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ABSTRACT

We develop novel semiparametric methods for flexibly modeling a prevalence indicator process

observed over follow-up time. The proposed methods are motivated by various settings arising in

end-stage renal disease (ESRD) and end-stage liver disease (ESLD).

In Chapter 1, we consider the response Survival-Out-of-Hospital, defined as a temporal process

taking the value 1 when the subject is currently alive and not hospitalized, and 0 otherwise. The

semiparametric model we consider assumes multiplicative covariate effects and leaves unspecified

the baseline probability of being alive-and-out-of-hospital. Asymptotic properties are derived, and

simulation studies are performed. The proposed methods are applied to the Dialysis Outcomes and

Practice Patterns Study (DOPPS), a prospective international ESRD study.

In Chapter 2, we extend the methods from Chapter 1 to accommodate dependent censoring. We

derive a modification of Inverse Probability of Censoring Weighting which offers improved stabil-

ity and reduced computational burden relative to the traditional IPCW. We show that the regression

estimator is asymptotically normal, and that the baseline probability function estimator converges

to a Gaussian process. The methods are used to model the probability of being alive and active on

the liver transplant waiting list, which can be dependently censored by liver transplantation.

In Chapter 3, we jointly model prevalence conditional on survival, and the death hazard. A

frailty is shared by the prevalence and hazard models, with the frailty effect scaled in the latter. We

propose an iterative procedure for estimating the regression parameters by updating frailties from

their implied estimating equations. The scale parameter and random effect variance are estimated

by numerical integration. The algorithm is asymptotically equivalent to an EM algorithm which

treats the frailty terms as missing data. We apply the methods to DOPPS data.

viii



CHAPTER 1

Semiparametric Temporal Process Regression of

Survival-Out-of-Hospital

1.1 Introduction

Often in clinical or epidemiological studies, both a recurrent event process and terminal event

are of interest. This is particularly true given the recent proliferation of administrative databases

available for secondary analysis. Correspondingly, a considerable number of methods have been

developed for the recurrent/terminal event data structure. One option is to model the marginal

mean/rate [Cook and Lawless, 1997, Ghosh and Lin, 2002, Schaubel et al., 2006, Cook et al.,

2009], essentially averaging over the survival experience. Another class of approaches involves

jointly modeling survival and the conditional recurrent event rate given survival [Huang and Wang,

2004, Liu et al., 2004, Ye et al., 2007, Zeng and Cai, 2010, Kalbfleisch et al., 2013].

In this report, we study a useful alternative framework for the analysis of recurrent/terminal

event data. In particular, a frequently arising example of this data structure involves hospitaliza-

tion representing the recurrent event, with death serving as the terminal event. Although hospital

admission can be regarded as a point process, the length of stay for a hospitalization may be several

days and, therefore, should not be ignored in the analysis. This concept is recognized in the works

of Hu et al. [2011] and Zhu et al. [2014], for example. Survival-out-of-hospital may be viewed as a

refinement of survival time in the study of chronic illness such as end-stage renal disease (ESRD),

with the refinement being the incorporation of each patient’s hospital admission and length of stay
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information. An appealing characteristic of survival-out-of-hospital is that it incorporates mor-

bidity data in an objective and easily understood manner. Data of this structure are increasingly

available, given the relatively recent proliferation of publicly available health administrative data

sets [Holland and Lam, 2000, Sands et al., 2006, Carson et al., 2009].

Temporal process regression would appear to be a natural conceptualization of survival-out-of-

hospital. Several process regression methods have been proposed in the last decade. For example,

Fine et al. [2004] developed functional generalized linear models, for which covariates effects are

completely unspecified and are estimated nonparametrically over time. Such an approach has also

been generalized to multivariate survival settings to model both mean and association structures

[Yan and Fine, 2005]. To increase precision, the partly functional temporal process model has

been developed, with covariate effects being nonparametric for some covariate elements and para-

metric for others [Yan and Huang, 2009, Estes et al., 2015]. These functional generalized linear

models generally focus on time-varying covaiate effects. In addition, martingale-based estimating

equations have been proposed for directly modeling survival function by solving a sequence of

monotone equations [Peng and Huang, 2007]. Approaches listed in this paragraph are part of the

inspiration for the methods we propose in this report. However, as will become more clear later

in our report, none of these approaches are applicable to our setting given the specifics of analytic

objectives, along with the assumed data structure and model of interest.

Various other existing methods are pertinent to the data structure of our interest, but not ap-

plicable to our research question. For instance, methods proposed in Andersen et al. [2003] and

Scheike and Zhang [2007] involved direct modeling of a state transition probability or a state occu-

pation probability in a multi-state model. In these approaches, each state is assumed to be visited

not more than once. As such, none of these approaches are directly applicable to our particular

research question and data structure, since patients can move in and out of hospital many times

prior to death. In addition, pseudo-observation approaches [Andersen et al., 2003, Grand and Put-

ter, 2016], despite their utility, generally only allow for censoring that does not dependent on the

covariate vector, an assumption that may be violated in observational studies. As described in
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Section 2, the methods we propose allow censoring to depend on the covariate vector.

In this report, we propose a semiparametric temporal process regression method, where co-

variates have multiplicative effects on a completely unspecified baseline probability function. This

model can be thought of a process version of the generalized linear model with the process indexed

by time. In terms of estimation, the regression parameter is estimated by the solution to an esti-

mating equation which is free of the baseline probability function. We propose a nonparametric

estimator for the baseline probability process, a closed form for which can be computed after esti-

mating the regression parameter. The estimating functions do not require inverse weighting in the

setting where censoring times are known (e.g., if all censoring was administrative, occurring at the

same calendar date). To accommodate the more commonly occurring scenario where censoring

is random, we employ multiple imputation [Little and Rubin, 2002] to recover censoring times

unobserved due to death [Schaubel and Zhang, 2010].

Our method has several distinguishing features. First, covariate effects are on the relative risk

scale, as opposed to odds ratio. The baseline probability process is specified as a nonparametric

function of follow-up time, to increase flexibility and robustness. Through a development that

parallels the derivation of the Cox partial likelihood score function [Cox, 1972a], we derive an

estimating function for the regression parameter that is free of the baseline probability function.

This reduces the complexity of computation and permits the use of standard statistical software.

Moreover, the baseline probability function can be subsequently estimated at any specific time

point before the maximum observation time. We also propose estimating the integral of the base-

line probability, which can then be used to predict expected survival time out-of-hospital over a

finite time interval.

In this article, we are interested in the joint event of being out-of-hospital and being alive.

This response variable takes quality of life information into consideration, while leaves the depen-

dent structure between temporal indicator and terminal event completely unspecified. More model

details and challenges are illustrated in the following section. Our method is different from the

current practice in clinical trials which use the time to the first recurrent event or terminal event
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[Lewis, 1999, Pfeffer et al., 2003], and is also distinct from a weighted composite endpoint of all

recurrent and terminal events [Neaton et al., 2005, Mao and Lin, 2016].

The remainder of the article is organized as follows. In Section 2, we introduce notations, for-

mulate model assumptions, and propose estimating procedures for parameters and baseline prob-

ability function. In Section 3, we show that the regression parameter estimator converges to a

Normal distribution, and estimator of the baseline probability function converges to a Gaussian

process. Simulation studies are performed to evaluate our method under various scenarios in Sec-

tion 4. We also illustrate our method through an analysis of survival-out-of-hospital using data

from the Dialysis Outcomes and Practice Patterns Study (DOPPS), a long-running international

prospective study of ESRD patients. Finally, concluding remarks are provided at Section 6.

1.2 Model and Methods

Suppose there are a total of n independent subjects. Let Di denote the death (terminal event) time

of subject i (i = 1, 2, ..., n). We let Ci be the censoring time, and let Zi(t) be a p-dimensional

covariate vector which may contain time-varying elements (assumed to be external; Kalbfleisch

and Prentice [2002], p.g. 196). Here, we consider follow-up time t ∈ [0, τ ], where τ is a pre-

specified constant satisfying Pr(Ci ≥ τ) > 0 for i = 1, 2, ..., n. In practice, τ could be chosen as

the maximum of observation time, Ci ∧Di, where a ∧ b = min(a, b).

Let Hi(t) = 1 if subject i is in the hospital at time t, and 0 if out of hospital. The probability

of interest is the probability that a subject i is alive and out-of-hospital at time t, i.e.,

πi(t) = P{Hi(t) = 0, Di > t|Zi(t)}. (1.1)

We assume that the covariates have multiplicative effects on an unspecified baseline probability

function π0(t), such that

πi(t) = π0(t)exp{βT0Zi(t)}, (1.2)
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where β0 is a p-dimensional vector. This is similar to the Cox proportional hazard assumption

[Cox, 1972a], but πi(t) is interpreted as the probability of being out of hospital and alive for

subject i at time t. Note the distinction between (1.2) and an intensity [Andersen and Gill, 1982]

or marginal rate function [Lin et al., 2000].

For brevity of notation, we define Ai(t) = I{Di > t} as the alive indicator, and A0
i (t) =

I{Hi(t) = 0, Di > t} as the survival-out-of-hospital indicator. Similar we could define A1
i (t) =

I{Hi(t) = 1, Di > t} as survival-hospitalized indicator. In this report we are interested in A0
i (t),

while people could also focus on A1
i (t). It is important to note that information is still available on

subject i before the censoring time, even after the terminal event has occurred. Note thatA0
i (t) = 0

for t ∈ [Di, Ci] if Di < Ci.

1.2.1 Known Censoring

To begin, suppose that censoring time Ci is always known. This would be the case in a closely

monitored prospective study from which patients could not be randomly lost to follow-up. In such

cases, Ci is known even if Ci > Di. This set-up does not match most observational studies, but it

is a useful starting point. We assume that censoring time is independent of our target event A0
i (t),

conditional on Zi(t); more explicitly, we can express the assumption as follows,

E{A0
i (t)|Zi(t), Ci ≥ t} = E{A0

i (t)|Zi(t)}. (1.3)

Consider the following two estimating functions,

n∑
i=1

∫ τ

0

Zi(t)[A
0
i (t)− πi(t)]I(Ci ≥ t)dt (1.4)

n∑
i=1

[A0
i (t)− πi(t)]I(Ci ≥ t). (1.5)

These estimating functions have expectation zero under model (1.2) and assuming conditionally

independent censoring (1.3). Note that equation (1.5) could be evaluated at any specific time point
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t ∈ [0, τ ], and does not have to be an observed event time. Solving equation (1.5) for π0(t) treating

β0 as known, then substituting the resulting π̂0(t) back into equation (1.4) yields the following

zero-mean estimating equations for β0,

U(β) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t;β)}A0
i (t)I(Ci ≥ t)dt = 0, (1.6)

where Z̄(t;β) = S(1)(t;β)/S(0)(t;β), S(k)(t;β) = n−1
∑n

i=1Zi(t)
⊗kI(Ci ≥ t)exp{βTZi(t)}

for k = 0, 1, 2, where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . We also define the following notations.

Let s(k)(t;β) = E[Z1(t)⊗kI(C1 ≥ t)exp{βTZ1(t)}] and z̄(t;β) = s(1)(t;β)/s(0)(t;β) be the

limiting value of S(k)(t;β) and Z̄(t;β), respectively. Moreover, define

Ω̂(β) = n−1
∑n

i=1

∫ τ
0
{S(2)(t;β)/S(0)(t;β)− Z̄(t;β)⊗2}A0

i (t)I(Ci ≥ t)dt and its limiting value

Ω(β) = E[
∫ τ

0
{s(2)(t;β)/s(0)(t;β) − z̄(t;β)⊗2}A0

1(t)I(C1 ≥ t)dt]. Observed data for subject i

can be summarized by Fi = {Hi(t), Di ∧ Ci, I(Di ≥ Ci),Zi(t), t ∈ [0, Xi]} for i = 1, 2, ..., n,

where Xi = Di ∧ Ci.

Equation (1.6) is reminiscent of the Cox regression score function, a property which can be

exploited computationally (i.e., to ease programming effort). For instance, if the time scale is

days (like our real-data application in Section 5) or some other discrete measure, then standard

proportional hazards software (e.g., coxph(·) in R, proc phreg in SAS) can be used after augmenting

the data set. Specifically, the augmented data would contain one record for each time unit t a

subject is uncensored, with the event indicator for time unit t would be A0
i (t). Such data would left

truncated such that, within subject, the (j + 1)th record begins (i.e., its left subinterval boundary)

where the jth records ended (i.e., its right interval boundary). Alternatively, if the time scale

were truly continuous, then the augmented data would contain, for each subject, one record for

every time at which Zi(t), Z̄(t;β), or A0
i (t) changes. Additionally, for the jth record of subject

i spanning, say, (tj−1, tj], a weight of (tj − tj−1) would be used, along with offset log(tj − tj−1).

Note that the Breslow approximation (for tie-handling) would be used, as is the default in SAS’s

phreg. Naturally, an alternative is to write explicit code to solve (1.6) using Newton-Raphson.
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Denoting the solution to (1.6) by β̂, one can estimate π0(t) through the closed form,

π̂0(t) =

∑n
i=1A

0
i (t)I(Ci ≥ t)∑n

i=1 I(Ci ≥ t)exp[β̂
T
Zi(t)]

. (1.7)

Note that π̂0(t) is closely related to the Breslow estimator of baseline cumulative hazard function

[Breslow, 1972]. However, π0(t) is bounded above by 1, since it corresponds to a probability.

With respect to leveraging standard software, π̂0(t) can be computed directly through successive

differencing in the previously described scenarios wherein the time scale is discrete (with one

record per uncensored time unit per subject). If time is continuous, then π̂0(t) would need to be

computed explicitly, with the value changing each time, for any subject i in the data set, either of

A0
i (t), or I(Ci ≥ t) or Zi(t) changes its value.

Note that, due to the use of the log link, π̂0(t) > 1 is possible. This could occur, for example,

in settings wherein hospitalization and mortality rates are low. One solution is to cap π̂0(t) by 1.

We also define the integral of the baseline survival-out-of-hospital probability Π0(L) as

Π0(L) =

∫ L

0

π0(t)dt (1.8)

which could be interpreted as the expected length of being alive and out-of-hospital up to time L

for subjects with baseline covariate. We could estimate Π0(L) by Π̂0(L) =
∫ L

0
π̂0(t)dt. Note that

π̂0(t) in (1.7) would jump up when subjects are discharged from the hospital, and jump down if

subjects are admitted to the hospital or dead. This property would facilitate computation in real

data application, because Π̂0(L) would be a sum of rectangular area with height π̂0(t) and length

in recorded unit, for example day.

1.2.2 Random Censoring

Now, consider the more typical scenario in which the censoring time Ci is not fixed at t = 0, with

its randomness implying that Ci is not known in cases where Di is observed for subject i. In this
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set-up, one cannot carry out estimation through (1.6) and (1.7), defined in the preceding subsection,

due to Ci being missing for subjects observed to die. A simple solution is to set censoring time as

the maximum follow-up time across all subjects, which may lead to substantial bias in estimating

β0 and π0(t). Similarly, setting censoring time as Di for subjects with Ci > Di would generally

lead to invalid inference.

One could use weighting techniques to recover missing censoring time, essentially weights

subjects with Ci > Di by a conditional survival probability [Ghosh and Lin, 2002, Mao and Lin,

2016]. However, a weighted version of estimating equation (1.6) is tedious to carry out, since the

time line is continuous. In this report we consider an alternative imputation approach which is easy

to implement by standard software.

Our solution is to multiply impute Ci when Di < Ci and, for this purpose, we assume the

following proportional hazard model on the censoring time,

λCi (t) = λC0 (t)exp{θT0Zi(t)}, (1.9)

where λC0 (t) is an unspecified baseline hazard function for Ci. In light of the model for Ci, we

now define the corresponding counting process NC
i (t) = I(Ci ≤ t ∧ Di), and its increment

dNC
i (t) = NC

i (t− + dt) − NC
i (t−). Similarly, the counting process for death time is defined

by ND
i (t) = I(Di ≤ t ∧ Ci). Let Yi(t) = I(Xi ≥ t) be the at risk process. Standard partial

likelihood [Cox, 1975] techniques can be fitted to the observed censoring time data {Xi, I(Ci ≤

Di),Zi(t); t ∈ [0, τ ]}ni=1 to compute θ̂, which can be shown to be a strongly consistent estimator

of θ0 [Andersen and Gill, 1982]. The baseline cumulative hazard function for ΛC
0 (t) is estimated

through the method of Breslow [Breslow, 1972].

We will create M imputed datasets, where normally M = 10 would suffice. The proposed

methods are also valid for M = 1, although this would be less efficient. Consider the mth imputed

dataset, for subjects with Ci ≤ Di, we set imputed censoring time as the known censoring time.

For subjects Ci > Di, which means that the censoring time is not observed, we impute Ĉ〈m〉i from
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the estimated conditional survival function,

Ĝ(t; θ̂) = I(t ≥ Di)exp[−Λ̂C
i (t; θ̂) + Λ̂C

i (Di; θ̂)] (1.10)

More explicitly, we could express the imputed censoring time C〈m〉i as

C
〈m〉
i = [1−ND

i (Xi)]Ci +ND
i (Xi)Ĉ

〈m〉
i .

We make the following notations. First consider the uncensored indicator I(C
〈m〉
i ≥ t;θ),

where we include θ in the parenthesis to emphasize that C〈m〉i depends on imputation parameter

θ. In finite samples, we impute Ĉ〈m〉i from Ĝ(t; θ̂) for subjects with Ci > Di to obtain I(C
〈m〉
i ≥

t; θ̂). Define G(t;θ0) = I(t ≥ Di)exp[−ΛC
i (t;θ0) + ΛC

i (Di;θ0)]. Therefore, I(C
〈m〉
i ≥ t;θ0)

refers to a hypothetical scenario where we impute Ĉ〈m〉i from the true underlying G(t;θ0) when

Ci > Di. When (1.9) is correctly specified, I(Ci ≥ t) and I(C
〈m〉
i ≥ t;θ0) follow exact the

same distribution. The notation I(C
〈m〉
i ≥ t;θ0) is useful for the establishment of asymptotic

properties. Also note that A0
i (t)I(C

〈m〉
i ≥ t; θ̂) = A0

i (t)I(C
〈m〉
i ≥ t;θ0) because A0

i (t) = 0

for t ∈ [Di, τ ]. Let S(k)〈m〉(t;β,θ) = n−1
∑n

i=1Zi(t)
⊗kI(C

〈m〉
i ≥ t;θ)exp{βTZi(t)}, and

s(k)〈1〉(t;β,θ) = E[Z1(t)⊗kI(C
〈1〉
1 ≥ t;θ)exp{βTZ1(t)}] be the limiting value ofS(k)〈m〉(t;β,θ)

for k = 0, 1, 2. Also let Z̄〈m〉(t;β,θ) = S(1)〈m〉(t;β,θ)/S(0)〈m〉(t;β,θ), and denote its limiting

value as z̄〈1〉(t;β,θ) = s(1)〈1〉(t;β,θ)/s(0)〈1〉(t;β,θ). Moreover, define

Ω̂
〈m〉

(β,θ) = n−1
∑n

i=1

∫ τ
0
{S(2)〈m〉(t;β,θ)/S(0)〈m〉(t;β,θ) − Z̄〈m〉(t;β,θ)⊗2}A0

i (t)I(C
〈m〉
i ≥

t;θ)dt and its limiting value

Ω〈1〉(β,θ) = E[
∫ τ

0
{s(2)〈1〉(t;β,θ)/s(0)〈1〉(t;β,θ)− z̄〈1〉(t;β,θ)⊗2}A0

1(t)I(C
〈1〉
1 ≥ t;θ)dt].

For the mth imputed data set, the estimation of β0 and π0(t) is as defined in Section 1.2.1, but

with Ci replaced by C〈m〉i . More explicitly, β̂
〈m〉

is computed by solving the following estimating

equation,

U 〈m〉(β, θ̂) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄
〈m〉

(t;β, θ̂)}A0
i (t)I(C

〈m〉
i ≥ t; θ̂)dt = 0 (1.11)

9



π̂
〈m〉
0 (t) is given by

π̂
〈m〉
0 (t) =

∑n
i=1A

0
i (t)I(C

〈m〉
i ≥ t; θ̂)∑n

i=1{I(C
〈m〉
i ≥ t; θ̂)exp[ZT

i (t)β̂
〈m〉

]}
(1.12)

Having computed β̂
〈m〉

and π̂〈m〉0 (t) (m = 1, 2, ...,M), β0 and π0(t) will be estimated by a pooled

estimator β̂
M

and π̂M0 (t),

β̂
M

= M−1

M∑
m=1

β̂
〈m〉

(1.13)

π̂M0 (t) =

∑n
i=1

∑M
m=1A

0
i (t)I(C

〈m〉
i ≥ t; θ̂)∑n

i=1

∑M
m=1 I(C

〈m〉
i ≥ t; θ̂)exp[ZT

i (t)β̂
M

]
(1.14)

The estimator π̂M0 (t) given in (1.14) is easier for us to develop the asymptotic properties, because

both the numerator and denominator can be expressed as empirical processes indexed by time t.

The imputed Π̂M
0 (L) could be defined similarly to Π̂0(L), but with π̂0(t) replaced by π̂M0 (t).

1.3 Asymptotic Properties

We assume the following set of regularity conditions:

(a) {Hi(t), Xi, I(Ci ≤ Di),Zi(t)} for t ∈ [0, Xi], i = 1, 2, ..., n are independent and identically

distributed.

(b) Pr(Ci ≥ τ) > 0 for i = 1, 2, ..., n, where τ is a pre-specified constant.

(c) |Zij(0)|+
∫ τ

0
|dZij(t)| < cZ <∞ almost surely for i = 1, 2, ..., n, j = 1, 2, ..., p, i.e.,Zi(t)

has bounded total variations.

(d) Ω(β0) = E[
∫ τ

0
{s(2)(t;β0)/s(0)(t;β0)− z̄(t;β0)⊗2}A0

1(t)I(C1 ≥ t)dt] is positive definite.

(e) For β ∈ Bδ, where Bδ is a small neighborhood around β0, s(0)(t;β), and s(1)(t;β) are

bounded away from zero.

(f) For β ∈ Bδ, k = 0, 1, 2, s(k)(t;β) are continuous uniformly on t ∈ [0, τ ], and are bounded

on [0, τ ]×Bδ.

10



We summarize the essential asymptotic properties of β̂, π̂0(t) and imputed versions β̂
M

, π̂M0 (t) in

the following theorems. Proofs are sketched in the Supplemental Materials.

1.3.1 Known Censoring

We begin by describing the asymptotic properties of estimators applicable to the known-censoring

set-up from Section 1.2.1.

Theorem 1. Under assumptions (1.2) and (1.3) and the afore-listed regularity conditions, β̂ is

a consistent estimator of β0, and n1/2(β̂ − β0) converges in distribution to a mean-zero Normal

random variable with a variance-covariance matrix

Σ(β0) = Ω(β0)−1E[u1(β0)u1(β0)T ]Ω(β0)−1, (1.15)

whereui(β) =
∫ τ

0
{Zi(t)−z̄(t;β)}dMi(t;β), and dMi(t;β) = A0

i (t)I(Ci ≥ t)dt−exp[βTZi(t)]I(Ci ≥

t)dt. A consistent estimator of Σ(β0) is given by Σ̂(β̂) = n−1
∑n

i=1[f̂
β

i (β̂)f̂
β

i (β̂)T ], where

f̂
β

i (β) = Ω̂(β)−1
∫ τ

0
{Zi(t)− Z̄(t;β)}dMi(t;β).

We now describe the asymptotic behavior of π̂0(t) from (1.7).

Theorem 2. Under assumptions (1.2) and (1.3), n1/2(π̂0 − π0) converges weakly to a mean-

zero Gaussian process with a variance and covariance matrix between n1/2[π̂0(s) − π0(s)] and

n1/2[π̂0(t)− π0(t)] given by σ(s, t) = E[ξ1(s)ξ1(t)], where

ξi(t) =
fπ1i (t;β0)− fπ2i (t;β0)

s(0)(t;β0)

and fπ1i (t;β) = A0
i (t)I(Ci ≥ t)−exp[βTZi(t)]I(Ci ≥ t)π0(t), fπ2i (t;β) = s(1)(t;β)Tπ0(t)fβi (β),

fβi (β) = Ω(β)−1ui(β). A consistent estimator of σ(s, t) is given by its empirical counterparts

σ̂(s, t) = n−1
∑n

i=1 ξ̂i(s)ξ̂i(t), where

ξ̂i(t) =
fπ1i (t; β̂)− f̂π2i (t; β̂)

S(0)(t; β̂)
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and f̂π2i (t;β) = S(1)(t;β)T π̂0(t)f̂
β

i (β).

1.3.2 Random Censoring

Now we describe the limiting behavior of estimator for the random-censoring set-up from Section

1.2.2.

Theorem 3. If censoring mechanism (1.9), assumptions (1.2) and (1.3) are correctly specified,

then under the previously listed regularity conditions, β̂
M

is a consistent estimator of β0, and

n1/2(β̂
M
−β0) converges in distribution to a mean-zero Normal random variable with a variance-

covariance matrix

ΣM(β0,θ0) = [Ω(β0)]−1E{[M−1

M∑
m=1

u
〈m〉
1 (β0,θ0)]⊗2}[Ω(β0)]−1

where u〈m〉i (β,θ) =
∫ τ

0
{Zi(t)− z̄〈1〉(t;β,θ)}dM 〈m〉

i (t;β,θ),

and dM 〈m〉
i (t;β,θ) = A0

i (t)I(C
〈m〉
i ≥ t)dt− exp[βTZi(t)]I(C

〈m〉
i ≥ t;θ)dt.

A consistent estimator of ΣM(β0,θ0) is given by

Σ̂M(β̂
M
, θ̂) = n−1

n∑
i=1

[f̂
β

i (β̂
M
, θ̂,M)]⊗2

where f̂
β

i (β,θ,M) = [M−1
∑M

k=1 Ω̂
〈k〉

(β,θ)]−1M−1
∑M

m=1

∫ τ
0
{Zi(t)−Z̄

〈m〉
(t;β,θ)}dM 〈m〉

i (t;β,θ).

The asymptotic behavior of imputed version π̂M0 (t) from (1.14) is summarized in the following

theorem.

Theorem 4. If censoring mechanism (1.9), assumptions (1.2) and (1.3) are correctly specified, then

n1/2(π̂M0 −π0) converges weakly to a mean-zero Gaussian process with a variance and covariance

matrix between n1/2[π̂M0 (s)−π0(s)] and n1/2[π̂M0 (t)−π0(t)] given by σM(s, t) = E[ξ1M(s)ξ1M(t)],

where

ξiM(t) =
fπ1i (t;β0,θ0,M)− fπ2i (t;β0,θ0,M)

s(0)〈1〉(t;β0,θ0)
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and fπ1i (t;β,θ,M) = M−1
∑M

m=1 I(C
〈m〉
i ≥ t;θ)A0

i (t)−M−1
∑M

m=1 I(C
〈m〉
i ≥ t;θ)exp[βTZi(t)]π0(t),

fπ2i (t;β,θ,M) = s(1)〈1〉(t;β,θ)Tπ0(t)fβi (β,θ,M), fβi (β,θ,M) = [Ω(β)]−1M−1
∑M

m=1 u
〈m〉
i (β,θ).

A consistent estimator of σM(s, t) is given by its empirical counterparts σ̂M(s, t) = n−1
∑n

i=1 ξ̂iM(s)ξ̂iM(t),

where

ξ̂iM(t) =
fπ1i (t; β̂

M
, θ̂,M)− f̂π2i (t; β̂

M
, θ̂,M)

M−1
∑M

m=1 S
(0)〈m〉(t; β̂

M
, θ̂)

where f̂π2i (t;β,θ,M) = [M−1
∑M

m=1 S
(1)〈m〉(t;β,θ)T ]π̂M0 (t)f̂

β

i (β,θ,M).

1.4 Simulation Studies

We evaluate the finite-sample performance of our method through simulation studies. For each

setting, n = 500 subjects are generated. Elements of the covariate vector, Z = (Z1, Z2)T , follow

either a Bernoulli(0.5) or a Uniform(0, 1) distribution. The target model is survival-out-of-hospital

probability, π(t) = π0(t)exp{βT0Z}, where π0(t) = 0.3−0.0025t, for t = 1, 2, ..., 100. This model

of the joint outcome can be generated through the hazard function for death time D, λD(t), and

P{H(t) = 0|D > t,Z}. We set λD(t) = λD = λD0 exp(αT0Z), where λD0 = 0.012 or 0.006

and α0 = (0.405,−0.405)T . In this case, the out-of hospital event given the subject is alive is

sampled from the conditional probability P{H(t) = 0|D > t,Z} = π(t)exp(λDt). Censoring

time C is generated from hazard function λC(t) = λC = λC0 exp(γT0Z), where λC0 = 0.008,

γ0 = (−0.693, 0.693)T , such that C and the target event I{H(t) = 0, D > t} are independent

given covariates Z.

In Table (1.1), we consider the scenario where censoring times are known for all subjects. For

Table (1.2) and (1.3), censoring time C is unknown in cases where death time D is observed, i.e.

C > D, and imputation method with M = 1 and 10 are evaluated. The baseline terminal event

hazard function λD0 are considered at 0.012 and 0.006, which result in about 49% and 68% subjects

are censored, respectively. Three different magnitudes of β0 are considered: 0.693, 0.405 and 0.

In each setting, the biases of β̂ and Π̂0(50) are very small, indicating that our estimators are

consistent. Moreover, empirical standard deviations (ESDs) are generally close to the average
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Table 1.1: Simulations Results for Known Censoring Time based on n = 500 and 500 Replicates

β̂

λD0 Z True BIAS ASE ESD ECP

0.012

Binary
(0.693, -0.693) (-0.005, 0.000) (0.069, 0.069) (0.069, 0.067) (0.964, 0.956)
(0.405, -0.405) (0.001, 0.002) (0.066, 0.066) (0.065, 0.067) (0.954, 0.956)
(0.000, 0.000) (-0.001, 0.000) (0.062, 0.062) (0.064, 0.062) (0.944, 0.956)

Uniform
(0.693, -0.693) (-0.002, -0.010) (0.114, 0.114) (0.120, 0.115) (0.942, 0.942)
(0.405, -0.405) (-0.014, 0.005) (0.110, 0.110) (0.104, 0.107) (0.966, 0.944)
(0.000, 0.000) (0.003, 0.009) (0.105, 0.105) (0.100, 0.108) (0.950, 0.944)

0.006

Binary
(0.693, -0.693) (0.001, 0.000) (0.048, 0.048) (0.049, 0.050) (0.944, 0.930)
(0.405, -0.405) (-0.001, 0.002) (0.046, 0.046) (0.046, 0.048) (0.952, 0.932)
(0.000, 0.000) (0.001, 0.002) (0.044, 0.044) (0.045, 0.042) (0.946, 0.968)

Uniform
(0.693, -0.693) (-0.005, 0.001) (0.080, 0.080) (0.084, 0.084) (0.936, 0.938)
(0.405, -0.405) (-0.003, -0.003) (0.077, 0.077) (0.081, 0.080) (0.946, 0.948)
(0.000, 0.000) (0.000, 0.001) (0.075, 0.075) (0.076, 0.078) (0.956, 0.932)

Π̂0(50)

λD0 Z True BIAS ASE ESD ECP

0.012

Binary

11.812

0.041 0.594 0.561 0.962
0.015 0.586 0.597 0.946
0.010 0.584 0.587 0.932

Uniform
0.075 0.957 1.021 0.942
0.054 0.940 0.875 0.958
-0.054 0.916 0.879 0.952

0.006

Binary
-0.023 0.435 0.436 0.958
0.002 0.426 0.428 0.952
-0.008 0.426 0.401 0.952

Uniform
0.026 0.683 0.732 0.926
0.045 0.670 0.697 0.950
0.007 0.661 0.674 0.924

asymptotic standard errors (ASEs), showing that our proposed variance estimator appear to be

applicable to finite samples. The empirical coverage probabilities (ECPs) are also around 0.95,

implying the accuracy of large-sample confidence intervals.

1.5 Real Data Analysis

We applied the proposed methods to data from the Dialysis Outcomes and Practice Patterns Study

(DOPPS) Phase 5. The DOPPS is a prospective, observational study designed to elucidate as-
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Table 1.2: Simulations Results for Unknown Proportional Censoring with M = 1 Time based on n =
500 and 500 Replicates

β̂
1

λD0 Z True BIAS ASE ESD ECP

0.012

Binary
(0.693, -0.693) (-0.005, 0.000) (0.069, 0.069) (0.070, 0.074) (0.938, 0.932)
(0.405, -0.405) (-0.001, 0.001) (0.066, 0.066) (0.070, 0.065) (0.944, 0.954)
(0.000, 0.000) (0.000, 0.003) (0.062, 0.062) (0.061, 0.061) (0.956, 0.956)

Uniform
(0.693, -0.693) (0.001, -0.008) (0.114, 0.114) (0.114, 0.116) (0.958, 0.942)
(0.405, -0.405) (-0.001, 0.002) (0.110, 0.110) (0.114, 0.100) (0.946, 0.960)
(0.000, 0.000) (0.003, 0.001) (0.106, 0.105) (0.104, 0.111) (0.956, 0.928)

0.006

Binary
(0.693, -0.693) (0.001, 0.002) (0.048, 0.048) (0.047, 0.049) (0.950, 0.942)
(0.405, -0.405) (-0.003, 0.002) (0.046, 0.046) (0.046, 0.045) (0.942, 0.960)
(0.000, 0.000) (0.002, -0.002) (0.044, 0.044) (0.045, 0.046) (0.950, 0.940)

Uniform
(0.693, -0.693) (0.001, 0.003) (0.080, 0.080) (0.078, 0.081) (0.948, 0.948)
(0.405, -0.405) (-0.006, -0.006) (0.078, 0.078) (0.075, 0.076) (0.958, 0.948)
(0.000, 0.000) (-0.001, -0.007) (0.075, 0.075) (0.074, 0.076) (0.952, 0.946)

Π̂1
0(50)

λD0 Z True BIAS ASE ESD ECP

0.012

Binary

11.812

0.036 0.593 0.616 0.926
0.010 0.585 0.597 0.936
-0.005 0.585 0.585 0.946

Uniform
0.041 0.958 1.001 0.934
0.028 0.938 0.936 0.948
-0.008 0.917 0.982 0.936

0.006

Binary
-0.021 0.432 0.418 0.950
0.000 0.428 0.429 0.956
-0.009 0.425 0.444 0.936

Uniform
-0.007 0.679 0.671 0.960
0.078 0.678 0.654 0.956
0.060 0.662 0.658 0.950

15



Table 1.3: Simulations Results for Unknown Proportional Censoring with M = 10 Time based on
n = 500 and 500 Replicates

β̂
10

λD0 Z True BIAS ASE ESD ECP

0.012

Binary
(0.693, -0.693) (0.003, 0.000) (0.068, 0.068) (0.067, 0.068) (0.952, 0.954)
(0.405, -0.405) (0.004, -0.001) (0.065, 0.064) (0.062, 0.064) (0.952, 0.952)
(0.000, 0.000) (0.004, -0.001) (0.060, 0.060) (0.059, 0.062) (0.948, 0.954)

Uniform
(0.693, -0.693) (-0.002, 0.008) (0.111, 0.111) (0.114, 0.107) (0.936, 0.954)
(0.405, -0.405) (-0.001, 0.007) (0.107, 0.107) (0.112, 0.103) (0.934, 0.960)
(0.000, 0.000) (-0.003, 0.007) (0.103, 0.102) (0.107, 0.098) (0.936, 0.968)

0.006

Binary
(0.693, -0.693) (-0.002, 0.003) (0.047, 0.047) (0.047, 0.046) (0.948, 0.950)
(0.405, -0.405) (0.000, 0.001) (0.045, 0.045) (0.046, 0.043) (0.954, 0.952)
(0.000, 0.000) (0.000, 0.001) (0.043, 0.043) (0.043, 0.042) (0.952, 0.960)

Uniform
(0.693, -0.693) (-0.001, 0.000) (0.078, 0.078) (0.079, 0.080) (0.950, 0.934)
(0.405, -0.405) (-0.001, 0.000) (0.075, 0.075) (0.076, 0.077) (0.954, 0.936)
(0.000, 0.000) (-0.001, 0.001) (0.073, 0.073) (0.073, 0.076) (0.958, 0.944)

Π̂10
0 (50)

λD0 Z True BIAS ASE ESD ECP

0.012

Binary

11.812

-0.019 0.575 0.583 0.932
-0.017 0.569 0.574 0.940
-0.015 0.566 0.571 0.946

Uniform
-0.042 0.923 0.900 0.952
-0.039 0.906 0.880 0.952
-0.031 0.889 0.870 0.944

0.006

Binary
-0.013 0.421 0.411 0.954
-0.002 0.417 0.408 0.954
-0.001 0.415 0.407 0.954

Uniform
0.015 0.662 0.669 0.952
0.015 0.654 0.660 0.952
0.013 0.645 0.661 0.946
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pects of hemodialysis practice that are associated with the best outcomes for hemodialysis patients

[Young et al., 2000]. In particular, Phase 5 data were collected between 2012 and 2015. Our

research interests include identifying demographic and clinical variables that are associated with

survival-out-of-hospital probability, and characterizing the underlying survival-out-of-hospital pro-

cess.

The study population for DOPPS is of prevalent patients. In the interests of having t reflect

time-since-dialysis-initiation instead of time-since-DOPPS-entry, we restricted our study sample

to include the n = 5, 298 patients who entered DOPPS within 3 months of initiating dialysis.

Patients included in our analysis were from 470 hemodialysis units across 11 different countries,

with the counties including: Belgium, Canada, China, Gulf Coast Consortium, Germany, Italy,

Japan, Spain, Sweden, the United Kingdom and the U.S.. Covariates include age, race, gender,

height, time on dialysis at study entry, as well as the following list of comorbid conditions: coro-

nary artery disease (CAD), cancer, cardiovascular disease (CVD), stroke, congestive heart failure

(CHF), diabetes, hypertension, chronic obstructive pulmonary disease (COPD), psychiatric disor-

der and peripheral vascular disease (PVD).

Since hospitalization and death times are recorded in days, t represents day (i.e, day post

DOPPS entry) in our analysis. The mean number of hospital admissions was 0.595 per patient,

while the median length of stay per visit was 5 days. Observed follow-up time had a median

of 326 days. Censoring time cannot realistically be considered to be fixed, since patients are fre-

quently lost to follow-up for reasons other than death or closure of the DOPPS database. To recover

missing censoring time, we created M = 10 imputed data sets as described in Section 1.2.2.

At some early time points (i.e., t < 30 days), π̂0(t) > 1 due to hospitalization and mortality

rates being low. We therefore set such probabilities to 1. As shown in Table (1.4), coronary

artery disease (p = 0.042) and cancer (p = 0.043) have significant negative effects on survival-

out-of-hospital. Patients from Italy have significantly lower survival-out-of-hospital probability

(p = 0.046) than patients from the U.S. (reference). For continuous variables, age had a significant

negative effect (p = 0.006), while height had significant positive effect (p = 0.031). The estimated
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Figure 1.1: Fitted Baseline Survival-Out-of-Hospital Probability

baseline survival-out-of-hospital probability π̂10
0 (t) is shown in Figure (1.1). The curve generally

decreases as follow-up time increases, although the decrease is not monotone.

1.6 Concluding Remarks

In this report, we propose semiparametric methods for analyzing the probability of survival-out-

of-hospital, a novel end-point pertinent to a frequently arising instance of the recurrent/terminal

event data structure. Estimation proceeds through estimating equations which are analogous to

those employed in Cox regression. Multiple imputation is implemented to accommodate missing

censoring times that are unobserved due to the subject dying. Asymptotic properties of estimators

are derived, and simulations studies show the proposed methods have satisfactory finite sample

performance.

We applied the methods to data from Phase 5 of the Dialysis Outcomes and Practice Patterns

Study in order to identify significant predictors of survival-out-of-hospital. Coronary artery dis-

ease, cancer and psychiatric disorder are found to be comorbidity factors with significant negative

effects on survival-out-of-hospital events for a typical DOPPS patient in the U.S.. Patients at Italy

have significantly lower survival-out-of-hospital probability than patients in the U.S.. Moreover,

increasing age had a significantly negative effect, while height had significantly positive effect.

A key advantage of the proposed methods is that the baseline probability process does not
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need to be specified. This is important, since this temporal process will often represent a nuisance

parameter. Modeling the baseline parametrically could be tedious to carry out accurately, and

could lead to bias in the regression parameter (of chief interest) if an incorrect parametric form is

assumed. Note that, although the proposed baseline estimator shares a structure similar to that of

the Breslow (1972) estimator, there are some important differences. First, our baseline estimator

is not monotone, consistent with the temporal process it is targeting. Second, the estimator can be

computed for any value of t, since the baseline probability reflects prevalence, as opposed to an

intensity or occurrence rate.

An alternative estimator of baseline probability π0(t) is given by the empirical estimator π∗0(t) =∑n
i=1 I{Hi(t) = 0, Di > t,Ci ≥ t}I(Zi = 0)/

∑n
i=1 I(Ci ≥ t,Zi = 0) if censoring time Ci is

known or fixed. However, π∗0(t) would generally be less efficient. Moreover, the estimator would

be impossible to compute when few or none of the subjects have covariates at the baseline level,

which would generally be the case in the presence of continuous predictors.

The multiple imputation method we use for unobserved censoring times represents so-called

improper imputation, in the sense that the imputation model parameters are fixed at their estimated

values. For an alternative strategy, proper imputation could also be considered, where the impu-

tation model parameters are drawn from their estimated predictive posterior distribution [Little

and Rubin, 2002]. In such cases, more randomness are introduced to the model since imputation

parameters are drawn instead of being fixed. Both imputation methods would lead to consistent

estimators of covariate effects but, potentially, with slightly different efficiency [Schaubel and Cai,

2006]. The proposed methods are valid under single imputation, M = 1, which would not be

the case under proper imputation. Note that the deterministic variance structures of β̂
1

and π̂1
0

for single imputation are generally larger than that for multiple imputations β̂
M

and π̂M0 , i.e.,

Σ′1(β0) > Σ′M(β0) and σ′1(t, t) > σ′M(t, t), for M > 1, which can be proved through the Cauchy-

Schwartz inequality. An intuitive argument is that β̂
M

and π̂M0 are the means of M imputed

estimators, and are generally more efficient than single imputed estimators.

We proposed the Cox (1972) model for imputing censoring times, due to its flexibility and dom-
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inance in the analysis of censored epidemiologic data. Parameters estimated through the proposed

methods are consistent only provided the censoring model is correctly specified. Assumptions

on the censoring model could be assessed through standard techniques, such as Schoenfeld and

Martingale residuals (Kalbfleisch and Prentice [2002]).

A potential problem of our method is that π̂0(t) could be larger than one, for example when

hospitalization and mortality rates are low as we encounter in the real data analysis. In such

cases, it may be useful to model P{Hi(t) = 1 or Di ≤ t|Zi(t)} = 1 − πi(t). Future research

could involve the use of a different link function, such that πi(t) = π0(t)g−1{βT0Zi(t)}, where

g(·) is a continuous function. Note that our method is a special case when g−1(·) is the exponential

function. In particular, choosing g−1(·) as a function mapping from real line to [1,∞), for example

exp(·) + 1, results in π̂0(t) having the desirable property of being bounded by 0 and 1.
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Table 1.4: Analysis of DOPPS Data: Covariate Effects on the Survival-Out-of-Hospital (based on M =
10 Imputations)

Covariate β̂ ŜE(β̂) p exp(β̂)
Age (per 5 years) -0.003 0.001 0.006* 0.997

Time on dialysis (years) -0.023 0.037 0.549 0.977
Height (per 10 cm) 0.009 0.004 0.031* 1.009

Female 0.009 0.008 0.339 1.009
CAD -0.027 0.012 0.042* 0.973

Cancer -0.034 0.015 0.043* 0.966
CVD -0.030 0.016 0.117 0.971
Stroke -0.012 0.018 0.534 0.989
CHF -0.005 0.009 0.547 0.995

Diabetes 0.007 0.006 0.273 1.007
Hypertension 0.001 0.006 0.625 1.001

COPD -0.038 0.021 0.089 0.962
Psychiatric Disorder -0.030 0.017 0.108 0.970

PVD -0.008 0.011 0.422 0.992
Belgium -0.012 0.023 0.609 0.988
Canada -0.010 0.016 0.520 0.990
China -0.007 0.017 0.678 0.993
Gulf -0.016 0.016 0.388 0.984

Germany -0.021 0.016 0.279 0.980
Italy -0.046 0.022 0.046* 0.955
Japan -0.000 0.012 0.807 1.000
Spain 0.003 0.022 0.684 1.003

Sweden -0.008 0.020 0.714 0.992
UK 0.004 0.014 0.498 1.004

a: Coronary artery disease
b: Cardiovascular disease
c: Congestive heart failure
d: Chronic obstructive pulmonary disease
e: Peripheral vascular disease
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CHAPTER 2

Semiparametric Regression Methods for Temporal

Processes subject to Dependent Censoring

2.1 Introduction

In biomedical applications, the response of interest can often be cast as an binary indicator process

indexed by time. We consider the setting wherein the indicator at time t takes the value 1 (denot-

ing ‘success’ in some form) when the patient is alive and in a particular state, and 0 otherwise.

Examples include the following: (i) In a study of leukaemia patients, the response could be coded

as 1 if the patient is alive and in remission t days following diagnosis, and 0 otherwise. (ii) In a

study of morbidity among end-stage renal disease patients, the response at time t equals 1 if the

patient is alive-and-not-hospitalized at time t, and 0 otherwise. (iii) As another example from the

organ failure setting, an end-stage liver disease (ESLD) patient could be coded as having response

1 if active on the liver transplant waiting list (at time t days after initial wait list registration), and

0 otherwise. When covariate effect are of chief interest, temporal process regression is a natural

way to cast the afore-described data structure. Although several methods amenable to this data

structure have been developed in the last 10-15 years (arguably beginning with the work of Fine

et al. [2004]), relatively few modeling choices are available relative to the frequency with which

this data structure arises in practice. In this report, we develop semiparametric process regression

methods which can be used to model settings such as (i), (ii) and (iii) above, in a flexible manner

and making fewer assumptions regarding the censoring process.
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Formalizing the above-described data structure, suppose that (for a hypothetical subject) D

represents time of death, and E(t) is an indicator taking the value 1 if the subject is in the state

of interest at follow-up time t (and 0 if not). We can define A(t) = E(t)I(D > t), such that the

survival time in the state of interest, DA, can be written DA =
∫

[0,∞)
A(t)dt =

∫
[0,D]
E(t)dt. This

can be considered a special case of quality adjusted survival time [Gelber et al., 1989, Glasziou

et al., 1990], where ‘quality’ is defined as yes versus no (1 vs. 0). Nonparametric methods [Zhao

and Tsiatis, 1997, Huang and Louis, 1999, Murray and Cole, 2000] and regression methods [Cole

et al., 1993, Laan and Hubbard, 1999, Andrei and Murray, 2007, Zhao and Wang, 2008] have been

proposed to estimate this quality of life measure. In medical cost analysis, if A(t) denotes the

cost at time t, then DA corresponds to the total cost for a patient from the start of treatment to

death without censoring. Lin et al. [1997], Bang and Tsiatis [2000], Willan et al. [2002] focus

on the estimation of mean cost, E(DA). In this report, we do not wish to add to the rich body of

techniques for analyzing more general versions ofDA. Instead, we develop methods for the related

but distinct goal of analyzing the process, E[A(t)].

The methods we propose are motivated by the end-stage liver disease (ESLD) setting. The

preferred therapy for ESLD is deceased-donor liver transplantation. However, due to a shortage of

donor livers, medically suitable patients are placed on a waiting list. A wait-listed patient is eligible

to receive a transplant only when ‘active’; patients may be deactivated for several reasons, most of

which are related to a decline in health status which renders the patient at least temporarily unsuit-

able for transplantation. Hence, keeping the patient active on the wait list represents a successful

outcome, in the sense that the patient not only continues to survive but also remains eligible for

the preferred treatment. A patient’s active process may be censored by liver transplantation, with

such censoring representing dependent censoring due to mutual correlation between A(t) and liver

transplantation. Note that, due to the nature of the liver allocation system in the U.S., a patient’s

rank on the wait list is determined by their Model for End-stage Liver Disease (MELD) score. In

particular, the wait list is sequenced in decreasing order of (current) MELD score. Since higher

MELD scores correspond to higher pre-transplant mortality, a model of pre-transplant outcomes
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based on baseline (time 0) patient characteristics will generally be subject to dependent censoring.

The response we consider could be framed as a temporal process, A(t), where t is continuous.

In contrast to a counting process, A(t) need not be a non-decreasing function. In the context of our

afore-described motivating example, we let A(t) be the indicator of being both alive and active on

the transplant waiting list at time t. In several existing methods developed for temporal process re-

gression, the expectation ofA(t) is linked to linear components through a continuous link function;

for example, Fine et al. [2004], Yan and Fine [2005], Yan and Huang [2009]. This could be viewed

as a generalized linear model indexed by time. The regression coefficients β(t) could be solved

at observed jump points. In our work, we consider a semiparametric model for E[A(t)], where

covariates have multiplicative effects on a completely unspecified probability function indexed by

time.

In this manuscript, we develop semiparametric regression methods for a temporal process sub-

ject to dependent censoring. Two types of censoring are considered. Specifically, we let C1 denote

censoring which is independent conditional on external covariates. Dependent censoring, denoted

by C2, is correlated with the process of interest even given covariates introduced in the process

regression model. To avoid bias due to dependent censoring, we derive a variant of Inverse Proba-

bility of Censoring Weighting (IPCW; Robins and Rotnitzky [1992]) based on a semiparmametric

additive hazard model [Lin and Ying, 1994]. We also derive a stabilized version of the proposed

inverse weights [Hernán et al., 2000, Robins and Finkelstein, 2000, Zhang and Schaubel, 2011] to

simplify calculations and, hence, considerably reduce computing time in large data sets. Analo-

gous to a weighted partial likelihood score equation [Cox, 1972b, Sasieni, 1993], the regression

estimator could be estimated by the solution to an estimating equation free of the baseline proba-

bility.

Our methods have several novel features. First, the baseline probability function is represented

in the model nonparametrically. This is a potentially big advantage, since covariate effects typically

take center stage in process regression (and other regression settings), with little interest in mod-

eling the baseline probability. We essentially profile out the baseline probability function, which
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results in major computation reduction relative to a fully parametric probability model. Second,

the response indicator we consider is the joint event of survival and state occupation. The limited

number of process regression methods which considered a terminating event typically modeled the

state indicator conditional on survival. Notwithstanding the utility of such approaches, it is useful

to develop methods for the joint outcome of survival and state occupation (a response for which

few methods have been developed). Third, existing process regression methods typically assume

independent censoring, while the proposed methods allow for both independent and dependent

censoring. Fourth, in contrast with the vast majority of methods which accommodate dependent

censoring, we construct the inverse weight under an additive hazards model.

The remainder of the article is organized as follows. We set up notation and describe our

proposed methods in the next section. In Section 3, we derive the asymptotic properties of the

regression parameter estimator and baseline probability function estimator, with proofs provided

in the Supplemental Materials document. Simulation studies are performed to evaluate our method

in finite samples in Section 4 under various scenarios. In Section 5, we apply the proposed methods

to national ESLD data. Finally, concluding remarks are given in Section 6.

2.2 Model and Methods

We begin by formalizing the data structure described in Section 1. We then describe the proposed

inference methods.

2.2.1 Notation and Assumed Models

Suppose that there are n independent subjects (i = 1, 2, . . . , n). Let Di be the death (terminal

event) time of subject i, and let Ei(t) be a indicator function taking value 1 when subject i is

occupying the state of interest at follow-up time t. The outcome of interest is the joint event, being

alive and occupying the state of interest, which we denote by Ai(t) = Ei(t)I(Di > t). In the end-

stage liver disease example, Di represents death (in the absence of liver transplantation), while

25



Ei(t) = 1 if subject i is active on the liver transplant waiting list as of t days following initial wait

list registration, and 0 otherwise. We let Zi(t) be a p-dimensional covariate vector, with any time-

dependent elements being external [Kalbfleisch and Prentice, 2002]. The probability of interest is

the probability that a subject i is alive and occupying the state of interest at time t,

πi(t) = P [Ai(t) = 1|Zi(t)]. (2.1)

We assume that the covariateZi(t) has a multiplicative effect on a completely unspecified baseline

probability function, π0(t), such that

πi(t) = π0(t)exp[βT0Zi(t)], (2.2)

where β0 is the p-dimensional parameter vector of chief interest. Model (2.2) is reminiscent of

the Cox proportional hazards model. However, there are some important differences, including the

fact that πi(t) is interpreted as a marginal probability, rather than a conditional probability rate,

and that πi(t) need not be monotone.

Two types of censoring are considered. Let C1i be the administrative censoring, which is

assumed to be independent of Ai(t) given Zi(t); i.e.,

E[Ai(t)|Zi(t), C1i, C1i ≥ t] = E[Ai(t)|Zi(t)]. (2.3)

This is also known as covariate-dependent censoring, in the sense that C1i is allowed to depend on

the covariate employed in the model of interest. We let C2i represent dependent censoring time;

that is, C2i is not assumed to be conditionally independent Ai(t) given Zi(t). For example, in the

context of our motivating example, a patient’s pre-transplant Ai(t) process is censored if and when

the patient receives a liver transplant; i.e., the liver transplant hazard and mortality hazard may be

correlated, even conditional on Zi(t). We let Ci = C1i ∧ C2i represent the censoring time, where

a ∧ b = min(a, b). Here we consider follow-up time t ∈ [0, τ ], where τ is a pre-specified constant
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satisfying Pr(Ci ≥ τ) > 0 for i = 1, 2, ..., n. In practice, τ could be chosen as the maximum

observed censoring time. To further characterize C2i, we let X†i (t) represent the time-dependent

covariate at time t. Note that X†i (t) would typically contain the elements of Zi(t), as well as

additional factors (the most important being internal time-varying covariates assumed to predict

both Di and C2i). We denote the covariate history as of time t by X̃ i(t) = {X†i (s), s ∈ [0, t)}.

Finally, we let λC2
i (t) be the cause specific hazard function of C2i which is defined as

λC2
i (t) = lim

δ→0

1

δ
Pr[t ≤ C2i < t+ δ|C2i ≥ t,Di ≥ t, X̃ i(t)]. (2.4)

We assume that, conditional on X̃ i(t), the cause-specific hazard of C2i at time t does not further

depend on the possibly unobserved, Di or Ei(u), s ∈ (t, τ ], i.e.,

λCi {t|X̃ i(t)} = λCi {t|X̃ i(t), C1i, C1i ≥ t,Di, Di ≥ t, Ei(u), u ∈ (t, τ ]}. (2.5)

This represents the critical ‘no unmeasured confounders‘ for censoring assumption [Robins, 1993,

Robins and Finkelstein, 2000] in our context. The following semiparametric additive hazards

model [Lin and Ying, 1994] is assumed for dependent censoring C2i,

λC2
i (t;θ0) = λC2

0 (t) + θT0X i(t), (2.6)

where λC2
0 (t) is the baseline hazard function forC2i and the covariateX i(t) is chosen (e.g., through

model selection techniques) to satisfy λC2
i [t|X i(t)] = λC2

i [t|X̃ i(t)]. Note that X i(t) need not be

based on the covariate status at time t and could, in fact, contain elements representing the covariate

history. Finally, we define ΛC2
i (t) =

∫ t
0
λC2
i (s)ds as the cumulative hazard function corresponding

to C2i.

The additive hazards model stated in (2.6) facilitates the calculation of the weight function,

since the baseline cumulative hazard function can be canceled out after a particular stabilizing

factor introduced. Detail is provided later in our report on this matter.
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In the next subsection, we describe the proposed methods for the scenario where independent

censoring time C1 is known. We then subsequently describe the proposed techniques for the more

frequently occurring set-up when C1 is not known.

2.2.2 Known Censoring Time

We first consider the case where the independent censoring time, C1i, is known for all subjects. In

such cases, C1i is known even if Di occurs first. This set-up would apply, for example, in a clinical

trial with staggered entry but no drop-out or random loss to follow-up. This does not match most

observational data, but it is a useful starting point in terms of outlining the proposed estimation

techniques. Consider the following two estimating equations,

n∑
i=1

∫ τ

0

Zi(t)[Ai(t)− πi(t)]I(Ci ≥ t)dt (2.7)

n∑
i=1

[Ai(t)− πi(t)]I(Ci ≥ t). (2.8)

These two estimating equations do not have expectation zero under model assumption (2.2) and

conditionally independent censoring assumption (2.3) of C1i, since dependent censoring C2i is

potentially correlated with Ai(t), even conditional on Zi(t). To handle this issue, we utilize In-

verse Probability of Censoring Weighting (IPCW) [Robins and Rotnitzky, 1992] to accommodate

dependent censoring. Define

WA
i (t;θ0) = I(C2i ≥ t)exp{ΛC2

i [t ∧Di;θ0]} (2.9)

as, heuristically, the inverse probability of being uncensored by C2i as of time t. Note that, in the

data structure we consider, dependent censoring cannot occur after death. This make sense intu-

itively, from the perspective that C2i is driven by internal factors (including a subject’s survival).

For instance, in our motivating example, a patient cannot receive a liver transplant after dying.
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Now, consider the revised estimating equations,

n∑
i=1

∫ τ

0

Zi(t)[Ai(t)− πi(t)]I(C1i ≥ t)WA
i (t;θ0)dt (2.10)

n∑
i=1

[Ai(t)− πi(t)]I(C1i ≥ t)WA
i (t;θ0). (2.11)

Under the no-unmeasured-confounders assumption given in (2.5), these two weighted estimat-

ing equations have expectation zero. Basically, the proof follows from the fact that WA
i (t;θ0)

can be written as one minus a Martingale component of C2i, which is independent of [Ai(t) −

πi(t)]I(C1i ≥ t) conditional onX i(t) [Robins and Finkelstein, 2000]. Detailed proof are provided

in the Section 4.6 of Supplemental Materials.

In contrast to the majority of the existing literature, we derive a stabilizer that is merely a

function of t, which is valid since E{g(t)[Ai(t) − πi(t)]I(C1i ≥ t)WA
i (t;θ0)|Zi(t)} = 0 will

hold. We denote g(t) = exp[−
∫ t∧Di

0
dΛC2

0 (s;θ0)] for this purpose, such that

WB
i (t;θ0) = I(C2i ≥ t)exp

{
ΛC2
i [t ∧Di;θ0]−

∫ t∧Di

0

dΛC2
0 (s;θ0)

}
. (2.12)

Under the assumed additive hazard model from (2.6), WB
i (t;θ0) = exp[

∫ t∧Di

0
θT0X i(s)ds] since

ΛC2
0 (t) cancels out. This nice property enables us to get unbiased estimating equations without

estimating the baseline cumulative hazard ΛC2
0 (t) and, hence, should increase computational effi-

ciency.

Solving (2.11) for π0(t) by treating β as known, then substituting the estimated π0(t) into

(2.10) gives us the following estimating equation,

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β,W (θ0)]}I(C1i ≥ t)Wi(t;θ0)dt = 0, (2.13)

where Z̄[t;β,W (θ)] = Z(1)[t;β,W (θ)]/Z(0)[t;β,W (θ)],Z(k)[t;β,W (θ)] = n−1
∑n

i=1Zi(t)
⊗kI(C1i ≥

t)Wi(t;θ)exp{βTZi(t)}, for k = 0, 1, 2, where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT , and with
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Wi(t;θ) set to either WA
i (t;θ) or WB

i (t;θ), depending on which is preferred for the application at

hand. Having estimated β0 through the root of equation (2.13), denoted by β̂, we could estimate

π0(t) by solving (2.11),

π̂0(t) =

∑n
i=1Ai(t)I(C1i ≥ t)Wi(t;θ0)∑n

i=1 I(C1i ≥ t)Wi(t;θ0)exp[β̂
T
Zi(t)]

. (2.14)

Furthermore, one could also define the integral of baseline probability function up to time L,

P0(L) =

∫ L

0

π0(t)dt, (2.15)

which could be interpreted as the restricted mean time survived in the state of interest for subject

with covariate equal to the reference level for all elements. The quantity P0(L) is estimated by

P̂0(L) =
∫ L

0
π̂0(t)dt.

Based on model (2.6), one could estimate θ0 and ΛC2
i (t;θ0) by θ̂ and Λ̂C2

i (t; θ̂). From the

works of Lin and Ying [1994], θ̂ and Λ̂C2
i (t; θ̂) are given by

θ̂ =

∑n
i=1

∫∞
0
Yi(t){X i(t)− X̄(t)}dNC2

i (t)∑n
i=1

∫∞
0
Yi(t){X i(t)− X̄(t)}⊗2dt

(2.16)

dΛ̂C2
0 (t; θ̂) =

∑n
i=1{dN

C2
i (t)− Yi(t)θ̂

T
X i(t)dt}∑n

i=1 Yi(t)
, (2.17)

where NC2
i (t) = I(C2i ≤ t ∧Xi), dNC2

i (t) = NC2
i (t− + dt) − NC2

i (t−), Yi(t) = I(Xi ≥ t) and

Xi = Di ∧ Ci. Let X(k)(t) = n−1
∑n

i=1X i(t)
⊗kYi(t), X̄(t) = X(1)(t)/X(0)(t). After that, the

estimated weights ŴA
i (t; θ̂) or ŴB

i (t; θ̂) can be calculated.

2.2.3 Random Censoring Time

Next we consider a more realistic scenario where independent censoring time is random, with the

randomness implying that C1i is unknown when Di occurs first. Setting the missing censoring

time to either Di or the maximum follow up time, τ , would introduce bias, since the indicator
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I(C1i > Di) is correlated with the target process. As for C2i, if Di happens first, then C2i could be

treated as infinity or considered to be subject to a dependent censoring hazard of 0 for t > Di. The

reason is that C2i relies on time varying covariate vector X i containing internal covariates, which

would shut down if death occurs. In this case, the hazard for C2i is zero after Di. Moreover, the

inverse weighting function Wi(t;θ0) remains constant after Di if it is observed earlier than Ci.

Our solution is to impute missing C1i from its assumed model [Rubin, 2004]. Specifically, we

assume it follows the proportional hazards model

λC1
i (t;γ0) = λC1

0 (t)exp[γT0Zi(t)]. (2.18)

For subjects with Ci ≤ Di, we set the imputed censoring time as the known censoring time. In the

mth imputed dataset, for subjects with Ci > Di, we impute Ĉ〈m〉1i from the estimated conditional

survival function,

Ĝ(t; γ̂) = I(t ≥ Di)exp[−Λ̂C1
i (t; γ̂) + Λ̂C1

i (Di; γ̂)].

Standard partial likelihood [Cox, 1975] techniques can be fitted to the observed censoring time

data {Xi, I(C1i ≤ Di ∧ C2i),Zi(t); t ∈ [0, τ ]}ni=1 to compute γ̂. The baseline cumulative

hazard function for ΛC1
0 (t) is estimated through the method of Breslow [1972]. Then, we set

C
〈m〉
1i = I(Ci ≤ Di)Ci + I(Ci > Di)Ĉ

〈m〉
1i . In total we will create M imputation datasets. Within

each imputed datasetm, we substitute C〈m〉1i for C1i and set C2i as τ ifDi < C1i. Estimators arising

from the mth imputed data set are denoted by β̂
〈m〉

and π̂〈m〉0 (t). We then estimate β0 and π0(t) by

averaging the M imputation-specific estimators,

β̂
M

= M−1

M∑
m=1

β̂
〈m〉

(2.19)

π̂M0 (t) =

∑M
m=1

∑n
i=1Ai(t)I(C

〈m〉
1i ≥ t)Wi(t;θ0)∑M

m=1

∑n
i=1 I(C

〈m〉
1i ≥ t)Wi(t;θ0)exp[Zi(t)T β̂

M
]
. (2.20)

Note that the multiple imputation method we employ does not sample the parameters assumed

to underly the C1 distribution but, instead, imputes C〈m〉1i values from the same estimated survival
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curve. This procedure has been referred to as Improper Imputation [Wang and Robins, 1998]. As a

consequence of this choice, the well-established variance formula for multiple imputation [Rubin,

2004] does not apply, necessitating an explicit derivation of variances estimators corresponding to

(2.19) and (2.20). These issues are dealt with in the next section, along with our treatment of the

large-sample properties of the proposed estimators.

Some commentary regarding our combination of inverse weighting and imputation is useful

at this juncture. The sources of censoring, C1 and C2, have very different implications in terms

of their impact on parameter estimation. Due to the marginal nature of πi(t), subjects contribute

relevant follow-up until time C1i, which may occur after Di. A similar issue arises in Gray [1988]

and Fine and Gray [1999] in the context of inference targeting the subdistribution hazard function

in the competing risks setting. Both Gray [1988] and Fine and Gray [1999] used a weight function,

rather then imputation. It is important to note that the weight was not an inverse weight; if anything,

it could be described as an ‘inverse-inverse’ weight, since it corresponds to a conditional survival

probability (as opposed to the inverse thereof). Essentially, the risk sets contributions are weighted

with respect the conditional probability of remaining uncensored at time t (consider t > Di), given

that Ci1 > Di. From this perspective, imputing C1i does in fact appear consistent in spirit with

the weights use in subdistribution modeling, which can be cast heuristically as mean imputation

at the risk set level. In fact, Ruan and Gray [2008] later proposed subdistribution hazard methods

which involved imputing censoring times. An analogous imputation scheme was later employed

by Schaubel and Zhang [2010].

Note that C1i marks the end of relevant follow-up and, hence, is a variate we want to observe.

Provided we either observe C1i or can validly impute its value, the [0, C1i] experience could be

analyzed without inverse weighting if not for dependent censoring, C2i. In line with the setting

where IPCW is typically employed, we inverse weight the uncensored experience to reflect data

that would have been observed if C1i were the only source of censoring. The events Di and C2i

serve as competing risks in the sense of Prentice et al. [1978]. From this angle, dependent censoring

does not occur after Di, hence the weight function not incrementing for t > Di, per (2.9).
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2.3 Asymptotic Properties

We begin by considering the case where independent censoring time C1 is known. The large

sample properties are provided for the weight, WB
i (t;θ0) = exp[

∫ t∧Di

0
θT0X i(s)ds], with results

for WA
i (t;θ0) given in the Supplemental Materials. In addition to the regularity conditions for

proportional hazards model of C1i and additive hazards model of C2i (each provided in the Section

3 of Supplemental Materials), we also assume the following set of regularity conditions:

(a) {Ai(t), Xi,Zi(t),X i(t), I(C1i ≤ Di∧C2i), I(C2i ≤ Di∧C1i); t ∈ [0, Xi]} are independent

and identically distributed for i = 1, 2, . . . , n.

(b) Pr(Ci ≥ τ) > 0 for i = 1, 2, ..., n, where τ is a pre-specified constant.

(c) |Zij(0)|+
∫ τ

0
|dZij(t)| < cZ <∞ almost surely for i = 1, 2, ..., n, j = 1, 2, ..., p; i.e.,Zi(t)

has bounded total variation.

(d) Ω(β0,W ) = E[
∫ τ

0
{z(2)(t;β0,W )/z(0)(t;β0,W ) − z̄(t;β0,W )⊗2}I(C1 ≥ t)A1(t)dt] is

positive definite.

(e) For β ∈ Bδ, where Bδ is a small neighborhood around β0, z(0)(t;β,W ), and z(1)(t;β,W )

are bounded away from zero.

(f) For β ∈ Bδ, k = 0, 1, 2, z(k)(t;β,W ) are continuous uniformly on t ∈ [0, τ ], and are

bounded on [0, τ ]×Bδ for WA(θ0) and WB(θ0).

We summarize the essential large sample properties of β̂ and π̂0(t) in the following theorems.

Proofs are sketched in the Supplemental Materials.

Theorem 5. Under assumptions (2.2), (2.3), and (2.5), β̂ is a consistent estimator of β0, and

n1/2(β̂ − β0) converges in distribution to a mean-zero normal random variable with a variance-
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covariance matrix Σ(θ0,β0) = E[f
βB
1 (θ0,β0)⊗2], where

f
βB
i (θ,β) = Ω[β,WB(θ)]−1[Φ

βB
1i (θ,β) + Φ

βB
2i (θ,β)]

Φ
βB
1i (θ,β) =

∫ τ

0

{Zi(t)− z̄[t;β,WB(θ)]}WB
i (t;θ)dMi(t;β)

Φ
βB
2i (θ,β) = HB[β,θ,WB(θ)][ΩC2 ]−1uC2

i (θ).

Here [ΩC2 ]−1uC2
i (θ0) is the influence function for additive hazard model of C2i, and is de-

fined in the Supplemental Materials along with dMi(t;β) and HB[β,θ,W ]. The variance es-

timator Σ̂(θ̂, β̂) = n−1
∑n

i=1 f̂
βB

i (θ̂, β̂)⊗2 could be obtained by substituting limiting values in

Σ(θ0,β0) by their corresponding empirical counterparts. However, the computation of Σ̂(θ̂, β̂)

are tedious due to the complexity of Φ̂
βB

2i (θ̂, β̂). An attractive alternative is to treat estimated

weights function ŴB
i (t;θ) as fixed, and estimate Σ(θ0,β0) by n−1

∑n
i=1 Φ̂

βB

1i (θ̂, β̂)⊗2, where

Φ̂
βB

1i (θ,β) =
∫ τ

0
{Zi(t) − Z̄[t;β, ŴB(θ)]}ŴB

i (t;θ)dM̂i(t;β). In this case, the proposed vari-

ance estimator will be conservative in estimating the true variance [Hernán et al., 2000, Pan and

Schaubel, 2008, Zhang and Schaubel, 2011].

We now describe the asymptotic properties of π̂0(t).

Theorem 6. Under assumptions (2.2), (2.3), and (2.5), n1/2(π̂0−π0) converges weakly to a mean-

zero Gaussian process with a variance and covariance matrix between n1/2[π̂0(s) − π0(s)] and
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n1/2[π̂0(t)− π0(t)] given by σ(s, t,θ0,β0) = E[ξ1(s,θ0,β0)ξ1(t,θ0,β0)], where

ξi(t,θ,β) =
f̃π1,Bi (t,θ)− [Ef̃π1,B1 (t,θ)]f̃π2,Bi (t,θ,β)

E[f̃π2,B1 (t,θ,β)]

f̃π1,Bi (t,θ) = f̃π11,Bi (t,θ) + f̃π12,Bi (t,θ)

f̃π11,Bi (t,θ) = I(C1i ≥ t)Ai(t)W
B
i (t;θ)

f̃π12,Bi (t,θ) = E[I(C11 ≥ t)A1(t)WB
1 (t;θ)

∫ t

0

XT
1 (s)Y1(s)ds][ΩC2 ]−1uC2

i (θ)

f̃π2,Bi (t,θ,β) = f̃π21,Bi (t,θ,β) + f̃π22,Bi (t,θ,β) + f̃π23,Bi (t,θ,β)

f̃π21,Bi (t,θ,β) = I(C1i ≥ t)eβ
TZi(t)WB

i (t;θ)

f̃π22,Bi (t,θ,β) = E[I(C11 ≥ t)eβ
TZ1(t)WB

1 (t;θ)

∫ t

0

XT
1 (s)Y1(s)ds][ΩC2 ]−1uC2

i (θ)

f̃π23,Bi (t,θ,β) = z(1)[t;β,WB(θ)]Tf
βB
i (θ,β).

Similar to the calculation of Σ̂(θ̂, β̂), we also treat the estimated weights function as fixed.

Therefore, the variance estimator σ̂(s, t, θ̂, β̂) is calculated by estimating f̃π1,Bi (t,θ0) by f̂π11,Bi (t, θ̂),

and f̃π2,Bi (t,θ0,β0) by f̂π21,Bi (t, θ̂, β̂), where f̂π11,Bi (t,θ) = I(C1i ≥ t)Ai(t)Ŵ
B
i (t;θ), f̂π21,Bi (t,θ,β) =

I(C1i ≥ t)eβ
TZi(t)ŴB

i (t;θ).

Next we consider the scenario where C1i is not known for all i, with M imputed censoring

times used for subjects where C1i is not observed.

Theorem 7. Under assumptions (2.2), (2.3), (2.5) and (2.18) β̂
M

is a consistent estimator of

β0, and n1/2(β̂
M
− β0) converges in distribution to a mean-zero normal random variable with a

variance-covariance matrix Σ(θ0,β0,γ0,M) = E[f
βB
1 (θ0,β0,γ0,M)⊗2], where

f
βB
i (θ,β,γ,M) = Ω[β,WB(θ)]−1[Φ

βB
1i (θ,β,γ,M) + Φ

βB
2i (θ,β)]

Φ
βB
1i (θ,β,γ,M) =

∫ τ

0

{Zi(t)− z̄[t;β,WB(θ)]}WB
i (t;θ)

1

M

M∑
m=1

dM
〈m〉
i (t;β,γ)

dM
〈m〉
i (t;β,γ) =

[
Ai(t)− π0(t)exp{βTZi(t)}

]
I(C

〈m〉
1i ≥ t;γ)I(C2i ≥ t)dt.
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Note that Φ
βB
2i (θ,β) is the same as defined in Theorem 1.

For πM0 (t), we have the following result.

Theorem 8. Under assumptions (2.2), (2.3), (2.5) and (2.18), n1/2(π̂M0 − π0) converges weakly to

a mean-zero Gaussian process with a variance and covariance matrix between n1/2[π̂M0 (s)−π0(s)]

and n1/2[π̂M0 (t)−π0(t)] given by σ(s, t,θ0,β0,γ0,M) = E[ξ1(s,θ0,β0,γ0,M)ξ1(t,θ0,β0,γ0,M)],

where

ξi(t,θ,β,γ,M) =
f̃π1,Bi (t,θ)− [Ef̃π1,B1 (t,θ)]f̃π2,Bi (t,θ,β,γ,M)

E[f̃π2,B1 (t,θ,β,γ,M)]

f̃π2,Bi (t,θ,β,γ,M) = f̃π21,Bi (t,θ,β,γ,M) + f̃π22,Bi (t,θ,β) + f̃π23,Bi (t,θ,β,γ,M)

f̃π21,Bi (t,θ,β,γ,M) =
1

M

M∑
m=1

I(C
〈m〉
1i ≥ t;γ)I(C2i ≥ t)eβ

TZi(t)WB
i (t;θ)

f̃π23,Bi (t,θ,β,γ,M) = z(1)[t;β,WB(θ)]Tf
βB
i (θ,β,γ,M).

Similar to the known censoring case, the variance could be estimated by its empirical counter-

part and by treating weight function as known.

2.4 Simulation Studies

We report on simulations to evaluate performance of our methods. The results of three weights

are evaluated: Wi(t) = 1, which does not correctly accommodate the censoring mechanisms and

is included for comparison purposes only; WA
i (t;θ0) defined in (2.9); and the stabilized weights,

WB
i (t;θ0), defined in (2.12).

For each simulation setting, two scenarios (n = 300, n = 500) are generated. The covariate

Z = (Z1, Z2)′ has elements which are Bernoulli(0.5). The terminal event, D, is generated by

the hazard function λD0 exp{αT0Z}, where λD0 = 0.02 and α0 = (−0.609, 0.609)T . The target

model represents the probability of being alive and active, π(t) = π0(t)exp{βT0Z}, where π0(t) =

0.3 − 0.0025t, for t = 1, 2, ..., 100. The event of being active on waiting list given the subject is
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alive is sampled from the conditional probability, P{E(t) = 1|D > t,Z} = π(t)exp[λD × t].

We generated two censoring times, C1 and C2, for each individual. The independent cen-

soring time, C1, is generated from the hazard function λC0 exp{γT0Z}, where λC0 = 0.015 and

γ0 = (0.609,−0.609)T . For the dependent censoring time, C2, we first generate Xt, where

Xt = min{D,−40 × log[Z1ε1 + (1 − Z2)(1 − ε1)] + 5ε2}, ε1 =
∫ 100

1
A(t)dt/100 , ε2 ∼ Uni-

form(0,1). Let X(t) = I(Xt ≥ t), with X(t) being dependent on A(t) even conditional on Z due

to its mutual association with ε1. Next, we generate time-dependent censoring time C2 from the

hazard function λC0 + φ1Z1 + φ2Z2 + φ3X(t). Note that ε1 and ε2 are mutually independent.

In Table 2.1, we consider the setting wherein C1 is known. We set λC0 = 0.006, φ1 = φ2 =

−0.002, and φ3 = 0.035 for heavy censoring C2, which results in about 53% subjects being

censored by C2 and 37% subjects censored by C1. Moreover, two magnitudes of β0 are con-

sidered: 0.916 and 0.405. Next we consider a light censoring case for C2, where λC0 = 0.003,

φ1 = φ2 = −0.001, and φ3 = 0.015. This set-up results in 33% subjects are censoring be C2 and

48% subjects are censoring be C1. In Table 2.2 we treat censoring time as random, and get imputed

estimators from M = 1 imputation dataset.

In each setting, the biases of β̂ and Π̂0(50) are very small for both ŴA
i (t; θ̂) and ŴB

i (t; θ̂),

indicating that our estimators are consistent. Moreover, empirical standard deviations (ESDs) are

generally close to, but larger than the average asymptotic standard errors (ASEs), because we

treat the estimated weights function as fixed. The empirical coverage probabilities (ECPs) are

also around 0.95, implying the accuracy of large-sample confidence intervals. Due the substantial

biases of not adjusting time dependent confounder, the unweighted method exhibits bias and has

inaccurate estimated variance and poor coverage probabilities.

2.5 Real Data Analysis

We applied the proposed methods to model the wait list active/inactive process using data ob-

tained from the Scientific Registry of Transplant Recipients (SRTR). In the end-stage liver disease
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(ESLD) setting, the number of available deceased-donor livers is always less than the number of

patients in need of liver transplantation. Once an ESLD patient is wait listed, the patient’s status

can oscillate between active and inactive based on their medical condition. A wait listed patient can

receive deceased-donor organ offers only when active. To date, there has been little study of the

probability of remaining active on the wait list, for ESLD or any type of end-stage organ failure.

The sample size of this study is n = 53, 991. Patients are subject to independent right censoring

due to administrative censoring and living donor transplantation. Note that living-donor transplants

are not allocated using the MELD system and, as such, are not determined by internal time-varying

covariates. In contrast, deceased-donor transplantation is viewed as dependent censoring, since

the transplant hazard and pre-transplant mortality hazard are correlated with time-varying MELD

score. Therefore, deceased-donor transplantation is viewed as dependent censoring, while other

causes of censoring are aggregated into C1. Based on this classification, there were 13,180 subjects

observed to die, 17,982 patients who were independently censored, and 22,829 subjects who were

dependently censored. The median observation time is 201 days, while the median time spent in

the active state is 160 days.

Baseline covariates include blood type, gender, race, BMI status, hospitalization, age, region,

and values at wait listing for MELD score, serum albumin and serum sodium. Comorbid condi-

tions are also included, for example hepatitis C, noncholestatic, cholestatic, acute hepatic necrosis,

metastatic disease, malignant neoplasm. The covariate information at time zero are used to charac-

terize the process of being alive and active on waiting list, and to implement the imputation of C1.

As for time dependent covariates, we include more predictors to the baseline covariates set: MELD

all score, albumin levels, sodium, ascites, encephalitis, and dialysis status, and exclude baseline

MELD, baseline albumin and baseline sodium. Moreover, continuous variables are centered at

their mean values.

The stabilized weights, WB(t;θ), were used to remove bias due to dependent censoring. To

further mitigate the impact of outliers, the weights were capped by 150. For subjects with observed

death, we imputed C1 as describe in Section 2.2. Due to the size of the data set, we used M = 1.
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Covariate effects along with p values are listed in Table 2.3. Among the diagnoses leading

ESLD, acute hepatic necrosis was associated with a significant 12% increase in probability of

being alive and active on the waiting list. Patients with ESLD resulting from malignant neoplasm

experienced an 11% reduction in survival/active probability (p = 0.01). Obesity (i.e., BMI ≥30)

was associated with a significant 5% reduction. Being hospitalized in the ICU at the time of wait

listing was associated with an 18% increase (p = 0.001) in the alive/active probability, relative to

not being hospitalized. Each 5-year increase in age at wait listing was associated with a significant

2% decrease in alive/active probability. Relative to the United Network for Organ Sharing (UNOS)

Region with the greatest number of wait listed patients (Region 5), Region 1, 10 and 11 had

significant reductions in alive/active probability, at 17%, 6%, and 16%, respectively. Region 7

had a 6% increase (p = 0.01). The probability of being alive and active on the wait list decreased

with by 1% for each (integer) increase in MELD score, and increased by 9% per unit increase in

serum albumin. We provide some interpretation of these results in Section 2.6.

The estimated baseline probability function is plotted in Figure 2.1. We estimated the integral

of baseline probability of being alive and active over [0, 5] at 3.92 years; this indicates that a

‘baseline’ patient (i.e., patient with all covariates equal to the reference) would be expected to be

alive and active on the wait list for ≈4 of the first 5 years after wait listing, in the absence of liver

transplantation.

2.6 Concluding Remarks

In this article, we propose semiparametric temporal process regression methods. Relative to exist-

ing process regression methods, our methods are distinguished by several features. In particular,

the baseline probability (as a function of time) is unspecified and is essentially profiled out in the

estimation of the regression coefficient (presumably of chief interest in most studies). The method

accommodates dependent right censoring, and does so through a computationally attractive addi-

tive hazards model. In our context, the additive hazard model facilities the calculation of weight
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function, since the baseline cumulative hazard function cancels out. Moreover, the proposed meth-

ods accommodate independent right censoring through imputation rather than a weight function.

We applied our proposed methods to the analysis of factors affecting the joint probability of

being alive and active on the liver transplant waiting list. There are many reports in the literature

regarding the factors affecting pre-liver transplant survival. The analysis we present in Section 2.5

is among the first to incorporate active/inactive status into the end-point. Survival in the absence

of liver transplantation is, in its own right, an important process in the context of end-stage liver

disease. Part of its importance derives from the fact that the preferred treatment for ESLD, liver

transplantation, does not occur without the patient surviving long enough on the wait list to receive

offers. However, survival on the wait list is not enough, since only a patient can only receive offers

while active.

Our analysis revealed several factors as being significantly associated with the probability of

being alive/active. Model of End-stage Liver Disease score is the basis of deceased-donor liver

allocation among chronic ESLD patients, so its effect is not surprising. Serum albumin is a marker

of nutritional status, and have been shown in several previous reports to be predictive of pre-

transplant survival. The appearance that being hospitalized in the intensive care unit is possible

due to selection bias. It is possible that sicker patients in the ICU die before having the opportunity

to be wait listed. Or, the wait listing of such patients may sometimes deliberately not be pursued,

in order to avoid futile transplantation. We do not have data to further evaluate either hypothesis.

The differences in active/survival probability by UNOS Region may be due to differences in pre-

transplant survival and/or discrepancies in deactivation protocols. Such differences are worthy of

future investigation.

Our methods make the distinction between independent censoring, C1, and dependent cen-

soring, C2. This is necessary since the variates play very different roles in our framework. C1

represent the end of a subject’s potential follow-up. This is the case in several existing methods,

including the popular subdistribution hazard modeling of Fine and Gray (1999). The methods of

Fine and Gray (1999) do not impute unobserved C1 but, instead, apply a weight function which
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Figure 2.1: Estimated Baseline Probability of being Active and Alive

represent the conditional probability of being uncensored (given that the subject was uncensored

at the time of death). This weight function is essentially playing the same role as our imputation of

C1. In contrast, C2 is a nuisance process, with its corresponding inverse weight seeking to recover

the data that would be observed if the process underling C2 were absent.

In our framework, we assume additive hazards model [Lin and Ying, 1994] on dependent cen-

soring time, which is a practical alternative to the proportional hazards model. These two models

will normally provide adequate fit to data if appropriate time-dependent covariates are included.
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Table 2.1: Simulations Results for Known Censoring Time based on 500 Replicates

β̂

Censoring n β0 Weights Bias ASE ESD CP
Heavy 500 (0.916, -0.916) 1 (0.183, -0.125) (0.095, 0.096) (0.098, 0.095) (0.520, 0.764)

WA (0.000, 0.008) (0.134, 0.134) (0.149, 0.146) (0.908, 0.928)
WB (0.025, -0.010) (0.119, 0.119) (0.127, 0.128) (0.932, 0.932)

(0.405, -0.405) 1 (0.191, -0.132) (0.095, 0.095) (0.099, 0.090) (0.480, 0.738)
WA (0.031, 0.000) (0.141, 0.140) (0.157, 0.158) (0.900, 0.926)
WB (0.037, -0.022) (0.123, 0.124) (0.130, 0.122) (0.918, 0.944)

1000 (0.916, -0.916) 1 (0.187, -0.129) (0.068, 0.068) (0.066, 0.067) (0.204, 0.536)
WA (0.001, 0.016) (0.100, 0.100) (0.104, 0.110) (0.936, 0.926)
WB (0.024, -0.014) (0.087, 0.087) (0.088, 0.096) (0.936, 0.934)

(0.405, -0.405) 1 (0.187, -0.123) (0.068, 0.068) (0.068, 0.071) (0.218, 0.544)
WA (0.025, -0.007) (0.101, 0.102) (0.111, 0.112) (0.918, 0.906)
WB (0.036, -0.020) (0.091, 0.091) (0.094, 0.091) (0.912, 0.940)

Light 500 (0.916, -0.916) 1 (0.103, -0.059) (0.089, 0.089) (0.092, 0.090) (0.776, 0.896)
WA (-0.003, 0.006) (0.104, 0.104) (0.103, 0.103) (0.948, 0.952)
WB (0.011, 0.001) (0.098, 0.098) (0.097, 0.097) (0.960, 0.962)

(0.405, -0.405) 1 (0.115, -0.075) (0.090, 0.090) (0.090, 0.099) (0.750, 0.838)
WA (0.006, -0.009) (0.107, 0.108) (0.114, 0.105) (0.928, 0.960)
WB (0.017, -0.017) (0.100, 0.100) (0.098, 0.103) (0.952, 0.936)

1000 (0.916, -0.916) 1 (0.100, -0.058) (0.063, 0.063) (0.063, 0.064) (0.654, 0.844)
WA (-0.005, 0.017) (0.074, 0.074) (0.071, 0.072) (0.966, 0.952)
WB (0.008, -0.003) (0.069, 0.069) (0.067, 0.069) (0.946, 0.946)

(0.405, -0.405) 1 (0.107, -0.068) (0.064, 0.064) (0.064, 0.066) (0.624, 0.816)
WA (0.011, -0.006) (0.076, 0.076) (0.078, 0.078) (0.920, 0.950)
WB (0.019, -0.015) (0.072, 0.072) (0.071, 0.074) (0.932, 0.928)

Π̂0(50)

Censoring Π0(50) n β0 Weights Bias ASE ESD CP
Heavy 11.812 500 (0.916, -0.916) 1 -2.182 0.849 0.843 0.280

WA 0.258 1.321 1.368 0.920
WB -0.364 1.170 1.219 0.896

(0.405, -0.405) 1 -2.247 0.854 0.831 0.258
WA 0.096 1.316 1.349 0.944
WB -0.400 1.169 1.197 0.904

1000 (0.916, -0.916) 1 -2.202 0.607 0.597 0.070
WA 0.185 0.946 0.895 0.954
WB -0.347 0.844 0.838 0.900

(0.405, -0.405) 1 -2.248 0.609 0.621 0.058
WA 0.154 0.945 0.929 0.954
WB -0.369 0.842 0.831 0.924

Light 11.812 500 (0.916, -0.916) 1 -1.107 0.858 0.864 0.718
WA 0.215 1.023 0.992 0.946
WB -0.140 0.956 0.972 0.934

(0.405, -0.405) 1 -1.113 0.859 0.863 0.726
WA 0.275 1.020 1.026 0.938
WB 0.011 0.967 0.931 0.962

1000 (0.916, -0.916) 1 -1.125 0.605 0.629 0.550
WA 0.172 0.714 0.676 0.960
WB -0.073 0.680 0.682 0.950

(0.405, -0.405) 1 -1.094 0.611 0.630 0.554
WA 0.191 0.715 0.727 0.930
WB -0.059 0.681 0.649 0.950
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Table 2.2: Simulations Results for Random Censoring Time based on M = 1, and 500 Replicates

β̂
1

Censoring n β0 Weights Bias ASE ESD CP
Heavy 500 (0.916, -0.916) 1 (0.190, -0.141) (0.096, 0.096) (0.092, 0.093) (0.472, 0.718)

WA (0.011, -0.004) (0.137, 0.135) (0.136, 0.146) (0.968, 0.936)
WB (0.028, -0.023) (0.122, 0.121) (0.123, 0.123) (0.938, 0.952)

(0.405, -0.405) 1 (0.194, -0.136) (0.096, 0.096) (0.093, 0.098) (0.484, 0.678)
WA (0.036, -0.019) (0.142, 0.142) (0.151, 0.155) (0.914, 0.930)
WB (0.042, -0.040) (0.124, 0.124) (0.129, 0.127) (0.912, 0.934)

1000 (0.916, -0.916) 1 (0.191, -0.132) (0.069, 0.069) (0.069, 0.067) (0.186, 0.518)
WA (0.000, 0.005) (0.102, 0.101) (0.095, 0.107) (0.964, 0.944)
WB (0.020, -0.014) (0.088, 0.088) (0.085, 0.088) (0.940, 0.942)

(0.405, -0.405) 1 (0.189, -0.137) (0.069, 0.068) (0.068, 0.067) (0.194, 0.494)
WA (0.024, -0.019) (0.104, 0.105) (0.104, 0.108) (0.924, 0.928)
WB (0.037, -0.034) (0.092, 0.092) (0.092, 0.094) (0.902, 0.904)

Light 500 (0.916, -0.916) 1 (0.098, -0.055) (0.090, 0.089) (0.088, 0.084) (0.818, 0.926)
WA (-0.007, 0.008) (0.103, 0.104) (0.100, 0.100) (0.960, 0.958)
WB (0.000, 0.000) (0.098, 0.098) (0.097, 0.094) (0.956, 0.954)

(0.405, -0.405) 1 (0.114, -0.065) (0.091, 0.090) (0.090, 0.088) (0.764, 0.896)
WA (0.010, -0.008) (0.107, 0.107) (0.103, 0.111) (0.962, 0.936)
WB (0.031, -0.032) (0.101, 0.101) (0.095, 0.097) (0.950, 0.934)

1000 (0.916, -0.916) 1 (0.100, -0.060) (0.064, 0.063) (0.063, 0.063) (0.676, 0.860)
WA (-0.008, 0.014) (0.074, 0.074) (0.071, 0.073) (0.952, 0.948)
WB (0.002, -0.001) (0.070, 0.070) (0.070, 0.066) (0.944, 0.956)

(0.405, -0.405) 1 (0.110, -0.074) (0.065, 0.064) (0.064, 0.062) (0.608, 0.814)
WA (0.015, -0.009) (0.077, 0.077) (0.075, 0.071) (0.934, 0.956)
WB (0.023, -0.021) (0.072, 0.073) (0.074, 0.073) (0.930, 0.932)

Π̂1
0(50)

Censoring Π0(50) n β0 Weights Bias ASE ESD CP
Heavy 11.812 500 (0.916, -0.916) 1 -2.304 0.847 0.820 0.244

WA 0.082 1.351 1.199 0.980
WB -0.483 1.179 1.100 0.918

(0.405, -0.405) 1 -2.401 0.846 0.843 0.204
WA -0.012 1.335 1.260 0.948
WB -0.478 1.178 1.100 0.922

1000 (0.916, -0.916) 1 -2.362 0.602 0.605 0.038
WA 0.020 0.953 0.855 0.958
WB -0.458 0.837 0.811 0.904

(0.405, -0.405) 1 -2.368 0.604 0.601 0.038
WA 0.010 0.942 0.923 0.948
WB -0.476 0.839 0.837 0.912

Light 11.812 500 (0.916, -0.916) 1 -1.182 0.851 0.848 0.706
WA 0.182 1.012 0.954 0.952
WB -0.150 0.955 0.994 0.936

(0.405, -0.405) 1 -1.234 0.849 0.826 0.666
WA 0.147 1.008 1.002 0.948
WB -0.219 0.959 0.904 0.932

1000 (0.916, -0.916) 1 -1.202 0.603 0.585 0.502
WA 0.087 0.715 0.664 0.962
WB -0.156 0.679 0.662 0.942

(0.405, -0.405) 1 -1.176 0.608 0.576 0.506
WA 0.064 0.715 0.668 0.960
WB -0.168 0.678 0.682 0.952
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Table 2.3: Analysis of Liver Transplant Data: Covariate Effects on being Active on the Waiting
List and being Alive (based on M = 1 Imputation)

Covariate Value β̂ ŜE(β̂) p exp(β̂)
Blood type (v.s. O) A 0.0113 0.0140 0.421 1.01

AB -0.0057 0.0390 0.8843 0.99
B 0.0160 0.0202 0.4265 1.02

Gender Female 0.0234 0.0131 0.0748 1.02
Race (v.s. White) Black 0.0036 0.0257 0.8898 1.00

Hispanic 0.0266 0.0182 0.1441 1.03
Asian 0.0284 0.0291 0.3287 1.023
Other -0.0396 0.0698 0.5707 0.96

Diagnosis HCV -0.0245 0.0215 0.2544 0.98
Noncholestatic 0.0388 0.0204 0.0568 1.04

Cholestatic 0.0450 0.0256 0.0792 1.05
Acute hepatic necrosis 0.1116 0.0429 0.0094* 1.12

Metastatic disease 0.0246 0.0500 0.6229 1.03
Malignant neoplasm -0.1130 0.0464 0.0149* 0.89

BMI (v.s. (20, 25)) [0, 20] 0.0178 0.0277 0.5217 1.02
[25, 30) -0.0011 0.0159 0.9436 1.000
[30,∞) -0.0513 0.0169 0.0024* 0.95

Hospitalization status ICU 0.1652 0.0500 0.001* 1.18
(v.s. not hospitalized) Not ICU -0.0279 0.0323 0.3868 0.97

Age per 5 years -0.0205 0.0030 <.0001* 0.98
Region (v.s. 5) 1 -0.1924 0.0453 <.0001* 0.83

2 0.0204 0.0213 0.3394 1.02
3 -0.0259 0.0276 0.3493 0.97
4 -0.0423 0.0222 0.0572 0.96
6 -0.0646 0.0479 0.1772 0.94
7 0.0611 0.0248 0.0135* 1.06
8 -0.0511 0.0304 0.0932 0.95
9 -0.0130 0.0232 0.5771 0.99

10 -0.0587 0.0285 0.0397* 0.94
11 -0.1753 0.0328 <.0001* 0.84

MELD per unit score -0.0078 0.0016 <.0001* 0.99
Albumin per mmol/L 0.0850 0.0107 <.0001* 1.09
Sodium per g/dL 0.0026 0.0018 0.1481 1.00
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CHAPTER 3

Joint Modeling of State Prevalence and Mortality

3.1 Introduction

In the data structure we consider, subjects (while alive) can switch back and forth between two

states, such that the subject is in one (and only one) of the two states until the terminating event

occurs. The term ‘prevalent’ will refer to the subject being in the state of interest. The follow-up

of each subject can be independently right censored.

In this chapter, we jointly model state prevalence (given survival) and death hazard by a shared

frailty term. In Chapters 1 and 2, the survival outcome was built into the definition of the state anal-

ogous to ‘prevalent’. The separation of the state prevalence and survival components in Chapter 3

implies that the residual correlation between the two processes must be taken into account.

The model of the prevalence outcome has a marginal interpretation, from the perspective that it

is conditional on survival, baseline covariates, external time-varying covariates, and frailty terms,

but not on the previous history. The linear predictor is connected to the probability of prevalence

outcomes through a known link function (for example, the logit function in this manuscript). This

model formulation is closely related to generalized linear mixed models (GLMMs) [McCulloch

and Neuhaus, 2001], but we also consider a shared frailty term in the death model. Instead of

constraining the same frailty term in both the prevalence and the death model, we incorporate an

unknown scale parameter to the death model, which distinguishes the frailty effect on the death

and prevalence process. Some previous methods have relaxed this assumption even further by
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estimating the correlation between the random effects of the two processes [Rizopoulos et al.,

2008].

Note that our proposed model accommodates a prevalent process indexed by a continuous time-

line. For example, in end-stage renal disease (ESRD) setting, a subject may stay in the hospital for

several days, and length of stay should not be ignored in the analysis. This unique data structure

prevents direct application of many joint modeling approaches for longitudinal and survival data

[Wulfsohn and Tsiatis, 1997, Tsiatis and Davidian, 2004, Yu et al., 2004, Chi and Ibrahim, 2006],

including several models for binary outcomes [Pulkstenis et al., 1998, Albert, 2000, Larsen, 2004].

Turning our attention now to another branch of methodology, many existing methods considered

a point process, implicitly assuming that the events have no duration [Liu et al., 2004, Ye et al.,

2007]. The afore-mentioned methods consider a type of data structure where outcomes are ob-

served at discrete time points. Moreover, we intend to build regression methods on the probability

of binary response, in order to have a prevalence interpretation, in contrast to models for transi-

tion probabilities [Albert, 2000, Shirley et al., 2010], many of which are built on a Markov type

assumption.

The method we propose in this chapter could be viewed as an extension to temporal process

regression methods proposed by Fine et al. [2004]. Their paper modeled P [Y (t)|S(t) = 1], where

Y (t) is observed on a continuous timeline and S(t) = 1 could be survival. The extension we make

is simultaneously modeling the death hazard by incorporating a shared frailty term and an unknown

scale parameter. Considering S(t) as survival indicator is attractive, because in most cases where

death is a terminal event, it will prevent the future occurrence of outcome Y (t). Similar conditional

modeling technique is employed in many recurrent/terminal event literature [Huang and Wang,

2004, Liu et al., 2004, Ye et al., 2007, Zeng and Cai, 2010, Kalbfleisch et al., 2013]. The big

distinction is that, in our case, the ”event” has a duration associated with it.

In models with unknown frailty terms, the primary difficulty involves the evaluation of marginal

likelihood, in sense that random effect need to be integrated out. In general, there are three options

in current literature. The first one is to obtain a tractable integration of the likelihood function by
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using specific link-random-effect combinations, e.g., complementary log-log link models with con-

jugate gamma random effects [Pulkstenis et al., 1998, Rondeau et al., 2007, Ye et al., 2007]. An-

other option is using numerical approaches to approximate the marginal likelihood function. Ex-

amples include marginal quasi-likelihood (MQL) [Goldstein, 1991] and penalized quasi-likelihood

(PQL) [Breslow and Clayton, 1993], which approximate generalized linear mixed models as linear

mixed models so that iterative generalized least squares (IGLS) [Goldstein, 1986] technique can

be applied. Gaussian quadrature can also be used to approximate the marginal likelihood by a sum

of integrand times suitably corresponding weights [Liu and Pierce, 1994, Li et al., 2017]. In the

presence of normal random effects, the marginal likelihood could also be approximated with a mix-

ture of binomial distributions [Thomas et al., 1998]. Finally some previous works here employed

Monte Carlo integration, for example importance sampling [Yu et al., 2004], and Metropolis sam-

pling [Liu et al., 2004, Chi and Ibrahim, 2006].

In this chapter, we consider an alternative approach to estimate covariate effects combining

both iterative updates and numerical approximation of the likelihood involving frailties. If frailties

and the scale parameter are known, then treating them as offsets, we could apply partial likelihood

[Cox, 1975] to estimate the regression coefficients, and apply generalized estimating equations

(GEEs) to estimate covariate effects for the prevalence model [Liang and Zeger, 1986]. On the

other hand, if those coefficients are known, we could estimate each frailty term from their cor-

responding estimating equation. The scale parameter and the variance of frailty terms could be

further estimated by numerical approximation approach (for example, Gaussian quadrature [Liu

and Pierce, 1994]). Following these ideas, we propose to iteratively update the frailty terms and

regression coefficients until convergence. It can be shown that our algorithm is equivalent to the

EM algorithm [Dempster et al., 1977], and, therefore, will maximize the marginal likelihood func-

tion by treating the frailty terms as missing data. More details are demonstrated in the following

section. We also propose an efficient method to approximate the asymptotic variance of covariate

effects which combines a Metropolis-Hastings algorithm and permutation methods.

The remainder of the chapter is organized as follows. We set up notation and describe our
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proposed methods in the next section. Simulation studies are performed to evaluate our method in

finite samples in Section 3 under various scenarios. In Section 4, we apply the proposed methods

to national ESRD data. Finally, concluding remarks are given in Section 5.

3.2 Proposed Methods

Suppose that there are n subjects. Let Di be the death (i.e., terminal event) time, and let Ci be

the censoring time for subject i (i = 1, 2, ..., n). We let Zi(t) be a p-dimensional external covari-

ate vector for subject i at time t [Kalbfleisch and Prentice, 2002], and let Z1i(t) = [1,ZT
i (t)]T .

Follow-up time t ∈ [0, τ ] is considered, where τ is a pre-specified constant satisfying Pr(Ci ≥

τ) > 0 for i = 1, 2, ..., n. In practice, one could choose τ as the maximum of observation time Xi,

where Xi = Ci ∧Di, with a ∧ b = min(a, b).

Let Pi(t) be an indicator function representing ‘prevalent’ at time t; i.e., Pi(t) = 1 if patient i

is in the state of interest and 0 otherwise. For example, being hospitalized, or being active on the

kidney transplant waiting list. We assume that the expectation of Pi(t) givenZ1i(t), νi and subject

i is alive has the following form,

E[Pi(t)|Z1i(t), νi, Di ≥ t] = g−1
{
βT0Z1i(t) + νi

}
, (3.1)

where νi is a random effect or frailty term to absorb the residual correlations between Pi(t) and Di

within subject i. We assume a proportional hazard model with frailty terms νi on Di,

λDi [t|Zi(t), νi] = λD0 (t)exp
[
αT0Zi(t) + γνi

]
, (3.2)

where γ is an unknown scale parameter, and λD0 (t) is an unspecified baseline hazard function for

the death time.

The frailty term νi is assumed to follow an independent normal distribution with variance σ2
ν .

For identifiability, we set the normal distribution mean zero. Following the general set up in gen-
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eralized linear models (GLMs), g(·) is a link function between the expectation of the outcome and

the linear component. In this manuscript, we consider a logit link function, g(µ) = log[µ/(1−µ)],

to guarantee that fitted values of the conditional expectation are bounded by 0 and 1. Other link

functions could also be considered; for example, the probit function. Models like (3.1) have been

referred to as partial marginal in recurrent event analysis [Ye et al., 2007] and other areas of sur-

vival analysis (e.g., [Gong and Schaubel, 2013, 2017]), since the expectation is conditioning on

less information than a intensity function [Andersen and Gill, 1982], but more information than a

marginal mean model [Lin et al., 2000]. A practical convention is that the terminal event preclude

subsequent prevalence, such that Pi(t) = 0 for t ∈ [Di, τ ].

If the frailty term νi and the scale parameter γ were known, then we could apply partial like-

lihood [Cox, 1975] for model (3.2) in order to estimate α0, and generalized estimating equations

(GEE; Liang and Zeger [1986]) to estimate β0. Challenges include νi not being known, and the

lack of an explicitly specified error distribution.

3.2.1 Iterative Estimating Procedures

Before illustrating our estimating procedures, we first set up the requisite notation. Define the at-

risk indicator Yi(t) = I(Xi ≥ t), and an observed-death indicator ∆i = I(Di ≤ Ci). Observed

data for subject i are denoted by Oi = {Pi(t), Xi,∆i,Zi(t), t ∈ [0, Xi]}.

We make the following assumptions for the joint model:

1. Observed O1, ..., On are independent and identically distributed.

2. Two conditional independence assumptions for censoring:

(a) λDi [t|Zi(t), νi] = λDi [t|Zi(t), νi, Ci ≥ t]

(b) E[Pi(t)|Di ≥ t,Zi(t), νi] = E[Pi(t)|Xi ≥ t,Zi(t), νi]

Under models (3.1) and (3.2), and modeling assumptions (1) and (2) above, the likelihood

function for subject i is given by
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L[α,β,ΛD
0 , σ

2
ν , γ;Oi, νi]

= L1

[
β; (Pi(t), t ∈ (0, Xi])|νi,Z1i(t), Di = s, s ≥ Xi

]
L2

[
α,ΛD

0 ; (Xi,∆i)|νi, γ,Zi(Xi)
]
L3

[
σ2
ν ; νi

]
∝

∏
t∈(0,Xi]

exp
[
βTZ1i(t) + νi

]Pi(t) {
1 + exp

[
βTZ1i(t) + νi

]}−1

×
{

exp
[
αTZi(Xi) + γνi

]
dΛD

0 (Xi)
}∆i × exp

{
−
∫ τ

0

Yi(u)exp
[
αTZi(u) + γνi

]
dΛD

0 (u)

}
× (σ2

ν)
−1/2exp

[
− ν2

i

2σ2
ν

]
. (3.3)

This likelihood function can be considered as hierarchical or h-likelihood [Lee and Nelder, 1996,

Ha et al., 2001], and the log likelihood is therefore given by

l[α,β,ΛD
0 , σ

2
ν , γ;Oi, νi]

∝
∫ Xi

0

(
Pi(t)

[
βTZ1i(t) + νi

]
− log

{
1 + exp

[
βTZ1i(t) + νi

]})
dt

+ ∆i

[
αTZi(Xi) + γνi + logdΛD

0 (Xi)
]
−
∫ τ

0

Yi(u)exp
[
αTZi(u) + γνi

]
dΛD

0 (u)

− 1

2
log(σ2

ν)−
ν2
i

2σ2
ν

. (3.4)

Differentiating (3.4) with respect to νi yields the following estimating equation,

U1i(νi) =

∫ Xi

0

(
Pi(t)− expit

[
βTZ1i(t) + νi

])
dt

+ ∆iγ −
∫ ∞

0

γYi(u)exp
[
αTZi(u) + γνi

]
dΛD

0 (u)− νi
σ2
ν

, (3.5)

where the expit function is defined by expit(µ) = exp(µ)/[1 + exp(µ)]. We further denote

U 1(ν) = [U11(ν1), U12(ν2), ..., U1n(νn)]T and ν = (ν1, ν2, ..., νn)T which are both n × 1 vectors.

Given α, β, dΛ0(t), t ∈ [0, Xi], σ2
ν and γ, we could solve U 1(ν) through a Newton-Raphson

procedure to estimate ν, with starting values set to the estimates obtained based on using only the

prevalence data; this would amount to a GLMM [McCulloch and Neuhaus, 2001].
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Now consider a hypothetical scenario where ν and γ are known. In order to estimate α0

from model (3.2), we could apply partial likelihood [Cox, 1975]. Specifically, we could solve the

following estimating equation for α,

U 2(α) =
n∑
i=1

∫ ∞
0

{
Zi(t)−

S(1)(α, t; ν, γ)

S(0)(α, t; ν, γ)

}
dND

i (t), (3.6)

where ND
i (t) = I(Di ≤ Ci ∧ t), dND

i (t) = ND
i (t− + dt)−ND

i (t−),

S(k)(α, t; ν, γ) = n−1
∑n

i=1Zi(t)
⊗kYi(t)exp[αTZi(t) + γνi] for k = 0, 1, 2, where a⊗0 = 1,

a⊗1 = a, and a⊗2 = aaT . Let tD1, tD2, ..., tDm be them distinct ordered failure times. We need to

evaluate dΛD
0 (t) at thosem distinct time points. We further define dΛD

0 = [dΛD
0 (tD1), dΛD

0 (tD2), ..., dΛD
0 (tDm)]T .

A Breslow method [Breslow, 1972] analog would be used to estimate dΛD
0 by solving the follow-

ing estimating equation for dΛD
0 , where the jth element is given by (j = 1, 2, ...,m),

U3j[dΛD
0 (tDj)] =

n∑
i=1

(
dND

i (tDj)

dΛD
0 (tDj)

− Yi(tDj)exp
[
αTZi(tDj) + γνi

])
. (3.7)

Next we consider the estimation ofβ0 under the hypothetical scenario when ν and γ are known.

Having established l[α,β,ΛD
0 , σ

2
ν , γ;Oi, νi] in (3.4), we could differentiate the sum of log likeli-

hood function with respect to β to get the estimating equation,

U 4(β) =
n∑
i=1

∫ Xi

0

Z1i(t)

(
Pi(t)− expit

[
βTZ1i(t) + νi

])
dt, (3.8)

which is analog to the GEE version of logistic regression [McCulloch and Neuhaus, 2001], under

a working independence correlation structure.

Finally, we estimate σ2
ν and γ using MLE techniques. Specifically, Gauss-Hermite quadrature

[Liu and Pierce, 1994] is used to approximate the integral of likelihood function (3.3) with respect

to ν. We denote the score function as U 5(σ2
ν , γ). The basic idea of Gaussian quadrature is to

approximate an integral by a group of standard normal distributions with quadrature weight and

location of Gauss-Hermite quadrature. One could estimate σ2
ν from only data pertinent to model

(3.1) to allow usage of standard software; for example, the package lme4 [Bates et al., 2015] in R.
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However, this would lose some efficiency and accuracy in the estimation.

In order to estimate all unknown parameters η = (νT ,αT , dΛDT
0 ,βT , σ2

ν , γ)T , we need to

solve U = [UT
1 (ν),UT

2 (α),UT
3 (dΛD

0 ),UT
4 (β),UT

5 (σ2
ν , γ)]T = 0. However the dimension of

U is (n + 2p + m + 3) × 1, which increases as sample size n increases. Therefore, generalized

estimating equations (GEEs) [Liang and Zeger, 1986] could not be directly applied. We propose

an iterative estimating approach to recursively update each parameter in η by treating the other

parameters known. The proposed procedure is summarized as follows;

1. Set initial values of dΛD(0)
0 , α(0), β(0), ν(0), σ2

ν
(0) and γ(0). One could first fit GLMM to the

prevalence process to set σ2
ν

(0) and ν(0), and let γ(0) = 1. Then get α(0), dΛD(0)
0 and β(0) as

the solutions to U 2(α), U 3(dΛD
0 ), and U 4(β) with ν(0), σ2

ν
(0) and γ(0).

2. Replace [αT , dΛDT
0 , σ2

ν , γ]T by [α(0)T , dΛ
D(0)T
0 , σ2

ν
(0)
, γ(0)]T in U 1(ν) to get updated esti-

mate ν(1).

3. Treat ν(1) and γ(0) as known inU 2(α),U 3(dΛD
0 ), andU 4(β) to get estimates dΛD(1)

0 , α(1),

β(1).

4. Get estimates σ2
ν

(1), γ(1) by solving U 5(σ2
ν , γ) = 0.

5. Replace dΛD(0)
0 , α(0), β(0), ν(0), σ2

ν
(0) and γ(0) by dΛD(1)

0 , α(1), β(1), ν(1), σ2
ν

(1) and γ(1),

respectively. Repeat steps 2-4 until α, β, σ2
ν and γ converge to get α̂, β̂, σ̂2

ν and γ̂. Denote

dΛ
D(1)
0 and ν(1) in the last iteration as dΛ̂

D

0 and ν̂.

3.2.2 Robust Variance Estimators

If ν is known, then α̂ and β̂ are
√
n consistent estimators and the asymptotic variances could

be estimated through a robust (sandwich) estimator [Lin et al., 2000, Liang and Zeger, 1986].

However, substituting ν̂ in the sandwich estimators would severely underestimate the true variance,

since it does not account for the randomness in ν̂. Another challenge, as mentioned in the previous

section, is that the dimension of U increases as sample size increases. A bootstrap method [Efron
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and Tibshirani, 1994] could be applied, but requires intensive computation. Here we propose a

more efficient method to approximate the asymptotic variance of α̂ and β̂.

For each frailty νi, the first step is to use the Metropolis-Hastings algorithm to generate re-

alizations from f [νi|Oi], which is proportional to f [Oi|νi]f(νi) as defined in (3.3). Similar idea

is also used to approximate the information matrix with random effects [Liu et al., 2004]. The

remaining parameters α, β, dΛD
0 , σ2

ν and γ are fixed at their estimated values α̂, β̂, dΛ̂
D

0 , σ̂2
ν and

γ̂ respectively. A total of 2000 samples are generated and the first 1000 samples serving only as

a burn-in period. We then calculate the empirical standard error from the 1000 samples after the

burn-in, and denote by σ̂2(ν̂i). The second step is to approximate the limiting distribution by per-

mutation methods[Lin et al., 1994]. To be specific, we generate 100 permutation samples. Within

jth permutation sample, we sample Gj
i from a standard normal distribution with mean zero and

variance one. Then replace νi by Gj
i × σ̂(ν̂i) in the estimating equations (3.6) and (3.8), and esti-

mate the asymptotic variance of α̂ and β̂ by their corresponding sandwich estimators. Finally, the

pooled variance estimators between 100 permutation samples are reported. In the next section, we

evaluate our robust variance estimator through simulations studies.

3.3 Simulation Studies

For each simulation setting, n = 500 subjects are generated. Covariates Z1 and Z2 follow

Bernoulli(0.5) distributions. Let Z = (Z1, Z2)T and Z1 = (1, Z1, Z2)T . We first generate ran-

dom effects ν from a mean-zero normal distribution with variance σ2
ν , where σ2

ν = 0.3 or 0.5.

The terminal event D is generated by transforming ε1 ∼ Uniform (0, 1) using hazard function

λD(t) = λD0 exp[αT0Z + γν], where α0 = (0.693,−0.693)T . In the first censoring setup, the

censoring time C is generated from an uniform distribution with minimum 90 and maximum 100,

and λD0 = 0.01. This would result in approximately 31% subjects being censored. In the second

censoring scenario, C is generated from a Uniform distribution with minimum 100 and maximum

150, and λD0 = 0.015, which lead to approximately 20% subjects being censored.
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The prevalence outcome P (t) is sampled from E[P (t) = 1|Z1, ν,X > t] = expit(βT0Z1 + ν),

where t is discrete, i.e., t = 1, 2, ..., T , where T = 100 in the first censoring scenario and T = 150

in the second one. Two magnitudes of β0 (including intercept) are considered: (1, 0.6,−0.6)T and

(1, 1,−1)T . The variance of the linear predictor ZT
1 β0 would be 0.18 and 0.5 correspondingly.

Three levels of γ are considered: −0.5, 0, and 0.5.

Gauss-Hermite quadrature with 15 nodes is used to approximate the integral of likelihood func-

tion. Simulation results for β̂ and α̂ with 1000 replicates are summarized in Table 3.1 and 3.2. In

all simulation scenarios, the bias is relatively small, and asymptotic standard errors (ASEs) are

generally close to the corresponding empirical standard derivations (ESDs). The empirical cov-

erage probabilities (CPs) are quite close to the nominal 0.95. In Table 3.3 we present results for

σ̂2
ν and γ̂. When γ is nonzero, the ASEs of γ̂ appear to slightly underestimate the corresponding

ESDs.

3.4 Real Data Analysis

We applied the proposed methods to data from the Dialysis Outcomes and Practice Patterns Study

(DOPPS) Phase 5. The DOPPS is a prospective, observational study designed to elucidate as-

pects of hemodialysis practice that are associated with the best outcomes for hemodialysis patients

[Young et al., 2000]. In particular, Phase 5 data were collected between 2012 and 2015. Our

research interests include identifying demographic and clinical variables that are associated with

out-of-hospital process and death process, considering their inner correlations.

The study population for DOPPS generally consists of prevalent patients. In the interests of

having t reflect time-since-dialysis-initiation instead of merely time-since-DOPPS-entry, we re-

stricted our study sample to include the n = 5, 298 patients who entered DOPPS within 3 months

of initiating dialysis. Patients included in our analysis were from 470 hemodialysis units across

11 different countries, with the counties including: Belgium, Canada, China, Gulf Coast Consor-

tium, Germany, Italy, Japan, Spain, Sweden, the United Kingdom and the U.S.. Covariates include
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Table 3.3: Simulations Results for σ̂2
ν and γ̂ based on n = 500 and 1000 Replicates

% C β σ2
ν BIAS ASE ESD CP γ BIAS ASE ESD CP

≈ 30% (1, 0.6, -0.6) 0.3 -0.000 0.028 0.028 0.937 -0.5 -0.021 0.131 0.133 0.939
0.3 -0.001 0.027 0.027 0.939 0 -0.028 0.130 0.134 0.935
0.3 -0.002 0.028 0.027 0.951 0.5 -0.031 0.132 0.138 0.930
0.5 -0.002 0.043 0.042 0.948 -0.5 -0.016 0.097 0.104 0.932
0.5 -0.002 0.042 0.042 0.951 0 -0.016 0.095 0.100 0.939
0.5 -0.009 0.042 0.042 0.935 0.5 -0.024 0.099 0.100 0.930

(1, 1, -1) 0.3 -0.000 0.028 0.029 0.944 -0.5 -0.025 0.133 0.134 0.946
0.3 -0.002 0.028 0.028 0.938 0 -0.033 0.132 0.137 0.932
0.3 -0.002 0.028 0.027 0.953 0.5 -0.033 0.134 0.140 0.929
0.5 -0.003 0.043 0.043 0.949 -0.5 -0.020 0.098 0.104 0.929
0.5 -0.003 0.043 0.042 0.944 0 -0.018 0.096 0.102 0.935
0.5 -0.010 0.042 0.042 0.936 0.5 -0.025 0.100 0.100 0.939

≈ 20% (1, 0.6, -0.6) 0.3 0.001 0.029 0.029 0.950 -0.5 -0.013 0.112 0.123 0.911
0.3 -0.001 0.029 0.029 0.944 0 -0.024 0.110 0.112 0.938
0.3 -0.003 0.029 0.031 0.922 0.5 -0.032 0.114 0.117 0.934
0.5 -0.003 0.044 0.044 0.953 -0.5 -0.010 0.086 0.086 0.936
0.5 -0.006 0.044 0.043 0.944 0 -0.012 0.083 0.084 0.941
0.5 -0.012 0.044 0.043 0.940 0.5 -0.023 0.087 0.089 0.928

(1, 1, -1) 0.3 0.001 0.029 0.030 0.944 -0.5 -0.018 0.113 0.124 0.925
0.3 -0.001 0.029 0.029 0.951 0 -0.026 0.111 0.114 0.926
0.3 -0.004 0.029 0.031 0.925 0.5 -0.034 0.115 0.119 0.924
0.5 -0.004 0.045 0.044 0.944 -0.5 -0.012 0.086 0.087 0.938
0.5 -0.007 0.044 0.043 0.932 0 -0.014 0.083 0.084 0.940
0.5 -0.014 0.044 0.043 0.928 0.5 -0.026 0.087 0.089 0.921

age, race, gender, height, time on dialysis at study entry, as well as the following list of comorbid

conditions: coronary artery disease (CAD), cancer, cardiovascular disease (CVD), stroke, conges-

tive heart failure (CHF), diabetes, hypertension, chronic obstructive pulmonary disease (COPD),

psychiatric disorder and peripheral vascular disease (PVD).

Since hospitalization and death times are recorded in days, t represents day (i.e, day post

DOPPS entry) in our analysis. The mean number of hospital admissions was 0.595 per patient,

while the median length of stay per visit was 5 days. Observed follow-up time had a median of

326 days. Approximately 3% of subjects (154 subjects) were observed to die.

We fitted the model as described in Section 3.2.1 to the DOPPS data. Specifically, Gauss-

Hermite quadrature with 15 nodes is used to approximate the integral of likelihood function. Co-

variate effects for the out-of-hospital given alive (i.e. prevalence) process and the death hazard

are summarized in Table 3.4. For the prevalence process, coronary artery disease (p < 0.001),

cancer (p = 0.006), cardiovascular disease (p = 0.004), stroke (p = 0.045), chronic obstructive

57



pulmonary disease (p = 0.004), psychiatric disorder (p = 0.011), and peripheral vascular disease

(p = 0.048) have significant negative effects on the probability of being out-of-hospital given sur-

vival. Patients from Belgium (p < 0.001), Canada (p < 0.001), China (p = 0.002), Gulf Coast

Consortium (p = 0.001), Germany (p < 0.001), Italy (p < 0.001), Japan (p < 0.001), Spain

(p = 0.002), Sweden (p < 0.001), and the United Kingdom (p < 0.001) have significantly lower

out-of-hospital probability than patients from the U.S. (reference). Time on dialysis (coded in

year) has a significantly negative effect (p = 0.003) on prevalence. For the mortality hazard, coro-

nary artery disease (p = 0.009) , cancer (p = 0.001), and chronic obstructive pulmonary disease

(p = 0.030) are associated with significantly higher death hazard. Patients from Italy (p = 0.042)

have a significant higher mortality rate than patents from the U.S. Increasing age (p = 0.003) is

also associated with a higher death hazard.

The frailty variance is estimated at σ̂2
ν = 4.546 with standard error 0.158, indicating that there is

significant within-patient correlation given covariates. The estimated scale parameter γ̂ = −0.350

with standard error 0.037. This indicates that, given the covariates, the out-of-hospital process and

death hazard are negative correlated, which makes sense intuitively; i.e., patients that are more ill

(than accounted for their covariate pattern) could be less likely to be out-of-hospital while alive,

and more likely to die. Moreover, the frailty effects are stronger in the prevalence process than

that in the mortality process. We also compare the frailty estimates from the GLMM with logit

link using only the prevalence process. Figure 3.1 shows relatively high concordance between the

frailty estimates from the two models (Kendall’s tau correlation: 0.885, Pearson correlation: 0.977,

and Spearman’s rank correlation: 0.971). The majority of the absolute difference of frailty terms

between two models are below 0.7 (Figure 3.2).

3.5 Discussion

In this manuscript, we propose a method to jointly model the prevalence process and the mortality

hazard using a shared frailty model, allowing a scale parameter in the death process to be estimated.
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Figure 3.1: Scatterplots of Frailty Terms
Figure 3.2: Histogram of Absolute Difference of
Frailty Terms

The frailty terms are treated as fixed parameters in the iterative estimating procedures. We also

utilize a resampling method to obtain a robust variance estimator for the regression parameter

estimator.

In the application of the proposed methods to the DOPPS data, the scale parameter was esti-

mated at γ̂ = −0.350. This means that, given covariates, the out-of-hospital and mortality process

are negatively correlated, perhaps due to unmeasured confounders. Since |γ̂| < 1, then the preva-

lence process appears to have larger frailty variance than the mortality process. This finding is

consistent with the DOPPS data, since the contents of the covariate set for which data are obtained

are choosen primarily based on the perceived effects on mortality. From this perspective, it is

possible that some essential predictors for the prevalence model are not included in the analysis.

In Section 3.2.1, we described our iterative estimating procedures where frailty terms are up-

dated in each iteration. An alternative method would be to estimate frailty terms and variance σ2
ν

using only the prevalence model, similar to a GLMM. Fixing each frailty term and random vari-

ance at their estimated values, the algorithm will converge faster. However, this alternative method

would lose some efficiency, because mortality information is abandoned. Moreover, it would likely

introduce more biases to the frailty estimates for subjects with small death time.
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The advantage of estimating frailty terms at each iteration is the allowance of using standard

softwares, for example R [R Development Core Team, 2008] and SAS [SAS Institute Inc., 2013].

Having ν̂ and γ̂, one could use the analog to logistic regression and Cox model to obtain β̂ and α̂

as described before. Similar to the estimation of γ and σν2, numerical approximation approached

could also be used to estimate β and α.
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Table 3.4: Analysis of DOPPS Data: Covariate Effects on the Out-of-Hospital given Alive Process and
Mortality Process

Prevalence model Mortality model

β̂ ŜE(β̂) p α̂ ŜE(α̂) p exp(α̂)
Intercept 7.510 0.204 <0.001* - - - -
Female -0.137 0.194 0.481 -0.193 0.223 0.388 0.825
CADa -0.886 0.184 <0.001* 0.561 0.213 0.009* 1.752
Cancer -0.618 0.224 0.006* 0.683 0.211 0.001* 1.980
CVDb -0.582 0.203 0.004* 0.419 0.227 0.065 1.520
Stroke -0.460 0.230 0.045* -0.035 0.284 0.901 0.965
CHFc -0.099 0.184 0.590 0.222 0.203 0.274 1.248
Diabetes -0.060 0.163 0.712 -0.284 0.178 0.109 0.752
Hypertension 0.243 0.207 0.241 -0.092 0.216 0.670 0.912
COPDd -0.654 0.225 0.004* 0.520 0.240 0.030* 1.682
Psychiatric Disorder -0.568 0.225 0.011* 0.460 0.264 0.082 1.584
PVDe -0.362 0.183 0.048* 0.164 0.215 0.445 1.178
Belgium -1.968 0.323 <0.001* -0.279 0.525 0.596 0.757
Canada -1.406 0.312 <0.001* -0.216 0.386 0.576 0.806
China -1.325 0.434 0.002* -0.401 1.017 0.693 0.670
Gulf -1.215 0.365 0.001* -0.025 0.531 0.963 0.976
Germany -2.179 0.245 <0.001* -0.051 0.324 0.874 0.950
Italy -1.195 0.288 <0.001* 0.582 0.287 0.042* 1.789
Japan -1.455 0.286 <0.001* -0.647 0.366 0.077 0.524
Spain -1.044 0.334 0.002* 0.028 0.374 0.941 1.028
Sweden -2.094 0.331 <0.001* 0.082 0.527 0.876 1.086
UK -1.378 0.380 <0.001* -0.179 0.520 0.730 0.836
Age (per 5 years) 0.018 0.028 0.537 0.103 0.034 0.003* 1.108
Time on dialysis (years) -3.092 1.050 0.003* 0.709 1.093 0.517 2.031
Height (per 10 cm) 0.064 0.103 0.536 -0.116 0.112 0.299 0.890

a: Coronary artery disease
b: Cardiovascular disease
c: Congestive heart failure
d: Chronic obstructive pulmonary disease
e: Peripheral vascular disease
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APPENDIX A

Supplemental Materials to Chapter 1

A.1 Notations and Assumptions

We first list the notations and assumptions that are presented in the main paper.

A0
i (t) = I{Hi(t) = 0, Di > t}: Survival-out-of-hospital indicator for subject i at time t.

πi(t) ≡ E[A0
i (t)|Zi(t)]: Survival-out-of-hospital probability for subject i at time t.

dM∗
i (t;β) = A0

i (t)dt − π0(t)exp[βTZi(t)]dt: Survival-out-of-hospital Martingale increment for

subject i at time t.

dMi(t;β) = dM∗
i (t;β)I(Ci ≥ t): Observed survival-out-of-hospital Martingale increment for

subject i at time t.

NC
i (t) = I(Ci ≤ t ∧Di): Observed censoring time counting process for subject i at time t.

dNC
i (t) = NC

i (t− + dt) − NC
i (t−): Censoring time counting process increment for subject i at

time t.

Xi = Di ∧ Ci: Observed terminal event for subject i.

Yi(t) = I(Xi ≥ t): At-risk process for censoring time for subject i at time t.

I(C
〈m〉
i ≥ t; θ̂): At-risk process when C〈m〉i is imputed from Ĝ(t; θ̂) for subject i at time t.

I(C
〈m〉
i ≥ t;θ0): At-risk process when C〈m〉i is imputed from G(t;θ0) for subject i at time t.

dM
〈m〉
i (t;β,θ) = dM∗

i (t;β)I(C
〈m〉
i ≥ t;θ): Observed survival-out-of-hospital Martingale incre-

ment for imputation m for subject i at time t.
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Let S(k)(t;β) = n−1
∑n

i=1Zi(t)
⊗kI(Ci ≥ t)exp{βTZi(t)}, and

s(k)(t;β) = E[Z1(t)⊗kI(C1 ≥ t)exp{βTZ1(t)}] be the limiting value of S(k)(t;β) for k =

0, 1, 2, where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . Also let Z̄(t;β) = S(1)(t;β)/S(0)(t;β), and

denote its limiting value as z̄(t;β) = s(1)(t;β)/s(0)(t;β). Moreover, define

Ω̂(β) = n−1
∑n

i=1

∫ τ
0
{S(2)(t;β)/S(0)(t;β)− Z̄(t;β)⊗2}A0

i (t)I(Ci ≥ t)dt and its limiting value

Ω(β) = E[
∫ τ

0
{s(2)(t;β)/s(0)(t;β)− z̄(t;β)⊗2}A0

1(t)I(C1 ≥ t)dt].

For mth imputed dataset, let S(k)〈m〉(t;β,θ) = n−1
∑n

i=1Zi(t)
⊗kI(C

〈m〉
i ≥ t;θ)exp{βTZi(t)},

and s(k)〈1〉(t;β,θ) = E[Z1(t)⊗kI(C
〈1〉
1 ≥ t;θ)exp{βTZ1(t)}] be the limiting value ofS(k)〈m〉(t;β,θ)

for k = 0, 1, 2. Also let Z̄〈m〉(t;β,θ) = S(1)〈m〉(t;β,θ)/S(0)〈m〉(t;β,θ), and denote its limiting

value as z̄〈1〉(t;β,θ) = s(1)〈1〉(t;β,θ)/s(0)〈1〉(t;β,θ). Moreover, define

Ω̂
〈m〉

(β,θ) = n−1
∑n

i=1

∫ τ
0
{S(2)〈m〉(t;β,θ)/S(0)〈m〉(t;β,θ) − Z̄〈m〉(t;β,θ)⊗2}A0

i (t)I(C
〈m〉
i ≥

t)dt and its limiting value Ω〈1〉(β,θ) = E[
∫ τ

0
{s(2)〈1〉(t;β,θ)/s(0)〈1〉(t;β,θ)−z̄〈1〉(t;β,θ)⊗2}A0

1(t)I(C
〈1〉
1 ≥

t)dt].

Proportional marginal rate model on the hospital-free survival event:

πi(t) = π0(t)exp{βT0Zi(t)} (A.1)

Conditional independent censoring assumption:

E{A0
i (t)|Zi(t), I(Ci ≥ t)} = E{A0

i (t)|Zi(t)} (A.2)

Proportional hazard model on the censoring time:

λCi (t) = λC0 (t)exp{θTZi(t)} (A.3)
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A.2 Proof of Theorem 1

A.2.1 Consistency of β̂

We first prove that β̂ is a consistent estimator of β0. Let

Xn(β) =
n∑
i=1

∫ τ

0

[(β − β0)TZi(t)− log
S(0)(β, t)

S(0)(β0, t)
]A0

i (t)I(Ci ≥ t)dt

X(β) = E[

∫ τ

0

[(β − β0)TZ1(t)− log
s(0)(β, t)

s(0)(β0, t)
]A0

1(t)I(C1 ≥ t)dt]

Note that ∂Xn(β)/∂β = Un(β).

For an arbitrary δ > 0, consider a compact set Bδ = {β : ‖β − β0‖ ≤ δ}. Evaluated at

β = β0, ∂X(β)/∂β = E[
∫ τ

0
{Z1(t) − z̄(t;β0)}A0

1(t)I(C1 ≥ t)dt] = 0 by model assumptions,

while −∂2X(β)/∂β∂βT = Ω(β0), which is positive definite by condition (c). Therefore, X(β)

is concave and has a local maximum at β = β0. We have X(β0) ≥ X(β) for β ∈ Bδ, and

X(β0) > X(β) for β ∈ ∂Bδ, where ∂Bδ = {β : ‖β − β0‖ = δ}. For β ∈ Bδ, by SLLN,

n−1Xn(β)
a.s.→ X(β). By continuous mapping theorem,

‖n−1Xn(β)− n−1Xn(β0)‖ a.s.→ ‖X(β)−X(β0)‖

where ‖a‖ = (aTa)1/2. Therefore as n → ∞, Xn(β0) ≥ Xn(β) for β ∈ Bδ, and Xn(β0) >

Xn(β) for β ∈ ∂Bδ. In this case, when n → ∞, Xn(β) has a maximum β0 in Bδ. Moreover,

evaluated at β̂, ∂Xn(β)/∂β = U(β) = 0, meaning that β̂ is the local maximum. Taking δ

arbitrary small, we would have β̂ a.s.→ β0.

A.2.2 n1/2(β̂ − β0)

To show the asymptotic distribution of n1/2(β̂ − β0), we take the first-order Taylor expansion of

Un(β0) around β̂ to get n−1/2Un(β0) = n1/2Ω̂(β∗)(β̂ − β0), where β∗ is on the line segments

between β0 and β̂. The consistency of β̂ and Ω̂(β0) for β0 and Ω(β0), along with the positive
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definite of Ω(β0) imply that

n1/2(β̂ − β0) = n−1/2Ω(β0)−1Un(β0) + op(1) (A.4)

Then we express the estimating equation Un(β0) as

Un(β0) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t;β0)}dMi(t;β0) = 0 (A.5)

where dMi(t;β) = A0
i (t)I(Ci ≥ t)dt− I(Ci ≥ t)exp[βT (t)Zi(t)]π0(t)dt. Without lose of gener-

ality, we assume that Zi(t) ≥ 0. Therefore, S(1)(t;β0) and S(0)(t;β0) are monotone functions in

t and converges almost surely to s(1)(t;β0) and s(0)(t;β0) by SLLN. Then applying Lemma 1 of

Lin et al. (2000), we have

n−1/2

n∑
i=1

∫ τ

0

{Z̄(t;β0)− z̄(t;β0)}dMi(t;β0) = op(1) (A.6)

Combining (A.4), (A.5) and (A.6), we could represent n1/2(β̂ − β0) as a sum of independent

and identically distributed random variables,

n1/2(β̂ − β0) = n−1/2

n∑
i=1

fβi (β0) + op(1) (A.7)

where fβi (β) = Ω(β)−1ui(β) and ui(β) =
∫ τ

0
{Zi(t) − z̄(t;β)}dMi(t;β). Since S(k)(t;β0)

(k = 0, 1, 2) and Zi(t) are totally bounded by condition (c), then Theorem 1 follows by Multi-

variate Central Limit Theorems. The consistency of Σ̂(β̂) could be proved by iteratively applying

SLLN, Lemma 1 of Lin et al (2000) and the strong consistency of β̂.
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A.3 Proof of Theorem 2

For t ∈ [0, τ ], We normalize π̂0(t) and π0(t) to a proper scale for the proof of asymptotic properties:

π̂0(t) =
n−1/2

∑n
i=1 A

0
i (t)I(Ci ≥ t)

n−1/2
∑n

i=1 I(Ci ≥ t)exp[β̂
T
Zi(t)]

π0(t) =
n1/2E[A0

1(t)I(C1 ≥ t)]

n1/2E{I(C1 ≥ t)exp[βT0Z1(t)]}

We introduce some empirical process notations for the ease for derivations. Let Pnf = n−1
∑n

i=1 fi(Fi)

and Pf = E[f1(F1)]. The empirical process {Gnf(t) : t ∈ [0, τ ]}, where Gnf(t) = n1/2[Pnf(t)−

Pf(t)], can be identified as the empirical distribution of observations indexed by the function

fi(t, Fi), for t ∈ [0, τ ]. In the following proof, we will drop the notation of data Fi in the parenthe-

sis. The quantity in the numerator could be identified as

n1/2
(
n−1

n∑
i=1

[A0
i (t)I(Ci ≥ t)]− E[A0

1(t)I(C1 ≥ t)]
)

= Gnf̃
π1(t)

where f̃π1i (t) = A0
i (t)I(Ci ≥ t). Consider the quantity

n1/2
(
n−1

∑n
i=1{I(Ci ≥ t)exp[β̂

T
Zi(t)]} − E{I(C1 ≥ t)exp[βT0Z1(t)]}

)
in the denominator,

which can be decomposed as

n1/2[S(0)(t; β̂)− s(0)(t;β0)]

=n1/2
(
n−1

n∑
i=1

{I(Ci ≥ t)exp[β̂
T
Zi(t)]} − n−1

n∑
i=1

{I(Ci ≥ t)exp[βT0Zi(t)]}
)

(A.8)

+n1/2
(
n−1

n∑
i=1

{I(Ci ≥ t)exp[βT0Zi(t)]} − E{I(C1 ≥ t)exp[βT0Z1(t)]}
)

(A.9)
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By Taylor expansion and (A.7), the first part (A.8) could be expressed as

n−1/2

n∑
i=1

I(Ci ≥ t){exp[β̂
T
Zi(t)]− exp[βT0Zi(t)]}

=n−1/2

n∑
i=1

I(Ci ≥ t)exp[βT0Zi(t)]Z
T
i (t)n−1

n∑
l=1

fβl (β0) + op(1)

=n−1/2

n∑
i=1

S(1)(t;β0)Tfβi (β0) + op(1)

=n−1/2

n∑
i=1

s(1)(t;β0)Tfβi (β0) + op(1) (A.10)

where (A.10) is by the strong consistency and monotonic property of S(1)(t;β0). Combining

(A.10) and (A.9) we have

n1/2
(
n−1

n∑
i=1

{I(Ci ≥ t)exp[β̂
T
Zi(t)]} − E{I(C1 ≥ t)exp[βT0Z1(t)]}

)
= Gnf̃

π2(t;β0) + op(1)

(A.11)

where f̃π2i (t;β) = s(1)(t;β0)Tfβi (β0) + I(Ci ≥ t)exp[βT0Zi(t)].

By the empirical central limit theorem (van der Vaart and Wellner (1996), example 3.9.19, p.g.

383), we have:

n1/2

 Pnf̃π1 − P f̃π1

S(0)(β̂)− s(0)(β0)

 =⇒

 Gf̃π1

Gf̃π2 [β0]


where Gf̃π1 and Gf̃π2 are tight Gaussian processes. Define a map

(A,B) 7→ A

B

Since this composition map is Hadamard-differentiable, 1/B is bounded away from zero and

A is of bounded variation, then its derivative map is given by

(a, b) 7→ a

B
− Ab

B2
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By Functional Delta method (van der Vaart (1998), p.g. 291)

n1/2[π̂0 − π0] =⇒G
{ f̃π1

s(0)(β0)
− [P f̃π1 ]f̃π2(β0)

[s(0)(β0)]2

}
=G
{A0(t)I(C ≥ t)− I(C ≥ t)exp[βT0Z(t)]π0(t)− s(1)(t;β0)Tfβ(β0)π0(t)

s(0)(β0)

}
≡G
{fπ1 − fπ2
s(0)(β0)

}
(A.12)

Therefore Theorem 2 follows, and by the consistency of β̂ and Pnf to β0 and Pf , respectively,

we have σ̂(s, t) converges in probability to σ(s, t).

A.4 Proof of Theorem 3

A.4.1 Consistency of β̂
M

Before establishing the consistent property, we first show some useful results. When C
〈m〉
i is

imputed with the true underlying G(t;θ0), I(C
〈m〉
i ≥ t;θ0) and A0

i (t) are independent condition

on Zi(t) by (A.2):

E[A0
i (t)I(C

〈m〉
i ≥ t;θ0)|Zi(t)] = E[A0

i (t)|Zi(t)]E[I(C
〈m〉
i ≥ t;θ0)|Zi(t)] = 0

E[{A0
i (t)I(C

〈m〉
i ≥ t;θ0)}2|Zi(t)] = E[{A0

i (t)}2|Zi(t)]E[{I(C
〈m〉
i ≥ t;θ0)}|Zi(t)]

Next consider I(C
〈m〉
i ≥ t; θ̂), where C〈m〉i are imputed from Ĝ(t; θ̂) if ND

i (Xi) = 1. The

survival function of imputed censoring time given Zi(t) and ND
i (Xi) = 1 is given by

E[I(C
〈m〉
i ≥ t; θ̂|Zi(t), N

D
i (Xi) = 1] = I(t ≥ Di)exp{[Λ̂C

i (Di; θ̂)− Λ̂C
i (t; θ̂)]
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where dΛ̂i(t;θ) = dΛ̂0(t;θ)exp[θTZi(t)] and the Breslow estimator dΛ̂C
0 (t;θ) is given by

dΛ̂C
0 (t;θ) =

∑n
i=1 dN

C
i (t)∑n

i=1 Yi(t)exp[θTZi(t)]

Using the strong consistency of θ̂ and SLLN, we have dΛ̂C
0 (t; θ̂) − dΛC

0 (t) converges almost

surely to zero. Applying continuous mapping theorem, we have

E[I(C
〈m〉
i ≥ t; θ̂)|Zi(t), N

D
i (Xi) = 1]

a.s.→ E[I(C
〈m〉
i ≥ t;θ0)|Zi(t), N

D
i (Xi) = 1] (A.13)

which means that asymptotically,C〈m〉i are drawn from the trueG(t;θ0) for subjects withND
i (Xi) =

1. Note that for subjects ND
i (Xi) = 0, I(C

〈m〉
i ≥ t;θ0) = I(C

〈m〉
i ≥ t; θ̂) = I(Ci ≥ t), then com-

bining (A.13) we have

E[I(C
〈m〉
i ≥ t; θ̂)|Zi(t)] = E[I(C

〈m〉
i ≥ t;θ0)|Zi(t)] + o(1) (A.14)

Therefore, I(C
〈m〉
i ≥ t; θ̂) and A0

i (t) are asymptotically independent condition on Zi(t). More

explicitly,

E[A0
i (t)I(C

〈m〉
i ≥ t; θ̂)|Zi(t)] = E[A0

i (t)|Zi(t)]E[I(C
〈m〉
i ≥ t; θ̂)|Zi(t)] + o(1) = o(1) (A.15)

E[{A0
i (t)I(C

〈m〉
i ≥ t; θ̂)}2|Zi(t)] = E[{A0

i (t)}2|Zi(t)]E[{I(C
〈m〉
i ≥ t; θ̂)|Zi(t)] + o(1) (A.16)

Then we will demonstrate that the two processes n−1/2
∑n

i=1

∫ t
0
dM∗

i (t;β)I(C
〈m〉
i ≥ t; θ̂) and

n−1/2
∑n

i=1

∫ t
0
dM∗

i (t;β)I(C
〈m〉
i ≥ t;θ0) converge to the same limiting process. By Donsker’s

theorem (van der Vaart 2000), n−1/2
∑n

i=1

∫ t
0
dM∗

i (t;β)I(C
〈m〉
i ≥ t;θ0) converges to a Gaussian

process. By (A.14), (A.15) and (A.16), we have that n−1/2
∑n

i=1

∫ t
0
dM∗

i (t;β)I(C
〈m〉
i ≥ t; θ̂)
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converges to the same limiting Gaussian process, i.e.,

n−1/2

n∑
i=1

∫ τ

0

dM∗
i (t;β)I(C

〈m〉
i ≥ t; θ̂) = n−1/2

n∑
i=1

∫ τ

0

dM∗
i (t;β)I(C

〈m〉
i ≥ t;θ0) + op(1)

(A.17)

Now we are ready to show the consistency. Within the mth imputed dataset, define

X〈m〉n (β, θ̂) =
n∑
i=1

∫ τ

0

[(β − β0)TZi(t)− log
S(0)〈m〉(t;β, θ̂)

S(0)〈m〉(t;β0, θ̂)
]A0

i (t)I(C
〈m〉
i ≥ t; θ̂)dt]

X〈1〉(β,θ0) = E[

∫ τ

0

[(β − β0)TZ1(t)− log
s(0)〈1〉(t;β,θ0)

s(0)〈1〉(t;β0,θ0)
]A0

1(t)I(C
〈1〉
1 ≥ t;θ0)dt]

Note that A0
i (t)I(C

〈m〉
i ≥ t;θ0) = A0

i (t)I(C
〈m〉
i ≥ t; θ̂), because A0

i (t) = 0 for t ∈ [Di, τ ]. We

have S(k)〈m〉(t;β, θ̂) converges almost surely to s(k)〈1〉(t;β,θ0) by SLLN, (A.14) and (A.15), for

k = 0, 1, 2. Then by SLLN and the bounded total variations of Zi(t), we get n−1X
〈m〉
n (β, θ̂)

a.s.→

X〈1〉(β,θ0). By (A.2) and (A.3), X〈1〉(β,θ0) = X(β). In this case, n−1X
〈m〉
n (β, θ̂)

a.s.→ X(β).

Following the arguments in the proof of theorem 1, we have ‖β̂
〈m〉
−β0‖

a.s.→ 0. Since ‖β̃M−β0‖ =

M−1
∑M

m=1 ‖β̂
〈m〉
− β0‖, then by triangle inequality, ‖β̃M − β0‖

a.s.→ 0. Therefore, both β̂
〈m〉

and

β̃
M

converges almost surely to β0.

A.4.2 n1/2(β̂
M
− β0)

Having established the strong consistency of β̂
〈m〉

, we could apply first-order Taylor expansion on

U
〈m〉
n (β0, θ̂) around β̂ and A3 in Lin et al. (2000) to get

n1/2(β̂
〈m〉
−β0) = n−1/2[Ω̂

〈m〉
(β0, θ̂)]−1

n∑
i=1

∫ τ

0

{Zi(t)−Z̄
〈m〉

(t;β0, θ̂)}dM 〈m〉
i (t;β0, θ̂)+op(1)

(A.18)

Iteratively applying WLLN, and by (A.2) (A.14) we have Ω̂
〈m〉

(β0, θ̂)
p→ Ω(β0). Then consider

the quantity n−1/2
∑n

i=1

∫ τ
0
{Zi(t)− Z̄

〈m〉
(t;β0, θ̂)}dM 〈m〉

i (t;β0, θ̂):
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n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄
〈m〉

(t;β0, θ̂)}dM 〈m〉
i (t;β0, θ̂)

=n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄
〈m〉

(t;β0, θ̂)}[dM 〈m〉
i (t;β0, θ̂)− dM 〈m〉

i (t;β0,θ0)] (A.19)

+n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− z̄〈1〉(t;β0,θ0)}dM 〈m〉
i (t;β0,θ0) (A.20)

+n−1/2

n∑
i=1

∫ τ

0

{z̄〈1〉(t;β0,θ0)− Z̄〈m〉(t;β0, θ̂)}dM 〈m〉
i (t;β0,θ0) (A.21)

Since Zi(t) has bounded total variations, then by (A.17), we could show that (A.19) equals

to op(1). Without lose of generality we assume that Zi(t) ≥ 0. Therefore, S(1)〈m〉(t;β0, θ̂) and

S(0)〈m〉(t;β0, θ̂) are monotone functions in t. By Lemma 1 in LWYY 2000, (A.17), the strong

consistency of S(1)〈m〉(t;β0, θ̂) and S(0)〈m〉(t;β0, θ̂), we have (A.21) equals to op(1). Combining

results we have

n1/2(β̂
〈m〉
− β0) = n−1/2[Ω(β0)]−1

n∑
i=1

u
〈m〉
i (β0,θ0) + op(1)

where u〈m〉i (β,θ) =
∫ τ

0
{Zi(t) − z̄〈1〉(t;β,θ)}dM 〈m〉

i (t;β,θ). Since β̂
M

= M−1
∑M

m=1 β̂
〈m〉

,

then

n1/2(β̂
M
− β0) = n−1/2[Ω(β0)]−1

n∑
i=1

M−1

M∑
m=1

u
〈m〉
i (β0,θ0) + op(1)

By multivariate central limit theorem, n1/2(β̂
M
− β0) converges to a mean zero normal random

variable, where the variance is given by

ΣM(β0) = [Ω(β0)]−1E{[M−1
∑M

m=1 u
〈m〉
1 (β0,θ0)]⊗2}[Ω(β0)]−1. We could also express the tar-

get quantity as

n1/2(β̂
M
− β0) = n−1/2

n∑
i=1

fβi (β0,θ0,M) (A.22)

where fβi (β,θ,M) = [Ω(β)]−1M−1
∑M

m=1 u
〈m〉
i (β,θ). The consistency of Σ̂M(β̂

M
) can be
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proved in similar manners of Theorem 1.

A.5 Proof of Theorem 4

Since π̂M0 (t) and π0(t) are given by

π̂M0 (t) =
n−1/2

∑n
i=1 M

−1
∑M

m=1 A
0
i (t)I(C

〈m〉
i ≥ t; θ̂)

n−1/2
∑n

i=1M
−1
∑M

m=1 I(C
〈m〉
i ≥ t; θ̂)exp[β̂

M
Zi(t)]

,

π0(t) =
E[A0

1(t)I(C
〈1〉
1 ≥ t;θ0)]

E{I(C
〈1〉
1 ≥ t;θ0)exp[βT0Z1(t)]}

Since the numerator is automatically an empirical process indexed by function

A0
i (t)M

−1
∑M

m=1 I(C
〈m〉
i ≥ t;θ0), then we will consider the asymptotic property of the denomi-

nator.

A.5.1 n1/2[M−1
∑M

m=1 S
(0)〈m〉(t; β̂

M
, θ̂)− s(0)〈1〉(t;β0,θ0)]

We could decompose the target quantity as

n1/2[M−1

M∑
m=1

S(0)〈m〉(t; β̂
M
, θ̂)− s(0)〈1〉(t;β0,θ0)]

=n−1/2
( n∑
i=1

{M−1

M∑
m=1

I(C
〈m〉
i ≥ t; θ̂)exp[Z(t)T β̂

M
]} −

n∑
i=1

{M−1

M∑
m=1

I(C
〈m〉
i ≥ t;θ0)exp[Z(t)T β̂

M
]}
)

(A.23)

+n−1/2
( n∑
i=1

{M−1

M∑
m=1

I(C
〈m〉
i ≥ t;θ0)exp[Z(t)T β̂

M
]} −

n∑
i=1

{M−1

M∑
m=1

I(C
〈m〉
i ≥ t;θ0)exp[βT0Zi(t)]}

)
(A.24)

+n1/2
(
n−1

n∑
i=1

{M−1

M∑
m=1

I(C
〈m〉
i ≥ t;θ0)exp[βT0Z(t)]} − E{I(C

〈1〉
1 ≥ t;θ0)exp[βT0Z1(t)]}

)
(A.25)
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By (A.14), the first term (A.23) can be shown to be op(1). By (A.22), the strong consistency of

S(2)〈m〉(t;β0,θ0) and Taylor expansion, we have (A.24) equals to

n−1/2

n∑
i=1

{s(1)〈1〉(t;β0,θ0)Tfβi (β0,θ0,M)}+ op(1)

Combining results, we would have

n1/2
(
n−1

n∑
i=1

{M−1

M∑
m=1

I(C
〈m〉
i ≥ t; θ̂)exp[Z(t)T β̃

M
]} − E{I(C

〈1〉
1 ≥ t;θ0)exp[βT0Z(t)]}

)
=Gnf̃

π2(t;β0,θ0,M) + op(1) (A.26)

where f̃π2i (t;β,θ,M) = M−1
∑M

m=1{I(C
〈m〉
i ≥ t;θ)exp[βTZi(t)]}+s(1)〈1〉(t;β,θ)Tfβi (β,θ,M).

Following similar arguments in the Proof of Theorem 2, we have Theorem 4.
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APPENDIX B

Supplemental Materials to Chapter 2

B.1 Notations

Zi(t): External covariates for subject i at time t.

X i(t): The history of internal covariates for subject i up to time t.

Ei(t): Indicator of the state of interest for subject i at time t.

Ai(t) = I{Ei(t) = 1}I(Di > t): Indicator of being alive and staying in the state of interest for

subject i at time t.

C1i: Conditional independent censoring time for subject i.

C2i: Dependent censoring time for subject i.

Ci = C1i ∧ C2i: Observed censoring time for subject i at time t.

dM∗
i (t;β) = Ai(t)dt − π0(t)exp{βTZi(t)}dt: Martingale increment of the target of interest for

subject i at time t.

dMi(t;β) = Ai(t)I(Ci ≥ t)dt−π0(t)exp{βTZi(t)}I(Ci ≥ t)dt: Observed Martingale increment

of the target of interest for subject i at time t.

Xi = Ci ∧Di: Observed terminal event time for subject i at time t.

NC2
i (t) = I(C2i ≤ t ∧ Xi): Observed counting process of dependent censoring for subject i at

time t.

dNC2
i (t) = NC2

i (t− + dt)−NC2
i (t−): Counting process increment of observed dependent censor-

ing for subject i at time t.
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Yi(t) = I(Xi ≥ t): At-risk process for dependent censoring for subject i at time t.

dMC2
i (t;θ) = dNC2

i (t)− [λC2
0 (t)+θT0X i(t)]Yi(t)dt: Martingale increment of observed dependent

censoring for subject i at time t.

WA
i (t;θ) = I(C2i ≥ t)exp{

∫ t
0
[λC2

0 (s) + θT0X i(s)]Yi(s)ds}: Type A weights for subject i at time

t.

WB
i (t;θ) = I(C2i ≥ t)exp{

∫ t
0
θT0X i(s)Yi(s)ds}: Type B weights for subject i at time t.

Let X(k)(t) = n−1
∑n

i=1X i(t)
⊗kYi(t), and x(k)(t) = E[X1(t)⊗kY1(t)] be the limiting value

of X(k)(t) for k = 0, 1, 2, where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . Denote X̄(t) =

X(1)(t)/X(0)(t), and its limiting value as x̄(t) = x(1)(t)/x(0)(t). Moreover, define Ω̂
C2

=

n−1
∑n

i=1

∫ τ
0
{X i(t)− X̄(t)}Yi(t)XT

i (t)dt, and its limiting value

ΩC2 = E[
∫ τ

0
{X1(t)− x̄(t)}Y1(t)XT

1 (t)dt].

Let Z(k)(t;β,W ) = n−1
∑n

i=1Zi(t)
⊗kI(C1i ≥ t)Wi(t)exp{βTZi(t)},

and z(k)(t;β,W ) = E[Z1(t)⊗kI(C11 ≥ t)W1(t)exp{βTZ1(t)}] be the limiting value ofZ(k)(t;β,W )

for k = 0, 1, 2. Denote Z̄(t;β,W ) = Z(1)(t;β,W )/Z(0)(t;β,W ), and its limiting value as

z̄(t;β,W ) = z(1)(t;β,W )/z(0)(t;β,W ). Moreover, define

Ω̂(β,W ) = n−1
∑n

i=1

∫ τ
0
{Z(2)(t;β,W )/Z(0)(t;β,W )−Z̄(t;β,W )⊗2}Ai(t)I(C1i ≥ t)dt and its

limiting value Ω(β,W ) = E[
∫ τ

0
{z(2)(t;β,W )/z(0)(t;β,W )−z̄(t;β,W )⊗2}A1(t)I(C11 ≥ t)dt].

B.2 Assumptions

Let

λC2
i {t} = lim

δ→0
δ−1Pr[t ≤ C2i < t+ δ|Di ≥ t, C2i ≥ t, X̃ i(t)]
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No unmeasured confounders assumption:

λC2
i {t|X̃ i(t)} = λC2

i {t|X̃ i(t), C1i, C1i ≥ t,Di, Di ≥ t, Ei(s), s ∈ (t, τ ]} (B.1)

Note that X̃ i(t) includes Zi(t).

Assumptions for independent censoring time C1:

E[Ai(t)|Zi(t), C1i ≥ t, C1i] = E[Ai(t)|Zi(t)] (B.2)

Additive hazard model on dependent censoring C2i:

λC2
i (t) = λC2

0 (t) + θTX i(t) (B.3)

Model assumptions on the target of interest:

πi(t) = π0(t)exp[βT0Zi(t)]

or

E[dM∗
i (t)|Zi(t)] = 0 (B.4)

Estimating equations:
n∑
i=1

[Ai(t)− πi(t)]I(C1i ≥ t)Wi(t) = 0 (B.5)

n∑
i=1

∫ τ

0

[Ai(t)− πi(t)]I(C1i ≥ t)Wi(t)dt = 0 (B.6)
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B.3 Regularity Conditions for C1i and C2i

1. {Xi, Yi(t),X i(t),Zi(t), I(C1i ≤ Di∧C2i), I(C2i ≤ Di∧C1i)} for t ∈ [0, Xi], i = 1, 2, ..., n

are independent and identically distributed.

2. Pr(Ci ≥ τ) > 0 for i = 1, 2, ..., n, where τ is a pre-specified constant.

3. NC1
i (τ) < η1 <∞ and NC2

i (τ) < η2 <∞ almost surely.

4. |Zij(0)| +
∫ τ

0
|dZij(t)| < cZ < ∞ and |X ij(0)| +

∫ τ
0
|dX ij(t)| < cX < ∞ almost surely

for i = 1, 2, ..., n, j = 1, 2, ..., p, i.e., Zi(t) andX i(t) have bounded total variations.

5. Let z(k)
C1

(t;γ) = E[Z1(t)⊗kY1(t)exp{γTZ1(t)}] and denote z̄C1(t;γ) = z
(1)
C1

(t;γ)/z
(0)
C1

(t;γ).

ΩC1(γ0) = E[
∫ τ

0
{z(2)

C1
(t;γ0)/z

(0)
C1

(t;γ0)−z̄C1(t;γ0)⊗2}Y1(t)dNC1
1 (t)] and ΩC2 are positive

definite.

6. For γ ∈ Bδ1 where Bδ1 is a small neighborhood around γ0, z(0)
C1

(t;γ), z(1)
C1

(t;γ), x(0)(t) and

x(1)(t) are bounded away from zero.

B.4 Proof for Known Censoring Time

B.4.1 n1/2(θ̂ − θ)

By no unmeasured confounders assumption (B.1), C1i ∧ Di is independent of C2i conditional on

X i(t). By assumption (B.1), we could get the additive hazards estimating equation

UC2(θ) =
n∑
i=1

∫ τ

0

{X i(t)− X̄(t)}dMC2
i (t;θ)

and the expectation ofUC2(θ0) would be zero (Lin and Ying 1994, Schaubel et al. 2006). Let θ̂ be

the solution of UC2(θ) = 0, then θ̂ is a strong consistent estimator for θ. Furthermore, by Taylor
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expansion and the consistency of θ̂ we have

n1/2(θ̂ − θ0) = [Ω̂
C2

]−1n−1/2

n∑
i=1

∫ τ

0

{X i(t)− X̄(t)}dMC2
i (t;θ0) + op(1) (B.7)

Without lose of generality, we assume that X i(t) ≥ 0, then X(1)(t) and X(0)(t) are monotone

function in t and converge almost surely to x(1)(t) and x(0)(t) by SLLN. Iteratively applying

Lemma 1 of Lin et al. 2000, we could express n−1/2
∑n

i=1

∫ τ
0
{X i(t) − X̄(t)}dMC2

i (t;θ0) as

a sum of i.i.d random variables, i.e.,

n−1/2

n∑
i=1

∫ τ

0

{X i(t)− X̄(t)}dMC2
i (t;θ0) = n−1/2

n∑
i=1

uC2
i (θ0) + op(1)

where

uC2
i (θ) =

∫ τ

0

{X i(t)− x̄(t)}dMC2
i (t;θ)

By the consistency of θ̂ and Ω̂
C2

, we could re-write (B.7) as

n1/2(θ̂ − θ0) = [ΩC2 ]−1n−1/2

n∑
i=1

uC2
i (θ0) + op(1) (B.8)

Then by multivariate central limit theorem, we have n1/2(θ̂ − θ0) converges in distribution to a

mean zero normal random variable.

B.4.2 n1/2{dΛ̂C2
0 (t; θ̂)− dΛC2

0 (t)}

By Lin and Ying 1994, the estimator of baseline hazard increment dΛ̂C2
0 (t) is given by

dΛ̂C2
0 (t; θ̂) =

∑n
i=1{dN

C2
i (t)− Yi(t)θ̂

T
X i(t)dt}∑n

i=1 Yi(t)
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Consider n1/2[dΛ̂C2
0 (t; θ̂)− dΛC2

0 (t)], which can be decomposed as

n1/2[dΛ̂C2
0 (t; θ̂)− dΛC2

0 (t)] = n1/2{dΛ̂C2
0 (t; θ̂)− dΛ̂C2

0 (t;θ0)}+ n1/2{dΛ̂C2
0 (t;θ0)− dΛC2

0 (t)}

(B.9)

Denote

ĥC2(t) = −X
(1)(t)dt

X(0)(t)

and its limiting value hC(t) as

hC2(t) = −x
(1)(t)dt

x(0)(t)

By WLLN and continuous mapping theorem, we have ĥC2(t) converges in probability to hC2(t).

Then the first term in (B.9) could be written as

n1/2{dΛ̂C2
0 (t; θ̂)− dΛ̂C2

0 (t;θ0)} = −n1/2

∑n
i=1 Yi(t)X

T
i (t)(θ̂ − θ0)dt∑n

i=1 Yi(t)

= ĥ
T

C2
(t)n1/2(θ̂ − θ0)

= hTC2
(t)[ΩC2 ]−1n−1/2

n∑
i=1

uC2
i (θ0) + op(1) (B.10)

Next consider the second part:

n1/2{dΛ̂C2
0 (t;θ0)− dΛC2

0 (t;θ0)} = n1/2{
∑n

i=1[dNC2
i (t)− Yi(t)θT0X i(t)dt− Yi(t)λC2

0 (t)dt]∑n
i=1 Yi(t)

}

= n−1/2

n∑
i=1

X(0)(t)−1dMC2
i (t;θ0)

= n−1/2

n∑
i=1

x(0)(t)−1dMC2
i (t;θ0) + op(1) (B.11)
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where the last equality follows from Lemma 1 of Lin et al. 2000. Combining (B.10) and (B.11),

we have

n1/2[dΛ̂C2
0 (t; θ̂)− dΛC2

0 (t)] = n−1/2

n∑
i=1

fC0
i (t,θ0) + op(1) (B.12)

where

fC0
i (t,θ) = hTC2

(t)[ΩC2 ]−1uC2
i (θ) + x(0)(s)−1dMC2

i (t;θ)

By Central Limit Theorem, we have n1/2[dΛ̂C2
0 (t; θ̂) − dΛC2

0 (t;θ0)] converges in distribution to a

mean zero normal random variable, with variance E[fC0
1 (t,θ0)2].

B.4.3 n1/2{dΛ̂C2

i (t; θ̂)Yi(t)− dΛC2

i (t;θ0)Yi(t)}

Similar to the previous section, we could decompose the target quantity as

n1/2{dΛ̂C2
i (t; θ̂)Yi(t)− dΛC2

i (t;θ0)Yi(t)} =n1/2(θ̂ − θ0)TX i(t)Yi(t)dt+ (B.13)

n1/2[dΛ̂C2
0 (t; θ̂)− dΛC2

0 (t)]Yi(t) (B.14)

By (B.8), the first term (B.13) could be written as

n1/2(θ̂ − θ0)TX i(t)Yi(t)dt = XT
i (t)[ΩC2 ]−1Yi(t)n

−1/2

n∑
l=1

uC2
l (θ0)dt+ op(1) (B.15)

Combining (B.15) and (B.12), we have n1/2[dΛ̂C2
i (t; θ̂)Yi(t)−dΛC2

i (t)Yi(t)] equals to n−1/2
∑n

l=1 f
Ci
l (t,θ0)+

op(1), where

fCi
l (t,θ) = [XT

i (t)dt+ hTC2
(t)][ΩC2 ]−1uC2

l (θ)Yi(t) + x(0)(t)−1dMC2
l (t;θ)Yi(t)

By Central Limit Theorem again, we have n1/2[dΛ̂C2
i (t; θ̂)Yi(t) − dΛC2

i (t;θ0)Yi(t)] converges in

distribution to a mean zero normal random variable, with variance E[fCi
1 (t,θ0)2].
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B.4.4 n1/2{ŴA
i (t; θ̂)−WA

i (t;θ0)}

Since the target quantity equals to n1/2I(C2i ≥ t){exp[
∫ t

0
Yi(s)dΛ̂C2

i (s; θ̂)]−exp[
∫ t

0
Yi(s)dΛC2

i (s;θ0)]},

then by Taylor expansion and results of B.4.3 we have

n1/2{ŴA
i (t; θ̂)−WA

i (t;θ0)} = WA
i (t;θ0)n−1/2

n∑
l=1

∫ t

0

fCi
l (s,θ0) + op(1) (B.16)

B.4.5 n1/2{ŴB
i (t; θ̂)−WB

i (t;θ0)}

The target quantity is given by

n1/2{ŴB
i (t; θ̂)−WB

i (t;θ0)}

=n1/2I(C2i ≥ t){exp[

∫ t

0

θ̂
T
X i(s)Yi(s)ds]− exp[

∫ t

0

θT0X i(s)Yi(s)ds]}

By Taylor expansion and the consistency of θ̂, the above quantity equals to

n1/2WB
i (t;θ0)

∫ t

0

XT
i (s)Yi(s)(θ̂ − θ0)ds+ op(1)

Combining results with (B.8) we have

n1/2{ŴB
i (t; θ̂)−WB

i (t;θ0)} = WB
i (t;θ0)n−1/2

n∑
l=1

∫ t

0

fXi
l (s,θ0) + op(1) (B.17)

where fXi
l (t,θ) = [XT

i (t)Yi(t)dt][Ω
C2 ]−1uC2

l (θ).

B.4.6 Consistency of β̂A

Consider the two estimating equations

n∑
i=1

WA
i (t;θ)dMi(t;β) = 0 (B.18)

81



n∑
i=1

∫ τ

0

Zi(t)W
A
i (t;θ)dMi(t;β) = 0 (B.19)

we will first show that they have expectation zero at θ0 and β0. Consider WA
1 (t;θ0):

WA
1 (t;θ0)

=exp
[∫ t∧D1

0

dΛC2
1 (t)

]
I(C21 ≥ t)

=
∏

r∈(0,t∧D1]

[1− dΛC2
1 (r)]−1I(C21 ≥ t)

Then consider the expectation of (B.18) condition onX1(t). The first scenario is when t ≤ D1:

E{WA
1 (t−;θ0)dM1(t;β0)|X1(t), t ≤ D1}

=E{eΛ
C2
1 (t−)dM∗

1 (t;β0)I(C21 ≥ t)I(C11 ≥ t)|X1(t), t ≤ D1}

=eΛ
C2
1 (t−)E[dM∗

1 (t;β0)I(C21 ≥ t)I(C11 ≥ t)|X1(t), t ≤ D1]

=E[dM∗
1 (t;β0)I(C21 > t−)I(C11 ≥ t)|C21 ≥ t−,X1(t), t ≤ D1][1− dΛC2

i (t−)]−1∏
r∈(0,t−)

E[C21 > r|C21 ≥ r,X1(r)][1− dΛC2
i (r)]−1

=E[dM∗
1 (t;β0)I(C21 > t−)I(C11 ≥ t)|C21 ≥ t−,X1(t), t ≤ D1][1− dΛC2

i (t−)]−1

=E[dM∗
1 (t;β0)I(C11 ≥ t)|C21 ≥ t−,X1(t), t ≤ D1]

E[I(C21 > t−)|C21 ≥ t−,X1(t), t ≤ D1][1− dΛC2
i (t−)]−1

(B.20)

=E[dM∗
1 (t;β0)I(C11 ≥ t)|C21 ≥ t−,X1(t), t ≤ D1]

=E[dM∗
1 (t;β0)I(C11 ≥ t)|X1(t), t ≤ D1] (B.21)
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where (B.20) and (B.21) are by no unmeasured confounders assumption (B.1). As for t > D1, we

have dM∗
1 (t;β0) is only a function of Z1(t) because A1(t) = 0. In this case

E{WA
1 (t−;θ0)dM1(t;β0)|X1(t), t > D1}

=E{eΛ
C2
1 (D1)dM∗

1 (t;β0)I(C21 ≥ t)I(C11 ≥ t)|X1(t), t > D1}

=eΛ
C2
1 (D1)E[dM∗

1 (t;β0)I(C21 ≥ t)I(C11 ≥ t)|X1(t), t > D1]

=E[dM∗
1 (t;β0)I(C21 > D1)I(C11 ≥ t)|C21 ≥ D1,X1(t), t > D1]∏

r∈(0,D1]

E[C21 > r|C21 ≥ r,X1(r)][1− dΛC2
i (r)]−1

=E[dM∗
1 (t;β0)I(C11 ≥ t)|C21 ≥ t−,X1(t), t > D1] (B.22)

=E[dM∗
1 (t;β0)I(C11 ≥ t)|X1(t), t > D1]

where (B.22) is by the fact that given t > D1 (death is observed), C21 is infinity and therefore

C21 > D1. Combining the two scenarios, we have

E{WA
1 (t−;θ0)dM1(t;β0)|X1(t)} = E[dM∗

1 (t;β0)I(C11 ≥ t)|X1(t)].

SinceX1(t) contains Z1(t), then iterating expectations we have

E{WA
1 (t;θ0)dM1(t;β0)|Z1(t)}

=E[dM∗
1 (t;β0)I(C11 ≥ t)|Z1(t)]

=E[dM∗
1 (t;β0)|Z1(t)]E[I(C11 ≥ t)|Z1(t)] (B.23)

=0 (B.24)

where (B.23) is by conditional independent censoring assumption (B.2) and (B.23) is by the as-

sumption (B.4). Similarly, we could show that (B.19) has expectation zero. Solving (B.18) and
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(B.19), we get a mean zero estimating equation

U [β,WA(θ)] =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β,WA(θ)]}WA
i (t;θ)dMi(t;β) = 0

Consider the estimating equation with estimated weights ŴA(t; θ̂), i.e.,

U [β, ŴA(θ̂)] =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β, ŴA(θ̂)]}ŴA
i (t; θ̂)dMi(t;β) = 0 (B.25)

By SLLN and the strong consistency of ŴA
i (t;θ) toWA

i (t;θ) and θ̂ to θ0, we have that n−1U [β, ŴA(θ̂)]

converges almost surely to zero. Then by the positive definite of Ω[β0,W
A(θ0)] and arguments in

Lin et al. 2000 A1, the solution of (B.25) β̂A is a consistent estimator of β0.

B.4.7 n1/2(β̂A − β)

Since β̂A is the solution of estimating equation

U [β, ŴA(θ̂)] =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t;β, ŴA)}ŴA
i (t; θ̂)dMi(t;β) = 0

then by Taylor expansion and the consistency of Ω̂[β0, Ŵ
A(θ̂)] to Ω[β0,W

A(θ0)] we have

n1/2(β̂A − β0) = Ω[β0,W
A(θ0)]−1n−1/2U [β0, Ŵ

A(θ̂)] + op(1) (B.26)
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We could decompose n−1/2U [β0, Ŵ
A(θ̂)] as

n−1/2U [β0, Ŵ
A(θ̂)]

=n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0, Ŵ
A(θ̂)]}ŴA

i (t; θ̂)dMi(t;β0)

=n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0,W
A(θ0)]}WA

i (t;θ0)dMi(t;β0) (B.27)

+n−1/2

n∑
i=1

∫ τ

0

{Z̄[t;β0,W
A(θ0)]− Z̄[t;β0, Ŵ

A(θ̂)]}ŴA
i (t; θ̂)dMi(t;β0) (B.28)

+n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0,W
A(θ0)]}[ŴA

i (t; θ̂)−WA
i (t;θ0)]dMi(t;β0) (B.29)

By the results of Lin et al. 2000 A2, (B.27) converges in probability to

n−1/2
∑n

i=1

∫ τ
0
{Zi(t)− z̄[t;β0,W

A(θ0)]}WA
i (t;θ0)dMi(t;β0) + op(1). Specifically, since Zi(t)

and X i(t) are bounded, we assume without lose of generality that Zi(t) ≥ 0 and X i(t) ≥ 0.

Therefore, Z(0)[t;β0,W
A(θ0)] andZ(1)[t;β0,W

A(θ0)] are monotone functions in t and converges

almost surely to z(0)[t;β0,W
A(θ0)] and z(1)[t;β0,W

A(θ0)]. Iteratively applying Lemma 1 in Lin

et al. 2000, we establish the previous result. By Zhang and Schaubel 2011, the second term (B.28)

equals op(1). By (B.16), we have (B.29) equals to

n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0,W
A(θ0)]}

[
n−1

n∑
l=1

∫ t

0

fCi
l (s,θ0)

]
WA
i (t;θ0)dMi(t;β0) (B.30)

Define

Ĥ(β,θ,W ) = n−1

n∑
i=1

∫ τ

0

{Zi(t)−Z̄[t;β,W ]}[
∫ t

0

{XT
i (s)ds+hTC2

(s)}Yi(s)]Wi(t;θ)dMi(t;β)

H(β,θ,W ) = E

[ ∫ τ

0

{Z1(t)− z̄[t;β,W ]}[
∫ t

0

{XT
1 (s)ds+ hTC2

(s)}Y1(s)]W1(t;θ)dM1(t;β)

]
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and

Ĵ(t1, t2,β,θ,W ) = n−1

n∑
i=1

∫ t2

t1

{Zi(t)− Z̄[t;β,W ]}Wi(t;θ)x(0)(t)−1dMi(t;β)Yi(t)

J(t1, t2,β,θ,W ) = E

[ ∫ t2

t1

{Z1(t)− z̄[t;β,W ]}W1(t;θ)x(0)(t)−1dM1(t;β)Y1(t)

]
Switching the order of summation, we have (B.30) equals to

Ĥ [β0,θ0,W
A(θ0)][ΩC2 ]−1n−1/2

n∑
i=1

uC2
i (θ0) + n−1/2

n∑
i=1

∫ τ

0

Ĵ [t, τ,β0,θ0,W
A(θ0)]dMC2

i (t;θ0)

=n−1/2

n∑
i=1

[
H [β0,θ0,W

A(θ0)][ΩC2 ]−1uC2
i (θ0) +

∫ τ

0

J [t, τ,β0,θ0,W
A(θ0)]dMC2

i (t;θ0)

]
+ op(1)

(B.31)

where (B.31) is by iteratively applying SLLN. Combing (B.27) and (B.31) we have

n1/2(β̂A − β0) = n−1/2

n∑
i=1

f
βA
i (θ0,β0) + op(1) (B.32)

where fβA
i (θ,β) = Ω[β,WA(θ)]−1

[ ∫ τ
0
{Zi(t)− z̄[t;β,WA(θ)]}WA

i (t;θ)dMi(t;β)+

H [β,θ,WA(θ)][ΩC2 ]−1uC2
i (θ)+

∫ τ
0
J [t, τ,β,θ,WA(θ)]dMC2

i (t;θ)

]
. Therefore, n1/2(β̂A−β0)

converges in distribution to a mean zero normal random variable, with variance covariance matrix

E[f
βA
1 (θ0,β0)f

βA
1 (θ0,β0)T ].

B.4.8 Consistency of β̂B

Similar to (B.24), we can show thatWB
1 (t;θ0)dM1(t;β0) have expectation zero condition on exter-

nal covariatesZ1(t). Consider the first scenario where t ≤ D1, thenWB
1 (t;θ) = WA

1 (t;θ)exp[−
∫ t

0
dΛC2

0 (s;θ)]

and exp[−
∫ t

0
dΛC2

0 (s;θ)] is just a function of t. For the second scenario where t > D1,WB
1 (t;θ) =

WA
1 (t;θ)exp[−

∫ D1

0
dΛC2

0 (s;θ)]. Since D1 is observed, then exp[−
∫ D1

0
dΛC2

0 (s;θ)] is also a func-

tion of t. Therefore combing two scenarios and iterating the expectation on Zi(t), we also get two
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mean zero estimating equations

n∑
i=1

WB
i (t;θ)dMi(t;β) = 0 (B.33)

n∑
i=1

∫ τ

0

Zi(t)W
B
i (t;θ)dMi(t;β) = 0 (B.34)

Then the consistency of β̂B could be proved in similar manners as of β̂A.

B.4.9 n1/2(β̂B − β0)

We have β̂B is the solution of estimating equation

U [β, ŴB(θ̂)] =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β, ŴB(θ̂)]}ŴB
i (t; θ̂)dMi(t;β) = 0

and by Taylor expansion and the strong consistency of Ω̂[β0, Ŵ
B(θ̂)] to Ω[β0,W

B(θ0)] we have

n1/2(β̂B − β0) = Ω[β0,W
B(θ0)]−1n−1/2U [β0, Ŵ

B(θ̂)] + op(1) (B.35)

We could decompose n−1/2U [β0, Ŵ
B(θ̂)] as

n−1/2U [β0, Ŵ
B(θ̂)]

=n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0, Ŵ
B(θ̂)]}ŴB

i (t; θ̂)dMi(t;β0)

=n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0,W
B(θ0)]}WB

i (t;θ0)dMi(t;β0) (B.36)

+n−1/2

n∑
i=1

∫ τ

0

{Z̄[t;β0,W
B(θ0)]− Z̄[t;β0, Ŵ

B(θ̂)]}ŴB
i (t; θ̂)dMi(t;β0) (B.37)

+n−1/2

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β0,W
B(θ0)]}[ŴB

i (t; θ̂)−WB
i (t;θ0)]dMi(t;β0) (B.38)
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Following the arguments in section (B.4.7), we have (B.36) converges in probability to

n−1/2
∑n

i=1

∫ τ
0
{Zi(t) − z̄[t;β0,W

B(θ0)]}WB
i (t;θ0)dMi(t;β0) + op(1), the second term (B.37)

equals to op(1). Switching the order of summation, we have the third term (B.38) equals to

Ĥ
B

[β0,θ0,W
B(t)][ΩC2 ]−1n−1/2

n∑
i=1

uC2
i (θ0) + op(1)

=HB[β0,θ0,W
B(t)][ΩC2 ]−1n−1/2

n∑
i=1

uC2
i (θ0) + op(1) (B.39)

where

Ĥ
B

(β,θ,W ) = n−1

n∑
i=1

∫ τ

0

{Zi(t)− Z̄[t;β,W ]}[
∫ t

0

XT
i (s)Yi(s)ds]Wi(t)dMi(t;β)

HB(β,θ,W ) = E

[ ∫ τ

0

{Z1(t)− z̄[t;β,W ]}[
∫ t

0

XT
1 (s)Y1(s)ds]W1(t)dM1(t;β)

]
Combing results we have

n1/2(β̂B − β0) = n−1/2

n∑
i=1

f
βB
i (θ0,β0) + op(1) (B.40)

where fβB
i (θ,β) = Ω[β,WB(θ)]−1

[ ∫ τ
0
{Zi(t)− z̄[t;β,WB(θ)]}WB

i (t;θ)dMi(t;β)+

HB[β0,θ0,W
B(θ)][ΩC2 ]−1uC2

i (θ)

]
. Therefore, n1/2(β̂B − β0) converges in distribution to a

mean zero normal random variable, with variance covariance matrix equals toE[f
βB
1 (θ0,β0)f

βB
1 (θ0,β0)T ].

B.4.10 n1/2{π̂A0 (t)− π0(t)}

We consider the quantity in the numerator and the denominator separately.
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B.4.10.1 n1/2{n−1
∑n

i=1[I(Ci ≥ t)Ai(t)Ŵ
A
i (t; θ̂)]− E[I(C1 ≥ t)A1(t)WA

1 (t;θ0)]}

We could decompose the target quantity as

n1/2{n−1

n∑
i=1

[I(Ci ≥ t)Ai(t)Ŵ
A
i (t; θ̂)]− E[I(C1 ≥ t)A1(t)WA

1 (t;θ0)]}

=n1/2{n−1

n∑
i=1

[I(Ci ≥ t)Ai(t)Ŵ
A
i (t; θ̂)]− n−1

n∑
i=1

[I(Ci ≥ t)Ai(t)W
A
i (t;θ0)]} (B.41)

+n1/2{n−1

n∑
i=1

[I(Ci ≥ t)Ai(t)W
A
i (t;θ0)]− E[I(C1 ≥ t)A1(t)WA

1 (t;θ0)] (B.42)

By (B.16), the first part (B.41) could be expressed as

n−1/2

n∑
i=1

I(Ci ≥ t)Ai(t)W
A
i (t;θ0)n−1

n∑
l=1

[ ∫ t

0

{XT
i (s)ds+ hTC2

(s)}Yi(s)[ΩC2 ]−1uC2
l (θ0)+∫ t

0

x(0)(s)−1Yi(s)dM
C2
l (s;θ0)

]
=n−1/2

n∑
i=1

[
n−1

n∑
l=1

I(Cl ≥ t)Al(t)W
A
l (t;θ0)

∫ t

0

{XT
l (s)ds+ hTC2

(s)}Yl(s)[ΩC2 ]−1uC2
i (θ0)

+ n−1

n∑
l=1

I(Cl ≥ t)Al(t)W
A
l (t;θ0)

∫ t

0

x(0)(s)−1Yl(s)dM
C2
i (s;θ0)

]
=n−1/2

n∑
i=1

[
E

{
I(C1 ≥ t)A1(t)WA

1 (t;θ0)

∫ t

0

{XT
1 (s)ds+ hTC2

(s)}Y1(s)

}
[ΩC2 ]−1uC2

i (θ0)

+ E

{
I(C1 ≥ t)A1(t)WA

1 (t;θ0)

}∫ t

0

x(0)(s)−1E[Y1(s)]dMC2
i (s;θ0)

]
+ op(1)

≡n−1/2

n∑
i=1

f̃π11,Ai (t) + op(1) (B.43)

Define f̃π12,Ai (t) = I(Ci ≥ t)Ai(t)W
A
i (t;θ0). Combining (B.42) and (B.43), we have

n1/2{n−1

n∑
i=1

[I(Ci ≥ t)Ai(t)Ŵ
A
i (t; θ̂)]− E[I(C1 ≥ t)A1(t)WA

1 (t;θ0)]} = Gnf̃
π1,A + op(1)

(B.44)

where f̃π1,Ai (t) = f̃π11,A(t) + f̃π12,A(t), and by Donsker’s theorem, (B.44) converges to Gf̃π1,A.
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B.4.10.2 n1/2{n−1
∑n

i=1[I(Ci ≥ t)eβ̂
T
Zi(t)ŴA

i (t; θ̂)]− E[I(C1 ≥ t)eβ
T
0 Z1(t)WA

1 (t;θ0)]}

The target quantity could be expressed as

n1/2{n−1

n∑
i=1

[I(Ci ≥ t)eβ̂
T
Zi(t)ŴA

i (t; θ̂)]− E[I(C1 ≥ t)eβ
T
0 Z1(t)WA

1 (t;θ0)]}

=n−1/2

n∑
i=1

[I(Ci ≥ t)eβ̂
T
Zi(t)ŴA

i (t; θ̂)− I(Ci ≥ t)eβ̂
T
Zi(t)WA

i (t;θ0)] (B.45)

+n−1/2

n∑
i=1

[I(Ci ≥ t)eβ̂
T
Zi(t)WA

i (t;θ0)− I(Ci ≥ t)eβ
T
0 Zi(t)WA

i (t;θ0)] (B.46)

+n−1/2

n∑
i=1

[I(Ci ≥ t)eβ
T
0 Zi(t)WA

i (t;θ0)]− n1/2E[I(C1 ≥ t)eβ
T
0 Z1(t)WA

1 (t;θ0)] (B.47)

Having (B.16), the first term (B.45) equals to

n−1/2

n∑
i=1

I(Ci ≥ t)eβ̂
T
Zi(t)WA

i (t;θ0)

n−1

n∑
l=1

[∫ t

0

{XT
i (s)ds+ hTC2

(s)}Yi(s)[ΩC2 ]−1uC2
l (θ) +

∫ t

0

x(0)(s)−1Yi(s)dM
C2
l (s;θ0)

]
=n−1/2

n∑
i=1

[
n−1

n∑
l=1

I(Cl ≥ t)eβ̂
T
Zl(t)WA

l (t;θ0)

∫ t

0

[XT
l (s)ds+ hTC2

(s)]Yl(s)[Ω
C2 ]−1uC2

i (θ0)

+ n−1

n∑
l=1

I(Cl ≥ t)eβ̂
T
Zl(t)WA

l (t;θ0)

∫ t

0

x(0)(s)−1Yl(s)dM
C2
i (s;θ0)

]
=n−1/2

n∑
i=1

[
E

{
I(C1 ≥ t)eβ0

TZ1(t)WA
1 (t;θ0)

∫ t

0

{XT
1 (s)ds+ hTC2

(s)}Y1(s)

}
[ΩC2 ]−1uC2

i (θ0)

+ z(0)[t;β0,W
A(θ0)]

∫ t

0

x(0)(s)−1E[Y1(s)]dMC2
i (s;θ0)

]
+ op(1)

≡n−1/2

n∑
i=1

f̃π21,Ai (t) + op(1) (B.48)
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By (B.32) and Taylor expansion, the second term could be expressed as

n−1/2

n∑
i=1

I(Ci ≥ t)WA
i (t;θ0)eβ

T
0 Zi(t)ZT

i (t)n−1

n∑
l=1

f
βA
l (θ0,β0)

=n−1/2

n∑
i=1

Z(1)[t;β0,W
A(θ0)]Tf

βA
i (θ0,β0)

=n−1/2

n∑
i=1

z(1)[t;β0,W
A(θ0)]Tf

βA
i (θ0,β0) + op(1)

≡n−1/2

n∑
i=1

f̃π22,Ai (t) + op(1) (B.49)

Define f̃π23,Ai (t) = I(Ci ≥ t)eβ
T
0 Zi(t)WA

i (t;θ0). Combining (B.47), (B.48) and (B.49), we have

n1/2{n−1

n∑
i=1

[I(Ci ≥ t)eβ̂
T
Zi(t)ŴA

i (t; θ̂)]−E[I(C1 ≥ t)eβ
T
0 Z1(t)WA

1 (t;θ0)]} = Gnf̃
π2,A + op(1)

(B.50)

where f̃π2,Ai (t) = f̃π21,Ai (t) + f̃π22,Ai (t) + f̃π23,Ai (t).

B.4.10.3 n1/2{π̂A0 (t)− π0(t)}

By the Donsker’s theorem, we have

n1/2

 Pnf̃π1,A − P f̃π1,A

Pnf̃π2,A − P f̃π1,A

 =⇒

 Gf̃π1,A

Gf̃π2,A


where Gf̃π1,A and Gf̃π2,A are tight Gaussian process on (0, τ ].

By Delta method we have

n1/2[π̂A0 − π0] =⇒ G
[ f̃π1,A − (P f̃π1,A)f̃π2,A

P f̃π2,A

]
(B.51)
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B.4.11 n1/2{π̂B0 (t)− π0(t)}

Following similar arguments we have

n1/2[π̂B0 − π0] =⇒ G
[ f̃π1,B − (P f̃π1,B)f̃π2,B

P f̃π2,B

]
(B.52)

where

f̃π1,Bi (t) = f̃π11,Bi (t) + f̃π12,Bi (t)

f̃π11,Bi (t) = E

{
I(C1 ≥ t)A1(t)WB

1 (t;θ0)

∫ t

0

XT
1 (s)Y1(s)ds

}
[ΩC2 ]−1uC2

i (θ0)

f̃π12,Bi (t) = I(Ci ≥ t)Ai(t)W
B
i (t;θ0)

f̃π2,Bi (t) = f̃π21,Bi (t) + f̃π22,Bi (t) + f̃π23,Bi (t)

f̃π21,Ai (t) = E

{
I(C1 ≥ t)eβ0

TZ1(t)WB
1 (t;θ0)

∫ t

0

XT
1 (s)Y1(s)ds

}
[ΩC2 ]−1uC2

i (θ0)

f̃π22,Bi (t) = z(1)[t;β0,W
B(θ0)]Tf

βB
i (θ0,β0)

f̃π23,Bi (t) = I(Ci ≥ t)eβ
T
0 Zi(t)WB

i (t;θ0)

B.5 Proof for Random Censoring

Suppose that we have a total of M imputations. Define ∆1i = I[C1i ≤ Di ∧ C2i], where Xi =

Di ∧C1i ∧C2i, Yi(t) = I(Xi ≥ t). Note that Yi(t) are the same for each imputed datasets, and for

the underlying knowing censoring dataset. Let γ̂ be the estimator of γ0 from the observed C1 data

{Xi,∆1i}ni=1. In finite samples, C〈m〉1i are imputed from the estimated conditional probabilities

with parameters γ̂, which converge almost surely to the true value. It can then be shown that

I(C
〈m〉
1i ≥ t; γ̂) and I(C

〈m〉
1i ≥ t;γ0) are asymptotically equivalent, or more explicitly

n−1/2

n∑
i=1

I(C
〈m〉
1i ≥ t; γ̂) = n−1/2

n∑
i=1

I(C
〈m〉
1i ≥ t;γ0) + op(1)
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Asymptotically, our imputed censoring time are drawn from the underlying true conditional

probability with γ0. More detailed proofs could be referred to a previous manuscript ”Semipara-

metric Temporal Process Regression of Survival-Out-of-Hospital”.

For the large sample properties of β̂A(M), we have

n1/2[β̂A(M)− β0] = n−1/2

n∑
i=1

f
βA
i (θ0,γ0,β0,M) + op(1) (B.53)

where

f
βA
i (θ,γ,β,M) = Ω[β,WA(θ)]−1[ ∫ τ

0

{Zi(t)− z̄[t;β,WA(θ)]}WA
i (t;θ)

1

M

M∑
m=1

dM
〈m〉
i (t;β,γ)+

H [β,θ,WA(θ)][ΩC2 ]−1uC2
i (θ)+∫ τ

0

J [t, τ,β,θ,WA(θ)]dMC2
i (t;θ)

]

dM
〈m〉
i (t;β,γ) =

[
Ai(t)− π0(t)exp{βTZi(t)}

]
I(C

〈m〉
1i ≥ t;γ)I(C2i ≥ t)dt

Similarly, we could develop the asymptotic properties of β̂B(M).

As for π̂A0 (t,M), it is given by

π̂A0 (t,M) =
M−1

∑M
m=1

∑n
i=1Ai(t)I(C

〈m〉
1i ≥ t; γ̂)I(C2i ≥ t)WA

i (t;θ0)

M−1
∑M

m=1

∑n
i=1 I(C

〈m〉
1i ≥ t; γ̂)I(C2i ≥ t)WA

i (t;θ0)exp[β̂
T
Zi(t)]

We could show that

n1/2[π̂A0 (M)− π0] =⇒ G
[ f̃π1,A − {P f̃π1,A}f̃π2,A(M)

P f̃π2,A(M)

]
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where

f̃π2,A(t,M) =f̃π21,A(t) + f̃π22,A(t,M) + f̃π23,A(t,M)

f̃π22,A(t,M) =z(1)[t;β0,W
A(θ0)]Tf

βA
i (θ0,β0,γ0,M)

f̃π23,A(t,M) =
1

M

M∑
m=1

I(C
〈m〉
1i ≥ t;γ0)I(C2i ≥ t)eβ

T
0 Zi(t)WA

i (t;θ0)

The asymptotic properties of π̂B0 (t,M) could be obtained following parallel arguments.
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