with Ga (As) shown as white (green), and the 

primitive cell outlined in red. For the simulaton, we use the red primitive 
cell, modified to include Nsub, (N-N)As, or (N-As)As replacing an As atom 
within the cell. (Copyright 2015, AIP Publishing LLC) . . . . . . . . . . . . . . 73 

 
Figure 3.3  Ball-stick model of a GaAsN unit cell with (N-As)As, (N-N)As and Nsub 

interstitials. The white, green, and blue spheres represent Ga, As, and N, 
respectively. We use the lowest energy configurations of (N-N)As and (N-
As)As., as predicted by density functional theory, namely (N-N)As aligned 
along the [111] direction, and (N-As)As aligned along the [010] direction 
(Copyright 2015, AIP Publishing LLC).. . . . . . . . . . . . . . . . . . . . . . . . . . 74 

 
Figure 3.4  Projections of the crystal structure as well as the total simulated RBS yields 

in the [100], [110], and [111] directions for (a) NSub, (b) (N-N)As, and (c) 
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(N-As)As. (d) Measured total RBS yield in each channeling direction. For 
(a)-(c), the highest (lowest) yields are in the [111] ([100]) directions, while 
the highest (lowest) yields are in the [111]([100]) in (d). For an ideal GaAs 
lattice, the highest (lowest) RBS yield is expected in the [100] ([110]) 
directions. The increase in the measured [110] and [111] RBS yield (in 
comparison to calculated values) may be due to As antisites and/or Ga 
interstitials in the GaAsN films. (Copyright 2015, AIP Publishing LLC). .75 

 
Figure 3.5  Projections of the crystal structure, as well as the total simulated NRA yields 

in the [100], [110], and [111] directions for (a) NSub, (b) (N-N)As, and (c) 
(N-As)As are presented. (d) Measured total NRA in each channeling 
direction. Similar yield trends of Y[111]> Y[110]> Y[100] are observed for (c) 
and (d), suggesting that (N-As)As is the dominant interstitial complex in 
GaAsN alloys. (Copyright 2015, AIP Publishing LLC).. . . . . . . . . . . . . . 76    

 
Figure 3.6  Measured NRA yield versus emitted particle energy for GaAsN, along the 

[100] (green), [110] (red), [111] (blue), and random (black) channeling 
directions. The vertical dashed lines indicate the energy window of the 
protons emitted  during the 14N(α,p)17O reaction. To compare the yields in 
[100], [110] and [111] channeling directions, we integrate the yields 
associated with protons. The highest (lowest) yield is in the [111] ([100]) 
channeling direction. (Copyright 2015, AIP Publishing LLC) . . . . . . . . . 77                        

 
Figure 4.1  AFM images of the GaAsN films: (a)-(c) as-grown and (d)-(f) post RTA. 

For all images, the gray-scale range displayed is 12nm; and the rms 
roughness is 1.1nm ± 0.1nm, and ሾ11ത0ሿ-oriented surface features are 
observed, consistent with earlier reports by Dr. Matt Reason, shown in Fig. 
3.5 of his PhD thesis. These mound-like features are likely related to a 
“forbidden window” of growth for GaAsN, similar to the temperature-
dependent mound formation observed for AlGaAs, attributed to a growth 
instability associated with Ehrlich-Schwoebel barrier. These “mound” 
features are not expected to affect the overall channeling measurements, as 
confirmed by the values ߯௠௜௡ሺݏܣܽܩሻ, 0.45 െ 0.55, similar to earlier 
reports for high quality GaAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

 
Figure 4.2  (004) high-resolution x-ray rocking curves for GaAs1-xNx layers on GaAs, 

before (“as-grown”, black) and after RTA (“annealed”,blue). For all plots, 
the GaAs substrate peak position is set to ∆߱ ൌ 0 arcseconds, thereby 
facilitating comparison of ∆߱ between the GaAs substrate and the GaAsN 
films. For all films, the GaAsN peak position is unchanged with annealing, 
suggesting the absence of N out-diffusion. Using the full width half 
maximum of the GaAs peak,24 we estimate an upper bound of 
ሾீݏܣ௔ሿ~ሺ2.1 േ 0.3ሻ ൈ 10ଵଽܿ݉ିଷ for all the as-grown and post-RTA 
GaAsN films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 
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Figure 4.3  Raman spectra for GaAs1-xNx alloys with ݔே ൌ 0.019, 0.021 and 0.025 
both before and after RTA, shown in black and blue, respectively. Several 
spectral features are apparent, including the 565cm-1

 GaAs-like transverse-
optical (TO) phonons, 580cm-1

 GaAs-like longitudinal-optical (LO) 
phonons, and the 470cm-1, which is associated with GaN-like LO phonons. 
In addition, spectral features are observed at 425cm-1, which has been 
identified as a signature for (N-N)As. The annealed Raman spectra has a 
lower intensity for the feature at 425cm-1, suggesting an RTA-induced 
reduction in the concentration of (N-N)As interstitial complexes . . . . . . . 90 

 
Figure 4.4  Total NRA yield as a function of ݔே, along with the projections of the 

crystal structure to the right for (a)[100], (b)[110], and (c)[111] channeling 
conditions. The data for the as-grown (annealed) GaAsN films is shown in 
black (blue), with lines connecting the dots serving as guides to the eye. For 
the as-grown GaAsN films, as ݔே  increases, the total yields decreases 
monotonically, independent of channeling direction, suggesting that the N 
interstitial fraction is influenced by ݔே. Following RTA, the [100] total 
yield decreases; thus, the fraction of N-related interstitial complexes has 
decreased and the fraction of Nsub has increased. On the other hand, the 
[111] total yield increases following RTA. Since the [111] yield is 
influenced primarily by the (N-As)As interstitial complexes, we hypothesize 
that RTA has increased the fraction of (N-As)As interstitial complexes . . 91 

 
Figure 4.5  Ball-stick models of GaAsN unit cell with (N-N)As) interstitial complexes 

and possible dissociations into (a) 2(Nsub) and (b) Nsub + (N-As)As 
interstitials. The white, green, and blue spheres represent Ga, As, and N, 
respectively. We use the lowest energy configurations, as predicted by 
density functional theory, with (N-N)As aligned along the [111] direction, 
and (N-As)As aligned along the [010] direction . . . . . . . . . . . . . . . . . . . . . 92 

 
Figure 4.6  Comparison of [100], [110], and [111] nuclear reaction analysis (NRA) 

channeling total yields for GaAsN. The slanted filled bars represent the 
simulated or measured as-grown GaAsN, and the diamond-filled bars 
correspond to simulated or measured post-RTA GaAsN. In (b), all (N-N)As 
dissociates into 2Nsub, leading to a lower [100] yield while the [111] remains 
fixed. In (b), all (N-As)As dissociates into (N-As)As + Nsub, leading to an 
decreased (increase) [100] ([111]) yield. In (c), we assume that ½ of the (N-
N)As dissociate into (N-As)As + Nsub, while another ½ dissociates into 2Nsub, 
leading in to an increase in the [111] yield and a decrease in the [100] yield, 
which is consistent with the experiment trends in (d). The slight RTA-
induced increases in the [110] yields for both the simulation and data may 
be due to differences in the effective cross-section for the (N-As)As and the 
(N-N)As interstitial complexes in the [110] channel . . . . . . . . . . . . . . . . . 93 

 
Figure 5.1  Energy band gap vs. lattice parameter for GaAs, GaAsN, and GaAsBi 

alloys, with the 1.0 eV value of interest for PV shown as a horizontal dashed 
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line. The dashed vertical line indicates the predicted lattice-matched 
GaAsNBi alloy, with ሾ݅ܤሿ ൌ 1.7ሾܰሿ. Adapted from Ref. 49. (Copyright 
2013, IEEE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

 
Figure 5.2  Sample structure used for examining the excess As concentration, [AsGa], 

as a function of growth temperature ranging from 234ºC to 337ºC. The 
GaAsNBi and LT-GaAs layers are grown at the same temperature. The 
corresponding XRC data are shown in Fig. 5.3 . . . . . . . . . . . . . . . . . . . . 114 

 
Figure 5.3  Plots of (004) XRC data for the series of GaAsNBi films/LT-GaAs samples, 

shown schematically in Fig. 5.2, grown with fixed Bi beam-equivalent 
pressures and N2 flow rates, and with growth temperature ranging from 234 
to 346 (±5)ºC. For all plots, the GaAs substrate position is set to ∆߱ ൌ 0 
arcsec, thereby facilitating comparison of ∆߱ between the GaAs substrate, 
any As-rich non-stoichiometric (or “low T”) GaAs layers, and the GaAsNBi 
layers. For the lowest substrate temperature, a somewhat broad peak 
centered at ∆߱ ൎ െ100 arcsec, associated with As-rich GaAs, is observed. 
As the substrate temperature is increased, the As-rich GaAs peak shifts to 
higher angles, eventually disappearing for substrate temperatures exceeding 
300ºC. We note that the GaAsNBi peak also shifts to higher angles with 
increasing substrate temperature, possibly due to a decrease in Bi 
incorporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

Figure 5.4  (a) A series of lens-shaped LEAP reconstructions, (b) LEAP spectra, and 
(c) Ga:As fractions for GaAs LEAP experiments using laser energies 
ranging from 0.25 pJ (bottom) to 25 pJ (top). As the laser energy is lowered, 
the ion evaporation becomes more uniform, as shown in (a). At 25 pJ and 
20 pJ, the ions (yellow) are not laterally uniform. However, as the energy is 
lowered to 1 pJ and 0.25 pJ, the lateral uniformity is improved. (b) semi-log 
plot of counts vs mass-to-charge ratio showing Ga (69 and 71) and As (75) 
for various laser energies. As the laser energy is lowered from top to bottom, 
the counts for the mass-to-charge ratio of 75 decrease. In addition, the 
Ga:As ratio approaches 55/45, suggesting that the ion evaporation is heavily 
influenced by the laser energy. If the mass-to-charge of 75 is assigned to 
As2, a near 50/50 Ga:As is obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 

 
Figure 5.5 Using the laser energy identified for the nearly stoichiometric 

reconstruction of GaAs, 0.25 pJ, we performed a LEAP experiment on a 
fabricated tip consisting of ~250 nm GaAsNBi on 500 nm GaAs on a GaAs 
substrate. In this case, ~5 million ions were collected and reconstructed; the 
resulting reconstructions of the tip, separated into the Bi, N, As, and Ga 
atoms, with the labeled regions corresponding to the GaAsNBi epilayer and 
the GaAs layer. Ga and As ions are observed throughout the tip while N and 
Bi ions, for the most part, are confined to the epilayer regions. We note that 
the apparently uniform distribution of N and Bi atoms in the epilayer 
suggests the absence of solute clustering. We consider the compositional 
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analysis for the cases where the mass-to-charge ratio of 75 is assigned to 
ଶݏܣ ା andݏܣ

ାା. For the ݏܣା assignment, both the GaAs layer and GaAsNBi 
epilayer are non-stoichiometric, containing excess Ga. On the other hand, 
for the ݏܣଶ

ାା assignment, both substrate and epilayer are non-stoichiometric 
as well, containing excess As . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . 117 

 
Figure 5.6 Reflection high-energy electron diffraction patterns along the [110] and [1

0] axes during GaAs(N)(Bi) film growth.  [(a), (b)] (2 x 4) pattern 
following GaAs growth at 580°C; [(c), (d)] (2 x 3) pattern at 345 ± 15°C 
immediately prior to the beginning of the GaAs(N)(Bi) layer; [(e), (f)] (1 x 
3) pattern during GaAsNBi growth at 345 ± 15°C with Bi flux ≤ 5.7 × 10-8 
Torr; [(g), (h)] (2 x 1) pattern during GaAsNBi growth with Bi flux ≥ 5.7 × 
10-8 Torr. (Copyright 2017, AIP Publishing LLC) . . . . . . . . . . . . . . . . . . 118 

 
Figure 5.7 AFM images for the Bi flux series and N flux series are presented in (a)-(d) 

and (e)-(h) respectively.  For both the Bi and N flux series, the surfaces 
appear featureless, with rms roughness <0.5nm, consistent with 
observations of layer-by-layer growth of GaAsN. To confirm the absence of 
µm-sized surface droplets, 400 µm x 500 µm SEM images were also 
collected, as shown in (i)-(j). The images include features associated with 
dust, in order to demonstrate the suitable focus condition. Indeed, in the 
well-focused condition, the surface is featureless, without the presence of 
surface droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .119 

 
Figure 5.8 (004) High-resolution x-ray rocking curves for the (a) N flux series with x 

ranging from 0 to 0.023 and (b) Bi flux series with y ranging from 0 to 
0.056.  For all plots, the GaAs substrate peak is set to ∆߱ ൌ 0 arcseconds, 
thereby facilitating comparison of  ∆߱ between the GaAs substrate and the 
GaAsNBi epilayers.  Within the N flux series, y  remains fixed as x is 
increased.  However, within the Bi flux series, x increases as y increases, 
suggesting a Bi-induced enhancement of N incorporation. The two 
highlighted rocking curves in (b) are an example pair of XRC data used to 
determine the “magic” N:Bi ratio for lattice-matching of GaAsNBi with 
GaAs. (Copyright 2017, AIP Publishing LLC) . . . . . . . . . . . . . . . . . . . . 120 

 
Figure 5.9 Measured NRA yield versus emitted particle energy for the N flux series.  

The vertical dashed lines indicate the energy window of the protons emitted  
during the 14N(α,p)17O reaction.  As the N flux increases, the resulting N 
signal increases. Non-channeling data are overlaid with SIMNRA fitted 
spectra assuming a uniform N depth profile. Fitted Gaussian-shape spectra 
suggest uniform N incorporation throughout the GaAsNBi film. (Copyright 
2017, AIP Publishing LLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

 
Figure 5.10 (a) Measured RBS yield versus backscattered particle energy for Bi flux 

series samples plotted in yield versus energy.  The vertical dashed lines 
indicate the energy window of backscattered ions from Bi atoms.  As the Bi 
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flux increases, the resulting Bi signal increases. The portions of the RBS 
spectra enclosed in the box in (a) are shown in (b). Non-channeling data are 
overlaid with SIMNRA fitted spectrum assuming uniform Bi depth profile. 
Fitted Gaussian-shape spectra suggest uniform Bi incorporation throughout 
the GaAsNBi film. (Copyright 2017, AIP Publishing LLC) . . . . . . . . . . 122 

 
Figure 5.11 Mole fractions of total x, substitutional xsub, and interstitial xint for the Bi 

flux series of GaAsN(Bi) films, determined by channeling and non-
channeling nuclear reaction analysis.  The atomic concentrations 
corresponding to the mole fractions are shown on the right y-axis.  Both x 
and xint increase with Bi flux, suggesting a Bi-induced enhancement of N 
incorporation, with preferential incorporation in interstitial sites. (Copyright 
2017, AIP Publishing LLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

 
Figure 5.12 ݔே or ݕ஻௜ values determined from RBS (solid symbol), NRA (solid symbol), 

and XRC (open symbol) are plotted. (a) Bi BEP for the Bi flux series and 
(b) N MFC for the N flux series. In both cases, the RBS and XRC-
determined values of ݕ஻௜ agree to within <0.1%. Furthermore, for ݔே ൏
0.01 the NRA and XRC-determined values of ݔே also agree to within 
<0.1%. However, as the values of ݔே exceed 0.01, including those in the N 
and Bi flux series, the NRA and XRC-determined values of ݔே begin to 
deviate by in excess of 0.5%. Since the XRC data analysis considers only 
substitutional N incorporation, the higher ݔே values for ݔே ൐ 0.01 obtained 
from the NRA data analysis are attributed to the presence of N interstitial 
complexes. The two data points for ݔே ൏ 0.01, enclosed in a red box for 
both the (a) Bi and (b) N flux series are expected to contain a negligible 
fraction of N interstitial complexes, as will be further discussed in Section 
5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 

 
Figure 5.13 Total simulated NRA yields in the [100], [110], and [111] directions for (a) 

NSub, (b) (N-N)As, and (c) (N-As)As . (d) Measured total NRA yield in each 
channeling direction. Similar yield trends of Y[111]> Y[110]> Y[100] are 
observed for (c) and (d), suggesting that (N-As)As is the dominant interstitial 
complex in GaAsN alloys. 3x3x3 unit cell of GaAsNBi with N-to-Bi 
incorporation ratio of 1-to-2 are used for these simulations. White is 
gallium, green is arsenic, blue is nitrogen, and red is bismuth.  Within each 
cell, each N is positioned at the center of the group V site as either 
substitutional N, NAs; (N-N)As, with N2 aligned along the [111] direction; or 
(N-As)As, with the N-As pair aligned along the [010] direction. (Copyright 
2017, AIP Publishing LLC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

 
Figure 5.14 Schematic of a reconstructed surface with As dimers and Ga/As dangling 

bonds along different directions. The [110] step edge consists of As 
dangling bonds, such that a N atom incorporating on a [110] step edge 
would have an increased likelihood of forming a (N-As)As interstitial 
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complex. As the step edge density changes with the introduction of Bi, the 
RHEED reconstruction pattern changes from (2x4) to (1x3) or (4x3) . . . 126 

 
Figure 5.15  Plots of 

௬ಳ೔
௫ಿ

 obtained from RBS and NRA data verses the perpendicular 

strain,	ୄߝ, obtained from XRC data analyzed using the small angle 
approximation, as described in Section 2.6. We use a linear least-square fit 
to extract the 

௬ಳ೔
௫ಿ

 value at which	ୄߝ ൌ 0. In (a), we include data from all 

films which contain a non-negligible fraction of interstitial N complexes; 
the “magic” ratio for lattice matching with GaAs is ሾ݅ܤሿ ൌ 1.23 േ 0.04ሾܰሿ. 
In (b), we include only those data from films with a negligible fraction of 
interstitial complexes; the “magic” ratio for lattice-matching with GaAs is 
ሾ݅ܤሿ ൌ 1.67ሾܰሿ, consistent with theoretical predictions assuming solely 
substitutional N incorporation ሾ݅ܤሿ ൌ 1.7ሾܰሿ . . . . . . . . . . . . . . . . . . . . . .127 

 
Figure 6.1  Random spectrum and aligned spectra at different tilt angles on the left. For 

a specific energy channel on the left, the yield is plotted as yield vs tilt angle 
as shown on the right, forming an angular yield profile. Adapted from Ref. 
1. (Copyright 1978, Elsevier Books). The sample can be tilted in both ߮௫ or 
߮௬ direction as shown above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 

 
Figure 6.2  Angular yield profiles around the three principal axes of Yb-implanted 

silicon crystal. The solid lines are the Si signal and the dashed lines are the 
Yb signal yield profiles. As the Yb is detected, the yield increases, as shown 
for [110] direction. Adapted from Ref. 11. (Copyright 1978, Elsevier 
Books) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

 
Figure 6.3  SIMNRA simulations of RBS for 100nm GaAsNBi films on GaAs using C 

ions, with beam energy ranging from 3 to 5 MeV. As the C ion beam energy 
is increased, the separation between Ga and As signal is predicted to be 
sufficient for quantification of Ga and As compositions . . . . . . . . . . . . . 141 

 
Figure 6.4  Comparison of three SIMNRA simulations of 100nm GaAsNBi films. (a) 

4.46 MeV SIMNRA simulation of GaAsNBi/Alas/GaAs, (b) 4.46 MeV 
SIMNRA simulation of GaAsNBi/AlAs, and (c) 6 MeV SIMNRA 
simulation of GaAsNBi/AlAs. In (a), the Ga and As signals are not 
resolvable due to overlap with the substrate signals. In (b), the Ga and As 
signals are predicted to be partially resolved due to the absence of the 
substrate. In (c), the Ga and As signals are predicted to be fully resolved 
due to the higher energy incident α particles and the absence of the substrate. 
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Figure 6.5  Nomarski images of the as-grown and post-RTA GaAsNBi surfaces. Post-

RTA, the surface contains In droplets. It is likely that In also diffused into 
the film leading to higher RBS channeling yield, namely 		߯௠௜௡ ൏ 6% vs. 
		߯௠௜௡ ൐ 10%	for as-grown vs. post-RTA films, respectively . . . . . . . . 143 
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Figure 6.6  Plots of (004) XRC data for a series of as-grown and post-RTA GaAsNBi 

films with various ݕ஻௜ and ݔே values. For all plots, the GaAs substrate peak 
position is set to Δ߱ ൌ 0	arcseconds. For all post-RTA films, an extra 
“shoulder” on the low angle side of the GaAs substrate peak is apparent. 
This artifact is likely due to In surface diffusion into the GaAsNBi film 
during the RTA process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

 
Figure 6.7  Plots of Raman spectroscopy of the post-RTA (blue) and as-grown (black) 

for GaAsN, GaAsBi, and GaAsNBi. For all as-grown and post-RTA films, 
several spectral features are apparent, including the ~275ܿ݉ିଵ GaAs-like 
transverse-optical (TO) phonons and the ~290ܿ݉ିଵ GaAs-like 
longitudinal-optical (LO) phonons. In GaAsN and GaAsNBi, spectral 
features are also observed at ~475ܿ݉ିଵ, due to GaN-like LO phonons. In 
GaAsBi and GaAsNBi, spectral features are also observed at ~180ܿ݉ିଵ 
due to GaBi. Finally, following FTA, an additional feature is observed at 
~250ܿ݉ିଵ, which has been attributed to InAs . . . . . . . . . . . . . . . . . . . . 145 

 
Figure 6.8  Ball stick model of GaN (white and green) with Mg (red) impurities sitting 

in the substitutional (i.e. MgGa) and interstitial sites (MgI). (a) Simple one-
cell structure, (b) multiple unit cell structure . . . . . . . . . . . . . . . . . . . . . . 146 

 
Figure A.1 (a) Photograph of As cracking zone (CZ) module, with corresponding 

schematic shown in (b). Attempts to remove the protective cover shown in 
(a) were unsuccessful, presumably due to excess arsenic coating on its 
inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 

 
Figure A.2 An image of the bulkzone (BZ) containment units, with the cover from the 

outer containment unit removed. The source containment unit houses the 
arsenic material. The screws emphasized by the red box were apparently 
not tightened to the specified torque, eventually loosening such that arsenic 
leaked from the inner to outer containment unit, as indicated by the yellow 
box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 

 
Figure B.1 Images of plasma from Addon plasma source: (a) low, (b) medium, and (c) 

high brightness mode. Typically, low brightness is achieved with 1.5 sccm 
and 350W, medium brightness with 3 sccm and ~500W, and high brightness 
with 0.35 sccm and ~500W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 

 
Figure C.1 Example LEAP spectrum for an MBE-grown GaAs buffer layer consisting 

of counts vs. mass-to-charge ratio. In the plot, several peaks in mass-to-
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Abstract 

 

Ion Beam Analysis of Solute Incorporation in GaAsN and GaAsNBi Alloys 

  
By 

 
Timothy Yu Cheng Jen 

 
Chair: Rachel S. Goldman 

 
Highly mismatched alloys (HMAs) consist of highly immiscible solute atoms in a 

solvent. In dilute nitride semiconductor alloys, due to the resonant interactions between the 

conduction and/or valence band of the solvent and energy levels of the N solute, the 

bangdgap energies can be tuned dramatically without a significant change in lattice 

parameter, making them promising for a wide variety of optolelectronic applications. 

However, it has been shown that post-growth rapid thermal annealing (RTA) is needed to 

achieve suitable transport properties and emission efficiencies. Therefore, identification of 

the local atomic environments of the N solute atoms and the influence of RTA and anion 

co-incorporation on those environments is needed.  

In the case of GaAsN, several groups have suggested that N shares an arsenic site 

with either arsenic or another N atom, often termed (N-As)As  or (N-N)As split interstitials. 

To distinguish (N-N)As and (N-As)As interstitials in GaAsN alloys, we compare nuclear 

reaction analysis (NRA) spectra with simulations utilizing full numerical integration of ion 

trajectories. In both cases, incident particle paths along the [100], [110], and [111] 

directions are considered. Both the measured and simulated channeling NRA spectra 



xxiii 
 

exhibit the highest (lowest) yields in the [111] ([100]) directions, suggesting that dominant 

interstitial complex is (N-As)As. In addition, we use our combined computational-

experimental approach to examine the influence of rapid-thermal annealing (RTA) on the 

local environment of N atoms, identifying a plausible mechanism for dissociation of (N-

N)As into Nsub and (N-As)As.    

For GaAsN and related alloys, co-alloying with larger group V elements such as Sb 

or Bi is expected to lead to significant energy bandgap narrowing using a substantially 

lower N fraction, and a correspondingly lower concentration of N-related defects that 

degrade carrier mobilities and optical efficiencies. For GaAsNBi, the published 

experimental work has focused primarily on growth parameters and optical properties, 

without addressing the mechanisms for N and Bi co-incorporation during epitaxy. The 

incorporation of Bi is found to be independent of N flux, while the total N incorporation 

and the fraction of N atoms occupying non-substitutional lattice sites increase with 

increasing Bi flux. In addition, a comparison of channeling nuclear reaction analysis along 

the [100], [110], and [111] directions with Monte Carlo-Molecular Dynamics simulations 

indicates that the non-substitutional N primarily incorporate as (N-As)As interstitial 

complexes.  Finally, we determine the “magic ratio” for lattice matching of GaAsNBi to 

GaAs: ሾ݅ܤሿ ൎ ሺ1.23 േ 0.04ሻሾܰሿ. 
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Chapter 1 

 

Introduction 

 

1.1  Overview 

 

Alloys of dilute nitride and dilute bismuthide (“bismide”) semiconductors are of 

significant interest as their energy bandgaps can be tuned dramatically without a significant 

change in lattice parameter. Figure 1.1 shows a plot of energy bandgap versus bond length 

for Si, Ge, and several compound semiconductors.1,2,3,4,5,6
 Here, the bandgap of GaAs is 

reduced by approximately 150 meV for each ݔே ൌ 0.01 incorporated into GaAs1-xNx.7 In 

addition, the bandgap of GaAs is reduced by approximately 84 meV for each  ݕ஻௜ ൌ 0.01 

incorporated into GaAs1-yBiy.8 This significant reduction of the band gap energy enables 

growth of dilute nitride or bismide semiconductors alloys on common substrates such as 

GaAs and InP, with a variety of bandgap energies in the long wavelength regime, without 

a substantial change in the lattice parameter. Therefore, dilute nitride, dilute bismuthide, 

and related alloys and heterostructures are promising for a wide variety of optoelectronic 

applications including long-wavelength lasers 9 , 10 , 11  and detectors, 12 , 13 , 14  ultra-high-

efficiency solar cells, 15 , 16  and high performance heterojunction bipolar 

transistors.17,18,19,20,21,22  
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In this chapter, we discuss the device applications and the motivation of exploring 

new semiconductor alloys in the context of device applications. In addition, we provide an 

overview of theoretical and experimental understanding of GaAsN and GaAsNBi alloys. 

We also discuss N-related interstitial complexes and the challenge of co-incorporating N 

and Bi in GaAs. Finally, a dissertation outline will be provided.    

 

1.2 Motivation 

 

1.2.1 Electronic Doping and p-n junction formation 

 

The energy band gap of a semiconductor determines the wavelength of light that 

can be absorbed or emitted. However, continuous electrically-driven operation of a light 

absorbing or emitting device requires the presence of an energy barrier which allows uni-

directional carrier transport (i.e. a diode). Typically, a diode is formed with a rectifying 

metal-semiconductor, or a p-n junction, with "designer" negative type (n-type) and positive 

type (p-type) impurities providing free electrons or free holes, respectively. Therefore, for 

new alloys to make their way into optoelectronic devices, an understanding of both their 

formation and electronic doping is needed. 

 

1.2.2 Light Emitting Diode and Photovoltaic 

 

One example of a device fabricated using p-n junction as a building block is the 

light emitting diode. For light emitting devices operating at 1.3 µm (0.95 eV) and 1.55 µm 
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(0.8 eV) wavelengths, both Rayleigh scattering and infrared absorption are sufficiently low 

for long distance data transmission. In essence, optical fibers are near transparent at these 

wavelengths, allowing long-range transmission without significant power losses. 23 

However, there are challenges in selecting the proper materials. For example, InP-based 

devices, such as InAs/InP and InGaAsP/InP, suffer from high threshold currents and a large 

sensitivity to temperature in the 1.3-1.6 µm telecommunications range due to the presence 

of non-radiative Auger recombination process and inter-valence band absorption between 

split-off and light/heavy-hole valence band.24,25,26 Similarly, 1.3µm InAs/GaAs quantum 

dot based lasers also have been shown to suffer from Auger recombination.27 In recent 

years, GaInNAs (~4% N, ~10% In) and GaAsNBi (~3.5% Bi, ~1.5% N) have emerged as 

promising materials light emitting devices.9,28,29  

Figure 1.2 shows the record research cell efficiency vs year for a variety of 

materials systems. Although the reported solar cell efficiencies have been increasing 

monotonically for more than 40 years, physical limits to the light-to-energy conversion 

efficiencies are apparent. In particular, the efficiency of PV devices are constrained by the 

Schockley-Queisser limit (SQ limit).30 Photons with energy less than the bandgap will are 

transmitted through the materials while photons with energy higher than the bandgap will 

be absorbed with any excess energy higher than the bandgap lost as heat. Thus, a single-

junction PV device captures a limited portion of the available solar spectrum. For terrestrial 

applications, flat-plate silicon PV is the current market leader, but its performance has 

approached the Shockley-Queisser theoretical limit for a single junction Si PV device at 

25%31, while its manufacturing costs have leveled.  
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A promising alternative is concentrated PV (CPV) technologies, where incident 

sunlight is concentrated onto III-V multijunction (MJ) solar cells using refractive or 

reflective optics. 32  For MJ PV, a series configuration of GaInP, GaAs, and Ge p-n 

junections with bandgaps of 1.9 eV, 1.42 eV, and 0.67 eV, which have similar lattice 

parameters, held the efficiency record for many years. 22,32,33 It has long been predicted the 

insertion of an additional p-n junction, with a 1 eV bandgap, between the GaAs and Ge 

junctions, would lead to further efficiency increase, ultimately approaching 52%.34, 34 

Considerable effort was made by several groups to grow InGaAsN for the 1 eV junction, 

but the success of the approach was reportedly limited by “N-defect” induced limits to 

minority carrier transport, with minority carrier diffusion lengths typically less than 0.1 

µm.35, 36,37  In recent years, Solar Junction demonstrated new alloy for the 1.05 eV junction 

cell, InGaAsN(Sb), which led to a MJ cell efficiency of 43.5%.38,39,40  However, the 

electron mobility of InGaAsN alloys are typically ൏ 100	ܿ݉ଶ/	ܸ െ  ,Therefore 41,42,43 .ݏ

post growth rapid thermal annealing (RTA) is needed to achieve high performance 

optoelectronic devices. For multi-junction solar cells, tunnel junctions which can withstand 

the RTA step are needed. For this purpose, an ErAs tunnel junction was developed.39 

However, erbium is an expensive and rare element that prevents cost-lowering of the PV 

devices.  

 

 1.2.3 Incorporation of Bi in GaAsN 

 

Co-alloying GaAsN with larger elements such as indium (In), antimony (Sb), 

and/or Bi allows lattice-matching to GaAs or Ge substrates, with significant bandgap 
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narrowing using a substantially lower N fraction and correspondingly lower fraction of N-

related defects.30, 44  Specifically, Bi incorporation into GaAs with ݔ ൌ 0.01  leads to a 

bandgap reduction of 84 meV, a much larger than the reduction for similar fractions of Sb 

(21 meV) or In (16 meV).45 In addition, Bi induces a lowering of the split-off band away 

from light/heavy-hole valence band GaAs.46 The resulting ∆ܧுு/௅ுିௌை , which is larger 

than	∆ܧ௚ , as illustrated in Fig. 1.3, is expected to lead to reduced nonradiative Auger 

recombination and inter-valence band absorption that typically occurs in pure GaAs due to 

the similarities of ுு/௅ுିௌைܧ∆		  and ௚ܧ∆		 . 47 , 48 , 49  Thus, GaAsNBi is promising for 

optoelectronic applications operating in the near-infrared range. Although GaAsNBi alloys 

lattice-matched to GaAs, with a bandgap of 1.3µm, have been demonstrated,50 , 51  the 

precise composition was not quantified. Finally, with the incorporation of Bi, it is possible 

to eliminate the need for post-growth thermal treatments and rare-earth tunnel junctions, 

thereby lowering costs by enabling a faster production process and by minimizing the need 

for rare and expensive elements such as indium and erbium.40,41 

To date, very few groups have reported on successful growth of GaAsNBi, all of 

whom are outside of the United States.43,52,53,54
 For GaAsNBi growth, two groups, one in 

Japan and one in Canada, used MBE technique, while one group in Germany used organic 

vapor phase epitaxy (MOVPE).  

 

1.3 Bandgap Bowing in Highly Mismatched Alloys 

 

Figure 1 shows a plot of energy bandgap versus bond length for Si, Ge, and several 

compound semiconductors.1,2,3,4,5,6
 The points correspond to binary or elemental 
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semiconductors. We note that alloys of these binaries or elemental semiconductors are 

estimated by lines connecting the points, which are generally not linear interpolations of 

the endpoints but instead are slightly bowed to a lower bandgap.   Such behavior is typically 

well-described by a quadratic deviation from Vegard’s law of mixtures, expressed as  

൫ܧ௚൯ீ௔஺௦ேሺݔሻ ൌ ௚൯ீ௔ேܧ൫ݔ ൅ ሺ1 െ ௚൯ீ௔஺௦ܧሻ൫ݔ െ ሺ1ݔ െ  ሻܾீ௔஺௦ே           1.1ݔ

and  

൫ܧ௚൯ீ௔஺௦஻௜ሺݕሻ ൌ ௚൯ீ௔஻௜ܧ൫ݕ ൅ ሺ1 െ ௚൯ீ௔஺௦ܧሻ൫ݔ െ ሺ1ݕ െ  ሻܾீ௔஺௦஻௜        1.2ݕ

where ݔ  and ݕ	are the N fraction and Bi fraction substituting for As, respectively. In 

conventional III-V alloys, the so-called “bowing” parameter, ܾ, is typically fractions of an 

ܸ݁55 ; however, for III-V-N and III-V-Bi alloys, ܾ  is composition-dependent, and is 

typically several ܸ݁. 37,44 For GaAsN and GaAsBi alloys, large bowing parameters, 

ܾீ௔஺௦ே ൎ 16 െ 26	ܸ݁56  and ܾீ௔஺௦஻௜ ൎ 2	ܸ݁57 , 58
, allow for a significant decreases in 

bandgap energy with only a small fraction of  incorporated N or Bi.  

 Due to the large (small) atomic size of Bi (N) in comparison to that of As, GaAsBi 

(GaAsN) alloys are expected to induce compressive (tensile) strains at the GaAsBi/GaAs 

(GaAsN/GaAs) interfaces. However, for a ratio of Bi:N of 1:1.7, alloys of GaAsNBi are 

predicted to be lattice-matched to GaAs, with energy band gaps ranging from ~0.6 to ~1.4 

eV.59,60 

 

1.4 Band Anti-Crossing Model  

 

To describe the electronic structure of so-called highly mismatched alloys (HMAs) 

a simple 2-level model termed the “band anti-crossing model” has been proposed.61,62 As 
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illustrated  in Fig. 1.4 for GaAsN,  a N-induced level is assumed to interact with the GaAs 

conduction band states, splitting them into two sub-bands, ܧା and ିܧ. As the N fraction in 

GaAsN is increased, the ܧା and ିܧ splitting increases, effectively lowering the bandgap as 

 moves to a lower state. In the case of GaAsBi, a similar valence band anti-crossing ିܧ

(VBAC) model has been invoked to predict a Bi-induced splitting of the three valence sub-

bands: heavy-hole (HH), light-hole (LH), and split-off (SO), as shown in Fig. 1.4.46 Each 

sub-band is split into ܧା and ିܧ forming ܧାሺܪܪା, ,ାܪܮ ܱܵାሻ and ܪܪ)ିܧା, ,ାܪܮ ܱܵାሻ. 

Thus, as the Bi fraction in GaAsBi is increased, the net effect is an upward movement of 

the valence band as ܧାmoves to a higher energy. 

 Although these single local environment models (i.e. BAC and VBAC) have been 

used to accurately predict energy band gaps for III-As(Bi, N P, Sb) and Zn-Te(S, Se, 

O)45,63,64,65,66, several extraordinary physical phenomena are not predicted by such models. 

For example, non-monotonic composition-dependent electron effective mass67,68,69,70,71 

and the persistent photoconductivity (PPC), in which an illumination-induced increase in 

conductivity persists following the termination of illumination72,73,74
, are not predicted by 

BAC but have been reported in GaAsN. In addition, a non-monotonic composition 

dependence of gyromagnetic factor, ݃௘ , which describes the magnetic field induced 

splitting of electron energy levels, is not predicted by BAC but has been reported in 

InGaAsN alloys.75 Finally, a non-monotonic composition dependence of the splitting of 

the SO from the HH and LH valence bands, which has been reported in GaAsBi, is not 

predicted by the VBAC models.58 

To consider multiple atomic environments, the BAC model has been extended to 

include states associated with pairs and clusters, as shown in Fig. 1.5. For example, the 
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linear combination of isolated N resonant states (LCINS) model, which includes 

hybridization between the conduction band edge and the N cluster states, is shown in Fig. 

1.5 (b) and (c).76 The LCINS model has been used to accurately predict the observed N 

composition dependence of the position of the ିܧ level and the broadening of the ܧା level. 

Although this LCINS replicates the non-monotonic composition-dependence of the 

effective mass and ge in the ultra-dilute alloy regime, its agreement is limited for the dilute 

alloy regime.63, 77 , 78 , 79 , 80  Indeed, the local atomic environments of solute atoms are 

composition-dependent and determine the properties of highly-mismatched semiconductor 

alloys. Therefore, more detailed understanding of the local atomic environments such of 

solute atoms are needed.  

 

1.5 Interstitial Complexes in Related Dilute Nitrides 

 

In the case of GaAsN and related dilute nitrides, it has been reported that N solute 

atoms do not all “see” the same atomic environment, as shown in Fig 1.5. It has been 

suggested that GaAsN may contain Ga interstitials and/or AsGa-NAs complexes, and (Sb-

N)In in (InGa)(AsSbN).81,82,83,84 In addition, it has been shown that up to ~20% of N solute 

atoms share an arsenic site with either arsenic or another N atom, often termed (N-As)As or 

(N-N)As split interstitials as shown in Fig 1.6 and 1.7.85,86,87,88,89 However, the precise N 

atomic configuration, including the relative fractions of (N-N)As, (N-As)As, or (AsGa-NAs) 

complexes, remains unknown. Electronic structure computations have suggested that the 

most energetically favorable configuration of (N-N)As involves alignment of nitrogen 

dimers (N2) along the [111] direction, with its center of mass in the center of the Group V 
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site.86 For (N-As)As , the predicted lowest energy configuration involves alignment of the 

N-As pair along the [010] direction.90 Finally, at low growth temperatures, excess arsenic 

is often incorporated, introducing As antisites, AsGa, and possibly (AsGa-NAs) 

complexes.73,91,92,93,94 In earlier studies, (N-As)As and (N-N)As split interstitials pairs have 

been shown to act as both trapping and scattering centers.95,96 In addition, it has been 

reported that post-growth thermal annealing can be used to reduce the concentration of 

these interstitial complexes, as illustrated in Fig 1.6.97 In addition, is has been suggested N-

As and N-N pairs are the primary contributors to extraordinary physical phenomena such 

as non-monotonic composition-dependent electron effective mass65, 98 , 99 , 100 , 101  and 

persistent photoconductivity (PPC)69,102,103.  

One of the goal of this thesis is to identify the dominant interstitial complexes, such 

as (N-N)As and (N-As)As configurations. For this purpose, we use channeling ion beam 

analyses, in which the crystal films are aligned along a specific crystal direction in order 

to detect the exposure or shadowing of various atoms. For example, in the [111] channeling 

condition, (N-N)As split interstitials, shown in Fig. 1.7, are shadowed by the Ga sublattice 

and would not be detected by nuclear reaction analysis measurements. However, (N-As)As 

split interstitials, aligned along the [010] axis, would be detected in [111] NRA spectra. 

Therefore, to quantify the relative contributions of NAs, (N-As)As, and (N-N)As, both 

measured and computed [100], [110], [111] channeling data are needed. To simulate NRA 

channeling experiment, the author adopted a Monte Carlo-Molecular Dynamic simulation 

code written in C++, from the Ph.D thesis of Dr. Wijesundera (University of Houston).104 

Specifically, the thermal vibrational amplitude,105 atomic species, and ion velocities were 

replaced with those corresponding to our experiments, as listed in Appendix G. To simulate 
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multiple unit cells, the code was modified to use MatLab scripts which automatically 

generate the multiple unit cells structure. The MatLab script written by the author and 

undergraduate students working with him (James Horwath and Tim Johnson) are included 

in Appendix F. 

 

1.6 GaAsNBi Alloys  

 

To date, only three groups in the world have reported on the synthesis of quaternary 

GaAsNBi alloys, by either molecular-beam epitaxy41,42 or metal-organic vapor phase 

epitaxy40. For GaAsN, growth temperatures of ~400ºC are needed to achieve >80% 

substitutional N incorporation.70 In addition, as shown in Fig 1.8, to achieve smooth 

GaAsN surfaces by avoiding the so-called “forbidden window” of growth, the As2/Ga or 

As4/Ga beam-equivalent-pressure (BEP) ratio needs to be carefully selected.106,107,108 On 

the other hand, for GaAsBi, due to the high vapor pressure 109 , 110  and low sticking 

coefficient of Bi111,112, low growth temperatures, ~280ºC, are needed to achieve smooth, 

droplet-free films. Furthermore, as shown in Fig 1.9, there is a narrow As2/Ga BEP window 

for incorporation of Bi into GaAsBi films.113  Finally, for GaAsN and related alloys, 

bismuth is often reported to surface segregate without incorporating.114,115,116,117,118 Indeed, 

the growth conditions of GaAsN and GaAsBi will need to be compromised to find a growth 

window that is suitable for GaAsNBi.  

To date, the bandgap119, emission wavelength35, and electron mobility40  of select 

compositions of GaAsNBi alloys have been reported. However, structural studies linking 

epitaxial growth processes to the optical and electronic properties of GaAsNBi are limited. 
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Furthermore, the presence of a Bi flux has been reported to increase or decrease the 

incorporation of N. For example, metalorganic vapor-phase epitaxy (MOVPE) with a Bi 

flux has been reported to decrease the N fraction,96,120 while molecular-beam epitaxy 

(MBE) with a sufficiently high Bi flux has been reported to increase the N fraction.88,121,122 

Finally, although GaAsNBi alloys lattice-matched to GaAs with a bandgap of 1.3µm has 

been demonstrated and x-ray diffraction was used to estimate the Bi and N molar 

fractions,46,47 the precise “magic” ratio of Bi to N compositions needed for lattice-matching 

remains unknown. 

 

1.7 Dissertation Objectives 

 

As described in Section 1.4, the BAC model, which is based upon a single local 

atomic environment, cannot explain extraordinary phenomena such as the non-monotonic 

N composition dependence of the effective mass and PPC  observed in GaAsN and related 

alloys, which also contain N-related interstitial complexes.86,87 In addition, the PPC effect 

is found to be suppressed after rapid thermal annealing (RTA) and InGaAsN-related 

devices often require RTA to achieve optimum performance.12,116,123 Thus, the objective of 

the first part of the work in this dissertation is to identify the dominant N-interstitial 

complex in GaAsN alloys and examine the influence of RTA on the interstitial complexes. 

As described in Section 1.6, prior to this thesis work, three other groups world-wide  

reported on the synthesis of GaAsNBi alloys,88,96,97 with several others reporting on related 

electronic properties.35,109,110 However, the relationship between growth, structure, optical 

and electronic properties of GaAsNBi is not well understood. For example, the “magic” 
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ratio of Bi to N for lattice-matching with GaAs has not been reported.  Furthermore, the 

atomistic mechanisms for the influence of Bi flux on N incorporation also remain 

unknown. Thus, the goal of the second part of this dissertation is to identify growth 

conditions for the synthesis of GaAsNBi, to determine the “magic” ratio for lattice 

matching of GaAsNBi with GaAs, and to examine the influence of Bi flux on N 

incorporation in GaAsNBi. 

 

1.8 Outline of dissertation 

 

This dissertation is organized as follows. Chapter 2 describes the experimental and 

computational methods, including molecular-beam epitaxy (MBE), reflection high-

energy electron diffraction (RHEED), rapid-thermal annealing (RTA), high-resolution X-

ray diffraction (HRXRD), atomic force microscopy (AFM), Raman spectroscopy, atomic 

probe tomography (APT), Rutherford backscattering spectroscopy (RBS), nuclear 

reaction analysis (NRA), and Monte Carlo-Molecular Dynamics (MC-MD) simulations.  

In Chapter 3, we introduce point defect complexes in GaAsN and related dilute 

nitride materials. We then describe our approach to determine the dominant interstitial in 

dilute GaAsN alloys, namely, a comparison between measured and simulated NRA 

channeling data. In both cases, the highest (lowest) yields in the [111] ([100]) directions 

were observed for simulations of the (N-As)As interstitial complex, suggesting that (N-

As)As is the dominant interstitial complex in dilute GaAsN alloys.  

In Chapter 4, we describe literature studies on RTA of dilute nitride alloys, which 

revealed reductions in the fraction of N-related interstitial.124,125,126,127 We then describe 
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our combined computational-experimental approach to investigate the influence of RTA 

on GaAsN alloys. Our data suggests RTA-induced decreases in the fraction of (N-N)As 

interstitial complexes and increases in the fraction of (N-As)As interstitial complexes. 

These findings are supported by our multiple unit cell simulations that accommodate of 

multiple interstitial complexes. We propose three possible (N-N)As dissociation 

mechanisms, identify one which explains the observed increases in the fractions of Nsub 

and (N-As)As interstitial complexes.  

In Chapter 5, we provide an overview of the current understanding of the growth 

and properties GaAsNBi. Then, we describe our approaches to meet the challenges 

associated with maintaining III-V stoichiometry while incorporating both N and Bi into 

GaAs. We then present a “magic ratio” ሾ݅ܤሿ ൌ ሺ1.25 േ 0.02ሻሾܰሿ  for lattice matched 

GaAsNBi alloy and discuss Bi-enhanced N incorporation that is attributed to preferential 

N-As pairing at [110]-oriented step-edges. 

In Chapter 6, we present a summary and offer suggestions for future work. To 

determine the precise locations of the N-containing interstitial complexes, i.e. how far 

each atom is displaced from the lattice site, we propose to use angular channeling scans. 

To quantify the Ga:As stoichiometry in the quaternary GaAsNBi alloys, we propose 

LEAP experiments using algorithms that allow precise control of local electric fields to 

resolve Ga and As fractions. We also suggest time-of-flight elastic recoil detection and 

RBS with higher energy α particles, especially with a gas ionization chamber detector. To 

test our hypothesis on the role of reconstruction and step-edges on enhanced N 

incorporation in the presence of a Bi flux, we suggest using miscut substrates to alter the 

density of A- and B-type step edges. In particular, we suggest an approach to enhance N 
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incorporation into (N-As)As complexes without the need for post-growth RTA. Finally, to 

achieve structures which are capable of capturing multiple wavelengths of light (for PV), 

we suggest the design and growth of multiple compositions of lattice-matched GaAsNBi 

films on GaAs.  
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1.9 Figures 

 

 

 

Figure 1.1 Bandgap energy vs bond length for various III-V semiconductor 
compounds.5,128,129,130,131,132,133 Each point corresponds to the specific bandgap and the 
bond length for an element or compound. The lines corresponds to the binary alloys. (Note 
GaAsN line is shown with higher slope, it should not exhibit such extreme slope in reality). 
It has been predicted that GaAsNBi can be lattice matched to GaAs when [Bi]~1.7[N] for 
a variety of bandgap energy.49 Adapted and printed with permission from Ref. 108 
(Copyright 2015, Richard L. Field).108 
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Figure 1.2 A plot of record “research” solar cell efficiency vs years compiled by NREL.33 
Navy blue represents crystalline Si cells. Purple represents single-junction, and Green and 
orange represents thin-film technologies and emerging PV technologies respectively. The 
red box emphasize the record efficiency of 25% reported for single crystal Si, which is near 
the Shockley Quiesser theoretical limit of 32%.30 Thus, further efficiency increases beyond 
25% will require the use of multi-junction cells based upon GaAs and related materials, 
which has a record of 43.5%.22,32,33 
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Figure 1.3 An illustration of the band structure of a GaAs alloy with Bi induced states in 
the vicinity of the Γ point. Since ∆ܧ௚ is similar to ∆ܧுு/௅ுିௌை in pure GaAs, nonradiative 
Auger recombination and inter-valence band absorptions often occur. For example, when 
the electron transition from conduction down to valence band, instead of having a radiative 
process, the energy can be used to excite another electron up into HH/LH valence band 
from the SO band, causing a non-radiative inter-valence recombination. It has been is 
predicted that Bi will induce a lowering of the split-off band away from light/heavy-hole 
valence band yielding ܧுு/௅ுିௌை which is larger than	∆ܧ௚, reducing the probability for 
nonradiative Auger recombination and inter-valence band absorption. 
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Figure 1.4 Schematic of dispersion relationship for the sub-bands for GaAsN (Top) and 
GaAsBi (Bottom) using band anti-crossing (BAC) and valance band anti-crossing (VBAC) 
models respectively. N localized states interact with the GaAs conduction band, splitting it 
into ܧା	and ିܧ sub-bands, lowering the effective bandgap. Bi related localized states will 
induce similar effect to the valence band and split the heavy-hole (HH), light-hole (LH), 
and spin-orbit (SO) into ܧା  and ିܧ  forming ܧାሺܪܪା, ,ାܪܮ ܱܵାሻ  and 
ିܧ ,ାܪܪ) ,ାܪܮ ܱܵାሻ , effectively lowering the bandgap by shifting ܧା  to a higher 
level.46,52,53 Reprinted with permission from Ref. 44 (Copyright 2003, AIP Publishing 
LLC) and 60 (Copyright 2007, AIP Publishing LLC). 
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Figure 1.5 Schematics of GaAsN band structure considering (a) a single N atomic 
environment (i.e. the band anti-crossing model)44, (b) N atoms and N-N pairs, and (c) N 
atoms, N-N pairs, and N clusters (the linear combination of isolated resonant states57)  
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Figure 1.6 Interstitial N concentrations vs. total N concentrations for GaAs1-xNx with 
varying x. The concentration of interstitial N increase with total N concentration. Linear 
extrapolation of the data before RTA suggests ~20% of N incorporated interstitially, as 
indicated in the plot. In addition, interstitial N concentration decreases after annealing, 
while the total N concentration remains constant.69,78,79, 134  (Copyright 2013, APS 
Publishing LLC) 
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Figure 1.7 Ball-stick model of a GaAsN unit cell with (N-As)As, (N-N)As and Nsub 

interstitials. The white, green, and blue spheres represent Ga, N, and As. We assume that 
(N-N)As is aligned along the [111] direction, while (N-As)As is aligned along the [010] 
direction. Each different interstitial complex will lead to different local atomic environment 
that is not considered in simple BAC models.  (Copyright 2015, AIP Publishing LLC). 
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Figure 1.8 Surface reconstructions observed during growth of GaAsN films: growth rate 
vs substrate temperature for (a) As4/Ga BEP ratio ~30; (b) As2/Ga BEP ratio ~20; and (c) 
As2 /Ga BEP ratio ~10. Solid (open) symbols denote 500 nm (10–100 nm) thick GaAsN 
films. The shaded regions indicate the conditions which lead to significant surface 
roughness, referred to as the “forbidden window.” Reprinted with permission from Ref. 
113 (Copyright 2007, AIP Publishing LLC). 
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Figure 1.9 Bi incorporation into GaAs, as a function of growth rate and Group V/III BEP 
ratio, for various GaAs(Bi) films grown using either As2 or As4. The solid line separates 
films grown with As2 and As4, with films grown using As2 in the lower-left-hand corner of 
the plot. All films were exposed to As, Ga and Bi flux. Films with Bi incorporation (no Bi 
incorporation) are shown as solid (open) symbols. For films grown using As2, a dashed line 
separates films with Bi incorporation from films without Bi incorporation, with Bi 
incorporation for Group V/III BEP ratios ≤ 6. It is shown here that As2 has a very limited 
growth window in comparison to growths using As4. Adapted and printed with permission 
from Ref. 136 (Copyright 2015, Richard L. Field). 
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Chapter 2 

 

Methods 

 

2.1 Overview 

 

 In this chapter, the experimental procedures and computational methods used in 

this dissertation work are described. First, we describe the MBE growth process, including 

details relevant to the growth of GaAsN, GaAsBi, and GaAsNBi alloys. Then, we describe 

post-growth thermal annealing and characterization methods including atomic force 

microscopy (AFM), scanning electron microscopy (SEM), x-ray diffraction (XRD), atomic 

probe tomography (APT), Raman spectroscopy, Rutherford backscatter spectrometry 

(RBS), and nuclear reaction analysis (NRA). Finally, we discuss our Monte Carlo-

Molecular Dynamics Simulations.  
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2.2 Molecular-Beam Epitaxy  

 

 2.2.1 Overview 

 

Molecular-beam epitaxy (MBE) is an ultra-high vacuum based vapor deposition 

method, which allows growth of high quality epitaxial films one atomic layer at a time.1,2 

The molecular-beams are formed by either sublimation or evaporation from heated solids 

or liquids, which then interact chemically with the heated substrate to form epitaxial films 

by condensation.3  A radio-frequency plasma nitrogen source is also used to produce 

reactive nitrogen species. Because the incoming molecules are highly reactive, epitaxial 

growths typically occur at conditions far from equilibrium. The samples described in 

Chapters 3 and 4 were grown by Dr. Reason in the Goldman Group Modified Varian Gen 

II MBE (Gen II) using the Veeco plasma source. The samples described in Chapter 4 are 

grown by the author and Jordan Occena in the Gen II using the Addon plasma source. 

Additional GaAsBi growths, not discussed in this dissertation, were performed in the Riber 

Compact 21 MBE system (C21).  

 

 2.2.2 MBE system details 

 

Both the Gen II and C21 MBEs contain interconnected but separately-pumped load-

locks, buffer chambers, and growth chambers (GCs). Samples are transferred between the 

chambers via magnetic transfer rods and trolleys, as shown schematically in Fig. 2.1 and 

Fig 2.2. The sample blocks are mounted onto the manipulator, referred to as the CAR (for 
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continuous azimuthal rotation) in the Gen II and ARM (for azimuthal rotation manipulator) 

in the C21. To achieve optimum film uniformity, the CAR (or ARM) is rotated at 10 rpm.  

Both growth chamber source flanges house seven high purity metal sources, 

including 99.99999% [7N] In, Ga and As; 99.99995% [6N5] Al; 99.9999% [6N] Bi and 

Si. The high purity metal sources are contained in pyrolytic boron nitride (PBN) crucibles, 

which are housed in Knudsen effusion cells. In each effusion cell, heating filaments are 

wrapped around the crucibles and the effusion cell temperature are monitored by a 

thermocouple in contact with the crucible. The desired temperatures are set using a 

proportional-integral-derivative (PID) controller paired with a direct current power supply. 

Each source is heated to a temperature above its sublimation/evaporation point in order to 

produce molecular beams. Both MBE chambers contained so-called As “cracking” cells, 

which include a “bulk” and “cracking” zones. The “bulk” zone (BZ) which contains the As 

solid source material, is heated to a low (450ºC) temperature, leading to the sublimation of 

As4 into the “cracking” zone (CZ), which is then heated to a high temperature (900ºC for 

Gen II) to dissociate (or “crack”) As4 into As2. Details of the calibration of the As cracking 

cell for the C21 are available in Appendix A. The fluxes of the molecular beams are 

exponentially dependent on the temperature; the fluxes are monitored and calibrated by a 

beam flux ion gauge at the sample position prior to the commencement of each growth 

sequence.  

The Gen II source flange also houses a radio frequency (RF) plasma source, 

outfitted with ultrahigh purity (6N) N2 gas that is filtered with an Entegris 0.003 µm filter, 

to produce active N. The RF plasma nitrogen source requires a process of “striking” or 

“igniting” the plasma. For the Addon plasma source, the plasma is ignited into a “low-
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brightness” mode followed by a “medium-brightness” mode, and finally, into a “high-

brightness” mode. Details of the N2 plasma ignition processes for both the Veeco and the 

Addon plasma sources are included in Appendix B. To control the N flux, we use a Stanford 

Research Systems RGA300 residual gas analyzer (RGA) in leak test mode; we adjust the 

mass-flow controller accordingly to monitor N14.  

 

 2.2.3 Substrate Preparation  

 

All films were grown on “epi-ready” GaAs substrates. For each growth, 

approximately one-eighth of a 3-inch GaAs substrate is cleaved and indium-mounted onto 

a molybdenum block. Once the samples are mounted and loaded onto the sample trolley, 

the sample load-lock is pumped down to <1E-5 Torr and baked at 150ºC for 8 hours. Prior 

to transferring each block from the buffer to the growth chamber, each block is individually 

outgassed at 180ºC in the buffer chamber heating station for 30 minutes. (We note that the 

heated station in C21 is currently non-functional.) Within the GC, each sample is heated to 

300ºC, at which point the As shutter and needle valve are opened, thereby providing an As 

overpressure. Next, the substrate temperature is ramped to 580ºC for oxide desorption. 

Following observation of the signature RHEED transition to a streaky (2x4) pattern, the 

substrate temperature is raised an additional 20ºC and held for 10 minutes to ensure 

complete oxide desorption.  
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 2.2.4 Temperature calibration 

 

In both MBE systems, the sample surface temperature is often inferred by a 

thermocouple (TC) in contact with the back of each molybdenum block. However, the TC 

temperature (TCAR) is typically higher than the temperature at the sample surface. 

Therefore, a substrate temperature (Tsub) calibration was determined for each surface. For 

the GaAsN films discussed in Chapter 3 and 5, the Tsub calibration was based upon the 

oxide desorption temperature. Specifically, in the presence of a sufficient As flux, the 

RHEED pattern transforms from a hazy (2x4) to a spotty-hazy (2x4), and then finally to a 

streaky (2x4) pattern upon desorption of the surface oxide. Although the precise oxide 

desorption temperature depends on the initial thickness of the oxide, we consider the Tsub 

to be 580ºC and linearly extrapolate the TCAR between 400 and 900ºC.4,5
   

For the Bi-containing films discussed in Chapter 4, the Tsub calibration was refined 

using the Ircon Modline 3-3V pyrometer, which is accurate down to 400°C with 

appropriately adjusted emissivity.6 To calibrate the pyrometer, a GaAs substrate is heated 

to ~200°C and left in the growth chamber overnight with liquid N2 flowing. On the next 

day, while the shutters remain closed (i.e. without arsenic overpressure), TCAR is raised 

until the RHEED pattern transforms from (3x1) to (4x1). The pyrometer emissivity is then 

adjusted to set the pyrometer temperature to 595°C.7 After the pyrometer emissivity is 

calibrated, the relationship between Tsub and TCAR was determined using an indium-

mounted GaAs substrate. For each block, following oxide desorption, with As overpressure 

maintained, TCAR is lowered from ~600°C in 50°C steps, and the corresponding Tsub from 

the pyrometer is recorded. The Tsub is then plotted as a function of TCAR, and a linear least-



37 
 

square fit is used to extrapolate the relationship between Tsub and TCAR for temperatures 

below 400°C.  

 

 2.2.5 Reflection High-Energy Electron Diffraction (RHEED) 

 

During MBE growth, RHEED is used to monitor the surface crystallinity and 

reconstructions, as well as for determining the growth rate (GR) and the incorporation rate 

ratio (IRR),8,9,10 a quantification of how long it takes a surface to recover its surface 

stoichiometry after being deprived of an As flux. The Gen II and C21 MBE systems include 

STAIB RHEED sources, operating at 18 keV and 12 keV, respectively. As shown in Fig 

2.311, during RHEED, an electron beam is accelerated toward the sample surface at a 

incidence angle of ~1º; subsequently, the diffracted electrons impinge upon a phosphor 

screen, producing a diffraction pattern. A charge coupled device (CCD) camera is then 

used to collect the luminescence from the phosphor screen. During growth, the intensity of 

the central spot oscillates, with one period corresponding to a bilayer of growth, i.e. one 

“layer” of GaAs, for example.12 , 13 , 14   Thus, the GR is estimated by considering the 

thickness of one bilayer divided by the time interval for one period of intensity oscillation. 

For GaAs, the GR is typically adjusted by varying the Ga flux. Since the GaAs(Bi)(N) 

alloys contains dilute concentrations of N and Bi, we assume negligible differences 

between the GaAs and GaAs(Bi)(N) GRs. For the GaAsNBi films in Chapter 4, a targeted 

GaAs growth rate of 1 µm/hr, with V/III (As4/Ga) flux ratio of 20, was used. In all cases, 

the IRR values range from 1.5 to 1.8, consistent with literature reports for GaAs growths.15 
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Detailed procedures for determining GR and IRR are available in Section 2.2.5 of R.L. 

Field’s PhD thesis.16 

 

2.3 Rapid Thermal Annealing 

 

For select GaAsN films presented in this thesis, post-growth rapid thermal 

annealing (RTA) was performed by the author using a JetFirst-150 Rapid Thermal 

Processor at Los Alamos National Laboratory. For each RTA experiment, the samples were 

capped with a new GaAs substrate, polished side facing the film of interest. For RTA, the 

samples were inserted into the stainless steel chamber (with quartz window), with 1 atm 

N2 atmosphere, and ramped at 20ºC/s from room temperature to 780ºC and held for 60s. 

For the GaAsNBi samples, RTA was performed prior to the removal of the backside 

indium, leading to indium droplet formation on the surfaces of both the sample and the 

RTA chamber. Interestingly, the HRXRD of these samples suggested possible diffusion of 

In into the epilayer film forming InGaAsNBi – see Chapter 6 for more details. As will be 

discussed in Chapter 6, the author recommends that additional RTA be performed 

following the removal of the backside indium.  

 

2.4 Atomic Force Microscopy and Scanning Electron Microscopy 

 

To examine the surface morphology, we used both atomic force microscopy (AFM) 

and scanning electron microscopy (SEM). While the AFM piezo tubes have <1Å 

sensitivities in both the vertical and lateral direction, the lateral resolution is typically 
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limited by tip convolution effects, which typically lead to lateral resolution in excess of >1 

nm. SEM is also used to collect images over larger areas (on the order of square 

millimeters) with lateral resolution of ~1 nm, but without quantitative height sensitivity.  

AFM images were collected in the Veeco Dimension Icon AFM using ScanAsyst 

mode, which consists of a modified tapping mode with a proprietary scan-tuning algorithm. 

We used Nanoscience AFM probes, consisting of etched silicon, with tip radius < 10 nm, 

tip length ൎ 125 µm, resonance frequency = 300 kHz, and spring constant = 40 N/m. In all 

cases, image “flattening”, root-mean-square (RMS) analysis and feature height analysis 

were performed using the Nanoscope Analysis software. Typically, 3µm x 3µm or 1µm x 

1µm sized images were collected with 512x512 pixel resolution.  

SEM images were collected in the FEI Nova 200 using secondary electron (SE) 

detection, as shown in Fig. 2.4. In Chapter 4, normal incidence ݁ି  irradiation (i.e. 0º 

sample tilt) mostly used for areal images. To avoid large excitation volume and to maintain 

surface features contrasts, 5kV accelerating voltage and 0.4 nA beam current were typically 

used. For imaging of the conical-shaped tips for APT, normal-incidence ion irradiation (i.e. 

52º sample tilt) was used. The FEI Nova 200 has an additional SEM imaging mode called 

“immersion mode”. During this imaging mode using the 5kV/0.4nA settings, an additional 

electric field is applied at the tip of the electron column to further focus the electron beam, 

allowing resolution down to ~1nm. Author primary used 5keV accelerating voltage and 

0.4nA beam current to avoid large excitation volume and to maintain surface feature 

contrasts.  
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2.5 Raman Spectroscopy 

 

To detect the local vibrational modes associated with N-related defect states, we 

used resonant Raman spectroscopy (in which lasers with frequencies near the target 

vibrational modes are used to enhance the vibrational mode intensity). The resonant Raman 

spectra were obtained using a Renishaw Raman microscope spectrometer, equipped with 

a 785 nm diode laser, a Nikon LU plan 20x objective lens, an edge filter to reject the 785 

nm excitation line, and a CCD detector in a 180º backscatter geometry. The laser is focused 

to a <1x1mm spot and the signal is integrated over 10 scans with 20 seconds signal 

integration time for each scan. Each spectrum was then individually normalized to its 

“highest” peak. All the Raman data shown in Chapter 4 was collected in Professor 

Maldonado’s laboratory in the Chemistry Department at University of Michigan.  

 

2.6 High-Resolution X-Ray Diffraction 

 

We performed double-axis high-resolution X-ray diffraction (HRXRD) 

measurements using Cu Kα1 radiation in the BEDE D1
 system located at the MSE 

department in University of Michigan. For the HRXRD measurements, each sample was 

“rocked” about the substrate Bragg angle, while the detector remained fixed at 2θB. Ideally, 

two sets of reflections, the symmetric (004) and the asymmetric glancing-incidence (224), 

were collected. For some samples, epilayer tilt was accounted for via measurements at φ = 

0º and φ = 180º. We used the so-called “small angle” approximation algorithm described 

in Appendix A.2 of M. Reason’s Ph.D thesis17 to calculate the in-plane and out-of-plane 
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strain. In turn, the epilayer lattice parameter and composition are determined assuming a 

linear interpolation of binary lattice parameters. For these calculations, we used the “Peak 

Split” function within the Bede Software, assuming a linear interpolation of the GaAs and 

GaN (GaBi) lattice parameter, along with a Poisson’s ratio of 0.33. It should be noted that 

since GaBi has not yet been synthesized, the GaBi lattice parameter is a computed value,18 

and therefore the GaAsBi and GaAsNBi lattice parameters are also an approximation. For 

quaternary alloys such as GaAsNBi, one of the compositions, N or Bi, is needed before the 

full composition analysis can be performed. For this purpose, we used HRXRD data in 

conjunction with NRA/RBS data to quantify the compositions.  

We also used HRXRD to estimate the upper bound of excess arsenic incorporated 

in our low-temperature-grown GaAs (LT-GaAs) layers. Detailed discussions of the 

measurements and analysis are included in Chapter 5.  

 

2.7 Atom Probe Tomography (APT)  

 

For these studies, both the stoichiometry of the host and the composition of the 

incorporated solutes are needed. For this purpose, we use local-electrode atom probe 

(LEAP) tomography as shown schematically in Fig 2.5. For this dissertation work, most of 

the LEAP experiments were performed in the LEAP 4000X with last-minute work on the 

LEAP 5000XR. To prepare for the LEAP experiment, a conical-shaped sample (the “tip”) 

is fabricated and welded onto a silicon post, which is then mounted on the cryo-cooled 

stage in the LEAP system. During the LEAP experiment, atoms from the sample are 

evaporated by voltage or laser pulses; the ion are subsequently accelerated toward the 
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detector by an applied DC high voltage. With the electrode and detector independently 

grounded, the applied voltages needed for the initiation of ion evaporation are ~2500V and 

~6000V for laser and voltage mode, respectively. As the LEAP experiment progresses, the 

voltages are automatically adjusted by computer algorithm to maintain a constant detection 

rate; thus, the voltage is typically increased gradually. In addition, for the voltage mode, 

each pulse is +20% of the applied DC high voltage. For example, for an applied DC high 

voltage of 6000V, each “pulse” is 7200V. A position-sensitive detector is then used to 

detect the evaporated atoms, separating them by their mass-to-charge ratio.  

For these experiments, we used LEAP in laser mode, using a 355 nm laser with a 

laser pulse energy of 0.25 pJ, a 100 kHz laser pulse rate, and a 0.5% detection rate. To 

minimize mass overlaps due to delayed thermal evaporation and multiple charge state 

production, the laser energy is tuned, as described in Appendix C. In addition, to account 

for the time-of-flight needed for heavy elements such as Bi, often termed “mass wrap 

around”, the pulse frequency must be sufficiently slowed, as also described in Appendix 

C. 

To maximize the probability for useful data acquisition without tip fraction, a six-

step tip shaping procedure was performed in the FEI NOVA 200 dual-beam SEM-FIB. The 

computer-assisted annular mill-pattern design is shown in top of Fig. 2.6, with the FIB 

parameters for each step listed in the table below. During the FIB tip shaping process, the 

tip shape is monitored using immersion-mode SEM where an extra external field is applied 

to focus the electron beam for high resolution (~1 nm). To avoid electron transparency of 

the tip as it is shaped, a low electron accelerating voltage (5 kV) is utilized. Example 

immersion SEM images for a GaAsNBi samples are shown in Fig. 2.7, where contrast 
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differences between the sample and deposited platinum are apparent. Additional lift-out 

and tip-shaping procedure are provided in Section 2.5.1 of A. Chang’s Ph.D thesis.19 The 

LEAP reconstructions were all performed using Visualization and Analysis Software 

(IVAS) provided by Cameca, as described in Appendix K of J. Walrath’s Ph.D thesis, with 

careful attention to the consideration of molecular species and fragments with identical 

mass-to-charge ratios, as described in Appendix C. 

 

2.8 Ion Beam Analysis 

 

For this dissertation work, both random and channeling Rutherford backscattering 

spectroscopy (RBS/C) and nuclear reaction analysis (NRA/C) were performed in tandem 

ion accelerators in which each charged ion is accelerated twice under a static electric 

potential. The details of the 3MeV NEC tandem at Los Alamos National Laboratory 

(LANL) and the 1.7MeV General Ionics tandem at the Michigan Ion Beam Laboratory 

(MIBL) are provided in Appendix D. 

For RBS, α particles are elastically scattered by a target (i.e. the sample) and 

collected by a silicon surface barrier detector located at 167º with respect to the incident 

ion beam direction. In this work, we used RBS to determine the Bi concentration in ternary 

(GaAsBi) and quaternary (GaAsNBi) alloys. The RBS technique is often limited by its 

limited mass resolution (for similar masses) and/or small backscatter cross-section (for 

light masses). For example, signals associated with Ga and As cannot be resolved due to 

the similarity in atomic mass between Ga and As.20 For lighter elements, such as nitrogen, 

the RBS cross-section is too low to be detected with reliable accuracy.21,22 Instead, we 
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select a nuclear reaction whose reaction products are easily detected and can be maximized 

by careful selection of the ion beam energy. Nuclear reactions are often described in a 

short-hand form, ܶሺܲ, ሻܴݔ , where ܲ  is the incident projectile, ܶ  is the target, ݔ  is the 

emitted particle, and ܴ is the residual nucleus. For NRA, emitted particles are collected by 

a silicon surface barrier detector located at 135º with respect to the incident ion beam 

direction. 

In earlier studies of GaAsN by Dr. Reason23, Jin24, and Vardar, the ܰଵସ ሺ݀, ଵ,଴ሻߙ ଵଶܥ  

reaction was used. For example, a set of channeling data collected using ܰଵସ ሺ݀, ଵ,଴ሻߙ ଵଶܥ  

reaction from a GaAsN sample, obtained by G. Vardar during a visit to LANL, is shown 

in Fig. 2.8(a). Although the signal-to-noise ratio (SNR) for these data is low, it was not 

feasible to increase the incident ion beam current because another an additional nuclear 

reaction, ܰଵସ ሺ݀, ݊ሻ ܰଵହ , which involves the emission of neutrons, can also occur during 

the ܰଵସ ሺ݀, ଵ,଴ሻߙ ଵଶܥ  reaction. Instead, the author utilized an alternative nuclear reaction, 

ܰଵସ ሺߙ, ሻ݌ ܱଵ଻ ,25  using a higher incident ion beam current, which led to a substantial 

improvement in SNR, as shown in Fig. 2.8(b). For the ܰଵସ ሺߙ, ሻ݌ ܱଵ଻  measurements, we 

used the nuclear reaction cross section data for ܰଵସ ሺߙ, ሻ݌ ܱଵ଻ , as shown in Fig. 2.9(a)26, to 

determine the beam energies used for various film thicknesses. Various beam energies are 

needed for different film thicknesses due to the atomic stopping energy – as the α particle 

travels through the film, it will gradually lose its kinetic enegy, as shown in Fig. 2.9(b). 

Therefore, it is important to avoid the beam energy that corresponds to maximum reaction 

cross-section availiable because most of the reactions would then occur at the surface, since 

as soon as the α particle penetrates the film of interest, the effective reaction cross-section 

decreases dramatically. Prior to the experiments, SIMNRA with various ion beam energies 
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was used to determine the ion beam energy expected to lead to the highest yield. Typically, 

for 100 to 400nm film, a beam energy of 4.46 to 4.64 MeV is used, as illustrated in Fig. 

2.9(b).  

With both RBS and NRA detectors mounted in the “RBS” analysis chamber of the 

LANL tandem, shown in Fig. D.1 of Appendix D, both channeling RBS and RBS and 

random NRA and RBS were each collected simultaneously. As shown in Fig 2.10, when 

the ion beam is directly aligned along a crystallographic direction, the energetic ions are 

streered by small-angle scattering collisions between rows and planes of atoms. To achieve 

axial channeling, careful tuning procedures are utilized, as described in Appendix D.3. For 

both RBS and NRA, when the channeling conditions are achieved, the yields decrease 

dramatically. To collect random spectra, the samples are rocked ߮௫ ±4º about the 

channeling conditions. Examples of random and channeling RBS (NRA) spectra from 

GaAs(N)(Bi) are shown in Fig 2.11. In the RBS spectra shown in Fig 2.11(a), the signals 

at ~3.5 MeV (~4.1 MeV) are due to backscattering from Ga and As (Bi). For the channeling 

RBS spectrum, the distinct peaks near ~3.6 MeV are due to preferential scattering from 

exposed surface atoms. For the NRA spectra shown in Fig. 2.11(b), the signal at ~1.05 

MeV is associated with protons emitted by the 14N(α,p)17O nuclear reaction. 

To evaluate the quality of axial channeling, we consider the fraction of ions that are 

channeled, 
గ௥೚మିగ௥೘೔೙

మ

గ௥೚
మ , as shown in Fig. 2.10, where ݎ௠௜௡is the radius of the atom and ݎ଴ is 

the radius of ion channel surrounding the atom. To estimate the ratio of the channeling 

yield to the random yield, ߯௠௜௡, we consider the fraction of ions that are not channeled 

߯௠௜௡ ൌ 	
௠௜௡ݎߨ

ଶ

௢ଶݎߨ
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For pure GaAs, axial channeling is considered adequate when the minimum yield is ~4-

5%.27,28 The detailed procedures for alignment, spectral fitting and analysis are described 

in Appendix D.3 and D.4. 

 

2.9 Monte Carlo-Molecular Dynamics (MC-MD) Ion Beam Simulation 

 

To simulate the channeling RBS and NRA spectra, we use a combined Monte 

Carlo-Molecular Dynamics (MC-MD) approach, building upon the code developed in Ref. 

27.29 In our simulation, the Monte Carlo algorithm is used to give each of the 2x104 alpha 

particles a randomly-assigned starting point within the primitive cell of the zincblende 

lattice, as shown in Fig. 2.12. Each ion is then injected into the lattice, and Molecular 

Dynamics is used to determine its subsequent trajectory via numerical integration of the 

Molière potential function,30 with a resolution of 2Å for each step. As an ion passes through 

the film, its proximity to the atoms of interest is recorded and converted to a close-

encounter probability given by the equation ௖ܲ௘ ∝ ∑ exp	ቀି|௥ି௥೔|
మ

ଶ௨భ
మ ቁே

௜ୀ௜  where ݑଵis the root 

mean square of thermal vibrational amplitude, r is the position of the ion, and ri is the 

position of the ith
 atom of interest in the lattice. In practice, the summation is carried out 

for the neighbors falling within a given radius of the position of the ion; in this case, the 

cutoff radius is 4Å. By rotating the constructed crystal, various ion channeling directions 

are simulated. To predict the channeling yields for GaAsN with various interstitial 

complexes, we assume that one particle is produced for each ion-N close-encounter. Using 

the energy-dependent cross-sections, modified to take into account energy loss due to 

nuclear and electron stopping in GaAsN, we determine the sum of NRA yields for 
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ܰଵସ ሺߙ, ሻ݌ ܱଵ଻ . Finally, the simulated result is plotted in a yield-vs channel form, as shown 

in Fig. 2.12, in order to be compared with the experimental data. Additional details and 

verification of the simulation can be found in Appendix E.  

For simulations with a single primitive cell of the zincblende lattice, it is possible 

to include one defect type and location, as shown in Fig. 2.13. Single cell simulations were 

used for the studies presented in Chapter 3. To enable the inclusion of multiple defect types 

and locations, as needed for ternary and quaternary alloys, multiple primitive cells are 

needed. Therefore, we set up cells with up to 5x5x5 cells of the zincblende lattice. An 

example 2x2x2 cell is shown in Fig. 2.14. Multiple cell simulations were used for the 

studies presented in Chapter 4 and 5.  
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2.10 Figures 

 

 

 

 

Figure 2.1 Schematic of the Modified Varian Gen II molecular-beam epitaxy system, 
which contains a horizontal facing source flange. Seven high purity metal sources (Ga, In, 
Al, Si, Be, Bi, and As) and the radio frequency N2 plasma source (separated from the main 
chamber by a gate valve) are each located at one of the effusion cell ports. (adapted from 
Ref. 31.)31 
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Figure 2.2 Schematic of the Riber Compact 21 molecular-beam epitaxy system, with an 
upward facing source flange. The seven high purity sources (Ga, In, Al, Si, Be [not yet 
loaded], Bi, and As) are each located in one of the effusion cell ports. Adapted from Ref 
24.24 
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Figure 2.3 Schematic of the RHEED experiment, adapted from Ref. 7. The beam of 
electrons is directed at the sample at a grazing incidence angle of ~1º, and is diffracted onto 
a phosphor screen.  
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Figure 2.4 Schematic of NOVA 200 dual beam workstation. The ion (electron) beam angle 
of incidence is defined as the angle between the incident ion (electron) beam and the sample 
surface normal. The secondary electron detector in Nova 20 is located at 20° away from 
the electron beam. The angle between the ion and electron beam columns is fixed at 52°. 
Therefore, to achieve normal-incidence ion irradiation, the sample is tilted to 52° with 
respect to the electron beam. Adapted from Ref. 32.32 
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Figure 2.5 Schematic of the atom-probe tomography experiment. A conical-shaped sample 
(the so-called “tip”) is welded to a silicon post, is mounted on a cyro-cooled stage. For 
laser mode, 355 nm laser pulses assist the evaporation of atoms from the sample; the atoms 
are subsequently accelerated toward the position sensitive detector using a DC applied high 
voltage. The distance, x, used to calculate the time of flight is distance between the tip and 
the detector, as marked in the schematic. For voltage pulse mode, the DC applied high 
voltage is pulsed (at +20%) in order to evaporate the ions. For example, voltage pulses of 
7200V are used to evaporate atoms and subsequent acceleration toward the position 
sensitive detector is achieved using a DC applied high voltage of 6000V. 

 

 

 

 

 

 



53 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Steps 
Outer 

Diameter 
Inner 

Diameter
Beam 
Voltage 

Beam 
Current 

Milling 
Depth 

1  10 µm  4 µm  30 kV  3 nA  1 µm 

2  6 µm  2 µm  30 kV  1 nA  1 µm 

3  3 µm  1 µm  30 kV  0.5 nA  1 µm 

4  2 µm  0.5 µm  30 kV  100 pA  400 nm 

5  1.5 µm  0.15 µm  30 kV  30 pA  200 nm 

6  1.5 µm  0 µm  5 kV  70 pA  100‐400nm 

 
Figure 2.6 (Top): a schematic of annular region to be milled, defined by its inner and outer 
diameters. (Bottom) the sequence of steps used for milling, including the inner and outer 
diameters, the milling depth, and the ion beam currents and voltages.  
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Figure 2.7 Immersion-mode SEM images of the tip shaping process for LEAP: (a) 
GaAsNBi sample mounted on a silicon post, with a thin layer of SEM-deposited Pt and a 
thick layer of FIB-deposited Pt clearly on top of the sample. (b) partially-shaped (step 3-5) 
sample which resembles a cone with the layers of SEM- and FIB-deposited Pt apparent. 
(c) After step 6, a cone-shaped sample, with the FIB-deposited Pt weld apparent, is ready 
for the LEAP experiment.  
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Figure 2.8 Measured NRA yield versus emitted particle energy for GaAsN, along the [100] 
(green), [110] (red), [111] (blue), and random (black) channeling directions for the (a) 
ܰଵସ ሺ݀, ଵ,଴ሻߙ ଵଶܥ  and (b) ܰଵସ ሺߙ, ሻ݌ ܱଵ଻  nuclear reactions. Due to the neutron production 

from ܰଵସ ሺ݀, ݊ሻ ܰଵହ  reaction that occurs along with the ܰଵସ ሺ݀, ଵ,଴ሻߙ ଵଶܥ  reaction, it is not 
feasible to increase the ion beam current as needed to achieve a suitable signal-to-noise 
ratio in (a). In (b), using ܰଵସ ሺߙ, ሻ݌ ܱଵ଻ , we increase the signal-to-noise ratio by ~50x.33 
(Copyright 2015, AIP Publishing LLC for Fig. 2.7(b)). 
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Figure 2.9 (a) Measured cross-section vs. incident ion beam energy for the ܰଵସ ሺߙ, ሻ݌ ܱଵ଻  
reaction obtained from the Ion Beam Analysis Nuclear Data Library18 The plot reveals 
three distinct resonances peaks in the range of ~4 MeV to 5 MeV. Since the cross-section 
at ~4.5 MeV is the largest among the three, we targeted energies in the vicinity of the ~4.5 
MeV. However, since ion loses energy as it traverse through the film (~241 keV/µm for 
~4.5MeV alpha ion in GaAs), as illustrated in (b) the ion energy must be selected to 
maximize the cross-section while the ion is traversing through the film of interest – if the 
ion energy is too low, we do not utilize the benefit of the resonance peak; if the ion energy 
is too high, it can travel through the film without losing enough energy to utilize the benefit 
of the resonance peak as well. Prior to experiments, we use SIMNRA with various ion 
beam energies to determine the ion beam energy expected to provide the highest yields. 
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Figure 2.10 (a) Schematic illustration of a face-centered cubic crystal, with black circles 
representing atoms, hashed regions representing a column of atoms with radius ݎ௠௜௡, and 
the remaining white spaces representing the ion channels with radius ݎ଴. (b) within ݎߨ௢ଶ of 
each column of atoms, particles channel only for ݎ ൐  ௠௜௡. Thus, the fraction channeled isݎ
గ௥బ

మି	గ௥೘೔೙
మ

గ௥೚
మ .34 (Copyright 1986, Elsevier Books). 
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Figure 2.11 (a) Example random and channeling RBS spectra for GaAs(N)Bi. When the 
precise channeling condition is achieved, the backscattered yields are significantly 
reduced. The channeling quality is determined by the ratio of the channeled to random 
yields, ߯௠௜௡. In the channeling spectrum in (a), the distinct peaks for Ga and As and the 
asymmetry of the Bi peak are due to the preferential surface scattering as the ions enter the 
channels. (b) Example random and channeling NRA spectra for GaAsN(Bi). As with RBS, 
the nuclear reaction events are also dramatically reduced as the channeling condition is 
achieved. In this particular experiment, we have configured the ion beam condition to 
observe 14N(α,p)17O nuclear reaction, with emitted protons collected by the detector.  
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Figure 2.12 Schematics of the Monte Carlo Molecular Dynamics simulations used in this 
dissertation. For each of the 2x104 incident ions, the Monte Carlo algorithm randomly 
generates the starting point (within the unit cell). As each ion moves through the crystal 
lattice, molecular dynamics is used to calculate its trajectories. At each new ion position in 
the crystal lattice, the close-encounter probability of the ion and atom of interest is 
calculated and recorded. Finally, the depth-dependent close-encounter probability is 
convoluted with the energy-dependent cross section to determine the predicted yield vs. 
energy. 
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Figure 2.13 A zincblende GaAs structure, with Ga (As) shown as white (green). The 
primitive cell is outlined in red and the unit cell is outlined by the grey box. For the 
simulation, we use the red primitive cell, modified to include Nsub, (N-N)As, or (N-As)As 
replacing an As atom within the cell. 
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Figure 2.14 Example ball-stick model for a 2x2x2 cell of GaAs (white/blue) for simulation 
of complex compositions and defect combinations with various Bi (red) and N blue) 
interstitials. For example, the (N-N)As, (N-As)As, NAs, BiGa,  and BiAs defects is shown in 
the diagram. Since each unit cell includes 4 defect sites, the 2x2x2 cell has 32 sites and 
5x5x5 cell has 500 sites.  

GaAsNBi 

Ga 

As 

N 

Bi 



62 
 

2.11 References 

 
1 A. Y. Cho and J. R. Arthur, Progr. Solid State Ch. 10, 157 (1975). 
 
2 A. Y. Cho, J. Crys. Growth 202, 1 (1999). 
 
3 C. T. Foxon and B. A. Joyce, Growth and Characterisation of Semiconductors (Adam 
Hilger, 1991) pp. 35. 
 
4 T. Vanbuuren, M.K. Weilmeier, I. Athwal, K.M Colbow, J.A. Mackenzie, T. Tiedje, 
P.C. Wong and K.A.R. Mitchell, Appl. Phys. Lett. 59, 464 (1991). 
 
5 A.J. Springthorpe, S.J. Ingrey, B. Emmerstorfer, P. Madeville and W.T. Moore, Appl. 
Phys.Lett. 50, 77 (1987). 
 
6 Ircon Modline 3-3V Manual, 
http://www.belmet.si/Custom/Modules/Products/uploadedFiles/Products/Datoteke/Modli
ne%203-GY936.pdf; Download 5:00pm (September 4, 2017). 
 
7 M. Reason, Ph.D Thesis, Chapter 2, University of Michigan, 2006.  
 
8 R. Farrow, Molecular Beam Epitaxy, (Noyes, Park Ridge, NJ, 1995), pp. 84-87. 
 
9 J.H. Neave, B.A. Joyce, P.J. Dobson and N. Norton, Appl. Phys. A 1, 1 (1981). 
 
10 J.M. Van Hove, C.S. Lent, P.R. Pukite and P.I. Cohen, J. Vac. Sci. Technol. B 1, 741 
(1983). 
 
11 Staib Instrumente, Instruction Manual, RHEED System RH 30 (2000). 
 
12 J. H. Neave, B. A. Joyce and P. J. Dobson, Appl. Phys. a-Mater 34, 179-184 (1984). 
 
13 J. M. Van Hove, C. S. Lent, P. R. Pukite and P. I. Cohen, J. Vac. Sci. Technol. B 1, 
741(1983). 
 
14 R. Farrow, Molecular Beam Epitaxy (Noyes, Park Ridge, NJ, 1995), pp. 84-87. 
 
15 S. Banks, An Introduction to MBE, http://lase.ece.utexas.edu/mbe.php; Download 
5:00pm (July 18, 2017). 
 
16 RL. Field, Ph.D. thesis, Ch. 2. University of Michigan, 2015. 
 
17 M. Reason, Ph.D Thesis, Appendix A, University of Michigan, 2006. 
 
18 A. Janotti, S.-H. Wei, and S.B. Zhang, Phys. Rev. B 65, 115203 (2002). 

 

 



63 
 

 

 
19 A.Chang, Ph.D. thesis, Ch. 2. University of Michigan, 2016 
 
20 W.Chu, J. Mayer, M. Nicolet, Backscattering Spectrometry, (Academic Press, New 
Work, 1978) pp. 23-26. 
 
21 L.C. Feldman and J.W. Mayer, Fundamentals of Surface and Thin Film Analysis, 
(Elsevier Science Publishing, The Netherlands, 1986) 

 
22 J. R. Tesmer and M. A. Nastasi, Handbook of Modern Ion Beam Materials Analysis 
(Materials Research Society, Pittsburgh, 1995) 

 
23 M. Reason, H. McKay, W. Ye, S. Hanson, V. Rotberg, and R.S. Goldman, Appl. Phys.  
Lett. 85, 1692 (2004). 

 
24 Y. Jin, R.M. Jock, H. Cheng, Y. He, A.M. Mintairov, Y. Wang, C. Kurdak, J. L. Merz, 
R.S. Goldman, Appl. Phys. Lett., 95, 062109 (2009). 

 
25 P. Wei, M. Chicoine, S. Gujrathi, F. Schiettekatte, J-N. Beaudry, R. A. Masut, and P. 
Desjardins. Journal of Vacuum Science & Technology A 22, no. 3 (2004) 
 
26 https://www-nds.iaea.org/exfor/ibandl.htm; Download 4:45pm (December 19, 2016. 
 
27 Theoretical calculated minimum is ~3.6%, however, instrument alignment limitation 
puts the actual minimum closer to ~4-5% 
 
28 J. R. Tesmer and M. A. Nastasi, Handbook of Modern Ion Beam Materials Analysis 
(Materials Research Society, Pittsburgh, 1995 
 
29 D. Wijesundera, Ph.D. thesis, Ch 6. University of Houston, 2006. 
 
30 M.T. Robinson and I.M. Torrens, Physical Review B, 9(12), (1974) p.5008. 
 
31 RL. Field, Ph.D. thesis, Ch. 2. University of Michigan, 2015. 
 
32 M. Kang, Ph.D. thesis, Ch. 2. University of Michigan, 2014. 
 
33 Dr. Vardar collected the data shown (a) in 2012 at Los Alamos National Laboratory. 
 
34 L.C. Feldman and J.W. Mayer, Fundamentals of Surface and Thin Film Analysis, 
(Elsevier Science Publishing, The Netherlands, 1986) pp. 102-103 
 



64 
 

 

 

 

Chapter 3 

 

GaAsN: Identifying the Dominant Interstitial Complex in Dilute GaAsN Alloys 

 

 
3.1 Overview 

 

This chapter describes experimental and computational investigations of interstitial 

complexes in dilute GaAsN alloys. The objective of this work is to identify the dominant 

interstitial complex in GaAsN alloys, which is needed for predictive modeling of 

extraordinary phenomenon in GaAsN and related highly mismatched alloys.  

This chapter begins with a review of earlier investigations of ultra-dilute and dilute 

GaAsN alloys.  Next, we describe the experimental and computational approaches we used 

to investigate the dominant N-interstitial in GaAsN. The bulk of the chapter is then devoted 

to describing our experimental and computational ion beam analyses of GaAsN films. In 

particular, we present a comparison of channeling RBS and NRA spectra with Monte 

Carlo-Molecular Dynamics (MC-MC) simulations along the [100], [110], and [111] 

directions. The measured channeling NRA spectra exhibit the highest (lowest) yield in the 

[111] ([100]) directions. Similar trends are also observed for simulations of the (N-As)As 

interstitial complex, suggesting that (N-As)As is the dominant interstitial complex in dilute 

GaAsN. 
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3.2 Background 

 

For N solute atom fractions less than 0.0001, i.e. “ultra-dilute” GaAsN alloys, the 

formation of localized single impurity levels has been reported. 1 As the N solute atom 

fraction is increased beyond 0.005, i.e. “dilute” GaAsN alloys, extraordinary physical 

properties have been reported and attributed to the formation of N-induced cluster states, 

whose configurations remain elusive.2 In the case of dilute GaAs1-xNx, large composition-

dependent bowing parameters are typically explained in the context of the band anti-

crossing (BAC) model, which considers interactions between the conduction band edge 

states of the host and a localized state associated with the solute atom.3 In the modified 

BAC model of Lindsay et. al, “clusters” consisting of two or more N atoms as 2nd nearest-

neighbors were considered. 4 , 5  Although this model replicates the non-monotonic 

composition-dependence of the effective mass in the ultra-dilute alloy regime, its 

agreement is limited for the dilute alloy regime.6,7 Therefore, new insight into the precise 

configurations of the N-induced clusters are needed to develop predictive models for these 

extraordinary physical phenomena. 

It has been suggested that GaAsN may contain Ga interstitials and/or (AsGa-NAs) 

complexes.8 In addition, it has been shown that ~20% of N solute atoms share an arsenic 

site with either arsenic or another N atom, often termed (N-As)As or (N-N)As split 

interstitials.9,10,11,12,13 However, the precise N atomic configuration, including the relative 

concentrations of (N-N)As, (N-As)As, or (AsGa-NAs) complexes, remains unknown. 

Electronic structure computations have shown that the most energetically favorable 

configuration of (N-N)As involves alignment of nitrogen dimers (N2) along the [111] 
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direction, with its center of mass in the center of the Group V site. For (N-As)As , the 

predicted lowest energy configuration involves alignment of the N-As pair along the [010] 

direction.14  Finally, at low growth temperatures, excess arsenic is often incorporated, 

introducing As antisites, AsGa, and possibly (AsGa-NAs) complexes.11,15,16,17,18 The presence 

of (N-As)As may be determined by [111] channeling NRA. However, in the [100] and [110] 

channels, interstitial complexes are not shadowed by a sublattice; therefore, the interstitial 

complexes are indistinguishable.  

 

3.3 Methods 

 

3.3.1 Experimental Details 

 

The GaAs1-xNx alloy films were grown by Dr. Matt Reason on semi-insulating (001) 

GaAs substrates by MBE using Ga, As4 and a N2 rf plasma source in the Gen II MBE 

system. After an initial 500-nm thick GaAs buffer layer grown at 580ºC, the substrate 

temperature was lowered to 500ºC for the growth of an additional 20-nm GaAs. 500-nm 

GaAsN films were then grown at relatively low T (~400ºC) with As/Ga beam equivalent 

pressure ratio >30 to avoid growth in the so-called “forbidden window,” a specific T range 

where multilayer growth has been reported.19 Using a growth rate of 0.4 µm/hr for the 

dilute GaAsN layer, we targeted a N fraction, x, of 0.016, which is sufficiently high to 

involve the presence of N “cluster” states, while limiting the presence of other misfit-strain 

related linear and planar defects.20 More details about the growth procedures are provided 

elsewhere.11  
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NRA/C measurements were performed at Los Alamos National Laboratory using 

the methods described in Section 2.8 and Appendix E. Briefly, we used 4.64 MeV He ions 

incident on GaAsN films induce the 14N(α,p)17O reactions for NRA.20,21 The yields of the 

reaction-emitted protons were detected by a silicon surface-barrier detector located at 135o 

with respect to the incident beam direction. To filter out scattered He particles, a 18-µm-

thick aluminum foil was placed in front of the NRA detector. For RBS measurements, 4.64 

MeV He ions incident on GaAsN films are backscattered by Ga, As, and N atoms and 

recorded by a silicon surface-barrier detector located at 167o with respect to the incident 

beam direction. 

To estimate ݔே  in each ݏܣܽܩଵି௫ ௫ܰ	 film, high-resolution X-ray rocking curves 

(HRXRC) were performed using Cu Kα1 radiation. A series of ∆ scans were collected 

near the GaAs (004) and GaAs (224) reflections, as shown in Fig. 3.1. Assuming a 

tetragonal distortion of the GaAsN film, and a linear interpolation of the binary elastic 

constants and lattice parameters for GaN and GaAs,22,23 the GaAsN film lattice parameter 

is estimated as 5.62Å, corresponding to a nitrogen fraction of  x = 0.016. 

 

3.3.2 Monte Carlo-Molecular Dynamics Simulation 

 

To simulate the channeling RBS and NRA spectra, we use a combined Monte 

Carlo-Molecular Dynamics (MC-MD) approach, based upon Ref. 24.24 In our simulation, 

2x104 alpha particles are each given a randomly assigned starting point within the primitive 

cell of the zincblende lattice, as shown in Fig. 3.2. Each ion is then injected into the lattice 

and its subsequent trajectory is determined by numerical integration of the Molière 
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potential function, with a resolution of 2Å for each step. As the ion passes through the film, 

its proximity to the atoms of interest is recorded and converted to a close-encounter 

probability given by the equation  

௖ܲ௘ ∝ ∑ exp	ቀି|௥ି௥೔|
మ

ଶ௨భ
మ ቁே

௜ୀ௜                                               3.1 

where ݑଵis the root mean square of thermal vibrational amplitude, r is the position of the 

ion, and ri is the position of the ith
 atom of interest in the lattice. In practice, the summation 

is carried out with the neighbors falling within a given radius of the position of the ion; in 

this case, the cutoff radius is 4Å.  

To predict the channeling RBS and NRA yields for GaAsN with various interstitial 

complexes, we assume that alpha particles are scattered during close encounters between 

alpha particles and gallium/arsenic atoms (RBS), while proton production results from 

close encounters between alpha particles and nitrogen atoms (NRA). Using the energy-

dependent cross sections, considering energy loss due to nuclear and electronic stopping in 

GaAsN, we determine the sum of RBS yields from Ga and As backscattering, and NRA 

yield for 14N(α,p)17O reaction. We assume that (N-N)As is aligned along the [111] direction, 

while (N-As)As is aligned along the [010].15,25 Thus, the Ga sublattice shadows (N-N)As and 

NAs along the [111] direction, as shown in Fig 3.3. To compare the total RBS yields in 

[100], [110], and [111] channeling direction, we integrate areas under the spectra close to 

the Ga/As edge. To compare the total NRA yields in [100], [110] and [111] channeling 

direction, we integrate the areas under the maxima in yield associated with protons. For 

each of the interstitial complexes (a) NSub, (b) (N-N)As, and (c) (N-As)As, the projections of 

the crystal structure as well as the total  RBS (NRA) yields in the [100], [110], and [111] 

directions are presented in bar graph format in Fig. 3.4 (Fig. 3.5).  
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3.4 Channeling RBS 

 

We now compare the measured and the MC-MD simulated  RBS spectra, as shown 

in Fig. 3.4. For all the N interstital complexes, the RBS simulations predict the highest 

(lowest) yields in the [111] ([110]) directions, as shown in Fig. 3.4(a)-(c). On the other 

hand, the measured RBS spectra reveal the highest (lowest) yields in the [111] ([100]) 

directions, as shown in Fig. 3.4(d). For an ideal GaAs lattice, the highest (lowest) RBS 

yield is expected in the [100] ([110]) directions. For GaAs films growth at “low” substrate 

temperature (i.e. T ≤ 400ºC), As antisites in the form of As monomers or dimer sitting on 

a Ga or As site, i.e. AsGa or (As-As)As, are often observed.18,19,20,21
 For both As antisite 

configurations, As atoms are displaced into the [110] and [111] channels. Channeling RBS 

may be sensitive to such displacements.26 Similarly, tetrahedral Ga interstitials would be 

detected in the [110] channel. Thus, the increase in measured [110] and [111] RBS yield 

(in comparison to the ideal GaAs structure) may be due to the presense of As antisites 

and/or Ga interstitials in the GaAsN films.  

 

3.5 Channeling NRA 

 

We now compare the measured and the MC-MD simulated NRA spectra, as shown 

in Fig. 3.5. For both the NSub and (N-N)As interstitial complexes, the NRA simulations 

predict the highest (lowest) yields in the [100] ([111]) directions, as shown in Figs. 3.5(a)-

(b), leading to a yield trend of Y[100]> Y[110]> Y[111].  In contrast, for the interstitial pair (N-

As)As, the simulation predicts the highest (lowest) yield in the [111] ([100]) directions as 
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shown in Fig. 3.5(c), giving a yield trend of Y[111]> Y[110]> Y[100]. For comparison, we 

consider the measured NRA yields versus energy, shown in Fig. 3.6, for channeling 

directions [100] (green), [110] (red), [111] (blue), and random (black). The vertical dashed 

lines indicate the energy window of the protons emitted  from the 14N(α,p)17O reaction. For 

the measured spectra, the highest yield is in the [111] channeling direction, while the lowest 

yield is in the [100] channeling direction. Thus, as shown in Fig. 6(d), the measured yield 

trend is Y[111]> Y[110]> Y[100]. As shown in Figs. 3.5(a)-(c), a yield trend of, Y[111]> Y[110]> 

Y[100] is predicted for only for the case where (N-As)As is the dominant interstitial complex. 

Therefore, our combined computational-experimental approach suggests that (N-As)As is 

the dominant interstitial complex in GaAsN alloys. 

 

 3.6 Conclusion 

 

In summary, we have developed a combined computational-experimental approach 

consisting of MC-MD simulations, along with RBS and NRA experiments, to examine the 

dominant interstitial configurations in GaAsN films. We compared channeling NRA and 

RBS spectra with MC-MD simulations along the [100], [110], and [111] directions. During 

the MC simulation, we assume that (N-N)As is aligned along the [111] direction and is 

shadowed by Ga sublattice, while (N-As)As is aligned along the [010] direction and is not 

shadowed by Ga sublattice. The measured channeling RBS spectra reveal the lowest yield 

in the [100] direction, in contrast to those predicted for an ideal GaAs lattice, i.e. the lowest 

yield in the [110] direction, suggesting the possible presence of Ga interstitials and/or As 

antisites in the GaAsN alloys. The measured channeling NRA spectra have the highest 
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(lowest) yields in the [111] ([100]) directions, while similar trends are also observed for 

simulations of the (N-As)As interstitial complex. Thus, we conclude that (N-As)As is the 

dominant interstitial complex in dilute GaAsN alloys. This combined computational-

experimental approach is applicable to determining the atomic structure of many HMAs, 

such as (In)GaAsBi and GaAsN(Bi). 
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3.7 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Plots of high resolution x-ray rocking curves (Intensity vs ∆) for GaAsN layers 
on GaAs. For both plots, the GaAs substrate peak position is set to ∆=0 arcsecond, 
thereby facilitating comparison of ∆ between the GaAs substrate and GaAsN epilayers. 
Using a linear interpolation of the binary elastic constants described by Vegard’s Law and 
lattice parameter for GaN and GaAs leads to a nitrogen fraction of x = 0.016. (Copyright 
2015, AIP Publishing LLC). 
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Figure 3.2 A zincblende GaAs structure with Ga (As) shown as white (green), and the 
primitive cell outlined in red. For the simulaton, we use the red primitive cell, modified to 
include Nsub, (N-N)As, or (N-As)As replacing an As atom within the cell. (Copyright 2015, 
AIP Publishing LLC). 
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Figure 3.3 Ball-stick model of a GaAsN unit cell with (N-As)As, (N-N)As and Nsub 

interstitials. The white, green, and blue spheres represent Ga, As, and N, respectively. We 
use the lowest energy configurations of (N-N)As and (N-As)As., as predicted by density 
functional theory 27 , namely (N-N)As aligned along the [111] direction, and (N-As)As 
aligned along the [010] direction. (Copyright 2015, AIP Publishing LLC). 
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Figure 3.4 Projections of the crystal structure as well as the total simulated RBS yields in 
the [100], [110], and [111] directions for (a) NSub, (b) (N-N)As, and (c) (N-As)As. (d) 
Measured total RBS yield in each channeling direction. For (a)-(c), the highest (lowest) 
yields are in the [111] ([100]) directions, while the highest (lowest) yields are in the 
[111]([100]) in (d). For an ideal GaAs lattice, the highest (lowest) RBS yield is expected 
in the [100] ([110]) directions. The increase in the measured [110] and [111] RBS yield (in 
comparison to calculated values) may be due to As antisites and/or Ga interstitials in the 
GaAsN films. (Copyright 2015, AIP Publishing LLC). 
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Figure 3.5 Projections of the crystal structure, as well as the total simulated NRA yields in 
the [100], [110], and [111] directions for (a) NSub, (b) (N-N)As, and (c) (N-As)As are 
presented. (d) Measured total NRA in each channeling direction. Similar yield trends of 
Y[111]> Y[110]> Y[100] are observed for (c) and (d), suggesting that (N-As)As is the dominant 
interstitial complex in GaAsN alloys. (Copyright 2015, AIP Publishing LLC). 
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Figure 3.6 Measured NRA yield versus emitted particle energy for GaAsN, along the [100] 
(green), [110] (red), [111] (blue), and random (black) channeling directions. The vertical 
dashed lines indicate the energy window of the protons emitted  during the 14N(α,p)17O 
reaction. To compare the yields in [100], [110] and [111] channeling directions, we 
integrate the yields associated with protons. The highest (lowest) yield is in the [111] 
([100]) channeling direction. (Copyright 2015, AIP Publishing LLC). 
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Chapter 4 

 

Influence of Thermal Annealing on Interstitial Complexes in GaAsN 

 

4.1 Overview  

 

This chapter describes experimental and computational investigations of interstitial 

complexes in GaAsN following rapid thermal annealing (RTA). The objective of this work 

is to determine the influence of RTA on the stability and/or transformation of the dominant 

interstitial complexes in GaAsN alloys.  

The chapter begins with a review of earlier studies of the influence of RTA on the 

atomic structure and optoelectronic properties of GaAsN and related dilute nitride alloys. 

Next, we describe the experimental and computational approaches used to examine the 

influence of RTA on the structure of GaAsN alloys.  The bulk of this chapter describes our 

investigations of the influence of RTA on the surface morphology, III-V stoichiometry, 

and related interstitial complex formation/dissociation. 
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4.2 Background 

 

In dilute nitride materials, N-related defects, which often limit device performance, 

can be manipulated to some extent by RTA, as discussed in Chapter 1.1,2,3,4,5,6 For example, 

RTA has been shown to suppress the photopersistent current effect (PPC)7, to increase the 

photoluminescence (PL) intensity8, and to improve the electron mobilities of Ga(In)NAs 

and related alloys.9 In addition, RTA-induced improvements in the performance of lasers10 

and high efficiency solar-cells11,12,13 based on InGaAsN and related alloys have been 

reported. Deep-level transient fourier spectroscopy (DLTFS) and photoluminescence (PL) 

studies have suggested an annealing-induced decrease in the concentration of (N-N)As or 

VGa.14,15,16 In addition, using density functional theory (DFT), Raman signatures for (N-

N)As and (N-N)Sb  have been calculated.17,18 Finally, RTA-induced decreases in the (N-N)As 

interstitial concentrations have been reported.8,19,20,21 Although the reports to date suggest 

a link between (N-N)As and device performance, direct experimental observation of RTA-

induced removal of the (N-N)As interstitials were not available prior to this thesis research. 

In addition, a mechanism for the RTA-induced dissociation of the (N-N)As interstitial 

complex has not been proposed. Here, we will examine and discuss the influence of RTA 

on the dominant interstitial incorporation and dissociation mechanisms.  
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 4.3 Methods  

 

4.3.1 Experimental Details 

 

For these investigations, five GaAs1-xNx films with  ݔே~	0.0063, 0.019, 0.021,

0.025	and 0.032	were utilized.22 These films were grown by Dr. Matt Reason using the 

MBE process discussed in Section 3.3. Further details of the samples are also available in 

Appendix C of M. Reason’s thesis. The samples were cleaved into 1 x 1 x 1 cm pieces for 

the RTA experiment described in Section 2.3. For all cases, random and channeling NRA 

data in [100], [110], and [111] directions were collected from both the as-grown and post-

RTA GaAsN films. Additional pieces of the ݔே~	0.019, 0.021 and 0.025 films were 

cleaved for further investigations, both before and after RTA. The surface morphology was 

examined using AFM, as described in Section 2.4. The III:V stoichiometry was examined 

using HRXRC. In addition, the N-related vibrational modes were monitored using Raman 

spectroscopy as described in Section 2.5.  

 

4.4 GaAsN Surface Morphology 

 

AFM images for the ݔே~	0.019, 0.021 and 0.025	are shown in Fig. 4.1(a)-(c) and 

Fig. 4.1(d)-(f) for the as-grown and post-RTA GaAs1-xNx films, respectively. For the as-

grown films, the RMS roughness is 1.1 േ 0.1݊݉, with surface “mound” features elongated 

along the ሾ11ത0ሿ direction, consistent with earlier reports by Dr. Matt Reason, shown in Fig. 

3.5 of his PhD thesis.23  These mound-like features are likely related to a “forbidden 
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window” of growth for GaAs, similar to the temperature-dependent mound formation 

observed for AlGaAs, attributed to a growth instability associated with Ehrlich-Schwoebel 

barrier.23 These “mound” features are not expected to affect the overall channeling 

measurements, as confirmed by the low values of ߯௠௜௡ሺݏܣܽܩሻ, 0.45 െ 0.55, which are 

similar to earlier reports for high-quality GaAs.24 

 

4.5 GaAsN Stoichiometry 

 

To examine the GaAsN film stoichiometry, we examined (004) XRCs before and 

after RTA, as shown in Fig. 4.2. Due to their tensile misfit with respect to GaAs, the GaAsN 

diffraction peaks appear on the high-angle side of the GaAs substrate peak. For both as-

grown and post-RTA the GaAsN layer peak position is fixed, suggesting the absence of N 

out-diffusion during RTA. Since there is no evidence for additional peaks on the low-angle 

side of the GaAs substrate peak, the presence of a non-stoichiometric GaAsN layer is 

unlikely.  

However, to estimate an upper bound for [AsGa], we use the full width half 

maximum (FWHM) of the GaAs peak. The concentration of excess arsenic in the LT-GaAs 

layer is estimated by its increase in lattice parameter with respect to the GaAs substrate, 

according to 

 
∆௔

௔
ൌ 1.24 ൈ 10ିଶଷ ൈ ሾீݏܣ௦ሿ                                               (4.1) 

where ܽ is the lattice parameter of the GaAs substrate, ∆ܽ is the difference between ܽ and 

the LT-GaAs lattice parameter, and ሾீݏܣ௦ሿ is in ܿ݉ିଷ.24 However, due to the absence of a 

distinct diffraction peak associated with LT-GaAs, we estimate an upperbound for ሾீݏܣ௦ሿ, 
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using the FWHM of the GaAs peak. For all the GaAsN films (both as-grown and post-

RTA) shown in Fig. 4.2, the FWHM is 35 േ  corresponding to an upper ,ݏ݀݊݋ܿ݁ݏܿݎܽ	5

bound of  ሾீݏܣ௔ሿ~	ሺ2.1 േ 0.3ሻ ൈ 10ଵଽܿ݉ିଷ at least one order of magnitude lower than 

standard LT-GaAs (10ଶ଴ܿ݉ିଷ).24,25,26,27 

 

4.6 N-Interstitial Formation and Dissociation 

  

To examine the formation and dissociation of N-interstitial complexes following 

RTA, we consider both the Raman spectroscopy signatures for (N-N)As interstitials, as well 

as the channeling ion beam analyses described in Section 2.5, 2,8 and 3.5. We then compare 

with computations of N interstitial complexes, and propose two possible mechanisms for 

N interstitial complex dissociation.  

 

4.6.1 Vibrational Signature for the (N-N)As 

 

 Raman spectra for GaAs1-xNx alloys with ݔே~	0.019, 0.021 and 0.025 are shown 

in Fig. 4.3. For all values of ݔே, several features are apparent, including the GaAs-like 

transverse-optical (TO) and longitudinal-optical (LO) phonons at 565 and 580 cm-1
 

respectively. The GaN-like LO phonon mode at 470cm-1, as well as an additional feature 

at 425cm-1, which has been identified as a signature for (N-N)As, are also apparent.8,15,19,20,21 

Following RTA, spectral features associated with GaAs-like LO and TO, the GaN-like LO, 

with intensities similar to the as-grown films, were observed for all samples. Although the 

spectral feature associated with (N-N)As is also observed following RTA, its intensity has 
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decreased, suggesting an RTA induced a reduction in the concentration of (N-N)As 

interstitial complexes, consistent with earlier reports on GaAsN and InGaAsN .8,19,20,21 

 

4.6.2 Channeling NRA Data 

 

We now describe channeling NRA data for GaAs1-xNx alloys, considering the 

influence of both ݔே  and RTA on the predominant interstitial formation and 

transformation. In all cases, data similar to those shown in Fig. 3.4, were obtained. To 

facilitate comparison across		ݔே, in Fig. 4.4, we plot the total yield as a function of ݔே, 

along with the projections of the crystal structure to the right for (a) [100], (b) [110], and 

(c) [111] channeling conditions. In the plots, the data for as-grown (annealed) GaAsN films 

is shown in black (blue), with lines connecting the dots serving as guides to the eye. For 

all channeling directions, there is a monotonic decrease in the total yield with 

increasing		ݔே, suggesting the N interstitial fraction is influenced by ݔே. For all values of 

 ,ே, RTA induces an increase in the [111] total yield, a decrease in the [100] total yieldݔ

and negligible changes in the [110] total yield. As discussed in Section 3.5, (N-As)As 

interstitial complexes are predicted to be aligned along the [010] direction.28 Therefore, an 

increase in the [111] total yield suggest an increase in the fraction of (N-As)As interstitial 

complexes. Since the interstitial complexes are not shadowed in the [100] and [110] 

directions, an RTA-induced decrease in the [100] total yield suggests an increase in Nsub. 
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 4.7 Mechanisms for N-related Interstitial Dissociation 

 

We now discuss possible mechanisms for the RTA-induced dissociation of N-

related interstitial complexes. As discussed above, our Raman spectroscopy data suggests 

that RTA has reduced the fraction of (N-N)As interstitial complexes. Furthermore, our 

channeling NRA data suggests that RTA has increased the fraction of Nsub and (N-As)As 

interstitial complexes. Therefore, we compute channeling spectra GaAsN with 80% Nsub, 

6% (N-N)As, and 14% (N-As)As, plus three possible dissociations of the 6% (N-N)As into 

both 2Nsub, and (N-As)As + Nsub, as illustrated in Fig. 4.5. For these studies, we performed 

channeling simulations as described in Section 3.3.2, using an input structure consisting of 

3x3x3 unit cells, as described in Section 2.9. With 27 unit cells, up to 108 defect sites may 

be included in the simulation. Therefore, we consider multiple defect types and locations 

for both the as-grown and post-RTA GaAsN Films.  

In Fig. 4.6(a)-(d), a comparison of the [100], [110], and [111] total channeling NRA 

yields for GaAsN are shown. The slanted filled bars represent the simulated or measured 

as-grown GaAsN, and the diamond-filled bars correspond to simulated or measured post-

RTA GaAsN. In Fig. 4.6(a), all (N-N)As dissociates into 2Nsub, leading to a lower [100] 

yield while the [111] remains fixed. In Fig. 4.6(b), all (N-As)As dissociates into (N-As)As + 

Nsub, leading to an decreased (increase) [100] ([111]) yield. In Fig. 4.6(c), we assume that 

½ of the (N-N)As dissociates into (N-As)As + Nsub, while the other ½ (N-N)As dissociates 

into 2Nsub, leading to an increase in the [111] yield and a decrease in the [100] yield. The 

small dissociation induced increase of the simulated [110] yield might be due to differences 

in the effective cross-section of the (N-As)As and the (N-N)As interstitial complexes in the 
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[110] channel.28 For the measured values shown in Fig. 4.6(d), RTA induces an decrease 

in the [100] and an increase in the [111] total yields, along minor increases or decreases in 

the [110] total yield. Therefore, our combined computational-experimental approach 

suggests an RTA-induced dissociation of (N-N)As into a combination of 2Nsub and Nsub + 

(N-As)As.  

 

4.8 Summary and Conclusions 

 

In summary, we have examined the influence of RTA on the structure of GaAsN 

films, with a focus on the stability and/or transformation of the dominant interstitial 

complexes. X-ray rocking curve data suggest that the GaAsN films are coherently strained 

and compositionally stoichiometric, with minimal RTA-induced out-diffusion. Raman 

spectroscopy data reveals vibrational modes associated with GaN(LO2), GaAs(TO1), 

GaAs(LO1), and (N-N)As. Following RTA, the intensities of most features remained fixed, 

but those attributed to the (N-N)As are reduced. Finally, NRA reveals an RTA-induced 

decrease (increase) in the total [100] ([111]) yields, suggesting an increase in the fractions 

of Nsub and (N-As)As interstitial complexes. Based upon a comparison with MC-MD 

simulations of channeling yields, we hypothesize that half of (N-N)As interstitial dissociate 

into 2Nsub, while half dissociate into Nsub + (N-As)As. These results are likely to be 

applicable to other dilute nitride alloys which contain significant fractions of (N-N)As 

interstitial complexes.  
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4.9 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 AFM images of the GaAsN films: (a)-(c) as-grown and (d)-(f) post RTA. For 
all images, the gray-scale range displayed is 12nm; and the rms roughness is 1.1nm ± 
0.1nm, and ሾ11ത0ሿ-oriented surface features are observed, consistent with earlier reports by 
Dr. Matt Reason, shown in Fig. 3.5 of his PhD thesis.23 These mound-like features are 
likely related to a “forbidden window” of growth for GaAsN, similar to the temperature-
dependent mound formation observed for AlGaAs, attributed to a growth instability 
associated with Ehrlich-Schwoebel barrier.23 These “mound” features are not expected to 
affect the overall channeling measurements, as confirmed by the values ߯௠௜௡ሺݏܣܽܩሻ, 
0.45 െ 0.55, similar to earlier reports for high quality GaAs.29 
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Figure 4.2 (004) high-resolution x-ray rocking curves for GaAs1-xNx layers on GaAs, 
before (“as-grown”, black) and after RTA (“annealed”,blue). For all plots, the GaAs 
substrate peak position is set to ∆߱ ൌ 0 arcseconds, thereby facilitating comparison of ∆߱ 
between the GaAs substrate and the GaAsN films. For all films, the GaAsN peak position 
is unchanged with annealing, suggesting the absence of N out-diffusion. Using the full 
width half maximum of the GaAs peak,24 we estimate an upper bound of ሾீݏܣ௔ሿ~ሺ2.1 േ
0.3ሻ ൈ 10ଵଽܿ݉ିଷ for all the as-grown and post-RTA GaAsN films. 
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Figure 4.3 Raman spectra for GaAs1-xNx alloys with ݔே ൌ 0.019, 0.021 and 0.025 both 
before and after RTA, shown in black and blue, respectively. Several spectral features are 
apparent, including the 565cm-1

 GaAs-like transverse-optical (TO) phonons, 580cm-1
 

GaAs-like longitudinal-optical (LO) phonons, and the 470cm-1, which is associated with 
GaN-like LO phonons. In addition, spectral features are observed at 425cm-1, which has 
been identified as a signature for (N-N)As.8,19,20,21 The annealed Raman spectra has a lower 
intensity for the feature at 425cm-1, suggesting an RTA-induced reduction in the 
concentration of (N-N)As interstitial complexes. 
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Figure 4.4 Total NRA yield as a function of ݔே, along with the projections of the crystal 
structure to the right for (a)[100], (b)[110], and (c)[111] channeling conditions. The data 
for the as-grown (annealed) GaAsN films is shown in black (blue), with lines connecting 
the dots serving as guides to the eye. For the as-grown GaAsN films, as ݔே increases, the 
total yields decreases monotonically, independent of channeling direction, suggesting that 
the N interstitial fraction is influenced by ݔே . Following RTA, the [100] total yield 
decreases; thus, the fraction of N-related interstitial complexes has decreased and the 
fraction of Nsub has increased. On the other hand, the [111] total yield increases following 
RTA. Since the [111] yield is influenced primarily by the (N-As)As interstitial complexes, 
we hypothesize that RTA has increased the fraction of (N-As)As interstitial complexes.  
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Figure 4.5 Ball-stick models of GaAsN unit cell with (N-N)As) interstitial complexes and 
possible dissociations into (a) 2(Nsub) and (b) Nsub + (N-As)As interstitials. The white, green, 
and blue spheres represent Ga, As, and N, respectively. We use the lowest energy 
configurations, as predicted by density functional theory, with (N-N)As aligned along the 
[111] direction, and (N-As)As aligned along the [010] direction.25  

 

 

 

 

 

 

As N Ga 

2(N
sub
) 

(N‐As)
As 
+ (N

sub
) 

 

 

(N‐N)
As 

(N‐N)
As 

(a) 

(b) 



93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Comparison of [100], [110], and [111] nuclear reaction analysis (NRA) 
channeling total yields for GaAsN. The slanted filled bars represent the simulated or 
measured as-grown GaAsN, and the diamond-filled bars correspond to simulated or 
measured post-RTA GaAsN. In (b), all (N-N)As dissociates into 2Nsub, leading to a lower 
[100] yield while the [111] remains fixed. In (b), all (N-As)As dissociates into (N-As)As + 
Nsub, leading to an decreased (increase) [100] ([111]) yield. In (c), we assume that ½ of the 
(N-N)As dissociate into (N-As)As + Nsub, while another ½ dissociates into 2Nsub, leading in 
to an increase in the [111] yield and a decrease in the [100] yield, which is consistent with 
the experiment trends in (d). The slight RTA-induced increases in the [110] yields for both 
the simulation and data may be due to differences in the effective cross-section for the (N-
As)As and the (N-N)As interstitial complexes in the [110] channel.28
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Chapter 5 

 

Epitaxial Growth and Solute Incorporation in GaAsNBi Alloys 

 

5.1 Overview 

 

In this chapter, we examine molecular-beam epitaxial growth, stoichiometry, and 

solute incorporation in GaAsNBi alloys. The objective of this chapter is to understand the 

atomistic mechanisms for N and Bi co-incorporation and their influence on alloy 

stoichiometry and electronic properties. In addition, we seek to identify the “magic” Bi:N 

ratio for lattice-matching with GaAs.  

This chapter begins with background information, including the motivation for 

studying GaAsNBi, and the challenges associated with N and Bi co-incorporation while 

maintaining III-V stoichiometry during low temperature growth. Next, we describe the 

experimental and computational approaches used for our investigations of GaAsNBi. The 

bulk of the chapter describes our investigation of III-V stoichiometry in GaAsNBi, N and 

Bi incorporation in GaAsNBi, and lattice matching of GaAsNBi with GaAs. 
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5.2 GaAsNBi Background 

 

Due to the significant bandgap narrowing induced by dilute fractions of N in GaAs, 

dilute nitride alloys are attractive for a variety of applications, including long-wavelength 

lasers and detectors, ultra-high-efficiency solar cells, and high performance heterojunction 

bipolar transistors.1 However, N-related point defects often lead to degraded minority 

carrier transport properties and optical efficiencies.2,3 In principle, co-alloying GaAsN with 

larger elements such as indium (In), antimony (Sb), and/or Bi allows lattice-matching to 

GaAs or Ge substrates as shown in Fig. 5.1; however, the “magic” Bi:N ratio for lattice-

matching of GaAsNBi is currently unknown. Furthermore, In, Sb, or Bi co-alloying with 

GaAsN is expected to lead to significant bandgap narrowing using a substantially lower N 

fraction, with a correspondingly lower fraction of N-related defects.4,5 Bi incorporation 

into GaAs at a mole fraction of 0.01 leads to a bandgap reduction of ~84 meV, much larger 

than the reduction for similar fractions of Sb (21 meV) or In (16 meV).6 In addition, the 

significant spin-orbit splitting induced by Bi is expected to lead to reduced nonradiative 

Auger recombination for Bi fractions in excess of 0.105.7 Thus, GaAsNBi is promising for 

optoelectronic applications operating in the near-infrared range.   

For GaAsN and related alloys, bismuth is often reported to surface segregate 

without incorporating.  However, the presence of a Bi flux has been reported to increase or 

decrease the incorporation of N. For example, metalorganic vapor-phase epitaxy (MOVPE) 

with a Bi flux has been reported to decrease the N fraction,8,9 while molecular-beam 

epitaxy (MBE) with a sufficiently high Bi flux has been reported to increase the N 
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fraction.10 , 11 , 12  To date, the atomistic mechanisms for the influence of Bi flux on N 

incorporation remain unknown.  

In GaAs, isovalent co-alloying of Bi and N is expected to involve replacement of 

As such that III-V stoichiometry is maintained in GaAs1-x-yNxBiy alloys.4 However, direct 

studies of III-V stoichiometry in GaAsNBi have not yet been reported. In chapter 1 and 3, 

we discussed the challenges of films growth at lower substrate temperatures, including the 

possible formation of As antisites, AsGa, or Ga vacancies, VGa.13,14,15 Thus, GaAs1-x-yNxBiy 

alloys may have V/ܫܫܫ ratio in excess of 1. 

 

5.3 Experimental Details  

 

The GaAs1-x-yNxBiy alloy films were grown on semi-insulating (001) GaAs 

substrates by molecular-beam epitaxy (MBE) using solid Ga, As, and Bi sources and a 

radio frequency nitrogen plasma source, on the Gen II MBE. The cracking zone of the As 

source was maintained at a relatively low temperature such that predominantly As4 was 

supplied. 16,17 After an initial 500-nm thick GaAs buffer layer grown at 580ºC, the substrate 

temperature was held at 580ºC for a 5 minute anneal, lowered to the GaAsNBi growth 

temperature, and held at the growth temperature for 5 minutes prior to growth.18 100 nm 

thick GaAs1-x-yNxBiy films were grown at 345 ± 15 ºC with As4/Ga beam equivalent 

pressure (BEP) ratios of ~ 20 and growth rate of 1 µm/h. To monitor the influence of Bi 

and N fluxes on surface reconstruction, reflection high-energy electron diffraction 

(RHEED) patterns were collected along the [110] and [11ത0] directions.  
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To examine the GaAsNBi surface morphologies, we use a combination of atomic-

force microscopy (AFM) and scanning electron microscopy (SEM), as described in 

Chapter 2.4. The AFM images were collected using a Bruker Dimension Icon in tapping, 

contact, and ScanAsyst modes. 

The stoichiometry of the GaAsNBi films was determined using a combination of 

atomic-probe tomography (APT) and high-resolution x-ray rocking curves (HRXRC). APT 

measurements were performed in the LEAP 4000X and/or the LEAP 5000HS, using laser 

mode, and HRXRC measurements were performed using Cu Kα1 radiation. A series of ∆ 

scans were collected near the GaAs (004) and GaAs (224) reflections. More details of the 

experimental methods were presented in sections 2.6 and 2.7.  

RBS and NRA were performed using a NEC tandem accelerator with a 4.46 MeV 

He+ beam.  The RBS (NRA) detector was placed at 167° (135°) with respect to the incident 

beam to detect the backscattered He+ ions. 19 We used nuclear reaction 14N(α,p)17O to 

detect the nitrogen atoms.20 RBS and NRA measurements were performed in [100], [110], 

and [111] channeling and non-channeling conditions achieved by oscillating the specimen 

߮௫ ൌ േ4° about the channeling condition during spectra collection, as described in Section 

2.8. We note that both RBS and NRA data are analyzed using the simulation of nuclear 

reaction analysis (SIMNRA) code, an analytical simulation program in which multiple 

small-angle scattering events are treated as energy broadening. 21   To simulate the 

channeling NRA spectra, we use a combined Monte Carlo-Molecular Dynamics (MC-MD) 

approach. More details about the simulation and analysis are provided in Chapter 3 and 

Appendix E.  
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5.4 Minimizing Excess Arsenic Incorporation 

 

In preliminary studies of GaAsBi alloys in both the C21 and Gen II MBE systems, 

we found that the concentration of excess arsenic, ீݏܣ௔ , is highly sensitive to the low 

substrate temperature during epitaxy.22,23
 Therefore, to find a suitable temperature for 

minimal ீݏܣ௔incorporation into GaAsNBi, we grew a series of samples with an extra layer 

of low temperature grown GaAs, so called “LT-GaAs”, as shown in Fig. 5.2. In Fig. 5.3, 

XRC data for a series of GaAsNBi films grown with fixed Bi beam-equivalent pressures 

and N2 flow rates, at substrate temperatures varied from 235Ԩ to 346Ԩേ 5Ԩ is presented. 

For all plots, the GaAs substrates position is set to ∆߱ ൌ ܿ݁ݏܿݎܽ	0 , and a GaAsNBi 

epilayer peak is evident at ∆߱	 ൎ െ575	݋ݐ െ ܿ݁ݏܿݎܽ	325 . In addition, for the lowest 

growth temperature, a somewhat broad peak centered at ∆߱	 ൎ െ100	ܽܿ݁ݏܿݎ, associated 

with the LT-GaAs layer, is observed.24 As the substrate temperature is increased, the LT-

GaAs peak shifts to higher angles, eventually disappearing for growth temperature 

exceeding 300Ԩ. We note that the GaAsNBi peak also shifts to higher angles due to a 

decrease in Bi fraction with increasing growth temperature.  

The concentration of excess arsenic in the LT-GaAs layer is estimated by its 

increase in lattice parameter with respect to the GaAs substrate, according to  

∆ܽ
ܽ
ൌ 1.24 ൈ 10ିଶଷ ൈ ሾீݏܣ௦ሿ																																																ሺ5.1ሻ 

where ܽ is the lattice parameter of the GaAs substrate, ∆ܽ is the difference between ܽ and 

the LT-GaAs lattice parameter, and ሾீݏܣ௦ሿ  is in ܿ݉ିଷ .24 For the lowest growth 

temperature, ሾீݏܣ௦ሿ ൎ 6.85 ൈ	10ଵଽܿ݉ିଷ . However, due to the absence of a distinct 

diffraction peak associated with LT-GaAs at temperature 	൐ 337Ԩ , we estimate an 
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upperbound for ሾீݏܣ௦ሿ , using the full-width-half-maximum of the GaAs peak, to be 

ሾீݏܣ௦ሿ ൏ 9.3 ൈ 10ଵ଼ܿ݉ିଷ, at least two orders of magnitude lower than standard LT-GaAs 

where up to 10ଶ଴ܿ݉ିଷ has been reported.24,25,26,27 

Although we identified the range of substrate temperatures needed to minimize 

ሾீݏܣ௦ሿ incorporation in the GaAs layers, additional studies are needed to confirm the 

stoichiometry of the GaAsNBi alloys grown at ܶ ൐ 300Ԩ. Therefore, we utilized local 

electrode atom probe (LEAP) microscopy or atom-probe tomography (APT) to examine 

whether isovalent co-alloying of GaAs with two anions (Bi, N) is limited to the replacement 

of As by the anions as predicted.4 Details of the LEAP technique are described in Section 

2.7 with the steps for sample preparation and data analysis described in Appendix C.  

We first examine the influence of laser energy on molecular evaporation and the 

apparent stoichiometry of GaAs. Figure 5.4 shows (a) APT reconstructions, (b) plots of 

counts vs mass-to-charge ratio, and (c) Ga:As fractions for LEAP experiments on GaAs. 

For all laser energies, 200,000 ions were collected and reconstructed, yielding contact-lens 

shaped reconstructions, shown in Fig. 5.4(a), with significant signals at mass-to-charge 

ratios of 69 (ܽܩା), 71 (ܽܩା), and 75 (ݏܣା or ݏܣଶ
ାା), shown in Fig. 5.4(b). As the laser 

energy is lowered to below 5 pJ, the uniformity of ion evaporation is increased, as shown 

by the similarities in ion distribution from the center to the edge of the reconstructions in 

Fig. 5.4(a). It is interesting to note that the intensity of the signal associated with the mass-

to-charge ratio of 75 also increases as the laser energy is lowered, as shown in Fig. 5.4(b). 

To determine the Ga:As ratio, we assign the mass-to-charge ratio of 75 to ݏܣା or ݏܣଶ
ାା, as 

listed in Fig. 5.4(c). For laser energies greater than 5 pJ, the Ga:As ratio is far from 

stoichiometric, consistent with the non-uniform ion distributions apparent in the contact 



102 
 

lens-shaped reconstructions in Fig. 4.4(a). In earlier GaAs LEAP studies, non-

stoichiometry has been attributed to delayed evaporation of As.28,29 Instead we attribute 

this apparent non-stoichiometry to the overlap of the signals associated with ݏܣା or ݏܣଶ
ାା. 

Indeed, for the lowest laser energy, 0.25 pJ, near-stoichiometry Ga:As ratio of 50.6:49.2 is 

apparent when we assign the mass-to-charge ratio of 75 to	ݏܣଶ
ାା, as shown in Fig. 5.4(c).  

Using the laser energy identified for the nearly stoichiometric reconstruction of 

GaAs, 0.25 pJ, we performed a LEAP experiment on a fabricated tip consisting of ~250 

nm GaAsNBi on 500 nm GaAs on a GaAs substrate. In this case, ~5 million ions were 

collected and reconstructed; the resulting reconstructions of the tip, separated into the Bi, 

N, As, and Ga atoms, are shown in Fig. 5.5, with the labeled regions corresponding to the 

GaAsNBi epilayer and the GaAs layer. Ga and As ions are observed throughout the tip 

while N and Bi ions, for the most part, are confined to the epilayer regions. We note that 

the apparently uniform distribution of N and Bi atoms in the epilayer suggests the absence 

of solute clustering. 

As shown in the table in Fig. 5.5, we consider the compositional analysis for the 

cases where the mass-to-charge ratio of 75 is assigned to ݏܣା  and ݏܣଶ
ାା . For the ݏܣା 

assignment, both the GaAs layer and GaAsNBi epilayer are non-stoichiometric, containing 

excess Ga of 0.055 and 0.015 mole fractions respectively. Since the GaAs layer was grown 

at 580ºC, it is expected to be stoichiometric; thus, the ݏܣା  assignment is considered 

unlikely in this case.  However, with the ݏܣା  assignment, the Bi mole fraction in the 

GaAsNBi layer is 0.022, similar to the 0.023 value determined by RBS. For the ݏܣଶ
ାା 

assignment, both substrate and epilayer are non-stoichiometric, in this case containing 

excess As. Since the GaAs layer is nearly stoichiometric, the ݏܣଶ
ାା assignment for the 75 
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mass-to-charge ratio is best for GaAs. For the GaAsNBi layer, grown at 345 ± 15ºC, the 

LEAP analysis using ݏܣଶ
ାା for mass-to-charge ratio of 75 suggests that epilayer has up to 

0.062 mole fraction of excess arsenic; assuming Bi and N replaces group V site, ݕ஻௜ ൌ

0.019  and ݔே ൌ 0.0082 , then the ݏܣ  mole fraction must be 0.4728	 to maintain 

stoichiometry, with ீݖ௔ ൌ 0.5. However, the measured ݏܣ mole fraction is	0.535, which 

is 0.535 െ 0.4728 ൌ 0.062 in excess. Given the GaAs density is 	4.42 ൈ 10ଶଶܿ݉ିଷ ,30 

6.2% of that is 2.74ൈ 10ଶଵܿ݉ିଷ, or ሾீݏܣ௦ሿ ൎ 2.74 ൈ 10ଶଵܿ݉ିଷ. This value is roughly 

three orders of magnitude higher than the XRC estimated value, ሾீݏܣ௦ሿ ൏ 9.3 ൈ 10ଵ଼ܿ݉ିଷ, 

for LT-GaAs also grown 345 ± 15ºC, as described in Section 5.4, and one order of 

magnitude higher than the 10ଶ଴ܿ݉ିଷ  reported for GaAs grown at 200 Ԩ  growth 

temperature.24 Therefore, it appears that the ݏܣା and ݏܣଶ
ାାassignments for the mass-to-

charge ratio of 75 works best for the GaAsNBi and GaAs layers, respectively. This 

difference in effective arsenic assignment is likely due to the local electric field variations 

induced by variations in the effective permittivities of GaAsNBi vs GaAs. Further 

discussion is included in Ch. 6.3.1.  

 

5.5 Solute Incorporation Mechanisms 

 

A series of films with a range of N and Bi fractions were achieved by independently 

varying the Bi BEP from 0 to 1 × 10-7 Torr (with N2 flow rate fixed at 0.25 sccm), and the 

N2 flow rate from 0.17 to 0.35 sccm (with Bi BEP fixed at 5.7 × 10-7 Torr), which we will 

refer to as the “Bi flux series” and the “N flux series”, respectively. 
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 5.5.1 Surface Reconstructions and Morphologies 

 

For all films, a (2 x 4) RHEED pattern [Fig. 5.6 (a) and (b)] was observed for growth 

of the GaAs buffer layer at 580°C; it transitioned to a (2 x 3) pattern [Fig. 5.6 (c) and (d)] 

as the temperature was ramped under As overpressure to 345 ± 15°C.  During GaAsNBi 

growth with low Bi fluxes, a (1 x 3) pattern [Fig. 5.6 (e) and (f)] was observed, consistent 

with the Bi-induced (1 x 3) reconstruction reported by others for GaAsN growth in the 

presence of a Bi flux.10,12 At higher Bi flux, above BEP ~ 5.7 × 10-8 Torr, a (2 x 1) 

reconstruction was observed instead [Fig. 5.6 (g) and (h)].  In the N flux series, with the Bi 

flux maintained at 5.7 × 10-8 Torr, all films showed either a (1 x 3) or a (2 x 1) pattern, 

suggesting that this Bi flux is near the threshold between the (1 x 3) induced by lower Bi 

fluxes and the (2 x 1) induced by higher Bi fluxes.  Growth of GaAsN without a Bi flux 

resulted in a (2 x 1) pattern similar to Fig.  5.6 (g) and (h). 

AFM images for the Bi flux series and N flux series are presented in Fig. 5.7(a)-(d) 

and Fig. 5.7(e)-(h) respectively.  For both the Bi and N flux series, the surfaces appear 

featureless, with rms roughness  <0.5nm, consistent with observations of layer-by-layer 

growth of GaAsN.31,32 To confirm the absence of µm-sized surface droplets, 400 µm x 500 

µm SEM images were also collected, as shown in Fig. 5.7(i)-(j). The images include 

features associated with dust, in order to demonstrate the suitable focus condition. Indeed, 

in the well-focused condition, the surface is featureless, without the presence of surface 

droplets.  
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 5.5.2 N Flux Series 

 

HRXRC of the N flux series and Bi flux series are presented in Fig. 5.8(a) and 

5.8(b).  Due to their compressive and tensile misfit with respect to GaAs, the GaAsBi and 

GaAsN diffraction peaks appear on the low-angle and high-angle side of the GaAs 

substrate peak, respectively. For the N flux series, the GaAs(N)Bi peak is shifted toward 

the high-angle side as the N incorporation is increased.  In addition, as shown in Fig. 5.8(a), 

the N mole fraction, x, and Bi mole fraction, y, determined from analyses of NRA and RBS 

data respectively, are indicated on the HRXRC plots. As the N2 flow rate increases, x 

increases monotonically. Meanwhile y is unchanged with increasing N2 flow rate, 

indicating that Bi incorporation is unaffected by co-incorporation with N.   

For the N flux series, the NRA yield vs.  reaction-emitted proton energy is plotted 

in Fig. 5.9.  Both random and channeling NRA yields associated with N increase with 

increasing N flux. SIMNRA fits to the random NRA spectra, using a GaAsN standard, 

reveal x ranging from 0 to 0.017; assuming a uniform N depth profile, the SIMNRA fits 

suggests a uniform incorporation of N throughout the GaAsNBi film. The fraction of 

substitutionally incorporated N atoms, fN-sub, was calculated according to 

ே݂ି௦௨௕ ൌ 	
ଵିఞሺேሻ

ଵିఞ೘೔೙ሺீ௔஺௦ሻ
                                              (5.2) 

where χ(N) is the ratio of the channeling to the non-channeling NRA yield and  χmin(GaAs) 

is the ratio of the channeling to the non-channeling RBS yield for the GaAs reference film. 

Additional details of the calculations of interstitial and substitutional fraction using 

channeling and random spectra are available in Appendix A.3.2 of M. Reason’s Ph.D 

thesis.33 
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 5.5.3 Bi Flux Series 

 

For the Bi flux series, the GaAsN(Bi) peak is shifted from the high-angle side, with 

negligible Bi incorporation, to the low-angle side as the Bi incorporation is increased. In 

addition, as shown in Fig. 5.8(b), the x and y fractions determined from analyses of NRA 

and RBS are also indicated on the HRXRC plots. As the Bi flux increases, y increases 

monotonically.  Furthermore, although the N flux is fixed, x also increases with Bi flux, up 

to a saturation value at ~0.018.   

For the Bi flux series, the RBS yield vs. backscattered ion energies is plotted in Fig. 

5.10(a); an enlarged portion is plotted in Fig. 5.10(b) with random spectra data overlaid 

with SIMNRA fitted spectra.  Due to the similar atomic masses of Ga and As, the energies 

of the He ions backscattered from Ga and As are similar, ~3.6MeV, in Fig.  5.10(a), and 

similar RBS yields associated with both atoms are also observed due to their similar atomic 

numbers. Due to the high atomic mass of Bi, the energies of the He ions backscattered from 

Bi are at higher energy, ~4.1MeV.  Both the random and channeling RBS yields associated 

with Bi increase with increasing Bi flux.  SIMNRA fits to the random RBS spectra reveal 

y ranging from 0 to 0.059.  In addition, SIMNRA fits, assuming uniform Bi depth profile 

produces Gaussian-shaped RBS yields that matches with the experimental spectra, 

suggesting a uniform incorporation of Bi throughout the GaAsNBi film.  For the channeling 

spectra, the distinct peaks (corresponding to He scattering from Ga and As) near ~3.6MeV 

and the asymmetric peak (associated with He scattering from Bi) at ~4.1MeV are due to 

preferential scattering from exposed surface atoms.34  
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To determine the fraction of Bi atoms incorporating substitutionally in GaAs(N)Bi 

films, fBi-sub, we used an analogous equation with χ(N) replaced by χ(Bi), defined as the 

ratio of the channeling to the non-channeling Bi-related RBS yield.  

஻݂௜ି௦௨௕ ൌ 	
ଵିఞሺ஻௜ሻ

ଵିఞ೘೔೙ሺீ௔஺௦ሻ
     (5.3) 

In Fig. 5.11(a), the total, x, substitutional, xsub, and interstitial, xint, mole fractions 

of N are plotted for the Bi flux series.  As pointed out earlier, x increases with increasing 

Bi BEP.  In the GaAsN film (Bi BEP = 0 Torr), the fraction of N occupying substitutional 

sites, fN-sub = xsub/x, is 0.81, consistent with other literature reports for GaAsN.17,18,,35 As 

the Bi BEP is increased, fN-sub decreases, indicating that the fraction of N atoms occupying 

non-substitutional sites increases with increasing Bi flux.  For all Bi-containing films, fBi-

sub is ≥ 0.90, independent of Bi BEP or N2 flow rate. Indeed, in recent studies of GaAsNBi 

alloys, high precision angular RBS scans revealed substitutional Bi incorporation, 

consistent with our interpretation.36 It is likely that the small fraction of non-substitutional 

Bi detected in the channeling RBS measurements is not associated with Bi interstitials but 

rather is due to the large atomic size of Bi, which may prevent substitutional Bi atoms from 

being completely shadowed by the GaAs matrix.  

 

5.5.4 NRA vs XRD N Interstitial Fraction 

 

The N fraction was also determined using the small-angle approximation analysis 

of XRC described in Section 2.6 (in an attempt to determine if the RBS-determined Bi 

fraction is sufficient to determine the N fraction without using NRA). For both Bi and N 

flux series, ݔே and ݕ஻௜ are plotted as a function of Bi BEP and N MFC values shown in 
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Figs. 5.12(a) and (b). In all cases, the RBS and XRC-determined values of ݕ஻௜ agree to 

within <0.1%. For low N fractions, the NRA and XRD determined ݔே  are similar. 

However, for ݔே  values exceeding 0.01, the NRA and XRC-determined values of ݔே 

deviate by in excess of 0.5%. Since only substitutional N (or Bi) is considered in the XRC 

data analysis, a higher value of NRA-determined ݔே  (in comparison with the XRD 

determined ݔே value) suggests the presence of N interstitial complexes in those cases. For 

the two sets of data points enclosed in the red boxes, in Fig 5.12(a) and (b), the fraction of 

interstitial N complexes is expected to be negligible. Therefore, in the estimation of the 

“magic” 
௬ಳ೔
௫ಿ

 ratio for lattice-matching with GaAs to be discussed in Section 5.6, these data 

points will be discussed separately.  

 

5.5.5 Comparison of Channeling and Simulation Data 

 

To determine the dominant N interstital complex configuration, the measured NRA 

channeling data are compared with MC-MD simulations of a 3x3 unit cell of GaAsNBi, as 

shown in Fig. 5.12, with N-to-Bi incorporation ratio of 1-to-2. Within each cell, each N is 

positioned at the center of the group V site as either substitutional N, NAs; (N-N)As, with 

N2 aligned along the [111] direction; or (N-As)As, with the N-As pair aligned along the 

[010] direction.37,38,39,40  Within each cell, each Bi is positioned at the center of the group 

V site as substitutional Bi, BiAs. Due to the large size of Bi atoms, we also include atomic 

displacement of nearest-neighbor Ga.41   

In Fig. 5.13, we present a comparison of the simulated and measured NRA yields 

for GaAsNBi. For both the NSub and (N-N)As interstitial complexes, the NRA simulations 



109 
 

predict the highest (lowest) yields in the [100] ([111]) directions, as shown in Figs. 5.13(a)-

(b), leading to a yield trend of Y[100]> Y[110]> Y[111].  In contrast, for the interstitial pair (N-

As)As, NRA simulations predict the highest (lowest) yield in the [111] ([100]) directions, 

as shown in Fig. 5.13(c), with a yield trend of Y[111]> Y[110]> Y[100]. As shown in Fig. 

5.13(d), the measured yield trend is Y[111]> Y[110]> Y[100]; this particular yield trend is 

predicted only for the case where (N-As)As is the dominant interstitial complex. Therefore, 

our combined computational-experimental approach suggests that (N-As)As is the 

dominant interstitial complex in GaAsNBi alloys, consistent with other reports for GaAsN 

and related dilute nitride alloys.42,43,44,45,46,47  

 

5.5.6 Mechanism for Bi-enhanced N Incorporation 

 

We next discuss a mechanism for Bi-induced enhancement of N incorporation 

based upon Bi adatom induced disordering of ൣ110൧-oriented step edges during growth.  

Standard MBE growth of GaAs, with a (2x4) reconstruction, typically results in long 

terraces with step edges oriented along the ൣ110൧ direction.48 Dimroth et al. showed that N 

incorporation is suppressed on (111)A offcut surfaces on which the density of ൣ110൧-

oriented step edges is increased.8  On a (2x4) reconstructed GaAs surface, it has been 

shown that ൣ110൧ step edges may be disrupted by exposure to Bi, resulting in (1x3) or (4x3) 

reconstruction consisting of smaller islands with a higher density of [110]-oriented step 

edges.49 Thus, for GaAsN, the surface Bi adatoms, which induce the (1x3) reconstruction 

shown in Figs. 5.6(e) and 5.6(f), may increase the density of [110] step edges, allowing 

increased incorporation of N atoms.  Furthermore, the [110] step edge consists of As 
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dangling bonds, such that a N atom incorporating on a [110] step edge would have an 

increased likelihood of forming a (N-As)As interstitial complex, as shown in Fig. 

5.14.28,29,30,31,32,33 Consequently, the Bi adatom induced enhancement in N incorporation 

would be accompanied by an increased fraction of interstitial N, consistent with our 

observations.  

 

5.6 “Magic Ratio” for Lattice Matching GaAsNBi Films 

 

One major motivation for developing GaAsNBi alloys is the possibility for lattice 

matching with GaAs substrates for a variety of compositions. In Fig. 5.1, a plot of band 

gap energy vs lattice parameter is shown for GaAs, GaAsN, and GaAsBi alloys.  In the 

plot, the vertical dashed line indicates the predicted alloy with	ሾ݅ܤሿ ൎ 1.7ሾܰሿ.50 Yoshimoto 

et al, reported a similar ratio ሾ݅ܤሿ ൎ 1.7ሾܰሿ, based upon an analysis of XRC measurements. 

However, the analysis was based upon the computed value of ܽீ௔஻௜ from Janotti et al,50,51 

without consideration of the expected ~20% interstitial N incorporation.  

To identify the “magic” B:N ratio for lattice matching of GaAsNBi with GaAs, we 

consider our ion beam analysis of Bi and N fraction along with XRD measurements of 

strain. For this purpose, we selected all the GaAsNBi films presented in Fig. 5.8, including 

both compressively and tensile strained films, with their (004) GaAsNBi peaks on the low 

and high angle side of the GaAs substrate peak. For each film, we utilize the values of ݕ஻௜ 

and ݔே determined from analyses of RBS and NRA data, and we obtain ୄߝ from XRC data, 

using the small angle approximation	ୄߝ ൌ
∆ఏ

ఏబబర
, described in Section 2.6. In Fig. 5.15(a)-

(b), we plot 
௬ಳ೔
௫ಿ

 vs ୄߝ and use a linear least-squares fit to extract the 
௬ಳ೔
௫ಿ

 at which ୄߝ ൌ 0. 
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In Fig. 5.15(a), we included only those data points for films with significant interstitial 

fraction (i.e. all but those in the red boxes in Fig. 5.12), leading to ሾ݅ܤሿ ൎ 1.23 േ 0.04ሾܰሿ 

for the “magic” ratio for lattice-matching to GaAs. In Fig. 5.15(b), we used the two data 

points for films with negligible interstitial fraction (i.e. those in the red boxes in Fig. 5.12), 

leading to ሾ݅ܤሿ ൎ 1.67ሾܰሿ for the “magic” ratio. It is interesting to note that the magic ratio 

for the negligible interstitial case (determined with two data points) is in good agreement 

with theoretical predictions i.e. ሾ݅ܤሿ ൎ 1.7ሾܰሿ, whereas much lower ݔே value is actually 

needed for lattice-matching based upon the revised “magic” ratio of  ሾ݅ܤሿ ൎ 1.23 േ

0.04ሾܰሿ reported here.  

 

5.7 Summary and Conclusions 

 

In summary, we have examined the molecular-beam epitaxial growth, 

stoichiometry, and solute incorporation in GaAsNBi alloys. Our combined XRD, RBS, 

NRA, and APT studies suggest a lack of excess arsenic in our GaAsNBi films. In addition, 

although Bi incorporation into GaAsNBi is independent of N flux, N incorporation, 

including the fraction of N occupying non-substitutional sites, increases with increasing Bi 

flux. Since the Bi flux increase leads to a transition in surface reconstruction from (2x4) to 

(1x3), the enhancement in both the total N content and the fraction of N interstitials is 

attributed to the Bi-adatom-induced increase in the fraction of [110]-oriented step edges 

with As dangling bonds, increasing the likelihood for formation of (N-As)As. Finally, our 

XRD and NRA data suggest a “magic ratio” of ሾ݅ܤሿ ൌ 1.23 േ 0.04	ሾܰሿ, lower than the 

predicted value of ሾ݅ܤሿ ൎ 1.7ሾܰሿ, which considered only the presence of substitutional N 
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atoms. This insight provides a pathway to tailored N incorporation in GaAsNBi and related 

alloys.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

5.8 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Energy band gap vs. lattice parameter for GaAs, GaAsN, and GaAsBi alloys, 
with the 1.0 eV value of interest for PV shown as a horizontal dashed line. The dashed 
vertical line indicates the predicted lattice-matched GaAsNBi alloy, with ሾ݅ܤሿ ൌ 1.7ሾܰሿ. 
Adapted from Ref. 49.49 (Copyright 2013, IEEE). 
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Figure 5.2 Sample structure used for examining the excess As concentration, [AsGa], as a 
function of growth temperature ranging from 234ºC to 337ºC. The GaAsNBi and LT-GaAs 
layers are grown at the same temperature. The corresponding XRC data are shown in Fig. 
5.3. 
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Figure 5.3 Plots of (004) XRC data for the series of GaAsNBi films/LT-GaAs samples, 
shown schematically in Fig. 5.2, grown with fixed Bi beam-equivalent pressures and N2 
flow rates, and with growth temperature ranging from 234 to 346 (±5)ºC. For all plots, the 
GaAs substrate position is set to ∆߱ ൌ 0 arcsec, thereby facilitating comparison of ∆߱ 
between the GaAs substrate, any As-rich non-stoichiometric (or “low T”) GaAs layers, and 
the GaAsNBi layers. For the lowest substrate temperature, a somewhat broad peak centered 
at ∆߱ ൎ െ100  arcsec, associated with As-rich GaAs, is observed. As the substrate 
temperature is increased, the As-rich GaAs peak shifts to higher angles, eventually 
disappearing for substrate temperatures exceeding 300ºC. We note that the GaAsNBi peak 
also shifts to higher angles with increasing substrate temperature, possibly due to a 
decrease in Bi incorporation.  
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Figure 5.4 (a) A series of lens-shaped LEAP reconstructions, (b) LEAP spectra, and (c) 
Ga:As fractions for GaAs LEAP experiments using laser energies ranging from 0.25 pJ 
(bottom) to 25 pJ (top). As the laser energy is lowered, the ion evaporation becomes more 
uniform, as shown in (a). At 25 pJ and 20 pJ, the ions (yellow) are not laterally uniform. 
However, as the energy is lowered to 1 pJ and 0.25 pJ, the lateral uniformity is improved. 
(b) semi-log plot of counts vs mass-to-charge ratio showing Ga (69 and 71) and As (75) 
for various laser energies. As the laser energy is lowered from top to bottom, the counts for 
the mass-to-charge ratio of 75 decrease. In addition, the Ga:As ratio approaches 55/45, 
suggesting that the ion evaporation is heavily influenced by the laser energy. If the mass-
to-charge of 75 is assigned to As2, a near 50/50 Ga:As is obtained. 
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Figure 5.5 Using the laser energy identified for the nearly stoichiometric reconstruction of 
GaAs, 0.25 pJ, we performed a LEAP experiment on a fabricated tip consisting of ~250 
nm GaAsNBi on 500 nm GaAs on a GaAs substrate. In this case, ~5 million ions were 
collected and reconstructed; the resulting reconstructions of the tip, separated into the Bi, 
N, As, and Ga atoms, with the labeled regions corresponding to the GaAsNBi epilayer and 
the GaAs layer. Ga and As ions are observed throughout the tip while N and Bi ions, for 
the most part, are confined to the epilayer regions. We note that the apparently uniform 
distribution of N and Bi atoms in the epilayer suggests the absence of solute clustering. We 
consider the compositional analysis for the cases where the mass-to-charge ratio of 75 is 
assigned to ݏܣା and ݏܣଶ

ାା. For the ݏܣା assignment, both the GaAs layer and GaAsNBi 
epilayer are non-stoichiometric, containing excess Ga. On the other hand, for the ݏܣଶ

ାା 
assignment, both substrate and epilayer are non-stoichiometric as well, containing excess 
As.  
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Figure 5.6 Reflection high-energy electron diffraction patterns along the [110] and [1 0] 
axes during GaAs(N)(Bi) film growth.  [(a), (b)] (2 x 4) pattern following GaAs growth at 
580°C; [(c), (d)] (2 x 3) pattern at 345 ± 15°C immediately prior to the beginning of the 
GaAs(N)(Bi) layer; [(e), (f)] (1 x 3) pattern during GaAsNBi growth at 345 ± 15°C with 
Bi flux ≤ 5.7 × 10-8 Torr; [(g), (h)] (2 x 1) pattern during GaAsNBi growth with Bi flux ≥ 
5.7 × 10-8 Torr. (Copyright 2017, AIP Publishing LLC). 
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Figure 5.7 AFM images for the Bi flux series and N flux series are presented in (a)-(d) and 
(e)-(h) respectively.  For both the Bi and N flux series, the surfaces appear featureless, with 
rms roughness <0.5nm, consistent with observations of layer-by-layer growth of GaAsN. 

To confirm the absence of µm-sized surface droplets, 400 µm x 500 µm SEM images were 
also collected, as shown in (i)-(j). The images include features associated with dust, in 
order to demonstrate the suitable focus condition. Indeed, in the well-focused condition, 
the surface is featureless, without the presence of surface droplets.  
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Figure 5.8 (004) High-resolution x-ray rocking curves for the (a) N flux series with x 
ranging from 0 to 0.023 and (b) Bi flux series with y ranging from 0 to 0.056.  For all plots, 
the GaAs substrate peak is set to ∆߱ ൌ 0 arcseconds, thereby facilitating comparison of  
∆߱ between the GaAs substrate and the GaAsNBi epilayers.  Within the N flux series, y  
remains fixed as x is increased.  However, within the Bi flux series, x increases as y 
increases, suggesting a Bi-induced enhancement of N incorporation. The two highlighted 
rocking curves in (b) are an example pair of XRC data used to determine the “magic” N:Bi 
ratio for lattice-matching of GaAsNBi with GaAs. (Copyright 2017, AIP Publishing LLC). 
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Figure 5.9 Measured NRA yield versus emitted particle energy for the N flux series.  The 
vertical dashed lines indicate the energy window of the protons emitted  during the 
14N(α,p)17O reaction.  As the N flux increases, the resulting N signal increases. Non-
channeling data are overlaid with SIMNRA fitted spectra assuming a uniform N depth 
profile. Fitted Gaussian-shape spectra suggest uniform N incorporation throughout the 
GaAsNBi film. (Copyright 2017, AIP Publishing LLC). 
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Figure 5.10 (a) Measured RBS yield versus backscattered particle energy for Bi flux series 
samples plotted in yield versus energy.  The vertical dashed lines indicate the energy 
window of backscattered ions from Bi atoms.  As the Bi flux increases, the resulting Bi 
signal increases. The portions of the RBS spectra enclosed in the box in (a) are shown in 
(b). Non-channeling data are overlaid with SIMNRA fitted spectrum assuming uniform Bi 
depth profile. Fitted Gaussian-shape spectra suggest uniform Bi incorporation throughout 
the GaAsNBi film. (Copyright 2017, AIP Publishing LLC). 
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Figure 5.11 Mole fractions of total x, substitutional xsub, and interstitial xint for the Bi flux 
series of GaAsN(Bi) films, determined by channeling and non-channeling nuclear reaction 
analysis.  The atomic concentrations corresponding to the mole fractions are shown on the 
right y-axis.  Both x and xint increase with Bi flux, suggesting a Bi-induced enhancement 
of N incorporation, with preferential incorporation in interstitial sites. (Copyright 2017, 
AIP Publishing LLC). 
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Figure 5.12 ݔே or ݕ஻௜ values determined from RBS (solid symbol), NRA (solid symbol), 
and XRC (open symbol) are plotted. (a) Bi BEP for the Bi flux series and (b) N MFC for 
the N flux series. In both cases, the RBS and XRC-determined values of ݕ஻௜ agree to within 
<0.1%. Furthermore, for ݔே ൏ 0.01  the NRA and XRC-determined values of ݔே  also 
agree to within <0.1%. However, as the values of ݔே exceed 0.01, including those in the N 
and Bi flux series, the NRA and XRC-determined values of ݔே  begin to deviate by in 
excess of 0.5%. Since the XRC data analysis considers only substitutional N incorporation, 
the higher ݔே values for ݔே ൐ 0.01 obtained from the NRA data analysis are attributed to 
the presence of N interstitial complexes. The two data points for ݔே ൏ 0.01, enclosed in a 
red box for both the (a) Bi and (b) N flux series are expected to contain a negligible fraction 
of N interstitial complexes, as will be further discussed in Section 5.6. 
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Figure 5.13 Total simulated NRA yields in the [100], [110], and [111] directions for (a) 
NSub, (b) (N-N)As, and (c) (N-As)As . (d) Measured total NRA yield in each channeling 
direction. Similar yield trends of Y[111]> Y[110]> Y[100] are observed for (c) and (d), 
suggesting that (N-As)As is the dominant interstitial complex in GaAsN alloys. 3x3x3 unit 
cell of GaAsNBi with N-to-Bi incorporation ratio of 1-to-2 are used for these simulations. 
White is gallium, green is arsenic, blue is nitrogen, and red is bismuth.  Within each cell, 
each N is positioned at the center of the group V site as either substitutional N, NAs; (N-
N)As, with N2 aligned along the [111] direction; or (N-As)As, with the N-As pair aligned 
along the [010] direction. (Copyright 2017, AIP Publishing LLC). 
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Figure 5.14 Schematic of a reconstructed surface with As dimers and Ga/As dangling 
bonds along different directions. The [110] step edge consists of As dangling bonds, such 
that a N atom incorporating on a [110] step edge would have an increased likelihood of 
forming a (N-As)As interstitial complex. As the step edge density changes with the 
introduction of Bi, the RHEED reconstruction pattern changes from (2x4) to (1x3) or (4x3). 
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Figure 5.15 Plots of 
௬ಳ೔
௫ಿ

 obtained from RBS and NRA data verses the perpendicular 

strain,	ୄߝ , obtained from XRC data analyzed using the small angle approximation, as 

described in Section 2.6. We use a linear least-square fit to extract the 
௬ಳ೔
௫ಿ

 value at 

which	ୄߝ ൌ 0. In (a), we include data from all films which contain a non-negligible fraction 
of interstitial N complexes; the “magic” ratio for lattice matching with GaAs is ሾ݅ܤሿ ൌ
1.23 േ 0.04ሾܰሿ. In (b), we include only those data from films with a negligible fraction of 
interstitial complexes; the “magic” ratio for lattice-matching with GaAs is ሾ݅ܤሿ ൌ 1.67ሾܰሿ, 
consistent with theoretical predictions assuming solely substitutional N incorporation 
ሾ݅ܤሿ ൌ 1.7ሾܰሿ.50,51 
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Chapter 6 

 

Summary and Suggestions for Future Work 

 

6.1 Summary 

  

 In this dissertation work, we examined solute incorporation into GaAsN and 

GaAsNBi alloys, using a combined computational-experimental approach. We considered 

the influence of both growth parameters and post-growth RTA on the alloy stoichiometry 

and interstitial complex formation and dissociation. We also examined the influence of co-

incorporation of Bi and N and identified the “magic ratio” for lattice matching to GaAs. 

Finally, we identified the possible mechanisms for the dissociation of (N-N)As interstitial 

complexes during RTA.   

 In Chapter 3, our combined computational-experimental approach to identify the 

dominant interstitial complex in GaAsN is presented. For this purpose, we compared 

channeling NRA and RBS data with MC-MD simulations along the [100], [110], and [111] 

directions. For the simulations, we assume that (N-N)As is aligned along the [111] direction, 

while (N-As)As is aligned along the [010] direction. Since the channeling NRA data have 

the highest (lowest) yields in the [111] ([100]) directions, similar to the computed trends 
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for the (N-As)As interstitial complex, we conclude that (N-As)As is the dominant interstitial 

complex in GaAsN.  

 In Chapter 4, our studies of the influence of RTA on the structure of GaAsN films 

were presented. Using the combined computational-experimental approach from Ch. 3, we 

examined the film stoichiometry and stability of the dominant interstitial complexes. In as-

grown GaAsN films, the presence of N interstitial complexes is observed with NRA, with 

the presence of (N-N)As confirmed by Raman spectroscopy. Following RTA, although the 

film stoichiometry is maintained, with minimal N out-diffusion, the fraction of (N-N)As 

interstitial complexes is reduced, presumably due to dissociation of (N-N)As into Nsub and 

(N-As)As interstitials. It has been suggested that the improved electronic performance of 

GaAsN following RTA is due to the disappearance of (N-N)As interstitial complex. Here, 

we have identified the possible (N-N)As dissociation mechanisms in GaAsN which may 

enable the elimination of the RTA steps typically needed to improve the properties of 

GaAsN and related alloys. These finding are likely to be applicable to other dilute nitride 

alloys which contain significant fractions of (N-N)As interstitial complexes.  

 In Chapter 5, our investigations of the molecular-beam epitaxial growth, 

stoichiometry, and solute incorporation into GaAsNBi alloys was presented. Our combined 

XRD, RBS, and APT studies suggest that the GaAsNBi alloys are stoichiometric, with 

minimal excess arsenic incorporation. We demonstrate that Bi incorporation into GaAsNBi 

is independent of N flux. However, N incorporation into GaAsNBi, including the fraction 

of N occupying non-substitutional sites, increases with Bi flux. The Bi flux increase leads 

to a transition in surface reconstruction from (2x4) to (1x3). Since the GaAsBi (1x3) 

surface has been reported to contain a high density of [110]-oriented step edges, with As-
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dangling bonds, we consider their role in the enhancement of both the total N content and 

the fraction of N interstitials, especially through enhancing the formation of (N-As)As. 

Finally, our NRA, RBS, and XRD data suggest a “magic ratio” for lattice matching with 

GaAs, of ሾ݅ܤሿ ൌ ሺ1.23 േ 0.04ሻ	ሾܰሿ , much lower than the predicted value of ሾ݅ܤሿ ൎ

1.7ሾܰሿ, for which substitutional incorporation of all N was assumed. This insight provides 

a pathway to tailoring the N incorporation and lattice-matching of GaAsNBi and related 

alloys.  

  

6.2 Interstitial Complexes Positions: Angular Yield Profile 

 

To determine the precise interstitial complex positions, for comparison with DFT 

calculations in the literature, angular-channeling scans are suggested. Following the 

channeling alignments described in Appendix D, an angular yield profile may be obtained, 

as illustrated in Fig. 6.1. Using this technique, it is possible to detect the narrowing of the 

channel due to lattice distortion. In addition, if there are interstitial atoms that reside in the 

channel itself, these atoms will obstruct channeling and induce “flux peaking”, a sudden 

increase in the detected backscattered signals, as illustrated in Fig. 6.2.1 

 

6.3 Determining GaAsNBi Stoichiometry 

 

To determine if isovalent co-alloying of GaAs with two anions (Bi, N) is limited to 

the replacement of As by the anions, we initially considered using RBS data. However with 

RBS, the Ga and As signals from the epilayer and substrate overlap, as shown for the 
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GaAsNBi/GaAs RBS data in the random spectra in Fig. 5.10(a) and simulated spectrum in 

Fig. 6.4. We then attempted to use LEAP, as discussed in Section 5.4, but multiple charge 

states associated with elemental vs. molecular evaporation of arsenic and the composition-

dependent local E-field experienced by the tip prevented quantification of the GaAsNBi 

III/V stoichiometry. Here, we propose additional LEAP experiments using special 

algorithms available in the LEAP 5000HS, as well as additional ion beam techniques that 

may be possible at LANL, and additional LEAP experiments using special algorithms 

available in the LEAP 5000HS. 

 

6.3.1 Time-Of Flight Elastic Recoil Detection Analysis  

 

To determine the fractions of Ga and As in GaAsNBi and related alloys, we propose 

to use time-of-flight elastic recoil detection analysis (ToF-ERDA).2,3 This ToF-ERDA is 

similar to LEAP, except it uses heavy ions such as carbon or chlorine to “knock off” atoms 

from the sample of interest, which are then collected by silicon surface barrier detector. 

Since ToF-ERDA does not involves applied voltages (in contrast to LEAP, which involves 

2000-6000V), multi-charged ions are not present. Therefore, ToF-ERDA is expected to 

enable the identification of Ga and As signals with depth resolution ~2-5nm, allowing for 

quantification of the Ga and As fractions in both the films and substrate.  

 

 

 

 



135 
 

6.3.2 RBS at higher Energies  

 

As shown in Fig 6.3, using a heavier ion species (e.g. C rather than α) and ion 

energies ranging from 3 MeV to 5 Mev, SIMNRA simulations predict that the Ga and As 

signals would be resolved with RBS. However, due to the backscattered high-energy high-

mass ion, the detection resolution of a silicon-based detector is expected to decline, leading 

eventually to detector failure. Instead, the author suggests an alternative approach for signal 

detection, namely, a gas ionization chamber (GIC) detector, which relies upon the 

ionization of noble gases.4,5 

If a GIC detector is not available, another approach would be to use a higher α beam 

energies to probe samples following the removal (via etching) of the GaAs substrate. As 

shown in the SIMNRA simulations in Fig. 6.4, if the substrate is removed and the incident 

α particle energy is increased to in excess of 4 MeV, the Ga and As signals are expected to 

be individually resolved. Prior to removal of the GaAs substrate, the author suggests 

lithographically patterning the backside (following growth) to form a 5 mm x 5 mm square 

that enables the transmission of the ion beam. For this purpose, the samples would need to 

be grown with a buried AlAs etch stop layer, as described in Ref. 6 and 7.6,7 

 

6.3.3 Controlling Local Electric Field 

 

During a LEAP experiment, each atom experiences ܧሬറ ൌ ௏

௞௥
	, where ܸ is the applied 

voltage, ݎ is the radius of the tip, and ݇ is a unit-less factor relating the geometries of the 

tip and the detector.8 Typically, the variations in field experienced by the tip are accounted 
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for in the data analysis process, specifically during tip reconstruction. However, the E-field 

experienced by the tip varies with local atomic compositions as each layer is evaporated. 

Therefore, following the LEAP experiment, it is not possible to distinguish ݏܣଶ
ାାvs ݏܣା . 

We attempted to use the constant peak ratio function to fix the ܽܩା 	to ܽܩାା charge state 

ratio during a LEAP experiment on a GaAs layer with a known 1:1 Ga:As ratio. However, 

as the LEAP experiment progressed across the GaAsNBi/GaAs interface, significant 

composition-dependent ܽܩା 	to ܽܩାା ratios were apparent. Thus, further LEAP studies are 

needed to identify the LEAP conditions that enable fixed local electric fields across the 

GaAsNBi/GaAs interfaces.  

 

6.4 Tailoring the Structure and Properties of GaAsNBi 

 

In this thesis, we have made substantial progress in understanding N interstitial 

complex formation in GaAsN; these findings open up new opportunities for tailoring the 

structure and properties of GaAsN alloys. In Chapter 3, we showed that (N-As)As is the 

dominant interstitial complex in GaAsN. In Chapter 4, we suggested (N-As)As pairs are 

formed preferentially at [110]-oriented step edges, which contain As dangling bonds. In 

Chapter 5, we showed that (N-N)As interstitial complexes are dissociated into (N-As)As and 

Nsub during RTA. Together, these findings provide a path way to tailor the structure and 

properties of GaAsN and related alloys. In literature reports, it has been shown that RTA 

induces improvement in PL efficiency and electron mobilities of GaAsN and related alloys. 

Based upon our combined computational-experimental investigations in Ch. 3-5, we 

hypothesize that (N-N)As interstitial complexes are the chief “culprits” while (N-As)As 
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complexes are not. Since the [110] step-edges, with As dangling bonds, appear to enhance 

the incorporation of (N-As)As interstitial complexes, we suggest the growth of GaAsN(Bi) 

alloys with a high density of [110] step-edges, namely (111)B offcut substrates, along with 

studies of their optoelectronic properties. Indeed, it may be possible to grow GaAsNBi 

alloys with high PL intensities and high electron mobilities without post-growth thermal 

annealing. 

 

6.5 Influence of RTA on GaAsNBi 

 

To examine the effects of RTA on the structure of GaAsNBi, several of the samples 

discussed in Ch. 4 were also annealed at LANL. However, due to the indium on the 

backside of the GaAsNBi samples, indium droplets was formed on the surfaces of the 

GaAsNBi epilayers, as shown in Fig. 6.5. The subsequent NRA/RBS measurements 

showed low quality channeling measurements with 		߯௠௜௡ ൐ 10% , whereas good 

channeling measurements would yield 		߯௠௜௡ ൏ 6%.9 In addition, as shown in the XRC in 

Fig. 6.6, an additional phase is observed following RTA, likely due to In diffusion into the 

GaAsNBi layer. Furthermore, as shown in the Raman spectroscopy data in Fig. 6.7, in 

addition to the vibrational signatures observed in as-grown GaAsNBi, an additional 

signature associated with InAs is observed post-RTA, further suggesting the In diffusion 

into the layers.10 RTA is commonly used for Bi-free dilute nitride alloys to improve the 

optical properties.11,12,13,14,15,16 However, RTA has been reported to lead to alloy phase 

separation in GaAsBi.17,18,19  Therefore, further studies on the effects of RTA on GaAsNBi 



138 
 

alloys are suggested. For this purpose, removal of indium from the substrate backside, prior 

to RTA, is suggested.  

 

6.6 Channeling Simulations for Wurtzite Crystals  

 

To examine the incorporation of p-type dopants such as Mg, in GaN, we suggest 

adapting the MC-MD simulation code for wurtzite crystals.20,21 As shown in Fig. 6.8, MG 

can be incorporated both substitutionally, as MgGa or interstitially, as MgI. There have also 

been reports of additional Ga and/or N vacancy formation, depending on growth technique 

and post-growth annealing sequence.22 ,23 ,24 For these studies, the author suggests the 

development of a script to construct a hexagonal crystal system using the cubic lattice 

vectors.   
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6.7 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Random spectrum and aligned spectra at different tilt angles on the left. For a 
specific energy channel on the left, the yield is plotted as yield vs tilt angle as shown on 
the right, forming an angular yield profile. Adapted from Ref. 1. (Copyright 1978, Elsevier 
Books). The sample can be tilted in both ߮௫ or ߮௬ direction as shown above.  
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Figure 6.2 Angular yield profiles around the three principal axes of Yb-implanted silicon 
crystal. The solid lines are the Si signal and the dashed lines are the Yb signal yield profiles. 
As the Yb is detected, the yield increases, as shown for [110] direction. Adapted from Ref. 
11. (Copyright 1978, Elsevier Books). 
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Figure 6.3 SIMNRA simulations of RBS for 100nm GaAsNBi films on GaAs using C 
ions, with beam energy ranging from 3 to 5 MeV. As the C ion beam energy is increased, 
the separation between Ga and As signal is predicted to be sufficient for quantification of 
Ga and As compositions.  
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Figure 6.4 Comparison of three SIMNRA simulations of 100nm GaAsNBi films. (a) 4.46 
MeV SIMNRA simulation of GaAsNBi/Alas/GaAs, (b) 4.46 MeV SIMNRA simulation of 
GaAsNBi/AlAs, and (c) 6 MeV SIMNRA simulation of GaAsNBi/AlAs. In (a), the Ga and 
As signals are not resolvable due to overlap with the substrate signals. In (b), the Ga and 
As signals are predicted to be partially resolved due to the absence of the substrate. In (c), 
the Ga and As signals are predicted to be fully resolved due to the higher energy incident 
α particles and the absence of the substrate. 
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Figure 6.5 Nomarski images of the as-grown and post-RTA GaAsNBi surfaces. Post-RTA, 
the surface contains In droplets. It is likely that In also diffused into the film leading to 
higher RBS channeling yield, namely 		߯௠௜௡ ൏ 6% vs. 		߯௠௜௡ ൐ 10%	for as-grown vs. 
post-RTA films, respectively. 
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Figure 6.6 Plots of (004) XRC data for a series of as-grown and post-RTA GaAsNBi films 
with various ݕ஻௜ and ݔே values. For all plots, the GaAs substrate peak position is set to 
Δ߱ ൌ 0	arcseconds. For all post-RTA films, an extra “shoulder” on the low angle side of 
the GaAs substrate peak is apparent. This artifact is likely due to In surface diffusion into 
the GaAsNBi film during the RTA process.  
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Figure 6.7 Plots of Raman spectroscopy of the post-RTA (blue) and as-grown (black) for 
GaAsN, GaAsBi, and GaAsNBi. For all as-grown and post-RTA films, several spectral 
features are apparent, including the ~275ܿ݉ିଵ GaAs-like transverse-optical (TO) phonons 
and the ~ 290ܿ݉ିଵ  GaAs-like longitudinal-optical (LO) phonons. In GaAsN and 
GaAsNBi, spectral features are also observed at ~475ܿ݉ିଵ, due to GaN-like LO phonons. 
In GaAsBi and GaAsNBi, spectral features are also observed at ~180ܿ݉ିଵ due to GaBi. 
Finally, following FTA, an additional feature is observed at ~250ܿ݉ିଵ, which has been 
attributed to InAs.10  
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Figure 6.8 Ball stick model of GaN (white and green) with Mg (red) impurities sitting in 
the substitutional (i.e. MgGa) and interstitial sites (MgI). (a) Simple one-cell structure, (b) 
multiple unit cell structure.  
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Appendix A 

 

C21 MBE: Control of As2 vs As4  

 

To control the sublimation of As2 vs. As4 using a cracking cell, one typically tunes 

the cracking zone (CZ) temperature, which is monitored by a CZ thermocouple, as shown 

in the photograph in Fig. A.1(a) and the corresponding schematic in Fig. A.1 (b). However, 

in the C21 MBE, the CZ TC fails to register temperatures exceeding 200°C. Attempts to 

remove the protective cover shown in Fig A.1(a) were unsuccessful, presumably due to As 

coating of its inner surface. It is hypothesized that this problem has its origins in the bulk 

zone (BZ), shown in Fig. A.2. In 2009, when the BZ was loaded with As, the screws shown 

by a red box in Fig. A.2 were not tightened with a torque wrench. Over time, the screws 

loosened, resulting in As leaking from the inner to the outer source containment unit of the 

BZ. It is further hypothesized that As also leaked into the CZ, coating the TC, causing the 

TC to fail for temperatures exceeding 200°C. We attempted to remove the As coating from 

the TC by manual scraping and evaporation (by heating the CZ to ~500°C for >12 hours). 

In both cases, the observed symptom persisted.  
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Instead, to control the sublimation of As2 vs As4, we use the information provided 

by Riber, shown in Table A.1. Therefore, to achieve As4 sublimation, we used 36% power, 

with 3.2 Amp current and 12 volts. To achieve As2 sublimation, we used 56% power, with 

5.3 Amp current and 26 volts.  
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A.3 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A.1 (a) Photograph of As cracking zone (CZ) module, with corresponding 
schematic shown in (b). Attempts to remove the protective cover shown in (a) were 
unsuccessful, presumably due to excess arsenic coating on its inside.  
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A.2 An image of the bulkzone (BZ) containment units, with the cover from the outer 
containment unit removed. The source containment unit houses the arsenic material. The 
screws emphasized by the red box were apparently not tightened to the specified torque, 
eventually loosening such that arsenic leaked from the inner to outer containment unit, as 
indicated by the yellow box. 
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A.4 Table 

 

 

 

 

 

 

 

Table A.1 Power settings for the As cracking cell, provided by Riber engineers. The table 
lists the target CZ temperatures for standby, sublimation of As4, and cracking of As4, 
followed by As2 sublimation. Computer control allows % power control only, current and 
voltage is automatically controlled by the power supply unit.   
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Appendix B 

 

Gen II Nitrogen Plasma Source(s) 

 

B.1 RF N plasma source history 

 

At the start of the work in this dissertation, the Gen II MBE was fitted with a RF N 

plasma source from Veeco; however, the Veeco source was accidentally powered without 

water cooling, rendering it non-functional. Subsequently, the water flow safety interlock 

was re-installed, and a “spare” Addon RF plasma source, originally intended to be installed 

on the Riber 32 MBE, was installed on the Gen II. Since the Addon source was designed 

for dilute nitride materials, lower N flow rates are used and the ignition process is quite a 

bit different than that of the Veeco plasma source. In both cases, it is best to perform the 

ignition process in pairs, with one person adjusting the plasma power and MFC flow rate, 

and one person monitoring the plasma color and minimizing the reflected power.  
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B.2 RF N plasma ignition process 

 

 Here, we discuss the plasma ignition process for the Veeco  and Addon sources. 

For both sources, the forward power is raised in a 50W-steps while the reflected power is 

reduced to as close to zero as possible.  

 For the Veeco source, a one-step ignition process is utilized. The MFC is set to 0.5 

sccm, the RF forward power is raised to 450-500W, while the reflected power is 

minimized, and the plasma is ignited with a bright purple glow. 

 For the Addon plasma source, a three-step ignition process is used, as illustrated in 

Fig. B.1. In the first step, the “low brightness” ignition, the MFC is set to 1.5 sccm and the 

forward power is raised to 350W while the reflected power is minimized. The resulting 

“low brightness” plasma exhibits a dim orange-color, as shown in Fig B.1(a). If the low 

brightness (orange) plasma is not ignited at 350W, the flow rate is increased to 1.5 to 2.0 

sccm. If the “low brightness” is still not ignited, the forward power is increased to 400 to 

450W, while the reflected power is again minimized. Typically, the “low brightness” 

(orange) plasma is ignited at 350 to 400W, with a flow rate of 1.5 sccm. In the next step, 

the “medium brightness” ignition, the MFC flow rate is increased to 3 sccm and the forward 

power is increased toward 500W, while the reflected power is reduced, until the plasma 

color transforms from dim-orange to dim-purple, as shown in Fig. B.1(b). Typically, this 

transition happens for forward power <500W. To obtain the “high brightness” plasma, the 

forward power is increased to 500W, and the MFC flow rate is lowered to 1 sccm at 0.1 

sccm/sec, and then to <1 sccm at 0.02 sccm/sec until the plasma turns purple at ~0.35 sccm, 

as shown in Fig. B.1(c). We note that in the Addon source, the plasma is often unstable for 
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MFC > 0.35 sccm. If the plasma is extinguished during the flow rate lowering process, one 

must re-start the process form the “low brightness” ignition.   
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B.3 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 Images of plasma from Addon plasma source: (a) low, (b) medium, and (c) 
high brightness mode. Typically, low brightness is achieved with 1.5 sccm and 350W, 
medium brightness with 3 sccm and ~500W, and high brightness with 0.35 sccm and 
~500W.  
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Appendix C 

 

LEAP Experimental Artifacts 

 

C.1 Overview 

  

 In this section, the basic physics associated with the LEAP process is described. 

We then discuss several issues that must be considered during the analysis of LEAP data, 

including the complications associated with multiple charge state molecules, delayed 

thermal evaporation, and pulse “wrap around”. In all cases, the strategies used to minimize 

these effects are discussed.  
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C.2 Physics of LEAP 

 

When a high voltage is applied to the fabricated tip, the resulting electric field is 

approximated as follows: 

ܧ ൌ 	ିொ೐೗೐೎೟ೝ೚೏೐
ସగఌబ௥మ

	                                                              C.1      

where ߝ଴ is the permittivity of free space, ܳ௘௟௘௖௧௥௢ௗ௘ is the resulting charge on the ground 

electrode, and r is the separation between the tip and ܳ௘௟௘௖௧௥௢ௗ௘. As an ion is evaporated 

from the tip, it experiences a force and acceleration, as follows: 

ܨ ൌ 	ି௞௤೔೚೙ொೞ೚ೠೝ೎೐
௥మ

ൌ ݉௜௢௡ܽ                                              C.2 

The acceleration of the ion in terms of its charge state is generalized as follows:  

ܽ ൌ ௡௞௤೔೚೙ொೞ೚ೠೝ೎೐
௠೔೚೙௫మ

	                                                          C.3  

where n is the charge state of the ions. We use the rudimentary equation of motion, as 

follows:  

ݔ ൌ ௢ݔ ൅ ݐ଴ݒ ൅
ଵ

ଶ
                             C.4			ଶݐܽ

where x is the distance from the tip to the detector. Assuming negligible initial ion 

velocity (ݒ଴ ൌ 0ሻ and setting the initial ion position at the tip (ݔ଴ ൌ 0ሻ, we solve for the 

time-of-flight as follows: 

ݐ ൌ ට
ଶ௫௠೔೚೙௫మ

௡௞௤೔೚೙ொೞ೚ೠೝ೎೐
	                                                         C.5 

Evidently, t is dependent on both the mass and charge state of each ion. 
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C.3 Identifying Multiple Charge States 

 

For many ions, possible charge states associated with molecules must be 

considered. For example, since ஺௦ݐ		
ା ൌ ஺௦మݐ

ାା , the mass-to-charge ratio of 75 could be 

identified as ݏܣ଻ହ
ା  or 2ݏܣ଻ହ

ାା  as shown in Fig. C.1.Since the two cases are not easily 

distinguished, both cases must be considered during the analysis of LEAP data. As 

discussed in Chapter 1 and Chapter 5, this is particularly important for understanding and 

controlling the III-V stoichiometry in GaAsNBi alloys.  

  

C.4 Accounting for Delayed Thermal Evaporation and Pulse “wrap around” 

As discussed in Chapter 2, the timer for “time-of-flight” starts at the beginning of 

each laser pulse. During laser-mode LEAP, thermal evaporation is not instantaneous, such 

that some of the ions experience delayed evaporation. In some cases, this leads to thermal 

tails in the measured distribution of mass-to-charge ratios.  

For example, if Ga+
 is evaporated with a ∆ݐ delay, total travel time in Equation 4 

becomes  

௔ீݐ
ା ൅	∆ݐ ൌ ට

ଶ௫௠೏೐೗ೌ೤೐೏ష೔೚೙௥మ

௡௞௤೔೚೙ொೞ೚ೠೝ೎೐
                                              C.6  

Solving for ݉ௗ௘௟௔௬௘ௗି௜௢௡,  

݉ௗ௘௟௔௬௘ௗି௜௢௡ ൌ
௡௞௤೔೚೙ொೞ೚ೠೝ೎೐ሺ௧ಸೌ

శ ା	∆௧ሻమ

ଶ௫௥మ
	                                      C.7 

Equation C.7 shows that for a longer ∆ݐ, the delayed ion would behave as if it is a “heavier 

ion”. Figure C.2 shows an example LEAP spectrum, consisting of counts vs mass-to-charge 

ratio, for a GaAs buffer layer. In Fig. C.2(a), three peaks with mass-to-charge ratios 
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corresponding to ܽܩ଺ଽ
ା ଻ଵܽܩ ,

ା , and ݏܣ଻ହ
ା ଻ହݏܣ2/

ାା are labelled. In the zoomed-in view of the 

LEAP spectrum shown in Fig. C.2(b), thermal tails due to delayed evaporation, which lead 

to apparently “heavier” ions are apparent.   

For heavy elements, such as Bi, the laser pulse frequency must be carefully chosen 

to ensure ion arrival at the detector prior to the initiation of the subsequent laser pulse. 

When the heavy ions do not reach the detector prior to the subsequent laser pulse, pulse 

“wrap-around” counts appear at the light element mass-to-charge ratio location, as shown 

in Fig. C.3(a). Both thermal tails and the pulse “wrap around” can be remedied by using a 

lower pulse rate, such as 100kHz, as shown in Fig. C.3(b).  
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Figure C.1 Example LEAP spectrum for an MBE-grown GaAs buffer layer consisting of 
counts vs. mass-to-charge ratio. In the plot, several peaks in mass-to-charge ratio and their 
possible identifies (including element and charge state) are labeled.  
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(a) 

(b) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.2 (a) LEAP spectrum, consisting of counts vs. mass-to-charge ratio, collected 
from a GaAs buffer layer using laser-assisted LEAP. In the plot, peaks in mass-to-charge 
ratio, corresponding to ܽܩ଺ଽ

ା ଻ଵܽܩ ,
ା , and ݏܣ଻ହ

ା or 2ݏܣ଻ହ
ାା , are apparent. The portions of 

LEAP spectrum enclosed in the box in (a) are shown in (b). During the LEAP experiment, 
some of the atoms experience delayed thermal evaporation and take a longer time to reach 
the detector, thus appearing at a higher mass-to-charge ratio. In this case, the thermal tails 
have <0.2% of the main peak intensity; however, up to ~5% was observed by the author.  
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Figure C.3 LEAP spectrum, consisting of counts vs mass-to-charge ratio, collected from 
a GaAsNBi layer using laser-assisted LEAP with 200kHz. In plot (a), baseline noise level 
is significantly higher and extends further up into heavier elements, suggesting the presence 
of pulse wrap-around. In subsequent experiments, the pulse wrap around was eliminated 
by using a lower pulse rate (~100 kHz), shown in (b). 
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Appendix D 

 

Tandem Accelerator and Data Analysis 

 

D.1 Overview 

 

In this section, tandem accelerators are described generally, along with specific 

details regarding the tools at the Michigan Ion Beam Laboratory (MIBL) and Los Alamos 

National Laboratory (LANL). Next, detailed alignment procedures to achieve [100], [110], 

and [111] channeling conditions are illustrated. Finally, analysis of RBS and NRA data is 

discussed.     
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D.2 Tandem Accelerator 

 

  In a tandem ion accelerator, each charged ion is accelerated twice under the same 

static electric potential. As shown in Fig D.1, the ion source provides negatively charged 

ions which are injected into the accelerator and accelerated toward the positively charged 

high voltage (HV) terminal at the center of the accelerator. As the ions reach the HV 

terminal, the ions pass through a stripper foil or stripper gas. Thus, the electrons will be 

stripped off, converting the ion polarity from negative to positive. Subsequently, positively 

charged ions, under the same applied positive voltage, accelerate away from the positively 

charged terminal; effectively being accelerated by the same high voltage twice. Following 

ion acceleration, bending magnets are used to both select ion energies and to direct the ion 

beam into various analysis chambers.  

 The accelerator at MIBL consists of a General Ionics Tandem with 1.7 MV terminal 

voltage and argon stripper gas. In this case, the ions are converted to doubly charged states 

in order to achieve >3.4 MeV acceleration. In the MIBL General Ionics Tandem 

Accelerator, it is not possible to directly measure the total number of incident ions and 

instead each spectra is normalized to the lowest substrate signal within a set of data 

collected. Finally, at MIBL, the goniometer is limited to quantitative [100] channeling 

alignment.  

 The accelerator at LANL consists of a 3 MV terminal voltage and N2 stripper gas. In 

the LANL NEC Tandem, the total number of incident ions is measured by a charge 

integrator which is electrically connected to the sample. In addition, the NEC Tandem is 
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equipped with a fully automated five-axis goniometer that enables channeling alignment 

in [100], [110] and [111] directions. 

   

D.3 Channeling Alignment 

 

 Since our films are grown on [001] substrates, the incident beam is typically in the 

proximity of the <100>-type channeling direction. To optimize the [100] channeling 

condition, we use a computer automated-goniometer to rotate the sample azimuthally in 

߮௫, and ߮௬, as shown in Fig. D.2. At each step, RBS yields are collected from the first 10-

20 channels of the GaAs substrate edge signal for a preset ion dose (typically ~0.2 µC). 

Starting at ߮௫ ൌ ൅4° and ߮௬ ൌ ൅4°, we rotate in steps of 0.2°: ߮௬ to െ4°, ߮௫ to െ4°, ߮௬ 

to ൅4°, ߮௫ to ൅4°, forming a so-called “polar plot” of the backscattered yield, as shown in 

Fig. D.3. Since minima in the backscattered yield occur at the channeling directions, this 

data is inputted into MATLAB script, presented in Section D.5, to calculate the ∆ߠ, ∆߮௫, 

and ∆߮௬ to achieve channeling. An example of the calculated rotation correction for [100] 

alignment is shown in Fig. D.4. In addition, if subsequent [111] or [110] channeling 

conditions are needed, the sample will also need rotation of		∆ߠ ൌ െ7.13° before any 

further rotations. 

 To achieve [110] channeling from the starting point of [100] channeling with  ∆ߠ ൌ

 is rotated 45°, followed by ߮௬ rotation of 45°. Subsequently, to optimize the [110]	ߠ ,0°

channeling conditions, we repeat optimization the process described above, forming the 

polar plot of the backscattered yield shown in Fig. D.5. To achieve [111] channeling 

condition from the starting point of [100] channeling, one ߮௬ rotation of 	54.74° is needed. 
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Similarly, to optimize the [111] channeling condition, we repeat the optimization process 

described above, forming the polar plot of the backscattered yield shown in Fig. D.6.  

  

D.4 Spectra Fitting 

 

 To determine the composition of thin alloy films, we use a combination of 

approximative and quantitative analyses. First, we estimate the mole fractions from the 

ratios of the NRA or RBS yields, as described in Appendix B of R.L. Field’s Ph.D thesis. 

Quantitative analyses are achieved using software packages such as Rutherford 

Backscattering Data Analysis, Plotting and Simulation Package (RUMP), or Simulation of 

Nuclear Reaction Analysis (SIMNRA). For this dissertation, all the spectra are analyzed 

using SIMNRA.  

 To fit the data using SIMNRA, several fixed input parameters are needed, including 

the incident ion species (alpha, deuterium, carbon, and etc), the ion energy (usually in 

~MeV range), the incident ion angle (0° in RBS and NRA), the ion scattering angle (usually 

~135 °  for NRA and ~167 °  for RBS) and the target material including its layer 

configuration. Several variable parameters are also utilized during the fitting process, 

including the energy per channel (usually ~5 keV/ch), the number of particles (~10E11), 

and the detector resolution (~15 keV for RBS, ~100 keV for NRA). The general approach 

is an iterative process that often requires repetition of various steps to achieve the “best fit” 

spectrum. An example of iterative process for RBS data from a GaAsBi alloy film is listed 

below and is shown in Fig. D.7. Similar approaches were used for the analysis of both NRA 

and RBS spectra. 
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1) The number of particles is varied until the SIMNRA and measured substrate data 

match (Fig. D.8(a)) – too low in the example shown,  

2) The keV/ch and calibration offset are varied until the SIMNRA and measured 

substrate and solute atom high energy edges match (Fig. D.8(b)) – too lower in the example 

shown,  

3) The detector energy resolution is varied until the shape of the SIMNRA and 

measured substrate and solute atom high energy edges matches (Fig. D.8(c)) – too low in 

the example shown,  

4) The target thickness is varied until the SIMNRA and measured width of the solute 

element signals match (Fig. D.8(d)) – too low in the example shown, 

5) The target composition is varied until the SIMNRA and measured solute element 

signal match (accounting for background noise) (Fig. D.8(e)) – too high in the example 

shown.  

 

D.5 MATLAB script to identify channeling conditions 

 

The script used to identify ∆ߠ, ∆߮௫, and ∆߮௬ positions of the channels, based upon 

the <100>, <110>, and/or <111> polar plots shown in Figs. D.3, D.5, and D.6. 

clear 
prompt2 = 'how many pairs of reading?'; %how many pairs of dips we are 
getting? 
a = input(prompt2); 
prompt = 'What is the Degree Readout?'; %what is the degree readout on 
the polyplot? 
if (a<3) 
s = input(prompt); %input order is in the increasing fashion 
t = input(prompt); 
u = input(prompt); 
v = input(prompt); 
if (s<40) %if/else statement on how to form the coordinate for the 
inputted value 
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    p0 = [40 (40-s)]; 
elseif (40<=s) && (s<80) 
    p0=[(80-s) 0]; 
elseif (80<=s) && (s<=120) 
    p0=[0 (s-80)]; 
else 
    p0=[(s-120) 40]; 
     
end 
if (t<40) 
    p1 = [40 (40-t)]; 
elseif (40<=t) && (t<80) 
    p1=[(80-t) 0]; 
elseif (80<=t) && (t<=120) 
    p1=[0 (t-80)]; 
else 
    p1=[(t-120) 40]; 
end 
if (u<40) 
    p2 = [40 (40-u)]; 
elseif (40<=u) && (u<80) 
    p2=[(80-u) 0]; 
elseif (80<=u) && (u<=120) 
    p2=[0 (u-80)]; 
else 
    p2=[(u-120) 40]; 
end 
if (v<40) 
    p3 = [40 (40-v)]; 
elseif (40<=v) && (v<80) 
    p3=[(80-v) 0]; 
elseif (80<=v) && (v<=120) 
    p3=[0 (v-80)]; 
else 
    p3=[(v-120) 40]; 
end   
if (p0==p2)%this statement prevents undefined slope (vertical line) 
    plot x = p0 
else 
vectarrow(p0,p2); %plots a vector arrow from one coordinate to another 
end 
hold 
if (p1==p3) 
    plot x = p1 
else 
vectarrow(p1,p3); 
end 
m1=(p0(2)-p2(2))/(p0(1)-p2(1)); %solving where the plotted vectors 
cross 
m2=(p1(2)-p3(2))/(p1(1)-p3(1)); 
b1=p0(2)-m1*p0(1); 
b2=p1(2)-m2*p1(1); 
x1= (b2-b1)/(m1-m2); 
y1= m1*x1+b1; 
moveX = (x1-20)*.2; %how many degrees to move in (x,y) fashion 
moveY = (y1-20)*.2; 
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rotate=atan((p0(2)-y1)/(p0(1)-x1))*180/pi; %how many degrees to rotate 
the sample? 
text(x1+1,y1,['(', num2str(moveX), ', ', num2str(moveY), 
')'],'fontsize', 14) %display text of the coordinate of movement 
text(15,35,['rotate   ', num2str(rotate), ',', 'd', 
'egree'],'fontsize', 14) %display how much to rotate the sample by 
elseif (a<4) && (a>2) 
s = input(prompt); 
t = input(prompt); 
u = input(prompt); 
v = input(prompt); 
w = input(prompt); 
x = input(prompt); 
if (s<40) 
    p0 = [40 (40-s)]; 
elseif (40<=s) && (s<80) 
    p0=[(80-s) 0]; 
elseif (80<=s) && (s<=120) 
    p0=[0 (s-80)]; 
else 
    p0=[(s-120) 40]; 
end 
if (t<40) 
    p1 = [40 (40-t)]; 
elseif (40<=t) && (t<80) 
    p1=[(80-t) 0]; 
elseif (80<=t) && (t<=120) 
    p1=[0 (t-80)]; 
else 
    p1=[(t-120) 40]; 
end 
if (u<40) 
    p2 = [40 (40-u)]; 
elseif (40<=u) && (u<80) 
    p2=[(80-u) 0]; 
elseif (80<=u) && (u<=120) 
    p2=[0 (u-80)]; 
else 
    p2=[(u-120) 40]; 
end 
if (v<40) 
    p3 = [40 (40-v)]; 
elseif (40<=v) && (v<80) 
    p3=[(80-v) 0]; 
elseif (80<=v) && (v<=120) 
    p3=[0 (v-80)]; 
else 
    p3=[(v-120) 40]; 
end   
if (w<40) 
    p4 = [40 (40-w)]; 
elseif (40<=w) && (w<80) 
    p4=[(80-w) 0]; 
elseif (80<=w) && (w<=120) 
    p4=[0 (w-80)]; 
else 
    p4=[(w-120) 40]; 
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end   
if (x<40) 
    p5 = [40 (40-x)]; 
elseif (40<=x) && (x<80) 
    p5=[(80-x) 0]; 
elseif (80<=x) && (x<=120) 
    p5=[0 (x-80)]; 
else 
    p5=[(x-120) 40]; 
end   
vectarrow(p0,p3); 
hold 
vectarrow(p1,p4); 
hold 
vectarrow(p2,p5); 
m1=(p0(2)-p3(2))/(p0(1)-p3(1)); 
m2=(p1(2)-p4(2))/(p1(1)-p4(1)); 
m3=(p2(2)-p5(2))/(p2(1)-p5(1)); 
b1=p0(2)-m1*p0(1); 
b2=p1(2)-m2*p1(1); 
b3=p2(2)-m3*p2(1); 
x1= (b2-b1)/(m1-m2); 
y1= m1*x1+b1; 
x2= (b3-b2)/(m2-m3); 
y2= m2*x2+b2; 
x3= (b1-b3)/(m3-m1); 
y3= m3*x3+b3; 
moveX1 = (x1-20)*.2; 
moveY1= (y1-20)*.2; 
moveX2 = (x2-20)*.2; 
moveY2= (y2-20)*.2; 
moveX3 = (x3-20)*.2; 
moveY3= (y3-20)*.2; 
rotate=atan((p0(2)-y1)/(p0(1)-x1))*180/pi;        
text(x1+1,y1,['(', num2str(moveX1), ', ', num2str(moveY1), 
')'],'fontsize', 14) 
text(x2+2,y2-2,['(', num2str(moveX2), ', ', num2str(moveY2), 
')'],'fontsize', 14) 
text(x3+3,y3-4,['(', num2str(moveX3), ', ', num2str(moveY3), 
')'],'fontsize', 14) 
text(15,35,['rotate   ', num2str(rotate), ',', 'd', 
'egree'],'fontsize', 14) 
end 
set(gca, 'XTickLabel',{'-4','3','-2','-
1','0','1','2','3','4'},'fontsize', 14) 
set(gca, 'YTickLabel',{'-4','3','-2','-
1','0','1','2','3','4'},'fontsize', 14) 
xlabel('\phi _{x}', 'FontSize',14) 
ylabel('\phi _{y}', 'FontSize',14) 
grid off 
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D.6 Figures 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure D.1 Top view of a general tandem accelerator, along with enlarged top and side 
views of a target chamber. As the ions are injected into the accelerator from the ion source, 
they are accelerated toward the high voltage terminal at the center. The stripper gas then 
converts the ions from negatively to positively charged ions, such that they subsequently 
to accelerate away from the high voltage terminal – hence the “tandem” name. The bending 
magnets are used to select ion energies and/or to direct the ion beam into various analysis 
chambers. The top (side) view of the chamber shows the detector geometry for NRA 
(RBS). The tandem used at LANL is a NEC Tandem with terminal voltage of 3 MV. The 
tandem used at MIBL is a General Ionex Tandem with terminal voltage of 1.7 MV.  
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Figure D.2 A diagram showing the sample orientation and the related rotational axes used 
to aligning the sample for channeling conditions. The incident ion beam is parallel to the 
rotational θ-axis.   
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Figure D.3  (a) <100> channel “polar plot” of a RBS counts vs steps of rotation (0.2° in  

and ߮௫	 or ߮௬	 (b) corresponding <100> stereographic projection. The {110} and {100} 
minima in counts, indicated by upward arrows in (a), correspond to alternating {110} and 
{100} channels. The values of ߮௫	and ߮௬ needed to achieve each channeling condition are 
extracted by the MatLab script in Section D.5. 
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Figure D.4 Using pairs of {110} minima at ~30/95 steps and ~70/130 steps from Fig. D.3, 
the rotation needed for [100] channel are identified as ∆߮௫ ൌ െ1.66° and ∆߮௬ ൌ െ1.29°. 
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Figure D.5 (a) <110> channel “polar plot” of a RBS counts vs steps of rotation (0.2° in  

and ߮௫	 or ߮௬ ) and (b) corresponding <110> stereographic projection. The minima in 
counts, indicated by upward arrows in (a), correspond to {100}, {111}, and {110} 
channels. The 1-3-1-3 pattern of minima typical of <110> polar plot are indicated by red 

boxes. The values of ∆߮௫	 ൌ 0.33°	 and ∆߮௬ ൌ 0.46°	 needed to achieve the <110> 
channeling condition are extracted by the MatLaB script in section D.5. 

 

 

 

 

(a) 
(b) 

0 20 40 60 80 100 120 140 160

0

500

1000

1500

2000

C
ou

nt
s

Steps

{111}{111}{111}
{100}

{110}{110}

{111}
{100}

<110> Polar Plot



177 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.6  (a) <111> channel “polar plot” of a RBS counts vs steps of rotation (0.2° in  

and ߮௫	 or ߮௬	 ) and (b) corresponding <110> stereographic projection. The minima in 
counts, indicated by upward arrows in (a), correspond to {110} channels. The values of 

∆߮௫	 ൌ 0.19°	 and ∆߮௬ ൌ 0.38°		 needed to achieve the <111> channeling condition are 
extracted by the MatLaB script in section D.5. 
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Figure D.7 Comparison of SIMNRA simulation (red dashed line) with RBS data (black 
solid line) for 400 nm thick GaAsBi films, using the parameters in Table D.1. (a) simulated 
ion counts lower than the RBS data. (b) simulated spectrum shifted to higher channel 
numbers than RBS data due to low energy calibration value. (c) simulated spectrum 
contains smeared-out version of step-like feature in the RBS data due to low detector 
resolution. (d) simulated spectrum with narrowing of the GaAsBi layer feature apparent in 
the RBS data due to low tlayer. (e) simulated spectrum with enhanced counts for the feature 
associated with epilayer in the RBS data, due to high [Bi]. (f) Well fitted spectrum.  
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D.7 Tables 

 

 

 

  

 

 

 

Table D.1 Tabulated values used for SIMNRA simulations spectra in Fig. D.7. The fitting 
parameters needing correction for each spectra (a)-(e) are highlighted in yellow. The final 
parameters used for the well-fitted SIMNRA spectrum are shown in (f). 

Spectrum 
Simulated 

Ions 
Count 

Energy 
Calibration 
(keV/Ch) 

Energy 
Calibration 

Offset 
(keV) 

Detector 
Resolution 

(keV) 

Epilayer 
Thickness 

(nm) 

Bi 
Fraction 

a  4.30E+11  15  ‐9  15  400  0.0102 

b  4.50E+11  30  ‐6  15  400  0.0102 

c  4.50E+11  15  ‐9  30  400  0.0102 

d  4.50E+11  15  ‐9  15  200  0.0102 

e  4.50E+11  15  ‐9  15  400  0.204 

f  4.50E+11  15  ‐9  15  400  0.0102 



180 
 

 

 

 

Appendix E 

 

MC-MD Ion Beam Simulations: Validation and Input File 

 

E.1 Overview 

 

In this section, we describe the validation of our MC-MD ion beam simulations, 

including both the primitive cell and multi-unit cells simulations. Through the validation, 

we confirm that our input crystal structures lead to the same yield trends as those measured 

for silicon. In addition, an example simulation input file with comments is presented.  

 

 

 

 

 

 

 

 

 

 



181 
 

E.2 Validation 

 

When a crystal is aligned along different axes and/or planes, the spacing between 

atomic rows and planes change, and as a result, the effects of channeling are affected as 

well. When the atoms are spaced closer together, the coulomb potential are stronger and is 

able to more effectively steer the ions. However, when the atoms are spaced further apart, 

the weaker coulomb potential allow higher probability of close encounter events 

(scattering). For example for both zincblende and diamond cubic structures, [110] has the 

smallest atomic row spacing while [100] has the largest atomic row spacing. Thus, the 

[110] channeling effect is the strongest for [110] and weakest for [100].  

Therefore, to validate our simulation, we calculate and compare channeling yields 

for 2 MeV He particles in silicon to experimental data. To determine the total yield in the 

[100], [110], and [111] channeling directions, we consider the integrated area under the 

yield versus energy spectra for both the simulated and measured data. In Fig. E.1 and Fig. 

E.2, the simulated total yields for both primitive cell and multi-unit cell (3x3x3 is used for 

validation) are represented by slant-filled bars, and the measured total yields are 

represented by diamond-filled bars. For both cases, the trend of Y[100]> Y[111]> Y[110] is 

apparent, consistent with the yield trend for an ideal diamond structure1, thus validating 

the simulation approach.2 
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E.3 Simulation Input File 

 In this section, a sample simulation input file is present and commented.  Comments 

starts after “#” symbol 

// Random generator 

RndSeed:5310 #A random number generating seed to start off the ions at different 

locations. This number would need to be changed between jobs, otherwise output will be 

exactly the same.  

// File description 

FileHeader:A 

// Scan settings #This section can be modified so there is a tile to simulate a random 

spectrum. In addition, it can also be setup to simulate angular channeling map to pin-point 

defect locations. 

ScnTiltSt:0.0 

ScnTiltEnd:0.0 

ScnTiltStep:0.2 

ScnAzSt:0 

ScnAzEnd:0 

ScnAzStep:1.0 

// 

// Simulation settings 

SimNParticles:100 #Number of ions to simulate in this job submission 

SimTime:20.0 #Simulation time. If a segfault error is received, try a shorter simulation 

time 
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SimzVelo:146.66 #This is the ion velocity in the unit of angstrom/femtoseconds. This is 
calculated using the beam energy and the ion’s mass 

 
SimPotProx2:16.0 #This defines the radius in which the program will consider when 

calculating forces acting on the ion by the host material. This term is radius squared and 

has a unit of angstrom. So here we are considering a sphere with radius of 4 angstrom 

// end simulation settings 

// Unit cell definition #This section can be divided into two sections. 1) defining the unit 
vector, a, b, c for the crystal lattice, and 2) specific atom locations 
in the structure of interest using a linear combination of unit vectors 
a, b, c. Note that the x, y, z coordinate of the atoms are not inputted 
here, it will need to be expressed by a linear combination of a, b, 
and c.  

 
Unit_nAtoms:2      #how many atoms are in the structure described below 

Unit_aX:2.826598   #using unit vector x, y, and z, user will be able to rotate the structures 

in any directions.  

Unit_aY:-2.826598 

Unit_aZ:0 

Unit_bX:2.826598 

Unit_bY:0 

Unit_bZ:2.826598 

Unit_cX:0 

Unit_cY:-2.826598 

Unit_cZ:2.826598 

Atom1_ANo:31 

Atom1_MNo:39 

Atom1_Mass:69.723 
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Atom1_a:0.0 

Atom1_b:0.0 

Atom1_c:0.0 

Atom2_ANo:7 

Atom2_MNo:14 

Atom2_Mass:14.0067 

Atom2_a:0.25 

Atom2_b:0.25 

Atom2_c:0.25 

// end unit cell 

// Ion definition 

Ion_ANo:2 

Ion_MNo:4 

Ion_Mass:4.0015 

// end ion 

// Probability distribution collection 

PColl_Atom:2 #Which atom number from above we will be collecting the close encounter 
probability for. If there are more than one number for a specific atom, any 
number will work – program consider all the atoms from the atom specie 
specified.  

// 

// Crystal def 

Crys_Trans:2 #How many times we will translate the input structure in x, y, z direction to 
make a bigger structure. This is not used when we are simulation XxXxX 
unit cells.  

 
// end crystal def 
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E.5 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1 Comparison of [100], [110], and [111] Rutherford Backscattering 
Spectrometry (RBS) channeling yields for He in silicon. The slant-filled bars represent 
the simulated RBS yield of a primitive cell structure (amplified 10 times), and the 
diamond-filled bars correspond to measured RBS yields. Similar trends of Y[100]> Y[111]> 
Y[110]  are observed for both measurements and Monte Carlo simulations, thereby 
validating the simulation. 
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Figure E.2 Comparison of [100], [110], and [111] Rutherford Backscattering 
Spectrometry (RBS) channeling yields for He in silicon. The slant-filled bars represent the 
simulated RBS yield of a 3x3x3 cell structure (amplified 0.5 times), and the diamond-filled 
bars correspond to measured RBS yields. Similar trends of Y[100]> Y[111]> Y[110]  are 
observed for both measurements and Monte Carlo simulations, thereby validating the 
simulation. 
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Appendix F 

 

 Automated MatLab Script for Structures Generation 

 

F.1 Overview 

 

To generate the multiple unit cell structures used for the MC-MD simulations 

described in Appendix C, Chapter 4, and Chapter 5, the following MatLab scripts were 

used. The scripts were written by James Horwarth and Timothy Johnson, under the 

supervision of the author. For primitive cell simulations (i.e. Chapter 3), atomic positions 

are easily determined from the coordinates provided in crystal visualizing programs such 

as Diamond. However, for multiple-unit cell simulations (>100 atoms), automated scripts 

are preferred. The automated scripts involved several steps, including rotation of crystal 

structure to the channeling direction [100], [110], and [111] via “Structure Rotation” and 

generation of X by X by X cell structure via “Cell Structure Generation”. We note that a 

3 x 3 x 3 cell was utilized in Chapter 4 and 5. Once all the atomic positions are generated 

for the desired structure size, and atomic positions, we use the MatLab script “input File 
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Generation” to automatically generate the input file needed for the simulation program in 

Appendix E. 

 

F.2 Structure Rotation 

 

clear all 
 
%root 2 
rt = 1/sqrt(2); 
theta = -35.26*pi/180; 
  
R_x = [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)]; 
R_y = [rt 0 rt; 0 1 0; -rt 0 rt]; 
R_z = [rt -rt 0; rt rt 0; 0 0 1]; 
  
R_110 = R_y; 
R_111 = R_y*R_x; 
R_100_new = [0 -1 0; 1 0 0; 0 0 1]; 
R_100_N_As_along_y_axis = [0 0 -1; 0 1 0; 1 0 0]; 
  
Values = [ 
%            0 0 0; 
%             3.89 0 0 ; 
%             0 3.89 0; 
%             0 0 3.89; 
%             0 0 0; 
%             3.89 0 0; 
%             1.945 0 1.945; 
%             0 0   3.89; 
%             3.89 0 3.89; 
%             1.945 1.945   0; 
%             0 1.945   1.945; 
%             3.89 1.945 1.945; 
%             1.945 1.945   3.89; 
%             0 3.89 0; 
%             3.89 3.89 0; 
%             1.945 3.89    1.945; 
%             0 3.89    3.89; 
%             3.89 3.89 3.89; 
%             0.9725 0.9725 0.9725; 
%             2.9175 2.9175 0.9725; 
%             2.9175 0.9725 2.9175; 
%             0.9725 2.9175 2.9175; 
%             0.9725 0.9725 2.9175; 
%             2.9175 2.9175 2.9175; 
%             0.9725 2.9175 0.9725; 
%             2.9175 0.9725 0.9725; 
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                0,0,0 
                0,-3.89000000000000,0 
                3.89000000000000,0,0 
                0,0,3.89000000000000 
                0,0,0 
                0,-3.89000000000000,0 
                0,-1.94500000000000,1.94500000000000 
                0,0,3.89000000000000 
                0,-3.89000000000000,3.89000000000000 
                1.94500000000000,-1.94500000000000,0 
                1.94500000000000,0,1.94500000000000 
                1.94500000000000,-3.89000000000000,1.94500000000000 
                1.94500000000000,-1.94500000000000,3.89000000000000 
                3.89000000000000,0,0 
                3.89000000000000,-3.89000000000000,0 
                3.89000000000000,-1.94500000000000,1.94500000000000 
                3.89000000000000,0,3.89000000000000 
                3.89000000000000,-3.89000000000000,3.89000000000000 
                0.972500000000000,-0.972500000000000,0.972500000000000 
                2.91750000000000,-2.91750000000000,0.972500000000000 
                0.972500000000000,-2.91750000000000,2.91750000000000 
                2.91750000000000,-0.972500000000000,2.91750000000000 
                0.972500000000000,-0.972500000000000,2.91750000000000 
                2.91750000000000,-2.91750000000000,2.9175000000000 
                2.91750000000000,-0.972500000000000,0.972500000000000 
                0.972500000000000,-2.91750000000000,0.972500000000000 
 ]; 
  
rotated_values = zeros(26,3); 
for i = 1:26 
   vector = Values(i,:); 
   rotated_values(i,:) = vector*R_111; 
end 
 

 

F.3 Cell Structure Generation  

   

function [ Atom_positions, a_vect, b_vect, c_vect, y ] = 
MCMD_Input_func(sim_num, cell_size, direction, defects ) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 
  
%GaAs Lattice Constant 
ratio = (5.6533/3.89); 
  
%User Input: Ratio of Diamond atom size to actual size 
  
%INSTRUCTIONS FOR INPUT INTO ALLVALUES MATRIX 
%--------------------------------------------% 
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%1st line: Input dimensions of repeating crystal 
%2nd Line: Origin point of cubic crystal 
%3rd Line: X-vector of unit crystal 
%4th Line: Y-vector of unit crystal 
%5th Line: Z-vector of unit crystal 
%6th Line to End: Coordinate points of each of the atoms starting with 
the origin 
  
  
if (direction == 100) 
    Values = [cell_size, cell_size, cell_size 
         0,0,0 
         0,-3.89000000000000,0 
         0,0,-3.89000000000000 
         3.89000000000000,0,0 
         0,0,0 
         0,-3.89000000000000,0 
         1.94500000000000,-1.94500000000000,0 
         3.89000000000000,0,0 
         3.89000000000000,-3.89000000000000,0 
         0,-1.94500000000000,-1.94500000000000 
         1.94500000000000,0,-1.94500000000000 
         1.94500000000000,-3.89000000000000,-1.94500000000000 
         3.89000000000000,-1.94500000000000,-1.94500000000000 
         0,0,-3.89000000000000 
         0,-3.89000000000000,-3.89000000000000 
         1.94500000000000,-1.94500000000000,-3.89000000000000 
         3.89000000000000,0,-3.89000000000000 
         3.89000000000000,-3.89000000000000,-3.89000000000000 
         0.972500000000000,-0.972500000000000,-0.972500000000000 
         0.972500000000000,-2.91750000000000,-2.91750000000000 
         2.91750000000000,-2.91750000000000,-0.972500000000000 
         2.91750000000000,-0.972500000000000,-2.91750000000000 
         2.91750000000000,-0.972500000000000,-0.972500000000000 
         2.91750000000000,-2.91750000000000,-2.91750000000000 
         0.972500000000000,-0.972500000000000,-2.91750000000000 
         0.972500000000000,-2.91750000000000,-0.972500000000000 
            ];  
end 
  
if (direction == 110) 
    Values = [cell_size, cell_size, cell_size 
           0,0,0 
           0,-3.89000000000000,0 
           2.75064537881567,0,2.75064537881567 
           -2.75064537881567,0,2.75064537881567 
           0,0,0 
           0,-3.89000000000000,0 
           -1.37532268940783,-1.94500000000000,1.37532268940783 
           -2.75064537881567,0,2.75064537881567 
           -2.75064537881567,-3.89000000000000,2.75064537881567 
           1.37532268940783,-1.94500000000000,1.37532268940783 
           0,0,2.75064537881567 
           0,-3.89000000000000,2.75064537881567 
           -1.37532268940783,-1.94500000000000,4.12596806822350 
           2.75064537881567,0,2.75064537881567 
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           2.75064537881567,-3.89000000000000,2.75064537881567 
           1.37532268940783,-1.94500000000000,4.12596806822350 
           0,0,5.50129075763134 
           0,-3.89000000000000,5.50129075763134 
           0,-0.972500000000000,1.37532268940783 
           1.37532268940784,-2.91750000000000,2.75064537881567 
           -1.37532268940784,-2.91750000000000,2.75064537881567 
           0,-0.972500000000000,4.12596806822350 
           -1.37532268940784,-0.972500000000000,2.75064537881567 
           0,-2.91750000000000,4.12596806822350 
           1.37532268940784,-0.972500000000000,2.75064537881567 
           0,-2.91750000000000,1.37532268940783 
    ]; 
end 
     
if (direction == 111) 
     Values = [cell_size, cell_size, cell_size 
             0,0,0 
          0,-3.17634375823555,-2.24564920001278 
          2.75064537881567,-1.58791377749518,2.24601421082792 
          -2.75064537881567,-1.58791377749518,2.24601421082792 
          0,0,0 
          0,-3.17634375823555,-2.24564920001278 
          -1.37532268940783,-2.38212876786537,0.000182505407570810 
          -2.75064537881567,-1.58791377749518,2.24601421082792 
          -2.75064537881567,-4.76425753573074,0.000365010815141620 
          1.37532268940783,-2.38212876786537,0.000182505407570810 
          0,-1.58791377749518,2.24601421082792 
          0,-4.76425753573074,0.000365010815141620 
          -1.37532268940783,-3.97004254536055,2.24619671623549 
          2.75064537881567,-1.58791377749518,2.24601421082792 
          2.75064537881567,-4.76425753573074,0.000365010815141620 
          1.37532268940783,-3.97004254536055,2.24619671623549 
          0,-3.17582755499037,4.49202842165585 
          0,-6.35217131322592,2.24637922164306 
          0,-1.58804282830648,0.561594805410766 
          1.37532268940784,-3.97017159617185,0.561777310818337 
          -1.37532268940784,-3.97017159617185,0.561777310818337 
          0,-3.17595660580166,2.80760901623869 
          -1.37532268940784,-2.38199971705407,1.68460191082473 
          0,-4.76412848491944,1.68478441623230 
          1.37532268940784,-2.38199971705407,1.68460191082473 
          0,-3.17621470742426,-0.561229794595624 
    ]; 
end 
  
%INSTRUCTIONS FOR THE INFORMATION MATRIX (INFO) 
%--------------------------------------------------------------------% 
  
%Asks for information about each atom listed above 
%Input Atomic No, Mass No, and Mass for each atom IN THAT ORDER 
%Input the information in the same order as you input the coordinates 
for 
%the atom.  
%Example: 1 2 3 correlates with Atomic No: 1, Mass No: 2, and Mass: 3 
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    info = [  
         
        31 70 69.723        
        31 70 69.723          
        31 70 69.723         
        31 70 69.723 
        31 70 69.723          
        31 70 69.723   
        31 70 69.723 
        31 70 69.723   
        31 70 69.723         
        31 70 69.723   
        31 70 69.723   
        31 70 69.723 
        31 70 69.723   
        31 70 69.723 
        33 75 74.9216 
        33 75 74.9216 
        33 75 74.9216 
        33 75 74.9216 
        33 75 74.9216 
        33 75 74.9216 
        33 75 74.9216 
        33 75 74.9216     
            ];   
  
  
dimensions = Values(1,:); 
cube = dimensions(1); 
v = dimensions(1); h = dimensions(2); d = dimensions(3); 
cellsize = 8*(v)^3 + 6*(v)^2 + 3*(v) + 1; 
  
error = Values(2,:); 
mat = Values(3:5,:); 
Values(1:5,:) = []; 
data = Values; 
[y,x] = size(data); 
  
  
%Organizes the AllValues matrix into seperate matrices 
%These matrices are:  
  
%dimensions: number of translations of unit cell in each direction 
%cube: for cubic translation, 'cube' = all values of dimensions 
%v: separates dimensions into separate components (useful for non-cubic 
%   translations, and initializing counter-variables) 
%error: origin based on structural model.  error is subracted from 
points 
%       to make origin at (0,0,0). 
%mat: create matrix occupied by basis vectors of the unit cell 
%data: points occupied by atoms in specified structure 
%y,x: rows (number of sites), and columns (number of coordinates) in 
'data' 
%     matrix 
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%----------------------------------------------------------------------
---% 
  
info_1D = info; 
i = 1; 
  
while i < cube 
    info_1D = [info_1D; info]; 
    i = i+1; 
end 
  
info_2D = info_1D; 
j = 1; 
  
while j < cube 
    info_2D = [info_2D info_1D]; 
    j = j+1; 
end 
  
info_3D = info_2D; 
k = 1; 
  
while k < cube 
    info_3D = cat(3, info_3D, info_2D); 
    k = k+1; 
end 
  
info = info_3D;  
  
%'info' matrix consists of information about each atom in unit 
structure. 
%Each loop adds atomic information for added unit cells.  'i loop' adds 
as 
%many rows of 'info' set as specified by 'cube' (number of unit cells 
in 
%each direction). 'j loop' adds columns, and 'k loop' adds depth to 
%information matrix.  This loop sequence essentially creates a data 
%structure with atomic information for each unit cell in the total 
%simulated structur. 
  
%----------------------------------------------------------------------
---% 
mat = mat-[error;error;error]; 
mat = mat*ratio; 
%Set coordinate origin to (0,0,0), and scale unit lengths to size of 
real 
%material. 
  
a = mat(1,:); 
b = mat(2,:); 
c = mat(3,:); 
  
  
a_vect = a; 
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b_vect = b; 
c_vect = c; 
% fprintf(outfile,'// Unit cell definition\n'); 
% fprintf(outfile,'Unit_nAtoms:%f\n',cellsize); 
%fprintf(outfile,'Unit_aX:%1.4f\nUnit_aY:%1.4f\nUnit_aZ:%1.4f\n\nUnit_b
X:%1.4f\nUnit_bY:%1.4f\nUnit_bZ:%1.4f\n\nUnit_cX:%1.4f\nUnit_cY:%1.4f\n
Unit_cZ:%1.4f\n\n', a, b, c); 
%Separates 'mat' into individual lattice vectors.  Print vector 
components 
%to file. 
  
mag_A = norm(a); 
mag_B = norm(b); 
mag_C = norm(c); 
%Finds the magnitude of each vector (a,b,c) 
  
if round(mag_A*100)/100 ~= round(mag_B*100)/100 || round(mag_B*100)/100 
~= round(mag_C*100)/100 
    fprintf('\nError: Matrix dimensions are not equal, check 
inputs.\n'); 
end 
%Prints an error message if the magnitude of a, b, and c vectors are 
not 
%equal. If you are not running a cubic structure, ignore this message.  
  
data = data*ratio; 
A = a; 
B = b; 
C = c; 
Error = error; 
i = 1; 
%Scale 'data' matrix (atom coordinates based on structural model). 
%Initialize A, B, C, and Error to corresponding vectors above. 
  
while i<y 
    A = [A;a]; 
    B = [B;b]; 
    C = [C;c]; 
    Error = [Error; error]; 
    i = i+1; 
end 
  
B_2D = B; 
C_2D = C; 
Error = Error*ratio; 
  
%Creates vectors with the nuber of rows equal to the number of atoms in 
%unit cell, and separates into vector components.  
%----------------------------------------------------------------------
---& 
  
data = data - Error; 
data_2D = data; 
%Set atom positions relative to origin at (0,0,0). 
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All_Data = data; 
i = 1; 
%Initialize variables. 
  
while i < cube 
    ACopy = i*A; 
    All_Data = [All_Data; data + ACopy]; 
    B_2D = [B_2D; B]; 
    C_2D = [C_2D; C]; 
    i = i+1; 
end 
  
C_3D = C_2D; 
data_2D = All_Data; 
j = 1; 
  
while j < cube 
    BCopy = j*B_2D; 
    All_Data = [All_Data data_2D+BCopy]; 
    C_3D = [C_3D C_2D]; 
    j = j+1; 
end 
  
data_3D = All_Data; 
k = 1; 
  
while k < cube 
    CCopy = k*C_3D; 
    All_Data = cat(3, All_Data, data_3D+CCopy); 
    k = k+1; 
end 
     
  
%Each iteration adds coordinates of translated atoms to 'All_Data' 
matrix. 
%'XCopy' multiplies iteration number by lattice vector, this value is 
added 
%to original atom position to give position of new atom in translated 
unit 
%cell.  All atom positions are entered into 3D data structure 
'All_Data'. 
  
%----------------------------------------------------------------------
---%   
  
count = 0; 
[row, col, dep] = size(All_Data);  
l = 1;  
m = 1; 
e = 0; 
List = []; 
List_Final = []; 
%intializes variables to undergo iteration 
mat = mat';  
%'mat' consists of basis vectors.  Vectors are transposed into proper 
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%format for linsolve function. 
  
for k = 1:dep; 
     
    for i = 1:3:col; 
     
        for j = 1:row; 
  
            vals = [All_Data(j,i,k); All_Data(j,i+1,k); 
All_Data(j,i+2,k)]; 
            information = [info(j,i,k); info(j,i+1,k); info(j,i+2,k)]; 
            varargout = linsolve(mat, vals); 
            varargout = round(varargout*100)/100;  
             
            %Uses linsolve to find relative location of each atom. We 
divide 
            %each atom by the dimensions multiplied by the magnitude of 
the 
            %vector to ensure the maximum value of any given point can 
be 
            %1, 1, 1 --- UPDATE: Removed the scaling factor. If you 
want to 
            %reapply, divide vals by v, h, and d respectively.  
             
            [t,u] = size(List); 
            g = 1; 
            e = 0;  
             
            while g < t+1 
                if List(g, :) == varargout' 
                    e = 1000; 
                end 
                 
                g = g+1; 
            end 
             
            List = [List;varargout']; 
            %Checks for any repeats in the crystal. If any points are 
            %repeated, then the repeat is deleted and the iteration 
moves 
            %on.  
            
            if e ~= 1000 
                 
               List_Final(m,1) = information(1); 
               List_Final(m,2) = information(2); 
               List_Final(m,3) = information(3); 
               List_Final(m,4) = varargout(1); 
               List_Final(m,5) = varargout(2); 
               List_Final(m,6) = varargout(3); 
                       
            m = m+1; 
           %Generates 2D data structure of all unique atoms in total  
           %structure. Rows corresponding to each atom, and columns  
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           %containing information and position for each atom. 
            end              
        end 
    end 
end 
  
%----------------------------------------------------------------------
---% 
%Initialize Variables, Input Defect Information 
  
sites = List_Final; %List_Final is total list of all atoms in 
translated structure. 
[x,y] = size(List_Final); 
interstitials = zeros(x,y); %Initializes matrix to be filled with 
positions of interstitial values. 
check = sites(:,4)*4; %multiply by 4 to get whole numbers, use mod(4) 
to find values corresponding to 0.25, and 0.75 locations. 
defect_number = zeros(x,1); 
%Initialize variables used for finding tetrahedral interstitial 
positions 
%in List_Final matrix. 
  
for i = 1:x 
    if mod(check(i),4) == 1 || mod(check(i),4) == 3 
        interstitials(i,:) = sites(i,:); 
        defect_number(i) = i; 
    end 
end 
%Tetrahedral interstital sites occur at positions offset by 1/4 and 3/4 
%lattice sites.  This loop uses modular arithmetic to identify sites at 
%these positions, and add them to a list of total interstitial sites. 
  
interstitials(all(interstitials==0,2),:)=[]; 
defect_number(all(defect_number==0,2),:)=[]; 
  
sub_empty = zeros(size(interstitials)); 
for i = 1:size(interstitials,1) 
    if mod(i,8) >= 5 || mod(i,8) == 0 
        sub_empty(i,:) = interstitials(i,:); 
        interstitials(i,:) = [0 0 0 0 0 0]; 
    end 
end 
%Since sub_empty sites are initially listed after normal tetrahedral 
sites, 
%these will always be the 5-8 sites in the list of tetrahedral sites 
for 
%each unit cell. 
  
interstitials(all(interstitials==0,2),:)=[]; 
sub_empty(all(sub_empty==0,2),:)=[]; 
[x1,y1] = size(interstitials); 
[x2,y2] = size(sub_empty); 
%Creates matrix including only sites of interstitials, no rows of [0 0 
0] 
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nNNAs = defects(1); 
nNAsAs = defects(2); 
nNAs = defects(3); 
nAsi = defects(4); 
nN_int = defects(5); 
nAsanti = defects(6); 
nDi_int = defects(7); 
nAsGa_NAs = defects(8); 
nBi_sub = defects(9); 
nBi_pairs = defects(10); 
nBi_tet = defects(11); 
nBianti = defects(12); 
displac = defects(13); 
%User inputs number of each type of defect to be present in the final 
%simulated structure.  The number is based of the users calculations of 
N 
%fraction. 
  
sites_new = sites; 
for n = 1:size(defect_number,1) 
    sites_new((defect_number(n)-(n-1)),:) = []; 
end 
  
%defect_site = randperm(x1); 
interstitial_site = randperm(x2); 
Gaantisites = randperm(size(sites_new,1)); 
Asantisites = randperm(size(interstitials,1)); 
%Initialize vector consisting of random distribution of 'interstitial' 
row  
%numbers.  This will be used to randomly assign positions to defects. 
  
NNAs_location = zeros(nNNAs,y); 
NAsAs_location = zeros(nNAsAs,y); 
NAs_location = zeros(nNAs,y); 
Asi_location = zeros(nAsi,y); 
N_int_location = zeros(nN_int,y); 
Asanti_location = zeros(nAsanti,y); 
Bianti_location = zeros(nBianti,y); 
Bisub_location = zeros(nBi_sub,y); 
%----------------------------------------------------------------------
---% 
%Anti-site displacement 
  
for i = 1:nAsanti 
    Asanti_location(i,:) = [33 75 74.9216 
sites_new(Gaantisites(i),4:6)]; 
    sites_new(Gaantisites(i),:) = Asanti_location(i,:); 
end 
Gaantisites(1:nAsanti) = []; 
  
if displac ~= 0 
    Asanti_sites = zeros(14*nAsanti,3); 
for i = 1:nAsanti 
    origin = Asanti_location(i,:); 
    Asanti_sites(((i-1)*14)+1,:) = origin(:,4:6) + [0 0.5 0.5]; 
    Asanti_sites(((i-1)*14)+2,:) = origin(:,4:6) + [0 -0.5 0.5]; 
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    Asanti_sites(((i-1)*14)+3,:) = origin(:,4:6) + [0.5 0.5 0]; 
    Asanti_sites(((i-1)*14)+4,:) = origin(:,4:6) + [0 -0.5 -0.5]; 
    Asanti_sites(((i-1)*14)+5,:) = origin(:,4:6) + [0 0.5 -0.5]; 
    Asanti_sites(((i-1)*14)+6,:) = origin(:,4:6) + [-0.5 -0.5 0]; 
    Asanti_sites(((i-1)*14)+7,:) = origin(:,4:6) + [-0.25 -0.25 0.25]; 
    Asanti_sites(((i-1)*14)+8,:) = origin(:,4:6) + [0.25 0.25 0.25]; 
    Asanti_sites(((i-1)*14)+9,:) = origin(:,4:6) + [0.25 -0.25 -0.25]; 
    Asanti_sites(((i-1)*14)+10,:) = origin(:,4:6) + [-0.25 0.25 -0.25]; 
    Asanti_sites(((i-1)*14)+11,:) = origin(:,4:6) + [0.25 -0.25 0.25]; 
    Asanti_sites(((i-1)*14)+12,:) = origin(:,4:6) + [-0.25 -0.25 -
0.25]; 
    Asanti_sites(((i-1)*14)+13,:) = origin(:,4:6) + [0.25 0.25 -0.25]; 
    Asanti_sites(((i-1)*14)+14,:) = origin(:,4:6) + [-0.25 0.25 0.25]; 
end 
%Each (As)Ga repells its nearest-neighbor atoms.  There are 14 possible 
%occupied neighboring sites: 6 Ga (Octohedral coordination @ antisite), 
and 
%8 As/Defect (4 tetrahedral sites from lattice, 4 possible occupied 
%tetrahedral sites). 
  
Asanti_defect = zeros(10*nAsanti,y); 
for i = 1:size(Asanti_sites,1) 
    for j = 1:size(sites_new,1) 
        for k = 1:nAsanti 
            origin = Asanti_location(k,4:6); 
            v = Asanti_sites(i,:) - origin; 
            if Asanti_sites(i,:) == sites_new(j,4:6) 
              sites_new(j,4:6) = 1.019*v + origin; 
            else for l = 1:size(interstitials,1) 
                    if Asanti_sites(i,:) == interstitials(l,4:6) 
                        interstitials(l,4:6) = 1.127*v + origin; 
                    end 
                    if Asanti_sites(i,:) == sub_empty(l,4:6) 
                        sub_empty(l,4:6) = 1.127*v + origin; 
                    end 
                end 
            end             
        end 
    end 
end 
end 
  
  
%Scan through Anti-site locations, determine atoms affected 
(Asanti_sites). 
% If affected site occurs in crystal, check what type of site it is 
using 
% mod() to find tetrahedral sites.  To maintain list of tetrahedral 
sites 
% in the lattice (interstitials), tetrahedral interstitial defects 
% (sub_empty), and FCC lattice sites (sites_new): scan each list for 
% matching coordinates, then replace list entry with vector scaled to 
% atomic displacement (Staab, T. E. M., et al. Physics B: Condensed 
Matter 
% 340 (2003)). Now, sites_new contains all FCC lattice sites, 
interstitials 
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% contains tetrahedral sites in Zinc Blende structure, and sub_empty 
% contains remaining tetrahedral sites to be occupied by interstitial 
% defects.  All dispacements due to (As)Ga sites are accounted for in 
these 
% matrices. 
%----------------------------------------------------------------------
---% 
%Bi(Ga) Antisites 
  
for i = 1:nBianti 
    Bianti_location(i,:) = [83 209 208.9804 
sites_new(Gaantisites(i),4:6)]; 
    sites_new(Gaantisites(i),:) = Bianti_location(i,:); 
end 
Gaantisites(1:nBianti) = []; 
  
if displac ~= 0 
    Bianti_sites = zeros(8*nBianti,3); 
for i = 1:nBianti 
    origin = Bianti_location(i,:); 
    Bianti_sites(((i-1)*8)+1,:) = origin(:,4:6) + [-0.25 -0.25 0.25]; 
    Bianti_sites(((i-1)*8)+2,:) = origin(:,4:6) + [-0.25 0.25 -0.25]; 
    Bianti_sites(((i-1)*8)+3,:) = origin(:,4:6) + [0.25 0.25 0.25]; 
    Bianti_sites(((i-1)*8)+4,:) = origin(:,4:6) + [0.25 -0.25 -0.25]; 
    Bianti_sites(((i-1)*8)+5,:) = origin(:,4:6) + [-0.25 0.25 0.25]; 
    Bianti_sites(((i-1)*8)+6,:) = origin(:,4:6) + [0.25 -0.25 0.25]; 
    Bianti_sites(((i-1)*8)+7,:) = origin(:,4:6) + [-0.25 -0.25 -0.25]; 
    Bianti_sites(((i-1)*8)+8,:) = origin(:,4:6) + [0.25 0.25 -0.25]; 
end 
%Each (Bi)Ga repells its nearest-neighbor atoms.  There are 8 possible 
%occupied neighboring sites (must include unoccupied interstitials). 
  
Bianti_defect = zeros(10*nBianti,y); 
for i = 1:size(Bianti_sites,1) 
    for j = 1:size(interstitials,1) 
        for k = 1:nBianti 
            origin = Bianti_location(k,4:6); 
            v = Bianti_sites(i,:) - origin; 
            if Bianti_sites(i,:) == interstitials(j,4:6) 
              interstitials(j,4:6) = 1.13*v + origin; 
            end 
            if Bianti_sites(i,:) == sub_empty(j,4:6) 
                sub_empty(j,4:6) = 1.13*v + origin; 
            end         
         end             
    end 
end 
end 
%(Bi)Ga antisites section used same code as (As)Ga antisites, modified 
to  
%include only tetrahedral sites.  Displacement values taken from 
Ciatto,  
%et al, "How much room for (Bi)Ga heteroantisites in GaAs(1-x)Bi(x)?"  
%Appl. Phys. Letters 99, 141912 (2011). 
  
%**Note: (Bi)Ga accounts for less than 5% of Bi incorporated into GaAs. 
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%----------------------------------------------------------------------
---% 
%(Bi)As subsititution 
% Bi will substitute for As in GaAs structure.  As occupies sites in 
% 'interstitials' matrix 
  
for i = 1:nBi_sub 
    Bisub_location(i,:) = [83 209 208.9804 
interstitials(Asantisites(i),4:6)]; 
    interstitials(Asantisites(i),:) = Bisub_location(i,:); 
end 
Asantisites(1:nBi_sub) = []; 
  
if displac ~= 0 
    Bisub_sites = zeros(8*nBi_sub,3); 
for i = 1:nBi_sub 
    origin = Bisub_location(i,:); 
    Bisub_sites(((i-1)*8)+1,:) = origin(:,4:6) + [-0.25 -0.25 0.25]; 
    Bisub_sites(((i-1)*8)+2,:) = origin(:,4:6) + [-0.25 0.25 -0.25]; 
    Bisub_sites(((i-1)*8)+3,:) = origin(:,4:6) + [0.25 0.25 0.25]; 
    Bisub_sites(((i-1)*8)+4,:) = origin(:,4:6) + [0.25 -0.25 -0.25]; 
    Bisub_sites(((i-1)*8)+5,:) = origin(:,4:6) + [-0.25 0.25 0.25]; 
    Bisub_sites(((i-1)*8)+6,:) = origin(:,4:6) + [0.25 -0.25 0.25]; 
    Bisub_sites(((i-1)*8)+7,:) = origin(:,4:6) + [-0.25 -0.25 -0.25]; 
    Bisub_sites(((i-1)*8)+8,:) = origin(:,4:6) + [0.25 0.25 -0.25]; 
end 
%Each (Bi)Ga repells its nearest-neighbor atoms.  There are 8 possible 
%occupied neighboring sites (must include unoccupied interstitials). 
  
Bi_sub_defect = zeros(10*nBi_sub,y); 
for i = 1:size(Bisub_sites,1) 
    for j = 1:size(sites_new,1) 
        for k = 1:nBi_sub 
            origin = Bisub_location(k,4:6); 
            v = Bisub_sites(i,:) - origin; 
            if Bisub_sites(i,:) == sites_new(j,4:6) 
              sites_new(j,4:6) = 1.07*v + origin; 
            end        
         end             
    end 
end 
end 
  
%Ciatto, et al. "How much room for (Bi)Ga heteroantisites in 
%GaAs(1-x)Bi(x)?" Appl. Phys. Letters 99, 141912 (2011). 
%----------------------------------------------------------------------
---% 
%Place Di-interstitial Defects 
Di_int_sites = [sites_new; interstitials]; 
for i = 1:size(Di_int_sites,1) 
    if Di_int_sites(i,4:6) == 0 
        Di_int_sites(i,4:6) = [20 20 20]; 
    end 
    for j = 1:nAsanti 
        if Di_int_sites(i,4:6) == Asanti_location(j,4:6) 
            Di_int_sites(i,:) = [0 0 0 0 0 0]; 



203 
 

        end 
    end 
end 
Di_int_sites(all(Di_int_sites==0,2),:)=[]; 
  
rand = randperm(size(Di_int_sites,1)); 
Di_int = zeros(size(Di_int_sites)); 
for i = 1:nDi_int 
    Di_int(i,:) = Di_int_sites(rand(i),:); 
    Di_int_sites(rand(i),:) = [0 0 0 0 0 0]; 
end 
Di_int(all(Di_int==0,2),:) = []; 
for i = 1:size(Di_int,1) 
    if Di_int(i,4:6) == 20 
        Di_int(i,4:6) = [0 0 0]; 
    end 
end 
t = zeros(1,size(Di_int,1)); 
for i = 1:size(sites_new,1) 
    for j = 1:size(Di_int,1) 
        if sites_new(i,4:6) == Di_int(j,4:6) 
            t(j) = i; 
        end 
    end 
end 
for i = 2:length(t) 
    if t(i) > t(i-1) 
%         t,i 
        t(i) = t(i)-1; 
    end 
end 
for i = 1:length(t) 
    if t(i) > 0 
        sites_new(t(i),:) = []; 
    end 
end 
  
t = zeros(1,size(Di_int,1)); 
for i = 1:size(interstitials,1) 
    for j = 1:size(Di_int,1) 
        if interstitials(i,4:6) == Di_int(j,4:6) 
            t(j) = i; 
        end 
    end 
end 
for i = 2:length(t) 
    if t(i) > t(i-1) 
        t(i) = t(i)-1; 
    end 
end 
for i = 1:length(t) 
    if t(i) > 0 
        interstitials(t(i),:) = []; 
    end 
end 
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As_Di = zeros(size(Di_int)); 
Ga_Di = zeros(size(Di_int)); 
for i = 1:size(Di_int,1) 
    if mod(Di_int(i,4)*4,4) == 1 || mod(Di_int(i,4)*4,4) == 3 
        As_Di(i,:) = Di_int(i,:); 
    else Ga_Di(i,:) = Di_int(i,:); 
    end 
end 
As_Di(all(As_Di==0,2),:)=[]; 
Ga_Di(all(Ga_Di==0,2),:)=[]; 
  
for i = 1:size(sites,1) 
    if sites(i,:) == 20 
        sites(i,:) = [0 0 0 0 0 0]; 
    end 
end 
for i = 1:size(As_Di,1) 
    if As_Di(i,:) == 20 
        As_Di(i,:) = [0 0 0 0 0 0]; 
    end 
end 
for i = 1:size(Ga_Di,1) 
    if Ga_Di(i,:) == 20 
        Ga_Di(i,:) = [0 0 0 0 0 0]; 
    end 
end 
%fprintf('\nThere are %1.0f Di_interstitial defects on Ga 
sites\n',size(Ga_Di,1)) 
%nGa_Di_mix = input('How many mixed Di-interstitials:   '); 
nGa_Di_mix = defects(14); 
%fprintf('\nThere are %1.0f Di interstitial defects on As 
sites\n',size(As_Di,1)) 
%nAs_Di_mix = input('How many mixed Di-interstitials:   '); 
nAs_Di_mix = defects(15); 
  
Ga_Di_mix = zeros(nGa_Di_mix,6); 
As_Di_mix = zeros(nAs_Di_mix,6); 
for i = 1:nGa_Di_mix 
    Ga_Di_mix(i,:) = Ga_Di(i,:); 
end 
Ga_Di(1:nGa_Di_mix,:) = []; 
for i = 1:nAs_Di_mix 
    As_Di_mix(i,:) = As_Di(i,:); 
end 
As_Di(1:nAs_Di_mix,:) = []; 
  
%----------------------------------------------------------------------
---% 
%As Di-interstitial 
  
a = 2.61/5.6533; b = 2.72/5.6533; c = 2.75/5.6533; 
A = acosd((b^2 + c^2 - a^2)/(2*b*c)); 
  
A1 = A/2; A2 = A/2; 
b1 = c*sind(A1); b2 = c*cosd(A1); 
c1 = b*sind(A2); c2 = b*cosd(A2); 
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x = sind(45); 
  
As_Di_position = zeros(size(As_Di,1)*3,6); 
if size(As_Di,1) ~= 0 
for i = 1:size(As_Di) 
    origin = As_Di(i,:)+ [0 0 0 0 0 0.25]; 
    As_Di_position((i-1)*3+1,:) = [33 75 74.9216 origin(4:6)]; 
    As_Di_position((i-1)*3+2,:) = [33 75 74.9216 (origin(4:6) + [-b1*x 
-b1*x -b2])]; 
    As_Di_position((i-1)*3+3,:) = [33 75 74.9216 (origin(4:6) + [c1*x 
c1*x -c2])]; 
end 
end 
    
a = 2.57/5.6533; b = 2.55/5.6533; c = 2.55/5.6533; 
A = acosd((b^2 + c^2 - a^2)/(2*b*c)); 
  
A1 = A/2; A2 = A/2; 
b1 = c*sind(A1); b2 = c*cosd(A1); 
c1 = b*sind(A2); c2 = b*cosd(A2); 
x = sind(45); 
  
As_Di_mix_position = zeros(size(As_Di_mix*3,1)*3,6); 
if size(As_Di_mix,1) ~= 0 
for i = 1:size(As_Di_mix) 
    origin = As_Di_mix(i,:) + [0 0 0 0 0 0.25]; 
    As_Di_mix_position((i-1)*3+1,:) = [33 75 74.9216 origin(4:6)]; 
    As_Di_mix_position((i-1)*3+2,:) = [31 70 69.723 (origin(4:6) + [-
b1*x -b1*x -b2])]; 
    As_Di_mix_position((i-1)*3+3,:) = [31 70 69.723 (origin(4:6) + 
[c1*x c1*x -c2])]; 
end 
end 
  
%----------------------------------------------------------------------
---% 
%Ga Di-interstitials 
a = 2.70/5.6533; b = 2.71/5.6533; c = 2.72/5.6533; 
A = acosd((b^2 + c^2 - a^2)/(2*b*c)); 
A1 = A/2; A2 = A/2; 
b1 = c*sind(A1); b2 = c*cosd(A1); 
c1 = b*sind(A2); c2 = b*cosd(A2); 
x = sind(45); 
  
Ga_Di_position = zeros(size(Ga_Di,1)*3,6); 
for i = 1:size(Ga_Di) 
    if size(Ga_Di,1) ~= 0 
    origin = Ga_Di(i,:) + [0 0 0 0 0 -0.25]; 
    Ga_Di_position((i-1)*3+1,:) = [31 70 69.723 origin(4:6)]; 
    Ga_Di_position((i-1)*3+2,:) = [31 70 69.723 (origin(4:6) + [-b1*x -
b1*x b2])]; 
    Ga_Di_position((i-1)*3+3,:) = [31 70 69.723 (origin(4:6) + [c1*x 
c1*x c2])]; 
    end 
end 
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a = 2.57/5.6533; b = 2.55/5.6533; c = 2.55/5.6533; 
A = acosd((b^2 + c^2 - a^2)/(2*b*c)); 
A1 = A/2; A2 = A/2; 
b1 = c*sind(A1); b2 = c*cosd(A1); 
c1 = b*sind(A2); c2 = b*cosd(A2); 
x = sind(45); 
  
Ga_Di_mix_position = zeros(size(Ga_Di_mix,1)*3,6); 
  
if size(Ga_Di_mix,1) ~= 0 
    for i = 1:size(Ga_Di_mix) 
        origin = Ga_Di_mix(i,:) + [0 0 0 0 0 0.25]; 
        Ga_Di_mix_position((i-1)*3+1,:) = [31 70 69.723 origin(4:6)]; 
        Ga_Di_mix_position((i-1)*3+2,:) = [33 75 74.9216 (origin(4:6) + 
[-b1*x -b1*x -b2])]; 
        Ga_Di_mix_position((i-1)*3+3,:) = [33 75 74.9216 (origin(4:6) + 
[c1*x c1*x -c2])]; 
    end 
end 
         
sites_total = [sites; As_Di_position; As_Di_mix_position; 
Ga_Di_position; Ga_Di_mix_position]; 
%----------------------------------------------------------------------
---% 
% Add (As)Ga-(N)As Pairs 
  
As_sites = interstitials; 
Ga_sites = sites_new; 
  
%Determine defect sites 
rand = randperm(size(As_sites,1)); 
Ga_defect_sites = zeros(nAsGa_NAs,6); 
As_defect_sites = zeros(nAsGa_NAs,6); 
for i = 1:nAsGa_NAs 
    As_defect_sites(i,:) = [7 14 14 As_sites(rand(i),4:6)]; 
    interstitials(rand(i),:) = [100 100 100 100 100 100]; 
    Ga_defect_sites(i,:) = [33 75 74.9216 (As_sites(rand(i),4:6) - 
[0.25 0.25 0.25])]; 
end 
for i = 1:nAsGa_NAs 
    for j = 1:size(sites_new) 
        if sites_new(j,4:6) == Ga_defect_sites(i,4:6) 
           sites_new(j,:) = [100 100 100 100 100 100]; 
        end 
    end 
end 
sites_new(all(sites_new==100,2),:)=[]; 
interstitials(all(interstitials==100,2),:) = []; 
     
%----------------------------------------------------------------------
---% 
% Bi Pairs 
% Bi pairs referrs to a paired set of substitutional Bi on As sites 
% surrounding a single Ga atom ("GaAs2Bi2").  Start by choosing a Ga 
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% ('sites_new') to host the Bi pair, add [0.25 0.25 0.25], etc. to Ga 
site 
% to find tetrahedral sites surrounding specific Ga atom.  Search for 
these 
% tet. sites in 'interstitials', randomly choose two to convert from As 
to 
% Bi. 
  
rand = randperm(size(sites_new,1)); 
Bi_pair_host = zeros(size(nBi_pairs,1),6); 
  
% Select host 
for i = 1:nBi_pairs 
    Bi_pair_host(i,:) = sites_new(rand(i),:); 
    sites_new(rand(i),:) = 100; 
end 
  
% Find tetrhedral sites surrounding host 
pair_host_tet = zeros(4*nBi_pairs,6); 
for i = 1:nBi_pairs 
    pair_host_tet(4*(i-1)+1,4:6) = Bi_pair_host(i,4:6) + [0.25 0.25 
0.25]; 
    pair_host_tet(4*(i-1)+2,4:6) = Bi_pair_host(i,4:6) + [-0.25 -0.25 
0.25]; 
    pair_host_tet(4*(i-1)+3,4:6) = Bi_pair_host(i,4:6) + [-0.25 0.25 -
0.25]; 
    pair_host_tet(4*(i-1)+4,4:6) = Bi_pair_host(i,4:6) + [0.25 -0.25 -
0.25]; 
end 
  
% Choose As to replace 
% Make rand_pair set of 4 (4 tetrahedral sites per host) to ensure that 
2 
% atoms from each are replaced. 
Bi_pairs = zeros(2*nBi_pairs,6); 
  
for i= 1:nBi_pairs 
    rand_pair = randperm(4); 
    Bi_pairs(2*(i-1)+1,:) = [83 209 208.9804 pair_host_tet(4*(i-
1)+rand_pair(1),4:6)]; 
    Bi_pairs(2*(i-1)+2,:) = [83 209 208.9804 pair_host_tet(4*(i-
1)+rand_pair(2),4:6)]; 
end 
  
% Find host and Bi_pairs in 'sites_new' and 'interstitials', 
respectively, 
% and remove entries so no more than one defect is place on a lattice 
site. 
for i = 1:nBi_pairs 
    for j = 1:size(sites_new) 
        if sites_new(j,4:6) == Bi_pair_host(i,4:6) 
            sites_new(j,:) = 100; 
        end 
    end 
end 
sites_new(all(sites_new==100,2),:)=[]; 
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for i = 1:size(Bi_pairs,1) 
    for j = 1:size(interstitials,1) 
        if interstitials(j,4:6) == Bi_pairs(i,4:6) 
            interstitials(j,:) = 100; 
        end 
    end 
end 
interstitials(all(interstitials==100,2),:)=[]; 
  
  
% Bi tetramers 
% Bi tetramers have a Ga atom surrounded by 4 Bi atoms, replacing all 
of 
% the As in tetrahedral sites around the host Ga.  The same strategy as 
was 
% used with Bi pairs will be used to locate a host atom and the 
tetrahedral 
% sites associated with it.  In this case, all tetrahedral sites are 
% occupied by Bi, so there is no need to randomly choose two sites for 
each 
% defect. 
  
rand = randperm(size(sites_new,1)); 
Bi_tet_host = zeros(nBi_tet,6); 
  
% Select host 
for i = 1:nBi_tet 
    Bi_tet_host(i,:) = sites_new(rand(i),:); 
    sites_new(rand(i),:) = 100; 
end 
  
% Find tetrhedral sites surrounding host 
tet_host_tet = zeros(4*nBi_tet,6); 
for i = 1:nBi_tet 
    tet_host_tet(4*(i-1)+1,4:6) = Bi_tet_host(i,4:6) + [0.25 0.25 
0.25]; 
    tet_host_tet(4*(i-1)+2,4:6) = Bi_tet_host(i,4:6) + [-0.25 -0.25 
0.25]; 
    tet_host_tet(4*(i-1)+3,4:6) = Bi_tet_host(i,4:6) + [-0.25 0.25 -
0.25]; 
    tet_host_tet(4*(i-1)+4,4:6) = Bi_tet_host(i,4:6) + [0.25 -0.25 -
0.25]; 
end 
  
%Replace As with Bi 
Bi_tet = zeros(4*nBi_tet,6); 
for i= 1:nBi_tet 
    Bi_tet(4*(i-1)+1,:) = [83 209 208.9804 tet_host_tet(4*(i-
1)+1,4:6)]; 
    Bi_tet(4*(i-1)+2,:) = [83 209 208.9804 tet_host_tet(4*(i-
1)+2,4:6)]; 
    Bi_tet(4*(i-1)+3,:) = [83 209 208.9804 tet_host_tet(4*(i-
1)+3,4:6)]; 
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    Bi_tet(4*(i-1)+4,:) = [83 209 208.9804 tet_host_tet(4*(i-
1)+4,4:6)]; 
end 
  
% Find host and Bi_tet in 'sites_new' and 'interstitials', 
respectively, 
% and remove entries so no more than one defect is place on a lattice 
site. 
for i = 1:nBi_tet 
    for j = 1:size(sites_new) 
        if sites_new(j,4:6) == Bi_tet_host(i,4:6) 
            sites_new(j,:) = 100; 
        end 
    end 
end 
sites_new(all(sites_new==100,2),:)=[]; 
  
for i = 1:size(Bi_tet,1) 
    for j = 1:size(interstitials,1) 
        if interstitials(j,4:6) == Bi_tet(i,4:6) 
            interstitials(j,:) = 100; 
        end 
    end 
end 
interstitials(all(interstitials==100,2),:)=[]; 
  
%----------------------------------------------------------------------
---% 
%Place other defects 
defect_site = randperm(size(interstitials,1)); 
for i= 1:size(defect_site,1) 
    for j = 1:size(Di_int) 
        if interstitials(defect_site(i),:) == Di_int(j,:) 
            defect_site(i) = 0; 
        end 
    end 
end 
defect_site(all(defect_site==0,2),:)=[]; 
  
for i = 1:nNNAs 
    NNAs_location(i,:) = interstitials(defect_site(i),:); 
    interstitials(defect_site(i),:) = 100; 
end 
defect_site(1:nNNAs) = []; 
defect_site(all(defect_site==0,2),:)=[]; 
for j = 1:nNAsAs 
    NAsAs_location(j,:) = interstitials(defect_site(j),:); 
    interstitials(defect_site(j),:) = 100; 
end 
defect_site(1:nNAsAs) = []; 
  
for k = 1:nNAs 
    NAs_location(k,:) = interstitials(defect_site(k),:); 
    interstitials(defect_site(k),:) = 100; 
end 
defect_site(1:nNAs) = []; 
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interstitials(all(interstitials==100,2),:) = []; 
  
for i = 1:nAsi 
    Asi_location(i,:) = sub_empty(interstitial_site(i),:); 
end 
interstitial_site(1:nAsi) = []; 
  
for i = 1:nN_int 
    N_int_location(i,:) = sub_empty(interstitial_site(i),:); 
end 
interstitial_site(1:nN_int) = []; 
  
%Each loop assigns a position to different types of defects.  For 
example:  
% When i = 1, if defect_site(1) = 4, the first row of NNAs_location is 
% filled with the 4th row of 'interstitials' (the location of the 4th 
%interstitial in the list).  This allows for a random distribution of 
%defects throughout the structure.  Afterwards, the 1:nXXX rows of 
%'defect_site' are cleared so that when j = 1, NAsAs_location(1,:)  
%~= NNAs_location(1,:). 
%Note: All defect site assignments are made after placement of As 
%anti-sites to ensure that defects are displaced as well. 
  
%----------------------------------------------------------------------
---% 
%Add defects to defined positions 
N1disp_NNAs = [-0.0553 -0.0553 -0.0553];  
N2disp_NNAs = [0.0924 0.0924 0.0924]; 
  
% Ndisp_NAsAs = [0 -0.1109 0]; 
% Asdisp_NAsAs = [0 0.0742 0]; 
  
Ndisp_NAsAs = [0 -0.2016 0]; 
Asdisp_NAsAs = [0 0.115 0]; 
  
NNAs_position = zeros(nNNAs*2,y); 
NAsAs_position = zeros(nNAsAs*2,y); 
NAs_position = NAs_location; 
Asi_position = Asi_location; 
N_int_position = N_int_location; 
% Since some defects call for two atoms occupying a single lattice 
site, 
% each defect atom is displaced from the center of the site.  Here, the 
user 
% will input displacement vectors relative to the lattice site as a row  
% vector ([a b c]).  No displacement vector is needed for (As)As, or 
(N)As  
% substitution.   
  
for m = 1:nNNAs     
    NNAs_position((2*m-1),:) = [7 14 14 (NNAs_location(m,4:6) + 
N1disp_NNAs)]; 
    NNAs_position((2*m),:) = [7 14 14 (NNAs_location(m,4:6) + 
N2disp_NNAs)]; 
end 
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for m = 1:nNAsAs 
    NAsAs_position((2*m-1),:) = [7 14 14 (NAsAs_location(m,4:6) + 
Ndisp_NAsAs)]; 
    NAsAs_position((2*m),:) = [33 75 74.9216 (NAsAs_location(m,4:6) + 
Asdisp_NAsAs)]; 
end 
  
for m = 1:nNAs 
    NAs_position(m,:) = [7 14 14 NAs_location(m,4:6)]; 
end 
  
for i = nAsi 
    if i > 0 
        for j = 1:nAsi 
        Asi_position(j,1:3) = [33 75 74.9216]; 
        end 
    else 
        continue 
    end 
end 
  
for i = nN_int 
    if i > 0 
        for j = 1:nN_int 
        N_int_position(j,1:3) = [7 14 14]; 
        end 
    else 
        continue 
    end 
end 
  
% Loops add defect offset locations for (N-N)As, and (N-As)As defects. 
% Using matrix positions 2m and 2m-1 allow for having two defect atoms 
per 
% lattice site.  Columns 1:3 explicitly state info for atoms involved 
in  
% the defect. 
%----------------------------------------------------------------------
---% 
% %Remaining As sites 
%  
% nAsAs = size(interstitials,1) - nAsGa_NAs - nNNAs - nNAsAs - nNAs... 
%         - nBi_sub - 2*nBi_pairs - 4*nBi_tet; 
% AsAs_location = zeros(nAsAs,y); 
% for l = 1:nAsAs 
%     AsAs_location(l,:) = interstitials(defect_site(l),:); 
% end 
% defect_site(1:nAsAs) = []; 
%  
% AsAs_position = AsAs_location; 
  
%----------------------------------------------------------------------
---% 
%Generate List of all atomic positions in system 



212 
 

  
Atom_positions = [sites_new; interstitials; Ga_defect_sites; ... 
                  As_defect_sites; NNAs_position; NAsAs_position;... 
                  NAs_position; Asi_position;... 
                  N_int_position; As_Di_position; 
As_Di_mix_position;... 
                  Ga_Di_position; Ga_Di_mix_position; %Bi_sub_sites;... 
                  Bi_pairs; Bi_tet]; 
% size(sites_new) 
% size(interstitials) 
% size(Ga_defect_sites) 
% size(As_defect_sites) 
% size(NNAs_position) 
% size(NAsAs_position) 
% size(NAs_position) 
% size(Asi_position) 
% size(N_int_position) 
% size(As_Di_position) 
% size(As_Di_mix_position) 
% size(Ga_Di_position) 
% size(Ga_Di_mix_position) 
% size(Bi_sub_sites) 
% size(Bi_pairs) 
% size(Bi_tet) 
  
for i = 1:size(Atom_positions,1) 
    for j = 4:6 
        if abs(Atom_positions(i,j)) < 0.01 
            Atom_positions(i,j) = abs(Atom_positions(i,j)); 
        end 
    end 
end 
%Since minimum distance from any point (relative to basis vectors) is 
%0.2183, any vector location with a value <0.01 can be considered 0 
with 
%rounding error.  Loop scans for '0-coordinates' and takes their 
absolute 
%value to ensure there are no '-0.0000' entries in output. 
  
trans = (mat*Atom_positions(:,4:6)')'; 
  
file = strcat('sim_', num2str(sim_num), '_', num2str(direction), 
'.xyz'); 
outputfile = fopen(file, 'wt'); 
  
  
fprintf(outputfile,'%1.0f\n\n',size(Atom_positions,1)); 
for n = 1:size(Atom_positions,1) 
    i = Atom_positions(n,1); 
    if (13 < i) && (i < 15) 
        fprintf(outputfile,'Si '); 
    end 
    if (30 < i)&&(i < 32) 
        fprintf(outputfile,'Ga '); 
    end 
    if (32 < i)&&(i < 34) 
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        fprintf(outputfile,'As '); 
    end 
    if (6 < i)&&(i < 8) 
        fprintf(outputfile,'N '); 
    end 
    if (82 < i)&&(i < 84) 
        fprintf(outputfile,'Bi '); 
    end 
    fprintf(outputfile,'%1.4f %1.4f 
%1.4f\n',trans(n,1),trans(n,2),trans(n,3)); 
end 
  
fclose(outputfile); 
end 
 
 
 
F.4 Input File Generation  

 

function [  ] = param_maker( direction, sim_data, run_number ) 
  
[Atom_positions, a, b, c, y] = MCMD_Input_func(sim_data(1), 
sim_data(2), direction, sim_data(4:18)); 
  
param_file = fopen('params.txt', 'wt'); 
  
fprintf(param_file, '// Random generator\n'); 
fprintf(param_file, ['RndSeed:', num2str(5310*run_number), '\n']); 
fprintf(param_file, '\n'); 
  
fprintf( param_file,'// File description\n'); 
fprintf(param_file, ['FileHeader:sim_', num2str(sim_data(1)), ' ', 
num2str(direction), ' run ', num2str(run_number), '\n\n']); 
  
fprintf(param_file, '// Scan settings\n'); 
fprintf(param_file, 'ScnTiltSt:0.0\n'); 
fprintf(param_file, 'ScnTiltEnd:0.0\n'); 
fprintf(param_file, 'ScnTiltStep:0.0\n'); 
fprintf(param_file, 'ScnAzSt:0\n'); 
fprintf(param_file, 'ScnAzEnd:0\n'); 
fprintf(param_file, 'ScnAzStep:0\n'); 
fprintf(param_file, '//\n\n'); 
  
fprintf(param_file, '// Simulation settings\n'); 
fprintf(param_file, 'SimNParticles:100\n'); 
fprintf(param_file, 'SimTime:20.0\n'); 
fprintf(param_file, 'SimzVelo:146.66\n'); 
fprintf(param_file, 'SimPotProx2:16.0\n'); 
fprintf(param_file, '// end simulation settings\n\n'); 
  
fprintf(param_file, '// Unit cell definition\n'); 
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Number_atoms = size(Atom_positions); 
fprintf(param_file, ['Unit_nAtoms:', num2str(Number_atoms(1)),  
'\n\n']); 
fprintf(param_file,'Unit_aX:%1.4f\nUnit_aY:%1.4f\nUnit_aZ:%1.4f\n\nUnit
_bX:%1.4f\nUnit_bY:%1.4f\nUnit_bZ:%1.4f\n\nUnit_cX:%1.4f\nUnit_cY:%1.4f
\nUnit_cZ:%1.4f\n\n', a, b, c); 
  
  
for n = 1:size(Atom_positions,1) 
    Atom_positions(n,y+1) = n; 
      fprintf(param_file,'Atom%1.0f_ANo:%1.4f \nAtom%1.0f_MNo:%1.4f 
\nAtom%1.0f_Mass:%1.4f \n',Atom_positions(n,end),Atom_positions(n,1), 
Atom_positions(n,end), Atom_positions(n,2), Atom_positions(n,end), 
Atom_positions(n,3));     
      fprintf(param_file,'Atom%1.0f_a:%1.4f \nAtom%1.0f_b:%1.4f 
\nAtom%1.0f_c:%1.4f \n\n', Atom_positions(n,end) ,Atom_positions(n,4), 
Atom_positions(n,end), Atom_positions(n,5), Atom_positions(n,end), 
Atom_positions(n,6)); 
      fprintf(param_file, '\n');        
end 
  
fprintf(param_file, '\n// end unit cell\n\n'); 
  
fprintf(param_file, '// Ion definition\n'); 
fprintf(param_file, 'Ion_ANo:2\n'); 
fprintf(param_file, 'Ion_MNo:4\n'); 
fprintf(param_file, 'Ion_Mass:4.0015\n'); 
fprintf(param_file, '// end ion\n\n'); 
  
%find Nitrogen Atom 
%only works for defects with nitrogen 
%can change in future 
Nitrogen_indices = find(Atom_positions(:,1) < 8); 
  
fprintf(param_file, '// Probablity distribution collection\n'); 
fprintf(param_file, ['PColl_Atom:' num2str(Nitrogen_indices(1)) '\n']); 
fprintf(param_file, '//\n\n'); 
  
fprintf(param_file, '// Crystal def\n'); 
fprintf(param_file, 'Crys_Trans:0\n'); 
fprintf(param_file, '// end crystal def\n'); 
  
fclose(param_file); 
end 
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Appendix G 

 

 Materials Parameters and Samples 

 

This appendix lists a variety of materials parameters as well as samples used in 

this thesis. Table. G.1 lists the materials parameters of GaAs, GaN, and GaBi. In 

addition, Table G.2 lists the GaAsN samples used in Chapter 3 and 4. Finally, Table G.3 

lists the GaAsNBi samples used in Chapter 5 and 6.   

 Table G.1 Materials parameters for GaAs, GaN, and GaBi 

 

 

 

 

 

 

 

Materials 
lattice parameter 

(Å) 
thermal vibration 

amplitude (Å) 
C_11 
(GPa) 

C_12 
(GPa) 

GaN  4.5 [1] - 296 [2] 154 [2] 
GaBi 6.33 [3, 4] - 73 [5] 32 [5] 
GaAs 5.6533 [6] 0.078  [7] 119 [6] 53.8 [6] 
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Table G.2 GaAsN Films 

RMBE #  x (%) 
As4/Ga 
Ratio 

RMS 
Roughness 

GaAs 
FWHM 

96  2.5  38  0.94 nm  32 

96 (Annealed)  2.5  38  0.98 nm  36 

97  3.2  38  n/a  n/a 

112  2.1  38  1.02 nm  35 

122 (Annealed)  2.1  38  1.05 nm  34 

122  0.6  29  n/a  n/a 

158  1.9  25  1.22 nm  38 

158 (Annealed)  1.9  25  1.18 nm  40 

 

Table G.3 GaAsNBi Films 

 

 

 

 

 

 

 

RMBE  x (%)  y (%)  As4/Ga Ratio 
RMS 

Roughness 
GaAs 
FWHM 

1283  1.8  5.6  20  0.34 nm  14.5 arcsec 

1284  1.8  3  20  0.45 nm  13.7 arcsec 

1285  1.4  1.6  20  0.46 nm  13.9 arcsec 

1286  0  0.9  20  0.39 nm  14.1 arcsec 

1293  3.2  0.7  20  0.32 nm  14.3 arcsec 

1294  3.2  1.7  20  0.42 nm  14.4 arcsec 

1295  3.2  2.3  20  0.40 nm  13.8 arcsec 

1296  3.2  0  20  0.37 nm  13.8 arcsec 
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