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ABSTRACT

Neutrons born from fission may go on to induce subsequent fissions in self-propagating series of

reactions resulting in a fission chain. Fissile materials comprise all isotopes capable of sustain-

ing nuclear fission chain reactions, and are therefore a necessary prerequisite for the construction

of a nuclear weapon. As a result the accountancy and characterization of fissile material is of

great importance for national security and the international community. The rate at which neutrons

“multiply" in a fissile material is a function of the composition, total mass, density, and shape of

the object. These are key characteristics sought out in areas of nuclear non-proliferation, safe-

guards, treaty verification and emergency response. This thesis demonstrates a novel technique of

measuring the underlying fission chain dynamics in fissile material through temporal correlation

of neutrons and gamma rays emitted from fission.

Fissile material exhibits key detectable signatures through the emission of correlated neutrons

and gamma rays from fission. The Non-Destructive Assay (NDA) community has developed ma-

ture techniques of assaying fissile material that detect these signatures, such as neutron counting

by thermal capture based detectors, and gamma-ray spectroscopy. An alternative use of fast or-

ganic scintillators provides three additional capabilities: (1) discrimination between neutrons and

gamma-ray pulses (2) sub-nanosecond scale timing between correlated events (3) measurement of

deposited neutron energy in the detector. This thesis leverages these capabilities into to measure

a new signature, which is demonstrated to be sensitive to both fissile neutron multiplication and

presence of neutronically coupled reflectors. In addition, a new 3D imaging method of sources of

correlated gamma rays and neutrons is presented, which can improve estimation of total source

volume and localization.
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CHAPTER 1

Introduction

1.1 Brief History of the Fission Chain

The 20th century began with a rudimentary understanding of the atom, which was suitable for

chemistry and molecular studies. The only known subatomic particle was the electron. From the

start of the century, each breakthrough discovery of the subatomic structure of the atom came about

every decade. In 1911 Ernest Rutherford discovered the nucleus, and at the end of that decade, in

1919, the proton. In the 1920s Neils Bohr, Erwin Schrödinger, and Werner Heisenberg, among

other theorists, developed quantum mechanics, which contradicted the theory of nuclear electrons

that would keep protons from being repelled apart. This theoretical work greatly bolstered the case

for the existence of a neutron, which was eventually discovered in 1932 by James Chadwick at the

Cavendish laboratory headed by Rutherford himself.

The discovery of the neutron proved pivotal in the history of the fission chain, from that point

on the world was just thirteen years away from its first nuclear weapons test. Only a year out

from the necessary discovery of the neutron, Leo Szilard would conceive of the concept of self-

sustaining neutron-induced chain reactions. Even more impressive was his immediate grasp of

the explosive implications of such theory, which would profoundly change the world [1]. In that

same year, Szilard and Enrico Fermi would patent the idea of a nuclear reactor. Nuclear fission

was discovered in 1938 by Otto Hahn, and explained theoretically a year later by Lise Meitner

and Otto Frisch through the use of Bohr’s liquid drop-model. That same year, Nazi Germany and
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Soviet Union would join forces and invade Poland, officially starting World War II in the European

theater.

Szilard’s dream of a sustained fission chain was realized in 1942 when the Chicago Pile-1

reactor achieved criticality. The work of Szilard and his fellow European refugees under the Man-

hattan project would eventually give birth to an atomic weapon which was first tested under the

code name “Trinity" in a New Mexico desert on July 16th 1945. The scientific lead of weapon

design, J. Robert Oppenheimer, described the moment that the bomb went off in an interview for a

1965 television program The Decision to Drop The Bomb:

“We knew the world would not be the same. A few people laughed, a few people

cried. Most people were silent. I remembered the line from the Hindu scripture, the

Bhagavad Gita. Vishnu is trying to persuade the Prince that he should do his duty, and,

to impress him, takes on his multi-armed form and says, ’Now I am become Death,

the destroyer of worlds.’ I suppose we all thought that, one way or another."

The quote out of the Hindu scripture has now ubiquitous association with that fateful day. One

wonders if Oppenheimer thought of it before a fellow physicist Kenneth Bainbridge turned to him

immediately after the test and proclaimed:

“Now we are all sons of bitches."

The end of the war simultaneously begun the next chapter in geopolitical world order. The

proverbial Genie was out of the bottle and around the world atomic weaponry would be acquired,

by hook or by crook, by an exponentially weaker and poorer list of state actors stretching from

Joseph Stalin to Kim Jong-il. In the early 1950s United States and the Soviet Union developed

hydrogen bombs, while at same time Eisenhower launched an effort to demilitarize nuclear tech-

nology beginning with the “Atoms for Peace" speech at the UN General Assembly. As of today

there are eight declared nuclear armed states and 31 countries with operational nuclear reactors.
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1.2 Motivation

The global spread in nuclear technology, coupled with a rapid buildup of nuclear weapon stockpile

during the Cold War, has left a legacy of abundant global supply of fissile material necessary for

making an atomic bomb. Anticipating this problem, the international community has put together a

regime of safeguards and non-proliferation, administered through the International Atomic Energy

Agency (IAEA), with the specific goal of accounting for and preventing the illicit spread of fissile

material and nuclear weapon technology. The centerpiece of global nuclear cooperation is the

Non-Proliferation Treaty (NPT), which stipulates a basic bargain: all countries may engage in

peaceful use of nuclear technology provided that it’s not used for nuclear weapons, and countries

with nuclear weapons will work toward complete disarmament. These frameworks function as

a deterrent for states that may seek nuclear weaponry, by providing an international inspection

regime of nuclear facilities inside member states.

Upholding the disarmament pillar of the NPT bargain has been largely carried out through bi-

lateral treaties between the United States and Russia, which account for over 90% of total nuclear

warhead stockpile. These bilateral agreements started in the Cold War with the Strategic Arms

Limitation Talks (SALT), which lead to the Strategic Arms Reduction Treaties (START); the latest

generation of which is the New START ratified in 2011. These treaties are verified by each oth-

ers’ inspection teams that are invited to visit host nuclear facility of the other country and certify

compliance.

The other threat of loose fissile material concerns the use of weapons of mass destruction by

non-state actors. Nuclear terrorism includes a range of potential attacks from deploying a dirty

bomb to poisoning the water supply, but by far the most consequential is acquisition of a nuclear

weapon [2]. Although the probability of terrorist acquiring and detonating a nuclear weapon is

low, the threat is quite real. In his 2009 speech in Prague on nuclear weapons, President Obama

singled out nuclear terrorism as primary concern:

“So, finally, we must ensure that terrorists never acquire a nuclear weapon. This is the
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most immediate and extreme threat to global security. One terrorist with one nuclear

weapon could unleash massive destruction. Al Qaeda has said it seeks a bomb and that

it would have no problem with using it. And we know that there is unsecured nuclear

material across the globe."

Preventing fissile material from falling into the wrong hands involves monitoring of illicit traf-

ficking at border crossings and through other ports of entry. The most important task is detection,

but once an item of concern is seized, its immediate characterization is a critical task for the emer-

gency response teams. At a later time the item may be sent to a laboratory in order to determine

the place of origin through nuclear forensic methods.

The protocols concerning the nuclear threats outlined above fall into four general categories,

which have some overlaps:

1. Non-proliferation: preventing the spread of nuclear weapons.

2. Safeguards: securing and account of fissile material.

3. Treaty Verification: confirmation of disarmament.

4. Emergency Response: on-site characterization of seized material.

5. Nuclear forensics: laboratory investigation material age, source origin etc.

All of these require the measurement and characterization of fissile material, which by definition

produces nuclear chain reactions. As I will demonstrate, the measurement of fission chain dynam-

ics is relevant because it provides information about the fissile material itself: mass, geometrical

configuration, and presence of any neutronically coupled materials, such as high explosives.

1.3 Thesis Contribution and Overview

Fissions produce two primary detectable signatures: gamma rays and neutrons. The prevalence of

thermal capture neutron detectors, such as He-3 proportional counters, have limited the develop-
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ment of neutron counting based Non-Destructive Assay (NDA). An alternative use of Pulse Shape

Discrimination (PSD) capable fast organic scintillators provides three additional key capabilities:

1. Distinguishing between gamma ray and neutron pulses, and incorporating both into the anal-

ysis.

2. Sub-nanosecond scale timing between correlated detected events.

3. Measurement of deposited neutron energy through scintillation due to proton recoil.

In addition, the use of fast electronics provides a way to store individual detected pulses and apply

advanced digital processing techniques in post-measurement analysis. This thesis leverages these

capabilities and provides an alternative technique for characterizing fissile material through fast

gamma-neutron correlations. The sensitivity of this new signature to fissile material neutron mul-

tiplication and presence of neutron reflectors is explored. Furthermore, a correlated gamma ray

coupled with traditional double neutron scatter imaging is shown to produce a new 3D imaging

technique, which can further improve estimation of total source volume and localization.

The following is a brief summary of each chapter:

Chapter 2: The definitions of fissile material properties and other neutrons sources are laid

out. The basics of the three major NDA techniques, Rossi-alpha, Feynman-Y and Multiplic-

ity Counting, are presented in chronological order, along with the history of the development

of each method. Finally, the rationale and advantages of using the new gamma-neutron cor-

related signature concludes the chapter.

Chapter 3: The best practices and pitfalls of digital processing of organic scintillator pulses

from timing to pulse shape discrimination. The details of common processing tasks (e.g.

energy calibration) that are applied to data throughout this thesis are collected here for suc-

cinctness. A Bayesian approach for classifying the pulses and estimating the gamma-ray or

neutron probability is put forward as the PSD method of choice for this work.

Chapter 4: An overview of the prior work with Time Correlated Pulse Height (TCPH) distri-

bution is given, along with a new method of analyzing the distribution and fitting empirical
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parameters. Results from fits to measured and simulated TCPH distributions of the BeRP

ball with polyethylene and tungsten reflectors are shown.

Chapter 5: A reformulation of TCPH signature into a one-dimensional Time of Flight Fixed

By Energy Estimation (TOFFEE) distribution is presented. A template matching approach

is used in the context of treaty verification for dismantlement and item confirmation of both

plutonium and uranium objects.

Chapter 6: A physical interpretation of the time-dependent neutron population in fissile

material surrounded by a reflector is derived from two-region point kinetics. The model is

then used to fit physical parameters to bare and reflected configurations of the BeRP ball.

Chapter 7: A new 3D imaging method of sources of coincident gamma rays and neutrons

is presented. Preliminary measurements and simulations are shown as a proof-of-concept of

the imaging technique.
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CHAPTER 2

Fissile Material Properties and Detection Techniques

2.1 Definitions

2.1.1 Source of Neutrons

A broad overview and details about neutron sources and expected yields of most common sources

are given in [3]. The focus of the following overview is the correlated emission of neutrons and

gamma rays from those sources. The source of fission neutrons comes in two categories: spon-

taneous and induced. Spontaneous fission is the result of heavy actinides spontaneously decaying

into two or more lighter isotopes. In this respect it’s simply another mode of decay of an isotope.

By contrast, induced fission necessitates neutron absorption by a fissionable isotope from outside

the nucleus. The emitted products are neutrons and gamma rays, with slight variations in the

energy and number (or multiplicity) of neutrons and gamma rays produced. In addition, there is

incident neutron energy dependence on the number and energy of the emitted neutrons. The fission

process typically results in the near simultaneous emission of 0 to 6 neutrons and 0 to 20 gamma

rays. The distribution of the number of emitted particles is called the “multiplicity" distribution,

and examples are shown in Figure 2.1 and 2.2.

The mean neutron multiplicity, ν̄, depends on the isotope, and varies from as little as 2.16 for

Pu-240 to as much as 3.757 for Cf-252. Establishing the value of ν̄ has been of utmost importance

because of its role in determining the length of a fission chain, and thus when an assembly becomes

critical. In a critical assembly the rate of neutron production, which depends among other factors
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on ν̄, is equal to the rate of neutron loss. As a result, neutron multiplicity and ν̄ have been studied

with numerous experiments to a greater precision than gamma-ray multiplicity [4].
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Figure 2.1: Neutron probability distribution for induced fission of Pu-239, with 2 MeV neutron
incident neutron energy [4].

The energy of the resulting gamma rays and neutrons also varies between fission events. The

mean energy of the fission neutrons is around 2 MeV, and distribution of the neutron energies can

be approximated by a Watt spectrum defines as

f(E) = C exp(−E/a) sinh(
√
bE) (2.1)

where C is a normalization factor and a and b are constants that vary between fissioning isotopes

[7].

For isotopes with large cross-sections for fission over the Watt spectrum, the neutrons produced

from fission can subsequently induce other fissions, and thus causing a fission chain. Neutrons and

gamma rays from the same fission chain are also correlated, though some of them are not born

simultaneously. Because these correlated gamma rays and neutrons come from different fissions,

there will exist a characteristic time between their emission that set them apart from other sources
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Figure 2.2: Gamma probability distribution for induced fission of Pu-239 [5, 6].

of correlated neutrons and gamma rays. It is this difference that is exploited and explored in this

dissertation.

The last category of ubiquitous sources of correlated gamma rays and neutrons are the so-called

alpha-neutron, or alpha-n, sources. Their name derives from the (α, n) reactions that occur when

a heavy alpha emitter (e.g. Pu-238, Am-241) is brought together with suitable light target isotope

(e.g. Be-9, F-19, Li-7, O-17). After capturing the alpha particle and emitting a neutron, the product

isotope is left in an excited state which leads to emission of correlated gamma rays. Unlike fission

gamma rays, these have specific characteristic energies caused by discrete energy level differences

among the excited states and the ground state. The energy spectra of emitted neutrons are also quite

different from their fission counterparts, and vary widely between different of alpha-n sources. For

example, the mean neutron energy of an AmBe source is 4.5 MeV, but only 300 keV for an AmLi

source. This range of energies makes alpha-n sources versatile laboratory tools, but (α, n) reactions

also provide a source of neutrons in reactor fuel and stored fissile material.

Uranium and plutonium oxides are the most common form of nuclear fuel used in commer-

cial power plants, and uranium hexafluoride (UF6) is used for enrichment and storage. Oxygen

and fluorine have a relatively large (α, n) cross-sections, therefore these mixtures emit correlated
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gamma rays and neutrons of both types: fission and (α, n). The result is a mixed source of neu-

trons, which have to be accounted for in the coincidence counting techniques described in Section

2.2. The neutrons born out of (α, n) reaction have a multiplicity of one, and by themselves only

contribute to the uncorrelated background. However, just like spontaneous fission neutrons, (α, n)

neutrons may induce fissions and start fission chains, which contribute to the coincidence response.

The relative strength of (α, n) neutrons depends in large part to the source strength of alpha emit-

ters and the amount of low-Z isotopes mixed in the material, and not directly on the amount of

spontaneously fissioning isotopes [8]. Since fissile material assay is determined from measuring

the amount these spontaneously fissioning isotopes, any unaccounted contributions from (α, n)

neutrons may adversely affect the final mass estimations.

2.1.2 Special Nuclear Material

Special Nuclear Material (SNM) is actually defined by law under Title I, Chapter 2, Section 11 of

the Atomic Energy Act of 1954 as “plutonium, uranium enriched in isotope 233 or in the isotope

235 [9]." The definition is quite unsatisfactory and leaves open the question of what is so “special"

about Special Nuclear Material (SNM). The answer comes later at the end of Section 53 “special

nuclear material shall be distributed only on terms... that no user will be permitted to construct

an atomic weapon." It’s clear, therefore, that SNM is important because it is the prerequisite for

making atomic weapons. For this reason SNM is often used interchangeably with the term “fissile"

material, however, the latter has a more precise technical definition.

Fissile material is capable of undergoing induced fission by the neutrons that they emit, and

therefore can sustain nuclear chain reactions. The binding energy supplied from capturing a neu-

tron is greater than the critical energy necessary to split the atom. Therefore, no additional energy

is required from the neutron to induce a fission which gives birth to subsequent neutrons. In gen-

eral, heavy actinides with odd number of neutrons meet the physical requirements to be considered

fissile. However, the most important fissile isotopes are U-235 and Pu-239, because both can be

readily weaponized for a fission-bomb [10]. The other fissile isotopes suffer from either high
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spontaneous fission rate or high α-emission rate, which can cause pre-detonation by supplying

initiating neutrons. The exception is U-233, which is theoretically weaponizable, but inevitably

contaminated by short lived U-232 which makes it practically prohibitive as a nuclear weapon

material [10].

Fissile material is a subset of a larger group of fissionable material. As the name suggests, fis-

sionable material is capable of undergoing induced fission by a neutron above a threshold energy.

For example, U-235 is both fissionable and fissile. However, other fissionable but not fissile iso-

topes require extra energy from the neutron to overcome the critical energy necessary to undergo

a fission. The distinction stems from the difference in the stability of heavy actinides with odd

number of neutrons and/or protons compared with those with an even number of both. The even

numbered isotopes are more stable, therefore an odd numbered isotope has greater binding energy

after it captures a neutron. Notable examples of fissionable isotopes are Th-232 and U-238, which

can be used in nuclear reactor fuel.

The IAEA has determined Significant Quantities (SQ) of different fissile isotopes that are “the

approximate amount of nuclear material for which the possibility of manufacturing a nuclear ex-

plosive device can not be excluded... and should not be confused with critical masses. [11]" In

practice SQs are a useful standard in the safeguards community for discussing the smallest quantity

of fissile material worth accounting for, and are summarized in Table 2.1. Purity is also important,

uranium enriched in excess of 20% of U-235 is deemed Highly Enriched Uranium (HEU) and

plutonium with 93% or more Pu-239 is called Weapons-Grade Plutonium (WGPu).

Table 2.1: Significant Quantities of SNM [11].

Material SQ
Pua 8 kg Pu
U-233 8 kg U-233
HEU (U-235 ≥ 20%) 25 kg U-235
a For Pu containing less than 80% Pu-238.
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2.1.3 Multiplication Factor

Fissile material is defined by its ability to “multiply" neutrons by generating fission chains. The

multiplication factor k is the ratio of the number of neutrons born in one generation to those in the

previous generation:

k =
number of neutrons in one generation

number of neutrons in a previous generation
. (2.2)

This term provides a useful shorthand for the state of neutrons in a multiplying system, such as

a reactor. If k = 1 then the neutron population is stable and the system is referred to as being

“critical". If k > 1 then the neutron population will, on average, increase at a geometric rate and

the system is said to be “supercritical." Finally, if k < 1 then neutron population will, on average,

decrease exponentially in subsequent generations and the system is said to be “subcritical."

In reactor theory, four and six-factor formulas are used to relate the factor k to physical prop-

erties of a system. The exact definitions of these formulas are not particularly relevant for this

thesis work, but the difference between them is useful in highlighting the meaning of k-effective or

keff , which often appears in literature without context. The four factor formula assumes an infinite

medium, but the six factor assumes a finite medium by including the probabilities of neutron non-

leakage which results in keff [12]. Neutron leakage is a term that describes the escape of neutrons

from the system.

The factor k also makes an appearance as an eigenvalue for so-called criticality “search" prob-

lems, where the goal is to determine the size and composition of a reactor which achieves criticality.

An example of its use can be seen in the operator notation of one-speed (energy) group neutron

diffusion model

Mφ =
1

k
Fφ (2.3)

where M is the destruction operator (leakage and absorption), F the production operator (fission),
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and φ the neutron flux [13]. In this form the factor k plays a role of a modifier of the production

term, Fφ, in order to make it equal to leakage and absorption of neutrons Mφ. The procedure is

to pick a reactor size and composition (which modifies M and F), and solve for the factor k. If

k 6= 1 then new reactor parameters are chosen and the calculation is repeated. However, if k = 1

then the critical reactor configuration was found and the search is over.

Point reactor kinetics, which start from diffusion theory and omit spacial dependence, offer a

time based representation of k. The spacial simplification allows for analytical solutions to time-

dependent problems in nuclear reactor dynamics. This definition of k takes the form of a quotient

of two terms:

k =
l

Λ
(2.4)

where l is the neutron lifetime which is the mean time for one neutron to be removed by either

absorption or leakage, and neutron reproduction or generation time, Λ, is the mean time for one

neutron to be replaced by another via fission [14]. The implication here is that a reactor or assembly

is critical when l = Λ.

Neutron generation time is a common term used in reactor point kinetics, but in the nonde-

structive assay formulations, the mean fission time, lf , is far more prevalent. The two factors are

related by ν̄:

Λ =
1

ν̄Σfv
(2.5)

lf =
1

Σfv
(2.6)

where Σf is the macroscopic fission cross-section and v is neutron velocity, the product of which

(vΣf ) is the production rate of neutrons. Swapping out Λ with lf in Eq. 2.4 leads to another
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interpretation of the multiplication factor:

k =
lν̄

lf
= pf ν̄ (2.7)

where the ratio of mean neutron lifetime and mean time to fission is shown to be pf , the probability

that a neutron undergoes fission.

2.1.4 Subcritical Neutron Multiplication

The focus of this work is on subcritical systems, and specifically new techniques in measuring

their state and configuration. An important parameter derived from the multiplication constant k

is the subcritical neutron multiplication. If starting with a single source neutron, plugging in 1

to the denominator of Eq. 2.2, the factor k becomes the average number of neutrons born in the

first generation. These first generation neutrons will go on to produce k2 neutrons in the second

generation and so on until the total number of neutrons produced from a single starting neutron is

1 + k + k2 + k3 + k4... (2.8)

For subcritical systems (k < 1) this geometric series converges and the total neutron multiplication

is

MT =
1

1− k
(2.9)

Eq. 2.9 is sometimes referred to as the prompt neutron multiplication, because the contribution

of delayed neutrons is ignored in this formulation. Prompt neutrons appear almost instantaneously

(femtoseconds) with the fission events. Delayed neutrons are the result of the decay of fission

products and contribute only a small fraction to the total neutrons resulting from fission. The delay

in the time that these neutrons are born is quite significant, as much as several seconds after the
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initial fission event. The contribution of delayed neutrons are crucial for reactor dynamics and

they make reactor criticality control feasible [15]. However, for the purposes of this dissertation

the contribution of delayed neutrons can be ignored because the time-scales that govern their birth

(tens µs to tens of seconds) are outside of the coincident time windows that are used in the analysis

throughout this work (hundreds of ns).

A more important distinction in the definition of neutron multiplication is between total and

leakage multiplication. Leakage multiplication, sometimes referred to as "net" multiplication, de-

scribes the number of neutrons that escape from the subcritical assembly [16]. This is an important

distinction because the neutrons that escape are the only ones that are available for measurement.

If the probability of leakage is pl then leakage multiplication is just

ML = plMT =
pl

1− k
. (2.10)

An illustration of the difference between total and leakage multiplication is shown in Figure 2.3.

Note that an individual fission chain is used as an example of subcritical multiplication, but in

actuality this concepts describes the average behavior of fission chains in a subcritical assembly.

Figure 2.3: Diagram of a fission chain evolution inside hypothetical sphere of special nuclear
material. Each of the black lines represent neutrons, the red nodes represent a fission events and
the blue termination points represent neutron absorption. The total multiplication is equivalent to
the total number of of neutrons or the number of black lines (MT = 8). However, the leakage
multiplication is only three (ML = 3), equivalent to the number of neutrons that escaped the
sphere.
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2.2 Fissile Material Analysis Techniques

The established techniques discussed below — Rossi-alpha, Feynman-Y and Multiplicity Count-

ing — all fall under the theoretical purview of neutron noise analysis [17]. The first two techniques

trace their origins to the Manhattan project, and the works of Feynman, de Hoffmann and Serber

among many others [18]. Measurement of fundamental system parameters, for example the prompt

neutron period, and physical quantities, like ν̄, was of great interest to the brilliant scientists work-

ing out these problems atop a New Mexican mesa. Their test subjects were either near-critical

or briefly supercritical fast assemblies, or purpose built reactors. A few decades later the NDA

community that inherited these techniques had to adapt to the new challenge of fissile material

accountancy. The challenge for these applications was to accurately measure the mass of fissile

material, and in particular plutonium, in test samples of unknown heterogeneous composition.

The application of the theory has been molded by technology available for neutron coincidence

counting at the time, namely thermal capture neutron detectors (He-3) and analog circuitry [8].

More recent work has focused on updating some techniques, such as multiplicity counting, by

adopting the analysis to include new factors that come with the use of fast organic scintillators

[19]. Some traditional techniques, like Feynman-Y, have been updated to include the contribution

for gamma rays measured by PSD capable organic scintillators [20]. This thesis work aims to

move beyond traditional analysis and make use of additional signatures available to fast organic

scintillators, which will be explored later in this chapter.

2.2.1 Rossi-alpha

Rossi-alpha is one of the most well known and earliest neutron noise analysis methods. The

method’s namesake, Bruno Rossi, observed larger-than-expected fluctuations in neutron count

rates of a boiling water reactor at Los Alamos and reckoned that they were caused by correlated

neutrons from fission chains [21]. His key insight was that a single neutron could kick off a long

fission chain which would evolve on a characteristically shorter time scale than the random birth of
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other source neutrons. The pioneers of neutron noise experiments were interested in measuring the

prompt neutron period, α, which is inversely related to the efficiency of explosive reactions [21].

The prompt neutron period can be measured directly by introducing and then removing a strong

neutron source (source jerk), or briefly forming a supercritical configuration [22]. Rossi’s exper-

iment was an alternative approach to determine α that relied on measuring the fluctuations from

many individual fission chains in a near critical assembly which is self-modulated (i.e. the mean

time between emission of source neutrons is of the order of or longer than prompt neutron pe-

riod) [23].

The Rossi-alpha experiment itself is technically simple. First, an initial neutron detection opens

up a predetermined time window, or gate, and the times to all subsequent events in that window are

binned. The window then shifts to the second event and the binning process proceeds as before.

This process is shown in Figure 2.4, and in essence depicts the operations of a shift register. In the

days of analog circuitry these time windows would have to be fixed [8], but modern list-mode data

acquisitions allows for any time window to be applied in post-measurement analysis [24].

Figure 2.4: Example of time binning in a Rossi-alpha experiment of a neutron event train depicted
by black bars. The blue arrows show binned times within each of the fixed time windows of length
TW .

Feynman is credited for developing the theory for interpreting the Rossi experiments [25]. His
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formulations had no spacial dimension (single region), and one-speed neutrons (single group),

which are prerequisites for modern point reactor kinetics. One-speed assumption meant a single

neutron energy, and thus a single average probability for induced fission. Under those assump-

tions the rate of change of the number neutrons in a multiplying system is the difference between

production through fission and loss by absorption or leakage:

dN

dt
=
ν̄N

lf
− N

l
(2.11)

The terms in Eq. 2.11 have been previously defined in Section 2.1.3. Given the definition of

multiplication constant in Eq. 2.7, the balance Eq. 2.11 can be re-written as

dN

dt
=
k − 1

l
N. (2.12)

TakingN(0) = N0 as the initial condition, the solution to this first order linear differential equation

is

N(t) = N0e
k−1
l
t = N0e

αt (2.13)

where α is the prompt neutron period and is negative for subcritical assemblies [26]. The constant

α is also referred to as the neutron rate of decay when the term in the exponent is negative [18]. It

is assumed that delayed neutrons are born on much longer time scales and therefore do not affect

the measurement of α.

It follows that if the neutron population decays exponentially then the probability of detecting

a correlated neutron is governed by exponential decay. This probability of counting a correlated

neutron at time t in interval dt after an initial neutron at t = 0 is

p(t)dt = Fε dt+ ε
Dvk

2

2(1− k)l
eαtdt (2.14)
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where F is the average fission rate and ε is the detection efficiency per fission [24]. Diven’s

parameter, Dv, is a measure of the relative width of the neutron multiplicity distribution

Dv =
ν(ν − 1)

ν̄2
. (2.15)

In practice the expression of the shape of the Rossi-alpha distribution is simplified to

s(t) = A+Reαt (2.16)

where A is the accidental rate of detecting uncorrelated neutrons in the time window and R is the

correlated (or “real") coincidence rate [8]. With analog shift registers it is possible to measure

both R and A by opening two gates: a coincidence gate following the source trigger, and an

accidental gate after a some delay. List-mode digital acquisition allows for construction of Ross-

alpha histograms made up of the time differences between detected neutrons. These measured

Rossi-alpha distributions are then fit to Eq. 2.16 in order to determine the prompt neutron decay

constant α.

2.2.2 Feynman-Y

The Feynman-Y, or the variance-over-mean technique, was developed by Richard Feynman along-

side his theoretical work on the Rossi-alpha experiments [18] [27]. The fluctuations in counts

per unit time, c, from a purely random source should, by definition, follow a Poisson distribution.

However, the presence of correlated counts from fission chains add an excess variance beyond that

predicted from Poisson statistics. Feynman quantified this phenomena by taking the ratio of count

variance and mean:

c2 − (c̄)2

c̄
= 1 + Y (2.17)
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where c̄ is the average counts per unit time, c2 is the average of the square of the counts per unit

time, and Y accounts for a deviation from Poisson statistics. For a gate width t, the parameter Y

can be approximated by

Y =
ε(ν2 − ν̄)

(−αlf )2

[
1 +

1− eαt

αt

]
(2.18)

where lf is the mean time between fissions, defined previously in Eq. 2.6. Note that this is follow-

ing Orndoff’s [26] rather than Feynman’s [18] notation for α in order to stay consistent with the

presentation in Section 2.2.1.

The expression in Eq. 2.18 can be further simplified to just the first term if the gate width is

long enough to capture the prompt period but small compared to the delay period and the delayed

neutrons do not significantly contribute to the overall neutron multiplication [28]. It is possible

to determine if the gate width is long enough by taking multiple measurements with increasing

gate widths. The Feynman-Y test statistic will asymptotically approach a maximum value, and

the minimum required gate width can be determined by plotting the two values against each other.

Feynman also made approximations and variations on Y to make it useful for interpreting exper-

imental data. In particular, Feynman used the technique for measuring and validating the second

moment of the neutron multiplicity distribution [28].

Operationally the measurement of Feynman-Y differs in two important ways from the Rossi-

alpha. First, the number of counts is recorded, as opposed to the time between counts in a gate.

Second, the gate is opened through a series of clock triggers, not by events registered in the detec-

tor. Feynman-Y histograms, or distributions, can be constructed from the number of counts in each

gate, and provide a visual representation of the deviation from an expected Poisson distribution.

The first and second moments of the Feynman-Y distributions were used by Dowdy et al. to

develop a formalism that includes the contributions of spontaneous fission, neutron multiplication

and (α,n) contaminants [29]. A variation on the Feynman-Y was used by Dowdy et al. to relate
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measured fluctuations with these physical parameters:

Qm = c(c− 1)c̄2 (2.19)

where c is still counts per unit time. However, it was only possible to solve for two of the three

parameters under two special cases: negligible (α,n) contribution or a non-multiplying sample

(M = 1). Using a more advanced technique, Multiplicity Counting, it is possible to solve for all

three unknowns. This technique is the subject of the following section.

2.2.3 Multiplicity Counting

Multiplicity counting arose out of the need for accountability of fissile material in the nuclear fuel

cycle. The problem is that the fissile material recovered from spent fuel has a complex source term

driven by

1. Fs : spontaneous fission rate

2. Sα : (α, n) neutron emission rate

3. ML : neutron leakage multiplication

The goal is to ultimately measure Fs, which in passive counting can be related back to plutonium

effective mass through empirically determined factors [8]. This still requires the knowledge of

plutonium isotopics, which can be measured with gamma ray spectroscopy. HEU mass can be

measured through active multiplicity counting, with a variation of the equations discussed in this

section [30]. Sα and ML are complicating parameters whose contribution depends on isotopic

composition and total fissile mass and geometry.

Before multiplicity counting theory was developed in the early 1980s, it was possible to mea-

sure Fs through neutron coincidence counting by assuming that either Sα or ML was negligi-

ble [31] [32]. Multiplicity counting theory set out to relate the probability distribution, rm(τ),

of counting m number of neutron multiplets in time window τ with the three source properties
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enumerated above. The following four general assumptions underline the multiplicity counting

theory [33, 34]:

1. The test sample is taken to have no spacial extent (point geometry), and therefore parameters

such as the detector efficiency and the probability of fission are assumed to be spatially

uniform.

2. Neutron detection efficiency, probability of fission, and neutron multiplicity are assumed to

be energy independent. All physically associated quantities are in effect collapsed into a

single energy group. The neutron energy spectrum from (α, n) reactions and spontaneous

fission are assumed to be the same.

3. The time response of the detector, or the neutron die-away time in the detector moderator,

follows a single exponential function with a characteristic decay constant λ.

4. All induced fission neutrons are emitted simultaneously with the initiating (α, n) or sponta-

neous fission neutrons. This is often referred to as the “superfission" concept, and is valid if

the time response of the detector is much slower compared to the lifetime of a fission chain.

5. Neutron capture without fission is negligible, which means the probability of leakage is just

the complement of the fission probability (pL = 1− pf ).

Early efforts led to rather complex expressions for the source parameters and required exten-

sive numerical efforts. In particular, the probability distribution Pν(pf ) of emitting ν neutrons

from a fission cascade was computed using Monte Carlo [35]. This distribution depends on the

multiplicity distribution of neutrons Pν and the probability of a neutron inducing fission pf , and is

the consequence of the superfission assumption and the need to account for neutron multiplication.

By taking the moments of rm(τ) it is possible to use analytical approximations for the moments of

Pν(pf ) which are accurate for a limited number of fissions in a cascade [36]. The approximation is

the result of summing the products of probabilities of neutron emission across multiple generations

until any additional contributions to Pν(pf ) become negligible.
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The real breakthrough came by using the mathematical tool of the Probability Generating Func-

tion (PGF) and forming the factorial moments of rm(τ) into which the Pν(pf ) distribution also

enters in the form of its factorial moments [37, 38]. Factorial moments of rm(τ) are far less com-

plicated and require less numerical effort to solve for requisite source term properties compared to

the moment formulations [39]. The µth factorial moment of the Pν(pf ) distribution is

ν(µ)(pf ) =
∞∑
ν=µ

(
ν

µ

)
Pν(pf ) (2.20)

which can be expressed analytically as a function of the factorial moments of the neutron multi-

plicity distribution for either induced, ν̄I(µ), or spontaneous ,ν̄s(µ), fissions [34]. These are defined

as

ν̄j(µ) =
∑
µ=ν

(
ν

µ

)
Pjν (2.21)

where j = s or j = I for either spontaneous or induced fissions. Note that the first moment and

factorial moment of neutron multiplicity are equivalent (ν̄ = ν̄j(1)).

The single, R1, double, R2, and triple R3 count rates can be expressed in terms of the afore-

mentioned factorial moments, detector efficiency (ε) and desired sample source terms:

R1 = εML(Fsν̄s(1) + Sα) (2.22)

R2 = ε2FsM
2
Lν̄s(2)

[
1 + (ML − 1)

(
1 +

Sα
ν̄s(1)Fs

)
ν̄s(1)ν̄I(2)

ν̄s(2)(ν̄I(1) − 1)

]
(2.23)

R3 = ε3FsM
3ν̄s(3)

{
1 + 2(ML − 1)

ν̄s(2)ν̄I(2)
ν̄s(3)(ν̄I(1) − 1)

(2.24)

+(ML − 1)

(
1 +

Sα
ν̄s(1)Fs

)[
ν̄s(1)ν̄I(2)

ν̄s(3)(ν̄I(1) − 1)

(
1 + 2(ML − 1)

ν̄2I(2)
ν̄I(3)(ν̄I(1) − 1)

)]}

These are idealized rates because they do not account for detector response time and method of

triggering, either on signal or randomly on gate of length τ . The number of counts in those gates are

used to build signal nm(τ) and random or background bm(τ) distributions whose factorial moments
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(mn(µ) and mb(µ)) are then related back to the rates of correlated signal multiplets, Rµ, defined in

Eqs. 2.22, 2.23, and 2.24. It’s possible to formulate Rµ only in term of mb(µ), which under certain

conditions are equivalent to the factorial moments of the Feynman-Y distribution [40].

Cifarelli and Hage gave a comprehensive overview of possible solutions of source and detector

parameters in [34]. For the purposes of this background, it will suffice to give the case for the

absolute determination of Fs, Sα andML. First,ML is obtained from the smallest possible solution

(ML > 1) of the following third order polynomial:

a+ bML + cM2
L + dM3

L = 0 (2.25)

where

a =
R3

ε3
(2.26)

b =
R2

ε2

(
ν̄s(3)
ν̄s(2)

− 2
ν̄I(2)

ν̄I(1) − 1

)
(2.27)

c =
R1

ε(ν̄I(1) − 1)

(
ν̄I(2)ν̄s(3)
ν̄s(2)

− ν̄I(3)
)

+
2R2ν̄I(2)

ε2(ν̄I(1) − 1)
(2.28)

d =
2R2ν̄I(2)

ε2(ν̄I(1) − 1)
− c (2.29)

The spontaneous fission rate and (α, n) neutron rate can then be solved in terms of ML:

Fs =
R2

ε2M2
Lν̄s(2)

−
R1ν̄I(2)(ML − 1)

εMLν̄s(2)(ν̄I(1) − 1)
(2.30)

Sα =
R1

εML

(
1 +

ν̄s(1)ν̄I(2)(ML − 1)

ν̄s(2)(ν̄I(1) − 1)

)
−

R2ν̄s(1)
ε2M2

Lν̄s(2)
(2.31)

Multiplicity counting is a mature and robust technique that is useful for assaying a wide array

of test samples with unknown contribution of (α, n) neutrons. The typical assay bias is minimal

if the test sample is well represented by a point model [33]. However, the biggest drawback is the

need for both accurate knowledge of and large absolute detector efficiency. The former is needed

to keep uncertainties to a minimum and the latter is required for reasonable measurement times.
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Both are a consequence of the ε3 term that is manifest in Eq. 2.24, which can become quite small.

As a consequence, multiplicity counters are typically large and are designed to surround the entire

test sample. If the value Sα is known or negligible then other correlation counting methods can

yield more accurate results in a shorter measurement time [8, 33].

2.2.4 Correlating Particles with Fast Organic Scintillators.

A single fission event releases multiple correlated neutrons and gamma rays, both of which can

both be measured with PSD capable organic scintillators. Unlike capture based systems, which

require fast neutrons to be slowed or “moderated" to lower energies where capture cross-sections

are high, organic scintillators can detect fast neutrons and gamma rays on a sub-nanosecond time

scale. This timing allows for resolution of the generation time between fissions in a chain. The PSD

capability enables the measurement of cross-correlation distributions of neutron-neutron, gamma-

neutron, neutron-gamma, or gamma-gamma pairs from fission events in the same fission chain. In

addition, the mode of detection of fast neutrons in organics scintillators makes it possible to pre-

serve some information about the incident neutron energy. This additional information allows for

an extension of gamma-neutron and neutron-gamma correlations into TCPH distributions which

are useful for characterizing fissile material [41–43]. The TCPH distribution is a bivariate his-

togram of an estimated incident neutron energy and the time to a correlated gamma ray. TCPH

analysis is introduced in Section 2.2.5, but before proceeding it is important to explain the choice

of mixed particle correlation and the issues with neutron-neutron and gamma-gamma pairs.

Gamma-gamma and neutron-neutron pairs suffer from significantly more detector cross-talk:

when the same particle scatters between separate detector cells. These cross-talk events are char-

acteristic of the detector system geometry, not the measured source itself. Additionally, in different

but correlated neutron-neutron pairs, both particles have a time-of-flight that depends on their re-

spective energies, and thus the time between two correlated neutrons is spread, even for pairs

originating from the same fission.

By contrast, correlated gamma rays from the same fission should arrive at the detector simul-
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taneously. Therefore, any time spread between two detected gamma rays above that of timing

resolution can be attributed to fission chain smearing. However, correlated gamma-gamma pairs

have many terrestrial (e.g. K-40, Tl-208, Ra-226, Ac-228) and cosmic sources of uncorrelated

background that degrade the signal-to-noise of this signature. In addition to correlated fission

gamma rays, fissile material typically produces many more uncorrelated decay gamma rays from

fission products. Depending on the amount of material present, these uncorrelated gamma rays can

create an overwhelming rate of accidental coincidences.

Gamma rays are also highly attenuated by the emitting fissile material itself, because of the high

density and mass number. As a result of this self-shielding, detectors will be primarily sensitive

to gamma rays emitted from the outer layer of an assembly. It is therefore desirable to include at

least one neutron in the correlated pair to gain sensitivity to a larger fraction of the total volume of

material.

It can be reasonably concluded that correlated gamma-neutron and neutron-gamma pairs offer

the good sensitivity and signal-to-noise ratio. The gamma ray provides a clean indication of the

time of a fission, while the neutron is both more penetrating and a clear indication of fission. Cross

talk is also reduced by correlating particles of different type, rather than the same type.

2.2.5 Time Correlated Pulse Height

The TCPH distribution is a bivariate histogram of the time difference between correlated neutrons

and gamma rays, and deposited neutron energy measured by the light output in the scintillator [44].

In a non-multiplying source, such as Cf-252, most correlated neutrons and gamma rays that are

detected within a short time window (10s of nanoseconds) by a fast system are generated from the

same fission event. Therefore, the arrival time of a neutron, which depends on neutron incident

energy, sets an upper limit on the light output achievable for that event.

The theoretical time between arrival of a gamma ray and a neutron from the same fission can
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be determined from its energy:

t =
d√

2En/Mn

− d

c
(2.32)

where d, En, and Mn are the source-to-detector distance, energy of the neutron, and its mass,

respectively. The d/c term is used to compensate for the arrival time of the gamma ray. However,

in organic scintillators the kinematics of neutrons scatter on protons (hydrogen atoms), shown in

Figure 2.5, limit the proton recoil energy to at most the incident energy of the neutron (Ep ≤ En).

Therefore, for a non-multiplying source, counts on the TCPH distribution will fall below this

theoretical time of arrival line described by Eq. 2.32, as shown in Figure 2.6(a).

But multiplying sources make it possible to correlate neutrons to gamma rays from earlier

fissions in a fission chain, which would make the time from the correlated gamma greater than

the time predicted by Eq. 2.32. Even with the lesser energy deposition from the proton recoil,

some counts would inevitably fall above this theoretical line of arrival. An example of the TCPH

distribution of a multiplying source, along with the theoretical line of arrival line from Eq. 2.32 is

shown in Figure 2.6(b).

Figure 2.5: Kinematics of neutron scatter on hydrogen nucleus (proton) which is the primary mode
of neutron detection in organic scintillators.

The utility of the TCPH distribution has been extensively studied with non-multiplying 252Cf

[41], low-multiplying mixed oxide powder and plutonium-gallium disks [42], and highly enriched

uranium [45] measurements and simulations [43]. Simulations of the BeRP ball and the result-

ing TCPH distributions demonstrated a correlation between multiplication and spreading in the
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(a) Non-multiplying
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(b) Multiplying

Figure 2.6: TCPH distributions for (a) non-multiplying and (b) multiplying sources with the theo-
retical line of arrival shown in red.

TCPH distribution [46]. In Chapter 4, the measured results are shown, along with a method for

quantifying the spread in the TCPH distribution.

Earlier efforts to characterize multiplication relied on counting the correlated events that fell

above the theoretical line of arrival, or estimating the gradient of counts above this line. But as

will be shown in Chapter 4, the TCPH distribution is actually spread in both time directions due to

presence of fissile material. The intermediate goal of this dissertation work was to determine other

additional physical quantities of interest that could be extracted by examining the full TCPH distri-

bution. The analysis will progress in Chapter 5 to collapse the TCPH distribution into the TOFFEE

distribution, a simpler one-dimensional form which gives greater insight into the underlying fission

chain dynamics measured from gamma-neutron correlations.
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CHAPTER 3

Digital Pulse Processing

3.1 Motivation

The advent of fast Analog-to-Digital Converters (ADCs) has enabled the capture, storage and

offline processing of scintillator waveforms after they are acquired [47]. This has allowed us to

move beyond analog pulse-shaping techniques achieved through clever rearrangements of resistors

and capacitors. Many digital processing techniques have their analog equivalents (e.g. filtering)

[48], but digital processing also allows for any operation that a computer can do to a list of numbers.

Therefore, it is important to explain the choice of appropriate digital processing techniques used to

get the desired signature for time correlated analysis.

Three pieces of information are required about an interaction that gives rise to a pulse: time

of the interaction, energy deposited by interacting particle and the type of particle by pulse shape

discrimination (PSD). The challenge is to accurately extract that information when both the gamma

ray and neutron interaction are necessary for analysis. The following serves as an overview of some

of the available digital processing techniques applicable for pulses recorded from fast organic

scintillators coupled to PMTs. The goal is to provide a detection system agnostic reference to

processing methods required to replicate the results presented throughout this work.
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3.2 Timing

Three candidate methods were investigated for their ability to reliably provide gamma and neutron

interaction times: Derivative Zero Crossing (DZC), Constant Fraction Discrimination (CFD) and

Cumulative Integral Fraction (CIF). The DZC method is often referred as the constant fraction

discrimination method because it is how analog circuitry was used to find a constant fraction of a

pulse [49]. The original pulse is operated on by the following:

∫
DZCPulse[k] =

L∑
i=1

F ∗ Pulse[k − i]− Pulse[k − i−D] (3.1)

where a fraction F of the original pulse is subtracted by a pulse delayed by D. The time is then

found by looking for the zero crossing past the maximum as shown in Figure 3.1.
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Figure 3.1: Example of a pulse and its derivative as calculated using the DZC method. The zero
crossing time, marked by the red dot, is interpolated starting the the maximum of the derivative.

When D and F are both unity, DZC method amounts to taking the derivative of the original

pulse, hence the naming convention adopted in this work. On the other hand the second method,

CFD, relies on an intuitive implementation of the name “constant fraction". The time is found by

interpolating the rising edge of the pulse up to some fraction of the pulse maximum. Finally, the

third method, CIF, finds the time at some fraction of the cumulative integral of the pulse, as shown
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in Figure 3.2. Trapezoidal integration method was used to better approximate the true pulse’s

integral.
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Figure 3.2: Example of a pulse and its cumulative integrals as calculated from the CIF method.
The fraction of the cumulative integral (10%) used for time-pick-off is marked by the red dot.

Testing timing performance can be accomplished with pair of equivalent detectors and a source

that emits coincident gamma rays. This setup allows for the measurement of the gamma-gamma

Time of Flight (TOF) distribution, the width of which is indicative of timing performance. The

spacial arrangement of the source and detectors is only important if it’s necessary to measure the

relative transit time of the PMTs coupled to each detector cell. In that case it’s necessary to have

the source be equal-distant to each detector. Each timing method has a fraction parameter, which

was optimized to give the lowest achievable standard deviation and Full Width Half Maximum

(FWHM) of the gamma-gamma TOF distribution. The delay was set to one (D = 1) for the DZC

method.

The optimized TOF spectra for all three methods are shown in Figure 3.3. The FWHM was

calculated via interpolation, and the standard deviation was taken from the entire set of ∆T s be-

tween -10 ns and 10 ns. In this case the standard deviation can not be taken as an absolute measure

of detector system performance, since its value will change with the length of the time window.

Note that the TOF spectra are not Gaussian in shape and the FWHM is not directly proportional
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to the standard deviation. Nevertheless, these two metrics were used to optimize the fractions for

each of the three methods. The optimized fractions for the DCZ and CFD methods were both at

50% and only 5% for the CIF method.
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Figure 3.3: Gamma-gamma TOF spectra with optimized parameters for each of the three tim-
ing methods. The optimized fractions for the DCZ and CFD methods were both 50% and only
5% for the CIF method. The FWHMs, standard deviations and means are expressed in units of
nanoseconds

In general, lowering the fraction decreased both the standard deviation and FWHM. The lower

bound on the optimized fractions was dictated by the appearance symmetrical “resonance" peaks at

the sampling rate of the digitizer. Since a 500 MS/s CAEN DT5730 digitizer was used for testing,

those resonances peaks appeared at +2 ns and -2 ns intervals. Quantitatively the resonances would

increase the standard deviation while the FWHM would continue to decrease.

At this point it may seem reasonable to conclude that each method is equally suitable for timing

experiments. However, this dissertation primarily concerns mixed gamma-neutron correlations and

when each method is compared against measured gamma-neutron TOF spectra, as shown in Figure

3.4, the flaw with the CIF method is revealed. Because the CIF method is pulse shape dependent,

it will systematically over-estimate the arrival time of a neutron pulse as compared with a gamma

ray pulse.

The gamma-neutron TOF spectra also revealed a problem with the DZC method, which was
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Figure 3.4: Gamma-neutron TOF spectra as calculated using the three timing methods. The data
was taken from a measurement of a Cf-252 source at 30 cm distance from the pair of detectors.

not apparent int the gamma-gamma TOF spectra in Figure 3.3. Given a sufficiently high fraction,

from Eq. 3.1, the resonances disappeared from the gamma-gamma TOF spectra, but persisted in the

gamma-neutron spectra. The remaining resonances were diminished significantly by increasing the

delay parameter D from one to two. The results comparing both DZC and CFD against simulation

of the same Cf-252 source at 30 cm is shown in Figure 3.5. The chi-squared test statistics between

the expected simulation and the observed measured results were 99.42 for DZC and 98.79 for

CFD, and therefore neither method had the edge in matching simulation. Judging from this result,

and the similarity in features shown in Figure 3.3, these two methods are almost indistinguishable.

Furthermore, with an increased delay parameter, the spread of the gamma-gamma TOF standard

deviation of the DZC came into agreement with the TOF spectra of the CFD method.

In conclusion, the three timing methods tested have similar performance, but CIF is not suitable

for picking off timing from particles that result in different pulse shapes. The remaining two

methods, DZC and CFD, are indistinguishable once their respective parameters are optimized.

The CFD timing method was used for TCPH work in Chapter 4, and for DZC method was used

for all other work presented in this thesis.
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Figure 3.5: Comparison of simulation and measurement data of a gamma-neutron TOF spectra
from a Cf-252 source at 30 cm from the detectors. The data was processed using two timing
methods, DZC and CFD, with fractions set to 50%.

3.3 Energy Calibration and Resolution

For gamma ray spectroscopy the procedure for determining energy calibration and resolution typ-

ically involves fitting known full energy photo-peaks to Gaussian functions. The means and stan-

dard deviations of the fits are then used to determine the calibration and resolution of the system,

respectively. Unfortunately, physics disallows such full energy photo-peaks in spectra gathered

with organic scintillators due to the dominance of Compton scattering in low-Z materials, such as

organic scintillator. The only recognizable features are therefore Compton edges corresponding to

the maximum possible scattering angle:

ECE = E

(
1− 1

1 + 2E
mec2

)
(3.2)

where E is the incident gamma-ray energy and me is the resting mass of the electron. It is difficult

to determine this edge accurately, because it’s not clearly delineated on a pulse height spectrum

due to a finite energy resolution and the effects of multiple scattering interactions.

One approach for estimating the location of the Compton edge is to fix its location at some
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fraction of the Compton edge peak. A more robust approach is to fit the measurement results

to a Monte Carlo simulation, with energy smearing term to account for energy resolution of the

detector [50]. The measured pulse heights (PH) are shifted by linear calibration formula

L = a ∗ PH + b (3.3)

where L is the calibrated light output (in MeV) and a and b are calibration parameters. At the

same time the simulated results are broadened by the approximate energy resolution of the system

parameterized by

∆L

L
=

√
α2 +

β2

L
+
γ2

L2
(3.4)

where α, β and γ parameters include contributions from light transmission within detector cell,

statistical fluctuations of light production, and electronic noise, respectively [51].

The Levenberg-Marquardt algorithm was employed to find the optimum calibration and reso-

lution parameters and an example of the results are shown in Figure 3.6. It is important to give

extra weight to the regions of the spectra around the Compton edges, and to ignore the back-scatter

peak, which is absent from the simulation due to lack of surrounding materials.

This spectrum matching technique is arguably more robust than using a fraction of the Compton

edge peak, because it incorporates the detector resolution parameters, any improvement over this

simpler method is probably marginal at best. In any case, the limiting factor is the relatively

poor energy resolution of organic scintillators. In addition, the spectrum matching approach is

complicated by the covariance between the energy calibration parameters in Eq. 3.3 and resolution

parameters in Eq. 3.4. An improvement on this approach would require an independent method

for measuring the resolution of the detector, such as the Compton coincidence technique [52].
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Figure 3.6: Measured and simulated spectra of Na-22 source matched with optimum resolution
and calibration parameters.

3.4 Neutron Light Output

The amount of light emitted from an interaction in a scintillator depends on the energy deposited

and the type of recoiling charged particle. For gamma rays these charged particles are electrons

and for neutrons they are predominantly protons (hydrogen nuclei). In many organic scintillators,

electrons provide a near-linear response at energies greater than 125 keV [53], which justifies

linear energy calibration used in Eq. 3.3. However, since the light output response from protons is

different than electrons, it is useful to refer to this electron light output in terms of MeV electron

equivalent (MeVee). This unit, introduced in Figure 3.6, provides an absolute measure of the light

output that is useful for characterizing light output caused by proton recoil in terms of its electron

equivalent energy.

There are two problems with neutron light output response that make it challenging. First, un-

like the electron response the proton response is non-linear, which necessitates multiple calibration

points. Second, with exception of deuterium-deuterium ( 2.5 MeV) and deuterium-tritium ( 14.1

MeV) fusion neutron generators there is a lack of portable mono-energetic sources of neutrons. A

popular approach to characterize the neutron light output response is through time-tagged exper-

iments; where the incident neutron energy can be segregated through time-of-flight [54–56]. For
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organic scintillators, it’s common to fit the neutron response to an empirical exponential formula

first developed by Katz [57]:

L(Ep) = aEp − b[1− exp(−cEd
p)]. (3.5)

The coefficients a, b, and c are often reported in terms of units of MeVee/MeV, and d is typically

assumed to be unity and is a dimensionless constant [54, 55, 58, 59], and provided that the calibra-

tion methodology is the same, can be used universally for detectors of the same geometry and size.

The formulation in Eq. 3.5, and its inverse, will be used for analysis in Chapter 4.

A more physical insight into light output yield can be gained by relating the dL/dx, fluorescent

energy emitted per unit path length, and dE/dx, energy loss per unit path length for a specific

particle [60]. This relationship is commonly referred to as the Birks’ formula

L(Ep) = S

∫ Ep

0

dE

[
1 + k

dE

dx

]−1
(3.6)

where S is the normal scintillation efficiency and k reflect the effect of quenching. The requisite

dE/dx for electrons and protons in stilbene were calculated using SRIM software [61, 62], and

provided by personal correspondence by Mark Norsworthy [63]. Scintillation efficiency refers

to the fraction of incident particle energy that is converted to visible light, and is degraded by

quenching which is an umbrella term for all the de-excitation pathways that do not lead to emission

of light. Birks’ formula has been found to work better at lower thresholds (<100 keV) than the

empirical function in Eq. 3.5 [63, 64], but it requires the knowledge of the stopping power of

charged particles for the material of interest. A comparison of the fit to the two formulations

for data obtained from solution grown 2"×2" stilbene [65] is shown in Figure 3.7. The neutron

light output yield for 2" stilbene crystals was measured by Bourne et al. in a separate set of

experiments [65]. Birks’ formula fit was used in this thesis for all the data acquired with and

simulations of 2"×2" stilbene.
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Figure 3.7: A 2"×2" stilbene crystal neutron light output data fit to Birks’ and Katz’s formulations.
The Katz coefficients are a = 0.505, b = 1.072, c = 0.446, and d = 1, and the Birks coefficients
are S = 1.63 and k = 27.83.

3.5 Pulse Shape Discrimination

In organic scintillators the fraction of light emitted during delayed fluorescence depends on the

exciting particle’s dE/dx, therefore it is possible to differentiate between neutron and gamma-ray

interactions through PSD. Segregating gamma ray and neutron pulses is a two step process. First,

the pulse shape is quantified into some singular quantity called the PSD parameter. Then the PSD

parameter is used to quantitatively separate neutron and gamma ray pulses, typically on an energy

dependent basis. It is the novel application of Bayes’ theorem to this second classification step that

was extensively used throughout this dissertation work to maximize the return on gamma rays and

neutrons. The details of the comparative performance of this method can be found in [66].

3.5.1 Pulse Shape Quantification

The charge integration PSD method, in both analog and digital applications, relies on the ratio

of pulse tail to total integrals [67] as shown in Figure 3.8. This PSD parameter is widely used

in comparing PSD performance in organic scintillators [68–70]. An alternative approach used
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in this work relies on taking the difference in time between fractions of the pulse integral. This

amounts to using the CIF method, shown in Figure 3.2, twice for two different fractions and taking

the difference of the results. This approach has the advantage of requiring only two parameters,

one less necessary for specifying the tail and total integration windows for the charge integration

method.
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Figure 3.8: Example of tail and total integration windows used in the charge integration method.

There are other methods for quantifying PSD parameters [71], all of which provide a way

of clustering neutrons and gamma rays in a particular two dimensional space. Typically, one

dimension of this space is the PSD parameter, and the other is some metric of energy deposition

such as pulse height or pulse integral. The two clusters of gamma rays and neutrons can be cleaved

with a decision boundary, which provides a binary classification of each pulse. The following

section demonstrates an alternative Bayesian approach, which gives confidence probabilities on an

event-by-event basis. This allows for re-adjustment of the PSD “cut" by adjusting the minimum

allowed probabilities in post-processing.
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3.5.2 Bayesian Classification Methodology

Applying Bayes’ theorem requires a conditional probability, or likelihood, and a prior probability.

In this method, the former is defined as the value of an energy dependent Gaussian fit for a given

tail-to-total ratio and the latter as the energy dependent gamma-to-neutron ratio. The discussion on

estimating both parameters proceeds in the following two sections. Initially, the prior probability

is not known and thus it must be inferred from the data by an iterative procedure. Therefore, the

Bayesian probability is adaptive to a particular collection of data.

The Bayesian method and an experimental study of its performance relative to a decision

boundary technique have been previously published in [66]. The following overview demonstrates

the method only, which was used throughout the work in this thesis to classify neutron and gamma-

ray pulses. Appendix A.2 includes the source code that employs the Bayesian method for PSD.

3.5.2.1 Fitting detector specific parameters

The first step is to determine the detector specific parameters, the means and standard deviations,

from a double Gaussian fit to the PSD parameters. This step should preferably be accomplished

on a data-set with nearly equal gamma ray and neutron populations. These parameters are energy

dependent, therefore the data has to be binned into specific light output groups. The groups have

to be narrow enough to capture the changing means and standard deviations, but wide enough to

include statistically significant number of counts to perform an accurate fit. The number of counts

decreases with increasing light output, but fortunately the variations in the means and standard

deviations also decrease with increasing light output, as is shown in Figure 3.9, and therefore can

accommodate larger light output bin widths. These parameters are only system dependent, and

like gain calibration procedures, only need to be performed once for a particular experiment.

Each binned group of PSD parameters was fit in descending order of light output, with the

previously calculated coefficients used as the next initial guess. This ensured continuity of the

coefficients across all groups, and facilitated the precarious fitting at lower light outputs where dis-

tributions overlap the most. The Gaussian distributions were normalized and took on the familiar
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form:

f(s) =
1

σ
√

2π
exp

(
−(s− µ)2

2σ2

)
(3.7)

where s is the PSD parameter.

In order to calculate the Bayesian probability for each pulse individually, the Gaussian coeffi-

cients were fit across the light output range of interest. Smoothing splines were used to approximate

the mean and standard deviation coefficients as a function of light output. The resulting R-squared

values were greater than 0.99 for all fitted parameters. The result of the fitting procedure is shown

in Figure 3.9, as applied to a subset of data collected with an Am-Be source. The details of the ex-

perimental setup are given in [66]. Conditional probabilities for the Bayesian formula were taken

from these fits.

Figure 3.9: The mean (solid lines) and three standard deviation (dashed lines) fits as applied to the
Am-Be data set.

By fixing the mean and standard deviation parameters from a calibration data set, the assump-

tion is that they only depend on the detector system, and therefore do not need to be refitted for

other measurements.
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3.5.2.2 Inferring the gamma-to-neutron ratio

The Gaussian fits provide the conditional probabilities, but a prior is required in order to calcu-

late a gamma-ray or neutron posterior probability. In this case the prior is the energy dependent

ratio of gammas-to-neutrons, which will change depending on the incident radiation (i.e. the type

of radiation source measured). Therefore, an iterative procedure is introduced that updates the

gamma-to-neutron ratio by recalculating posterior probabilities until a convergence criteria in the

gamma-ray and neutron populations is met.

The following formulation of the Bayes’ theorem was used for calculating posterior probabili-

ties for either gamma rays

P (γ|s) =
fγ(s)Rγ/n

fγ(s)Rγ/n + fn(s)
(3.8)

or neutrons

P (n|s) =
fn(s)

fγ(s)Rγ/n + fn(s)
(3.9)

where f(s) are the Gaussian fits from Eq. 3.7, the γ or n index indicates the gamma-ray and

neutron distribution and s is the PSD parameter. Rγ/n is the ratio of the estimated number of

counts in the gamma-ray and neutron distributions within a light output group. The number of

instances of gamma rays and neutrons is estimated by summing the posterior probabilities of each

class

Nγ =
∑
s∈Ei

P (γ|s) (3.10)

Nn =
∑
s∈Ei

P (n|s) (3.11)

for a particular light output group Ei.
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For the first iteration Rγ/n is assumed to be unity, then the results from Eqs. 3.8 and 3.9 are

used to estimate its value for the subsequent iteration:

Rγ/n =
Nγ

Nn

. (3.12)

The iterative approach used is an example of an expectation-maximization algorithm for Gaus-

sian mixtures [72] with fixed means and standard deviations. Iterations terminate when the conver-

gence criteria is satisfied. Convergence criteria was defined as 1% difference in total Rγ/n between

two consecutive iterations. This iterative scheme is robust, and converges to the same solution

given a wide range of initial Rγ/n. The final result are posterior probabilities, as shown in Figure

3.10, which can be used to adaptively classify pulses.

Figure 3.10: The distribution of neutron posterior probabilities for 1:1 mixture of 60Co and time
tagged neutron data.

3.5.2.3 Variance estimation

Since the sum of probabilities, not counts, is used to estimate the size of gamma-ray and neutron

populations, a different formulation from counting statistics is required to account for the uncer-

tainty of the posterior probability itself. In this work the variance on the total number of estimated
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instances N was calculated by

V ar(N) =
∑

Pi +
∑

Pi(1− Pi) (3.13)

where Pi are either gamma ray or neutron posterior probabilities for each pulse. N represents the

number of gamma ray or neutron instances as calculated by Eqs. 3.10 and 3.11. The first term

in Eq. 3.13 sums to N and represents the variance on the total number of counts. The second

term is the variance on each individual probability, which follows a binomial distribution because

there are only two classes, gamma rays and neutrons. In the limit that all the Pi are large, the

variance estimation reduces to N . On the other hand, if Pi are small, then the variance estimation

is effectively doubled to 2N .
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CHAPTER 4

Time Correlated Pulse Height Distributions

4.1 Motivation

The details of the TCPH distribution and its relation to characterizing fissile material were intro-

duced in Section 2.2.5. The analysis pioneered by Miller et al. focused on the counts that lay above

the theoretical line of arrival. This stemmed from the observation that in the presence of fission

chain neutrons from later generation events could be correlated with earlier gamma rays, hence

increasing the time between the two correlated events [42]. This misses the corollary observation,

which is that neutrons from earlier fission events can be correlated with later generated gamma

rays. Therefore, the time of arrival is either shorter or longer depending on the order of the gener-

ation along the fission chain of the correlated gamma-neutron pair. In a multiplying assembly of

fissile material this effect manifests itself as a spreading or smearing of the TCPH distribution, not

just increased counts above the theoretical line of arrival.

To characterize this behavior, a new method had to be developed to quantify the smearing of the

whole TCPH distribution. The method and experimental results were first published in [73], and

this Chapter summarizes that approach and results. The underlying assumption of the method is

that the smearing is caused by the time distribution of fission events within a chain. The approach in

this Chapter uses the Gamma function as an empirical approximation for this smearing distribution.

The goal is to fit empirical parameters of the Gamma function that correlate with the underlying

fission chain timing distribution. These empirically fit parameters were found to correlate with
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multiplication, shielding material types and source-to-detector distance. They provided another

handle on the characterization of fissile material that would be useful in warhead dismantlement

confirmation, where knowledge of the presence of the coupled material might be useful to confirm

that surrounding moderating material has been removed. The application of a variation of the

TCPH distribution for treaty verification is explored in Chapter 5.

4.2 Analytical Model

In order to access the fission chain timing distribution, a model was constructed of TCPH dis-

tributions for multiplying sources. The model consists of a linear combination of the expected

distribution for gamma-neutron pairs that are correlated by the same-fission and those correlated

by different fissions within the same chain.

The “same-fission" distribution is determined by a combination of the detector response to fis-

sion spectrum neutrons (Watt) and the time delay expected for the source-to-detector distance. The

detector response matrix was simulated using MCNPX-Polimi [74]. Pu-239 fission Watt spectrum

was assumed for energies of incident neutrons and Katz’s formula, from 3.5, was used for the light

output function [55]. The simulated neutron response matrix and the resulting same-fission TCPH

distribution are shown in Figure 4.1

The different-fission distribution includes additional time smearing due to the time difference

between any two fissions within a chain. A physical model of the fission chain process is outside

the scope of this Chapter, it will be introduced in Chapter 6. Therefore, the Gamma function was

used as an empirical substitute for the physical model of the time distribution of fission events in a

chain.

The probability density function of a Gamma distributed random variable is

f(x) =
1

Γ(α)θα
xα−1e−x/θ (4.1)
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(a) Response Matrix (b) TCPH Distribution

Figure 4.1: Simulated EJ-309 neutron response matrix and the resulting TCPH distribution with
assumed 239Pu Watt neutron energy spectrum and source-to-detector distance of 50 cm. Each
distribution is normalized to unity and displayed on a logarithmic scale.

where α is the shape parameter and θ is the rate parameter. Two properties of the Gamma func-

tion make it a plausible representation for the distribution of times between fission events. First,

the Gamma function describes the waiting times until the αth Poisson distributed event. Second,

the sum of independent Gamma distributed events follow a Gamma function. The independence

condition is not true for events in a fission chain; however, it can be empirically demonstrated

that the time distribution between fission events roughly follows a Gamma function by compar-

ing MCNPX-PoliMi simulations. The simulated distribution of time differences between fission

events in a bare BeRP sphere and corresponding Gamma function fits are shown in Figure 4.2.

Although the time distribution between a set number of fission events follow a Gamma function,

with coefficient of determination (R2) between 0.930 and 0.949, the fit for all possible fission com-

binations has R2 of 0.997. The Gamma function fits systematically undershoot the peaks of the

time difference distributions from simulation, because those distributions are generally narrower.

The smaller variance in those time differences from simulation is due in part to the fact that fission

events in a chain are correlated. The other phenomena not captured by the Gamma function is

branching of a fission chain, which makes it possible for fission events in different generations to
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be closer in time than expected from a straight linear succession of fissions in a chain.

Figure 4.2: Distribution of time differences for various nth-nearest-neighbor fission events is repre-
sented by each colored line, with the black line showing the distribution between all fission events
in a chain. The distributions were obtained from an MCNPX-PoliMi simulation of bare BeRP ball
(stairs) and then normalized to unity and fit by Gamma functions (solid lines).

Finally, the TCPH distribution for a multiplying source is constructed using a linear combina-

tion of the non-multiplying TCPH distribution, as shown in Figure 4.1(b), and a TCPH distribution

smeared by the Gamma function. The smearing is accomplished by setting each bin on the TCPH

distribution equal to the sum of neighboring bins along the time axis, with a weight given by the

Gamma function for the time delay between bins. Included in the sum is the contribution of the

original same fission bin weighted by factor n.

The factor n represents the fraction of correlated pairs from like fissions over all fission and in

theory should be proportional to the length of fission chain L:

n ∝ L(
L
2

) . (4.2)

By definition the average length of the fission chain is related to the sub-critical multiplication

from Eq. 2.9 such that M = (L̄− 1).
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A conditional statement is added to the Gamma function to account for n:

F (x|α, θ, n) =


f(x|α, θ) if x > 0

n otherwise.
(4.3)

where f(x) is defined in Eq. 4.1. The smeared TCPH distribution is calculated by

M = N × F (A) (4.4)

where N is a pulse height by time matrix of the same-fission TCPH distribution. The matrix A

is a symmetric Toeplitz matrix with the first row defined as the cumulative difference between the

times in the TCPH distribution N . In this case, the function F performs a point-wise operation on

values in matrix A.

The resulting TCPH distribution M depends on α, θ and n which define how the distribution

is smeared, and the distance from the detector which shifts the non-multiplying TCPH distribution

N . If the distance is known it can be fixed, otherwise it can be included as a free parameter with the

other three parameters. To solve for the parameters, the loss function is defined as the root-mean-

square error (RMSE) between the modeled TCPH distribution M and a measured distribution.

This function is then minimized by employing an unconstrained non-linear optimization method

based upon the Nelder-Mead simplex algorithm [75, 76].

The parameters of interest are solved in three steps. In the first and the final third step all four

parameters are optimized, and in the intermediate second step the source-to-detector distance is

fixed. In between the steps the initial guesses are changed to the previous solutions. The Nelder-

Mead simplex algorithm works best with fewer parameters, therefore by reducing their number in

the middle step the Gamma function parameters could be further optimized. The distance parame-

ter was fixed because it proved to be the most well constrained with the smallest relative covariance

with respect to the other parameters.
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4.3 Experimental Setup

A series of measurements of the BeRP [77] ball were conducted at the Nevada National Security

Site (NNSS) to acquire data to assess TCPH distribution analysis for highly multiplying assemblies

of fissile material. The BeRP ball is a 4.5 kg sphere of α-phase WGPu metal, original manufactured

in October 1980 by Los Alamos National Laboratory [77]. To explore a range of multiplications

with different levels of moderation and reflection, five configurations were measured: bare, 1.27

cm and 2.54 cm thick close fitting shells of tungsten, and 2.54 cm and 7.62 cm thick close fitting

shells of high density polyethylene (HDPE). The measurement times for each configuration were

5515, 3600, 8999, 3600, and 2509 seconds, respectively.

Data were collected using four 7.62×7.62 cm cylindrical EJ-309 liquid scintillation detectors.

The source-to-detector distances were measured from the center of the BeRP ball. Most configu-

rations were measured at 50 cm distances with the exception of 2.54 cm tungsten and polyethylene

measured at 48 and 60 cm, respectively. A diagram of the experimental setup, taken from an

MCNPX-PoliMi model, is shown in Figure 4.3. Anode outputs from 7.62 cm Electron Tubes

photomultiplier tubes (PMTs) coupled to each cell were digitized using CAEN DT5720 digitizer,

capable of 12-bit (nominal) resolution and 250 MHz sampling rate. All data processing was per-

formed off-line after the measurements, and a 0.2 MeVee (MeV electron-equivalent), equivalent to

neutron energy of 1.2 MeV, threshold was applied in post-processing.

4.4 Measurement Results

A subset of the measured TCPH distributions and corresponding optimized models built from

best-fit parameters are shown in Figure 4.4. The same-fission TCPH distribution, shown in Figure

4.1(b), is smeared to produce TCPH distributions shown in subfigures (b), (d) and (f) of Figure 4.4.

The smearing parameters are optimized in order to match the measured TCPH distribution shown

in subfigures (a), (c) and (e) of Figure 4.4.

The optimized Gamma function parameters and factors of n are shown in Table 4.1. It is
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Figure 4.3: Diagram of the experimental setup of the BeRP ball surrounded by four EJ-309 detec-
tors. The detectors were spaced approximately 8.5◦ apart.

expected that the parameter n would decrease with increasing sub-critical multiplication given

its relationship to fission chain length in Eq. 4.2. This trend is apparent within each shielding

material configuration, but is not present between them. Furthermore, the relative uncertainty in

this parameter is over five times greater than the others, which limits its predictive capability.

The shape parameter, α, clearly demarcates the differences between the polyethylene modera-

tor and tungsten reflector. Although α has no obvious physical interpretation when its a non-integer

less than 1, it is valuable that it can distinguish between intervening material type independently

of multiplication.

It is also expected that the rate parameter, θ, would increase with multiplication because it

is proportional to the degree of smearing of the TCPH distribution. The corollary to this is the

measure of the gradient of the TCPH distribution found in [42]. This positive correlation is only

apparent for the tungsten case, and is actually negative for the polyethylene. The negative correla-
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tion in polyethylene was unexpected, but the difference in source-to-detector distances between the

two polyethylene measurements could be a factor. The greater distance increases the time between

correlated gamma rays and neutrons, and therefore somewhat smears out the TCPH distribution.

However, this effect is incorporated into the analytical TCPH model that is used for fitting. The

other factor to consider is that the two polyethylene measurements were performed on different

experimental campaigns. The source-to-detector distance is the only noted difference between the

two measurements, but that does not exclude any other systematic differences that could arise from

setting up measurements on different days. In Section 4.5 it is shown that for simulated polyethy-

lene cases the rate parameter is positively correlated with multiplication, as expected.

Table 4.1: Optimized Gamma function parameters for the five measured configurations of the
BeRP sphere with standard errors of 1 standard deviation shown [73].

case α θ n Multiplication
bare 0.57 ± 0.04 12.41 ± 0.62 0.08 ± 0.03 4.429 ± 0.002
1.27 cm W 0.87 ± 0.04 14.91 ± 0.63 0.11 ± 0.03 6.447 ± 0.004
2.54 cm W 0.90 ± 0.02 19.67 ± 0.53 0.06 ± 0.01 8.752 ± 0.006
2.54 cm HDPE 0.48 ± 0.03 26.74 ± 1.38 0.08 ± 0.03 7.743 ± 0.005
7.62 cm HDPE 0.53 ± 0.03 22.54 ± 0.91 0.07 ± 0.02 20.3 ± 0.2

The optimized source-to detector distances are shown in Table 4.2. Multiplication values were

calculated from MCNP5 simulations of each configuration [7]. In all cases the optimized distance

was smaller than the measured distance, with the greatest discrepancy present in the thicker tung-

sten case. This suggests that this effect may be due to self-shielding; correlated particles from

fission events closer to the surface of the BeRP ball on the side of the detectors are more likely to

be detected. Therefore, any additional high-Z material would preferentially favor gamma rays born

at the surface of the BeRP ball, which would decrease the optimized source-to-detector distance.

This effect is seen in simulation, where the source-to-detector distance decreases significantly for

increasing tungsten reflector thickness but remains only slightly altered for low-Z polyethylene

moderator.
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Table 4.2: Optimized distances for the five measured configurations of the BeRP sphere with
standard errors of 1 standard deviation. The measured distance was measured from the center of
the BeRP ball to the face of the detectors.

case optimized distance (cm) measured distance (cm)
bare 49.02 ± 0.06 50 ± 0.5
1.27 cm W 49.04 ± 0.12 50 ± 0.5
2.54 cm W 44.75 ± 0.11 48 ± 0.5
2.54 cm HDPE 59.72 ± 0.09 60 ± 0.5
7.62 cm HDPE 49.25 ± 0.09 50 ± 0.5
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(a) Bare measured (b) Bare model

(c) 2.54 cm W measured (d) 2.54 cm W model

(e) 7.62 cm HDPE measured (f) 7.62 cm HDPE model

Figure 4.4: Measured TCPH distributions (left) and corresponding models with parameters from
the minimization algorithm (right) for various BeRP ball configurations.
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4.5 Simulation Results

MCNPX-PoliMi simulations with shielding configurations of 1.27-7.62 cm for polyethylene and

1.27-7.62 cm for tungsten in 1.27 cm intervals were simulated to better illustrate the trends in the

TCPH distribution. The optimization results of the shape and rate parameter for both simulations

and measurement are shown in Figure 4.5, with multiplication proportional to the area of each

marker.

The standard errors were taken from a covariance matrix of the best-fit parameters derived

from a numerical estimation of the Jacobian. There are considerable absolute differences between

measurement and simulation, but the general trends remain the same with the notable exception of

the aforementioned measured polyethylene cases. The simulations reveal that it would be possible

to measure the relative change in multiplication, independently of the change of surrounding mod-

erator for a reflector or vice versa. The main driver in the size of the relative standard errors was

the number of total correlated gamma-neutron pairs. This is most apparent for the thick tungsten

cases which effectively shield the vast majority of fission gamma rays.
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Figure 4.5: Optimized shape and rate parameters for both simulation (blue) and measurement (red)
cases. The shielding configurations varied in thickness from 1.27-7.62 cm with 1.27 cm intervals.
The increase in symbol size corresponded to an increase in multiplication, which is proportional
to the area of each marker. Note that the bare configurations are furthest to the left for both
measurements and simulations.
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4.6 Conclusions

This Chapter introduced a new approach for the characterization of SNM based on a signature

of temporally correlated gamma rays and neutrons. The approach was to fit the empirical ap-

proximation of the timing distribution between fissions in a fission chain to the measured TCPH

distribution. It was shown that for the BeRP ball these empirical parameters correlate with both

multiplication and the type of material (e.g. low-Z moderator or high-Z reflector) coupled to the

fissile assembly. This property makes this method a candidate for treaty verification applications,

where confidence in warhead dismantlement is the objective. In this case warhead dismantlement

would involve the removal of high explosives, which is a form of moderating material, from the

fissile material of a warhead. The reliance on a signature that is unique to SNM makes it more dif-

ficult to spoof dismantlement of fissile material. Furthermore, the signature used can be captured

with a portable set of fast organic scintillators which could be carried by an inspector.

Though the Gamma function was shown to reproduce the measured TCPH distributions in bare

fissile assemblies, as increasing amounts of reflector were added, it became a less relevant proxy for

the complete effect of the fission chain dynamics. Despite this, the rate parameter of the optimized

Gamma function correlated positively with multiplication. Simulation results revealed this trend,

but it was not shown to be the case for the measured polyethylene cases. This multiplication-rate

parameter relationship followed a different trend-line for moderated and reflected systems; which

were easily identified by the shape parameter.

For this work, an empirical model was utilized to identify general trends in the fissile assem-

blies. However, if this were replaced by a physical model of the timing distribution of fissions

within fission chains, then it may be possible to further improve the available information present

in this signature. Furthermore, the TCPH distribution is a representation of the raw signatures:

time between correlated neutrons and gamma rays, and the energy deposited by the incident neu-

tron. The underlying signature that captures the fission chain dynamics is missed in this form. In

the subsequent Chapters these raw signatures will be transformed into more physically meaningful

and easier to work with 1D TOFFEE distribution.
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CHAPTER 5

Time of Flight Fixed by Energy Estimation

5.1 Motivation

In Chapter 4 it was shown that the TCPH distribution is sensitive to the change in multiplication that

arises from the presence of reflector/moderator around fissile material. This signature is unique to

fissile material as it relies on underlying fission chain dynamics. Furthermore, it can be measured

with a relatively small detection system that can be made to be portable. These attributes make this

signature and analysis a useful choice for applications such as treaty verification, where the claim

of warhead dismantlement and initial warhead count has to be certified.

However, the TCPH distribution is essentially the raw representation of gathered recorded times

between correlated gammas and neutrons, and the corresponding light output from the neutron in-

teraction. Comparing changes in this 2D distribution is made difficult by the lower statistics per

bin, as compared to a 1D distribution with the same number of total counts. Therefore, it would

be advantageous for both comparative and quantitative analysis to reduce the dimensionality of the

measured distribution while still using the information gained from the light output of the neutron

interaction. This goal was accomplished by using a new Time-Of-Flight Fixed by Energy Estima-

tion (TOFFEE) distribution. The derivation of this new TOFFEE distribution, and its application

as a template analysis for potential application to treaty verification is discussed in this Chapter.

The application of TOFFEE for treaty verification was first presented at the 57th annual Institute

of Nuclear Materials Management conference [78].
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5.2 TOFFEE Definition

TOFFEE is the measured time between correlated gamma rays and neutrons adjusted by the ex-

pected TOF of the neutron and gamma ray from the point of emission to the detector. The incident

neutron energy, En, is estimated by the energy deposited in the detector as determined by the elas-

tic scatter on a proton, Ep. Because the neutron typically deposits only a fraction of its energy in

this interaction, this estimated energy will be systematically low and thus the estimated neutron

TOF will be systematically too large. With a known source-to-detector distance d, it is possible to

estimate the travel time difference between a neutron and gamma ray emitted simultaneously:

tp = d

(√
mn

2Ep
− 1

c

)
(5.1)

where c is the speed of light and mn is neutron’s mass. The calculated quantity tp is therefore

the estimated difference in neutron and gamma-ray time of flight difference from the proton recoil

energy. Since Ep is systematically smaller than the true incident neutron energy, tp will overes-

timate the true time of flight difference between the neutron and gamma ray. Finally, the "fixed"

in TOFFEE refers to subtracting this quantity from the measured time between a gamma ray and

neutron pair, tn,γ .

For non-multiplying sources (e.g. spontaneous fission or (α, n)), the actual travel time differ-

ence between a gamma ray and a neutron, Tn,γ , will equal the measured tn,γ , as shown in Figure

5.1(a). Therefore, TOFFEE for non-multiplying sources will be less than or equal to zero

tn,γ − tp ≤ 0. (5.2)

In contrast, for multiplying sources the measured time difference between correlated gamma rays

and neutrons will include the difference in generation time, ∆Tg, as shown in Figures 5.1 (b) and

(c). As a result, TOFFEE for sources with fission chains will be less than or equal to the times
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between fission events that emitted each particle

tn,γ − tp ≤ ∆Tg. (5.3)

There are three important implications from Eqs. 5.2 and 5.3 on the relationship between

TOFFEE and the type of source measured. First, there is a sharp distinction between non-multiplying

and multiplying sources because the former should have a steep drop in counts on the positive side

of the TOFFEE distribution. The TOFFEE distribution of a multiplying source will, in contrast,

be “smeared" in both negative and positive time directions by ∆Tg. The bi-directional smearing is

exemplified in Figures 5.1 (b) and (c), and is the consequence of correlating gamma-neutron pairs

where either the gamma ray or the neutron were born first.

Second, the TOFFEE distribution is sensitive to the level of neutron multiplication, M , in fis-

sile material, given in Eq. 2.9. Neutron multiplication is defined as the average number of neutrons

produced per starting neutron or the average length of a fission chain [16]. The probability of de-

tecting particles from the same fission grows linearly with M , which will be distributed according

to Eq. 5.2. Whereas, the probability of detecting particles from different fissions in a chain in-

creases factorially with M and will be distributed according to Eq. 5.3. The contributions of the

particles correlated in the same generation and different generation from a simulation of the bare

BeRP ball is shown in Figure 5.2. In this example, generations are used to distinguish correlated

events, because MCNPX-PoliMi output provides the generation number of a fission that originated

a detected particle, but not a unique identifier of the fission event itself. Multiple fissions can be-

long to the same generation, because of branching in a fission chain, therefore this example is an

approximation to TOFFEE distributions from same and different fissions. As a consequence, the

same generation TOFFEE distribution, shown in Figure 5.2, will sometimes include the time be-

tween fissions of the same generation and will therefore also include a ∆Tg smearing term. The

different generation TOFFEE distribution is not only smeared out due to the addition ∆Tg, but also

has noticeably more counts due to the greater probability of detecting particles that are correlated
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(a) Non-multiplying

(b) Multiplying, gamma ray born first (c) Multiplying, neutron born first

Figure 5.1: Space-time diagrams of gamma ray (green) and neutron (red) particle paths from birth
to detection (dashed blue line). The (a) non-multiplying diagram depicts the simultaneous birth
of particles, and the (b) and (c) multiplying diagrams depict a fission chain where each fission is
separated by generation time ∆Tg. The measured time-of-flight difference, tn,γ , is equivalent to the
true time-of-flight difference Tn,γ in the non-multiplying case, but it includes the generation time
in the multiplying case. The dashed red lines depict possible estimates of the neutron’s velocity
from proton recoil. The end-points of those dashed lines on the time-axis at the assumed source
distance make up the TOFFEE distribution.

from separate fission events.

Finally, the influence of ∆Tg, as shown in Eq. 5.3, means that the TOFFEE distribution is

simultaneously a measure of the length of a fission chain and the timing distribution of fissions
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Figure 5.2: TOFFEE distributions of simulation of the BeRP ball constructed from gammas and
neutrons originating from the same generation and different generations of fissions. There are
more correlations from different generations due to neutron multiplication of the BeRP ball (M =
4.389± 0.005).

within that chain. The characteristic time between fission events in a chain is indicative of the

probability of fission, and the average neutron energy between fissions. In addition, for assemblies

that are coupled to a reflector, the time between fission events also depends on the probability and

delay time for a neutron to return to the fissile material.

5.3 Template Approach for Treaty Verification

Treaty verification is a process under which States party to a particular treaty validate each other’s

compliance through mutual monitoring. The objective of treaty verification is to establish trust and

confidence that treaty obligations are not being violated. Any effective monitoring system should

be sensitive enough to reliably verify compliance. However, for nuclear dismantlement and arms

control treaties there is also the desire that sensitive information is not divulged through collected

data [79]. Therefore, proper information barriers (IB) should be incorporated into measurement

systems while maintaining the system’s reliability. Templating is often presented as a methodology

that offers a natural sequestration of sensitive information; all sensitive information used to confirm
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an object is contained in a template which is protected by an information barrier [80].

Generally, a template based approach involves measuring a unique signature of a trusted object

to build an identifying template. This measurement is then repeated on a tested object and the

measured signature is compared against the previously acquired template in order to verify the

object’s identity [81]. A diagram of the procedure is shown in Figure 5.3. Because this technique

relies on any deviation in measured signature, and not the absolute value of thereof, determination

on object’s authenticity can be made relatively quickly and with high confidence. Additionally,

any potential sensitive information is carried with the template itself which naturally lends itself

to application of information barriers; examples include zero-knowledge protocols [82, 83] and

public-key cryptography [84].

Figure 5.3: A diagram of the principle operations of template-based verification measurements.

The ability of the template based approach to impart confidence in the declaration rests in the

uniqueness of the measured signature and trust in the authenticity of the measurement. This work

does not deal with that latter requirement. The TOFFEE distribution measures the direct effects

of the underlying fission chain timing distribution of a multiplying object, which is sensitive to

any changes in fissile material mass, geometry and presence of surrounding neutronically coupled

material. The sensitivity of the presence of a fission chain, and any perturbations in its timing

distribution due to changes in its configuration makes TOFFEE distributions a useful signature for
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item (warhead) confirmation and dismantlement confirmation. In general, these activities aim to

answer the following questions:

• Dismantlement confirmation: Has the high explosive been separated from the fissile mate-

rial?

• Item (warhead) confirmation: Is the fissile assembly including reflecting material in the

tested object consistent with a nuclear warhead?

In the following sections the two propositions will be tested on surrogate fissile materials.

5.4 Experimental Setup

Dismantlement confirmation was tested by comparing bare and moderated configurations of WGPu

BeRP ball [77] and of HEU Training Assembly for Criticality Safety (TACS) shells [85]. The

moderated configurations used a surrogate material to simulate the presence of high explosive.

The moderated BeRP ball configuration was surrounded with 2.54 cm thick shells of HDPE. In

contrast, the TACS shells configuration is more complex with nested layers of Lucite, HEU and

depleted uranium (DU) moving from the inside to outside. The inner radius of the Lucite was

4.6 cm, and the outside radius 7.92 cm at the edge of the DU. The inner most Lucite was left

there from previous experiments in which the Am-Li source was placed at the center of the as-

sembly. The moderated TACS configuration included an additional outer shell of 1.12 cm thick

Lucite. Collectively the HEU shells weighed 16.53 kg compared to just 6.4 kg for the Depleted

Uranium (DU). The presence of DU made confirmation measurement more difficult by attenuating

all potential gammas emanating from U-235 fissions. In addition, HEU’s lack of a strong source of

spontaneous fissions necessitated actively interrogating the configuration with an Am-Li source.

The interrogating source was placed on the opposite side of the TACS HEU shells with respect to

the detectors.

Item confirmation was tested with a series of sources with increasing level of neutron mul-

tiplication: non-multiplying Cf-252, relatively low-multiplication 190 grams of WGPu Oxide
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hemispheres (Hemis), and the relatively highly-multiplying BeRP ball. These were compared with

the moderated BeRP ball and TACS shells. Except for the Hemis, which were measured at B262

at Lawrence Livermore National Laboratory (LLNL), all the other measurements were performed

at the NNSS Device Assembly Facility (DAF). A summary of all the measured objects is provided

in Table 5.1.

Table 5.1: Total data collection times for objects at the DAF and LLNL measurement campaigns.

configuration distance (cm) measurement rate of gamma ray
campaign

time (min) neutron pairs (Bq)
BeRP 34 59 55.6 DAF
BeRP + 1 in HDPE 34 589 77.8 DAF
TACS (HEU) 34 55 0.068 DAF
TACS (HEU) + 0.6 in Lucite 34 80 0.077 DAF
Cf-252 36 31 10 DAF
Hemi 46 499 0.096 LLNL

The measurement system consists of eight, 2âĂİ in diameter and 2âĂİ thick (2âĂİ×2") stilbene

crystals arranged in a cylindrical pattern, as shown in Figure 5.4. Each stilbene crystal was coupled

to H1949-50 Hamamatsu Photomultiplier Tube (PMT) with a custom low voltage to high voltage

bias converter. Quarter inch thick pucks of lead were attached to the front of the detectors in

order to minimize count rate from uncorrelated and low energy decay gamma rays emitted by the

plutonium and americium in the BeRP ball. The PMT outputs were digitized by an 8 channel,

14-bit, 500 MS/s CAEN DT5730 desktop digitizer operated in asynchronous acquisition mode.

Asynchronous acquisition allows each channel to record pulses above threshold independently,

allowing for correlation analysis to be performed off-line with different coincidence windows.

In synchronous or coincident acquisition, multiple channels have to trigger inside a certain time

window for the events to be recorded. This second mode conveniently saves on the amount of

acquired data, but the coincident window remains fixed to the acquisition settings used to collect

the data. In this experiment, all pulses above the minimum threshold were recorded in list-mode

and the gamma/neutron PSD and timing analysis was performed off-line. The PSD was performed

using Bayesian procedure outlined in Section 3.5.
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Figure 5.4: Photograph of the measurement of one of the BeRP ball configurations with the Stil-
bene Array.

5.5 Methodology

A log-likelihood was used as a metric to compare the template to other test object measurements.

The counts in each bin of the TOFFEE distribution are assumed to follow Poisson statistics, and

the template is used to get the expected mean for each bin. The metric value is then the sum of

log-likelihoods for every bin:

L =
n∑
i=0

− log(P (xi|µi)) (5.4)

where n is the total number of bins and P (xi|µi) is the Poisson probability of measuring bin value

x given the scaled template bin value µ in the ith bin. The bin range of -5 to 60 nanoseconds was

used to compare different measured distributions.

All correlated measurements will exhibit a âĂIJflatâĂİ background of uncorrelated random

accidentals, the level of which is linearly dependent on the overall interaction rate. This rate will

vary between different sources and configurations, ranging from 0.07 s−1 from TACS to 78 s−1

for the BeRP ball. The background rate was estimated by taking the average of the neutron pulse-

height dependent rate of correlated counts in the -1500 ns to -500 ns window ahead of each gamma
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ray. This average rate was then subtracted from the rest of the distribution for each measurement.

The rate of correlated neutrons and gamma rays varies between different sources and configu-

rations. For example, the addition of a moderator provides some shielding while simultaneously

increasing multiplication with the net effect of greater rate of measured correlated neutrons and

gammas. The rate of correlated neutrons is sufficient to distinguish between almost all of our

source configurations, as shown in Table 5.1, but this alone is not sensitive to the length of fission

chain nor their temporal development. In contrast, the TOFFEE distribution, is uniquely sensitive

to multiplication of the object itself. In order to separate the effects of correlated count rate and

TOFFEE distribution shape, each test was conducted with both count normalized and time nor-

malized TOFFEE distributions. In the time normalized analysis, the primary discriminator is the

difference in rate. In count normalized analysis we remove these differences by using the same

number of events from each distribution. This ensures that only differences in the shape of the

timing distribution will enter the comparison metric. An example of both count normalized and

time normalized TOFFEE distributions of the bare and moderated BeRP ball are shown in Figure

5.5.

(a) Count Normalized (b) Time Normalized

Figure 5.5: Count normalized (left) and time normalized (right) TOF corrected neutron-gamma
time distributions for the bare BeRP ball (black) and the BeRP ball in a 2.54 cm HDPE shell
(blue).
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Verification performance was judged on the basis of minimum dwell times required to confirm

dismantlement or a warhead. TOFFEE distributions of the tested object were constructed for spe-

cific dwell times by using a randomly sampled subset of measured data. A total of 10,000 trails

of such randomly sampled subsets of data were used to estimate log-likelihood distributions for

each dwell time, as is shown in Figure 5.6. An arbitrary operation point of 99% True Positive

(TP) rate was chosen, and dwell times were incrementally increased until the False Positive (FP)

fell just below 1%. The dwell times that met both these operational thresholds were recorded for

comparison among different sets of trusted and tested objects.

Figure 5.6: The log-likelihood distribution (left) and corresponding Receiver Operator Character-
istic (ROC) curve (right) for 10,000 — 8 second trails of the comparison of the bare (dismantled)
and moderated BeRP ball.

5.6 Dismantlement Confirmation

Dismantlement confirmation performance was tested by comparing bare and moderated configu-

rations of the BeRP ball and TACS HEU shells. The bare configurations were used as templates

and the moderated configurations were the test objects. A depiction of each trusted and test object

pairs are shown in Figure 5.7.

The BeRP ball took only a few seconds to confirm, which was over an order of magnitude
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Figure 5.7: The pairs of trusted and tested objects used for dismantlement verification. The mod-
erators, HDPE and Lucite, were used as high explosive (HE) surrogates. The inner and outer
dimensions of the TACS shells are given in centimeters.

less time than the TACS shells. This difference is predictable due to the much higher spontaneous

fission rate of Pu-240 in the BeRP ball which allows for much higher rate of fission chain initiation.

Figure 5.8 illustrates the dependence of the False Positive rate for the two objects, assuming 99%

True Positive rate operational threshold, on dwell time. In theory, it would be possible to reduce

the dwell time required to confirm HEU by using a stronger interrogating source. The presence of

DU shielding also effectively cuts down on the rate of measured correlated neutron and gamma-ray

pairs.

Table 5.2: Summary of the time to confirm dismantlement with 99% TP and 1% FP rate.

trusted tested count time
object object normalized (s) normalized (s)

BeRP ball BeRP ball + HDPE 12 3.7
TACS shells TACS shells + Lucite 380 590
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Figure 5.8: False Positive rate as a function of dwell time assuming 99% True Positive operational
threshold with count normalized analysis of dismantled objects.

5.7 Item Confirmation

Item confirmation was performed by using the moderated configurations of the BeRP ball and

TACS shells as trusted objects. A depiction of each trusted and test object pairs are shown in

Figure 5.9. The choice of a test objects for item confirmation is much more difficult than in the

case of dismantlement confirmation because of the open ended options for potential spoofs that

an adversary could use. Two test objects were used: Cf-252 and plutonium oxide hemispheres

(Hemis). The former is a readily available laboratory source of Watt spectrum fission neutrons,

and the latter is fissile material with far smaller mass and Oxide chemical form.

As with the dismantlement confirmation, the requisite dwell times for confirmation against

the BeRP ball are significantly shorter. The limited number of counts in the HEU measurement

requires coarser binning in time and ultimately results in a much noisier template. The results

are summarized in Table 5.3. The assumptions about Poisson statistics for calculating the log-

likelihood also break down for any comparison that is statistically starved. Comparisons of False

Positive rates as a function of dwell time for all cases are shown in Figure 5.10.
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Figure 5.9: The pairs of trusted and tested objects used for dismantlement verification. The mod-
erators, HDPE and Lucite, were used as high explosive (HE) surrogates. The inner and outer
dimensions of the TACS shells are given in centimeters.

Table 5.3: Summary of the time to item confirmation with 99% TP and 1% FP rate.

trusted tested count time
object object normalized (s) normalized (s)

BeRP ball + HDPE Cf-252 12 6
BeRP ball + HDPE Hemi shells 2 6

TACS shells Cf-252 1100 80
TACS shells Hemi shells 540 960

5.8 Conclusions

The previously studied TCPH distribution, a bi-variate histogram of neutron deposition energy and

time to correlated gamma ray, was collapsed into one dimensional TOFFEE distribution. As a

result, the direct effect of the inter-generational time within a fission chain, ∆Tg, on the measured

signature became apparent. Furthermore, TOFFEE was more desirable for direct comparison of

measurements, because of the greater counts per bin, which improve statistical performance over

the TCPH analysis. This capability was tested in the context of two treaty verification problems:

dismantlement and item confirmation. The goal was to determine the minimum dwell time required
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Figure 5.10: False Positive rate as a function of dwell time assuming 99% True Positive operational
threshold with count normalized analysis for item confirmation comparing TACS shells (HEU) and
the BeRP ball against the non-multiplying Cf-252 and low-multiplying Hemi shells.

to confirm that the test object did not match the trusted object, and to demonstrate that TOFFEE is

a useful signature for these applications.

A TOFFEE distribution template of a trusted object was compared against test object’s TOFFEE

distribution with the log-likelihood as a metric of comparison. Distributions of the log-likelihoods

were built by sampling 10,000 times from the measurements of the trusted and test objects for spe-

cific dwell times. These were then used to build Receiver Operator Characteristic (ROC) curves

from which operational performance was determined. The desired performance threshold was set

at 99% TP rate with a corresponding 1% or less FP rate, and the minimum dwell times required to

achieve those performance thresholds were reported.

For both dismantlement and item confirmation, the BeRP ball required only several seconds (2-

12 s) to determine that the test object was inauthentic. By contrast, TACS shells required hundreds

of seconds of dwell time for confirmation at the same operational thresholds. The difference was

mainly due to the relatively strong source of spontaneous fission neutrons from Pu-240 inside

the BeRP ball, which drove the initiation of fission chains and corresponding correlated particles.

The TACS shells, whose fissile component was HEU, had to be stimulated by an external Am-Li
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interrogation source. In addition, the outer DU shell around the HEU further suppressed the signal

from correlated neutrons and especially gammas.

Finally, the analysis was performed over both count normalized and time normalized TOFFEE

distributions. It was expected that the additional difference in gamma-neutron correlation pair

detection rates between trusted and tested objects would allow for faster confirmation and thus

lower dwell times. However, the time normalized results were not consistently lower than the count

normalized counterparts. In particular, the dismantlement confirmation with TACS shells and the

item confirmation with the Hemi’s produced the opposite of expected results. The measurement

of those objects suffered from relatively lower gross counts due to equally low rates of detected

gamma-neutron pairs. As a result, the reported dwell time may carry significant uncertainty, which

was not reported in this work. However, this uncertainty is reflected by the difference in the count

and time normalized dwell times which run counter to the expected results.
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CHAPTER 6

Solving For Subcritical Assembly Physical

Parameters

6.1 Motivation

In Chapter 5, the measured TOFFEE distribution was used to distinguish between different sources

of correlated gamma rays and neutrons in the context of treaty verification. The reduction in the

number of dimensions from the TCPH distribution made it more suitable for direct comparison

of two measurements. In addition, the role of inter-fission timing in the shape of the TOFFEE

distribution became clear. Inter-fission timing is influenced by both the amount of fissile material

and presence of any reflectors. The sensitivity of the TOFFEE distribution to those factors was

tested in Chapter 5. The work presented in this chapter will explore the extraction of physical

parameters driving fission chain dynamics from the measurement of a TOFFEE distribution.

In a way this is a return to the analysis shown in Chapter 4, where empirical parameters of

a Gamma function were shown to correlate with neutron multiplication and type of reflector ma-

terial. However, the construction of an analytical TCPH distribution was rather convoluted and

the empirical parameters of the Gamma function lacked immediate physical interpretation. This

is avoided here by fitting the positive side of the simpler one dimensional TOFFEE distribution

to a physically meaningful model that describes time dependent neutron population behavior in a

critical assembly coupled to a neutron reflector. The physical model is developed from two-region

point kinetics theory, which is an extension of the one-region point kinetics used in Rossi-alpha
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method described in Section 2.2.1.

The goal is to determine three inter-dependent parameters:

1. Neutron multiplication

2. Amount of coupled neutron reflector material

3. The type of neutron reflector material

These are intrinsically difficult to decouple because greater amounts of neutron reflector increase

neutron multiplication. The determination of the amount and composition of reflector material

could be useful in the area of emergency response, or safeguards. Therefore, the analysis developed

here could complement other traditional methods (e.g. multiplicity counting, Rossi-alpha analysis

and gamma spectroscopy) that are complicated by the presence of neutronically coupled reflector

material.

6.2 Two-Region Point Kinetics

As described in Section 5.2, the spread in the TOFFEE distribution of a multiplying source is driven

by the generation time, ∆Tg, between the detected gamma-rays and neutrons. The probability of

detecting these particles is governed by the time dependent population of fissions, or the corre-

sponding neutrons that propagate fission chains. Point kinetics equations are a well established

method for studying the time-dependent neutron populations in a nuclear reactor. However, mod-

eling neutron behavior inside reflected assemblies required a two-region kinetic model [86, 87].

First, traditional reactor point kinetics is simplified by ignoring delayed neutron precursors that

result from the cascade of decays of fission product isotopes. These fission product isotopes are

typically organized into six groups with half-lives ranging from hundreds of milliseconds to tens

of seconds [88]. These delayed neutrons can be ignored because the TOFFEE correlation window

of interest is only on the order of a hundred nanoseconds. Ignoring delayed precursors, the time-

dependent neutron population of prompt neutrons in a reflected assembly can be approximated
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by:

dNc

dt
=
kc − 1

lc
Nc + frc

Nr

lr
(6.1)

dNr

dt
= fcr

Nc

lc
− Nr

lr
(6.2)

where:

Nc is the number of neutrons in the fissile core region

Nr is the number of neutrons in the reflector

kc is the multiplication factor in the fissile core region

lc is the neutron lifetime in the fissile core region

lr is the neutron lifetime in the reflector region

fcr is the fraction of neutrons that leak from the fissile core region into the reflector

frc is the fraction of neutrons that leak from the reflector back into the core

Note that the kc is different from the multiplication factor k, but the two are related as shown in

Eq. 6.17. The former is the property of only the core, while the latter is the property of the whole

system (i.e. the core and reflector assembly).

The system of equations in Eqs. 6.1 and 6.2 can be solved by converting them to a second order

differential equation:

lrlc
d2Nc

dt2
+ (lc − lr(kc − 1))

dNc

dt
− (f + kc − 1)Nc = 0 (6.3)

The new variable f is the fraction of neutrons that leak out of the core and are reflected back, which

is just the product of two previously defined terms

f = frcfcr (6.4)
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The complete solution requires two initial conditions:

Nc(0) = No (6.5)

Nr(0) = 0 (6.6)

at t = 0 the neutron population in the core is No and no neutrons are present in the reflector. The

solution to Eq. 6.3, given these initial conditions is a familiar double exponential:

Nc(t) = No

[
(1−R)etr1 +Retr2

]
(6.7)

where the roots to the characteristic polynomial are

r1 =
−
√

4lclr(f + kc − 1) + (lc − lr(kc − 1))2 − lc + lr(kc − 1)

2lclr
(6.8)

r2 =

√
4lclr(f + kc − 1) + (lc − lr(kc − 1))2 − lc + lr(kc − 1)

2lclr
(6.9)

and scaling ratio R is

R =
r1 − α
r1 − r2

(6.10)

where

α =
kc − 1

lc
(6.11)

f and kc are constrained to be less than 1. The factorR falls within the range 0 to 1 for all plausible

combinations of these variables.

The solution to Eq. 6.7 collapses to a single exponential shown in Eq. 2.13, which is a starting

point for Rossi-alpha analysis, in three special cases:

1. The reflector does not return any neutrons, in effect the fissile material is bare.
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2. Neutron lifetime in the reflector is large, and as a result neutrons crossing into the reflector

just stay there.

3. Neutron lifetime in the reflector is exceedingly small, and as a result reflected neutrons are

immediately returned to the fissile core.

In the first case none of the leaked neutrons are reflected back, that is frc = 0 and therefore

f = 0. As a result, Eq. 6.1 simplifies to Eq. 2.12 and the solution is a single exponential.

The second and third case involve the extremes of the lr parameter. If lr is large, then the

neutrons spend a long time in the reflector and do not return to the fissile core. Under that condition,

and assuming a subcritical fissile core (kc < 1), the roots of the characteristic polynomial are

lim
lr→∞

r1 = α (6.12)

lim
lr→∞

r2 = 0 (6.13)

which implies that R = 0 and the solution in Eq. 6.7 again collapses to a single exponential

characteristic of a bare assembly with the rate parameter α.

On the other hand if lr is really small (lr < 0.01ns) then the roots are

lim
lr→0

r1 = −∞ (6.14)

lim
lr→0

r2 =
f + kc − 1

lc
(6.15)

which in implies that R = 1 and again the solution collapses into a single exponential. The

neutrons that enter the reflector either immediately disappear or are instantaneously return the

fissile core. In this case the fraction f effectively adds to the probability that a neutron fissions in

the core.
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6.3 Experiments

The measurements were conducted at the NNSS, with five distinct reflector configurations shown

in Table 6.1, at a source-to-detector distance of 30 cm. The reflectors were made from close fitting

sets hemispherical shells made of iron and nickel, with a single 4.509 cm diameter hole used to

support the fissile material at the center of the shells.

Table 6.1: Measurement details of the various configurations of the BeRP ball with iron and nickel
reflectors. The neutron multiplication was calculated from MCNP5 k-code simulation.

case measurement rate of gamma-ray multiplication
time (sec) neutron pairs (Bq)

bare 1968 136 4.433 ± 0.001
0.5 in Fe 897 211 5.584 ± 0.008
1 in Fe 2095 280 6.648 ± 0.012
1.5 in Fe 1497 239 7.182 ± 0.015
1.0 in Ni 1497 243 7.472 ± 0.016

In addition to a multiplying source, a 21 µCi Cf-252 source was measured at a source to de-

tector distance of 35 cm. This measurement was performed independently at Sandia National

Laboratories. This measurement served as a starting point for validation of the MCNPX-PoliMi

simulations that were used to extend the available measured configurations of the BeRP ball.

All measurements were performed with the same purpose-built portable array of eight 2" by 2"

cylindrical stilbene crystals and acquisition system described in Section 5.4 and shown in Figure

6.1. The acquisition threshold was approximately 20 keVee (keV electron-equivalent), and the

post-processing threshold was set to be 100 keVee.

The Birks’ formula, from Eq. 3.6, was used for the neutron light output calculations with fitted

parameters of S = 1.63 (MeVee/MeV) and k = 27.83 (mg/(cm2 MeV)). The integrand in Eq. 3.6

was evaluated for deposited energies ranging from 1 keV to 250 MeV, and the results were saved

in a lookup table. Linear interpolation of the values in the table was used to calculate light output

from simulations and approximate proton recoil energy from light output in measurement.
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Figure 6.1: The front of purpose-built stilbene array used for all measurements.

6.4 Simulation Validations

The measured configurations of the BeRP ball, shown in Table 6.1, include three sets of shell

thickness and two types of reflector material. Simulations were used to expand the range shell

thicknesses, explore other reflector materials, and vary the mass of the BeRP ball by changing the

diameter of the sphere. In order to have confidence in these results, it was necessary to validate the

simulations by comparing them with measurements as will be done in the following sections.

6.4.1 Cf-252

The goal of starting with a Cf-252 source was to isolate contributions to the TOFFEE distribution

caused by factors other than the development of a fission chain. One factor is the detector response,

which depends on the energy calibration and validity of the light output function shown in Eq. 3.6.

Another factor is particles scattering from other objects in the experimental setup, contributing to

the so-called room return.

The ubiquitous Cf-252 isotope is a very well characterized source of correlated gamma rays and

neutrons, and is readily available as built-in source option for MCNPX-Polimi [74]. In addition,

the commercially available Cf-252 source capsule used for the measurement is small enough to
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be approximated as point source in the simulation. The effects of room return were simulated by

the addition of a 30 cm thick concrete floor 1 meter below the source. The floor is expected to

dominate the scattering effects because of its proximity to the source, therefore the walls (2+ m

away) and other smaller scattering materials were not included in the simulations.

The neutron Pulse Height Distributions (PHDs) were compared to test the energy calibration

and neutron light output function. The neutrons were limited to those that were correlated with

gamma rays inside a 2 µs window. The measured and simulated PHDs shown in Figure 6.2 overlap

with the entire range of measured energies, without any noticeable systematic bias and within

the statistical error. The statistical fluctuations are reflected in the relative error, which oscillates

around zero.
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Figure 6.2: Measurement and simulation comparison of the Cf-252 source (a) pulse height distri-
bution of gamma-ray correlated neutrons and (b) corresponding relative error of the simulation.

In contrast to the PHDs, which is relatively featureless, the TOFFEE distributions shown in

Figure 6.3 have several features whose shape depend on the detector response. The most significant

feature is the bell-like curve between -10 and 5 ns which includes the vast majority of correlated

counts. The width of these curves line up with each other, indicating that the energy calibration

and corresponding thresholds are well matched, and that time resolution is properly applied. In

addition, the width is affected by the source-to-detector distance, which in both the simulation and

measurement was 35 cm.
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The higher counts in the measurement in the region between -20 and -10 ns is partly due to PSD

misclassification, where gamma-gamma correlations are mistakenly classified as gamma-neutron.

There is also good agreement in the region beyond 60 ns, where the effects of scattering from

the floor is evident. There are not many counts in that region, which contributes to the erratic

relative error, but the simulation and measurement match within the statistical error. The region of

the largest notable error lies roughly between 5 and 25 ns, right around the steep drop in counts

expected from a non-multiplying source.

Finally, there is the rate of “accidental" correlations that depend on the source strength and

appear as a flat background in the TOFFEE distribution. The contribution from accidentals is esti-

mated by averaging counts in each bin of a region offset by 1000 to 1500 ns from each coincidence

trigger. This is then subtracted from the TOFFEE distribution.
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Figure 6.3: Measurement and simulation comparison of the Cf-252 source (a) TOFFEE distribution
and (b) corresponding relative error of the simulation.

6.4.2 BeRP Ball

The BeRP ball is a much more complicated source compared to Cf-252. It’s a distributed spherical

source having a diameter of 7.59 cm and a multiplication of 4.4, and therefore cannot be treated

as a non-multiplying point source. In the simulation, the source term was evenly distributed spon-

taneous fissions of Pu-240. In reality the BeRP ball includes a more complicated mix of isotopes
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that become ingrown over time, but these were omitted from the simulation because they primarily

contribute to the flat uncorrelated accidental background which was subtracted out.

The bare configuration comparison, shown in Figure 6.4, shows that the measured TOFFEE

distribution is just slightly wider. The larger source of discrepancy is in the region between 40 and

100 ns, which is dominated by reflection from the floor. There are many time bins that are within

statistical agreement in that region, but also a handful that have no counts at all. The problem is

that the accidental background rate is much lower in the simulation (1 per ns) compared to the

measurement (62 per ns) because of the lack of ingrown isotope sources in the former. In the

measurement the higher accidental background competes with the effect of room return and is

statistically significant when the two are subtracted, which is apparent from the large uncertainties.
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Figure 6.4: Measurement and simulation comparison of the bare BeRP ball (a) TOFFEE distribu-
tion and (b) corresponding relative error of the simulation.

The overall agreement between simulated and measured TOFFEE distributions improves as

reflector material is added. The BeRP ball with 1 inch iron is shown in Figure 6.5 as a representa-

tive example of the improvement. It appears that the time smearing associated with longer fission

chains dominates over the discrepancies caused by room return, and accidental background.
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Figure 6.5: Measurement and simulation comparison of the BeRP ball with 1 inch iron shielding
(a) TOFFEE distribution and (b) corresponding relative error of the simulation.

6.5 Bare Configurations

Neutron multiplication and reflector thickness are correlated, since neutron reflection increases

the neutron population and average length of fission chains. In order to study the effect of mul-

tiplication independently from the effects of reflector bare BeRP balls with various masses were

simulated, ranging from 1 to 8 kg. The change in mass was accomplished by changing the diame-

ter of the BeRP ball. A section of TOFFEE distribution, from 0 to 100 ns, were fitted to Eq. 2.13,

which is a single exponential that doesn’t account for a reflector.

A comparison of the measured and simulated BeRP ball is shown in Figure 6.6. As explained in

Section 6.4.2, there is some disagreement at later times due to competing effects of floor reflection

and accidental correlations. However, the fits and resulting α parameters for measurement (0.144±

0.003) and simulation (0.153± 0.004) are within two standard deviations of each other.

The multiplication factors and neutron lifetimes for the bare cases were tallied in MCNP6

simulations, and Eq. 6.11 was used to calculate corresponding α parameters. Figure 6.7 shows

the comparison of these MCNP derived alpha values with the alpha values estimated from the

exponential fits. The relationship between estimated and MCNP alphas is linear, and a regression

analysis revealed a correlation coefficient greater than 0.98, and a slope of 1.0974.
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Figure 6.6: Comparison of the measured and simulated bare BeRP ball TOFFEE distributions and
exponential fits from Eq. 2.13.

As shown in Figure 6.7, there is a slight deviation from the linear trend for the actual BeRP

ball simulation and measurement. For all other masses the thin stainless steal shell surrounding the

BeRP ball was removed and truly bare Pu spheres were simulated.

Neutron multiplication can be derived from the neutron decay constant and core lifetime by

rearranging Eq. 6.11:

M = − 1

αlc
. (6.16)

Neutron multiplications were derived from fitted alpha parameters by using previously tallied core

neutron lifetimes from MCNP6. As expected, there is a positive linear correlation between the

derived and actual neutron multiplication, as shown in Figure 6.8(a). However, the derived values

underestimate the actual values, and the deviation grows with increasing BeRP ball mass. This

increasing underestimation could be due in part to self-shielding, which would mean that detected

particles are preferentially drawn from near the surface of the sphere. This is consequential because

on average fission chains near the surface are shorter than the ones near the center.

Leakage multiplication, defined in Section 2.1.4, should compensate for the effect of self-

shielding by taking into the account the probability of neutron leakage. The relationship between
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Figure 6.7: The estimated (αF ) and calculated, from MCNP6, (αM ) alpha parameters for BeRP
balls with mass ranging from 1 to 8 kg. A linear regression was performed with the resulting
relationship shown in the legend and a correlation coefficient of 0.9890.

derived multiplication and leakage multiplication is shown in Figure 6.8(b). There is still underesti-

mation of the leakage multiplication with increasing BeRP ball mass, although it’s less pronounced

with average deviation of -10.69%.

2 3 4 5 6 7 8 9
Total Multiplication

2

3

4

5

6

7

8

9

D
e
ri

v
e
d
 M

u
lt

ip
lic

a
ti

o
n
 (

(α
l c
)−

1
)

Simulation

Measurement

(a)

2 3 4 5 6 7 8 9
Leakage Multiplication

2

3

4

5

6

7

8

9

D
e
ri

v
e
d
 M

u
lt

ip
lic

a
ti

o
n
 (

(α
l c
)−

1
)

Simulation

Measurement

(b)

Figure 6.8: Derived neutron multiplications from TOFFEE fits of the bare BeRP balls with different
masses with the corresponding (a) total and (b) leakage multiplications obtained through MCNP6
simulations. The dashed line corresponds to perfect agreement between derived and actual multi-
plication, with the points above and below corresponding to overestimation and underestimation,
respectively.
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6.6 Reflected Configurations

Next we fit Eq. 6.7, derived from two-region point kinetics model in Section 6.2, to the reflected

BeRP ball configurations. In Eq. 6.7 there is total of four physical parameters, but two of the

parameters were constrained to make a meaningful fit.

At first three parameters were considered in the fitting routine: lc, lr and f . Either kc or lc

have to be constrained because the correlation coefficient between the two is 1. However, the

remaining two parameters, lr and f , had no discernible trend between reflector material and across

different shell thicknesses. Furthermore, the coefficient of correlation between the parameters was

large, and corresponding uncertainties on the fitted parameters were large. A strategy had to be

developed to systematically fit only two parameters.

Most meaningful results were obtained by fixing both kc and lc and letting lr and f float. The

core multiplication constant was taken from MCNP6 kcode calculation. The neutron lifetime in

the core was then solved for separately for both simulations and measurements using Eq. 6.11

with the fitted α from the bare BeRP ball. The Eq. 6.7 fits of the measured iron cases are shown

in Figure 6.9. In the first 60 ns time window the fit tracks quite well with the data, but undershoots

the data at later times in the 80-100 ns window. Some of this behavior is due to the lower statistics

in that region which make it less important for the fit. There is also some effect of floor reflection

that is not accounted for in the two-region point kinetics model and therefore missing from Eq.

6.7.

6.6.1 Multiplication

The parameter f is related to the total system k by

k =
kc

(1− f)
. (6.17)

Neutron multiplication is then be calculated from Eq. 2.9. The comparison of this “Estimated Mul-

tiplication" with the MCNP6 equivalent for the measured and simulated cases is shown in Figure
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Figure 6.9: TOFFEE distributions of the measured iron configurations with corresponding double
exponential fits from Eq. 6.7.

6.10. As expected, there is convergence between the simulated and measured cases with increas-

ing shell thickness. The average relative difference between estimated and expected multiplication

was 10%.

The simulation results that include aluminum and tungsten shells of up to 6 in thick are shown

in Figure 6.11. The estimated multiplications for all shielding materials have positive correlations

with the MCNP multiplication, although the relationship is different between materials. The trend

is superlinear for aluminum and sublinear for tungsten. Iron and nickel have a more linear trend.

The average relative difference also varied from one material type to the next, with as little at 14%

for aluminum and as much at 22% for iron. Unlike with the bare case correlation with leakage mul-

tiplication produced even worse agreement and the trends among the different materials remained

the same.
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Figure 6.10: Comparison of the estimated multiplication of the measured and simulated TOFFEE
distribution for the shielded configuration of the BeRP ball. The dashed line represent perfect
agreement between the fit and the expectation from MCNP simulation.
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Figure 6.11: Estimated multiplication for simulated TOFFEE distributions of several configura-
tions of shielded BeRP ball with different material types.
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6.6.2 Shell Thickness and Material Type

Apart from the fitted parameters, f and lr, there were a couple of derived quantities that proved

to be correlated with physical quantities. The integral of Eq. 6.7 used in fitting the reflected

configurations is

∫ ∞
0

Nc(t)dt =
R− 1

r1
− R

r2
(6.18)

Plotting this integral against shell thickness, as shown in Figure 6.12, reveals unique linear cor-

relations for each material type. As mentioned before, shell thickness and multiplication are in

themselves correlated, but the integral has much more linear and consistent correlations with shell

thickness. Furthermore, the slope of each line increases with atomic number and density. This

demonstrates that it may be possible to determine material type if shell thickness is known, or vice

versa.
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Figure 6.12: Integral of a double exponential fit as a function of shell thickness.

Given the relationships demonstrated in Figure 6.12, it was worth investigating the correlation

with the integral of the fit could be decoupled from any particular element and related back to

the total amount of reflector. The total amount of reflector surrounding the core was quantified

by the effective areal density, which takes into account shell thickness and density. The integral
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correlation with effective areal density for all four reflector materials is shown in Figure 6.13. The

results of linear least-squares regression for each material and all of them combined is shown in

Table 6.2. Each material has a unique linear correlation, but the combined regression shows a

strong correlation coefficient of 0.9717. The deviation between materials is likely due to inelastic

and other capture neutron interactions within each reflector, which is not correcting for.
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Figure 6.13: The integral of the fit of Eq. 6.7 to TOFFEE distributions of the reflected configura-
tions of the BeRP ball and the effective areal density of each of the shells.

Table 6.2: Linear leas-squared regression for the correlation between integral of the fit to TOFFEE
distribution and effective areal density of the reflector material.

reflector slope intercept
correlation
coefficient

Aluminum 0.064 7.06 0.9748
Iron 0.175 8.46 0.9889
Nickel 0.274 9.10 0.9895
Tungsten 0.237 8.91 0.9815
All 0.251 6.55 0.9717

The second derived quantity of interest is the scaling ratio,R, which asymptotically approaches

unity with increasing shell thickness, as shown in Figure 6.14(a). As the amount of reflector

material goes up, so does its effect on the TOFFEE distribution. Eventually this dominant reflector

term collapses the double exponential fit into a single exponential. This suggests that it may be
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difficult to separate the effects fissile material mass and presence coupled reflector at sufficiently

high areal densities of said reflector.

The asymptotic behavior of the scaling ratio approaching unity is driven by the fitted lr that for

the heavier materials approached zero, as shown in Figure 6.14(b). The results from fitted lr mir-

ror those of the scaling ratio shown in Figure 6.14(a), but unfortunately lack meaningful physical

interpretation. Neutron lifetime in the reflector is expected to be largest for the denser materials,

and increase with shell thickness. Instead, the exact opposite is shown to be the case. This may be

a consequence of the negative covariance between f and lr. As was shown in the multiplication

analysis in Section 6.6.1, the parameter f appropriately increased with greater neutron multipli-

cation. But this may have inadvertently driven the fitted value of lr down because of its negative

correlation.
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Figure 6.14: The (a) scaling ratio and (b) neutron lifetime in the reflector from the fit of Eq. 6.7 to
TOFFEE distributions of the BeRP ball with various reflector shell thicknesses.

6.7 Conclusions

The positive side of the TOFFEE distribution was fitted, from 0 to 100 ns, to time dependent

neutron population derived from point kinetics theory. A bare subcritical assembly is sufficiently

described by a single exponential in Eq. 2.13 and introduction of a reflector yields a double expo-
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nential shown in Eq. 6.7.

For the bare cases the estimated alpha parameters and the expected alpha values are linearly

correlated. A derived multiplication was calculated from the estimated alpha parameters by assum-

ing a known lc from MCNP6 simulations. This derived multiplication positively correlated with

the leakage multiplication with an average relative error of 10.6%.

The TOFFEE distributions from the reflected BeRP ball assemblies were fitted to the double

exponential model from Eq. 6.7. The derived multiplication from f had a positive correlation with

the expected multiplication for MCNP6, although the relationship varied between material types.

Furthermore, we determined that the effective areal density of the reflectors was positively and

linearly correlated with the integral of those same double exponential fits. It is conceivable that

with knowledge of either shell thickness or material composition it would be possible to determine

the other property.
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CHAPTER 7

3D Imaging

7.1 Motivation

Nominally this thesis is about measuring fission chain dynamics through gamma-neutron correla-

tions. TOFFEE distributions provide an indirect means of measuring of the temporal evolution of a

fission chain. The central approximation at the core of TOFFEE stems from the overestimation of

the neutron travel time from proton recoil shown in Eq. 5.1. This is due to the fact that the proton

recoil energy (Ep) underestimates the incident neutron energy (En):

Ep ≤ En (7.1)

which results in the inequalities in Eqs. 5.2 and 5.3.

If the incident neutron energy was known, then the measurement of the TOFFEE distribution

would directly measure the generation time difference between correlated particles:

tn,γ − tp = ∆Tg (7.2)

As a consequence, the TOFFEE distributions from non-multiplying sources would resemble a delta

function centered around zero, having a width due to timing and energy resolution of the detec-

tor system. This would potentially improve discrimination sensitivity between non-multiplying

and multiplying sources, and improve characterization of the latter since ∆Tg would be measured
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directly.

Neutron incident energy can be estimated with a double scatter neutron spectrometer, which,

through detection of correlated gamma-neutron-neutron (γ − n − n) events, could yield this bet-

ter resolved TOFFEE distribution. Fortunately, double scatter neutron imagers also function as

neutron spectrometers, and those that can detect gamma rays have been in development for over a

decade at both Sandia National Laboratories and University of Michigan [89]. A preliminary mea-

surement of Cf-252 source with Mobile Imager of Neutrons for Emergency Response (MINER)

[90], shown in Figure 7.1, revealed that estimated incident neutron energy rather than the proton

recoil energy shifted the TOFFEE distribution around the origin, but did not appreciably narrow

it. This is caused by the relatively poor energy and timing resolution of MINER, and therefore

dominating the width of the TOFFEE distribution.
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Figure 7.1: TOFFEE distributions of a measured Cf-252 source at a distance of 50 cm with neutron
energy estimations using the proton recoil energy (Ep) and the incident neutron energy (En) from
double scatter.

With this preliminary result, it is unclear if incident neutron energy information is worth the

substantial diminished efficiency in detecting a triple coincidence of γ − n − n. Intuitively, the

timing between gamma-neutron correlations carry with them information regarding the source-to-

detector distance, a fact that was known from previous studies of the TCPH distributions discussed
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in Chapter 4. In this Chapter, I rigorously prove the γ−n−n coincidence provides the information

required to reconstruct a correlated source in three dimensions. Some preliminary measurements

and the proof of the method were first published in [91]. With this technique it is possible to

perform 3D reconstructions of correlated gamma-neutron sources from a view from a single side,

which is unique because traditional 3D imaging techniques require some movement of the detector

around the source of interest or multiple detectors positioned around the object to be imaged.

This new imaging technique utilizes an inherent property of the majority of neutron sources

important in nuclear threat-search, safeguards and non-proliferation: the coincident emission of

neutrons and gamma rays. These sources include those undergoing spontaneous and induced fis-

sion [92], a property of SNM, and common (α,n) sources that leave the remaining nucleus in an

excited state leading to prompt gamma ray emission [93].

7.2 Background of 2D and 3D Radiation Imaging

Radiation imaging is well established in fields as diverse as medicine [94,95], astronomy [96,97],

and nuclear safeguards and non-proliferation [98, 99]. Because fission energy gamma rays and

neutrons cannot be lensed as in optical imaging, they function by either:

1. modulating (blocking) the incident radiation

2. tracking multiple scatters of the incident particle in the detector medium, and estimating

their incident direction by kinematic reconstruction of their paths.

The first gamma-ray camera was developed by Hal Anger who used multichannel collimators to

modulate incident radiation [100]. The same principle can be applied with more complex coded

aperture masks, which are analogous to superimposed pinhole cameras, to image both thermal and

fast neutrons [101, 102].

The technique introduced in this chapter is an extension of the second category of radiation

cameras which track multiple scatters to reconstruct source direction. In gamma-ray imaging,
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these are called Compton cameras [98], and are a mature technology with commercially available

portable cameras [103]. The functioning of a neutron scatter camera is analogous to the Compton

camera, but with the use of the time-of-flight (TOF) between the first two scatters to determine

the incident neutron energy rather than relying on full energy deposition in the second interaction

[104].

The discussion so far has been limited to 2D imaging systems, but in principle any radiation

camera can produce a 3D reconstruction of a source. The most common approach is to take

multiple 2D images from different views, and combine them to form 3D rendering of the source.

This technique is used in Single Photon Emission Computed Tomography (SPECT) and Positron

Emission Tomography (PET) to image radioisotopes inside a patient [94]. Recently, researchers

at Lawrence Berkeley National Laboratory have used a variation of this technique, combined with

a 3D rendering of physical space, to reconstruct source locations in real time [105]. All of these

techniques require multiple views of the source and some freedom of movement with respect to

the object being imaged.

Single-sided 3D imaging has been demonstrated in Compton cameras by taking advantage of

the parallax effect [106]. However, parallax techniques require a large solid angle coverage to

function as a modality at all, whereas the γ − n − n correlation method that I will describe only

necessitates solid angle coverage to increase efficiency. Furthermore, the γ−n−n technique could

function at any distance with a portable system, even if it requires long measurement times.

7.3 Neutron Double Scatter 2D Imaging

Measurement of a double-scatter neutron provides a conical surface of possible source locations

with the vertex at the first neutron scatter (n0) and axis defined by the location of two scatters. In

a traditional segmented scatter camera, each scatter is measured as a separate interaction within

any two detector cells of the measurement system. Crucially, the incident neutron energy and by

extension velocity of the incident neutron (vn) is also calculated from this measurement [104].
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The outgoing energy following the first neutron scatter is calculated by the time-of-flight

(∆tn0,n1) to the second scatter:

En1 =
mn

2

(
dn

∆tn0,n1

)2

(7.3)

where dn is the distance between the two scatters. The outgoing energy is then summed with the

energy lost due to proton recoil (Ep) in the first scatter which gives the initial incident energy of

the neutron:

En0 = Ep + En1. (7.4)

The opening angle of the cone of possible source locations is

cos2(θn1) =
En1
En0

. (7.5)

The resulting cone of possible source locations is illustrated in Figure 7.2. Typically, a projection

distance has to be chosen in order to display the image formed from the overlapping regions of the

projected cones. The following section will show that by measuring a coincident gamma ray with

a double scattered neutron it is possible to calculate the distance from the first neutron scatter to

the possible source locations along the surface of the cone.

7.4 Gamma-Neutron-Neutron 3D Imaging

An illustration of the first neutron scatter (n0) and the correlated gamma ray is shown in Figure

7.3. Rn and Rγ are the distances from a possible source location to the neutron and gamma ray

interactions, respectively. Note that the second neutron scatter is omitted from this illustration,

but it’s shown in Figure 7.2. The goal is to solve for Rn in order to constrain the possible source

location to the third dimension along the surface of the cone.
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Figure 7.2: Illustration of the kinematics of a double neutron scatter in a scatter camera, resulting
in a cone of possible source locations.

The two unknown distances Rn and Rγ , and the known distance d triangulate the location of

the source along the azimuthal angle, φ, around the cone. These variables are related by the law of

cosines in a parametric equation

R2
γ = R2

n + d2 − 2Rnµd (7.6)

where µ is the cosine of the angle between the cone surface and the vector −→nγ

µ =
−→nγ
d
· R̂n(φ). (7.7)

R̂n is a unit vector pointing from the vertex of the cone to any possible source location along cone

surface. The locations of γ and n0 interactions, and therefore the distance (d) between them, are

known implicitly from the detectors that participated in each interaction.

The measured time difference between γ and n0 (tγ,n) relates Rn and Rγ through

tγ,n =
Rn

vn
− Rγ

c
. (7.8)
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Figure 7.3: The cone of possible source locations from neutron double scatter and a corresponding
correlated gamma ray. The second neutron scatter is not shown. The distances between the source
(yellow 4-pointed star) and first neutron scatter (Rn) and gamma ray (Rγ) are shown for one of the
possible locations along the surface of the cone. All other possible source locations lay somewhere
along the azimuthal (φ) angle of the cone.

By substituting Rγ from Eq. 7.8 into Eq. 7.6, the resulting quadratic equation can be solved in

terms of the distance from the first neutron interaction:

Rn(φ) =
c2tγ,nvn − dv2nµ±

√
v2n
(
c2(t2γ,nv

2
n − 2dvnµtγ,n + d2) + v2nd

2(µ2 − 1)
)

c2 − v2n
(7.9)

Using these two solutions for image reconstruction is problematic, especially if the value of the

discriminant is significant and dominates the resolution of the detection system. Fortunately, only

one solution is physically possible, because the neutron cannot have a velocity exceeding c. The

full proof of this is included in Appendix B. The valid solution is the one with the positive discrim-

inant:

Rn(φ) =
c2tγ,nvn − dv2nµ+

√
v2n
(
c2(t2γ,nv

2
n − 2dvnµtγ,n + d2) + v2nd

2(µ2 − 1)
)

c2 − v2n
(7.10)

The parametric solution to Eq. 7.10 effectively cuts a slice of possible source locations from

the double neutron scatter cone from Figure 7.3. As a consequence, the distribution of possible

source locations resembles “donut" in 3D space, as shown in Figure 7.4. This torus-like shape is
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analogous to PET’s line-of-response for a measured pair coincident gamma rays. Multiple such

events further constrain the distribution of possible source locations by superposition of the torus-

like shapes in 3D space. The region of overlap among those shapes reveals the true source location.

Figure 7.4: Possible source locations for a single measured correlated events shown as colored
spheres. The first (red) and second (blue) neutron scatter define the central axis of the cone and
the opening angle, and the correlated gamma ray (green) constrains the radial distance to form the
resulting “donut" shape. The superposition of many donuts will reveal the source location in the
overlapping region. For illustrative purposes we show the same object from two different angles.

7.5 Image Reconstruction

The solutions in Eqs. 7.5 and 7.10 provide the opening angle (θ) of the cone and distance from

its vertex to possible source location (Rn), but additional steps are necessary to provide possible

source locations. There are two ways to proceed with image reconstruction: the so-called list-mode

or bin-mode [107]. In list-mode each possible source location is stored in an array, for example

Cartesian (x, y, z) coordinates. In bin-mode the space of possible source locations is divided up

into predefined bins of certain size and calculated source locations fill those bins. This distinction

is only significant for the purpose of choosing an advanced reconstruction method like Maximum

Log-likelihood Expectation Maximization (MLEM) or Stochastic Origin Ensemble (SOE). For

this work, SOE was used to improve image quality, and it was intuitive to store all possible source

locations in list-mode. The implementation of SOE is discussed in greater detail in Section 7.6.
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In addition to calculating Rn and θ, it’s also necessary to compute the unit vector between the

first and second neutron scatter:

n̂ =
−−→n1n0

dn
(7.11)

where dn is the distance between two interactions. This vector will have to be declined by the

opening angle of the cone, in any arbitrary direction. First, an axis has to be defined which points

90◦ away from n̂ by taking the cross product between n̂ and any arbitrary vector û and normalizing

the result

n̂′ =
û× n̂
|n̂′|

(7.12)

With this result, the original vector from the two neutron scatter points can be declined by the

opening angle of the cone:

ŝ = n̂ cos(θ) + sin(θ)(n̂′ × n̂) (7.13)

This source vector, ŝ, points to one of the possible source locations, but it’s necessary to rotate

it around the azimuthal angle of the cone, φ from Figure 7.3, in order to represent all possible

source locations. The vector ŝ can be rotated around axis n̂ by angle φ through Rodrigues’ rotation

formula:

ŝrot = ŝ cos(φ) + (n̂× ŝ) sin(φ) + n̂(n̂ · ŝ)(1− cos(φ)) (7.14)

Once this vector is calculated, the source location can be determined by multiplying by the distance

Rn.
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The range of the azimuthal angle of the cone is constrained by

0◦ < φ < 360◦ (7.15)

but in reality there has to be a finite number of possible source points stored per set of correlated

detected events. For this application, 100 points was sufficient for reconstructing a desired image.

Any greater number of source points increased computational time without any tangible improve-

ments in image quality. Each correlated set of events produced 100 points Cartesian coordinates

of possible source locations, and the full list provided flexibility in how the final images were dis-

played. I went a step further, and applied SOE to improve image quality, as explained in the next

section.

7.6 Stochastic Origin Ensemble

SOE is an application of the Metropolis-Hastings algorithm that is used to improve the reconstruc-

tion quality over standard back-projection. The new 3D imaging technique works just fine with

back-projection, but advanced reconstruction techniques aid with the lack of adequate correlated

counts. This is a particular problem for a technique that requires γ − n − n particle coincidence.

SOE was chosen because it is relatively straight forward to implement and it has been shown to

improve the signal-to-noise and image quality in neutron imaging systems [108].

The basic idea behind SOE is to sample the measured quantities (time, interaction location, en-

ergy resolution) with appropriate uncertainties and estimate the source distribution as a probability

density function (PDF). This is repeated for many iterations, as shown in Figure 7.5. The recon-

structed source locations are displaced between iterations if certain criteria regarding new source

location density is met. This displacement rate decreases rapidly over during the first set of itera-

tions, referred to as the “burn-in" period. Once the rate of displaced locations has stabilized and

adequate number of iterations is completed, the desired PDF is estimated as the density of source

locations averaged over all iterations with uncertainties given by the variance of all interactions,
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excluding the initial burn-in period. Details of the SOE algorithm as applied to Compton imagers

is given in [109], and the principles are the same for neutron scatter cameras.

SOE can be computationally intensive, especially if the required number of iterations is large.

Individual iterations may also require substantial computational time if there are many source

locations, and if non-standard source density estimation is employed. Fortunately, SOE is in a

class of Markov chain Monte Carlo (MCMC) methods which means that multiple iterations can be

launched in parallel, and the final PDF can be determined from the average over all iterations. The

source displacement over parallel iteration sessions is shown in Figure 7.5.

Figure 7.5: The number of displaced source locations per iteration during a SOE reconstruction of
an image. This particular reconstruction was ran 10 times in parallel, as indicated by the legend.

The SOE method requires an accurate assessment of the source density between iterations. This

task is made difficult with small number of correlated counts (a few thousand) in three-dimensional

space. The simplest method of estimating density is by computing a multidimensional histogram.

However, subdividing just 1 m3 of space into 1 cc parts requires a million voxels, and given only

a few thousand reconstructed source locations leaves the vast majority of the voxels empty or

with only one count. Obviously, this makes for a dismal estimation of the source density at each

location.
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As a solution, a Kernel Density Estimator (KDE) was used to calculate the density at each

source location. This method provides for an estimate of source density at every single point,

regardless of how sparse the points are in space. A multidimensional KDE is defined as

f̂(s) =
1

n

n∑
i=1

K(s− si) (7.16)

where source locations are si = (xi, yi, zi)
T for a total of n. K is the kernel function, for this

application the Epanechinkov kernel provided optimal results at reasonable CPU times. Besides

the choice of an appropriate kernel, it’s also necessary to select a bandwidth parameter, which

acts as a sort of smoothing factor. The bandwidth parameter is analogous to the size of voxels or

bins in the histogramming approach. If the bandwidth parameter is too large then the final image

will appear blurry and smeared out. Otherwise, if its too small then the source density may be

overestimated in certain areas leading to a distorted image. For this application, the bandwidth

parameter closest to the resolution of the system (2-6 cm) appeared to work the best. The Scikit-

learn machine learning package for Python was used to compute the requisite density estimations

and multidimensional KDE computation [110].

7.7 Measurements and Simulations

As a proof of concept, a neutron scatter camera called MINER was used to conduct preliminary

measurements [90]. MINER was adequate at proving the technique works, but it was primar-

ily designed as a compact emergency response tool, rather than a high resolution system which

would show the technique’s full potential. Simulations of the MINER system with better, but cur-

rently achievable, timing and interaction location resolutions were conducted and the comparison

between image resolutions are discussed in the following in this section.
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7.7.1 Detection System and Setup

MINER is an array of sixteen 7.62×7.62 cm EJ-309 cylindrical detectors packaged in a larger

cylindrical form-factor for portability and symmetry which allows for omnidirectional (4π) imag-

ing. A photo of the opened system is shown in Figure 7.6. The portability comes at the expense of

imaging resolution because adjacent cells centers are only 11.9 cm apart.

Figure 7.6: A photo of MINER in open configuration.

Two equal strength, 26.7 µCi, Cf-252 sources were measured 50 and 60 cm away from the

center of MINER. The two sources were placed 45◦ apart as shown in Figure 7.7. The centers

of each detector cell were taken as the position of the incident particle interaction. MINER has a

timing resolution of approximately 2 ns and interaction location resolution of 2.2 cm.

The corresponding simulations assumed timing resolution of 200 ps and interaction location

resolution of 5 mm. The former is possible with fast photomultiplier tubes (PMTs) or silicon

photomultipliers (SiPMs) [111]. The latter can be achieved by using smaller detector cells, or

using multiple readouts to better localize the interaction withing the detector. MCNPX-PoliMi

was used to perform the requisite simulations [112].
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Figure 7.7: Measurement configuration showing the position of the two Cf-252 sources with re-
spect to MINER. The dimensions of the detector and source-to-detector distances are drawn in
correct proportions.

7.7.2 Point-source Image Results

Traditional 2D images of the measured and simulated Cf-252 sources are shown in Figure 7.8.

Each source is marked by red (50 cm source) and blue (60 cm source) squares. The source points

from those marked regions were used to estimate the radial distance and azimuthal angle resolu-

tions. These resolution results are discussed in Section 7.7.3.

Figure 7.9 essentially displays a top-down view of the sources by looking at source particle

densities projected on a polar plane. In all images and distributions shown each source point was

weighted by r4 in order to account for the efficiency of detecting two correlated particles.

In both measurement and simulation the two sources are clearly resolved in both radial distance

and angular space. The 2D image from the measurement shows some reconstruction artifacts,

likely caused by the application of SOE. These are largely due to the choice of a narrow bandwidth

parameter, which improves resolution at the cost of having these artifacts in the final reconstruction.

Nevertheless, the final image reconstruction of these point sources was not very sensitive to the

selection of a bandwidth parameter from 2 to 10 cm.

7.7.3 Radial Distance and Angular Resolutions

It’s clear from Figures 7.8 and 7.9 that the images improve with better detector system resolution

parameters, but the images alone are not enough to quantify the improvement. For that purpose,
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Figure 7.8: The measurement (left) and simulated (right) images with each reconstructed source
point weighted by r4. Each source is marked by a blue (60 cm source) and red (50 cm source)
square.

Figure 7.9: The polar projection (top-down view) of the image reconstruction for both the (top)
measurement and (bottom) simulation.

the reconstructed source locations were projected along radial distance and azimuthal angle, and

the results are shown in Figure 7.10. Peak locations and FWHM of the resulting 1D distributions

were used to estimate accuracy and resolution, respectively. Both parameters were estimated by

interpolating through the points in the distributions. The radial distribution and angular distribution

parameters are shown in Tables 7.1 and 7.2.

The relative resolution of the radial distance is the ratio of FWHM and peak location, and it

averaged at 26% for the measurement and 11% for the simulation. The angular resolution for the

measurement improved from FWHM of 23◦ to 15◦ with source-to-detector distance. The simu-
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Figure 7.10: The radial distance (left) and azimuthal angle (right) distributions for both measure-
ment (solid) and simulation (dashed). The radial distance distribution describes the distance from
detector center. The source points were taken from the within the squares of the images in Figure
7.8, with matching color combinations.

lation results have an improved azimuthal FWHM of 11◦ for both sources. There is an apparent

skewness of the radial distance distribution of the 60 cm source in the direction of the 50 cm source,

which may contribute to the increase in absolute FWHM. This is due to some 50 cm source points

present in the same angular region of the 60 cm source, which is due to the nearly double relative

efficiency of detecting correlated signature from a source that is 20% closer.

The peak location for the measurement is off by 5.8 cm for the 50 cm source. If the source

locations are not weighted by radial distance this discrepancy drops to 2.1 cm. By contrast the

60 cm source peak location is off by only 1.5 cm. This shift in peak location is not exhibited in

the simulated system with better timing and interaction location resolution. This effect is caused

by both the weighting of source locations and the presence of the 60 cm source. However, the

weighting skewed the radial distribution of the 50 cm source toward the 60 cm source due to

the significant overlap in the both radial distribution. By contrast the radial distributions of the

simulated sources were well separated, as seen in Fig. 7.10, and the peak locations matched the

true locations of the sources.
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Table 7.1: Radial distribution (units in cm) parameters for each source in both measurement and
simulation

Source Distance Peak Location FWHM

Measurement
50 55.8 13.5
60 61.5 15.1

Simulation
50 50.6 5.7
60 60.3 6.8

Table 7.2: Azimuthal angular distribution parameters for each source in both measurement and
simulation

Angular Position Peak Location FWHM

Measurement
45◦ 47◦ 15◦

90◦ 91◦ 23◦

Simulation
45◦ 45◦ 11◦

90◦ 90◦ 11◦

7.7.4 Thunderbird Simulations

The results shown so far are of simulations and measurements of Cf-252 point sources. How-

ever, an extended source, one with actual physical dimensions, can better illustrate the utility and

limitations of source reconstruction methods, such as SOE used in this work. For that purpose,

I constructed a Cf-252 source in the shape of Sandia’s thunderbird logo that was 27.5 cm wide,

25.5 cm long and 2 cm thick in MCNP. MINER was again used as a detection system, and with

the same improved timing resolution of 200 ps and interaction location resolution of 5 mm. The

MCNP model of both the source and detector system is shown in Figure 7.11.

The thunderbird source was laid flat from the point of view of the detector system. In a typical

2D image, this source would appear as essentially a line source, or a thin rectangle. But the advan-

tage of the 3D imaging reconstruction, is that the depth of the source can be revealed. Furthermore,

a top-down view of the source can be provided, just as it was with the polar projections in Figure

7.9, which would show the true nature of the source.

The image reconstruction of the thunderbird was performed in three ways: standard back-
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Figure 7.11: The top-view (left) and angled side view (right) of the MCNP model of MINER
detector cells and thunderbird shaped Cf-252 source.

projection, SOE with 2 cm bandwidth parameter, and SOE with 4 cm bandwidth parameter. All

three results are shown in Figure 7.12. In the back-projected image the thunderbird is visible,

but through a cloud of non-source reconstructions. These are the result of throwing 100 source

locations per correlated event, 99 of which will not correspond to the true source locations. The

overlap of these points is more likely at the true source location, which is why the thunderbird

shines through the image. The goal of SOE is to reduce the number of non-source reconstruction,

and narrowing down on the correct φ for each correlated event.

However, as previously discussed in Section 7.6, SOE technique requires the choice of a band-

width parameter, which acts as a width of the kernel used for the density calculation. This was not

as consequential for point sources, but makes a noticeable difference in extended sources like the

thunderbird. Thunderbird image reconstructions using both 2 cm and 4 cm bandwidth parameters

are shown at the bottom of Figure 7.12. The 2 cm image is sharper, but has mis-reconstructed

source points floating around it and the body of the thunderbird itself is breaking apart. These

are the side effects of a bandwidth parameter that is getting to be too narrow. During the re-

construction process, source points become isolated islands, or hot-spots, which can make them
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over-represented in certain areas of the image. With the wider 4 cm bandwidth parameter, these

problems are largely mitigated, but at the cost of final image resolution. In fact, it would be diffi-

cult to discern that the original source was a thunderbird. Nevertheless, SOE is still a valuable tool

in this case, since it increases the overall number of reconstructed source points at the true source

location, and therefore improving signal-to-noise ratio.

(a) back-projection

(b) SOE with 2 cm bandwidth (c) SOE with 4 cm bandwidth

Figure 7.12: Image reconstructions of a thunderbird shaped Cf-252 source performed using (a)
back-projection and SOE with (b) 2 cm and (c) 4 cm bandwidth parameters. The images are
top-down view, with all source points between −5 < z < 5 projected onto an x− y plane.
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7.8 System Resolution and Uncertainty Analysis

System resolution is quantified here by the source-to-detector distance R and the opening angle

of the projected cone θ. Apart from the interaction location, the remaining measured sources of

uncertainties are n− n and γ − n timing and neutron pulse amplitude. The impact of all three can

be visualized by assuming timing resolution of 2 ns and energy resolution of 10%, and then solving

Eqs. 7.5 and 7.10. The result of this is shown in Figure 7.13. As expected, γ−n timing only effects

the radial distance, which makes sense because it’s introduced into the equations specifically to

solve for it. The remaining sources of uncertainty, neutron pulse amplitude, and n − n timing,

effect both quantities of interest although the sign of the correlation is different with each.

Figure 7.13: Visualization of the spread source-to-detector distance and the opening angle as a
function (red) n − n and (green) γ − n timing, and (blue) neutron pulse amplitude uncertainty.
Each source of uncertainty is treated separately, and the results are displayed in different colors,
the combined result is shown in black. A timing resolution of 2 ns and energy resolution of 10%
was assumed

Uncertainty quantification on R was performed using linear error propagation theory [113]

which also included contribution from interaction location resolution. The overall timing resolu-

tion had over twice the error contribution compared with the interaction location resolution. The

gamma ray timing was nearly six times more important than the neutron timing, which makes sense
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given the relative speed of each particle. By contrast the neutron interaction location contributed

nearly an order of magnitude more compared with the gamma ray interaction location. The first

neutron interaction location had double the contribution of the second interaction.

In conclusion, the gamma ray timing resolution and neutron interaction location resolution are

the primary contributors to uncertainty in radial source-to-detector distance. This was true for the

measurement with timing resolution of 2 ns and interaction location resolution of 3 cm. At the

simulated resolutions of 200 ps and 5 mm, the uncertainty in the proton recoil energy from the

first neutron scatter (Ep) was the limiting factor. This includes the effects of energy resolution

and calibration of the detector and measurement of light output response. The current practice

involves fitting light output response to an empirical formula [54, 114]. Improvements could be

made by better characterization of the detector response, but the estimation of the proton recoil

energy would ultimately be limited by the low energy resolution of organic scintillators.

7.9 Augmented Reality

3D radiation imaging is a powerful tool, but it’s difficult to display the results on a monitor dis-

play or a flat piece of paper. There are limits to what can be shown through the use of multiple

projections, or views of the source, as used in Figures 7.8 and 7.9. Ideally, one would display the

3D reconstructed image of a source as a hologram, and preferably in the context of the real world

surroundings of said source. Fortunately, this thesis is being written in 2017, the future is now, and

the technology exists to accomplish just that.

Augmented Reality (AR) is a live display which allows a used to "augment" the real world

elements through computer generated graphics, or other sensory inputs. This differs from virtual

reality, where the entire sensory space is computer generated, and the user is unaware of their actual

physical surroundings. Microsoft has developed AR capable headset called the HoloLens, which

is pictured in Figure 7.14. The HoloLens is a head-mounted portable computer with smartglasses

and variety of cameras, and other sensors. Smartglasses display either 3D holograms or 2D flat
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projections that appear as part of the physical world. The cameras and sensors map out the physical

surroundings and track movement of the user, which allows the visualizations to stay in place and

interact with the real world. For example, a hologram of a coffee mug can be placed on top of a

real table, and the mug will maintain its position as the user moves around the room.

Figure 7.14: Microsoft’s HoloLens.

Fortunately for me, researchers at Sandia have already obtained a HoloLens for other unrelated

work and had experience getting it to display holograms. I collaborated with them, providing

them with the 3D reconstructed image data, with the goal of having the images displayed through

the HoloLens. A demonstration of the technology and 3D radiation method was given during the

2016 Consortium for Verification Technology Workshop. The results of these efforts are difficult

to show on paper in this dissertation, but an example of the aforementioned thunderbird source

as seen through a HoloLens is shown in Figure 7.15. The thunderbird source hologram floats in

space, and can be inspected from any angle that the user chooses to look at it.

The other useful feature of this technology is that it allows for display of holograms behind a

physical barrier. For example, it is possible to render pipes that are installed inside a wall. This

may be applicable to emergency response scenarios, where a source is hidden inside a figurative

black box, and 3D imaging can provide the physical dimensions of the source without the need to

open up the container. Another similar application in treaty verification may involve the imaging

of pits that are stored inside drums. AR would allow an inspector to walk around the drum and

visualize the object inside without the need to open anything.
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Figure 7.15: Thunderbird source displayed as a hologram as seen through a HoloLens. The corner
of a virtual MINER detection system is on the left, and a bemused dog on the right.

7.10 Conclusions

A new method for 3D reconstruction of sources that emit correlated gamma rays and neutrons

was demonstrated. The technique is distinguished from traditional 3D radiation imaging methods

by only requiring a single-sided measurement of the source. Parallax by comparison would be

restricted by system size and require close enough source-to-detector distances to function at all.

This makes the γ−n−n technique potentially valuable for nuclear inspection, emergency response

and treaty verification, where multiple views of the object of interest may be restricted, even though

the location of the source is known. The method proposed here is an extension of double neutron

scatter imaging, combined with a correlated gamma ray to constrain the source location to the third

dimension.

It is possible to resolve two sources of equal strength 10 cm apart using a portable scatter

camera with sub-optimal timing and angular resolution. Simulated results with improved detector

system resolution show a substantial improvement in radial resolution, and a modest improvement

in angular resolution. Such improvements should be attainable with current technology, such as

new photo-detectors like SiPMs. Furthermore, the detector cell geometry and size could be further

optimized to improve localization resolution while maintaining adequate efficiency.

The efficiency of detecting a correlated neutron-gamma pair decreases as r−4, where r is the
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radial distance between source and detector system center. Therefore, it is not an ideal technique

for standoff detection, although efficiency could be scaled with number and size of detector cells.

However, this technique could prove valuable in application where access to the object of interest

is limited. For example, this could include inspection of nuclear facilities for safeguards or treaty

verification. Furthermore, neutron sources that emit correlated gamma rays (e.g. fission, (α,n)) are

ubiquitous and include the vast majority of sources of concern in the aforementioned applications.
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CHAPTER 8

Summary, Conclusions and Future Work

8.1 Summary and Conclusions

This thesis explored a new method for probing fission chain dynamics through correlated mea-

surements of gamma rays and neutrons. Fission chains are a defining and unique feature of fissile

material, whose detection and characterization is needed for diverse applications such as non-

proliferation, safeguards, emergency response, and treaty verification. The context of those appli-

cations was given in Chapter 1. Chapter 2 explains the basic definitions and properties of fissile

material, along with an overview of established measurement techniques. However, these tech-

niques were historically developed around neutron counting with thermal capture detectors. The

alternative use of organic scintillators proposed in this work provides three new capabilities:

1. Fast (sub-nanosecond) timing resolution, which allows for distinction between fission events

in a chain.

2. Measurement of elastic proton recoil, which puts an upper bound estimate on the incident

neutron energy.

3. Gamma ray detection, which provides a clean start time of a fission event that gave birth to

the detected particle.

The best practices and methodology for extracting that relevant information from digitized

pulses is laid out in Chapter 3. In prior work, these signatures were combined into TCPH distri-

117



butions, which were shown to be sensitive to fissile material and neutron multiplication [41, 42].

In Chapter 4 TCPH analysis was advanced by building an empirical model, and fitting it to mea-

sured distributions. The results showed that TCPH distributions were not only sensitive to the level

of neutron multiplication, but also the type of reflector material. However, the methodology was

somewhat convoluted, partly due to the two-dimensional aspect of TCPH.

The TOFFEE distribution was introduced in Chapter 5, which combined the same signature

of TCPH, but into a one-dimensional distribution. A template-based approach was used to test

TOFFEE in two treaty verification scenarios: dismantlement and item confirmation. In the former

case, WGPu and HEU with and without reflector were compared, and the latter involved a test

to determine the authenticity of the same fissile materials surrounded by a reflector. Under an

arbitrary performance threshold of 99% True Positive (TP) and 1% False Positive (FP) the WGPu

objects were verified within several seconds. By contrast, HEU confirmation required several

minutes, because of the limited number of induced fissions created even under active interrogation.

These tests revealed that TOFFEE was sensitive to the amount and configuration of fissile material,

but did not provide a characterization of the object.

In depth characterization required a physical model, which was developed in Chapter 6 from

two-region point kinetics theory. The resulting equations provided the time-dependent neutron

populations in fissile material surrounded by a reflector, which were fitted to the positive side of

the TOFFEE distribution. Positive linear relationships were established between the estimated

and actual prompt neutron periods of the bare cases. And same trends were evident between esti-

mated and actual neutron multiplication of the reflected cases. The estimated physical parameters

also provided a way to discriminate between different reflector material types, from lightweight

aluminum to heavy tungsten.

Chapter 7 introduced a new 3D technique enabled by detection of a correlated gamma ray

with a double scatter neutron. Preliminary proof-of-concept measurements of Cf-252 showed that

it is possible to resolve sources that are 10 cm apart, even with a neutron scatter camera with

optimized for efficiency rather than resolution. Possibilities with better performing and possible
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future systems was explored through simulations. Uncertainty quantification was provided as a

guide for improvement of future detection systems. Finally, AR was proposed as the best way of

visualizing the reconstructed 3D images.

8.2 Future Work

An alternative approach could be explored which combines the elements of analysis presented in

Chapters 4 and 5. The empirical model of the TCPH distribution started with a like-fission distri-

bution, and then smeared it to incorporate the perturbation from fission chain dynamics. TOFFEE

distributions showed that the difference between non-multiplying and multiplying measurements

is the addition in generation time, Tg, between detected correlated particles in the latter. Therefore,

the distribution of generation time differences of fissions in a chain, convolved with the TOFFEE

distribution built from only like-fission events, should produce the TOFFEE distribution expected

from a multiplying fissile material. A Cf-252 measurement could be a surrogate for like-fission

TOFFEE distribution. And the distribution of fission generation time differences could be built

with either Monte Carlo, or a variation on the two-region point kinetics model shown in Chapter

5. Regardless of the means of creating that distribution, the underlying physical parameters would

provide relevant information about measured fissile material.

The 3D imaging technique was proven to work with Cf-252, but the implicit assumption is that

the detected gamma ray and neutron are born at the same space and time. This assumption does

not hold in the presence of fission chains, therefore additional work is required to image fissile

material. To solve this problem, it’s necessary to develop a method which could determine and

compensate for the time and space difference between birth of correlated particles. A solution

would provide a way to simultaneously image fissile material, and measure the underlying fission

chain dynamics. This is actually a difficult problem, and may require assumptions about the aver-

age distance separating fission events in a chain. But a successful effort would provide a way for

a passive imaging system to reconstruct both the average fission chain length (multiplication) and
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the volumetric distribution of fissile material from a single measurement.
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APPENDIX A

Source Code

A.1 Pulse Parsing

' ' ' Raw waveda ta p r o c e s s i n g module

Th i s module i s d e s i g n e d t o c l e a n waveform and t ime t a g d a t a and a l s o
r e t u r n a m p l i t u d e and PSD p a r a m e t e r s
' ' '

i m p o r t numpy as np
from s c i p y i m p o r t i n t e g r a t e
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t o p e r a t o r

d e f t i m e _ o r d e r ( t ime_s tamps , f r e q =250 , t s _ b i t s =31) :
" " " Or de r s t ime s tamps s e q u e n t i a l l y

Time s tamps which o s c i l l a t e due t o number o f b i t s a r e re−o r d e r e d
s e q u e n t i a l l y . Th i s f u n c t i o n may be u s e f u l f o r c a s e s where f u l l waveforms
a r e n o t saved b u t t ime s tamps a r e s t i l l n e c e s s a r y f o r a n a l y s i s .

P a r a m e t e r s
−−−−−−−−−−
t i m e _ s t a m p s : a r r a y , shape (N , ) , o p t i o n a l

Timestamps o f t h e d i g i t i z e r , must be t h e same l e n g t h as number
o f waves .

f r e q : i n t , o p t i o n a l
Frequency of t h e t ime c l o c k i n MHz
d e f a u l t i s 250

t s _ b i t s : i n t , o p t i o n a l
Number o f b i t s o f t h e s t o r e d t ime stamp va lue , which d e t e r m i n e s
t h e maximum t imes t amp v a l u e (2** t s _ b i t s ) .
d e f a u l t i s 31

R e t u r n s
−−−−−−−
t i m e _ n s : a r r a y

Event t i m e s i n ns
" " "
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neg indx = np . f l a t n o n z e r o ( np . d i f f ( t i m e _ s t a m p s * 1 . ) <0)
t i m e _ n s = t i m e _ s t a m p s * 1 .
f o r i i n neg indx :

t i m e _ n s [ i + 1 : ] + = 2 . * * t s _ b i t s
t i m e _ n s = t i m e _ n s * 1 . / ( f r e q * 1 . e6 ) * 1 . e9
i f ( np . d i f f ( t i m e _ n s ) <0) . any ( ) :

r a i s e E x c e p t i o n ( " Time s tamps a r e n o t s e q u e n t i a l , check c l o c k i n p u t s ! " )
r e t u r n t i m e _ n s

c l a s s E v e n t d a t a ( o b j e c t ) :
' ' '
O b j e c t t h a t p r o c e s s e s waveforms and t imes tamps , t o p roduce a m p l i t u d e ,
p u l s e shape d i s c r i m i n a t i o n p a r a m e t e r s and t ime of e v e n t s . M u l t i p l e
methods a r e a v a i l a b l e f o r psd and t ime pick−o f f .

P a r a m e t e r s
−−−−−−−−−−
waves : n d a r r a y , shape (N, wave_ l eng th ) :

Raw waves from t h e d i g i t i z e r

Examples
−−−−−−−−
Take raw n e g a t i v e p o l a r i t y p u l s e s , i n v e r t , b a s e l i n e s u b t r a c t , a p p l y

t h r e s h o l d
and e x t r a c t a m p l i t u d e , p u l s e shape p a r a m e t e r s and t i m i n g .

>>> i m p o r t snappy . w a v e p a r s e r a s wp
>>> i m p o r t numpy as np
>>> from s c i p y . s t a t s i m p o r t lognorm
>>> num_waves = 10000
>>> x = np . a r a n g e ( 1 0 0 )
>>> waves = 2 .**14 − 100 − np . random . normal ( lognorm . pdf ( np . t i l e ( x , ( num_waves

, 1 ) ) , 1 0 , 2 0 ) *1000)
>>> ev = wp . E v e n t d a t a ( waves )
>>> ev . i n v e r t ( dynamic_range =14)
>>> ev . b a s e l i n e ( b l i n e =5)
>>> ev . t h r e s h o l d ( t h r e s h o l d =200 , c e i l i n g =500 , mode = ' sum ' )
>>> amp = ev . get_amp ( mode = ' sum ' )
>>> psd = ev . p s d _ c d f ( f r a c = 0 . 2 , 0 . 9 )
>>> t i m e _ s t a m p s = np . f l o o r ( np . l i n s p a c e ( 0 , 2 * * 3 1 , num_waves ) )
>>> t i m e _ n s = ev . t i m e _ d e r i v a t i v e ( f r a c t i o n = 0 . 5 , d e l a y =1 , t i m e _ s t a m p s =

t ime_s tamps , f r e q =500)
' ' '

d e f _ _ i n i t _ _ ( s e l f , waves ) :
s e l f . waves = waves

waves = p r o p e r t y ( o p e r a t o r . a t t r g e t t e r ( ' _waves ' ) )
@waves . s e t t e r
d e f waves ( s e l f , w) :

i f w. ndim != 2 : r a i s e E x c e p t i o n ( " Waves must be a 2D a r r a y " )
s e l f . _waves = w
s e l f . r e s e t ( )

d e f r e s e t ( s e l f ) :
' ' ' R e s e t s a l l a t t r i b u t e s t o i n i t i a l i n s t a n c e c r e a t i o n

F u n c t i o n may be u s e f u l when s e t t i n g d i f f e r e n t t h r e s h o l d s l e v e l s form
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t h e command l i n e .
' ' '
s e l f . i n d _ c l e a n = np . a r a n g e ( s e l f . waves . shape [ 0 ] ) # i n d e x e s o f c l e a n e d

a r r a y s
s e l f . p u l s e s = s e l f . waves . copy ( )

d e f i n v e r t ( s e l f , dynamic_range ) :
' ' ' I n v e r t s waveforms i f t h e y a r e n e g a t i v e p o l a r i t y

P a r a m e t e r s
−−−−−−−−−−
dynamic_range : i n t

The number o f b i t s i n t h e dynamic r a n g e o f t h e d i g i t i z e r , which
d e t e r m i n e s t h e maximum v a l u e i n waves (2** d r _ b i t s ) .

' ' '

s e l f . p u l s e s = 2** dynamic_range − s e l f . p u l s e s

d e f b a s e l i n e ( s e l f , b l i n e =5) :
' ' ' A p p l i e s b a s e l i n e c o r r e c t i o n

P a r a m e t e r s
−−−−−−−−−−
b l i n e : i n t

Number o f p o i n t s used f o r b a s e l i n e s u b t r a c t i o n a t t h e b e g i n i n g
of t h e p u l s e t r a i n
d e f a u l t i s 5

' ' '
s e l f . p u l s e s = s e l f . p u l s e s−np . mean ( s e l f . p u l s e s [ : , 0 : b l i n e ] , a x i s =1 , keepdims =

True , d t y p e = ' i 4 ' )

d e f t h r e s h o l d ( s e l f , t h r e s h o l d , c e i l i n g =np . i n f , mode= ' t r a p z ' ) :
' ' ' App l i ed a t h r e s h o l d c u t t i n g o u t some p u l s e s

P a r a m e t e r s
−−−−−−−−−−
t h r e s h o l d : f l o a t

T h r e t h o l d i n d i g i t i z e r u n i t s below which t o c u t o u t t h e p u l s e s .
c e i l i n g : f l o a t

Upper t h r e s h o l d above which p u l s e s a r e cu t , d e f a u l t i s i n f .
' ' '

amp = s e l f . get_amp ( mode )
remove_ind = np . where ( np . l o g i c a l _ o r ( amp< t h r e s h o l d , amp> c e i l i n g ) ) [ 0 ]
s e l f . i n d _ c l e a n = np . d e l e t e ( s e l f . i n d _ c l e a n , remove_ind )
k e e p _ i n d = np . where ( np . l o g i c a l _ a n d ( amp>= t h r e s h o l d , amp<= c e i l i n g ) ) [ 0 ]
s e l f . p u l s e s = s e l f . p u l s e s [ k e e p _ i n d ]

d e f p l o t _ p u l s e s ( s e l f , pnum ) :
' ' ' P l o t some number o f random p u l s e s

P a r a m e t e r s
−−−−−−−−−−
pnum : i n t

Number o f waves t o p l o t
' ' '

i n d = np . random . r a n d i n t ( 0 , s e l f . p u l s e s . shape [ 0 ] , pnum )
p l t . p l o t ( s e l f . p u l s e s [ i n d ] . T )
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p l t . show ( )

d e f get_amp ( s e l f , mode= ' t r a p z ' ) :
" " " C a l c u l a t e wave a m p l i t u d e o f t h e waveform

P a r a m e t e r s
−−−−−−−−−−
mode : { ' t r a p z ' , ' peak ' , ' sum ' } :

The t y p e o f c a m p l i t u d e c a l c u l a t i o n t o pe r fo rm

R e t u r n s
−−−−−−−
amp : a r r a y

E s t i m a t i o n o f t h e a m p l i t u d e o f t h e
" " "

i f ( mode== ' t r a p z ' ) :
s e l f . amp = np . t r a p z ( s e l f . p u l s e s )

e l i f ( mode== ' peak ' ) :
s e l f . amp = s e l f . p u l s e s . max ( 1 )

e l i f ( mode== ' sum ' ) :
s e l f . amp = s e l f . p u l s e s . sum ( 1 )

e l s e :
r a i s e V a l u e E r r o r ( " I n v a l i d i n p u t f o r mode " )

r e t u r n s e l f . amp

d e f p s d _ r a t i o ( s e l f , s g a t e , l g a t e , p r i o r =5) :
' ' ' C a l c u l a t e d t h e psd p a r a m e t e r u s i n g c h a r g e i n t e g r a t i o n t e c h n i q u e .

P a r a m e t e r s
−−−−−−−−−−
s g a t e : i n t

Length o f t h e s h o r t ga t e , i n d i g i t i z e r u n i t s .
l g a t e : i n t

Length o f t h e long ga te , i n d i g i t i z e r u n i t s
p r i o r ( i n t ) : Number o f p o i n t s b e f o r e p u l s e .

R e t u r n s
−−−−−−−
psd : n d a r r a y , shape (N , )

1−D a r r a y o f PSD p a r a m e t e r s c o r r e s p o n d i n g t o each w a v e l e n d t h
' ' '

numW, lenW = s e l f . p u l s e s . shape
lamp = np . z e r o s (numW)
samp = np . z e r o s (numW)
ind_max = s e l f . p u l s e s . argmax ( a x i s =1)
l s t a r t = ind_max−p r i o r
l e n d = l s t a r t + l g a t e
send = l e n d
s s t a r t = send − s g a t e
f o r i i n r a n g e (numW) :

# check i f t h e p u l s e i s v a l i d
i f ( l s t a r t [ i ] >0 or s s t a r t [ i ] >0 o r l e n d [ i ] < lenW or send [ i ] < lenW ) :

lamp [ i ] = s e l f . p u l s e s [ i , l s t a r t [ i ] : l e n d [ i ] ] . sum ( )
samp [ i ] = s e l f . p u l s e s [ i , s s t a r t [ i ] : send [ i ] ] . sum ( )

psd = np . nan_to_num ( samp * 1 . / lamp )
r e t u r n psd
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d e f p s d _ c d f ( s e l f , f r a c 1 = 0 . 1 , f r a c 2 = 0 . 9 ) :
' ' ' C a l c a t e t h e t ime between f r a c t i o n a l i n t e g r a l s o f t h e p u l s e

Uses t h e t r a p i z o i d a l r u l e t o c a l c u l a t e t h e t ime a t a f r a c t i o n o f t h e
t o t a l p u l s e i n t e g r a l , and u s e s t h e d i f f e r e n c e t o c a l c u l a t e t h e PSD
p a r a m e t e r .

P a r a m e t e r s
−−−−−−−−−−
f r a c 1 : f l o a t

F i r s t i n t e g r a l f r a c t i o n , t h e d e f a u l t i s 0 . 1 .
f r a c 2 : f l o a t

Second i n t e g r a l f r a c t i o n .

R e t u r n s
−−−−−−−
psd : a r r a y , shape (N , )

PSD p a r a m e t e r s c o r r e s p i n d i n g t o each p u l s e i n t h e t r a i n .
' ' '

p rob = i n t e g r a t e . cumt rapz ( s e l f . p u l s e s ) / i n t e g r a t e . t r a p z ( s e l f . p u l s e s ) [ : ,
None ]

nrow , n c o l = prob . shape
rows = np . a r a n g e ( nrow )
t ime = np . z e r o s ( shape = (2 , nrow ) )
f o r i , f i n enumera t e ( [ f r a c 1 , f r a c 2 ] ) :

y0 = np . argmax ( prob >f , a x i s =1)−1
x0 = prob [ rows , y0 ]
x1 = prob [ rows , y0 +1]
t ime [ i ] = y0 + np . d i v i d e ( ( f−x0 ) , ( x1−x0 ) )

t ime = np . nan_to_num ( t ime )
psd = t ime [1]− t ime [ 0 ]
r e t u r n psd

d e f t i m e _ c d f ( s e l f , t f r a c , t ime_s tamps , f r e q =250 , t s _ b i t s =31) :
' ' ' R e t u r n s e v e n t t ime u s i n g f r a c t i o n a l i n t e g r a l o f t h e p u l s e

The c d f o f each p u l s e i s c a l c u l a t e d and t h e t ime a t some c o n s t a n t
f r a c t i o n o f i t i s used . Th i s method s h o u l d n o t be used f o r d a t a wi th
p u l s e s o f v a r y i n g shapes , a s wi th mixed n e u t r o n and gamma d a t a s e t s .

P a r a m e t e r s
−−−−−−−−−−
t f r a c : f l o a t

F r a c t i o n o f cummula t ive i n t e g r a l f o r t ime p i c k o f f
t i m e _ s t a m p s : a r r a y , shape (N , )

Timestamps o f t h e d i g i t i z e r , must be t h e same l e n g t h as number
o f waves .

f r e q : i n t , o p t i o n a l
Frequency of t h e t ime c l o c k i n MHz
d e f a u l t i s 250

t s _ b i t s : i n t , o p t i o n a l
Number o f b i t s o f t h e s t o r e d t ime stamp va lue , which d e t e r m i n e s
t h e maximum t imes t amp v a l u e (2** t s _ b i t s ) .
d e f a u l t i s 31

R e t u r n s
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−−−−−−−
t i m e _ n s : a r r a y , shape (N , )

Array o f e v e n t t i m e s i n nanoseconds a s s o c i a t e d wi th each p u l s e .

Notes
−−−−−

. . f i g u r e : : . . / . . / . . / images / t i m e _ c d f . png
: a l i g n : c e n t e r
: w id th : 10cm

A p u l s e and t h e c o r r e s p o n d i n g c d f from which t h e t ime i s p i c k e d
based on some c o n s t a n t f r a c t i o n .

' ' '

i f ( t i m e _ s t a m p s . s i z e != s e l f . waves . shape [ 0 ] ) :
r a i s e V a l u e E r r o r ( " Number o f t ime s tamps must match number o f waves ! " )

t ime_s t amp_ns = t i m e _ o r d e r ( t ime_s tamps , f r e q , t s _ b i t s )
t ime_s t amp_ns = t ime_s t amp_ns [ s e l f . i n d _ c l e a n ]
prob = i n t e g r a t e . cumt rapz ( s e l f . p u l s e s ) / i n t e g r a t e . t r a p z ( s e l f . p u l s e s ) [ : ,

None ]
nrow , n c o l = prob . shape
rows = np . a r a n g e ( nrow )
t ime = np . z e r o s ( shape = (1 , nrow ) )
f o r i , f i n enumera t e ( [ t f r a c ] ) :

y0 = np . argmax ( prob >f , a x i s =1)−1
x0 = prob [ rows , y0 ]
x1 = prob [ rows , y0 +1]
t ime [ i ] = y0 + np . d i v i d e ( ( f−x0 ) , ( x1−x0 ) )

t ime = np . nan_to_num ( t ime )
t ime [ 0 ] [ t ime [ 0 ] < 0 ] = 0
t i m e _ n s = t ime_s t amp_ns + t ime [ 0 ] / ( f r e q * 1 . e6 ) * 1 . e9
r e t u r n t i m e _ n s

d e f t i m e _ d e r i v a t i v e ( s e l f , f r a c t i o n , de lay , t ime_s tamps , f r e q =250 , t s _ b i t s
=31) :

' ' ' R e t u r n s e v e n t t ime u s i n g d e r i v a t i v e method .

Th i s method t a k e s each wave and wi th d e l a y s u b t r a c t s some f r a c t i o n
o f i t s e l f . When ` f r a c t i o n ` and ` de lay ` a r e bo th one t h i s method i s

e q u i v a l e n t
t o t a k i n g t h e d e r i v a t i v e o f t h e p u l s e and l o o k i n g f o r t h e z e r o c r o s s i n g
t ime .

The o p t i m a l ` f r a c t i o n ` w i l l depend on p u l s e shape , a l a r g e r d e l a y has
t h e a f f e c t o f smooth ing t h e p u l s e . T y p i c a l l y a ` d e l a y =1 ` i s
s u f f i c i e n t .

P a r a m e t e r s
−−−−−−−−−−
f r a c t i o n : f l o a t

F r a c t i o n o f t h e i n i t i a l p u l s e t o s u b t r a c t
d e l a y : i n t

The d e l a y o f t h e p u l s e t h a t w i l l be s u b t r a c t e d
t i m e _ s t a m p s : a r r a y , shape (N , )

Timestamps o f t h e d i g i t i z e r , must be t h e same l e n g t h as number
o f waves .

f r e q : i n t , o p t i o n a l
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Frequency of t h e t ime c l o c k i n MHz
d e f a u l t i s 250

t s _ b i t s : i n t , o p t i o n a l
Number o f b i t s o f t h e s t o r e d t ime stamp va lue , which d e t e r m i n e s
t h e maximum t imes t amp v a l u e (2** t s _ b i t s ) .
d e f a u l t i s 31

R e t u r n s
−−−−−−−
t i m e _ n s : a r r a y , shape (N , )

Array o f e v e n t t i m e s i n nanoseconds a s s o c i a t e d wi th each p u l s e .

Notes
−−−−−
Thi s method i s e q u i v a l e n t t o t h e d i g i t a l i m p l e m e n t a t i o n o f a n a l o g
c o n s t a n t f r a c t i o n d i s r i m i n a t i o n , s e e [ 1 ] _ .

. . f i g u r e : : . . / . . / . . / images / t i m e _ d e r i v a t i v e . png
: a l i g n : c e n t e r
: w id th : 10cm

A p u l s e and t h e c o r r e s p o n d i n g d e r i v a t i v e , t h e z e r o c r o s s i n g t ime
i s used f o r t ime e s t i m a t i o n .

R e f e r e n c e s
−−−−−−−−−−
. . [ 1 ] A. F a l l u−Labruyere , H. Tan , W. Henning , W.K. Warburton , " Time

r e s o l u t i o n s t u d i e s u s i n g d i g i t a l c o n s t a n t f r a c t i o n d i s c r i m i n a t i o n " ,
Nucl . I n s t . Meth . S e c t i o n A, v o l . 579 , 1 , pp . 247−251 , 2007 .

' ' '

i f ( t i m e _ s t a m p s . s i z e != s e l f . waves . shape [ 0 ] ) :
r a i s e V a l u e E r r o r ( " Number o f t ime s tamps must match number o f waves ! " )

t ime_s t amp_ns = t i m e _ o r d e r ( t ime_s tamps , f r e q , t s _ b i t s )
t ime_s t amp_ns = t ime_s t amp_ns [ s e l f . i n d _ c l e a n ]
d i f f = s e l f . p u l s e s [ : , 1 * d e l a y : ] * f r a c t i o n − s e l f . p u l s e s [ : , : −1 * d e l a y ]
x_max = d i f f . argmax ( 1 )
# s h i f t d i f f by x_max , each row i s i n d e p e n d e n t
rows , c o l u m n _ i n d i c e s = np . o g r i d [ : d i f f . shape [ 0 ] , : d i f f . shape [ 1 ] ]
r o l l = d i f f . shape [ 1 ] − x_max
r o l l [ r o l l < 0 ] += d i f f . shape [ 1 ]
c o l u m n _ i n d i c e s = c o l u m n _ i n d i c e s − r o l l [ : , np . newaxis ]
d i f f _ s h i f t = d i f f [ rows , c o l u m n _ i n d i c e s ]
# f i n d i n d e x a f t e r z e r o c r o s s i n g
x2 = np . argmax ( d i f f _ s h i f t <0 ,1 ) + x_max
x2 [ x2>= d i f f . shape [ 1 ] ] = d i f f . shape [1]−1
x1 = x2−1
y1 = d i f f [ r a n g e ( d i f f . shape [ 0 ] ) , x1 ] * 1 .
y2 = d i f f [ r a n g e ( d i f f . shape [ 0 ] ) , x2 ] * 1 .
t ime = x1 * 1 . + y1 * 1 . / ( y1−y2 )
t ime = np . nan_to_num ( t ime )
t i m e _ n s = t ime_s t amp_ns + t ime / ( f r e q * 1 . e6 ) * 1 . e9
r e t u r n t i m e _ n s
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A.2 Pulse Shape Discrimination

' ' ' PSD d a t a p r o c e s s i n g module

Module f o r t u r n i n g PSD p a r a m e t e r s i n t o p r o b a b i t i e s f o r a number o f d e s i r e d
c l a s s e s .
' ' '

i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from m a t p l o t l i b . c o l o r s i m p o r t LogNorm
from s c i p y . o p t i m i z e i m p o r t c u r v e _ f i t
from s c i p y . c l u s t e r . vq i m p o r t kmeans2 , wh i t e n
i m p o r t p i c k l e
from s c i p y i m p o r t i n t e r p o l a t e

d e f skew2 ( x , E , S1 , S2 ) :
' ' ' Skew normal d i s t r i b u t i o n

Args :
x ( a r r a y [ T ] ) : An a r r a y o f d a t a p o i n t s f o r each s l i c e .
E ( a r r a y [K] ) : Means f o r each c l a s s .
S1 ( a r r a y [K] ) : P o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
S2 ( a r r a y [K] ) : N e g a t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .

R e t u r n s : E
y ( a r r a y [K, T ] ) : Normal ized skewed g a u s s i a n v a l u e s

' ' '

# check i f i n p u t i t t h e p r o p e r f o r m a t
i f n o t np . i s s c a l a r ( E ) and E . s i z e >1: E = np . r e s h a p e ( E , (−1 ,1) )
i f n o t np . i s s c a l a r ( S1 ) and S1 . s i z e >1: S1 = np . r e s h a p e ( S1 , (−1 ,1) )
i f n o t np . i s s c a l a r ( S2 ) and S2 . s i z e >1: S2 = np . r e s h a p e ( S2 , (−1 ,1) )

r e t u r n 2 . / ( S1+S2 ) * ( normpdf ( x , E , S1 ) * ( x>=E ) + normpdf ( x , E , S2 ) * ( x<E ) )

d e f normpdf ( x , mu , s igma ) :
' ' ' C a l c u l a t e t h e n o r m a l i z e d G a u s s i a n v a l u e s .

Args :
x ( a r r a y [ T ] ) : Array o f v a l u e s .
mu ( a r r a y [K] ) : Array o f means f o r each c l a s s .
s igma ( a r r a y [K] ) : Array o f means f o r each c l a s s .

R e t u r n s :
y ( a r r a y [K, T ] ) : Array o f g a u s s i a n v a l u e s .

' ' '
mu = np . a r r a y (mu)
sigma = np . a r r a y ( s igma )
i f mu . s i z e >1 : mu = mu . r e s h a p e ( ( −1 ,1 ) )
i f s igma . s i z e >1 : s igma = sigma . r e s h a p e ( ( −1 ,1 ) )
u = ( x−mu) / np . abs ( s igma )
y = ( 1 . / ( np . s q r t ( 2 . * np . p i ) ) ) *np . exp(−u*u / 2 . )
r e t u r n y

d e f gauss_2 ( x , a lpha , E_0 , E_1 , S1_0 , S1_1 ) :
' ' ' R e t u r n s b e s t dou b l e g a u s s i a n f i t
Th i s i s a workaround so t h e f u n c t i o n can be c a l l e d by c u r v e f i t t i n g t o o l
' ' '
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r e t u r n ( a l p h a * normpdf ( x , E_0 , S1_0 ) / S1_0 + (1.− a l p h a ) * normpdf ( x , E_1 , S1_1 ) /
S1_1 )

d e f gaus s_1 ( x , E_0 , S1_0 ) :
' ' ' R e t u r n s b e s t s i n g l e g a u s s i a n f i t

Th i s i s a workaround so t h e f u n c t i o n can be c a l l e d by c u r v e f i t t i n g t o o l
' ' '
r e t u r n normpdf ( x , E_0 , S1_0 ) / S1_0

d e f c a l c P r o b ( x , w, E , S1 , S2 ) :
' ' ' C a l c u l a t e s t h e p o s t e r i o r −p r o b a b i l i t y ( P (K | x ,D) ) f o r each p o i n t x and

c l a s s K

Args :
x : ( a r r a y [ T ] ) : Array o f PSD p a r a m e t e r s .
w ( a r r a y [K] ) : Weight f o r each c l a s s .
E ( a r r a y [K] ) : Means f o r each c l a s s .
S1 ( a r r a y [K] ) : P o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
S2 ( a r r a y [K] ) : N e g a t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .

R e t u r n s :
p r o b s ( a r r a y [K, T ] ) : P r o b a b i l i t i e s f o r each c l a s s f o r each e v e n t .

' ' '

# Check number o f w e i g h t s p a s s e d
i f n o t np . i s s c a l a r (w) and w. s i z e >1:

w = np . r e s h a p e (w , ( l e n (w) , 1 ) )
# q u i c k and d i r t y s o l u t i o n
p_probs = w*skew2 ( x , E , S1 , S2 )
' ' '
i f w . s i z e ==2:

p_probs [ 0 ] = p_probs [ 0 ] * ( x<E [ 1 ] )
p_probs [ 1 ] = p_probs [ 1 ] * ( x>E [ 0 ] )

' ' '
p r o b s = np . d i v i d e ( p_probs , np . sum ( p_probs +1e−6, a x i s =0) )

e l s e :
p r o b s =np . ones ( l e n ( x ) )

p r o b s [ np . i s n a n ( p r o b s ) ] = 1e−16

r e t u r n p r o b s

d e f c a l c E ( x , prob , E , S1 , S2 ) :
' ' ' C a l c u l a t e t h e new e p s i l o n ( r e l a t e d t o mean

Args :
x ( a r r a y [ T ] ) : Array o f PSD p a r a m e t e r s .
p rob ( a r r a y [K, T ] ) : Array o f p o s t e r i o r p r o b a b i l i t i e s f o r each p o i n t .
E ( a r r a y [K] ) : Means f o r each c l a s s .
S1 ( a r r a y [K] ) : P o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
S2 ( a r r a y [K] ) : N e g a t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .

R e t u r n s :
E ( a r r a y [K] ) : New means f o r each c l a s s .

' ' '
i f n o t np . i s s c a l a r ( E ) and E . s i z e >1:

E = np . r e s h a p e ( E , ( l e n ( E ) , 1 ) )
ax =1

e l s e :
ax =0

r e t u r n ( S2 **2 . * np . sum ( x* prob *( x>=E ) , a x i s =ax ) + S1 **2 . * np . sum ( x* prob *( x<E ) ,
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a x i s =ax ) ) / \
( S2 ** 2 .* np . sum ( prob *( x>=E ) , a x i s =ax ) + S1 **2 . * np . sum ( prob *( x<E ) , a x i s

=ax ) )

d e f c a l c S ( x , E , prob ) :
' ' ' C a l c u l a t e t h e new s t a n d a r d d e v i a t i o n s

Args :
x ( a r r a y [ T ] ) : Array o f PSD p a r a m e t e r s .
E ( a r r a y [K] ) : Array o f means f o r each c l a s s .
p rob ( a r r a y [ T ,K] ) : Array o f p o s t e r i o r p r o b a b i l i t i e s f o r each p o i n t .

R e t u r n s :
S1 ( a r r a y [K] ) : Array o f p o s i s i t v e s t a n d a r d d e v i a t i o n s f o r each c l a s s .
S2 ( a r r a y [K] ) : Array o f n e g a t i v e s t a n d a r d d e v i a t i o n s f o e each c l a s s .

' ' '

E = np . a r r a y ( E )
i f E . s i z e >1:

E = E . r e s h a p e ( ( −1 ,1 ) )
ax = 1

e l s e :
ax = 0

C = np . sum ( prob , a x i s =ax )
C1 = np . sum ( ( x−E ) **2 . * prob *( x<E ) , a x i s =ax )
C2 = np . sum ( ( x−E ) **2 . * prob *( x>=E ) , a x i s =ax )
S2 = ( C1 / C * ( 1 . + ( C2 / C1 ) * * ( 1 . / 3 ) ) ) * * ( 1 . / 2 )
S1 = ( C2 / C * ( 1 . + ( C1 / C2 ) * * ( 1 . / 3 ) ) ) * * ( 1 . / 2 )
r e t u r n S1 , S2

# change t h i s t o a c c e p t p r o b a b i l i t i e s and t h e n c a l c u l a t e skew2 by i t s e l f
d e f c a l c L o g L i k e ( x , probs , w, E , S1 , S2 ) :

' ' ' C a l c u l a t e t h e l o g l i k e l e h o o d g i v e n p r o b a b i l i t y , we ig h t and p a r a m e t e r s .

Args :
x ( a r r a y [ T ] ) : An a r r a y o f d a t a p o i n t s f o r each s l i c e .
p r o b s ( a r r a y [K, T ] ) : Array o f p o s t e r i o r p r o b a b i l i t i e s f o r each p o i n t .
E ( a r r a y [K] ) : Means f o r each c l a s s .
S1 ( a r r a y [K] ) : P o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
S2 ( a r r a y [K] ) : N e g a t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .

R e t u r n s :
Q ( f l o a t ) : Log− l i k e l i h o o d .

' ' '
w = ( np . a r r a y (w) ) . r e s h a p e ( ( −1 ,1 ) )
Q = np . sum ( np . l o g (w) * p r o b s ) + np . sum ( np . l o g ( skew2 ( x , E , S1 , S2 ) +1e−16)* p r o b s )
r e t u r n Q

d e f calcskewEM ( x , m a x i t e r , eps , w, E , S1 , S2 , u p d a t e =None ) :
' ' ' C a l c u l a t e skew p a r a m e t e r s u s i n g E x e p c t a t i o n Max imiza t ion Algo r i t hm

Args :
x ( a r r a y [ T ] ) : An a r r a y o f d a t a p o i n t s f o r each s l i c e .
m a x i t e r ( i n t ) : Maximum number o f i t e r a t i o n s .
eps ( f l o a t ) : The log− l i k e l i h o o d d i f f e r e n c e t o t e r m i n a t e i t e r a t i o n
w ( a r r a y [K] ) : I n i t i a l g u e s s we igh t f o r each c l a s s .
E ( a r r a y [K] ) : I n i t i a l g u e s s means f o r each c l a s s .
S1 ( a r r a y [K] ) : I n i t i a l g u e s s p o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
S2 ( a r r a y [K] ) : I n i t i a l g u e s s n e g a t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
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u p d a t e ( a r r a y [K] ) : Which c l a s s e s s h o u l d have v a r i a b l e s u p d a t e d .
R e t u r n s :

p r o b s ( a r r a y [K, T ] ) : P o s t e r i o r p r o b a b i l i t i e s f o r each c l a s s .
w ( a r r a y [K] ) : New w e i g h t s f o r each c l a s s .
E ( a r r a y [K] ) : New means f o r each c l a s s .
S1 ( a r r a y [K] ) : New p o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
S2 ( a r r a y [K] ) : New n e g a t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .

' ' '

# Conve r t imput i n t o numy a r r a y and check f o r e q u a l s i z e .
w = np . a s a r r a y (w, d t y p e = f l o a t )
E = np . a s a r r a y ( E , d t y p e = f l o a t )
S1 = np . a s a r r a y ( S1 , d t y p e = f l o a t )
S2 = np . a s a r r a y ( S2 , d t y p e = f l o a t )
i f n o t (w. s i z e ==E . s i z e ==S1 . s i z e ==S2 . s i z e ) :

r a i s e V a l u e E r r o r ( " A l l o f t h e i n i t i a l g u e s s e s must be e q u a l s i z e " )
i f u p d a t e ==None : u p d a t e = np . ones (w. s i z e , d t y p e = boo l )
T = l e n ( x )
i t e r s = 0
w h i l e ( m a x i t e r > i t e r s ) :

# s t e p 1 : C a l c u l a t e i n i t i a l p o s t e r i o r p r o b a b i l i t i e s
i f i t e r s ==0: p r o b s = c a l c P r o b ( x , w, E , S1 , S2 )
# s t e p 2 : C a l c u l a t e new w e i g h t s f o r each c l a s s .
w = np . a s a r r a y ( np . sum ( p r o b s . T , a x i s =0) / T )
# c a l c u l a t e t h e o t h e r p a r a m e t e r s on ly i f r e q u e s t e d
i f ( np . sum ( u p d a t e ) >0) :

# s t e p 3 : C a l c u l a t e new means g i v e n new w e i g h t s .
p r o b s = c a l c P r o b ( x , w, E , S1 , S2 )
Enew = c a l c E ( x , probs , E , S1 , S2 )
# check i f v a r i a b l e s need t o be u p d a t e d
i f ( Enew . s i z e >1) :

f o r i i n r a n g e ( Enew . s i z e ) :
i f u p d a t e [ i ] : E [ i ] = Enew [ i ]

e l s e :
i f u p d a t e : E = Enew

# s t e p 4 : C a l c u l a t e new s t d g i v e n new means and w e i g h t s
p r o b s = c a l c P r o b ( x , w, E , S1 , S2 )
S1new , S2new = c a l c S ( x , E , p r o b s )
i f ( S1new . s i z e >1) :

f o r i i n r a n g e ( S1new . s i z e ) :
i f u p d a t e [ i ] :

S1 [ i ] = S1new [ i ]
S2 [ i ] = S2new [ i ]

e l s e :
i f u p d a t e :

S1 = S1new
S2 = S2new

# s t e p 5 : C a l c u l a t e new p r o b a b i l i t y and check log− l i k e l i h o o d
p r o b s = c a l c P r o b ( x , w, E , S1 , S2 )
i f i t e r s >0:

l o g l i k e _ n e w = c a l c L o g L i k e ( x , probs , w, E , S1 , S2 )
i f ( eps >np . abs (1− l o g l i k e _ o l d / l o g l i k e _ n e w ) ) :

b r e a k
l o g l i k e _ o l d = l o g l i k e _ n e w

e l s e :
l o g l i k e _ o l d = c a l c L o g L i k e ( x , probs , w, E , S1 , S2 )

i t e r s +=1
i f m a x i t e r == i t e r s :
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p r i n t " Warning ! Maximum number o f i t e r a t i o n s exceeded \ n "
r e t u r n probs , w, E , S1 , S2

d e f calcGaussEM ( x , m a x i t e r , eps , w, E , S1 , u p d a t e =None ) :
' ' ' C a l c u l a t e G a u s s i a n p a r a m e t e r s u s i n g E x e p c t a t i o n Max imiza t ion Algo r i t hm

Args :
x ( a r r a y [N] ) : An a r r a y o f d a t a p o i n t s f o r each s l i c e .
m a x i t e r ( i n t ) : Maximum number o f i t e r a t i o n s .
eps ( f l o a t ) : The log− l i k e l i h o o d d i f f e r e n c e t o t e r m i n a t e i t e r a t i o n
w ( a r r a y [K] ) : I n i t i a l g u e s s we igh t f o r each c l a s s .
E ( a r r a y [K] ) : I n i t i a l g u e s s means f o r each c l a s s .
S1 ( a r r a y [K] ) : I n i t i a l g u e s s p o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .
u p d a t e ( a r r a y [K] ) : Which c l a s s e s s h o u l d have v a r i a b l e s u p d a t e d .

R e t u r n s :
p r o b s ( a r r a y [K,N] ) : P o s t e r i o r p r o b a b i l i t i e s f o r each c l a s s .
w ( a r r a y [K] ) : New w e i g h t s f o r each c l a s s .
E ( a r r a y [K] ) : New means f o r each c l a s s .
S1 ( a r r a y [K] ) : New p o s i t i v e s t a n d a r d d e v i a t i o n f o r each c l a s s .

' ' '

# Conve r t imput i n t o numy a r r a y and check f o r e q u a l s i z e .
w = ( np . a s a r r a y (w, d t y p e = f l o a t ) )
E = np . a s a r r a y ( E , d t y p e = f l o a t )
S1 = np . a s a r r a y ( S1 , d t y p e = f l o a t )
i f n o t (w. s i z e ==E . s i z e ==S1 . s i z e ) :

r a i s e V a l u e E r r o r ( " A l l o f t h e i n i t i a l g u e s s e s must be e q u a l s i z e " )
i f u p d a t e ==None : u p d a t e = np . ones (w. s i z e , d t y p e = boo l )

N = l e n ( x )
i t e r s = 0
w h i l e ( m a x i t e r > i t e r s ) :

# s t e p 1 : C a l c u l a t e i n i t i a l p o s t e r i o r p r o b a b i l i t i e s
i f i t e r s ==0:

p r o b s = c a l c P r o b ( x , w, E , S1 , S1 )
# s t e p 2 : C a l c u l a t e new w e i g h t s f o r each c l a s s .
Nk = np . sum ( p r o b s . T , a x i s =0)
w = ( np . a s a r r a y ( Nk /N) )
# c a l c u l a t e t h e o t h e r p a r a m e t e r s on ly i f r e q u e s t e d
i f ( np . sum ( u p d a t e ) >0) :

# s t e p 3 : C a l c u l a t e new means g i v e n new w e i g h t s .
p r o b s = c a l c P r o b ( x , w, E , S1 , S1 )
ax =0
i f w. s i z e >1: ax =1
Enew = ( 1 . / Nk ) *np . sum ( p r o b s *x , a x i s =ax )
# check i f v a r i a b l e s need t o be u p d a t e d
i f ( Enew . s i z e >1) :

f o r i i n r a n g e ( Enew . s i z e ) :
i f u p d a t e [ i ] : E [ i ] = Enew [ i ]

e l s e :
i f u p d a t e : E = Enew

# s t e p 4 : C a l c u l a t e new s t d g i v e n new means and w e i g h t s
p r o b s = c a l c P r o b ( x , w, E , S1 , S1 )
i f w. s i z e >1:

S1new = ( 1 . / Nk ) * np . sum ( p r o b s * ( x−E . r e s h a p e ( ( −1 ,1 ) ) ) * * 2 . , a x i s =1)
e l s e :

S1new = ( 1 . / Nk ) * np . sum ( p r o b s * ( x−E ) * * 2 . , a x i s =0)
S1new = np . s q r t ( S1new )
i f ( S1new . s i z e >1) :
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f o r i i n r a n g e ( S1new . s i z e ) :
i f u p d a t e [ i ] : S1 [ i ] = S1new [ i ]

e l s e :
i f u p d a t e : S1 = S1new

# s t e p 5 : C a l c u l a t e new p r o b a b i l i t y and check log− l i k e l i h o o d
p r o b s = c a l c P r o b ( x , w, E , S1 , S1 )
i f i t e r s >0:

l o g l i k e _ n e w = c a l c L o g L i k e ( x , probs , w, E , S1 , S1 )
i f ( eps >np . abs (1− l o g l i k e _ o l d / l o g l i k e _ n e w ) ) :

b r e a k
l o g l i k e _ o l d = l o g l i k e _ n e w

e l s e :
l o g l i k e _ o l d = c a l c L o g L i k e ( x , probs , w, E , S1 , S1 )

i t e r s +=1
i f m a x i t e r == i t e r s :

p r i n t " Warning ! Maximum number o f i t e r a t i o n s exceeded \ n "
S2 = S1
r e t u r n probs , w, E , S1 , S2

d e f c a l c C u r v e ( x , w, E , S1 , S2 ) :
' ' ' Curve f i t s a s i n g l e skewed G a u s s i a n o r normal do ub l e G a u s s i a n

I n s t e a d o f u s i n g EM a l g o r i t h m t h i s f u n c t i o n p e r f o r m s c u r v e f i t t i n g , t h i s
i s i d e a l f o r d i s t r i b t u i o n s wi th on ly a s i n g g l e c l a s s ( gamma measurements )
where EM c o u l d s t r u g g l e wi th o u t l i e r s .
' ' '
i f w . s i z e >2:

r a i s e V a l u e E r r o r ( " Curve f i t t i n g works on maximum of 2 c l a s s e s " )
yda ta , x d a t a = np . h i s t o g r a m ( x , b i n s =100 , normed=True )
x d a t a = x d a t a [ :−1] + 0 . 5 * ( x d a t a [ 1 : ] − x d a t a [ : −1 ] )
p i n i t = ( E , S1 )
i f w. s i z e ==1:

E , S1 = c u r v e _ f i t ( gauss_1 , xda ta , yda ta , p0= p i n i t ) [ 0 ]
w = np . a s a r r a y ( 1 . )

# p e r f o r m s a dou b l e g a u s s i a n f i t
e l s e :

r e t = c u r v e _ f i t ( gauss_2 , xda ta , yda ta , p0= np . append (w[ 0 ] , p i n i t ) ) [ 0 ]
w = np . a r r a y ( [ r e t [0 ] , 1 . − r e t [ 0 ] ] )
E = r e t [ 1 : 3 ]
S1 = r e t [ 3 : 5 ]

S2 = S1
p r o b s = c a l c P r o b ( x , w, E , S1 , S2 )
r e t u r n probs , w, E , S1 , S2

d e f b i n d a t a ( psd , amp , i s a , mincoun t s =5000 , maxbinwidth = 20000) :
" " " C r e a t e s b i n s a l o n g a m p l i t u d e wi th an e q u a l number o f c o u n t s i n each .

Args :
psd ( a r r a y [ T ] ) : PSD d a t a t o be d i v i d e d a l o n g a m p l i t u d e b i n s .
amp ( a r r a y [ T ] ) : Ampl i tude d a t a .
i s a ( a r r a y [ T ] ) : Va lues by which a m p l i t u d e i s s o r t e d by .
mincoun t s ( i n t ) : Minimum number o f c o u n t s i n each b i n .
maxbinwidth ( i n t ) : Maximum a l l o w a b l e b i n wid th

R e t u r n s :
x_b in ( a r r a y [ T ,K] ) : M a t r i x o f psd v a l u e wi th each row c o r r e s p o n d i n g t o

s e p e r a t e b i n .
xedges ( a r r a y [K+ 1 ] ) : Ampl i tude v a l u e o f t h e edges o f each b i n .
x c e n t e r s ( a r r a y [K] ) : Ampl i tude v a l u e o f t h e c e n t e r s o f each b i n .
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" " "
amp = amp [ i s a ]
psd = psd [ i s a ]
ampbins = np . f l o o r ( amp . s i z e / mincoun t s )
a _ b i n = np . a r r a y _ s p l i t ( amp , ampbins )
i _ b i n = np . a r r a y _ s p l i t ( i s a , ampbins )
xedges = [ a [ 0 ] f o r a i n a _ b i n ]
xedges . append ( amp . max ( ) ) # add t h e r i g h t most edge
xedges = np . a s a r r a y ( xedges )
x c e n t e r s = xedges [ :−1] + 0 . 5 * ( xedges [ 1 : ] − xedges [ : −1 ] )
x_b in = np . a r r a y _ s p l i t ( psd , ampbins )
# add b i n s i f t h e maximum b i n i s exceeded
l a s t b i n w i d t h = xedges [−1]− xedges [−2]
i f ( l a s t b i n w i d t h > maxbinwidth ) :

amphigh = np . h s t a c k ( a _ b i n [−1])
p s d h i g h = np . h s t a c k ( x_b in [−1])
i s a h i g h = np . a r a n g e ( l e n ( amphigh ) )
x_bin2 , xedges2 , x c e n t e r s 2 = b i n d a t a w i d t h ( psdh igh , amphigh , i s a h i g h , np .

f l o o r ( l a s t b i n w i d t h / maxbinwidth ) )
# c l e a n up o l d and add t h e new
xedges = np . append ( xedges [ : −2 ] , xedges2 )
x c e n t e r s = np . append ( x c e n t e r s [ : −1 ] , x c e n t e r s 2 )
x_b in . pop ( )
x_b in = x_b in + x_b in2

r e t u r n x_bin , xedges , x c e n t e r s

d e f b i n d a t a w i d t h ( psd , amp , i s a =None , ampbins =5) :
" " " C r e a t e s b i n s a l o n g a m p l i t u d e wi th an e q u a l wid th i n each .

Args :
psd : a r r a y [ T ]

PSD d a t a t o be d i v i d e d a l o n g a m p l i t u d e b i n s .
amp : a r r a y [ T ]

Ampl i tude d a t a .
i s a : a r r a y [ T ] )

Va lues by which a m p l i t u d e i s s o r t e d by .
ampbins : i n t

Number o f b i n s i n each
R e t u r n s :

x_b in ( a r r a y [ T ,K] ) : M a t r i x o f psd v a l u e wi th each row c o r r e s p o n d i n g t o
s e p e r a t e b i n .

xedges ( a r r a y [K+ 1 ] ) : Ampl i tude v a l u e o f t h e edges o f each b i n .
x c e n t e r s ( a r r a y [K] ) : Ampl i tude v a l u e o f t h e c e n t e r s o f each b i n .

" " "
i f i s a ==None :

i s a = np . a r g s o r t ( amp )
amp = amp [ i s a ]
psd = psd [ i s a ]
# d e c r e a s e b i n wid th u n t i l t h e r e i s c o u n t s i n a b i n
w h i l e ( True ) :

h = np . h i s t o g r a m ( amp , ampbins ) [ 0 ]
# d e c r e a s e t h e number o f b i n s i f l e s s t h a n 100 p l o t s remain i n a b i n
i f sum ( h <100) >0:

ampbins−=1
e l s e :

xedges = np . h i s t o g r a m ( amp , ampbins ) [ 1 ]
b r e a k

x c e n t e r s = xedges [ :−1] + 0 . 5 * ( xedges [ 1 : ] − xedges [ : −1 ] )
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s p l i t = np . where ( np . d i f f ( np . d i g i t i z e ( amp , xedges [ : −1 ] ) ) >0) [ 0 ]
x_b in = np . s p l i t ( psd , s p l i t )
r e t u r n x_bin , xedges , x c e n t e r s

d e f r e j e c t _ o u t l i e r s ( da t a , m = 2 . ) :
d = np . abs ( d a t a − np . median ( d a t a ) )
mdev = np . median ( d )
s = d / mdev i f mdev e l s e 0 .
r e t u r n d a t a [ s <m]

d e f c a l c p r o b s ( psd , amp , s h o w s l i c e s =1e9 , mincoun t s =5000 , maxbinwidth =20000 ,
m a x i t e r =1000 , eps =1e−6, w= [ 0 . 5 , 0 . 5 ] , E = [ 1 7 , 3 5 ] , S1 = [ 1 , 1 ] ,
S2 = [ . 1 , . 1 ] , E f i t =None , S 1 f i t =None , S 2 f i t =None , v e r b o s e =True ,
f i t t y p e = ' EMskew ' , c u r v e _ c u t =1 e9 ) :

' ' ' F i n d s t h e p o s t e r i o r p r o b a b i l i t i e s o f a l l t h e d a t a p o i n t s i n t h e c l a s s .

Data i s d i v i d e d i n t o K c l a s s e s each modeled by a skewed−G a u s s i a n . The
number o f c l a s s e s i s d e p e n d e n t on t h e number o f i n i t i a l p a r a m e t e r s
p r o v i d e d . The a l g o r i t h m f i t s each s l i c e s t a r t i n g wi th t h e h i g h e s t
a m p l i t u d e t o t h e l o w e s t and u s e s i n i t i a l g u e s s e s from t h e p r e v i o u s
r e s u l t a s n e x t i n i t i a l g u e s s e s .

I f t h e f i t i n t e r p o l a t e o b j e c t f o r p a r a m e t e r s i s p r o v i d e d t h e n t h o s e
p a r a m e t e r s

f o r each c l a s s a r e n o t r e c a l c u l a t e d , on ly t h e w e i gh t i s r e c a l c u l a t e d .
The p a r a m e t e r s f o r c l a s s e s i n which f i t was n o t p r o v i d e d a r e r e c a l c u l a t e d .

I f t h e number o f minimum c o u n t s i s n o t met i n a p a r t i c u l a i r b i n t h e n
a k−means a l g o r i t h m i s used t o compute t h e mean and s t a n d a r d d e v i a t i o n .
A g a u s s i a n shape i s assumed f o r t h e c o m p u t a t i o n o f bo th p a r a m e t e r s .

Args :
psd ( a r r a y [ T ] ) : PSD d a t a p o i n t s .
amp ( a r r a y [ T ] ) : C o r r e s p o n d i n g a m p l i t u d e d a t a .
s h o w s l i c e s : Number o f s l i c e s t o s k i p between p l o t t i n g f i t r e s u l t s .
m incoun t s ( i n t , o p t i o n a l ) : Minimum c o u n t s i n each a m p l i t u d e b i n .
m a x i t e r ( i n t , o p t i o n a l ) : Maximum number o f i t e r a t i o n f o r t h e EM a l g o r i t h m .
eps ( f l o a t , o p t i o n a l ) : E x i t c o n d i t i o n f o r EM a l g o r i t h m .
w ( a r r a y [K] , o p t i o n a l ) : I n i t i a l w e i g h t s f o r each c l a s s .
E ( a r r a y [K] , o p t i o n a l ) : I n i t i a l means f o r each c l a s s .
S1 ( a r r a y [K] , o p t i o n a l ) : I n i t i a l p o s i t i o v e s t a n d a r d d e v i a t i o n .
S2 ( a r r a y [K] , o p t i o n a l ) : I n i t i a l n e g a t i v e s t a n d a r d d e v i a t i o n .
E f i t ( a r r a y [K] ) : Array o f i n t e r p o l a t e o b j e c t s .
S 1 f i t ( a r r a y [K] ) : Array o f i n t e r p o l a t e o b j e c t s .
S 2 f i t ( a r r a y [K] ) : Array o f i n t e r p o l a t e o b j e c t s .
v e r b o s e : Outpu t t h a t p r i n t s t o s c r e e n s i z e .
f i t t y p e : 'EM ' o r ' c u r v e ' o p t i o n f o r t y p e o f f i t t i n g
c u r v e _ c u t : Above t h i s v a l u e a lways pe r fo rm c u r v e f i t t i n g

R e t u r n s :
p r o b s ( a r r a y [K, T ] ) : P o s t e r i o r p r o b a b i l i t i e s f o r each c l a s s .
E _ a r r ( a r r a y [K, S ] ) : Means f o r each a m p l i t u d e b i n .
S 1 _ a r r ( a r r a y [K, S ] ) : P o s i t i v e s t d f o r each a m p l i t u d e b i n .
S 2 _ a r r ( a r r a y [K, S ] ) : N e g a t i v e s t d f o r each a m p l i t u d e b i n .
a m p c e n t e r s ( a r r a y [ S ] ) : Array o f a m p l i t u d e c e n t e r s .

' ' '
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# Conve r t imput i n t o numy a r r a y and check f o r e q u a l s i z e .
i f np . i s s c a l a r (w) : w = np . a r r a y ( [w] )
i f np . i s s c a l a r ( E ) : E = np . a r r a y ( [ E ] )
i f np . i s s c a l a r ( S1 ) : S1 = np . a r r a y ( [ S2 ] )
i f np . i s s c a l a r ( S2 ) : S2 = np . a r r a y ( [ S2 ] )

w = np . a s a r r a y (w)
E = np . a s a r r a y ( E )
S1 = np . a s a r r a y ( S1 )
S2 = np . a s a r r a y ( S2 )
i f n o t (w. s i z e ==E . s i z e ==S1 . s i z e ==S2 . s i z e ) :

r a i s e V a l u e E r r o r ( " A l l o f t h e i n i t i a l g u e s s e s must be e u q a l s i z e " )
# check t h e number o f f i t s p r e s e n t
i f n o t ( E f i t ==None and S 1 f i t ==None and S 2 f i t ==None ) :

n u m _ f i t s = l e n ( E f i t )
u p d a t e = np . z e r o s ( num_f i t s , d t y p e = boo l )
# The d i f f e r e n c e w i l l be u p d a t e d
f o r i i n r a n g e (w. s i z e−n u m _ f i t s ) :

u p d a t e = np . append ( upda te , True )
f i t s _ p a s s e d = True

e l s e :
f i t s _ p a s s e d = F a l s e
u p d a t e = None

i s a = np . a r g s o r t ( amp )
psd_bin , ampedges , a m p c e n t e r s = b i n d a t a ( psd , amp , i s a , mincounts ,

maxbinwidth )

# c o r r e c t f o r h igh e n e r g i e s

# f i t e v e r y t h i n g go ing backwards
p r o b _ a r r = [ ]
E _ a r r = [ ]
S 1 _ a r r = [ ]
S 2 _ a r r = [ ]
f o r i i n r a n g e ( l e n ( a m p c e n t e r s )−1,−1,−1) :

# i f f i t s where p a s s e d use t h o s e t o g e t t h e n e x t v a l u e
i f f i t s _ p a s s e d :

amp = a m p c e n t e r s [ i ]
E = np . append ( np . a s a r r a y ( [ x ( amp ) f o r x i n E f i t ] ) , E [ n u m _ f i t s : ] )
S1 = np . append ( np . a s a r r a y ( [ x ( amp ) f o r x i n S 1 f i t ] ) , S1 [ n u m _ f i t s : ] )
S2 = np . append ( np . a s a r r a y ( [ x ( amp ) f o r x i n S 2 f i t ] ) , S2 [ n u m _ f i t s : ] )

i f l e n ( p s d _ b i n [ i ] ) >1000 and f i t t y p e != ' kmeans ' :
# f o r f i t t i n g on ly one p a r a m e t e r , c u r v e f i t t i n g i s b e t t e r
i f f i t t y p e == ' c u r v e ' o r a m p c e n t e r s [ i ] > c u r v e _ c u t :

probs , w, E , S1 , S2 = c a l c C u r v e ( p s d _ b i n [ i ] , w, E , S1 , S2 )
e l i f f i t t y p e == ' EMskew ' :

probs , w, E , S1 , S2 = calcskewEM ( p s d _ b i n [ i ] , m a x i t e r , eps , w, E , S1 ,
S2 , u p d a t e )

e l i f f i t t y p e == ' EMgauss ' :
p robs , w, E , S1 , S2 = calcGaussEM ( p s d _ b i n [ i ] , m a x i t e r , eps , w, E , S1 ,

u p d a t e )
e l s e :

i f ( v e r b o s e ) : p r i n t ' Using k−means '
# c o n v e r t t h i s i n t o i t s own c o l l a b l e f u n c t i o n
d a t a = p s d _ b i n [ i ]
E , l = kmeans2 ( da t a , k=E , m i n i t = ' m a t r i x ' )
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# somehow t h i s has t o s o r t
w = np . a r r a y ( [ ] )
S1 = np . a r r a y ( [ ] )
f o r k i n r a n g e ( l e n ( E+1) ) :

d = d a t a [ l ==k ]
#d = r e j e c t _ o u t l i e r s ( d )
S1 = np . append ( S1 , d . s t d ( ) )
w = np . append (w , ( l ==k ) . sum ( d t y p e = f l o a t ) )

w = w/w. sum ( )
S2 = S1
p r o b s = c a l c P r o b ( p s d _ b i n [ i ] , w, E , S1 , S2 ) ;

# check t h a t t h e o u t p u t i s c o r r e c t
i f ( np . sum ( ( np . i s n a n (w) , np . i s n a n ( E ) , np . i s n a n ( S1 ) , np . i s n a n ( S2 ) ) ) > 0 ) :

r a i s e R u n t i m e E r r o r ( "EM f a i l e d on s l i c e " + s t r ( i ) + " wi th amp " + s t r (
a m p c e n t e r s [ i ] ) )

p r o b _ a r r . append ( p r o b s . copy ( ) )
E _ a r r . append ( E . copy ( ) )
S 1 _ a r r . append ( S1 . copy ( ) )
S 2 _ a r r . append ( S2 . copy ( ) )
i f ( v e r b o s e ) : p r i n t " Done wi th s l i c e : " + s t r ( i )
# p l o t some r e s u l t s i f r e q u e s t e d
i f ( np . mod ( i +1 , s h o w s l i c e s ) ==0) :

fx = np . l i n s p a c e ( p s d _ b i n [ i ] . min ( ) , p s d _ b i n [ i ] . max ( ) , 1 0 0 0 )
p r i n t w, E , S1 , S2
p l t . t i t l e ( ' S l i c e number : ' + s t r ( i ) + " Amp: " + s t r ( a m p c e n t e r s [ i ] ) )
p l t . h i s t ( p s d _ b i n [ i ] , 1 0 0 , normed=True , h i s t t y p e = ' s t e p ' )
p l t . p l o t ( fx ,w*skew2 ( fx , E , S1 , S2 ) . T )
p l t . show ( )

# s o r t t h e p r o b a b i l i t i e s t o t h e i n p u t a m p l i t u d e o r d e r
p r o b s = np . h s t a c k ( l i s t ( r e v e r s e d ( p r o b _ a r r ) ) )
E _ a r r = np . a r r a y ( l i s t ( r e v e r s e d ( E _ a r r ) ) ) . T
S 1 _ a r r = np . a r r a y ( l i s t ( r e v e r s e d ( S 1 _ a r r ) ) ) . T
S 2 _ a r r = np . a r r a y ( l i s t ( r e v e r s e d ( S 2 _ a r r ) ) ) . T
i f l e n ( p r o b s . shape ) >1:

f o r k i n r a n g e ( p r o b s . shape [ 0 ] ) :
p r o b s [ k ] = p r o b s [ k ] [ np . a r g s o r t ( i s a ) ]

e l s e :
p r o b s = np . a r r a y ( [ p r o b s [ np . a r g s o r t ( i s a ) ] ] )
E _ a r r = np . a r r a y ( [ E _ a r r ] )
S 1 _ a r r = np . a r r a y ( [ S 1 _ a r r ] )
S 2 _ a r r = np . a r r a y ( [ S 2 _ a r r ] )

r e t u r n probs , E_ar r , S1_ar r , S2_ar r , a m p c e n t e r s

d e f p l o t p s d ( amp , psd , p r o b s =None , p c u t = [ 0 . 9 , 0 . 9 ] ) :
' ' ' P l o t s psd r e s u l t s f o r each c l a s s
' ' '
i f p r o b s ==None : p r o b s = np . ones ( l e n ( amp ) )
i f l e n ( p r o b s . shape ) >1:

f , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 2 , s h a r e x =True , s h a r e y =True )
ax1 . s e t _ t i t l e ( ' S e p a r a t e d p h o t o n s and n e u t r o n s . ' )
ax1 . h i s t 2 d ( amp , psd , b i n s = [ 2 0 0 , 1 0 0 ] , norm=LogNorm ( ) , w e i g h t s =( p r o b s [0] > p c u t

[ 0 ] ) . a s t y p e ( i n t ) , cmin =1)
ax2 . h i s t 2 d ( amp , psd , b i n s = [ 2 0 0 , 1 0 0 ] , norm=LogNorm ( ) , w e i g h t s =( p r o b s [1] > p c u t

[ 1 ] ) . a s t y p e ( i n t ) , cmin =1)
p l t . show ( )

e l s e :
p l t . h i s t 2 d ( amp , psd , b i n s = [ 2 0 0 , 1 0 0 ] , norm=LogNorm ( ) , w e i g h t s = probs , cmin =1)
p l t . show ( )
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d e f p l o t p s d f i t ( amp , psd , p s d f i t , E , S1 , S2 , ampbins ) :
' ' ' P l o t s psd r e s u l t s f o r each c l a s s
' ' '

# r e s h a p e ampbins i f needed
# ampbins = np . a r r a y ( ampbins ) . r e s h a p e ( ( l e n ( E ) ,−1) )
x = np . l i n s p a c e ( np . min ( amp ) , np . max ( amp ) , 1 0 0 0 )
p l t . h i s t 2 d ( amp , psd , b i n s = [ 2 0 0 , 1 0 0 ] , norm=LogNorm ( ) , cmin =1)
f o r i i n r a n g e ( l e n ( p s d f i t [ ' E ' ] ) ) :

# p l o t t h e f i t s
p l t . p l o t ( x , p s d f i t [ ' E ' ] [ i ] ( x ) , ' g ' , lw =3)
p l t . p l o t ( x , p s d f i t [ ' E ' ] [ i ] ( x ) + p s d f i t [ ' S1 ' ] [ i ] ( x ) , ' k ' , lw =3)
p l t . p l o t ( x , p s d f i t [ ' E ' ] [ i ] ( x )−p s d f i t [ ' S2 ' ] [ i ] ( x ) , ' k ' , lw =3)
# p l o t t h e i n d i v i d u a l p o i n t s
p l t . p l o t ( ampbins , E [ i ] , ' go ' )
p l t . p l o t ( ampbins , E [ i ]+ S1 [ i ] , ' r o ' )
p l t . p l o t ( ampbins , E [ i ]−S2 [ i ] , ' r o ' )

p l t . show ( )

d e f ge tRecAr r ( prob , psd , amp , t ime ) :
' ' ' C r e a t e s a r e c c o r d a r r a y t h a t can be saved t o a r o o t f i l e

Th i s f u n c t i o n i s p u r p o s e b u i l t f o r p h o t o n s and n e u t r o n s b e i n g p r e s e n t ,
b u t i t a l s o l i v e s as an example f o r o t h e r p o t e n t i a l p rograms .
' ' '

wtype = np . d t y p e ( [ ( ' probG ' , p rob [ 0 ] . d t y p e ) , ( ' probN ' , p rob [ 1 ] . d t y p e ) ,
( ' psd ' , psd . d t y p e ) , ( ' amp ' , amp . d t y p e ) , ( ' t ime ' , t ime . d t y p e ) ] )

w = np . empty ( l e n ( prob [ 0 ] ) , d t y p e =wtype )
w[ ' probG ' ] = prob [ 0 ]
w[ ' probN ' ] = prob [ 1 ]
w[ ' psd ' ] = psd
w[ ' amp ' ] = amp
w[ ' t ime ' ] = t ime
r e t u r n w

# t u r n t h i s i n t o a c l a s s
d e f f i t p s d p a r m s ( E , S1 , S2 , ampbins , smooth , knot , f i t n u m =1) :

' ' ' F i t s psd p a r a m e r s wi th s p l i n e s and r e t u r n s d i c t i o n a r y o f f i t s

S p l i n e f i t t i n g i s pe r fo rmed on PSD p a r a m e t e r s and saved i n a d i c t i o n a r y .
These f i t s can t h e n be used t o u p d a t e t h e p r o b a b i l i t y maps f o r s u b s e q u e n t
measurements . The f i t t i n g i s pe r fo rmed f o r K number o f c l a s s e s t h a t a r e
p l a c e d i n t h e d i c t i o n a r y as s p l i n e s i n t h e same o r d e r .

Args :
amp : Ampl i tude o f p u l s e s ( f o r p l o t t i n g )
psd : PSD p a r a m e t e r o f p u l s e s ( a l s o f o r p l o t i n g )
E , S1 , S2 ( a r r a y [ n ,K] ) : Means and s t a n d a r d d e v i a t i o n s o f d i s t r i b u t i o n s .
ampbins a r r a y ( [ n ,K] ) : Ampl i tude c e n t e r s o f each s l i c e .
smooth ( a r r a y [ 3 ,K] ) : Array o f smooth ing p a r a m e t e r s .
kno t ( a r r a y [ 3 ,K] ) : Array o f k n o t s f o r t h e smooth ing s p l i n e
f i t n u m : number o f f i t s

R e t u r n s :
p s d f i t s : D i c t i o n a r y o f smooth s p l i n e f i t s f o r each p a r a m e t e r

' ' '
# r e s h a p e ampbins i f needed
# ampbins = np . a r r a y ( ampbins ) . r e s h a p e ( ( f i tnum ,−1) )
# Add v a l u e s t o t h e d i c t i o n a r y t o be p i c k l e d
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p s d f i t s = {}
p s d f i t s [ ' E ' ] = [ ]
p s d f i t s [ ' S1 ' ] = [ ]
p s d f i t s [ ' S2 ' ] = [ ]

f o r i i n r a n g e ( f i t n u m ) :
# means
E f i t = i n t e r p o l a t e . U n i v a r i a t e S p l i n e ( ampbins , E [ i ] , k= kno t [ i ] [ 0 ] ,

s=smooth [ i ] [ 0 ] )
# s t a n d a r d d e v i a t i o n s
S 1 f i t = i n t e r p o l a t e . U n i v a r i a t e S p l i n e ( ampbins , S1 [ i ] , k= kno t [ i ] [ 1 ] ,

s=smooth [ i ] [ 1 ] )

S 2 f i t = i n t e r p o l a t e . U n i v a r i a t e S p l i n e ( ampbins , S2 [ i ] , k= kno t [ i ] [ 2 ] ,
s=smooth [ i ] [ 2 ] )

# Append e v e r y t h i n g t o t h e c o r r e c t d i c t i o n a r y v a l u e
p s d f i t s [ ' E ' ] . append ( E f i t )
p s d f i t s [ ' S1 ' ] . append ( S 1 f i t )
p s d f i t s [ ' S2 ' ] . append ( S 2 f i t )

r e t u r n p s d f i t s

d e f s a v e p s d f i t s ( p s d f i t s , o u t p u t _ f i t f i l e ) :
' ' ' Saves t h e d i c t i o n a r y o f PSD f i t s t o an o u t p u t f i l e

The psd f i t f i l e s h o u l d be saved once t h e f i t f o r e v e r y c h a n n e l i s
c o m p l e t e .

Args :
p s d f i t s : D i c t i o n a r y o f f i t f u n c t i o n s f o r p a r a m e t e r s
o u t p u t _ f i t f i l e : The d e s t i n a t i o n f i l e f o r s a v i n g t h e f i t s .

' ' '
f o u t = open ( o u t p u t _ f i t f i l e , 'w ' )
p i c k l e . dump ( p s d f i t s , f o u t )
f o u t . c l o s e ( )

A.3 3D Imaging

' ' '
S e r i e s o f f u n c t i o n s f o r c o n v e r t i n g c o r r e l a t e d d a t a p o i n t s i n t o s o u r c e

l o c a t i o n s t h i s one i n c l u d e s u n c e r t a n t i e s
' ' '

i m p o r t numpy as np

d e f s c a t t e r i n g _ e n e r g y ( d i s t , de lT ) :
' ' '

C a l c u l a t i n g ne u t on e ne rg y a f t e r s c a t t e r from f i r s t d e t e c t o r
P a r a m e t e r s :

d i s t : D i s t a n c e between i n t e r a c t i o n s
de lT : T r a v e l t ime between i n t e r a c t i o n s ( ns )

Re tu rn :
Energy between two s c a t t e r s

' ' '
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m_n = 1 .6749 e−27
de lT = de lT / 1 . e9
e rg1 = ( m_n / 2 . ) * ( ( d i s t / 1 0 0 ) **2 / de lT **2) * 6 .242 e12
r e t u r n e rg1

d e f c a l c _ i n c i d e n t ( d i s t , delT , e rg_dep ) :
' ' '

C a l c u l a t e i n c i d e n t e n e r gy and open ing a n g l e o f t h e cone
Args :

d i s t : D i s t a n c e between i n t e r a c t i o n s
de lT : The d i f f e r e n c e i n t ime between two i n t e r a c t i o n s
e rg_dep : e ne r gy d e p o s i t e d i n f i r s t d e t e c t o r (MeV)

' ' '
# d e f i n e c o n s t a n t s append numbers t o r e c o r d a r r a y
e rg1 = s c a t t e r i n g _ e n e r g y ( d i s t , de lT )
e rg0 = erg_dep + e rg1
a n g l e = np . a r c c o s ( np . s q r t ( e rg1 / e rg0 ) )
r e t u r n ang le , e rg0

d e f r o d r i g u e s ( k , v , t h e t a , mode= ' un i fo rm ' ) :
' ' ' R o t a t e v e c t o r v a b o u t a x i s o f v e c t o r k by a n g l e t h e t a u s i n g t h e
r i g h t hand r u l e

P a r a m e t e r s :
k : u n i t v e c t o r t o t u r n on .
v : u n i t v e c t o r b e i n g t u r n e d :
t h e t a : a n g l e o f r o t a t i o n
mode : D e f a u l t = ' un i fo rm ' , r o t a t e s a l l t h e v e c t o r s , ' s p e c i f i c ' , each

v e c t o r i s r o t a t e s a c c o r d i n g t o c o r r e s p o n d i n g a n g l e
Re tu rn :

vn ( d a t a _ p o i n t s , c o r d i n a t e s , t h e t a ) : R o t a t e d v e c t o r n
' ' '
i f mode== ' un i fo rm ' :

vn = v [ : , : , None ]* np . cos ( t h e t a ) + np . c r o s s ( k , v ) [ : , : , None ]* np . s i n ( t h e t a ) +( k
* ( k*v ) . sum ( 1 ) [ : , None ] ) [ : , : , None ]*(1−np . cos ( t h e t a ) )

e l i f mode== ' s p e c i f i c ' :
vn = v*np . cos ( t h e t a ) [ : , None ] + np . c r o s s ( k , v ) *np . s i n ( t h e t a ) [ : , None ] + ( k * ( k*v

) . sum ( 1 ) [ : , None ] ) *(1−np . cos ( t h e t a ) ) [ : , None ]
vn = vn [ : , : , None ]

r e t u r n vn

d e f g e t _ v e c t o r ( p0 , p1 ) :
' ' '
Ge ts t h e v e c t o r and i t s m a g n i t u r e from two p o i n t s
p0 −−−−−−> p1
P a r a m e t e r s :

p0 : F i r s t p o i n t
p1 : Se co n t p o i n t

R e t u r n s :
vec : Ve c t o r d e f i n e d by two p o i n t s
d i s t : d i s t a n c e between two p o i n t s ( o r magn i tude o f t h e v e c t o r )

' ' '

vec = p0−p1
d i s t = np . s q r t ( np . sum ( vec * * 2 , 1 ) )
r e t u r n vec , d i s t

d e f so lve_R ( f , d , v , t ) :
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' ' '
S o l v e s f o r t h e two p o s s i b l e s o l u t i o n s o f R
Args :

d : d i s t a n c e between n e u t r o n and gamma ( cm )
v : speed o f i n c i d e n t n e u t r o n (m/ s )
f : d o t p r o d u c t o f R u n i t v e c t o r and g−n u n i t v e c t o r
t : t ime between gamma−n e u t r o n e v e n t s ( ns )

R e t u r n s :
R1 , R2 : The two s o l u t i o n s f o r R

' ' '
c = 3 . e8
d = d / 1 0 0 .
t = t / 1 . e9
f = f . T
R = ( np . s q r t ( v **2*( c **2* d**2 − 2* c **2* d* f * t *v + c **2* t **2* v**2 + d **2* f **2*

v**2 − d **2* v **2 ) )
+ c **2* t *v − d* f *v **2) / ( c **2 − v **2)

R = R . T
r e t u r n R* 100 .

d e f im3_type ( ) :
' ' '
R e t u r n s t h e 3d imaging d a t a t y p e which i n c l u d e s :
n 0 l o c ( 3 , ) : L o c a t i o n ( cm ) of f i r s t n e u t r o n s c a t t e r
n 1 l o c ( 3 , ) : L o c a t i o n ( cm ) of second n e u t r o n s c a t t e r
g l o c ( 3 , ) : L o c a t i o n ( cm ) of t h e gamma i n t e r a c t i o n
n n t : Time ( ns ) be tween f i r s t and second s c a t t e r
g n t : Time ( ns ) be tween gamma and n e u t r o n s c a t t e r
n0e rg : D e p o s i t e d e ne r gy i n f i r s t n e u t r o n i n t e r a c t i o n
' ' '
im_type = np . d t y p e ( [ ( ' n 0 l o c ' , ' f l o a t ' , 3 ) , ( ' n 1 l o c ' , ' f l o a t ' , 3 ) , ( ' g l o c ' , ' f l o a t '

, 3 ) ,
( ' n n t ' , ' f l o a t ' ) , ( ' g n t ' , ' f l o a t ' ) , ( ' n0e rg ' , ' f l o a t ' ) ] )

r e t u r n im_type

d e f im2_type ( ) :
' ' '
R e t u r n s t h e 2d imaging d a t a t y p e which i n c l u d e s :
n 0 l o c ( 3 , ) : L o c a t i o n ( cm ) of f i r s t n e u t r o n s c a t t e r
n 1 l o c ( 3 , ) : L o c a t i o n ( cm ) of second n e u t r o n s c a t t e r
n n t : Time ( ns ) be tween f i r s t and second s c a t t e r
n0e rg : D e p o s i t e d e ne r gy i n f i r s t n e u t r o n i n t e r a c t i o n
' ' '

im_type = np . d t y p e ( [ ( ' n 0 l o c ' , ' f l o a t ' , 3 ) , ( ' n 1 l o c ' , ' f l o a t ' , 3 ) ,
( ' n n t ' , ' f l o a t ' ) , ( ' n0e rg ' , ' f l o a t ' ) ] )

r e t u r n im_type

d e f c a r t 2 s p h e r e ( xyz ) :
' ' ' C o n v e r t s c a r t e s i a n t o s p h e r i c a l c o o r d i n a t e s
' ' '
r = np . s q r t ( np . sum ( xyz * * 2 , 1 ) )
t h e t a = np . a r c t a n 2 ( xyz [ : , 1 ] , xyz [ : , 0 ] )
p h i = np . a r c c o s ( xyz [ : , 2 ] / r )
r t p = np . a r r a y ( [ r , t h e t a , p h i ] ) . T
r e t u r n r t p

d e f s p h e r e 2 c a r t ( r t p ) :
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' ' ' C o n v e r t s s p h e r i c a l t o c a r t i s i a n c o o r d i n a t e s
' ' '

x = r t p [ : , 0 ] * np . cos ( r t p [ : , 1 ] ) *np . s i n ( r t p [ : , 2 ] )
y = r t p [ : , 0 ] * np . s i n ( r t p [ : , 1 ] ) *np . s i n ( r t p [ : , 2 ] )
z = r t p [ : , 0 ] * np . cos ( r t p [ : , 2 ] )
xyz = np . a r r a y ( [ x , y , z ] ) . T
r e t u r n xyz

d e f g e t _ s o u r c e ( da t a , n _ t h e t a s = 100) :
' ' '
R e t u r n s s o u r c e p o i n t s i n c a r t e s i a n c o o r d i n a t e s based on t h e i n p u t d a t a

P a r a m e t e r s :
d a t a : Record a r r a y o f l o c a t i o n s , t i m e s and e ne rg y i n f i r s t n e u t r o n s c a t t e r
n _ t h e t a s : Number o f s o u r c e l o c a t i o n s t o throw p e r cone , i f 1 t h e n u s e s

random
o t h e r w i s e i t s a un i fo rm d i s t r i b u t i o n

Re tu rn :
s o u r c e ( n_evne t s , 3 c o o r d i n a t e s , n _ t h e t a s ) : Array o f t h e p o s s i b l e s o u r c e

p o i n t s based on t h e i n p u t .
T

' ' '

# g e t t h e u n i t v e c t o r t h a t d e f i n e s t h e n−n s c a t t e r a x i s
nn_vec , nn_d = g e t _ v e c t o r ( d a t a [ ' n 0 l o c ' ] , d a t a [ ' n 1 l o c ' ] )
nn _h a t = nn_vec / nn_d [ : , None ]
# g e t v e c t o r and magni tude t h a t d e f i n d s t h e n−g a x i s
ng_vec , ng_d = g e t _ v e c t o r ( d a t a [ ' g l o c ' ] , d a t a [ ' n 0 l o c ' ] )
ng _h a t = ng_vec / ng_d [ : , None ]
# g e t en e r g y and open ing a n g l e o f t h e cone
t h e t a 1 , e rg0 = c a l c _ i n c i d e n t ( nn_d , d a t a [ ' n n t ' ] , d a t a [ ' n0e rg ' ] )
v_n = np . s q r t ( 2 . * e rg0 / ( 9 3 9 . 5 / 3 . e8 **2) )
# d e c l i n e nn_ ha t by t h e open ing a n g l e o f t h e cone
norm_nn = np . c r o s s ( [ 1 , 1 , 1 ] , nn _h a t )
norm_nn = norm_nn / np . s q r t ( np . sum ( norm_nn * * 2 . , 1 ) ) [ : , None ]
n s _ h a t = n n_ ha t *np . cos ( t h e t a 1 ) [ : , None ]+ np . s i n ( t h e t a 1 ) [ : , None ]* np . c r o s s (

norm_nn , nn _h a t )
# r o t a t e n s _ h a t a round g i v e n a z i m u t h a l a n g l e a round t h e cone
i f n _ t h e t a s >1:

c o n e _ t h e t a s = np . l i n s p a c e ( 0 , np . p i *2 , n _ t h e t a s )
c o n e _ h a t = r o d r i g u e s ( nn_hat , n s_ha t , c o n e _ t h e t a s , mode= ' un i fo rm ' )

e l s e :
c o n e _ t h e t a s = np . random . r and ( n s _ h a t [ : , 0 ] . s i z e ) *2* np . p i
c o n e _ h a t = r o d r i g u e s ( nn_hat , n s_ha t , c o n e _ t h e t a s , mode= ' s p e c i f i c ' )

# c a l c u l a t e d i s t a n c e r f o r each p o i n t and g e t t h e f i n a l s o u r c e p o i n t
f = ( c o n e _ h a t * ng _h a t [ : , : , None ] ) . sum ( 1 ) # c o s i n e o f a n g l e s between cone

s u r f a c e and n−g v e c t o r
Rn = so lve_R ( f , ng_d , v_n , d a t a [ ' g n t ' ] )
s o u r c e = c o n e _ h a t *Rn [ : , None ] + d a t a [ ' n 0 l o c ' ] [ : , : , None ]

r e t u r n s o u r c e
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APPENDIX B

Math

B.1 3D Imaging

The solution to the quadratic equation, shown Section 7.4, that yields the distance from the fist

neutron interaction to the source along the length of the projected cone is

Rn =
c2tγ,nvn − dv2nµ±

√
v2n
(
c2(t2γ,nv

2
n − 2dvnµtγ,n + d2) + v2nd

2(µ2 − 1)
)

c2 − v2n
(B.1)

The proof will demonstrate that only one of those roots is a valid solution, because the speed of

the neutron has to be less than the speed of light vn < c. First, Eq. 7.8 can be rearranged to solve

for source-gamma distance:

Rγ = c

(
Rn

vn
− tγ,n

)
(B.2)

Rγ has to be positive, therefore:

tγ,n <
Rn

vn
(B.3)
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This inequality can be substituted back into Eq. B.1:

tγ,n <
c2tγ,nvn − dv2nµ±

√
v2n
(
c2(t2γ,nv

2
n − 2dvµtγ,n + d2) + v2d2(µ2 − 1)

)
vn(c2 − v2n)

c2tγ,n − tγ,nv2n < c2tγ,n − dvnµ±
√
c2(t2γ,nv

2
n − 2dvµtγ,n + d2) + v2nd

2(µ2 − 1)

dvnµ− tγ,nv2n < ±
√
c2(t2γ,nv

2
n − 2dvnµtγ,n + d2) + v2nd

2(µ2 − 1) (B.4)

This is a key part in the proof, because at this point one has to decide which sign, positive or

negative, to choose for the term on the right-hand-side. The proof is in showing which sign satisfies

the inequality. Assuming the sign has to be negative, then by definition both sides of Eq. B.4 have

to be less than zero. Therefore, if both sides are squared then the inequality sign has to flip:

(dvnµ)2 − 2dv3nµtγ,n + t2γ,nv
4
n > c2(t2γ,nv

2
n − 2dvµtγ,n + d2) + v2nd

2(µ2 − 1)

v2n(t2γ,nv
2
n − 2dvnµt+ d2) > c2(t2γ,nv

2
n − 2dvnµtγ,n + d2)

The validity of this expression hinges on whether the term in the parenthesis is positive or negative.

It is indeed always positive because

t2γ,nv
2
n − 2dvnµtγ,n + d2 ≥(d− tγ,nvn)2 > 0

−1 ≤ µ ≤1.

and therefore the negative solution is invalid. Assume the positive sign right-hand-side of Eq. B.4,

and the left-hand-side has to be positive because that is only valid result from taking a square root:

|dvnµ− tγ,nv2n| <
√
c2(t2γ,nv

2
n − 2dvµtγ,n + d2) + v2nd

2(µ2 − 1)√
v2n(t2v2n − 2dvnµtγ,n + d2µ2) <

√
c2(t2γ,nv

2
n − 2dvµtγ,n + d2) + v2nd

2(µ2 − 1)
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Since both sides have to be positive, squaring them maintains the inequality. The terms can be

re-arranged as before and result in

v2n(t2γ,nv
2
n − 2dvnµt+ d2) < c2(t2γ,nv

2
n − 2dvnµtγ,n + d2)

vn < c.

which is demonstrably true. Therefore, the solution for the distance from the first neutron scatter

and possible source location along the surface of a cone is:

Rn =
c2tγ,nvn − dv2nµ+

√
v2n
(
c2(t2γ,nv

2
n − 2dvnµtγ,n + d2) + v2nd

2(µ2 − 1)
)

c2 − v2n
(B.5)
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