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Abstract

In contrast to traditional CPS where a designer can specify an action plan for

each agent, in CPS with strategic agents, every agent acts selfishly and chooses his

strategy privately so as to maximize his own objective. In this dissertation, we study

problems arising in the design and analysis of CPSs with strategic agents.

We consider two classes of design problems. In the first class, the designer utilizes

her control over decisions and resources in the system to incentivize the agents via

monetary incentive mechanisms to reveal their private information that is crucial for

the efficient operation of the system. In particular, we consider market mechanism

design for the integration of renewable energy and flexible loads into power grids.

We consider a model that captures the dynamic and intermittent nature of these

resources, and demonstrate the advantage of dynamic market mechanism over static

market mechanisms that underly the existing architecture of the electricity markets.

In the second class of design problems, the designer utilizes her informational ad-

vantage over the agents and employ informational incentive mechanisms to disclose

selectively information to the agents so as to influence the agents’ decisions. Specifi-

cally, we consider the design of public and private information disclosure mechanisms

in a transportation system so as to improve the overall congestion.

We also study the analysis of CPS with strategic agents as a stochastic dynamic

game of asymmetric information. We present a set of conditions sufficient to char-

acterize an information state for each agent that effectively compresses his private

and common information over time. This information state provides a sufficient

statistic for decision-making purposes in strategic and non-strategic settings. Ac-

cordingly, we provide a sequential decomposition of the dynamic game over time,

and formulate a dynamic program that enables us to determine a set of equilibria

of the game. The proposed approach generalizes and unifies the existing results for

xii



dynamic teams with non-classical information structure and dynamic games with

asymmetric information.
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Chapter 1

Introduction

1.1 Motivation

In recent years, societal and environmental changes along with advances in com-

munication and information technologies have led to the emergence of new dynamic

multi-agent systems in which a group of autonomous selfish decision makers (DMs)

interact with one another, as well as their surrounding environment, over time. For

instance, the traditional government-regulated electricity markets have been trans-

formed to competitive electricity markets where revenue-maximizing generators com-

pete with one another to sell electricity to loadserving entities over the power network

[57, 58]. Another example is the advent of navigation applications (e.g. Google map,

Waze, etc.), which have been developed following the commercialization of GPS tech-

nology and smart phones, and provide traffic information and routing suggestions to

drivers in transportation networks [10].

The above-emerging systems can be modeled as cyber-physical systems (CPSs)

with strategic DMs. By cyber-physical system, we refer to the integration of phys-

ical and cyber components of a dynamic system, each operating in different spatial

and temporal scales. In a traditional CPS where decisions and/or information are

decentralized only due to the limitation/cost in communications and processing, a

designer has control over the operation of every local component of the system, and

thus, can design (in principle) its components using techniques from control and

1



optimization theories. However, in designing a CPS with strategic DMs, a designer

cannot dictate the behavior of DMs. In a CPS with strategic DMs, each DM acts

autonomously considering his1 knowledge about the overall operation of the CPS

as well as other DMs’ behavior over time. Each DM makes private (imperfect) ob-

servations about the current state of the CPS as well as other DMs’ behavior over

time. Combining this information along with his anticipation about the other DMs’

behavior, each agent makes decisions in real time trying to maximize his own objec-

tive. The agents’ decisions, in turn, affect the evolution of the CPS over time, and

thus, determine its overall performance. Therefore, it is important to understand

how strategic DMs interact with a CPS and develop analysis and design approaches

to CPSs that incorporate the DMs’ selfish behavior in real time.

The main focus of this dissertation is to work towards developing analysis and

design approaches to CPSs with strategic DMs. We study specific problems that are

motivated by theoretical challenges in the study of CPSs with strategic agents as

well as particular applications where these systems are prevailing. We discuss below

the general framework that underlies the problems we study in this dissertation.

1.2 Research Framework

Throughout this dissertation, we assume that DMs who interact with a CPS are

rational Bayesian agents [50]. We call a DM a Bayesian agent if he forms his belief

about the current state of the CPS by using Bayesian inference. We call a DM a

rational agent if whenever he makes a decision he is not limited by the complexity of

the decision problem he faces, a cognitive limitation (e.g. imperfect recall), or time

available to make a decision.

A CPS with strategic agents can be described by a game that has the following

two key components:

(i) A decision tree G that determines agents’ feasible actions at any time, system

dynamics given the agents’ actions, and agents’ utility along each path of the CPS’s

1Throughout this dissertation we refer to the designer/principal as “she” and to agent/DM as
“he”.
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evolution. As seen in Figure 1.1, the primitive random variables that appear in the

evolution of the CPS can be modeled as nature’s actions.

(ii) An information structure S that determines the information that each agent

knows about the current state of the CPS, as well as other agents’ information, at

any time (see Figure 1.2).

Figure 1.1: An example of decision tree G with two agents.

Figure 1.2: An example of information structure S with two agents.

The above components of a CPS capture the two main elements present in any

decision making problem: decisions and information (see Figure 1.3). It is the

interplay between decisions and information that determines the outcome/evolution

of a CPS with strategic agents. The interplay between decisions and information is

more subtle and essential in a CPS with strategic agents and asymmetric information.

In CPS with strategic agents and asymmetric information, agents’ decisions influence

the information that each agent has about the current state of the system and other

agents’ information and decisions over time. This is known as signaling. Moreover,

when agents are strategic with misaligned objectives, each agent has an incentive

3



to make decisions so as to manipulate the information of other agents and influence

their behavior, in an attempt to maximize his own objective.

Figure 1.3: The main two components of a CPS with strategic agents

1.3 Problem Formulations and Thesis Outline

In this dissertation, we study three classes of problems concerning the analysis

and design of CPS with strategic agents using the framework described above. To

design a CPS, a designer can alter its decision tree G and/or its information structure

S depending on his resources and control over various components of the CPS in the

specific application of interest. In the first class of problems, we consider monetary

incentive mechanisms where a designer alters the decision tree G by modifying the

agents’ payoffs through payments. In the second class of problems, we consider

informational incentive mechanisms where a designer alters the information structure

S by disclosing information to the agents. In the third class of problems, we consider

the analysis of a CPS when the decision tree G and information structure S are fixed,

and we want to evaluate the overall outcome of the strategic agents’ interaction with

the CPS.

1.3.1 Monetary Incentive Mechanisms

There are many instances of dynamic CPSs where strategic agents possess private

information that is crucial for the efficient operation of the system. In these instances,

the designer (principal) has authority/control over the decisions and resources but

does not know all information that is necessary to evaluate the performance of every

decision available to her over time. For instance, in a power grid, the independent

4



system operator needs to know the private production cost of all generators so as to

solve the optimal power flow problem and determine the energy generation for each

of them. In these instances, the designer (principal) can utilize his authority over

the decisions and resources in the CPS and alter the decision tree G so as to induce

the agents to reveal (directly or indirectly) the information she needs to know for

the operation of CPS.

We note that when agents are non-strategic, a system designer faces a problem

that is equivalent to a resource allocation problem. Therefore, the mechanism design

problem described above can be interpreted as the strategic analogue of resource

allocation problems when the agents are strategic.

In a strategic setting where the agents’ objectives are different from that of the

designer, they do not necessarily follow the strategy that is prescribed by her and

reveal their private information. Therefore, the designer needs to provide incentives

so that the agents are willing to follow her proposed strategy prescriptions.

Providing monetary incentive payments is a common instrument the designer

can utilize to incentivize the agents to reveal their information truthfully and follow

her proposed strategies. However, not all strategy prescriptions can be incentivized

through monetary payments. Moreover, when determining the monetary payments,

the designer may further need to consider a tradeoff between the desired outcome

and the resources required to achieve it. Therefore, to determine an optimal strategy

prescription for the agents the designer needs to take into account the feasibility of

the prescribed strategies and the corresponding incentive payments.

In the first two chapters of this dissertation, we study the application of mone-

tary incentive mechanisms in the design of electricity markets for the integration of

renewable energy and flexible load into power grids.

1.3.1.1 Market Mechanisms for Renewable Energy and Flexible Loads

The current electricity market architecture is mainly designed for conventional

generators with slowly varying cost and static information structure, and assume

that the major uncertainty in balancing the demand and supply in a power grid is

5



due to the mismatch between the load forecast and load realization in real time. In

contrast to the production from conventional generators, the energy production from

renewable resources and the availability of flexible loads participating in demand re-

sponse programs depend on variables that are intermittent and become available

dynamically over time. For example, an accurate prediction of wind energy genera-

tion is only feasible within a few minutes of the generation time [56]. Moreover, the

flexibility of thermal loads participating in demand response programs depends on

variables such as temperature that can only be predicted within a few hours [82].

The current practices for the integration of intermittent renewable energy and

flexible loads into the electricity markets are to incorporate them into the existing

two-settlement market architecture (a forward market followed by a real-time market)

along with various subsidies and credits that encourage the investment in renewable

energy generation and flexible loads. However, as the share of renewable energy

generation and flexible loads increases and the supportive program and subsidies

phase out the current practices cannot be sustained [56, 30, 126], and we need to

investigate market mechanisms that are appropriate for the integration of these new

resources and revisit the electricity market structure. In Chapter 2 and Chapter 3

of this dissertation, we study two mechanism design problems for electricity markets

that aim to provide insight into an appropriate market architecture for the integration

of intermittent renewable energy and flexible loads to the power grid.

We consider a dynamic model that accounts for the dynamic and uncertain nature

of energy production from renewable resources and the availability of flexible loads.

In this model, a renewable generator/flexible load receives information about its

generation capacity/flexibility level over time. Using this dynamic setting, we study

the problem of dynamic market mechanism design for the integration of renewable

generation and flexible loads into the power grid. We take a principal-agent view

point and adopt a Bayesian mechanism design framework [25] where the independent

system operator (principal) designs the market rules in advance and announces them

to the generators; the generators then voluntarily participate in the market assuming

that the independent system operator is committed to implementing the market rules

she has announced.
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In the current electricity market architecture, pooling markets along with forward

bilateral trades between generators and utility companies are the main two forms of

market mechanisms that are used to determine energy trades over the power network.

Therefore, using the general dynamic environment described above, we study the

problem of mechanism design within the context of forward contracts and pooling

markets for the integration of renewable energy and flexible loads in Chapter 2 and

Chapter 3, respectively.

1.3.1.2 Forward Contracts for Uncertain Electricity Resources

In electricity markets with conventional generators, it has been shown that hav-

ing forward contracts, alongside the pooling-based electricity markets, lowers the

market price, hedges pricing risks, and increases the reliability of the market oper-

ation [3, 24]. Motivated by these results, we study the problem of optimal forward

contract design for energy procurement (resp. direct control of flexible loads [82])

from a diversified electricity producer with renewable generation (resp. set of flexible

loads) in Chapter 2. Due to the seller’s multiple energy sources (resp. demand con-

straints), the seller has multidimensional private information. Moreover, the seller

has incomplete information about his renewable generation (resp. energy consump-

tion) at T = 1; this information becomes complete at T = 2 with the realization of

wind (resp. temperature).

Assuming the wind (resp. temperature) realizations can be monitored, we char-

acterize the optimal forward contract in which the buyer can accept random energy

delivery (resp. partial direct control of the load) from the diversified energy pro-

ducer (resp. flexible loads). We assume that the buyer needs to make a decision

over the amount of flexible and inflexible loads (resp. amount of renewable and

conventional generations) she schedules based on her agreement with the renewable

generator (resp. flexible load). We show that an optimal procurement mechanism is

a contingent contract. The seller chooses a contingent contract at T = 1 based on

his available private information at that time. At T = 2, the specific allocation and

payment are chosen from the selected contract based on the realization of the wind
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speed (resp. temperature).

We illustrate through examples that the contingent contract described above

provides flexibility to a renewable generator in his generation according to the new

information he receives over time, and enables the load serving-entities to utilize

more effectively the set of potential flexible loads that are available to him.

1.3.1.3 Dynamic Market Mechanisms for Wind Energy

We study the problem of market mechanism design for wind energy in Chapter

3. We first consider a dynamic two-step model with one strategic seller with wind

generation and one buyer that captures the essential elements that appear in the

design of a pooling market for renewable energy. The seller has private information

about his generation capability which he learns dynamically over time. At T = 1 the

seller has imperfect information about his generation capability. At T = 2, the seller

learns more accurate information about the realization of wind speed, and thus, has

perfect information about his generation capability.

We consider (static) forward and real-time mechanisms that take place at time

T = 1 and T = 2, respectively. The formulation of these mechanisms is motivated by

current practices that are in place in Europe and the U.S., respectively [20, 62]. We

further propose a dynamic market mechanism that provides a coupling between the

real-time and forward markets over time. We show that the proposed dynamic mech-

anism outperforms the forward and real-time mechanisms; thus, we demonstrate the

advantage of adopting the dynamic mechanism over a sequence of static mechanisms

for wind energy. On one hand, in contrast to the forward mechanism, the dynamic

mechanism incorporates the additional information arriving over time and provides

flexibility for intermittent wind generation. On the other hand, in contrast to the

real-time mechanism, the dynamic market mechanism provides early information

about wind generation which is necessary to maintain the reliability of power grids

and scheduling of adequate reserves. Moreover, by requiring the seller to reveal his

private information sequentially over time instead of simultaneously when he has all

his information, the dynamic mechanism restricts the seller’s market manipulation
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power. We show that the main advantage of the dynamic mechanism over the real-

time mechanism is due to the fact that in the dynamic mechanism it is possible to

(i) price discriminate different types of generators based on the uncertainty level in

their generation, and (ii) expose generators to the risk of penalty charges.

We further consider two variants of the dynamic mechanism. First, we investigate

the dynamic mechanism that guarantees no penalty risk for the seller. We character-

ize the additional incentive payments the designer needs to provide so as to guarantee

no penalty risk for the seller. We show that the performance of the dynamic mech-

anism with no penalty risk is in general inferior to the dynamic mechanism with

penalty risk. Second, we study the dynamic mechanism with wind monitoring. We

show that when the wind condition is monitored, the outcome of the dynamic mech-

anism improves. This happens because the required incentive payments the designer

needs to provide decrease as the seller cannot manipulate the outcome of the mech-

anism by misrepresenting the wind condition. However, we show that the benefit of

wind monitoring vanishes as the number of possible technologies for wind generation

increases.

We discuss how our results generalize to settings with many sellers using a hand-

icap auction mechanism [38]. In a handicap auction, sellers bid for a set of quantity-

payment options in the forward market. Next, in the real time, sellers receive more

information and bid for modifications in their generation. The allocations are deter-

mined based on the seller’s bids in the real-time market and the quantity-payment

options they choose in the forward market. Moreover, the payment that each seller

receives depends on the outcome of the real-time market as well as the quantity-

payment option he chooses at the forward market.

1.3.2 Informational Incentive Mechanisms

In contrast to the situation described in Section 1.3.1, there are instances of CPS

where the designer (principal) does not have perfect control over the decisions made

in the CPS but has superior information about the current state of the CPS that

is of value to the agents who make the decisions. In many of these systems, the
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implementation of monetary incentive mechanisms in not feasible or desirable. For

instance, in a transportation network where every driver makes his routing decision

individually, the effect of toll payments on traffic flow is limited, and it is not pos-

sible to track the routing decision of every driver and charge them accordingly. In

these instances, the designer can utilize her superior information and provide infor-

mational incentives to the agents by a selective disclosure of information that alters

the information structure S so as to influence the agents’ decisions, and maximize

her own objective.

We note that when the agents are non-strategic, the designer’s problem is equiva-

lent to a real-time source coding problem with a noiseless channel [77, 123, 131, 136].

Therefore, the design of informational incentive mechanisms can be viewed as the

analogue of the real-time source coding problem when agents are strategic.

In a strategic setting, each agent utilizes the information he receives from the

designer to his own advantage and does necessarily follow the actions the designer

suggests. Therefore, the designer needs to reveal her information strategically so that

the agents’ best response to the information they receive maximizes her objective.

There are two general approaches to the study of information design problems.

In the first approach, the designer announces a recommendation policy in advance,

and for every realization of her information about the current state of the system,

she recommends a specific action to every agent according to the recommendation

policy announced before [16, 15]. Therefore, the principal must choose an action

recommendation policy so that it is a best response for each agent to follow/obey

the action recommendation. Optimizing over the set of recommendation policies

which the agents obey, the designer chooses the one that maximizes her objective.

In the second approach, the designer directly works with the agents’ beliefs about

the current state of the CPS and attempts to modify them by disclosing selective

information conditioned on the realization of her information [59, 35]. Assuming

that it is possible to determine the agents’ best response for every realization of

their beliefs, the principal then chooses from all possible modifications of the agents’

beliefs so as to maximize her objective.

In this proposal, using the two approaches discussed above, we study the ap-
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plication of informational incentive mechanisms in the design of advanced traveler

information systems in transportation networks (e.g. variable (dynamic) message

signs on roadsides and/or routing recommendation on GPS-enabled devices).

1.3.2.1 Informational Incentives in Congestion Games

In recent years, the development of navigation applications (e.g. Waze, Google

map) and increasing utilization of variable message signs on roadsides have enabled

the drivers to have better information about the congestion level and the condition

of every link in a transportation network, and thus, make informed routing deci-

sions. The provision of real-time data about road conditions to drivers creates new

opportunities to alleviate congestion in transportation networks.

Several studies have examined the effect of information provision to drivers on

the social welfare, and identified instances where provision of information to drivers

can be harmful and reduce the social welfare as well as the drivers’ utility [78, 4,

14, 33, 73, 69, 124, 1, 74]. This is because in a transportation network every driver

makes his routing decision individually trying to maximize his own utility and does

not consider the negative externality that he creates by increasing the traffic along

the route that he takes.

In Chapter 4, we study the problem of designing an information disclosure mech-

anism in a transportation network. In contrast to the works of [78, 4, 14, 33, 73,

69, 124, 1, 74] that analyze the effect of specific information disclosure policies, we

investigate the problem of optimal design of information disclosure mechanisms in

transportation networks. We consider a congestion game over a parallel two-link

network, where drivers choose their route/link individually trying to minimize their

travel time. The travel time through every route/link in the network depends on the

route’s condition as well as the number of cars traveling through it. We assume that

the condition of one route (safe route) is known to all drivers while the condition of

the other route (risky route) is random and only known to the designer (principal).

The principal wants to design an information disclosure mechanism so as to mini-

mize the overall traveling time (social welfare). We consider two cases: (i) when the

11



principal can only disclose information publicly to all drivers (e.g. variable message

signs), and (ii) when the principal can disclose information privately to each driver

(e.g. navigation applications). We investigate these two cases using the two general

approaches to information design described above in Section 1.3.2.

We show that when the principal employs a public information disclosure mech-

anism her optimal mechanism depends on the second derivative of the social welfare

function with respect to the risky route’s condition. If the social welfare is a convex

(resp. concave) function of the risky route’s condition then it is socially optimal to

disclose no information (resp. perfect information) about the risky routes’ condition

to the drivers. However, if the social welfare is neither convex nor concave, there

may exist a probability distribution over the possible risky route’s condition such

that an optimal mechanism is a partial information disclosure mechanism.

When the principal can employ private information disclosure mechanisms, we

show that the principal can improve the social welfare by coordinating the individual

recommendation she makes to the drivers based on the realization of the risky route’s

condition. When the uncertainty about the risky routes’ condition is high relative

to the ex-ante difference in the routes’ conditions (i.e. the value of information

is high), the principal can achieve the socially efficient routing outcome using an

optimal private information disclosure mechanism. When the uncertainty about

the risky routes’ condition is low relative to the ex-ante difference in the routes’

conditions (i.e. the value of information is low), the principal does not have enough

power to persuade the drivers to change their routing decision so as to achieve the

socially efficient routing outcome; nevertheless, by disclosing private information to

each driver, the principal can improve the social welfare compared to the one under

the “no information disclosure” mechanism.

In Section 4.6, we investigate the problem of dynamic information disclosure

mechanism design in a dynamic setting with time horizon T = 2, where the risky

route’s condition has uncontrolled Markovian dynamics and the drivers learn from

their experience at t = 1. We consider the following three scenarios for what drivers

learn at t = 1: (i) the drivers only learn from the information they receive from the

principal and do not make any additional observation about the risky route’s condi-
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tion and/or the number of cars on each route, (ii) in addition to the information they

receive from the principal at t = 1, the drivers who take the risky route at t = 1 learn

its condition perfectly, and (iii) in addition to the information they receive from the

principal at t = 1, the drivers observe the number of cars on the route they take at

t = 1. Due to privacy constraints and practicality issues, we assume that the infor-

mation the principal discloses to every driver at t = 2 does not depend on his actual

routing decision at t = 1. Using numerical simulations, we conjecture that in sce-

nario (i) the principal can achieve the same performance per time step in a dynamic

setting as in the static setting even though the drivers learn from the information

they receive at t = 1. However, in scenarios (ii) and (iii), where the drivers make

additional observation than in scenario (i), the performance of an optimal dynamic

information mechanism per time step decreases as the correlation between the risky

route’s conditions at t = 1 and t = 2 increases. In particular, for scenario (ii) we

identify instances where the principal’s optimal information mechanism is to commit

to revealing the risky route’s condition at t = 2 so that the drivers do not have an

incentive to experiment by taking the risky route at t = 1. Moreover, for scenario

(iii), we identified instances where the principal’s optimal information mechanism is

to not utilize all her information about the risky route’s condition at t = 1 so as to

have a higher information superiority at t = 2.

1.3.3 Dynamic Games with Asymmetric Information

Many CPSs can be modeled as a dynamical system with controlled Markovian

dynamics. Therefore, given a fixed decision tree G and information structure S, we

can analyze CPSs with strategic agents as stochastic dynamic games with asym-

metric information and Markovian dynamics. In dynamic games with asymmetric

information, agents have different observations of the game evolution (i.e. current

state of the CPS), and thus, different information histories. Every agent plays a

strategy which is a function of his information history. In order to anticipate other

agents’ strategies over time, an agent needs to form a belief about other agents’ infor-

mation histories so as to predict other agents’ decisions. Therefore, to characterize
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the outcome of a dynamic game with asymmetric information we need to define an

assessment that consists of a set of strategies for all agents as well as a set of beliefs

for all agents at every information state. In our work, we adopt Perfect Bayesian

Equilibrium (PBE) as the solution concept to study the outcome of dynamic games

with asymmetric information. A PBE is an assessment that satisfies the sequen-

tial rationality and consistency conditions [43]. Sequential rationality requires that

each agent’s strategy is optimal at each of his information sets given his belief and

other agents’ strategies. Consistency requires that each agent’s belief at each of his

information sets complies with Bayes’ rule given all agents’ strategies.

While the definition of PBE provides a formalization of the connections between

the agents’ strategies and information/beliefs in dynamic games with asymmetric

information, it does not provide a tractable methodology for their analysis. In a dy-

namic game with asymmetric information, an agent’s belief about the current state

of the game at any time t depends on the strategy of all other agents up to time

t; this dependency is captured by the consistency condition, and it is known as sig-

naling. Moreover, at any time t, an agent chooses his strategy from time t onward

according to his belief about the current state of the game at time t; this depen-

dency is captured by the sequential rationality condition. Therefore, there exists a

circular dependency between all agents’ strategies and beliefs over time. As a re-

sult, one needs to determine the agents’ strategies and beliefs simultaneously for the

whole time horizon so as to satisfy the consistency and sequential rationality condi-

tions. Furthermore, as an agent gathers more information over time, the domains of

his strategies grow. Consequently, the determination of an agent’s strategy at any

time has a complexity that grows exponentially over time. As a result, the exist-

ing literature has only studied special instances of dynamic games with asymmetric

information (see [79, 42, 138, 44, 89, 46, 98, 97, 127, 108]).

In Chapter 5 of this dissertation, we aim to develop a general approach to the

study of dynamic games with asymmetric information and propose a tractable ap-

proach to determine a specific set of PBE of these games.
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1.3.3.1 A Common Information Approach to Dynamic Games with Asym-

metric information

Dynamic games with asymmetric information can be considered as the analogue of

decentralized stochastic control problems [53, 100] when agents are strategic and have

different objectives. Alternatively, dynamic games with asymmetric information can

be considered as a generalization of dynamic games with symmetric information [43,

41, 9] when agents possess private information in addition to the common information

they share. The authors of [91, 90] and [81] propose a tractable methodology to

study decentralized stochastic control problems and dynamic games with symmetric

information, respectively. In Chapter 5, we provide an analogue of the results of

[91, 90, 81] for dynamic games with asymmetric information.

The authors of [81] consider Markovian dynamic games with symmetric informa-

tion. They propose the common information based belief about the system state as

the information state for all agents, and characterize a class of subgame perfect equi-

libria (SPE) for dynamic games with symmetric information called Markov Perfect

Equilibrium (MPE). In an MPE, agents play strategies that are only functions of

the common information based belief (information state). Using the notion of MPE,

they propose a sequential decomposition of Markovian dynamic games with symmet-

ric information, and formulate a dynamic program that can be used to determine the

set of MPE of the game. The approach proposed in [81] does not apply to dynamic

games with asymmetric information simply because it does not consider the agents’

private information and beliefs about other agents’ private information over time.

The authors of [91, 90] study dynamic decentralized stochastic control problems

with non-classical information structure. Using the common information among the

agents, they present a centralized stochastic control problem that is equivalent to

the original problem as follows. For every local controller, they consider a fictitious

controller who has access to the local controller’s common information but not his

private information. Every fictitious controller has to determine a sequence of pre-

scriptions that determine the corresponding local controller’s action at every time

for every possible realization of his private information. The problem of determining
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the optimal strategies for the fictitious controllers is a centralized stochastic control

problem since they have symmetric information. Using standard results in centralized

stochastic control literature [67], they characterize a sufficient statistic/information

state for every agent, sequentially decompose the problem over time, and formulate a

dynamic program that can be used to determine the optimal strategy of the original

problem.

The works of [89, 46] have utilized the common information approach proposed

in [91, 90] to study a class of dynamic games with asymmetric informations where

there is no signaling among agents, i.e. agents’ beliefs are strategy independent. In

such situations, the circular coupling between strategies and beliefs, discussed above,

does not exist; this feature is a significant simplification assumed in the solution

methodology for the dynamic games considered in [89, 46]. Such a methodology

does not work for games where there is signaling among agents (i.e. agents’ beliefs

are strategy dependent).

In this chapter, we propose a general approach for the study of dynamic games

with asymmetric information when signaling occurs. We present a set of conditions

sufficient to characterize information states where the agents’ common and private

information are effectively compressed in a mutually consistent manner. We identify

instances of dynamic games with asymmetric information where we can characterize

an information state for every agent that has a time-invariant domain.

When the agents are non-strategic, we show that for every arbitrary but fixed

agents’ strategies, there exists an equivalent set of strategies that utilize only the

above-mentioned information state and results in the same expected flow of utility

over time (Theorem 5.4). This result generalizes the results of [90, 91] for decentral-

ized stochastic control problems in two aspects. First, the set of conditions sufficient

to characterize an information state presented in this dissertation are more general

than those of [90, 91] and includes them as special cases. In contrast to the approach

presented in [90, 91] that requires the agents to use all of their private information (or

use perfectly a predetermined stored memory of it), in our approach the agents’ pri-

vate information can be effectively compressed according to the sufficient conditions

presented in Section 5.6.
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Table 1.1: An overall view of the dissertation

Based on the information state characterized in Section 5.6, we introduce the

notion of Common Information Based Perfect Bayesian Equilibrium (CIB-PBE) that

characterizes a set of outcomes for dynamic games. Using the notion of CIB-PBE, we

provide a sequential decomposition of the dynamic games over time and formulate

a dynamic program that enables us to compute the set of CIB-PBEs via backward

induction. The results appearing in Chapter 5 generalize the results of [97, 98, 116]

that consider special instances of dynamic games with asymmetric information when

signaling occurs.

We discuss the connection between the sets of PBEs and CIB-PBEs in dynamic

games with asymmetric information and argue that when the underlying system

is highly dynamic and there exists a significant information asymmetry among the

agents, the notion of CIB-PBE provides a plausible prediction of the outcome in

practice. We provide conditions under which we can guarantee the existence of CIB-

PBEs. Using these conditions, we prove the existence of CIB-PBEs for zero-sum

dynamic games and special instances of non-zero-sum dynamic games.

The information state characterized in Chapter 5 provides a sufficient statistic

for decision making purposes in strategic and non-strategic settings. Therefore, we

propose a universal approach to dynamic decision problems in CPSs with strategic

and non-strategic agents that can be used to study dynamic games among teams.
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1.4 Contributions of the Thesis

An overall view of the dissertation can be seen in Table 1.1. The main contribu-

tion of this dissertation can be summarized as follows:

• Market mechanisms for renewable energy and flexible loads (Chapter 2)

– We propose a two-time step model that captures the dynamic and uncer-

tain nature of energy generation from renewable resources and allows for

scheduling of flexible/inflexible loads based on the availability of renew-

able generation.

– We investigate the problem of forward contract design for uncertain elec-

tricity resources (e.g. wind generators, flexible loads) between a buyer

and seller with general cost/utility functions and multi-dimensional pri-

vate information. We show that the optimal contract is a contingent

contract that is signed at t = 1 and determines the payment and the en-

ergy quantity for every realization of the uncertain variable (e.g. wind,

temperature) at t = 2.

– We present a modified payment function contingent on the realization of

the uncertainty that achieves any arbitrary risk sharing between the buyer

and seller without changing the energy allocation function. In particular,

we show that it is possible to ensure the stronger notion of ex-post individ-

ual rationality instead of interim individual rationality at no performance

loss.

• Dynamic market mechanisms for wind energy (Chapter 3)

– We demonstrate the advantage of dynamic market mechanisms over static

mechanisms (e.g. day-ahead and real-time markets) for a general de-

signer’s objective. A dynamic market mechanism couples dynamically the

outcomes/payments of different markets over time. Compared to a for-

ward pooling market (e.g. day-ahead markets), a dynamic market incor-

porates the additional information that arrives after the market closes, and
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thus, provides flexibility in generation from renewable resources. Com-

pared to a real-time market, a dynamic market gives less manipulation

power to a seller to misreport his generation cost, guarantees a certain

level of commitment by the seller for energy generation, and reveals in

advance the information necessary to schedule the adequate reserve gen-

erators/flexible loads.

– We show that the advantage of the dynamic market mechanism is mainly

due to (i) the designer’s power to price discriminate sellers with different

generation uncertainty (non-uniform pricing) and (ii) the designer’s ability

to expose sellers to the risk of penalty charges.

– We characterize the benefit of wind monitoring on the performance of the

dynamic market mechanism, and show that the value of wind monitoring

decreases as the number of possible generation technologies increases.

• Informational incentives in congestion games (Chapter 4)

– We investigate the problems of optimal public and private information

disclosure mechanism design in a transportation network so as to improve

the social welfare. We show that perfect disclosure of information about

the routes’ conditions is not an optimal mechanism . Therefore, our results

propose a solution to the concern raised in [78, 4, 14, 33, 73, 69, 124, 1, 74]

about the potential negative impact of information provision on the overall

congestion in transportation networks.

– When the principal can employ a private information disclosure mecha-

nism, we show that she can implement the socially efficient routing out-

come by providing coordinated routing recommendation to the drivers if

the value (variance) of her information about the routes’ condition is high

relative to the ex-ante differences in routes’ conditions.

– We investigate the problem of optimal dynamic private information dis-

closure mechanism design in a dynamic two-time step setting where the

routes’ conditions have uncontrolled Markovian dynamics. We identify
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the following three scenarios in which the drivers learn from their expe-

rience at t = 1: (i) they learn from the routing recommendations they

receive at t = 1 (ii) in addition to the routing recommendation they re-

ceive, they observe the condition of the route they take at t = 1 (iii) in

addition to the routing recommendation they receive, they observe the

number of cars (traffic) on the route they take at t = 1. Using numeri-

cal simulation, we conjecture that in scenario (i) the performance of the

optimal dynamic private information disclosure mechanism per time-step

is the same as that of the optimal static private information disclosure

mechanism. However, in scenarios (ii) and (iii) the performance of the

optimal dynamic private information disclosure mechanism decreases as

the correlation among the routes’ conditions at t = 1 and t = 2 increases.

• A common information approach to dynamic games with asymmetric informa-

tion (Chapter 5)

– We present a set of conditions sufficient to characterize an information

state where the agents’ private and common information are effectively

compressed in a mutually consistent manner. We identify instances of

dynamic games with asymmetric information where we can characterize

an information state with a time-invariant domain.

– When agents are non-strategic, we show that for any arbitrary agents’

strategy profile there exists an equivalent set of strategies for the agents

that depend on the above-mentioned information state that results in

the same flow of utility for all agents over time. Therefore, we propose a

general methodology for the study and analysis of dynamic team problems

with asymmetric information and generalize the existing results in [90, 91].

– We introduce a subclass of PBE of dynamic games with asymmetric infor-

mation, called CIB-PBE, that utilizes the above-mentioned information

state for every agent. Using the notion of CIB-PBE, we provide a se-

quential decomposition of the dynamic game over time. Accordingly, we
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formulate a dynamic program that enables us to compute the set of CIB-

PBE of a dynamic game via backward induction.

– We provide conditions under which we can guarantee the existence of

CIB-PBEs in a dynamic game. Using these conditions, we prove the

existence of CIB-PBE for dynamic zero-sum games and specific instances

of dynamic non-zero-sum games.

1.5 Notation

Random variables are denoted by upper case letters, their realization by the

corresponding lower case letter. In general, subscripts are used as time index while

superscripts are used to index agents. For time indices t1 ≤ t2, Xt1:t2 (resp. ft1:t2(·)) is

the short hand notation for the random variables (Xt1 , Xt1+1, ..., Xt2) (resp. functions

(ft1(·), . . . , ft2(·))). When we consider a sequence of random variables (resp. func-

tions) for all time, we drop the subscript and use X to denote X1:T (resp. f(·) to de-

note f1:T (·)). For random variables X1
t , . . . ,X

N
t (resp. functions f 1

t (·), . . . ,fNt (·)), we

use Xt :=(X1
t , . . . ,X

N
t ) (resp. ft(·) :=(f 1

t (·), . . . ,fNt (·))) to denote the vector of the set

of random variables (resp. functions) at t, andX−nt := (X1
t , . . . , X

n−1
t , Xn+1

t , . . . , XN
t )

(resp. f−nt (·) := (f 1
t (·), . . . , fn−1

t (·), fn+1
t (·), . . . , fNt (·))) to denote all random vari-

ables (resp. functions) at t except that of the agent indexed by n. P(·) and E(·) denote

the probability and expectation of an event and a random variable, respectively. For

a set X , ∆(X ) denotes the set of all beliefs/distributions on X . For random variables

X, Y with realizations x, y, P(x|y) := P(X = x|Y = y) and E(X|y) := E(X|Y = y).

For a strategy g and a belief (probability distribution) π, we use Pgπ(·) (resp. Egπ(·))
to indicate that the probability (resp. expectation) depends on the choice of g and

π. We use 1{x}(y) to denote the indicator that X = x is in the event {Y = y}.
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Chapter 2

Forward Contracts under Uncertainty for

Electricity Markets

2.1 Introduction

2.1.1 Background and Motivation

In recent years, electricity markets have undergone profound structural changes in

both the generation and the demand side. The traditionally monopolistic governm-

ent-regulated markets reformed toward liberalized electricity markets in order to

introduce competition and increase efficiency in generation [134]. Privately-owned

generators and utility companies possess private information about their cost/utility,

behave strategically, and seek to maximize their profits. Moreover, the developing

network of smart grids aims to utilize the available flexibility on the demand side

to increase the efficiency of the grid. To involve the demand side actively into the

operation of the grid, one needs to design appropriate mechanisms that incentivize

the demand to exercise flexibility in its consumption behavior.

Long-term contracts, as an agreement between strategic parties with private in-

formation, is one of the main trading mechanisms used in electricity markets. Gen-

erators and utility companies sign long-term contracts to hedge themselves against

the risk of pooling markets. In fact, it has been suggested that long-term contracts

are necessary along with the existing pooling markets to ensure the stability and
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reliability of electricity markets [24].

Contracts have been considered as one of the main mechanisms to induce a de-

sired behavior on the demand side of smart grids. In comparison to real time pricing

or direct market participation, contracts with incentive payments result in a direct

control of resources, and thus, give reliability and stability guarantees [82]. Fur-

thermore, contracts with incentive payments are simpler to implement and more

appealing to smaller market participants (e.g. households) [125].

In this chapter, we study a general contract design problem for electricity markets

in a principal-agent (buyer-seller(s)) setup. We assume that both the buyer and

the seller sides have multi-dimensional private information and general utility/cost

functions. Furthermore, we explicitly consider a general uncertainty in our problem

formulation which is becoming a critical issue in the operation of electricity markets.

As the share of intermittent generation from renewable generation increases, the

uncertainty in the available generation will increase. Furthermore, the added flexi-

bility on the demand side in smart grids also means a higher uncertainty on demand;

such uncertainty should be properly managed through appropriately designed incen-

tives. In general, both the buyer and the seller may have uncertainty, either in their

cost/utility functions, or the availability of the resources being traded between them.

By explicitly including uncertainty into our problem formulation we capture these

facts and can address the problem of commitment (ex-post voluntary participation),

risk sharing, and forward contracts with random allocation.

The problems formulated in this chapter enable us to capture and analyze in-

teraction between energy consumers and renewable energy generators, as well as

interactions between an aggregator and a network of a demand population partic-

ipating in the demand response program. We provide examples for each of these

scenarios so as to illustrate our results.

2.1.2 Related Literature

There is a growing literature on contract design for electricity with information

asymmetry and strategic behavior. A contract design problem for demand manage-
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ment with one-dimensional private information and linear utility has been studied

in [39]. The work in [21] addresses the problem of contract design for deferrable

demands with constant marginal utility for demand. The work in [28] considers a

mechanism design problem for the forward reserved market assuming that the par-

ticipants have constant marginal cost and no market power. Although the private

information in [21], and [28] is multi-dimensional, the simplifying assumption of con-

stant marginal cost/utility enables the authors to rank different types, and is critical

to the solution approaches they provide. The specific structures of utility/cost func-

tions assumed in [21], [28], and [39] enable the authors to provide solutions that

are inspired by the solution methodology of the one-dimensional screening problem.

Contract design problem for demand response with quadratic cost functions is in-

vestigated in [49] by numerical methods. The work in [114] considers a mechanism

design problem for energy procurement with a general utility/cost function and un-

certainty and applies a Vickery-Clacks-Gloves (VCG) based mechanism. However,

the VCG mechanism is suboptimal for the problem formulated in [114] when the cost

function cannot be parameterized by only a one-dimensional type (see [66], Ch. 14).

From the economics point of view, the problem we formulate in this chapter be-

longs to the class of screening problems. In economics, the one-dimensional screening

problem has been well-studied with both linear and nonlinear utility functions [25].

However, the extension to the multi-dimensional screening problem is not straight-

forward and no general solution is available. The authors in [75] study a general

framework for a deterministic multi-dimensional screening problem with linear util-

ities. They discuss two general approaches, the parametric-utility approach and

the demand-profile approach. The methodology we use to solve the problem for-

mulated in this chapter is similar to the demand-profile approach. We consider a

multi-dimensional screening problem under uncertainty with nonlinear utilities. The

presence of nonlinearities and uncertainty results in additional complications that

are not present in [75] where the utilities are linear and there is uncertainty1.

1When a problem is linear, expectation of any random variable can be replaced by its expected
value and reduce the problem to a deterministic one.
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2.1.3 Contribution

The contribution of this chapter is two-fold. First, we consider an optimal con-

tract design problem for electricity markets with utility/cost functions that are more

general than those considered in the literature ([21],[28],[39],[49]). The nature of

utility/cost functions with multi-dimensional private information is such that the so-

lution methodology presented in [21],[28], and [39] does not extend to our problem.

The generality of our model enables us to capture many instances of problems arising

in electricity markets. Two such instances are discussed in Sections 2.4 and 2.6.

Second, we explicitly incorporate a general uncertainty in the realized cost/utility

of the buyer and the seller. The presence of uncertainty along with the nonlinearity

of the utilities result in problems where the methodology used in previous works

([21],[28],[39]) cannot be applied, as in these works the utilities are linear and any

uncertainty can be replaced by its expected value. The inclusion of uncertainty is

crucial in the modeling and analysis of emerging electricity markets because: (1)

the share of renewable generation increases; (2) the existing demand becomes less

shielded from the market outcome and more elastic; and (3) new resources/loads

(e.g. storage, plug-in electric vehicles) enter the market. Due to uncertainty, firm

forward contracts (a priori fixed allocation and fixed payment) do not appear to be

an appropriate form of contract for emerging electricity markets. Moreover, in the

presence of uncertainty, interim voluntary participation (defined in Section 2.3) of

the seller does not necessarily imply ex-post voluntary participation of the seller (de-

fined in Section 2.5). Therefore, additional considerations are needed to ensure the

commitment of the agents to the contract for every realization of the uncertainty.

We show that, in general, the optimal mechanism for the problem formulated in this

chapter is a menu of nonlinear pricing schemes. We prove that by allowing the pay-

ment to depend on the uncertainty, we can achieve ex-post voluntary participation

of the seller, and a desired risk-sharing (associated with the uncertainty) between

the buyer and the seller. To the best of our knowledge, our results present the first

optimal forward contract under uncertainty for electricity markets where the buyer

and the seller have general utility/cost functions parameterized by multi-dimensional
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private information. We illustrate our results by providing two examples from elec-

tricity markets: an optimal demand response contract for ancillary service; and a

bilateral trade between a buyer and a renewable energy generator.

2.1.4 Organization

The rest of this chapter is organized as follows. We introduce the model in

Section 2.2. In Section 2.3, we formulate and analyze an optimal forward contract

with deterministic allocation, and address the problem of risk sharing between the

buyer and the seller. We illustrate the result via an example for a contract design

problem for demand response program in Section 2.4. In Section 2.5, we formulate

and analyze an optimal forward contract with random allocation that depends on

the uncertainty, and address the problem of the seller’s imperfect commitment (ex-

post voluntary participation). We provide an example of a bilateral trade between

a buyer and a renewable energy generator in Section 2.6. We discuss our results in

Section 2.7. We conclude in Section 4.7. The proofs of the lemmas and corollaries

appearing in this chapter can be found in Appendix A.

2.2 Model

A buyer wants to design a mechanism to procure energy/resource from a seller.2

Let q be the amount of energy/resource the buyer procures, and t be his payment

to the seller. The buyer’s total profit is given by V(q) − t, where V(q) is his utility

by receiving q amount of energy/resource. The function V(·) is the buyer’s private

information and V(0) = 0.

The seller’s provision cost is given by C(q,x, w), convex and increasing in q,

x = (x1, x2, · · · , xn)∈χ⊆Rn is the seller’s type, and w denotes the realization of a

random variable W (uncertainty) with a probability distribution FW (w) that is com-

mon knowledge. We assume that C(0,x, w) (zero-provision cost) does not depend on

the realization of random variable w and is equal to x1, i.e. C(0,x, w)=C(0,x)=x1.

2From now on, we refer to the buyer as “he” and to the seller as “she”.
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The seller’s utility is given by her total expected revenue EW {t− C(q,x,W )}. The

seller’s type x is her private information, the set χ is common knowledge, and there

is a prior probability distribution Fx over χ which is common knowledge between

the buyer and the seller.

Let c(q,x) := ∂EW {C(q,x,W )}
∂q

denote the expected marginal cost for the seller’s type

x. We assume that ∃m, 1<m≤ n, such that c(q,x) is increasing in xi for 1≤ i≤m,

and decreasing in xi for m<i≤n.3 Moreover, there exists x∈χ (the seller’s worst

type) such that xi≤xi and xj≥xj for all x∈χ, 1≤ i≤m and m<j≤n.

Definition 2.1. We say the seller’s type x is better (resp. worse) than the seller’s

type x̂ if c(q,x)≤ c(q, x̂) for all q ≥ 0 (resp. c(q,x)≥ c(q, x̂)) with strict inequality

for some q.

Therefore, the seller’s type x is better than the seller’s type x̂ if and only if xi≤ x̂i
for 1≤ i≤m, and xi≥ x̂i for m<i≤n with strict inequality for some i. The following

example illustrates such ordering.

Example 2.1. Consider an energy seller with a wind turbine and a gas genera-

tor. The generation from the wind turbine is free and given by γw3, where γ is the

turbine’s technology and w is the realized weather. The gas generator has a fixed

marginal cost θc. There is a fixed cost c0 which includes the start-up cost for both

plants and the capital cost for the seller. Therefore, the seller’s type has n = 3

dimensions. The generation cost for the seller is given by

C(q, w,x) = c0 + θc max
{
q − γw3, 0

}
. (2.1)

The seller’s type x = (c0, θc, γ) is better than the seller’s type x̂ = (ĉ0, θ̂c, γ̂) if and

only if c0 ≤ ĉ0, θc ≤ θ̂c, and γ ≥ γ̂, with one of the above inequalities being strict.

Note that in the one-dimensional screening problem, the cost of production in-

duces a complete order among the seller’s types, which is crucial to the solution of

3Note that for a general cost function C(q,x,W ) if the corresponding c(q,x) changes sign for
only finite number of times, one can expand the type space χ and reorder its dimensions so that it
satisfies the assumption on the existence of m.
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the optimal mechanism design problem. However, in multi-dimensional screening

problems, the expected cost of production induces, in general, only a partial order

among the seller’s types.

We assume that the buyer has all the bargaining power; thus, he can design the

mechanism/set of rules that determines the agreement for the procurement quantity

q, and the payment t. After the buyer announces the mechanism for procurement and

the seller accepts it, both the buyer and the seller are fully committed to following

the rules of the mechanism.

As a consequence of the assumption on the buyer’s bargaining power and the

fact that the seller’s utility does not directly depend on the buyer’s private infor-

mation (private value), the solution of the problem formulated in this chapter does

not depend on whether the buyer’s utility V(·) is private information or common

knowledge4.

In the rest of this chapter we formulate two contract design problems. In Section

2.3, we assume that the buyer can only accept an a priori fixed energy delivery

and formulate a forward contract design problem with deterministic allocation. In

Section 2.5, we assume that the buyer can tolerate intermittency in the delivered

energy by utilizing his existing storage/reserve resources, and formulate a forward

contract design with random allocation.

2.3 Forward Contracts with Deterministic Allocation

In this section we consider a problem of forward contract design where the allo-

cation q is deterministic and is decided in advance at the time of contract signing.

Bilateral trades with conventional generators and demand response (DR) contracts

for direct load control are forms of such a contract.

4This becomes more clear by looking at the result of Theorem 1.
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2.3.1 Problem Formulation

Let (M, h) be the mechanism/game form (see [80], Ch. 23) for energy procure-

ment designed by the buyer. In this game form, M describes the message/strategy

space for the buyer and the seller, respectively, and h determines the outcome func-

tion; h :M→ R+×R. For every message m ∈M the outcome function h specifies

the amount q of the procured energy/resource and the payment t made to the seller,

i.e. h(m) = (q(m), t(m)).5

The objective is to determine a mechanism (M, h) so as to

maximize
(M,(q(·),t(·)))

Ex,W {V(q(m∗))− t(m∗)} , (2.2)

where m∗ ∈ M is a Bayesian Nash equilibrium (BNE) of the game induced by the

mechanism (M, h). We want the seller to voluntarily participate in the procurement

process. The voluntary participation (VP) (or individual rationality) for each type

of the seller can be written as

interim VP: EW{t(m∗)−C(q(m∗),x,W )}≥0,∀x∈χ (2.3)

That is, at equilibrium m∗ of the induced game the mechanism the seller must have

an expected (with respect to the uncertainty W ) non-negative payoff. We call the

requirement expressed by (2.3) an interim voluntary participation constraint.

We call the above problem (P1).

2.3.2 Analysis & Results

We prove that the optimal procurement mechanism is a pricing scheme that the

buyer offers to the seller and the seller chooses a quantity according to her type.

In such a pricing scheme we have M = χ, q : χ → R+, and the payment function

t(·) can be defined indirectly as a function of the quantity q(x), i.e. t(q(x)). We

characterize the optimal procurement mechanism by the following theorem, which

5Note that we use q (resp. t) to denote both the quantity value (resp. payment value) and the
quantity outcome function (resp. payment function) of mechanism (M, h).
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reduces the original functional maximization problem (P1) to a set of equivalent

pointwise maximization problems.

Theorem 2.1. Under a certain concavity condition, stated in Lemma 2.3 below, the

optimal mechanism (q(·), t(·)) for the buyer is a nonlinear pricing scheme given by

p(q) = arg max
p̂
{P [x ∈ χ|p̂ ≥ c(q,x)] (V ′(q)− p̂)}, (2.4)

t(q) =

∫ q

0

p(l)dl + C(0,x), (2.5)

q(x) = arg max
l∈R+

{t (l)− EW {C(l,x,W )}} (2.6)

where V ′(q) := dV(q)
dq

and M = χ.

The assertion of Theorem 2.1 is established via several steps. Below we present

these steps and the key ideas behind each step. The proofs of the lemmas and

corollaries appearing in theses steps can be found in the appendix. In the sequel, we

omit the argument of the functions q(·) and t(·) whenever such an omission causes

no confusion.

Step 1. We set message spaceM = χ and formulate the following problem (P2)

that is equivalent to problem (P1):

maximize
(q(·),t(·))

Ex,W {V(q(x))− t(x)} (2.7)

subject to

IC : x=arg max
x′
EW [t(x′)−C(q(x′),x,W )] , ∀x∈χ (2.8)

interim V P : EW [t(x)−C(q(x),x,W )]≥0,∀x∈χ, (2.9)

where q : χ→ R+ and t : χ→ R.

The equivalence follows from the revelation principle [32]. By invoking the revela-

tion principle, without loss of optimality, we restrict attention to direct mechanisms

(where M = χ) that are incentive compatible and individually rational. Incentive

compatibility (IC) for a direct mechanism requires that truth-telling must be an
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optimal strategy for the seller.

Step 2. We show that for any incentive compatible mechanism (q, t) the seller’s

worst type x gets the minimum utility among all of the seller’s types. We utilize the

partial order among the seller’s different types to rank her utility for her different

types (Lemma 2.1), and reduce the VP constraint (2.13) for all the seller’s types to

the VP constraint only for the seller’s worst type (Corollary 2.1).

Lemma 2.1. For a given incentive compatible mechanism (q, t), a better type of the

seller gets a higher utility. That is, let U(x) := EW {t(x)− C(q(x),x,W )} denote

the expected profit of the seller with type x. Then,

1. ∂U
∂xi
≤ 0, 1 ≤ i ≤ m,

2. ∂U
∂xi
≥ 0,m < i ≤ n.

A direct consequence of Lemma 2.1, is that the seller’s worst type x receives the

minimum utility among all the seller’s types.

Corollary 2.1. The voluntary participation constraint is only binding for the worst

type x. That is, the general VP constraint (2.13) can be reduced to

U(x) := EW {t(x)− C(q(x),x,W )} ≥ 0. (2.10)

Step 3. We show, via Lemma 2.2 below, that the optimal mechanism (q, t) is

a pricing scheme. That is the payment function t(x) can be defined indirectly as a

function of q as t(q(x)).

Lemma 2.2. For any pair of functions (q, t) that satisfies the IC constraint, we can

rewrite t(x′) as t (q(x′)).

With some abuse of notation we assume that the payment function t : R → R

refers to the indirectly defined function t(q(x)) (non-linear pricing scheme) and we

denote t(q(x)) by t(q).
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Lemma 2.2 implies that the VP constraint (2.10) can be written as

U(x) := EW {t(q(x))− C(q(x),x,W )} ≥ 0. (2.11)

.

Step 4. We show that under a certain quasi-concavity condition, stated in

Lemma 2.3 below, we can define indirectly the allocation function q(x) as a function

of the payment function t(l) by utilizing the incentive compatibility constraint. We

define the following problem (P3), that is equivalent to problem (P2), in terms of

the marginal price p(l) = dt(l)
dl

and the minimum payment t(0):

max
p(·),t(0)

∫ ∞
0

P [x∈χ|p(l)≥c(l,x)](V ′(l)−p(l))dl−t(0) (2.12)

subject to

interim VP:EW

{
t(0)+

∫ q(x)

0

p(l)dl−C(q(x),x,W )

}
≥0. (2.13)

The equivalence is established in two steps. First, consider an arbitrary incentive

compatible mechanism (q, t). The optimal quantity q∗(x) for each type x of the seller

is given by

q∗(x) = arg max
l
EW {t (l)− C(l,x,W )} . (2.14)

Incentive compatibility then requires that the seller must tell the truth to achieve

this optimal value, and cannot do better by lying, i.e. q(x) = q∗(x) for all x ∈ χ. For

any function t(·), this last equality can be taken as the definition for the associated

function q(·). Thus, the IC constraint can be eliminated by defining q(·) := q∗(·)
and the problem of designing the optimal direct revelation mechanism (q, t) can be

reduced to an equivalent problem where we determine only the optimal payment

function t(·) subject to the voluntary participation constraint for the worst type.

Next, using Lemma 2.3, stated below, we rewrite the buyer’s expected utility in

terms of the marginal price p(q) := ∂t(q)
∂q

and the minimum payment t(0) (which along
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with p(·) uniquely determines the payment function t(·)).

Lemma 2.3. Assume that the seller’s problem defined by (2.14) is continuous and

quasi-concave6. Then, the buyer’s expected utility can be expressed in terms of p(.)

and t(0) as

Ex[V(q∗(x))]−Ex[t(q∗(x))]=∫∞
0
P (x ∈ χ|q∗(x)≥ l)V ′(l)dl

−t(0)−
∫∞

0
P (x∈ χ|q∗(x)≥ l) p(l)dl, (2.15)

where

P (x ∈ χ|q∗(x) ≥ l) = P [x ∈ χ|p(l) ≥ c(l,x)] . (2.16)

Using (2.15) and (2.16), we can rewrite the objective of problem (P2) and obtain

the equivalent problem (P3) given by (2.12) and (2.13)

Equation (2.16) states that the seller is willing to produce the marginal quantity

at l if the resulting expected marginal profit is positive, i.e. the marginal price p(l)

exceeds the marginal expected cost of generation c(l,x). Equation (2.15) expresses

the buyer’s total expected utility in term of an integral of his total marginal utility

V ′(l) − p(l) at quantity l, times the probability that the seller’s production exceeds

l, minus the minimum payment t(0).

Step 5. We prove that the seller’s worst type produces the minimum quantity

among all the seller’s types, i.e. q(x) = minx∈χ q(x). As a result, we show that

6This is a standard assumption in economics literature, e.g. see [75] and [133]. Basically, it can
be seen as a situation where the seller can decide for each marginal unit of production independently.
Thus, in general, there is no guarantee that the seller’s independent decisions about each marginal
unit of production results in a continuous and plausible total production quantity q. Therefore, the
continuity of the result must be checked a posteriori for each type of the seller.
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problem (P3) is equivalent to the following problem (P4):

max
p(·)

∫ ∞
0

P [x ∈ χ|p(l) ≥ c(l,x)] (V ′(l)− p(l)) dl (2.17)

subject to

iterim VP:C(0,x)+

∫ q∗(x)

0

p(l)dl≥EW [C(q∗(x),x,W)] . (2.18)

We establish the equivalence by providing a ranking for the seller’s optimal deci-

sion q∗(x) based on the partial order among the seller’s types.

Lemma 2.4. For a given mechanism specified by (t(·), q(·)), a better type of the seller

produces more. That is, the optimal quantity q∗(x) that the seller with true type x

wishes to produce satisfies the following properties:

a) ∂q∗(x)
∂xi
≤ 0, 1 ≤ i ≤ m,

b) ∂q∗(x)
∂xi
≥ 0,m < i ≤ n.

As a consequence of Corollary 2.1 and Lemma 2.4 we can then simplify the VP

constraint (2.13) as follows.

Corollary 2.2. The interim VP constraint is satisfied if t(0) = C(0,x) and the

seller’s worst type payment is equal to her expected production cost, i.e. t(q∗(x)) =

EW{C(q∗(x),x,W )}.

The equivalence of problems (P3) and (P4) follows from Corollary 2.2 and by

replacing the VP constraint (2.13) by (2.18). Note that we also dropped the constant

term t(0) = C(0,x) (from Corollary 2.2) in the objective of problem P4 given by

(2.17).

Problem (P4) is in terms of the marginal price p(l) and requires that the payment

the seller’s worst type receives is equal to her cost of production.

Step 6. We show that the solution of problem (P4) is given by

p(l) = arg max
p̂
{P [x∈ χ|p̂ ≥ c(l,x)](V ′(l)− p̂)}
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To prove the claim of Step 6 we consider a relaxed version of (P4) without the

VP constraint (2.18). The unconstrained problem can be solved pointwise at each

quantity l to determine the optimal p(l) as

p(l)=arg max
p̂
{P [x∈ χ|p̂ ≥ c(l,x)](V ′(l)− p̂)} , (2.19)

which is the same as (2.4). From Corollary 2.2 and the fact that the worst type has

the highest expected marginal cost, we can simplify (2.19), for l ≤ q∗(x), as

p(l) = c(l,x), for l ≤ q∗(x). (2.20)

Note that for l ≤ q∗(x) we have P [x∈ χ|p̂ ≥ c(l,x)] = 1 from Lemma 2.4. Therefore,

the minimum marginal price p(l) that ensures all the seller’s type are willing to

produce more than q∗(x) is equal to the marginal expected cost for the seller’s worst

type c(l,x). Therefore, the solution to the unconstrained version of problem (P4)

satisfies constraint (2.18) of problem (P4), and therefore, (2.19) is also the optimal

solution of problem (P4).

We complete now the proof of Theorem 2.1. Using claim of Step 4 along with

Corollary 2.2, the optimal payment function (nonlinear pricing) can be written as

t(q) =

∫ q

0

p(l)dl + C(0,x)

which is the same as (2.5). From (2.14) we determine the optimal energy procurement

function,

q(x) = arg max
l
EW {t (l)− C(l,x,W )}

which is the same as (2.6). The specification of t(·) and q(·) completes the proof of

Theorem 2.1 and the solution to problem (P1).

In essence, Theorem 2.1 states that at each quantity l, the optimal marginal price

p(l) is chosen so as to maximize the expected total marginal utility at l, which is

given by the total marginal utility (V ′(l)− p(l)) times the probability that the seller
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generates at least l.

Remark 2.1. In problem (P1), we assume that there exists a seller’s worst type

which has the highest cost at any quantity among all the seller’s types, and we reduce

the VP constraint for all of the seller’s type to only the VP constraint for this worst

type. As a result, we pin down the optimal payment function by setting t(0) = C(0,x)

to ensure the voluntary participation of the worst type, which consequently implies the

voluntary participation for all of the seller’s types. In absence of the assumption on

the existence of the seller’s worst type, the argument used to reduce the VP constraint

is not valid anymore and we cannot pin down the payment function and specify t(0) a

priori. Assuming that all types of the seller participate in the contract, their decision

on the optimal quantity q∗ only depends on the marginal price p(q), and therefore,

the optimal marginal price p(q), given by (2.19), is still valid without the assumption

on the existence of the worst type. To pin down the payment function t(·), we find

the minimum payment t(0) a posteriori so that all types of the seller voluntarily

participate. That is,

t(0)=max
x∈χ

[
EW {C(q(x),x,W )} −

∫ q∗(x)

0

p(l̂)dl̂

]
, (2.21)

where the optimal decision of type x is given by

q∗(x) = arg max
l

[∫ l

0

p(l̂)dl̂ − EW {C(l,x,W )}
]
. (2.22)

Remark 2.2. In a setup with a positive zero-provision cost for the seller, it might not

be optimal for the buyer to require all the seller’s types to voluntarily participate in

the procurement process, since t(0) depends on the zero-provision cost of the seller’s

worst type C(0,x). In such cases, it might be optimal for the buyer to exclude some

“less efficient” types of the seller from the contract, select an admissible set of the

seller’s types, and then design the optimal contract for this admissible set of the

seller’s types7. Note that this is not the case for setups without a zero-provision cost.

7To find the optimal admissible set, the optimal contract can be computed for different potential
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In such setups, if it is not optimal for some type x to be included in the optimal

contract, it is equivalent to set q(x) = 0 in a contract menu that considers all types

of the seller.

2.3.3 Risk Allocation

In the optimal mechanism/contract menu presented by Theorem 2.1, the buyer

faces no uncertainty, and he is guaranteed to receive quantity q(x), and all the risk

associated with the realization of W is taken by the seller. We wish to modify the

mechanism to reallocate the above-mentioned risk between the buyer and the seller.

To do so, we modify the payment function so that the risk is reallocated between

the buyer and the seller. Consider the following modified payment function with

α∈ [0, 1],

t̂(x, w) = t(q(x)) + α [C(q(x),x, w)

−EW {C(q(x),x,W )}] . (2.23)

From (2.23) it follows that EW
{
t̂(x,W )

}
= t(q(x)). Therefore, the strategic behavior

of the seller does not change and the seller chooses the same quantity under the

modified payment function t̂(·) as under the original payment function t(q) given by

(2.5). Note that for α = 0 we have the same payment as t(q). For α = 1, the seller

is completely insured against any risk and all the risk is taken by the buyer. The

parameter α determines the allocation of the risk between the buyer and the seller;

the buyer undertakes α and the seller undertakes (1− α) share of the risk.

We illustrate the result of Theorem 2.1 by an example below.

2.4 Example - Demand Response (DR)

We consider a contract design for DR program. There is a load aggregator that

offers contracts with incentive payments to a heterogeneous population of loads who

are willing to yield the direct control of their load to the aggregator given that they

admissible sets. Then, the resulting utilities can be compared to find the optimal admissible set.
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are offered an appropriate incentive payment. The aggregator participates in an

ancillary service market and sells the aggregated resources to the reserve market at

exogenous marginal price pr.
8 Formally, there are I types of loads with a population

distribution f over different types. Each load of type i has a maximum controllable

load Li. Let qi ≤ Li denote the quantity that each load of type i yields its control to

the aggregator to be dispatched. We assume that each load of type i has a quadratic

cost (increasing marginal cost) given by

Ci = α0
i + α1

i qi + α2
i q

2
i . (2.24)

Therefore, the load’s type is x = (Li, α
0
i , α

1
i , α

2
i ). Let ti denotes the incentive payment

to each load of type i for yielding the control of load qi. Then, the total utility of

each load of type i is given by

Ui = ti −
(
α0
i + α1

i qi + α2
i q

2
i

)
. (2.25)

The aggregator participates in the ancillary service market and provides capacity

q =
∑
fiqi at a given uniform price pr. Therefore, the aggregator’s revenue is given

by

pr
∑

(fiqi)−
∑

(fiti) . (2.26)

We consider I = 5 types of loads described in Table 2.1 along with a normalized

population distribution f with
∑
fi = 1, and set pr = 2 ¢/kWh. Note that no

complete ordering can be defined based on their marginal cost and there exists no

worst type; at lower quantities smaller loads (e.g. type (b)) have a lower marginal

cost while at higher quantities larger loads (e.g. type (e)) have lower cost.

Via Theorem 2.1 we determine the optimal menu of contracts the aggregator

offers to the heterogeneous population of loads (Table 2.2). The optimal menu of

8If pr is not exogenous, the aggregator’s interactions with the reserve market on one hand and
the demand population on the other hand become coupled. In this case these interactions must be
studied simultaneously.
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contracts can be interpreted also as a nonlinear pricing that the aggregator offers to

loads (Fig. 2.1).

The optimal choice and the resulting payoff for each type of load are summarized

in Table 2.3. We note that, unlike one-dimensional contracts, a type with a higher

quantity does not necessarily get a higher payoff.

type Li(kWh) α0
i (¢) α1

i (
¢

kWh
) α2

i (
¢

kWh2
) fi

(a) 0.5 0.1 5 10 0.1
(b) 1 0.1 4 10 0.3
(c) 1.5 0.6 8 5 0.2
(d) 2 0.6 5 8 0.3
(e) 2.5 1.2 6 5 0.1

Table 2.1: Different types of loads

Quantity q(·) (kWh) 0.38 0.64 0.82 1.10 1.40
Payment t(·) (¢) 3847 7569 10498 15450 20991

Table 2.2: Options menu offered by the aggregator

Type Quantity Payment Cost Profit
(a) 0.382 3847 3469 378
(b) 0.643 7569 6897 762
(c) 1.100 15450 15450 0
(d) 0.8185 10498 10052 446
(e) 1.400 20991 19400 1591

Table 2.3: Optimal contract for each and the resulting outcome

2.5 Forward Contracts with Random Allocation

In some instances of the problem considered in this chapter, the buyer has a

reserve resource [130] or wants to supply deferrable loads [21] that gives him the
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Figure 2.1: The optimal pricing scheme for DR program

flexibility to accept a random allocation q(x,W ) that depends on the uncertainty

W , and compensate the randomness in the allocation utilizing the existing flexibility.

In this section, we formulate and analyze a forward contract design problem with

random allocation. We assume that the realization of the random variable W is

common knowledge between the buyer and the seller.

2.5.1 Problem Formulation

Let e(x) denote the forward scheduled quantity (deterministic) by the buyer

and q(x, w) denote the random delivered quantity by the seller with type x. Let

CR(e(x) − q(x, w)) denote the cost incurred by the buyer to compensate the real-

time deviation e(x)− q(x, w) from the forward schedule e(x). Then, for a given set

of contract menus (q(x, w), t(x, w)), the buyer’s optimal schedule e(x) for the seller’s

type x is defined by

e(x)=argmax
ê
EW{V(ê)−t(x,W)−CR(ê−q(x,W))}, (2.27)

and the buyer’s expected utility is given by

EW,x{V(e(x))−t(x,W )−CR(e(x)− q(x,W ))} . (2.28)
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The buyer wants to design a mechanism (q(x, w), t(x, w)) so as to maximize his

expected utility given by (2.28), subject to the voluntary participation of the seller.

Formally, the contract design problem with random allocation for the buyer, called

(Q1), can be stated as follows:

maximize
{q(·,·),t(·,·)}

EW,x{V(e(x))−t(x,W)−CR(e(x)−q(x,W))} (2.29)

subject to

EW{t(x,W )− C(q(x,W ),x,W )} ≥ 0, ∀x ∈ X . (2.30)

2.5.2 Analysis & Results

We show, via Theorem 2.2 below, that the optimal forward contract with random

allocation is a menu of pricing schemes, one for each type of the seller.

Theorem 2.2. The optimal forward contract with random allocation for problem

(Q1) is a menu of pricing schemes given by

e(x) = q̃(x) (2.31)

q(x, w) = q̃(x)− qR(x, w), (2.32)

t(x, w) = t̃(x)− CR(qR(x, w)), (2.33)

where
{
q̃(x), t̃(x)

}
denotes the optimal solution to the optimization problem

maximize
{q̃(·),t̃(·)}

EW,x
{
V(q̃)− t̃

}
(2.34)

subject to

EW,x
{
t̃(x)− C̃(q̃(x),x,W )

}
≥ 0, (2.35)

C̃(q,x, w) :=min
l
{C(l,x, w) + CR(q̃ − l)}, (2.36)
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and

qR(x, w):=argmin
l
{C(q̃(x)−l,x, w)+CR(l)} . (2.37)

Proof. Consider the following contract design problem where the seller’s cost function

is defined as

C̃(q̃,x, w) = min
l
{C(l,x, w) + CR(q̃ − l)} ,

where C(·, ·, ·) is the seller’s cost function in (Q1), and the buyer’s utility is defined

as

EW,x
{
V(q̃)− t̃(q̃)

}
. (2.38)

The optimal contract design problem for the defined environment above, called

(Q2), can be stated as

maximize
{q̃,t̃}

Ex,W

{
V(q̃)− t̃

}
(2.39)

subject to

IC: x=argmax
x′
EW
{
t̃(x′)−C̃(q̃(x′),x,W )

}
,∀x∈χ (2.40)

interim VP:EW
{
t̃(x)−C̃(q̃(x),x,W )

}
≥0,∀x∈χ (2.41)

where q̃ and t̃ denote the quantity and payment function for the defined problem

above. By construction, problem (Q2) is the same as problem (P2). Let
{
q̃(x), t̃(x)

}
denote the optimal contract for problem (Q2) obtained via Theorem 2.1. Note

that through the cost function C̃(q̃(x),x, w), defined by (2.36), we absorb the op-

timal schedule choice e(x), given by (2.27), and internalize the compensation cost

CR(e(x)− q(x,W )) for the random deviation e(x)− q(x,W ) in problem (Q1) into

the seller’s cost function. Therefore, the optimal scheduled quantity e(x) for problem

(Q1) is equal to the optimal function q̃(x) for problem (Q2), i.e. e(x) = q̃(x). Con-
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sequently, one can reconstruct the optimal contract {q(x, w), t(x, w)} for problem

(Q1) using the optimal contract
{
q̃(x), t̃(x)

}
for the equivalent problem (Q2) as

q(x, w) = q̃(x)− qR(x, w),

t(x, w) = t̃(x)− CR(qR(x, w)),

where

qR(x, w):=argmin
l
{C(q̃(x)−l,x, w)+CR(l)} ,

denotes the random reserve quantity required to compensate the random allocation

q(x, w).

Theorem 2.2 has the following interpretation. The buyer offers different pricing

schemes (quantity-payment curves), and each type of the seller chooses one based

on her private information and expectation about W . Then, in real time as W is

realized, based on the realization w, one point from the chosen pricing scheme is

selected and the payment t and the energy delivery q are determined.

2.5.3 Imperfect Commitment and Ex-post Voluntary Participation

The voluntary participation constraint imposed in problem (Q1) is interim. That

is, the expected profit with respect to W must be non-negative for each type of the

seller. Up until now (problem (P1) and (Q1)) we have assumed that once the seller

agrees to sign the contract (such an agreement takes place before the realization

of random variable W ) she is fully committed to following the agreement, even if

the realized profit is negative (due to some realization w)9. Therefore, it would be

desirable to modify the contract in order to ensure a positive payoff for the seller

for every realization of W and full commitment without any outside enforcement.

To ensure that the seller’s realized profit is non-negative for every realization w,

9Since the seller’s reserved utility is zero by not participating (outside option), we can always
think of the seller walking away from the agreement for these negative profit realizations and not
following the mechanism rules.

43



we impose an ex-post voluntary participation constraint and replace the interim VP

constraint (2.30) by

Ex-post VP: t(x)− C(q,x, w) ≥ 0,∀w, ∀x∈χ. (2.42)

To satisfy the ex-post voluntary participation constraint, we modify the payment

function of the mechanism given by Theorem 2.2 as follows:

ť(x, w)= EW {t(x,W )}−EW {C(q(x,W ),x,W )}

+C(q(x, w),x, w). (2.43)

We have EW
{
ť(x,W )

}
= EW {t(x,W )}, and therefore, the seller always chooses

the same quantity q under the modified payment function ť as under the original

payment function t given by (2.33). Furthermore, we have ť(x, w)−C(q(x, w),x, w)=

EW {t(x,W )}− EW {C(q(x,W ),x,W )}≥ 0 for all w,x, where the last inequality is

true since {q, t} satisfies the interim VP constraint (2.30). Therefore, under the

modified payment function ť,
{
q, ť
}

satisfies the expost VP constraint (2.42).

2.6 Example - Forward Bilateral Trade

Consider a forward bilateral trade between a buyer and a seller with wind gen-

eration. The buyer has an (almost inelastic) energy demand curve given by Fig.

2.2.

Figure 2.2: The buyer’s demand curve
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Figure 2.3: The wind turbine generation curve g(w,vci,vr,vco,γ)

Figure 2.4: The wind forecast FW

The seller has a wind farm and (possibly) a reserve generator/storage that can be

used to compensate for wind generation intermittency. The seller’s wind generation

is given by g(w, vci, vr, vco, γ) as in Fig. 2.3, where w denotes the wind speed and

(vci, vr, vco, γ) denotes the specification of the wind turbine. The wind speed is ran-

dom and the wind forecast fW is given by Fig. 2.4, which is a Weibull distribution

with shape parameter k = 3 and average wind speed of 5m/s. We assume that the

wind forecast fW as well as the wind realization w are common knowledge between

the buyer and the seller. The wind generation has a marginal operational cost θw.

The seller (possibly) has a reserve generator/storage with capacity r and a marginal

cost θr that can be utilized if needed. The seller has a zero-production cost c0 which

accounts for her capital cost and the start-up cost of her facilities. Therefore, the

seller’s private information is as x = (c0, θw, θr, vci, vr, vco, γ, r).

We assume that the buyer has a reserve generator/deferrable load that can be

utilized to compensate the real-time random energy delivery by the seller. We assume
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that deviation from the scheduled energy has an increasing marginal cost for the

buyer given by b0 + b1q.

We consider four types for the seller as in Table 2.4, and set b0 = 1.4 $
kwh

and

b1 = 0.05 $
kWh2

.

type c0 θw θc vci vr vco γ r fi
a 90 0.20 1.2 0.4 13 23 1 60 0.1
b 60 0.25 1.4 0.8 17 25 1.25 30 0.3
c 40 0.10 1.0 0.1 15 20 1.5 10 0.2
d 20 0.15 - 1.0 17 28 1.7 0 0.3

Table 2.4: Different types of the seller

The optimal forward contract menu for the buyer is given by Fig. 2.5. Since the

energy demand considered in this example is almost inelastic, the scheduled quantity

e(x), and therefore, the quantity-demand curves are also close to each others.10 Table

2.5 summarizes the optimal energy schedule e(x), and the expected utility U(x) for

different types of the seller.

type a b c d
e(x) 122.3 118.5 120.4 116.5
U(x) 84.47 35.10 101.82 0

Table 2.5: The outcomes of the optimal contract menus

The energy q(x, w) delivered to the buyer, the payment t(x, w) made to the seller,

and the seller’s utility u(x, w) in terms of wind w are given by Figures 2.6, 2.7, and

2.8, respectively.

For low realizations of wind speed, the delivered energy is low and the seller

may even incur some penalty for very low energy delivery (Fig. 2.5). For higher

realization of wind speed, the energy delivery increases, and therefore, the payment

10For a completely inelastic energy demand, we have e(x) fixed and independent of the seller’s
type x. Therefore, all the quantity-demand curves coincide and are equal to the quantity-cost curve
for the worst type.
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Figure 2.5: The optimal forward contract menus

and the realized utility increase. However, for very high realization of wind speed that

surpasses the cut-off speed vco (see Figure 2.3), the energy delivery, and consequently

the payment and the realized utility, drop.

Figure 2.6: Energy deliver q(x, w) in terms of wind w
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Figure 2.7: Payment t(x, w) in terms of wind w

Figure 2.8: The realized seller’s utility u(x, w) in terms of wind w

2.7 Discussion

For the problem on energy/service procurement formulated in this chapter the

optimal mechanism is a menu of contracts/nonlinear pricing schemes. The nonlin-

earity is due to three factors. First, the buyer’s utility function V(q) is not linear

in the quantity q. Second, for each type of the seller, the cost function is a nonlin-

ear function of the quantity . Third, the seller has private information about her

technology and cost (seller’s type).
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The buyer has to pay information rent (monetary incentive) to the seller to in-

centivize her to reveal her true type. Therefore, the payment the buyer makes to the

seller includes the cost of provision the seller incurs plus the information rent, which

varies with the seller’s type; the better the seller’s type, the higher is the information

rent.

The optimal forward contracts discovered in this chapter can be implemented as

follows: the buyer offers the seller a menu of contracts (nonlinear pricing schemes);

the seller chooses one of these contracts based on her type.

The optimal forward contracts induce some incentives for investment in infras-

tructure and technology development. From Lemma 2.1, the seller with the higher

type has a higher utility. Therefore, there is an incentive for the seller to improve

her technology and decrease her cost of generation.

It is well-known that in the presence of private information and strategic behavior,

in general, there exists no mechanism/contract that is (1) individually rational, (2)

incentive compatible, and (3) efficient (Pareto-optimal) [105]. In the optimal forward

contract given by Theorems 2.1 and 2.2 the allocation for the seller’s different types

is not ex-post efficient (Pareto-optimal) except for the seller’s worst type who gets

zero utility.

In this chapter, we formulated the contract design problem in a principal-agent

setup. Therefore, the result can be applied to the contract design problem for a setup

with one buyer (principal) and a heterogeneous population of sellers (agents), if the

buyer has a linear utility function, as in the example of Section 2.4, or if the share of

each individual agent is small and their effect on the market is negligible. However,

if one considers a setup with nonlinear utility for the buyer or market power for

each individual agent, the associated problem for such setup with multiple agents

becomes equivalent to the design of optimal multi-unit auctions in economics. It is

known that there exist no closed form solution to the general problem of optimal

multi-unit auctions, and their solutions can only be computed numerically or with

approximation [66].
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2.8 Conclusion

We investigated the problem of optimal forward contract design under uncertainty

and multi-dimensional private information. The consideration of multi-dimensional

private information and general utility/cost functions enables us to capture many

applications in electricity markets as well as other disciplines. We assumed that

the buyer and/or the seller has uncertainty in their utility/cost function which is

realized after the time of contract signing. We considered froward contracts with

random allocation that depends on the real-time realization of the uncertainty. We

characterized the optimal forward contract under uncertainty as a menu of contracts.

We addressed the problem of commitment (ex-post voluntary participation), and risk

sharing in the presence of uncertainty. We demonstrated our results by two examples;

an optimal contract design for a demand response program, and an optimal forward

bilateral trade between a buyer and a seller with wind energy generation.
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Chapter 3

Dynamic Market Mechanisms for Wind Energy

3.1 Introduction

3.1.1 Background and Motivation

Wind generation is intermittent and uncertain. An energy producer with wind

energy (seller) has neither complete control over his generation nor does he have an

exact prediction of his generation in advance. The information about wind realization

arrives dynamically over time and an accurate prediction is only available within a

few (5-15) minutes of the generation time [56]. The stochastic and dynamic nature of

wind energy makes the integration of wind generation into grids a challenging task.

The common practice for the integration of wind energy is to incorporate it into

the existing two-settlement market architecture for conventional generators along

with extra-market treatments such as feed-in tariffs, investment tax credit, and pro-

duction tax credit. The two-settlement market architecture consists of forward mar-

kets (e.g. day-ahead market) and real-time markets, where the outcome of forward

markets is fed to real-time markets.

For energy markets with low share of wind energy, like the U.S., it is possible to

include wind energy in real-time markets, and treat it as negative load [19]; we call

this approach real-time mechanism. One advantage of incorporating wind energy

into real-time markets is that the allocation for wind generation is decided when

all the information about wind generation is available. Moreover, a seller does not
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face any penalty risk as he commits to a certain level of generation only if he can

produce it. However, in energy markets with high share of wind energy, due to

reliability concerns, inclusion of wind energy in real-time markets as negative load is

not possible.

For high shares of wind energy, the system operator needs to have information

about wind generation in advance, and to incorporate wind energy as an active

generation into its forward planning for power flow. Thus, wind energy is included

in forward markets [62]; we call this approach forward mechanism.

In forward markets, knowledge about wind generation in real time is imperfect.

Nevertheless, a seller needs to commit to certain levels of generation in advance even

without knowing the exact amount he will be able to produce in real time. Therefore,

the energy allocation decision in forward markets is determined only based on the

incomplete information available at the time of forward markets, and all the new

information that arrives after forward markets are closed is not incorporated into

the energy allocation decision. In some countries, like the U.K., a seller is exposed to

penalty risk if his real-time generation is different from his commitment in forward

markets. We note that this is not an issue for a conventional generator as he has

perfect knowledge of his real-time generation in advance.

The limitations of the real-time and forward market mechanisms discussed above

motivate our work to study alternative market mechanisms for the integration of

wind energy into grids. The U.S. department of energy encourages the development

of “rules for market evolution that enable system flexibility rationale”, i.e. market

mechanisms that give a seller flexibility in generation, and provide opportunities

for the demand side to actively respond to changes in market over time [30]. It is

desired that such mechanisms provide truthful (probabilistic) information about the

seller’s generation in real-time, and assign commitment to the seller in advance [126].

To achieve the above features, we need to study market mechanisms in a dynamic

setting that accounts for the dynamic and intermittent nature of wind generation as

well as the strategic behavior of the seller. The forward and real-time mechanisms

discussed above are static mechanisms in the strategic sense. That is, for each market

mechanism, the sellers and buyers make simultaneous decisions only once, and their
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one-shot decisions determine the energy allocations and payments at that market;

the outcome of the market is then assumed to be fixed and is fed as an exogenous

parameter to the next market in time.

In this chapter, we consider a simple two-step model that captures the dynamic

and intermittent nature of wind generation. We propose a dynamic mechanism that

provides a coupling between the forward and real-time mechanisms, and, unlike the

(static) real-time and forward mechanisms, allows for flexible generation of wind

energy, incorporates all the information that arrives over time, and provides forward

commitment of the seller.

To demonstrate the main ideas, we first consider a strategic setting with one buyer

and one seller with wind generation. The buyer and the seller trade energy through

a mechanism determined by a mechanism designer. The seller’s cost depends on his

private technology and the wind condition which he learns dynamically over time.

Since the seller is strategic and profit maximizer, he must be incentivized to reveal

his private information about his cost function. We formally define such incentive

payment, and utilize it in the formulation and solution of the mechanism design

problems that we consider in this chapter. We determine such incentive payments

for different market mechanisms. We then characterize the set of feasible outcomes

under each market mechanism. We show that the dynamic mechanism outperforms

the real-time and forward mechanisms for a general objective of the designer.

After we establish our results for a setting with one seller, we consider a setting

with many sellers. We discuss how the problem of market design with many sellers is

similar to that with one seller, and argue that our results generalize to this setting.

Specifically, we formulate and study three different mechanism design problems.

Two of these problems capture the real-time and forward mechanisms. For the third

problem, we propose a new dynamic market mechanism that dynamically couples the

outcome of the real-time and forward markets. In the dynamic market mechanism,

the seller is required to sequentially reveal his private information to the designer as

it becomes available, and accordingly refines his commitment for energy generation

over time.

We show that the set of constraints that the designer faces due to the seller’s
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strategic behavior and private information is less restrictive under the dynamic

mechanism than under the forward and real-time mechanisms. Consequently, we

show that the proposed dynamic market mechanism outperforms the real-time and

forward mechanisms. We further consider two variants of the dynamic mechanism;

one guarantees no penalty risk to the seller, and in the other the designer monitors

the wind speed. By analyzing the outcome of these variants of the dynamic mech-

anism, we characterize the effect of penalty risk exposure and wind monitoring on

the performance of the dynamic mechanism.

3.1.2 Related work

Most of the literature on market design for wind energy assumes a static in-

formation structure and has mainly taken the forward mechanism approach. The

works of [20, 139] study the problem of optimal bidding in a forward market with

an exogenous price and penalty rate. The works of [72, 92] investigate the problem

of mechanism design for wind aggregation among many wind producers that jointly

participate in a forward market. The work in [115] studies the problem of auction

design for a forward market that determines the penalty rate endogenously.

The concept of (flexible) contracts with risk in electricity market has been pro-

posed in [113, 21, 139, 122]. The authors of [139] propose and investigate risky

contracts for wind aggregation where there is no private information. The work in

[113] studies the problem of efficient pricing of interruptible energy services. The

authors of [21] look at the problem of optimal pricing for deadline-differentiated

deferrable loads. The authors of [122] study the problem of forward risky contracts

when the seller’s private information is multi-dimensional and the wind is monitored.

The various mechanism design problems formulated in this chapter belong to

the screening literature in economics. We formulate static and dynamic mechanism

design problems. Our approach to the static mechanism design problems is similar to

the one in [25]. Our approach to the dynamic mechanism design problems is inspired

by the ones in [31, 38, 63]. We provide a unified approach for all the mechanism design

problems that enables us to demonstrate the advantage of dynamic mechanisms over
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static mechanisms for the wind energy market.

3.1.3 Contribution

We propose a dynamic model that enables us to provide a comparison among var-

ious market mechanisms for wind energy. We propose and analyze a dynamic market

mechanism that couples the outcomes of the real-time and forward mechanisms. We

show that the proposed dynamic mechanism outperforms the real-time and forward

mechanisms for a general objective of the market designer. The proposed dynamic

mechanism reveals to the system designer the information required for planning in

advance, incorporates the new information that arrives over time, and provides flex-

ibility for the intermittent wind energy generation. We further study the effect of

providing penalty insurance to the seller and monitoring the wind condition. We

show that the performance of the dynamic mechanism with no penalty risk is in

general inferior to the dynamic mechanism with penalty risk. Moreover, with wind

monitoring, the outcome of the dynamic mechanism improves, as the seller cannot

manipulate the outcome of the mechanism by misrepresenting his wind condition.

3.1.4 Organization

We present our model in Section 3.2. In Section 3.3, we discuss the market

mechanism design problems as well as the seller’s strategic behavior and private in-

formation. In Section 3.4, we propose the dynamic market mechanism, and formulate

three mechanism design problems accordingly. We analyze the formulated mecha-

nism design problems and compare them in Section 3.5. In Section 3.6, we provide

some additional remarks and consider variants of the proposed dynamic mechanism.

We illustrate our results with an example in Section 3.7. We discuss how our results

generalize to settings with many sellers in Section 3.8, and conclude in Section 3.9.

All the technical proofs can be found in Appendix B.
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3.2 Model

Consider a buyer and a diversified seller with wind energy generation who trade

energy through a mechanism determined by a designer. We refer to the seller as “he”

and the designer and the buyer as “she”. The buyer gets utility V(q̂) from receiving

energy q̂; V(q̂) is increasing and strictly concave in q̂. The seller has production

cost C(q̂; θ) parametrized by his type θ ∈ {θ, θ}.1 The seller’s type depends on his

technology τ (i.e. technology of his wind turbines and the operational status of

them, the size of his wind farm and its location) and the wind speed ω. We assume

that at T = 1 (e.g. day ahead), ex-ante the seller knows privately his technology τ

for wind generation, which takes values from one of M possible technologies T :=

{τ1,τ2, · · · ,τM}, τ1 < τ2 < ... < τM , with probability p1, p2, · · · , pM ,
∑M

i=1 pi = 1,

respectively. At T = 2 (e.g. real-time), the seller receives additional information

ω ∈ [ω, ω] about the wind condition and can refine his private information about

his cost function at T = 2 as θ = Θ(τ, ω). The probability distribution of wind ω is

independent of the technology τ and is denoted by G(ω). We assume that C(q̂; θ)

is increasing in θ, and Θ(τ, ω) is decreasing in ω and τ . Define Cθ(q̂; θ) := ∂C(q̂;θ)
∂θ

,

c(q̂; θ) := ∂C(q̂;θ)
∂q̂

, cθ(q̂; θ) := ∂c(q̂;θ)
∂θ

, and Θω(τ, ω) := ∂Θ(τ,ω)
∂ω

.

Assumption 3.1. The production cost C(q̂;θ) is increasing and convex in q̂. The

marginal cost c(q̂; θ) is increasing in θ, i.e. Cθ(q̂, θ)≥0 and cθ(q̂, θ)≥ 0. The seller’s

type Θ(τ, ω) is decreasing in τ , i.e. Θ(τi, ω)≤Θ(τj, ω) for i > j, ∀ω, and strictly

decreasing in ω, i.e. Θω(τ, ω)<0.

Let Fi(θ) denote the resulting conditional probability distribution of θ given τi.

Then, Assumption 3.1 states that a seller with technology τi expects to have a lower

production cost than the one with technology τj for i > j, i.e. Fτj(θ) first order

stochastically dominates Fτi(θ).

We also make the following technical assumption.

1We assume that C(q̂; θ) captures the seller’s operational cost, capital cost, and an exogenous
opportunity cost associated with wind generation participation in his outside option. Moreover,
we assume that the seller has a diversified energy portfolio, so he does not face a strict capacity
constraint for generation as he can produce energy from other resources that are more expensive.
Therefore, C(q̂; θ) is non-zero but decreasing in the realization of wind speed.
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Assumption 3.2. The distribution Fτ (θ) has non-shifting support, i.e. fτ is strictly

positive on the interval
[
θ, θ
]

for τ ∈ T .

Assumption 3.2 implies that the range of achievable values of θ is the same for

all technologies τi, i=1, ...,M . However, the same realization of the wind ω results in

different values of θ for different technologies. Thus, the probability distribution of

θ, given by Fτi(θ), is different for different technologies (cf. Assumption 3.1).

3.3 Mechanism Design and Strategic Behavior

Consider an arbitrary mechanism that determines the agreement between the

buyer and the seller. Let t(τ,ω) denote the payment the buyer ends up paying to the

seller with technology τ and wind speed ω, and q(τ,ω) denote the amount of energy

the seller delivers according to the mechanism. The social welfare S, the seller’s

revenue R, and the buyer’s utility U can be written as,

S := Eτ,ω{V(q(τ, ω))−C(q(τ, ω); Θ(τ, ω))} , (3.1)

R := Eτ,ω{t(τ, ω)−C(q(τ, ω); Θ(τ, ω))} , (3.2)

U := Eτ,ω{V(q(τ, ω))− t(τ, ω)}= S−R. (3.3)

The social welfare S only depends on q and is independent of t. Thus, by the first

order optimality condition, an allocation qe∗ is socially efficient (maximizing S) if

and only if at qe∗ the marginal utility v(q̂) := ∂V(q̂)
∂q̂

is equal to the marginal cost

c(q̂; θ), i.e., for all τ, ω,

v(qe∗(τ, ω)) = c(qe∗(τ, ω); Θ(τ, ω)). (3.4)

If the seller is not strategic or does not have any private information, the mechanism

designer can set q(τ,ω) equal to qe∗(τ,ω), to maximize the social welfare S. Then, the

designer can set payment t(τ,ω) so as to achieve any arbitrary surplus distribution

between the buyer and the seller.

However, the strategic seller does not simply reveal his production cost function,
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which is his private information. Therefore, the socially efficient allocation (3.4) is

not sinply implementable by the mechanism designer. The seller has incentives to

manipulate the outcome (misrepresent his cost function, by misreporting τ and ω)

in order to gain a higher revenue. Thus, the mechanism’s output would differ from

the efficient allocation qe∗.

Due to the seller’s strategic behavior, any mechanism must (i) incentivize the

seller to truthfully reveal his private information, and (ii) leave a non-negative rev-

enue to the seller so that he voluntarily participates in the mechanism.

Following the literature on regulation and market design [68], we assume that the

mechanism designer has the following general objective,

W := U + αR, (3.5)

where α ∈ [0, 1]. When α = 1, the designer wants to maximize the social welfare S.

When α= 0, the designer seeks to maximize the utility of the buyer (demand side).

For α ∈ (0,1), the designer’s objective is to maximize a weighted sum of the buyer’s

utility U and the seller’s revenue R. We assume that the designer knows the buyer’s

utility function V(q̂).2

We invoke the revelation principle for multistage games [87], and, without loss of

generality, restrict attention to direct revelation mechanisms that are incentive com-

patible. In these mechanisms, the designer determines a mechanism for the payment

and the allocation {t(τ,ω),q(τ,ω),τ∈T ,ω∈[ω,ω]} based on the seller’s technology τ and

the wind speed ω, and asks the seller to report his private information about τ and ω

over time. The designer determines {t(τ,ω),q(τ,ω),τ∈T ,ω∈ [ω,ω]} so as to ensure the

truthful report of the seller; this is called incentive compatibility (IC). A mechanism

{t(τ,ω),q(τ,ω),τ ∈T ,ω ∈ [ω,ω]} is incentive compatible if it is always optimal for the

seller to report truthfully his private information. The seller voluntarily participates

in the mechanism if he earns a positive (expected) revenue from the agreement; this

2In practice, even when the designer’s objective is to maximize the social welfare, we have α < 1
due to cost/loss associated with financial transaction between the buyer and the seller (see [68] for
more discussion). We note that the case where α > 1 is of no interest, as it implies that simply the
money flow from the buyer to the seller increases the designer’s objective.
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is known as individual rationality (IR).

Define Rτ,ω := t(τ,ω)−C(q(τ,ω);Θ(τ,ω)) as the seller’s revenue with technology τ

and wind ω, and Rτ :=Eτ{Rτ,ω} as the seller’s expected revenue with technology τ .

Then, R=Eτ{Rτ}=Eτ,ω{Rτ,ω}. In the next section, we show that the IC and IR

constraints can be written in terms of Rτ,ω, and Rτ . We show that any mechanism

design problem can be formulated as a constrained functional optimization problem,

where we determine the optimal allocation and the seller’s revenue that maximize

W subject to the IC and IR constraints.

3.4 Market Mechanisms

We consider different structures and timings of mechanisms, and formulate the

resulting mechanism design problems accordingly. We consider a forward mechanism

that takes place at T = 1. We also consider a real-time mechanism that takes

place at T = 2. Moreover, we propose a dynamic mechanism that takes place at

T = 1 and T = 2. Therefore, we formulate three mechanism design problems for the

model of Section 3.2: (A) real-time mechanism, (B) forward mechanism, (C) dynamic

mechanism. By comparing the solutions to these mechanism design problems, we

demonstrate the advantage of the dynamic mechanism over the static forward and

real-time mechanisms.

We show that when the objective of the designer is to maximize W , given by

(3.5), each of the mechanism design problems mentioned above can be formulated

as a functional optimization problem with different sets of constraints. In Section

3.5, we determine the restrictions that each of these sets of constraints implies on

the outcome of the mechanism design problems. Thus, we demonstrate how each of

the three market structures impact the market outcome.

3.4.1 Forward Mechanism

In the forward mechanism, the designer specifies the mechanism that determines

the agreement between the buyer and the seller at T =1; the information about wind

speed ω that becomes available at T = 2 is ignored. This mechanism is similar to
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the current day-ahead integration in Europe, and the proposed firm contracts in the

literature.

Since information ω is not available at T = 1, the allocation function q(τ,ω) and

the payment function t(τ,ω) are independent of ω. Therefore, we drop the dependence

on ω and denote the allocation and payment functions for the forward mechanism

by q(τ) and t(τ), respectively. The optimal forward mechanism is then given by the

solution to the following optimization problem:

max
q(·),t(·)

W

subject to

IC : Rτ ≥ t(τ̂)−Eω{C(q(τ̂);Θ(τ,ω))} ∀τ, τ̂ , (3.6)

IR: Rτ ≥ 0 ∀τ. (3.7)

We note that (3.7) only ensures a positive expected revenue for the seller with tech-

nology τ , and, therefore, exposes him to the risk of penalty (i.e. Rτ,ω < 0) for low

realizations of ω.3

3.4.2 Real-Time Mechanism

In the real-time mechanism, the designer specifies the mechanism that determines

the agreement between the buyer and the seller at T =2, after the information about

wind speed ω is available to the seller. We assume that the wind speed ω is not

monitored by the designer. This mechanism is similar to the current real-time market

integration in the U.S. The allocation and payment functions {q(τ,ω),t(τ,ω)} depend

on (τ, ω), and the seller reports/reveals his technology τ and his private knowledge

about ω simultaneously at T =2. The optimal real-time mechanism is then given by

3For simplicity, we do not model forward mechanisms with explicit penalty rate for shortfalls
here. In Section 3.6, we discuss how our results continue to hold when we consider forward market
mechanisms with explicit penalty for shortfalls.
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the solution to the following optimization problem:

max
q(·,·),t(·,·)

W

subject to

IC :Rτ,ω≥t(τ̂, ω̂)−C(q(τ̂, ω̂);Θ(τ,ω)) ∀τ,ω,τ̂,ω̂, (3.8)

IR: Rτ,ω ≥ 0 ∀τ, ω. (3.9)

Equation (3.8) ensures that the seller’s revenue by reporting the true value of (τ,ω) is

higher than the one with any misreport (τ̂, ω̂). Equation (3.9) guarantees a positive

revenue for the seller for all wind realizations, thus, ensuring no penalty risk for him.

3.4.3 Dynamic Mechanism

In the dynamic mechanism, the designer specifies the mechanism that determines

the agreement between the buyer and the seller at T =1. However, unlike the forward

mechanism, the dynamic mechanism determines an agreement that is contingent on

the information about the wind speed ω that becomes available at T =2. Moreover,

unlike the real-time mechanism, the seller reports τ and ω sequentially; at T = 1,

he reports τ , then at T = 2, he reports ω. We assume that the wind speed ω is not

monitored by the designer. Therefore, the optimal dynamic mechanism is given by

the solution to the following optimization problem:

max
q(·,·),t(·,·)

W

subject to

IC1:Rτ≥Eω{t(τ̂,σ(ω))−C(q(τ̂,σ(ω));Θ(τ,ω))} ∀τ,τ̂,σ(·), (3.10)

IC2:Rτ,ω≥ t(τ, ω̂)−C(q(τ,ω̂);Θ(τ,ω)) ∀τ, ω, ω̂, (3.11)

IR:Rτ≥0 ∀τ. (3.12)

The above dynamic mechanism design problem involves two IC constraints (3.10)

and (3.11). By (3.10), the designer ensures the seller’s true report of τ , even when
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he can potentially coordinate his misreport τ̂ at T =1 with an arbitrary (mis)report

strategy σ(ω) of ω at T =2. The designer ensures the seller’s truthful report of ω at

T =2 by (3.11), assuming that the seller already reported the true τ at time T =1.

3.5 Comparison of Market Mechanisms

In all three mechanism design problems formulated in Section 3.4, the designer

wants to maximize W = U + αR = S + (α − 1)R. However, in each problem the

designer faces a different set of constraints due to the seller’s strategic behavior and

private information about his cost function, as well as the specific mechanism struc-

ture and rules. In this section, we analyze these sets of constraints so as to compare

the performance of the three mechanism design problems presented in Section 3.4.

We proceed as follows. We consider the set of constraints that the designer needs

to satisfy for each market mechanism: constraints (3.6)and (3.7) for the forward

mechanism, constraints (3.8) and (3.9) for the real-time mechanism, and constraints

(3.10)-(3.12) for the dynamic mechanism. We investigate the implications of each

of these sets of constraints under the corresponding market structure. We provide

a reduced form of these constraints in Theorems 3.1 and 3.2. Using the results of

Theorems 3.1 and 3.2, we show that the set of constraints in the dynamic mechanism

is less restrictive than the set of constraints in the forward and real-time mechanisms.

Therefore, we show that the outcome of the dynamic market mechanism outperforms

those of the forward and real-time mechanisms (Theorem 3.3).

We start our analysis by determining the condition that Rτ,ω must satisfy so as to

ensure the seller’s truthful report about ω in the real-time and dynamic mechanisms.

Theorem 3.1. The real-time and dynamic mechanisms are incentive compatible for

ω (constraints (3.8) and (3.11), respectively), if the allocation function q(τ, ω) is

increasing in ω, and the seller’s revenue Rτ,ω satisfies

∂Rτ,ω

∂ω
= Cθ(q(τ, ω); Θ(τ, ω))Θω(τ, ω) ≥ 0, (3.13)

where Cθ(q; θ) := ∂C(q;θ)
∂θ

and Θω(τ, ω) := ∂Θ(τ,ω)
∂ω

. The inequality (3.13) is strict if
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q(τ, ω) > 0.

Theorem 3.1 states that, under the assumption that the seller reports truthfully

his technology τ , his revenue Rτ,ω must be increasing in ω, as in (3.13), so that he

is incentivized to report ω truthfully.

We next provide conditions on Rτ = Eω{Rτ,ω} so as to ensure that the seller with

technology τi reports truthfully in the forward, real-time, and dynamic mechanisms

(constraints (3.6), (3.8), and (3.10) resp.). Moreover, we determine the conditions

thatRτ must satisfy so as to ensure the seller’s voluntary participation in the forward,

real-time, and dynamic mechanisms (constraints (3.7), (3.9), and (3.12) resp.).

For that matter, we define,

RT(τj,τi;q):=

∫
(C(q(τj,ω);Θ(τj,ω))−C(q(τj,ω);Θ(τi,ω)))dG(ω),

RW(τj,τi;q):=

∫∫ σ∗(τj ;τi,ω)

ω

(Cθ(q(τj,ω);Θ(τj,ω̂))−Cθ(q(τj,ω̂);Θ(τj,ω̂)))

Θω(τj,ω̂)dω̂dG(ω),

where σ∗(τj;τi,ω) is uniquely defined by Θ(τj,ω)=Θ(τi, σ
∗(τj;τi,ω))4. That is, σ∗(τj;τi,ω)

denotes the wind speed that the seller with technology τj requires so as to have a

generation cost identical to that of the seller with technology τi and wind speed ω.

Below, we elaborate on the role of RT and RW .

Consider a seller with technology τi and wind speed ω. The seller can misreport

his technology (say, by declaring τj), or his wind speed (say, by declaring ω̂), or both

(by declaring τj,ω̂). In Theorem 3.2, below, we prove the following result. Under

the assumption that the seller reports truthfully his wind speed ω, the payment

that incentivizes him to report truthfully τi instead of misreporting τj is given by

RT(τj,τi;q). The seller may also misreport his wind speed ω (say, by declaring ω̂) after

misreporting his technology τi as τj. In this case,RW(τj,τi;q) represents the additional

expected payment that incentivizes the seller not to misreport his technology τi as

4This is true because of Assumption 3.2.
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τj even when he can misreport his true wind speed. Consequently, RT(τj,τi;q) +

RW(τj,τi;q) represents the incentive payment that the designer must provide to the

seller with technology τi so as to incentivize him not to misreport his technology as

τj.

We also define,

RP (τi;q):=

∫
[1−G(ω)]Cθ(q(τi, ω); Θ(τi, ω))Θω(τi, ω)dω,

which results from integrating (3.13), followed by an expectation with respect to ω.

We show below that RP (τ1; q) determines the minimum incentive payment that the

seller with technology τ1 (the worse technology) must receive in order to voluntarily

participate in the real-time mechanism. The precise statement of these results is as

follows.

Theorem 3.2. In the mechanism design problems formulated in Section 3.4, the

incentive compatibility and individual rationality constraints can be reduced to the

following conditions.

a) For the forward mechanism,

q(τ,ω) is independent of ω, (3.14)

Rτi−Rτi−1
=RT(τi, τi−1; q)≥0 ∀i∈{2, ..,M}, (3.15)

Rτ1 = 0. (3.16)

b) For the real-time mechanism,

q(τ,ω) is only dependent on Θ(τ,ω) and increasing inω, (3.17)
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∂Rτ,ω

∂ω
= Cθ(q(τ, ω); Θ(τ, ω))Θω(τ, ω) ≥ 0, (3.18)

Rτi−Rτi−1
=RT(τi, τi−1; q)+RW(τi, τi−1; q)≥0

∀i∈{2,...,M}, (3.19)

Rτ1 = RP(τ1; q). (3.20)

c) For the dynamic mechanism,

q(τ,ω) is increasing in ω, (3.21)

∂Rτ,ω

∂ω
= Cθ(q(τ, ω); Θ(τ, ω))Θω(τ, ω) ≥ 0, (3.22)

Rτi−Rτj≥RT(τj, τi; q)+RW(τj, τi; q)≥0,

∀i,j∈{1,...,M},i>j, (3.23)

Rτ1 = 0. (3.24)

Moreover, RT(τj,τi;q)≥ 0 (strict if q(τj,ω) 6= 0 for some ω) and RW(τj,τi;q)≥ 0 (strict

if q(τ,ω) is dependent on ω).

We now comment on the results of Theorem 3.2. The results of parts (a-c) reduce

the set of constraints (3.6,3.7) for the forward mechanism, constraints (3.8,3.9) for

the real-time mechanism, and constraints (3.10-3.12) for the dynamic mechanism to

those given by (3.14-3.16), (3.17-3.20), and (3.21-3.24), respectively.

Part (a) of Theorem 3.2 follows from the fact that the forward mechanism takes

place at T =1 when information about ω in not available. Therefore, the allocation

function is independent of ω, and, thus, RW(τi,τj;q) = 0 by its definition. Therefore,

the designer only needs to provide the payment RT(τi,τj;q) so as to incentivize the

seller to report truthfully his technology τi instead of misreporting τj. Part (a)

of Theorem 3.2 states further that when the seller’s technology is τi, the payment

RT(τi−1,τi;q) is enough to incentivize the seller not to misreport τi as τi−1 or as any

other technology τj.
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In part (b) of Theorem 3.2, constraint (3.17) states that the allocation function

q(τ,ω) must be only a function of Θ(τ,ω), as the seller reports both of τ and ω simulta-

neously at T =2. Therefore, the designer cannot differentiate between different pairs

of (τ,ω) that correspond to the same cost function C(q;Θ(τ,ω)). Moreover, (3.17)

requires the allocation function to be increasing in ω, which, along with constraint

(3.18), ensures the seller’s truth telling about ω (Theorem 3.1). Constraint (3.19)

states that when the seller’s technology is τi, the paymentRT(τi−1,τi;q)+RW(τi−1,τi;q)

is enough to incentivize the seller not to misreport τi as τi−1 or as any other technol-

ogy τj. We note that, unlike the forward mechanism where the seller with technology

τ1 receives no incentive payment, in the real-time mechanism the seller with tech-

nology τ1 receives a positive expected incentive payment RP(τ1;q), given by (3.20),

that ensures truth telling about ω.

In part (c) of Theorem 3.2, constraints (3.21) and (3.22) ensure the seller’s truth

telling about ω by Theorem 3.1. Equation (3.23) determines the incentive payment

that the designer needs to provide to the seller with technology τi, so that he does

not misreport his technology as τj, and does not misreport his wind speed ω along

with τj. We note that, unlike the real-time market, the seller with technology τ1

does not receive a positive expected incentive payment (see (3.24)).

From the designer’s point of view, the dynamic mechanism has the following

advantages over the forward and real-time mechanisms: (i) In contrast to the forward

mechanism, the dynamic mechanism incorporates the information about the wind

speed ω that becomes available at T = 2 into the allocation and payment functions.

As a result, the set of allocation and payment functions available to the designer in the

dynamic mechanism is richer than the ones available in the forward mechanism. (ii)

In the real-time mechanism, the seller reports τ and ω simultaneously. Therefore, he

can perfectly coordinate his reports about τ and ω. In the dynamic mechanism, the

seller reports τ and ω sequentially over time, thus, he cannot perfectly coordinate

his reports about τ and ω. As a result, in the dynamic mechanism, the designer

can distinguish among different pairs (τ,ω) that result in the same cost function

C(q;Θ(τ,ω)); this is not the case in the real-time mechanism (see (3.17) and (3.21)).

Furthermore, in the dynamic mechanism the designer faces a less restrictive set of
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constraints on the seller’s revenue R than the ones in the real-time mechanism (see

(3.20) and (3.24)).

Using the result of Theorem 3.2, we can determine the adequate incentive pay-

ment to the seller that is associated with an allocation function q(τ,ω) for the forward,

real-time, and dynamic mechanisms. Consequently, we can omit the payment func-

tion t(τ,ω) and optimize over the allocation function q(τ,ω) to determine the optimal

forward, real-time, and dynamic mechanisms.5 Under a set of regularity conditions,

the resulting functional optimization problems, which are in terms of the allocation

function q(τ,ω), can be solved point-wise separately for every pair (τ,ω) as a value

optimization problem. The closed form solutions of the optimal forward, real-time,

and dynamic mechanisms can be found in Appendix B.

Using the result of Theorem 3.2, we can compare the sets of constraints that

the designer faces under the forward, real-time, and forward mechanisms. We prove

below that for any arbitrary designer’s objective of the form (3.5), the outcome is

superior under the optimal dynamic mechanism than under the optimal forward or

optimal real-time mechanisms.

Theorem 3.3. The designer’s objective under the optimal dynamic mechanism is

higher than her objectives under the optimal forward and the real-time mechanisms,

i.e. Wdynamic >Wforward and Wdynamic >Wreal−time.

The result of Theorem 3.3 demonstrates the advantage of the dynamic mechanism

over the forward and real-time mechanisms. We note that Theorem 3.3 does not pro-

vide a comparison between the forward and real-time mechanisms. That is because

the designer faces different sets of constraints in the forward and the real-time mech-

anisms. On one hand, the forward mechanism ignores ω in its allocation function,

while the real-time mechanism incorporates ω. On the other hand, the incentive

payments are higher in the real-time mechanism than in the forward mechanism (see

5For dynamic mechanisms, the set of constraints (3.23) are in the form of inequality constraints,
and it is not possible to determine a priori which of these inequality constraints are binding at the
optimal solution (see [12] for more discussion). Therefore, we need to make assumptions about
which subset of these inequality constraints are binding, and omit the payment function using the
assumed binding conditions. We then need to verify that the set of assumed binding constraints
are in fact binding at the computed optimal dynamic mechanism.
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(3.20) and (3.16)) since the seller can perfectly coordinate his simultaneous reports

about τ and ω in the real-time mechanism. The impact of these constraints on the

performance of the forward and the real-time mechanisms depend on the specific

parameters of the model, and thus, there is no generic ordering of the designer’s

objective under the forward and real-time mechanisms.

3.6 Additional Remarks

In this section, we examine the following variations of the problems formulated

in Section 3.4, and analyzed in Section 3.5. First, we consider a forward mechanism

with explicit penalty rate for shortfalls, and compare it with the dynamic mechanism

proposed in Section 3.4. Second, we consider a dynamic mechanism that guarantees

no loss for the seller for every realization of wind speed ω. We show that the perfor-

mance of this mechanism is superior to that of the real-time mechanism and inferior

to that of the dynamic mechanism proposed in Section 3.4. Third, we consider a

dynamic mechanism with monitoring, where the designer monitors the wind speed

ω. We show that the dynamic mechanism with monitoring outperforms the dy-

namic mechanism proposed in Section 3.4, where the designer does not monitor the

wind speed ω. Moreover, in the dynamic mechanism with monitoring, the designer

can guarantee no loss for the seller without compromising the performance of the

mechanism.

3.6.1 Forward Mechanism with Penalty Rate

The forward mechanism formulated in Section 3.4 ignores the wind speed ω,

and determines the allocation q(τ) and payment function t(τ) only as a function of τ .

Here, we consider a variation of the forward mechanism where the seller is not bound

to produce exactly q(τ) at T = 2. However, if the seller’s generation at T = 2 falls

short of his commitment q(τ), he faces a penalty charge rate λ(τ) by the designer

for each unit of generation that he falls short of producing. The penalty rate λ(τ) is

agreed at T = 1 based on the seller’s report about his technology. We refer to this

variation of the forward mechanism as forward mechanism with penalty rate. The
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work of [115] studies the design of such a mechanism for wind procurement, and the

works of [20, 139] consider settings where λ is exogenously fixed and does not depend

on τ .

We note that the forward mechanism with penalty rate does not fully ignore ω

at T = 2, as it allows the seller to change his generation at T = 2 based on the

realized wind condition ω. However, we argue below that such incorporation of ω

into the forward mechanism with penalty rate is not efficient. Therefore, the dynamic

mechanism outperforms the forward mechanism with penalty rate.

A forward mechanism with penalty rate that is incentive compatible and individu-

ally rational can be characterized by allocation and payment functions {q(τ),t(τ),τ ∈
T }, along with associated penalty rates {λ(τ),τ ∈ T }. Let e(τ,ω), e(τ,ω) ≤ q(τ),

denote the amount of energy that the seller with technology τ and wind speed ω

actually produces at T = 2 (given the described forward mechanism with penalty

rate). The seller with technology τ and wind ω chooses e(τ,ω) so as to maximize his

revenue as,

e(τ, ω) :=arg max
0≤ê≤q(τ)

{t(τ)−C(ê; Θ(τ, ω))− λ(τ)(q(τ)−ê)} .

Using e(τ,ω), we can define a dynamic mechanism {q̃(τ,ω), t̃(τ,ω),τ ∈T ,ω∈ [ω,ω]} that

is equivalent to the forward mechanism with penalty rate described above. Define,

q̃(τ, ω) := e(τ, ω), (3.25)

t̃(τ, ω) := t(τ)− λ(τ)(q(τ)−e(τ, ω)). (3.26)

The dynamic mechanism {q̃(τ,ω), t̃(τ,ω),τ ∈ T ,ω ∈ [ω,ω]} defined above is incentive

compatible and individually rational since it induces the same allocation and payment

function for the seller with technology τ and wind ω as the forward mechanism with

penalty rate.

In the equivalent dynamic mechanism {q̃(τ,ω), t̃(τ,ω),τ ∈T ,ω∈ [ω,ω]} constructed

above, the payment function t̃(τ,ω) is linear in q̃(τ,ω) (see (3.26)). However, in the

optimal dynamic mechanism, the payment t(τ,ω) is in general, nonlinear in q(τ,ω)
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(see the example in Section 3.7). Therefore, even though the forward mechanism with

penalty rate allows the seller to modify his generation according to the realized wind

speed ω, such incorporation of ω is not as efficient as in the dynamic mechanism.

3.6.2 Dynamic Mechanism with no Penalty

The dynamic mechanism formulated in Section 3.4 promises a positive expected

revenue to the seller for every technology τ (see the IR constraint (3.12)). However,

once the seller signs the agreement at T =1, he is committed to following the terms

of the agreement. Similar to the forward mechanism, it is possible that in the dy-

namic mechanism, the realized revenue of the seller becomes negative for very low

realizations of wind speed, i.e. Rτ,ω < 0 for small values of ω (note that the IR

constraint (3.12) only guarantees Rτ =E{Rτ,ω} ≥ 0).

In this section, we consider a variation of the dynamic mechanism that guarantees

no loss for the seller for every realization of ω, i.e. Rτ,ω ≥ 0. We refer to this mech-

anism as the dynamic mechanism with no penalty. The optimal dynamic mechanism

with no penalty is given by the solution to the following optimization problem:

max
q(·,·),t(·,·)

W

subject to

IC1:Rτ≥Eω{t(τ̂,σ(ω))−C(q(τ̂,σ(ω));Θ(τ,ω))} ∀τ,τ̂,σ(·), (3.27)

IC2:Rτ,ω≥ t(τ, ω̂)−C(q(τ,ω̂);Θ(τ,ω)) ∀τ, ω, ω̂, (3.28)

IR:Rτ,ω≥0 ∀τ, ω. (3.29)

The above optimization problem is similar to the optimization problem formulated

for the optimal dynamic mechanism in Section 3.4. The only difference is that we

replace the ex-ante IR constraint Rτ ≥ 0, given by (3.12), with the ex-post IR

constraint Rτ,ω ≥ 0, given by (3.29).

It is clear that the IR constraint Rτ,ω ≥ 0 is more restrictive than the ex-ante IR

constraint Rτ ≥ 0. Therefore, the performance of the optimal dynamic mechanism

with no penalty is inferior to that of the optimal dynamic mechanism. Nevertheless,
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we show below that the optimal dynamic mechanism with no penalty outperforms

the optimal real-time mechanism.

Theorem 3.4. (i) The set of IC and IR constraints for dynamic mechanism with

no penalty, given by (3.27-3.29), can be reduced to the following conditions,

q(τ,ω) is increasing in ω, (3.30)

∂Rτ,ω

∂ω
= Cθ(q(τ, ω); Θ(τ, ω))Θω(τ, ω) ≥ 0, (3.31)

Rτi−Rτj≥RT(τj, τi; q)+RW(τj, τi; q)≥0,

∀i,j∈{1,...,M},i>j, (3.32)

Rτ1 ≥ RP(τ1; q). (3.33)

(ii) The designer’s objective, given by (3.5), under the optimal dynamic mechanism

with no penalty is higher than her objective under the optimal real-time mechanism

and lower than her objective under the optimal dynamic mechanism, i.e. Wdynamic>

Wdynamic no penalty>Wreal-time.

Part (i) of Theorem 3.4 states the analogue result of part (c) of Theorem 3.2 for

dynamic mechanisms with no penalty. We note that the set of constraints (3.31)

and (3.32) for the dynamic mechanisms with no penalty is the same as the set of

constraints (3.22) and (3.23) for dynamic mechanisms in part (c) of Theorem 3.2.

This is because the IC constraints (3.27) and (3.28) for dynamic mechanisms with no

penalty are the same as the IC constraints (3.10) and (3.11) for dynamic mechanisms.

However, constraint (3.33) for the dynamic mechanism with no penalty is different

from constraint (3.24) for the dynamic mechanism. In the dynamic mechanism with

no penalty we impose the ex-post IR constraint (3.29) instead of the less restrictive

interim IR constraint (3.12) imposed for the dynamic mechanism. As a result, the

designer cannot reduce the incentive payment she pays to the seller by exposing him

to penalty risk for low realizations of wind speed ω. The ex-post constraint requires

that Rτ1,ω ≥ 0, where τ1 and ω denote the worst technology and lowest wind speed

71



realization for the seller, respectively. Using constraint (3.31), which is implied by

the IC constraint about ω at T = 2, the expected revenue Eω{Rτ1,ω} is strictly positive

for the seller with technology τ1, and must be greater than or equal to RP(τ1;q) (see

(3.33)).

Part (ii) of Theorem 3.4 follows directly from the result of part (i). First, the

set of constraints (3.31-3.33) for the dynamic mechanism with no penalty is more

restrictive than the set of constraints (3.22-3.24) for the dynamic mechanism (of

Section 3.4). Therefore, the performance of the optimal dynamic mechanism with

no penalty is inferior to that of the optimal dynamic mechanism.

Second, comparing the set of constraints (3.31)-(3.33) for the dynamic mechanism

with no penalty with the set of constraints (3.18)-(3.20) for the real-time mechanism

(in particular (3.19) and (3.32)), it is clear that the designer’s objective under the

optimal dynamic mechanism with no penalty is higher than her objective under the

optimal real-time mechanism. This is because under the real-time mechanism, the

designer cannot distinguish between different pairs of (τ, ω) corresponding to the

same Θ(τ,ω) (see (3.17)), whereas, in the dynamic mechanism with no penalty, dis-

tinction among all pairs of (τ,ω) is possible as the seller reports τ and ω sequentially.

We note that Theorem 3.4 does not provide a comparison between the forward

mechanism and the dynamic mechanisms with no penalty. This is because, on one

hand, the forward mechanism ignores ω in its allocation function. On the other hand,

in the dynamic mechanism with no penalty we impose the no penalty risk constraint,

i.e. ex-post IR (3.29). The impact of these two constraints on the performance of

the forward mechanism and the dynamic mechanism with no penalty depends on the

specific parameters of the model, and thus, there is no generic ordering among them

in terms of the designer’s objective.

3.6.3 Dynamic Mechanism with Wind Monitoring

In the model of Section 3.2, we use ω to denote the wind speed information that

becomes available only to the seller at T = 2. In this section, we consider a scenario

where the designer can also monitor the realization of wind speed ω.
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In the following, we formulate the dynamic mechanism design problem under this

assumption. We refer to this mechanism as the dynamic mechanism with monitoring.

Assuming that the designer monitors ω, the seller is only required to reveal his private

technology τ at T =1. Therefore, the optimal dynamic mechanism with monitoring

is given by the solution to the following optimization problem:

max
q(·,·),t(·,·)

W

subject to

IC :Rτ≥Eω{t(τ̂ , ω)−C(q(τ̂ ,ω);Θ(τ,ω))} ∀τ,τ̂, (3.34)

IR:Rτ≥0 ∀τ. (3.35)

The above optimization problem is similar to the optimization problem for the opti-

mal dynamic mechanism in Section 3.4. However, there is no IC constraint for ω in

the dynamic mechanism with monitoring, as the designer monitors ω.

Below, we show that wind monitoring provides two advantages to the designer.

First, it improves the outcome of the dynamic mechanism. Second, it enables the

designer to render the dynamic mechanism with monitoring free of any penalty risk

for the seller simply by modifying the payment function for different realizations of

ω.

Theorem 3.5. (i) The set of IC and IR constraints for the dynamic mechanism with

monitoring, given by (3.34,3.35) can be reduced to the following conditions,

Rτi−Rτj =RT(τj, τi; q)≥0, ∀i,j∈{1,...,M},i>j, (3.36)

Rτ1 = 0. (3.37)

(ii) The designer’s objective under the optimal dynamic mechanism with monitor-

ing is higher than her objective under the optimal dynamic mechanism, the optimal

dynamic mechanism with no penalty risk, and the optimal real-time and forward

mechanisms. i.e. Wdynamic with monitoring >Wdynamic >Wdynamic no penalty >Wreal-time,

and Wdynamic with monitoring>Wdynamic>W forward.
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Wind monitoring No wind monitoring

Penalty risk RT (q) RT (q) +RW (q)

No penalty risk RT (q) RT (q) +RW (q) +RP (q)

Table 3.1: Incentive payment to the seller

(iii) In the dynamic mechanism with wind monitoring, the designer can guarantee

no penalty risk for the seller, without changing the mechanism outcome in terms of

her objective W, the buyer’s utility U , and the seller’s revenue R.

We summarize the results of Theorems 3.2-3.5 on incentive payments to the seller

under different market mechanisms in Table 3.1. For a given allocation function

q(τ,ω), defineRT(q) :=
∑M

i=2 pi
∑i

j=2R
T(τj,τj−1;q),RW(q):=

∑M
i=2

∑i
j=2 piR

T(τj,τj−1;q),

and RP(q):=RP(τ1;q). Then, RT (q) denotes the incentive payment that the designer

must pay to the seller so that he reveals truthfully his private technology τ . If the

designer wants to incorporate ω in energy allocation and does not monitor ω, then

she needs to pay the additional incentive payment RW (q) so that the seller reveals

ω truthfully. Without monitoring ω, if the designer wants to guarantee no penalty

risk for the seller, then she must pay an additional incentive payment RP (q) to the

seller.

3.7 Example

We consider an environment where the designer’s objective is W = U+0.5R (i.e.

α = 0.5). That is, the designer assigns more weight on the welfare of the demand

than on the seller’s revenue. The buyer has utility function V(q̂) = q̂− 1
2
q̂2. The

seller has linear cost function C(q̂;θ) = θq̂. The seller has two possible technologies;

technology τ1 (inferior technology) with marginal cost Θ(τ1,ω)=1−ω, and technology

τ2 (superior technology) with marginal cost Θ(τ2,ω)=(1−ω)2. We assume that the

designer believes that both technologies are equally likely and each has probability

0.5. The wind speed ω is uniformly distributed in [0, 1].

Using the results of Theorems 3.2-3.5, we compute the optimal forward, real-time,

and dynamic mechanisms as well as the optimal dynamic mechanisms with no penalty
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Figure 3.1: Example - optimal mechanisms

and with monitoring. (see Appendix B for the closed form solution of the general

case). Figure 3.1 depicts the allocation and payment functions for each of the optimal

mechanisms. The outcome of these different mechanisms is summarized in Table 3.2.

Consistent with the results of Theorems 3.3-3.5, we find thatWdynamic with monitoring >

Wdynamic > Wdynamic no penalty > Wreal-time, and Wdynamic with monitoring > Wdynamic >

U forward. We note that, as discussed in Section 3.6.B, there exists no general ordering

between the dynamic mechanism with no penalty and the forward mechanism.

As we argued earlier, the seller’s strategic behavior affects the efficiency of a

mechanism and distorts its outcome from the efficient allocation (see Fig. 3.1). We

note that for τ2, the allocation functions in the dynamic mechanism and dynamic

mechanism with monitoring are the same as the efficient allocation. Moreover, for

τ1, the distortion of the allocation function from the efficient allocation is less under

the dynamic mechanism than under the real-time and forward mechanisms. These

observations further illustrate the advantage of the dynamic mechanism over the
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Figure 3.2: Example - the seller’s revenue

forward and real-time mechanisms.

Next, we consider the seller’s revenue R. We note that the seller’s revenue is the

highest under the optimal real-time mechanism. This is because (i) the seller is not

subject to any penalty risk under the real-time mechanism (as opposed to the forward

and dynamic mechanisms); (ii) the seller reports τ and ω simultaneously, therefore,

he has more power in manipulating his reports (about τ and ω) to the designer

than in the dynamic mechanism, where he reports τ and ω sequentially. We also

note that the seller’s revenue under the optimal dynamic mechanism is higher than

that of the forward mechanism because the forward mechanism ignores wind speed
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Figure 3.3: Example - different payment vs. quantity options in the dynamic mech-
anism

ω whereas wind speed ω is incorporated in the dynamic mechanism, and, therefore,

the seller receives additional incentive (payment) to report ω truthfully. Next, we

note that the seller’s revenue under the optimal dynamic mechanism is lower than

of the optimal dynamic mechanism with no penalty, and higher than of the optimal

dynamic mechanism with monitoring. This is because the payment to the seller is

lower in the optimal dynamic mechanism with monitoring and higher in the optimal

dynamic mechanism with no penalty (see Table 3.1).

As pointed out above, the dynamic and forward mechanisms expose the seller to

penalty risk (negative revenue) for low realizations of the wind speed ω. However, in

the dynamic mechanism with monitoring, the dynamic mechanism with no penalty,

and the real-time mechanism, the seller always receives a non-negative revenue for

all realizations of ω. Figure 3.2 shows the seller’s revenue for all the mechanisms and

all realizations of ω.

Next, we consider the buyer’s utility U . The buyer’s utility under the dynamic

mechanism is higher than that of the forward and real-time mechanisms. This is be-

cause the dynamic mechanism’s efficiency is higher than that of the optimal forward

and real-time mechanisms, and this is also reflected in the buyer’s utility. Moreover,

for a given allocation function, the incentive payment made by the buyer to the seller
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Mechanisms
Buyer’s Utility

U
Seller’s Revenue

R
Designer’s Objective

W
Efficient allocation — — 0.2167

Forward 0.1372 0.0347 0.1545

Real-time 0.0693 0.1210 0.1298

Dynamic 0.1729 0.0417 0.1938

Dynamic with no penalty 0.1077 0.0842 0.1498

Dynamic with monitoring 0.1813 0.0333 0.1979

Table 3.2: Example - the buyer’s utility U , the information rentR, and the designer’s
objective W

under the optimal dynamic mechanism is less than the incentive payments under the

optimal forward and real-time mechanisms. The buyer’s utility under the optimal

dynamic mechanism is higher than that of the optimal dynamic mechanism with no

penalty, and lower than that of the optimal dynamic mechanism with monitoring.

This is because the payment made by the buyer to the seller is lower in the optimal

dynamic mechanism with monitoring and higher in the optimal dynamic mechanism

with no penalty (see Table 3.1).

We note that in the forward and real-time mechanisms, which are static mech-

anisms, the payment the seller receives for producing a certain amount of energy q̂

is independent of his type. However, this is not the case in the dynamic mechanism

(see Fig. 3.3). In the dynamic mechanism the payment and allocation depend on

the seller’s reports at T = 1 and T = 2. Therefore, depending on the seller’s reports

at T = 1 and T = 2, the designer can provide different payments to the seller for

producing the same amount of energy. In Fig. 3.3, one can see that the seller with

the superior technology τ2 receives a higher payment than the seller with the infe-

rior technology τ1 for high quantities of energy produced. On the contrary, for low

quantities of energy produced the seller with inferior technology τ1 receives a higher

payment than the seller with superior technology τ2. The difference in payments to

different types of seller for the same quantity of energy produced, allows the designer
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to differentiate among different types of seller, thus, to increase the efficiency of the

mechanism.

3.8 Extension to Many Sellers

To demonstrate the main ideas, namely the advantage of the dynamic mechanism

over the forward and real-time mechanisms, we considered a setting with only one

seller in the model of Section 3.2. However, in a general electricity market there

exist many sellers competing with one another. In this section, we discuss how our

results on the advantage of the dynamic mechanism over the forward and real-time

mechanisms also hold for environments with many sellers. We provide only the sketch

of the proof following steps similar to those presented for the model with one seller.

Consider a model similar to that of Section 3.2, with N sellers. Seller n, n ∈
{1, ...,N}, has generation cost C(q̂n; Θ(τn, ωn)), where q̂n denotes the amount of en-

ergy he produces, and τn and ωn denotes seller n’s technology and wind speed, respec-

tively. We assume that τn takes values in {τn1 , ..., τnM} with probability (pn1 ..., p
n
M).

The probability distribution of ωn ∈ [ω, ω] is independent of τn. The wind speeds

ω1, ..., ωN may be correlated as the sellers can be located in geographically close

locations. We assume that joint distribution of (ω1, ...,ωN) (resp. (τ 1, ...,τN)), is com-

monly known to all sellers as well as the designer. Furthermore, Assumptions 3.1

and 3.2 of Section 3.2, hold for every seller n, n∈{1, ...,N}.
Similar to the approach presented in Section 3.3, we invoke the revelation prin-

ciple and restrict attention to direct revelation mechanisms that are incentive com-

patible and individually rational. Let τ−n (resp. ω−n) denote the set of all sellers’

technologies (resp. wind speeds) except seller n’s technology τn (resp. wind speed

ωn). In the model with many sellers, seller n’s allocation and payment are functions

of seller n’s reports about τn and ωn as well as all the other sellers’ reports about

τ−n and ω−n. Let qn(τn,ωn,τ−n,ω−n), and tn(τn,ωn,τ−n,ω−n) denote the allocation and

payment functions for seller n, respectively.

We assume that the designer does not reveal the reports of seller n to other sellers
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before finalizing the payments and allocations of all sellers. Define,

C̄n(τ̂n,ω̂n;τn,ωn) :=Eτ−n,ω−n
{
C(qn(τ̂n,ω̂n,τ−n,ω−n);Θ(τn,ωn))∣∣τn,ωn}, (3.38)

t̄n(τ̂n, ω̂n) :=Eτ−n,ω−n{tn(τ̂n,ω̂n,τ−n,ω−n)
∣∣τn,ωn}, (3.39)

as seller n’s conditional expected cost and payment, respectively, when he has tech-

nology τn and wind ωn, and he reports τ̂n and ω̂n. We note that, the expectations

above are written using the fact that at equilibrium, seller i believes that other sellers

report their private information truthfully.

Similar to Section 3.3, let

Rn
τn,ωn:=Eτ−n,ω−n

{
tn(τn,ωn,τ−n,ω−n)

−C
(
qn(τn,ωn,τ−n,ω−n);Θ(τn,ωn)

)}
,

denote the expected revenue of seller n with technology τn and wind ωn. Also, define,

Rn
τn :=Eωn{Rn

τn,ωn},

Rn := Eτn{Rn
τnRn

τn}.

Moreover, let,

Umany:=E{τn,ωn}Nn=1

{
V

(
N∑
n=1

qn(τn,ωn,τ−n,ω−n)

)

−
N∑
n=1

tn(τn,ωn,τ−n, ω−n)

}
,

Wmany :=Umany+α
N∑
n=1

Rn,

denote the buyer’s expected utility and the designer’s objective, respectively.

We discuss how the results of Theorems 3.1-3.3 (on the advantage of the dynamic
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mechanism over the forward and real-time mechanisms) continue to hold in the model

with many sellers described above.

The key idea is the following. We write each mechanism design problem with

many sellers in a form similar to the corresponding mechanism design problem with

one seller (formulated in Section 3.4). We write these mechanism design problems

using the conditional expected cost and payment functions, defined by (3.38) and

(3.39), respectively, instead of the cost and payment functions that appear in the

problems with a single seller. We show that in each mechanism design problem and

for each seller, the designer faces a set of constraints that are similar to those that

arise in the case with a single seller. Therefore, the arguments used in the proofs of

Theorems 3.1-3.3 can be directly extended to environments with many sellers.

We proceed with the formulation of the mechanism design problems with many

sellers, and discuss how the results of Theorems 3.1-3.3 continue to hold in the model

with many sellers.

Forward mechanism: In the forward mechanism, the allocation function qn(τ̂n,

ω̂n,τ−n,ω̂−n) and payment function tn(τ̂n,ω̂n,τ−n,ω̂−n) for seller n are independent

of the reported wind speeds ω̂n and ω̂−n. Therefore, we drop the dependence

on (ω̂n, ω̂−n), and denote the conditional expected cost and payment functions by

C̄n(τ̂n; τn, ωn) and t̄n(τ̂n), respectively. The optimal forward mechanism with many

sellers is given by the solution to the following optimization problem:

max
{qn(.),tn(.)}Nn=1

Wmany

subject to

ICn: Rn
τn≥ t̄n(τ̂n)−Eω{C̄n(τ̂ ;τ,ωn)} ∀τn, τ̂n, n (3.40)

IRn: Rn
τn ≥ 0 ∀τn, n. (3.41)

We note that in the above optimization problem, the designer faces a set of con-

straints, given by (3.40) and (3.41), for every seller n. These constraints are similar

to those given by (3.6) and (3.7) for the forward mechanism with a single seller.

Therefore, we can show that seller’s expected revenue Rn
τn for every seller i must
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satisfy a set of constraints similar to those given by (3.15) and (3.16) in part (a) of

Theorem 3.2 in terms of conditional expected cost C̄n(τ̂n;τn,ωn).

Real-time mechanism: The real-time mechanism design problem with many

sellers can be formulated as follows.

max
{qn(.),tn(.)}Nn=1

Wmany

subject to

ICn:Rn
τn,ωn≥t̄n(τ̂n,ω̂n)−C̄n(̂τn,ω̂n;τn,ωn)

∀τn,ωn, τ̂n,ω̂n, n, (3.42)

IRn: Rn
τn,ωn ≥ 0 ∀τn, ωn, n. (3.43)

Note that the set of constraints (3.42) and (3.43), for every seller n, is similar to

the set of constraints (3.8) and (3.9) in the real-time mechanism with a single seller.

Therefore, we can show that expected revenue Rn
τn,ωn must satisfy a set of constraints

similar to those given by Theorem 3.1. Consequently, we can show that the set of

constraints that the designer faces for every seller n can be reduced to a set of con-

straints that are similar to those given by (3.18)-(3.20) in part (b) of Theorem 3.2 in

terms of expected seller’s revenue Rn
τn,ωn and Rn

τn , and the conditional expected cost

C̄n(τ̂n,ω̂n;τn,ωn). We can also show that q(τn,ωn,τ−n,ω−n) must only be a function of

Θn(τn,ωn) and Θm(τm,ωm), m 6=n, since all sellers report simultaneously about their

own technologies and wind speeds (see (3.17)). Using an argument similar to the

one in Theorem 3.2 for seller n, we can also show that Eτ−n,ω−n{qn(τn,ωn,τ−n,ω−n)}
must be increasing in ωn.

Dynamic mechanism: The optimal dynamic mechanism with many sellers is
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given by the solution to the following optimization problem:

max
{qn(.),tn(.)}Nn=1

Wmany

subject to

ICn
1 :Rn

τn≥Eωn{t̄n(τ̂n,σn(ωn))−C̄n(τ̂n,σn(ωn);τn,ωn)}

∀τn, τ̂n,σn(·),n, (3.44)

ICn
2 :Rn

τn,ωn≥ t̄n(τn,ω̂n)−C̄n(τn,ω̂n;τn,ωn) ∀τn,ωn,ω̂n,n, (3.45)

IRn :Rn
τn≥0 ∀τ, n. (3.46)

As we mentioned above, we assume that the designer does not reveal other sellers’

reports about τ−n at T = 1. Therefore, seller n’s IC constraint about ω at T = 2 is

given by (3.45), where seller n assumes that other sellers report truthfully τ−n and

ω−n. We note that the set of constraints (3.44)-(3.46), for every seller n, is similar

to the set of constraints (3.10)-(3.12) in the dynamic mechanism with a single seller.

Therefore, we can show that the expected seller’s revenue Rn
τn,ωn must satisfy a set

of constraints similar to those given by Theorem 3.1. Furthermore, we can show

that the expected seller’s revenue Rn
τn,ωn and Rn

τn for every seller n must satisfy a

set of constraints that are similar to the ones given by (3.22)-(3.24) in part (c) of

Theorem 3.2. Using an argument similar to Theorem 3.2 for seller n, we can also

show that Eτ−n,ω−n{qn(τn,ωn,τ−n,ω−n)} must be increasing in ωn as in (3.21) in part

(c) of Theorem 3.2.

The above arguments show that all the mechanism design problems with many

sellers considered in this section, have sets of constraints for each seller that are

similar to those that arise in the corresponding problems with a single seller. Thus,

we can show, by arguments similar to those given in the proof of Theorem 3.3, that

the set of constraints for the dynamic mechanism with many sellers is less restrictive

than the set of constraints for the forward and real-time mechanisms with many

sellers. Therefore, we can establish that the dynamic mechanism with many sellers

outperforms the forward and real-time mechanism with many sellers.

Remark 3.1. The optimal forward and real-time mechanism with many sellers are
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standard static multi-unit auctions (see [66]). However, the optimal dynamic mech-

anism with many sellers is a form of handicap auction, first introduced in [38].

In a standard auction, seller n bids his generation cost function simultaneously

and the auctioneer determines the outcomes based on all sellers’ bids.

In a handicap auction, at T = 1, seller n bids his current information about his

generation cost (i.e. τn), so as to pick a menu of payment-quantity curve, from

which he can select his generation at T = 2. Then, at T = 2, seller n observes the

realized wind speed ωn, and competes with other sellers for generation based on the

payment-quantity curve he won at T = 1. Sellers with better technologies anticipate

to have higher generations in real-time. Therefore, in a handicap auction, at T =1,

they bid for payment-quantity curves that give them high marginal prices for high

generation quantities (which are more likely for them), but low marginal prices for

low generation quantities (which are less likely for them). On the other hand, sellers

with worse technologies bid for payment-quantity curves that give them high marginal

prices for low generation quantities (which are more likely for them), but low marginal

prices for high generation quantities (which are less likely for them); see Fig. 3.3 in

the example of Section 3.7.

3.9 Conclusion

We considered a dynamic model for market design for wind energy, and studied

the problem of market mechanism design for wind energy. We proposed dynamic

market mechanisms that couple the outcome of the real-time and forward mecha-

nisms. We showed that the dynamic market mechanisms proposed in this chapter

outperform the real-time and forward mechanisms with respect to the integration of

wind energy into the grid. Dynamic mechanisms dynamically incorporate the new

information that arrives over time, and require the wind generator to sequentially

reveal his private information to the market designer, and to refine his generation

commitment accordingly. We investigated the effects of wind monitoring and penalty

risk exposure on the market outcome. Generalization of the these results to mecha-

nisms with multiple wind generators is our main direction for future work.
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Chapter 4

Informational Incentives in Congestion Games

4.1 Introduction

4.1.1 Background and Motivation

In a transportation network, the condition of every link varies over time due

to changes in weather conditions, accidents, traffic jams, etc. Traditionally, drivers

receive public information about these changes at every route through various in-

frastructures, e.g. regional traffic updates via radio broadcasts, and/or variable

(dynamic) message signs on road sides displaying specific information about the on-

ward routes [11, 29, 36]. In recent years, the advent of GPS-enabled routing devices

and navigation applications (e.g. Waze and Google maps) has enabled drivers to

receive private, real-time data about the transportation network’s condition for their

own intended origin-destination [10]. The development of these technologies cre-

ates new opportunities to reduce congestion in the network, and improve its overall

performance (as measured by various metrics including social welfare).

Several studies have investigated the effects of information provision to drivers

on the social welfare of the transportation network [4, 14, 33, 73, 124, 1, 74, 69].

These studies have shown that the effect of information provision on social welfare

is ambiguous, and in general, is not necessarily socially beneficial. For exogenously

fixed information provision structures, these works have identified instances where

the provision of information can in fact increase congestion in parts of the network,
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leading to a decrease in social welfare. In addition to the above-mentioned theo-

retical and experimental works, there are empirical evidences that identify negative

impacts of information provision on the network’s congestion [52, 94, 103, 45, 26].

Therefore, it is important to investigate how to design appropriate information pro-

vision mechanisms, in a manner that is socially beneficial and leads to a reduction

in the overall congestion in the transportation network.

In this chapter, we study the problem of designing a socially optimal informa-

tion disclosure mechanism. We consider a congestion game [83, 104] in a parallel

two-link network. We consider an information provider (principal) who wants to dis-

close information about the condition of the network to a fixed population of drivers

(agents). We assume that the condition of one route/link, called safe route, is con-

stant and known to everyone, while the condition of the other route, called risky

route, is random and only known to the principal. The principal wants to design an

information disclosure mechanism so as to maximize the social welfare.

We study the problem of designing an optimal information provision mechanism

in two cases: (1) when the principal can only provide information that is publicly

available to all drivers, and (2) when the principal can provide private information

to each driver individually.

We first consider a static setting where the drivers do not learn from their past

experiences. We determine a condition under which the principal can achieve the

maximum social welfare using an optimal information provision mechanism. That

is, the principal can utilize her superior information about the network to provide

informational incentives so as to align the drivers’ objectives with the overall social

welfare. Next, we consider a dynamic two-stage setting where the drivers learn from

their experience at t = 1, and the risky routes’ condition evolves according to an

uncontrolled Markov chain. We consider three scenarios for the drivers’ learning at

t = 1: (i) the drivers only learn from the information they receive directly from the

principal at t = 1, (ii) in addition to the information they receive directly from the

principal at t = 1, the drivers who take the risky route learn perfectly its condition at

t = 1, and (iii) in addition to the information he receives directly from the principal

at t = 1, each driver perfectly observes the number of cars/drivers on the route

86



he takes at t = 1. Using numerical simulations, we show that in scenario (i) the

principal can achieve the same outcome as in the static setting in which there is no

learning. However, in scenarios (ii) and (iii) the performance of an optimal dynamic

information provision mechanism decreases due to the drivers’ learning only. In

particular, we identify instances in scenario (ii) where it is optimal for principal to

reveal perfectly risky route’s condition at t = 2 so that the drivers do not have an

incentive to experiment and learn the risky route’s condition at t = 1. Moreover,

in scenario (iii) we identify instances where it is optimal for the designer to not

implement different routing outcome, i.e. reveal her information about risky route’s

condition, so as to increase her information superiority at t = 2.

4.1.2 Related literature

The problems investigated in [78, 4, 14, 33, 73, 69, 124, 1, 74] are the most closely

related to our problem. The authors of [4, 14] consider a bottleneck model [128] with

stochastic capacities, where each route is modeled as a queue with a first-come, first-

served policy, with the service rate determined by the route’s condition. In [4], the

authors consider a scenario where each driver decides the time and the route/queue

he wants to join, considering the behavior of the other drivers. Through numerical

simulations, they show that when drivers receive a low quality/highly noisy signal

about the routes’ conditions, social welfare decreases. In [14], the authors consider

a scenario where each driver does not take into account the other drivers’ response

to the information provided by the principal. They show that social welfare may

decrease when the drivers receive accurate information about the routes, due to the

drivers’ overreaction and/or higher congestion concentration in parts of the network.

The authors of [33, 73] consider a parallel two-link network that is similar to

our model. In [33], the authors assume that only one of the routes has a random

condition with two possible values. They show that social welfare may decrease

when the drivers receive public information about the routes’ conditions irrespective

of whether they are risk-neutral or risk-averse. The authors of [73] assume that the

condition of both routes are random. They show that social welfare can decrease
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when the drivers receive public perfect information about the realizations of the

routes’ conditions.

The authors of [124, 74, 1] consider a model where a subset of drivers (informed

drivers) has access to more accurate information about the condition of every route

than the remaining drivers. In [124], the authors assume that the drivers that do

not receive the more accurate information prefer to use high-capacity routes (i.e.

highways) rather than low-capacity routes. By numerical simulation, they show that

as the number of informed drivers increases, the congestion in low-capacity routes

(i.e. urban areas) increases. The authors of [74] consider a model similar to ours,

in which the condition of one of the routes is random. They show that when the

number of informed drivers is low, the expected utilities of both groups of drivers

are higher compared to the case where all drivers are uninformed. However, as the

number of informed drivers increases, the social welfare decreases, even compared

to the case where all drivers are uninformed. The authors of [1] study a model

where the informed drivers become aware of the existence of additional routes in a

network. They show that the provision of information can create a Braess’ Paradox

phenomenon, and thus, can reduce not only the social welfare, but also the utility of

the informed drivers.

In contrast to [78, 4, 14, 33, 73, 69, 124, 1, 74], which analyze the performance of

fixed information provision mechanisms, in this chapter we investigate the problem

of designing an optimal information provision mechanism; the information provision

mechanisms analyzed in [78, 4, 14, 33, 73, 69, 124, 1, 74] are within the set of feasible

mechanisms the principal can choose from when maximizing the social welfare.

Our work is also related to the literature on improving efficiency in resource

allocation problems with externalities (i.e. congestion games). It is known that

the equilibrium outcome in congestion games is not socially optimal [106]. Several

approaches have been proposed in the literature to address this inefficiency. One

approach is to utilize monetary mechanisms in order to align the agents’ objectives

with the social welfare (see [99] and references therein). A second approach, which is

applicable when the principal has control over a fraction of agents, is for the principal

to choose routes for this fraction so as to influence the behavior of selfish agents. This
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can lead to improvement in the social welfare (see [65, 112] and references therein).

We propose an alternative approach to improving the efficiency in congestion game by

utilizing informational incentives when the principal has an informational advantage

over the agents. Specifically, our approach can prove promising in transportation

networks where the application of tolls (pricing) is limited and agents are typically

selfish.

Within the economics literature, the problems studied in this chapter belong

to the class of information design problems (see [17] and references therein). Our

approach to the public information mechanism design problem (Section 4.4) is similar

to the ones in [35, 59]. Our approach to the private information mechanism design

problems (Section 4.5 and 4.6) is similar to the ones in [15, 16]. The work in [64] is

closely related to our work. The authors of [64] consider a model with two possible

actions where the payoff of one of the actions is not known, even to the principal.

The principal (e.g. the Waze application) faces a group of short-lived agents that

arrive sequentially over time. She wants to design an information mechanism that

provides information about the agents’ past experience to the incoming agents over

time. Our work is different from [64] as (i) in contrast to the single-agent decision

problem considered in [64], our model assumes that the principal faces a population

of agents that create negative externalities on one other at each time step, and (ii)

in the dynamic setting, agents are long-lived and learn from their past (private)

experience, while in [64], the agents are short-lived.

The dynamic two-stage problems studied in this chapter are also related to litera-

ture on strategic experimentation in economics [22, 61, 60]. The authors of [47] study

a monetary mechanism design in a principal-agent relationship. Our problem is dif-

ferent from that of [47] since we study an information disclosure mechanism design

instead of a monetary mechanism design. The authors of [48, 18] study the problem

of information disclosure mechanism design in an innovation contest. Our problem is

different from those of [48, 18] since in contrast to their models where agents do not

observe each others’ actions and payoffs unless the principal discloses information

and an agent’s payoff is independent of other agents’ action, in our model agents’

actions create negative externality and influence agents’ payoffs, and each agent may
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have an indirect observation about other agents’ actions and payoffs at t = 1.

The information design problems that we consider in this chapter are also related

to the problem of designing real-time communication systems [77, 123, 131, 136].

However, in contrast to these studies, where the receivers are cooperative and have

the same objective as the transmitter, in our problem the drivers are strategic and

have objectives that are different from that of the principal. The authors of [2]

consider a problem of real-time communication with a strategic transmitter and

receiver, Gaussian source, and quadratic estimation cost. They follow an approach

that is similar to that of [59] and our approach for the design of public information

disclosure mechanism in Section 4.4. However, our problem is different from that

of [2] since in our model there exist many agents, and each agent’s utility depends

on his action and the routes’ conditions as well as other agents’ actions. Moreover,

in this chapter, we study the problem of private information disclosure mechanism

design that is not present in the work of [2].

4.1.3 Contribution

We determine optimal public and private information provision mechanisms that

maximize the social welfare in a transportation network. Our results propose a so-

lution to the concern raised in [78, 4, 14, 33, 73, 69, 124, 1, 74] about the potential

negative impact of information provision on congestion in transportation networks.

We show that the principal can utilize his superior information about the condition

of the network, and provide informational incentives to the drivers so as to improve

the social welfare. When the principal can disclose information to every driver pri-

vately, we show that the principal can benefit from providing coordinated routing

recommendations to the drivers. We identify a condition under which the principal

can achieve the efficient routing outcome in a static setting. Moreover, we consider a

dynamic setting with two-time steps under three scenarios, each capturing a possible

piece of information that the drivers can learn from it in dynamic setting. Using nu-

merical simulations, we discuss the effect of each piece of information on the solution

to the optimal dynamic information mechanism and its qualitative properties.
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4.1.4 Organization

The rest of this chapter is organized as follows. In Section 4.2, we present our

model in a static setting. In Section 4.3, we consider two naive information mech-

anisms and compare their outcomes with the socially efficient outcome. We study

the problem of designing an optimal public information mechanism in Section 4.4.

In Section 4.5, we study the problem of designing an optimal private information

mechanism. We consider the design of optimal dynamic information mechanisms

in a two-step setting in Section 4.6, and investigate the effect of different types of

drivers’ observations on the performance and qualitative properties of an optimal

dynamic mechanism through numerical simulations. We conclude in Section 4.7. All

proofs appear in Appendix C.

4.2 Model

Consider a two-link network managed by a principal who wants to maximize

social welfare (Figure 4.1). There is a unit mass of agents traveling from the origin

O to the destination D. There are two routes/links that agents can take. The top

route, denoted route s (i.e. safe route) has condition a > 0 that is known to all

agents and the principal. The bottom route, denoted route r (i.e. risky route), has a

condition θ ∈ Θ := {θ1, . . . , θM}, θ1 < θ2 < . . . < θM , that is not known to the agents

and is only known to the principal. It is common knowledge among the agents and

the principal that θ takes values in {θ1, . . . , θM} with probability {pθ1 , pθ2 , ..., pθM},
respectively. Let xs and xr (where xs+xr = 1), denote the mass of agents that choose

route s and r, respectively. The utility of each agent depends on the condition of the

route that he chooses to travel as well as on the congestion (negative externality)

that he observes along his route. Given xs and xr, let Cs(xs) and Cr(xr) denote the

congestion cost at route s and route r, respectively. The functions Cs(·) and Cr(·)
are strictly increasing, with Cs(0) = 0 and Cr(0) = 0. For the ease of exposition, we

assume that Cs(xs) = xs and Cr(xr) = xr. Throughout this chapter, we discuss how

our results extend to general congestion functions.
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We assume that the utility of an agent taking route s (resp. r) is given by

a − Cs(xs) = a − xs (resp. θ − Cr(xr) = θ − xr); that is, the effect of a route’s

condition on an agent’s utility is separable from the effect of the congestion cost.

Therefore, the expected social welfare W is given by

W := E {xs(a− Cs(xs)) + xr(θ − Cr(xr))} . (4.1)

We make the following assumption about the possible values of θ.

Assumption 4.1. The risky route’s types θ are such that θM − Cr(1) ≤ a and

a− Cs(1) ≤ θ1.

Assumption 4.1 ensures that for every realization θ of route r’s condition, there

will be a positive mass of agents taking either route.

The principal wants to design an information disclosure mechanism that provides

information about the condition θ of route r to the agents, so as to maximize the

expected social welfare W . We consider two classes of information disclosure mech-

anisms by the principal: (i) public information disclosure mechanisms, where the

principal sends a public signal about θ which is observed by all agents (Section 4.4),

(ii) private information disclosure mechanisms, where the principal sends a private

signal about θ to each agent, and this signal is only observed by that agent (Section

4.5).

Before proceeding with the study of optimal public and private information disclo-

sure mechanisms which maximize social welfare, we present two naive information

disclosure mechanisms in Section 4.3. By exploring the agents’ routing decisions

under these two naive information disclosure mechanisms, along with the socially

efficient routing decisions, we will elaborate on the main insights underlying some of

the results appearing in the rest of the chapter.

4.3 Naive Mechanisms

We study two naive information disclosure mechanisms that the principal can

employ to disclose information about the condition θ of route r, namely, the no in-
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Figure 4.1: The two-link network

formation disclosure and full information disclosure mechanisms. We then present

the socially optimal outcome and compare it to the outcomes of the naive mecha-

nisms. Let µ := E{θ} =
∑

θ∈Θ pθθ denote the expected condition of route r. Define

∆ := a − µ and ∆θ := a − θ as the expected and realized difference between the

conditions of routes s and r. Let σ2 = E
{

(θ − µ)2} denote the variance of route r’s

condition. In the sequel, we characterize the traffic outcome under different infor-

mation that the agents may receive as a function of µ, ∆, and ∆θ.

4.3.1 No Information Disclosure

Consider an information disclosure mechanism where the principal discloses no

information about θ to the agents. In this case, the expected utility from route r,

given by µ − xr, must be equal to the utility a − xs from route s; this is because

otherwise, some agents would switch from the route with lower utility to the one

with higher utility1. Therefore, the traffic at routes s and r are given by

xs,no info =
1

2
+

1

2
∆, (4.2)

xr,no info =
1

2
− 1

2
∆. (4.3)

That is, the difference between the traffic on routes s and r depends on the expected

difference between the routes’ conditions, given by ∆.

Consequently, the expected social welfare W no info under the no information dis-

1Note that by Assumption 4.1, both routes are non-empty for any realization of the condition
of the risky route.

93



closure mechanism is given by

W no info =
a+ µ− 1

2
, (4.4)

where a+µ−1
2

denotes the expected utility of an agent taking either of the routes.

4.3.2 Full Information Disclosure

Consider an information disclosure mechanism where the principal reveals per-

fectly the condition θ of route r to all agents. In this case, agents choose their route

knowing θ. By an argument similar to the one given above for the no information

disclosure mechanism, the utility from taking either of the routes must be equal.

Therefore, the traffic at routes s and r are given by

xs,full info(θ) =
1

2
+

1

2
∆θ, (4.5)

xr,full info(θ) =
1

2
− 1

2
∆θ. (4.6)

In this case, the traffic difference between routes s and r depends on the realized

difference ∆θ between the routes’ conditions, as opposed to the expected difference

∆ that determines the outcome under the no information disclosure mechanism.

Using (4.5) and (4.6), we can obtain the expected social welfare W full info under

the full information disclosure mechanism as

W full info = E{a+ θ − 2

2
} =

a+ µ− 1

2
. (4.7)

Remark 4.1. We note that the expected social welfare W full info under the full in-

formation disclosure mechanism and W no info under the no information disclosure

mechanism are the same in the model of Section 4.2 with linear congestion costs.

This is because under the full information disclosure mechanism the social welfare is

linear in θ. As we discuss in Remark 4.2 below, for congestion functions Cs(xs) and

Cr(xr) that are nonlinear in xs and xr, respectively, the social welfares under the full

information and no information disclosure mechanisms are not identical in general.
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4.3.3 Socially Efficient Outcome

When each agent chooses his route, under either the no information or full in-

formation disclosure mechanisms, he does not take into account the congestion (i.e.

negative externality) that his decision creates on the other agents. Therefore, the

social welfare under the no information and full information disclosure mechanisms

are different from the one under the socially efficient outcome. The socially efficient

routing outcome is given by

xs,eff(θ) =
1

2
+

1

4
∆θ, (4.8)

xr,eff(θ) =
1

2
− 1

4
∆θ, (4.9)

and the corresponding expected social welfare is given by

W eff =
a+ µ− 1

2
+

∆2

8
+
σ2

8
. (4.10)

We observe that the difference in the traffic of routes s and r is doubled under

the full information mechanism (see (4.8) and (4.9)), where agents make routing

decisions selfishly, compared to the socially efficient routing. This is an instance of

the tragedy of commons, where each agent maximizes his own utility and does not

take into account the congestion cost he imposes on the other agents on his route.

Therefore, it may not be optimal for the principal to perfectly reveal his information

about θ to the agents, as in the full information disclosure mechanism.

We now compare the optimal social welfare W eff with the social welfare W no info

under the no information disclosure mechanism. Under the no information disclosure

mechanism, agents do not know θ and make their routing decisions only based on

their ex-ante belief about θ (see (4.2) and (4.3)). Therefore, the social welfare under

the no information disclosure mechanism, given by (4.4) is lower than the efficient

social welfare because (i) the agents make their routing decisions selfishly, and (ii)

the agents make their routing decisions without any knowledge about the realization

of θ. The terms ∆2

8
and σ2

8
in (4.10) capture the social welfare loss due to factors (i)
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and (ii) above, respectively.

In order to reduce the social welfare loss due to the agents’ lack of information

about θ, the principal may want to disclose information about the realization of θ

to the agents. As discussed earlier, disclosing the realization of θ perfectly does not

improve social welfare (see (4.4) and (4.7)). Therefore, the principal must utilize her

superior information about route r’s condition to strategically disclose information

to the agents and influence their routing decision so as to improve the expected social

welfare. This can be interpreted as providing informational incentives to the agents

that align their objectives with that of the principal.

In the sequel, we explore various information disclosure mechanisms that the prin-

cipal can employ to improve the expected social welfare. In Section 4.4, we explore

public information disclosure mechanisms, where the principal reveals information

about the realization of θ which is publicly observed by all agents. In Section 4.5,

we explore private information disclosure mechanisms, where the principal reveals

information to each agent individually through a private communication channel.

4.4 Public Information Disclosure

In this section, we consider mechanisms through which the principal reveals public

information about the realization of θ to all agents. For instance, the principal can

post traffic information on public road signs, or broadcast traffic updates through

radio stations. Let M denote the set of all messages through which the principal

can reveal information about the realization of θ. For instance,M can be the set of

possible commute times on route r, or the number of congestion-causing accidents

that have happened on route r. Given a message space M, a public information

disclosure mechanism can be fully described by ψ : Θ→ ∆(M). For every realization

of θ, ψ determines a probability distribution over the set of messages M that the

principal sends. We note that the no information and full information disclosure

mechanisms presented in Section 4.3 can be described as special instances of public

information disclosure mechanisms by setting M = ∅, and M = Θ along with

ψ(θ) = θ, respectively.
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Given a public information disclosure mechanism (M, ψ), the agents update their

belief about route r’s condition θ after receiving a public message m ∈M as,

P{θ = θ̂|m} =
pθ̂ψ(θ̂)(m)∑
θ̃∈Θ pθ̃ψ(θ̃)(m)

. (4.11)

Using an argument similar to the one given in Section 4.3.1, for every message

realization m ∈M, the traffic at routes s and r are given by

xs,public(m) =
1

2
+

1

2
∆m, (4.12)

xr,public(m) =
1

2
− 1

2
∆m, (4.13)

where ∆m := a− E{θ|m}.
The principal’s objective is to design a message space M along with a public

information disclosure mechanism ψ so as to maximize the expected social welfare

W . Formally,

max
M,ψ

W

subject to (4.12) and (4.13).

Even though the principal can influence the agents’ routing decisions for differ-

ent realizations of θ by employing various public information disclosure mechanisms

(M, ψ), we prove below that the expected social welfare W is independent of (M, ψ)

for the model of Section 4.2.

Theorem 4.1. For every public information disclosure mechanisms (M, ψ), the

expected social welfare W is given by a+µ−1
2

.

The result of Theorem 4.1 states that the principal cannot benefit from employing

a public information disclosure mechanism. We would like to note that for the model

of Section 4.2 (i) the congestion functions Cs(xs) and Cr(xr) are linear in xs and xr,

and (ii) the effect of route r’s condition θ on the utility of an agent taking route r is
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linearly separable from the congestion cost Cr(xr). Because of features (i) and (ii),

conditioned on the realization of message m, the expected social welfare is a linear

function of ∆m; this leads to the result of Theorem 4.1. In a model where either

feature (i) or (ii) is absent, the result of Theorem 4.1 does not hold.

Remark 4.2. Consider a model where the congestion costs Cs(xs) and Cr(xr) are

nonlinear functions of xs and xr, respectively. Define a function G : [a − θM , a −
θ1] → [0, 1] as G(δ) := {x : Cr(1 − x) − Cs(x) = δ}. Note that since Cs(xs)

and Cr(xr) are strictly increasing in xs and xr, respectively, function G(δ) is well-

defined. When Cs(xs) = xs and Cr(xr) = xr, we have G(δ) = 1
2

+ δ
2
. Under a public

information disclosure mechanism (M, ψ), conditioned on the realization of message

m, the traffics at routes s and r are given by

xs,public(m) = G(∆m), (4.14)

xr,public(m) = 1−G(∆m). (4.15)

We can verify that if the function Cs(G(δ)) is convex (resp. concave) in δ, the

optimal public information disclosure mechanism is the no information (resp. full

information) mechanism.2 In particular, if Cs(xs) and Cr(xr) are convex and con-

cave (resp. concave and convex) in xs and xr, respectively, the function Cs(G(δ)) is

convex (resp. concave) in δ; thus, the optimal public information disclosure mech-

anism is the no information (resp. full information) mechanism. However, if the

function Cs(G(δ)) is neither convex nor concave in δ, there may exist instances of a

set Θ of possible values for θ, along with a probability distribution over Θ, such that

the optimal public information disclosure mechanisms is a public partial information

disclosure mechanism.

4.5 Private Information Disclosure

In this section, we study various private information disclosure mechanisms that

the principal can use to reveal information about the realization of θ to the agents

2The result directly follows from an application of Jensen’s inequality since W = E{(a−G(·)}.
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so as to improve the expected social welfare. For instance, the principal can provide

individualized and private information to every agent through GPS-enabled devices

such as routing suggestions in smart phone applications. Under a private informa-

tion disclosure mechanism, the principal sends a private signal that is based on the

realization of θ to every agent. Similar to a public information disclosure mechanism,

the principal needs to determine (i) a set of messages (i.e. language) that he wants

to use, and (ii) a mapping that determines for every realization of θ the probability

according to which every signal is sent.

One class of private information disclosure mechanisms is the set of mechanisms

where the principal sends to every agent a private and individualized routing recom-

mendation (i.e. which route to take) based on the realization of θ. We refer to this

subset of private information disclosure mechanisms as recommendation policies. We

note that since the agents are strategic, they do not necessarily follow the principal’s

recommendation unless it is a best response for them. Using the revelation princi-

ple argument for information design problems (see [15]), we can restrict attention,

without loss of generality, to the set of recommendation policies where it is a best

response for every agent to follow the recommendation he receives.

To avoid measure theoretic difficulties, we first assume that the principal sends

N > 0 different recommendations to N groups of agents that have equal masses of
1
N

. We then consider the asymptotic case where N →∞.

Let σN : Θ → ∆({s, r}N) denote the recommendation policy that the principal

employs for a given N . With some abuse of notation, let σN(mN |θ) denote the

probability that the principal sends routing recommendation mN := (mN
1 , ...,m

N
N) ∈

{s, r}N to the N groups of agents, given that the state realization is θ ∈ Θ. Given

a recommendation policy σN , each agent must be willing to take the recommended

route given his information about route r’s condition θ. This is captured by the

following obedience condition for each agent belonging to group n, for 1 ≤ n ≤ N ,
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(i) if mN
n = s

1∑
θ∈Θ pθσ

N((s,mN
−n)|θ)

∑
θ∈Θ,mN−n∈{s,r}N−1

pθσ
N((s,mN

−n)|θ)(a− 1

N

∑
1≤i≤N

1{mNi =s})

≥
1∑

θ∈Θ pθσ
N((s,mN

−n)|θ)
∑

θ∈Θ,mN−n∈{s,r}N−1

pθσ
N((s,mN

−n)|θ)(θ − 1

N

∑
1≤i≤N

1{mNi =r}),

(4.16)

(ii) if mN
n = r

1∑
θ∈Θ pθσ

N((r,mN
−n)|θ)

∑
θ∈Θ,mN−n∈{s,r}N−1

pθσ
N((r,mN

−n)|θ)(θ − 1

N

∑
1≤i≤N

1{mNi =r})

≥
1∑

θ∈Θ pθσ
N((r,mN

−n)|θ)
∑

θ∈Θ,mN−n∈{s,r}N−1

pθσ
N((r,mN

−n)|θ)(a− 1

N

∑
1≤i≤N

1{mNi =s}).

(4.17)

The above obedience constraints are the analogue of the incentive compatibility

constraints in mechanism design problems, and can be interpreted similarly as fol-

lows. The left hand side of condition (4.16) (resp. (4.17)) expresses the expected

utility of an agent in group n, 1 ≤ n ≤ N , if he follows the recommendation to take

route s (resp. r) given his ex-post belief about θ after he receives the recommen-

dation, assuming that the other agents are following their recommendations. The

right hand side of condition (4.16) (resp. (4.17)) expresses the expected utility of an

agent in group n, if he deviates from his recommendation and takes route r (resp.

s) instead of s (resp. r) given his ex-post belief about θ. The obedience constraint

(4.16) therefore requires that it is a best response for every agent to follow the rec-

ommendation, given his ex-post belief about θ, assuming that other agents follow

their routing recommendations. We note that unlike standard mechanism design
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problems, there is no individual rationality constraint, since an agent can simply

ignore the recommendation and choose any route he wishes.

Let xs,N(θ) ∈ { 1
N
, 2
N
, . . . , N

N
} denote the mass of agents that take route s when the

state is θ under σN . Note that the set of obedience constraints (4.16) and (4.17) are

linear in σN(·|·) and identical for all N groups of agents. Therefore, by symmetry, we

can restrict attention to the set of recommendation policies for the principal where

she selects N · xs,N(θ) groups randomly, recommends to them to take route s, and

recommends to the agents in the remaining groups to take route r.

Therefore, for N → ∞ the set of recommendation policies for the principal can

be characterized by y(θ) ∈ [0, 1], where y(θ) denotes the mass of agents receiving the

recommendation to take route s, i.e. xs(θ) = y(θ) and xr(θ) = 1− y(θ). When the

state is θ, the principal recommends route s (resp. r) to every agent with probability

y(θ) (resp. 1− y(θ)) independent of her recommendation to other agents.

Under the information policy σ, let Uσ(s, θ) := a− y(θ) and Uσ(r, θ) := θ− (1−
y(θ)) denote an agent’s utility from taking routes s and r, respectively, when route

r’s condition is θ. The set of obedience constraints (4.16) and (4.17) for each agent

can be then written as∑
θ∈Θ

pθy(θ)Uσ(s, θ) ≥
∑
θ∈Θ

pθy(θ)Uσ(r, θ), (4.18)∑
θ∈Θ

pθ(1− y(θ))Uσ(r, θ) ≥
∑
θ∈Θ

pθ(1− y(θ))Uσ(s, θ). (4.19)

Therefore, the problem that the principal faces is to determine a recommendation

policy that maximizes the expected social welfare subject to the obedience constraints
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above; this optimization problem is given by3

max
{y(θ),θ∈Θ}

W

subject to (4.18) and (4.19).

4.5.1 Implementable Outcomes

To determine an optimal recommendation policy, we first specify the set of feasible

routing outcomes/recommendation policies that satisfy the obedience constraints

(4.18) and (4.19).

Lemma 4.1. A routing outcome {xs(θ), xr(θ), xs(θ) + xr(θ) = 1, θ ∈ Θ} is imple-

mentable if and only if

E
{
xs(θ)

[(
1

2
+

∆θ

2

)
− xs(θ)

]}
≥ 0, (4.20)

E
{
xr(θ)

[(
1

2
+

∆θ

2

)
− xr(θ)

]}
≥ 0. (4.21)

We note that the outcomes under the no information and full information dis-

closure policies, given by (4.2)-(4.3) and (4.5)-(4.6), respectively, satisfy conditions

(4.20) and (4.21) with equality. That is, they are the corner points of the set of

implementable outcomes. The set of implementable outcomes is depicted in Figure

4.2 for an example with |Θ| = 2.

4.5.2 Incentivizing the Socially Efficient Routing

Using the result of Lemma 4.1, we can determine the necessary and sufficient

condition to implement the efficient allocation {xs,eff(θ), xr,eff(θ), θ ∈ Θ} through the

recommendation policy below.

3We note that we can restrict attention, without loss of optimality, to policies where y(θ) is
deterministic. This is because the set of obedience constraints only depends on the expected value
of y(θ). Moreover, the principal’s objective is a concave function of y(θ) (see (4.1)). Thus, by the
Jensen’s inequality, an optimal recommendation policy is a recommendation policy where y(θ) is
deterministic for every θ ∈ Θ.
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Figure 4.2: The set of implementable outcomes for a = 2, Θ = {L,H}, L = 1.5,
H = 2.5, pL = 0.6, and pH = 0.4.

Theorem 4.2. The efficient routing policy xeff is implementable through an infor-

mation disclosure policy if and only if

σ2 ≥ 2|∆| −∆2. (4.22)

We note that |∆| = |a−µ|
m
≤ 1 by Assumption 4.1; thus, 2|∆| − ∆2 ≥ 0. For

ex-ante symmetric routes (i.e. µ = a), we have ∆ = 0, and the efficient outcome

is always implementable for any distribution of θ. However, if the two routes are

ex-ante asymmetric (i.e. µ 6= a), to incentivize the efficient policy, the variance of θ

must be greater than the threshold (4.22), which depends on the expected difference

between the routes. We further elaborate on this issue below.

As we discussed above, we can view the routing recommendation by the principal

to the agents as an informational incentive that she provides so as to influence the

routing decision of each agent. When the routes are symmetric, i.e. ∆ = 0, under the

no information disclosure policy, each agent (at equilibrium) is indifferent between

taking either of the routes; see (4.2) and (4.3). Therefore, the principal can persuade

(i.e. recommend to) an agent to take a specific route even when she does not have

103



significant information superiority over him (i.e. σ2 is small). However, when the

routes are asymmetric, i.e. ∆ 6= 0, under the no information disclosure policy, each

agent has a strict preference over route s (resp. r) if ∆ > 0 (resp. ∆ < 0). Thus, the

principal needs a strictly positive incentive to persuade an agent to take the route

that is not aligned with his original preference. This implies that the information the

principal holds must be valuable enough to enable her to offer adequate informational

incentives to persuade an agent to follow her recommendation. Condition (4.22)

captures the value of the principal’s information about θ in terms of σ2.

Figure 4.3 depicts the maximum expected social welfare the principal can achieve

for different combinations of σ2 and ∆ by utilizing a recommendation policy in an

example with |Θ| = 2. We note that for pairs (σ,∆) that satisfy condition (4.22) of

Theorem 4.2, the principal can implement the socially efficient outcomes. However,

when this condition is violated, the performance of the best outcome decreases.
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Figure 4.3: The best implementable outcomes with respect to the socially efficient
outcome for a = 2, Θ = {L,H}, and pL = pH = 0.5.

Remark 4.3. A result similar to that of Theorem 4.2 can be obtained for general

congestion functions Cr(xr) and Cs(xs), where the condition that is the analogue of

(4.22) depends on higher order moments of θ.
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4.6 Dynamic Setting

In this section, we study a dynamic setting with time horizon T = 2, i.e t ∈
{1, 2}, where route r’s condition θt, t = 1, 2, has uncontrolled Markovian dynam-

ics with transition probability P ∈ R|Θ|×|Θ|. We assume that P[pθ1 , . . . , pθM ]T =

[pθ1 , . . . , pθM ]T , that is, the marginal probability distribution of θ2 is the same that

of θ1.

We consider a situation where the same group of agents commute from the origin

to the destination every day. Therefore, agents at t = 2 may have learnt new

information from their observations at t = 1. We study the problem of designing

an optimal dynamic private information disclosure policy by the principal. The

investigation of this two-step dynamic mechanism provides some insight into how

the results for a static setting change in a dynamic setting where agents can learn

from their past experience. We note that by the result of Theorem 4.1, the study

of dynamic public information disclosure mechanisms in a dynamic setting does not

introduce any issue in addition to those present in the study of static mechanisms

within the context of the model of Section 4.2.

We consider three scenarios depending on the agents’ observations at t = 1 as

follows: (i) agents do not make any environmental observations (i.e., neither the

condition of the risky route nor the traffic (i.e. mass of agents/cars) on routes s

and r, (ii) agents who take route r observe only its condition θ1, and (iii) each agent

observes only the traffic on the route he takes at t = 1. In a real world situation,

the agents can have noisy observations of θ1 as well as a noisy observation of the

number of cars traveling the route. Therefore, the study of the three scenarios

described above will allow us to understand the effect of each type of learning (piece

of information) on the solution of the dynamic problem and uncover its qualitative

properties.

In all of these scenarios, we assume that the principal’s routing recommendation

policy at t = 2 does not depend on the agent’s decisions at t = 1. We make this

assumption for the following reasons. (1) If the principal wants to incorporate the

agents’ past decisions into her routing recommendation policy, she needs to moni-
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tor every agent’s location over time; this may not be feasible due to technological

limitations and/or privacy concerns. (2) If the principal can incorporate the agents’

past decisions into her routing recommendation policy, then her optimal strategy

would be to not disclose any further information to every agent that does not follow

her routing recommendation (i.e. punish him). On one hand, such a punishment

scheme may not be desirable in practical settings. On the other hand, if such a pun-

ishment scheme is permitted, then the principal can incentivize any desired routing

behavior in a dynamic setting with long enough horizon if the agents are sufficiently

patient and θt does not have deterministic dynamics (i.e. the principal has informa-

tion superiority over the agents for all times). Therefore, in the sequel we restrict

attention to the class of dynamic recommendation policies where the principal does

not observe/incorporate the agents’ decisions at t = 1 when designing her policy.

As a result, the set of recommendation policies for the principal can be charac-

terized by σ := {y1(θ1), ys2(θ2, θ1), yr2(θ2, θ1), ∀θ1, θ2 ∈ Θ}. The principal’s routing

policy at t = 1 is given by y1(θ) (resp. 1− y1(θ)), which denotes the probability that

route s (resp. r) is recommended when route r’s condition is θ1. For t = 2, ys2(θ2, θ1)

(resp. yr2(θ2, θ1)) denotes the probability that route s is recommended to agents who

took route s (resp. r) at t = 1, when route r’s condition at t = 1 and t = 2 are θ1 and

θ2, respectively. Similarly, 1− ys2(θ2, θ1) (resp. 1− yr2(θ2, θ1)) denotes the probability

that route r is recommended to agents who took route s (resp. r) at t = 1, when

route r’s condition at t = 1 and t = 2 are θ1 and θ2, respectively.

4.6.1 Case (i): No Environmental Observations

Consider a situation where the agents do not make any observations about the

road condition θ1 and/or the number of agents at the route they took at t = 1.

Therefore, the agents infer information about θ1 only based on the recommendation

that they receive at t = 1.
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Let

Uσ
2 (s, θ2, θ1) := a− y1(θ1)ys2(θ2, θ1)− (1− y1(θ1))yr2(θ2, θ1),

Uσ
2 (r, θ2, θ1) := θ2 − y1(θ1)(1− ys2(θ2, θ1))− (1− y1(θ1))(1− yr2(θ2, θ1)),

denote the utility of routes s and r at t = 2 given that all agents follow their

recommendations. Moreover, define,

Pσ{θ2, θ1, s, s} = ys2(θ2, θ1)y1(θ1)P(θ2, θ1)pθ1 ,

Pσ{θ2, θ1, s, r} = yr2(θ2, θ1)(1− y1(θ1))P(θ2, θ1)pθ1 ,

Pσ{θ2, θ1, r, s} = (1− ys2(θ2, θ1))y1(θ1)P(θ2, θ1)pθ1 ,

Pσ{θ2, θ1, r, r} = (1− yr2(θ2, θ1))(1− y1(θ1))P(θ2, θ1)pθ1 .

Then the set of obedience constraints for t = 2 are as follows:

(a) Recommendation s at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(r, θ2, θ1). (4.23)

(b) Recommendation s at t = 2 and r at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, s, r}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, s, r}U2(r, θ2, θ1) (4.24)

(c) Recommendation r at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(r, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(s, θ2, θ1) (4.25)

(d) Recommendation r at t = 2 and r at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, r, r}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, r, r}U2(r, θ2, θ1) (4.26)
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We note that since the agents’ observations at t = 1 include only the routing

recommendation they receive at that time, the agents act myopically at t = 1, as

they cannot learn additional information by themselves. Thus, the set of obedience

constraints at t = 1 are the same as those of the static problem; these constraints

are given by ∑
θ1∈Θ

pθy1(θ1)Uσ
1 (s, θ1) ≥

∑
θ1∈Θ

pθy1(θ1)Uσ
1 (r, θ1), (4.27)∑

θ1∈Θ

pθ(1− y1(θ1))Uσ
1 (r, θ1) ≥

∑
θ!∈Θ

pθ(1− y1(θ1))Uσ
1 (s, θ1), (4.28)

where Uσ
1 (s, θ1) = a− y1(θ1) and Uσ

1 (r, θ1) = θ1 − (1− y1(θ1)).

The expected social welfares at t = 1 and t = 2 are given by

W1 :=
∑
θ1∈Θ

pθ1 [y(θ1)Uσ
1 (s, θ1) + (1− y(θ1))Uσ

1 (r, θ1)] , (4.29)

W2 :=
∑

θ1,θ2∈Θ

pθ1P(θ2, θ1)
[[
y(θ1)ys2(θ2, θ1) + (1− y(θ1))yr(θ2, θ1)

]
Uσ

1 (s, θ2, θ1)

(4.30)

+
[
y(θ1)(1− ys2(θ2, θ1)) + (1− y(θ1))(1− yr2(θ2, θ1))

]
Uσ

2 (r, θ2, θ1)
]

Therefore, the optimal routing recommendation policy by the principal when the

agents do not have any environmental observations is given by the solution to the

following optimization problem

max
σ

W1 +W2

subject to (4.23)− (4.28).

In this chapter, we do not provide a closed solution to the above maximization

problem for a general transition matrix P. Nevertheless, we consider two special

cases below: (a) when θ2 is identically distributed and independent of θ1 (i.e. no cor-

relation), and (b) when θ2 is identical to θ1 (i.e. perfect correlation). We argue below
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that that for special cases (a) and (b) the performance of an optimal dynamic rec-

ommendation policy per time step is equal to that of optimal static recommendation

policy.

For case (a), it is easy to verify that the repetition of the optimal static recom-

mendation policy is an optimal dynamic recommendation policy. For case (b), at

t = 1, the optimal static routing policy is implementable since the obedience con-

straints at t = 1 are identical to those in the static problem, At t = 2, consider the

recommendation policy ys(θ2) = 1 and yr(θ2) = 0. That is, at t = 2, the principal

recommends to every agent to take the same route he took at t = 1. If an agent

is willing to follow his recommendation at t = 1, then he is also willing to take the

exact route for the next day, since he does not learn any new information after t = 1,

and route r’s condition remains the same. Therefore, ys(θ2) = 1 and yr(θ2) = 0 is

implementable at t = 2. It is easy to verify that the performance of the dynamic

recommendation policy described above is identical to that of the optimal static

recommendation policy.

Given a general transition matrix P, every agent forms an updated belief about

θ1 after receiving his recommendation at t = 1. As the correlation between θ1 and

θ2 increases, the information that the agent learns at t = 1 becomes more valuable

to him, and consequently, the principal’s information superiority decreases. The

argument given above for case (b) states that even when θ1 = θ2, the principal can

achieve the same expected social welfare at t = 2 as in the static setting. Therefore,

we conjecture that the (partial) results we proved above for the special cases (a) and

(b), hold in general for any correlation between 0 and 1.

Conjecture 1. For every transition matrix P, the performance of an optimal dy-

namic recommendation policy per time step is equal to that of an optimal static

recommendation policy.

We examine the above conjecture through a numerical simulation below. Consider

a setting where Θ = {L,H} with pL = pH = 0.5. Assume that the transition matrix
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Figure 4.4: Case (i) - the optimal dynamic recommendation policy for different values
of persistence ε, for θ ∈ {L,H}, L = 1.5, H = 2.5, pL = pH = 0.5 (∆ = 0, σ2 = 0.25)

P is given by

P :=

 pL + ε
2

pL − ε
2

pH − ε
2

pH + ε
2

 , (4.31)

where ε ∈ [0, 1] denotes the persistence (i.e. correlation) of route r’s condition from

t = 1 to t = 2. Figures 4.4-4.6 depict the optimal dynamic recommendation policies

vs. different values of ε for three pairs of σ2 and ∆. As seen in Fig. 4.4a-4.6a, in

all three examples the performance of the dynamic recommendation policy per time
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step is the same as in the optimal static recommendation policy for different values

of ε. Moreover, the total number of cars at each route at t = 1, 2 are identical under

the optimal dynamic recommendation policy; see Figures 4.4b-4.6b.
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Figure 4.5: Case (i) - the optimal dynamic recommendation policy for different
values of persistence ε, for θ ∈ {L,H}, L = 1.6, H = 2.6, pL = pH = 0.5 (∆ = 0.1,
σ2 = 0.25)

In the first two examples (see Figures 4.4 and 4.5), the pair (σ2,∆) satisfies

condition (4.22) of Theorem 4.2; thus, the performance of the optimal dynamic and

static recommendation policies are the same as the efficient social welfare. However,

in the third example (see Figure 4.6), where the pair (σ2,∆) does not satisfy condition

(4.22), the performance of the optimal dynamic and static recommendation policies

are inferior to that of the social welfare maximizing policy.
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Figure 4.6: Case (i) - the optimal dynamic recommendation policy for different
values of persistence ε, for θ ∈ {L,H}, L = 1.7, H = 2.7, pL = pH = 0.5 (∆ = 0.2,
σ2 = 0.25)

In Section 4.5.2, we argued that σ2 represents a measure of the principal’s power

in terms of the informational incentives she can provide to the agents. Moreover,

we argued that ∆ indicates the agents’ ex-ante preference towards one of the routes.

Accordingly, we interpreted the condition of Theorem 4.2 as requiring that the prin-

cipal’s informational power to be greater than the agents’ ex-ante preference towards

one of the routes. A similar interpretation can be given here by comparing the rec-

ommendation outcomes for different pairs of (σ2,∆). As seen in Figures 4.4c and

112



4.4d, when the agents do not have an ex-ante preference towards either of the routes

(i.e. ∆ = 0), the optimal recommendation policy prescribes the same routing sug-

gestion for all groups of agents at t = 2 irrespective of what they have learnt at t = 1.

As the agents develop an ex-ante preference towards one of the routes (see Figure

4.5 where ∆ = 0.1), the optimal recommendation policy prescribes the same routing

suggestion for low values of ε; but as ε increases, the optimal recommendation policy

prescribes different routing suggestions depending on what every agent has learnt at

t = 1. When agents have a high ex-ante preference towards one of the routes (see

Figure 4.5 where ∆ = 0.2), the optimal recommendation policy prescribes different

routing suggestions for every value of ε 6= 0 depending on what every agent has learnt

at t = 1.

4.6.2 Case (ii): Observing θ

Consider a situation where agents who take route r at t = 1 observe θ1 perfectly.

Therefore, at t = 2 agents have heterogeneous/asymmetric information about θ2

depending on which route they took at t = 1.

As a result, the set of obedience constraints at t = 2 is as follows:

(a) Recommendation s at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(r, θ2, θ1). (4.32)

(b) Recommendation s at t = 2 and r at t = 1: for every θ1 ∈ Θ∑
θ2∈Θ

Pσ{θ2, s, r}U2(s, θ2, θ1) ≥
∑
θ2∈Θ

Pσ{θ2, s, r}U2(r, θ2, θ1) (4.33)

(c) Recommendation r at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(r, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(s, θ2, θ1) (4.34)
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(d) Recommendation r at t = 2 and r at t = 1: for every θ1 ∈ Θ∑
θ2∈Θ

Pσ{θ2, θ1, r, r}U2(r, θ2, θ1) ≥
∑
θ2∈Θ

Pσ{θ2, θ1, r, r}U2(s, θ2, θ1) (4.35)

We note that the obedience constraints (4.32) and (4.34) are the same as (4.23)

and (4.25). This is because if an agent takes route s at t = 1, his only new information

at t = 2 is the routing recommendation that he receives at t = 1, and the situation at

t = 2 is similar to the scenario with no environmental observations in Section 4.6.1.

However, if an agent takes route r at t = 1, he observes θ1 perfectly. Therefore, for

every possible value of θ1 at t = 1, there exists a corresponding obedience constraint

at t = 2 expressed (4.33) and (4.35).

Since agents can learn/observe θ1 at t = 1 by taking route r, the agents’ incentives

to follow the principal’s routing recommendation are different from those in a static

setting. An agent may want to deviate from the recommendation to take route s

and instead take route r so as to observe θ1; he can then utilize this observation to

his benefit, as he now has better information about route r’s condition at t = 2. In

other words, an agent can coordinate his routing decision at t = 2 with his routing

decision at t = 1. Therefore, the set of obedience constraints at t = 1 must consider

all possible future plans that an agent can utilize at t = 2 after his deviation at t = 1;

this set of obedience constraints can be described as follows:
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(a) Recommendation s at t = 1: for every λ : {s, r} ×Θ→ {s, r}

∑
θ1∈Θ

pθ1y(θ1)

[
Uσ

1 (s, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
ys2(θ2, θ1)Uσ

2 (s, θ2, θ1).

+(1− ys2(θ2, θ1))Uσ
2 (r, θ2, θ1)

)]
≥∑

θ1∈Θ

pθ1y(θ1)

[
Uσ

1 (r, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
ys2(θ2, θ1)Uσ

2 (λ(s, θ1), θ2, θ1)

+(1− yt2(θ2, θ1))Uσ
2 (λ(r, θ1), θ2, θ1)

)]
, (4.36)

(b) Recommendation r at t = 1: for every λ : {s, r} → {s, r}

∑
θ1∈Θ

pθ1(1− y(θ1))

[
Uσ

1 (r, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
yr2(θ2, θ1)Uσ

2 (s, θ2, θ1).

+(1− yr2(θ2, θ1))Uσ
2 (r, θ2, θ1)

)]
≥∑

θ1∈Θ

pθ1(1− y(θ1))

[
Uσ

1 (s, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
yr2(θ2, θ1)Uσ

2 (λ(s), θ2, θ1)

+(1− yr2(θ2, θ1))Uσ
2 (λ(r), θ2, θ1)

)]
. (4.37)

In the obedience constraints above, an agent’s plan at t = 2 after his deviation at

t = 1 is denoted by λ. If an agent deviates from a recommendation to take route s

at t = 1 and takes route r instead, his plan λ at t = 2 depends on his observation of

θ1 as well as his routing recommendation at t = 2 (see (4.36)). If an agent deviates

from a recommendation to take route r at t = 1 and instead takes route s, his plan λ
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at t = 2 depends only his routing recommendation at t = 2 since he does not observe

θ1 at t = 1 (see (4.37)).

Consequently, the optimal routing recommendation policy by the principal, when

agents taking route r at t = 1 observe θ1, is given by the solution to the following

optimization problem

max
σ

W1 +W2

subject to (4.32)− (4.37).

The above optimization problem has 6+2|Θ|+22|Θ| number of constraints, which

grows exponentially in |Θ|, making it difficult to provide a closed form solution to

the above problem in general. Therefore, we investigate the properties of an optimal

dynamic recommendation policy, when agents can observe θ1, through numerical

simulations below.

Consider a setting similar to the one in Section 4.6.1, where Θ = {L,H} with

pL = pH = 0.5 and the transition matrix P is given by (4.38). Figures 4.7-4.8 depict

the optimal dynamic recommendation policies vs. different values of ε for two pairs

of σ2 and ∆. As seen in Figures 4.7a-4.8a, in both examples the performance of the

dynamic recommendation policy is decreasing in ε.

In the first example (see Figure 4.7)), the pair (σ2,∆) satisfies condition (4.22) of

Theorem 4.2. Therefore, for low values of ε, where the information the agents learn

at t = 1 does not reduce the principal’s information superiority to the point where

condition (4.22) is not satisfied at t = 2, the principal can implement the efficient

routing policy (see Figure 4.7a)). However, as ε increases, the principal cannot

implement the efficient routing at t = 1, 2. As a result, the optimal recommendation

policy is different from the efficient routing policy for higher values of ε (see Figure

4.7b)). Moreover, for higher values of ε the optimal recommendation policy at t = 2

depends on the route an agent took at t = 1 (see Figures 4.7c and 4.7d). We note

that for ε = 1, yr(L,L) = 1 and yr(H,H) = 0. This is because, when ε = 1, an agent

who takes route r at t = 1 perfectly knows θ2 since θ2 = θ1. Therefore, an agent who

takes route r (i.e. observes θ1) at t = 1 always chooses the route with the better
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condition at t = 2.

In the second example (see Figure 4.8), the pair (σ2,∆) does not satisfy con-

dition (4.22) of Theorem 4.2. Therefore, the performance of the optimal dynamic

recommendation policy is strictly decreasing in ε for all values of ε (see Figure 4.8a).

Moreover, the optimal recommendation policy at t = 1, 2 is always different from

the efficient routing policy (see Figure 4.8b). As seen in Figures 4.8c and 4.8d, for

all ε 6= 0, the optimal recommendation policy at t = 2 depends on which route an

agent took at t = 1. We note that when ε = 1, the optimal routing recommendation

policy at t = 2 results in the same traffic on the routes as the one under the full

information disclosure mechanisms (see Figure 4.8b). That is, for very high values

of ε, where the agents have considerable incentive to experiment at t = 1 by taking

route r, the principal promises to perfectly disclose his information at t = 2 so that

the agents are willing to follow her recommendation at t = 1. As a consequence, in

contrast to Figures 4.7c and 4.7d, in Figures 4.8c and 4.8d we have yr(L,L) 6= 1 and

yr(H,H) 6= 0 for ε = 1. This is because under the optimal recommendation policy

the utility from taking either route is the same when ε = 1, and thus, an agent is

indifferent between them even though he knows θ2 perfectly.

4.6.3 Case (iii): Observing the Traffic

Consider a situation where each agent observes the traffic on the route he has

taken at t = 1, , given by y1(θ1) or 1 − y1(θ1). Since we assume that there exists a

unit mass of agents, which is common knowledge among all agents, each agent can

determine the traffic at t = 1 on both routes, and thus, all agents have identical

information at t = 2. Consequently, the set of obedience constraints for t = 1, 2 are

similar to that of the static problem and are given by (4.18) and (4.19). Therefore,

when the agents observe the traffic at t = 1, the problem of designing an optimal

dynamic recommendation policy does not introduce any conceptual issue in addi-

tion to those present in the study of an optimal static recommendation policy. In

the following, we argue that as the correlation between θ1 and θ2 increases the per-

formance of the dynamic optimal recommendation policy decreases. Moreover, we
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(d) The recommendation outcome at t = 2
for θ1 = H

Figure 4.7: Case (ii) - the optimal dynamic recommendation policy for different
values of persistence ε, for θ ∈ {L,H}, L = 1.2, H = 2.8, pL = pH = 0.5 (∆ = 0,
σ2 = 0.64)

show that when the correlation between θ1 and θ2 is high the designer’s optimal

recommendation policy at t = 1 is a partial information disclosure mechanism.4

4For the sake of discussion we restrict attention to deterministic policies at t = 1. We can
show that this restriction is without loss of optimality. For t = 2, fix the recommendation policy
at t = 1. Then by an argument similar to the one given in the static setting in Section 4.5, we
can restrict without loss of optimality, to deterministic recommendation policies. For t = 1, fix the
recommendation policy at t = 2, which is a deterministic recommendation policy. Then the problem
of designing the optimal recommendation policy for t = 1 can be written as a linear program in
terms of the probabilities of different routing policies for every realization of θ1 (see [16] and [129]).
It is known that in a linear program, the optimal solutions are the corner points. Therefore, under
the optimal recommendation policy the probability of each routing policy is either 0 or 1. Therefore,
we can restrict attention to the set of deterministic policies without loss of optimality.
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(d) The recommendation outcome at t = 2
for θ1 = H

Figure 4.8: Case (iii) - the optimal dynamic recommendation policy for different
values of persistence ε, for θ ∈ {L,H}, L = 1.7, H = 2.7, pL = pH = 0.5 (∆ = 0.2,
σ2 = 0.25)

We consider two classes of recommendation policies for the designer: (a) dynamic

separating recommendation policies in which for every θ̂1 6= θ̃1, θ̂, θ̃ ∈ Θ, we have

y1(θ̂1) 6= y1(θ̃1), and (b) dynamic pooling recommendation policies in which there

exists θ̂1 6= θ̃1, θ̂, θ̃ ∈ Θ, we have y1(θ̂1) = y1(θ̃1).

First, consider a case where the principal employs a separating recommendation

policy. As argued above, the agents can infer perfectly θ1 at t = 1. Therefore, as ε

increases the principal’s information superiority is reduced at t = 2, and thus, the

performance of the dynamic recommendation policy decreases at t = 2. Therefore,

the overall performance of a dynamic separating recommendation policy is decreasing
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in ε. In particular, when θ1 = θ2 (i.e. perfect correlation), the agents learn θ2

perfectly and the performance of the recommendation policy at t = 2 is the same as

that of the full information disclosure mechanism.

Next, consider a case where the principal employs a dynamic pooling recommen-

dation policy. When the correlation between θ1 and θ2 is high, the principal may

prefer to use a dynamic pooling recommendation policy so as to not reveal θ1 per-

fectly at t = 1, and consequently, increase his information superiority at t = 2 as

compared to the outcome under a dynamic separating recommendation policy. Given

a dynamic pooling recommendation policy, let {Θ1,Θ2, . . .Θm} denote a partition of

Θ such that for every θ̂1, θ̃1 ∈ Θ, we have y1(θ̂1) = y2(θ̃1) if and only if θ̂1, θ̃1 ∈ Θi for

some 1 ≤ i ≤M . That is, if Θi, 1 ≤ i ≤ m, is a singleton, the principal implements

a distinct routing outcome at t = 1 and the drivers perfectly learn the realization of

θ1 at t = 1; if Θi, 1 ≤ i ≤ m, is not a singleton, the principal implements the same

routing outcome for all realization in Θi and the drivers only learn that θ1 ∈ Θi at

t = 1. Similar to the outcome under a dynamic separating recommendation policy,

under a dynamic pooling recommendation policy the principal’s information supe-

riority decreases at t = 2 as the correlation between θ1 and θ2 increases since the

drivers learn the partition to which θ1 belongs. Therefore, the overall performance of

the principal’s optimal dynamic recommendation policy decreases as the correlation

between θ1 and θ2 increases irrespective of the exact form of the optimal dynamic

recommendation policy.

It is clear that the performance of an optimal dynamic pooling recommendation

policy at t = 1 is inferior to that of an optimal dynamic separating recommendation

policy. However,the performance of an optimal dynamic pooling recommendation

policy at t = 2 is higher than that of an optimal dynamic separating recommenda-

tion policy since the principal has a higher information superiority under an opti-

mal dynamic pooling recommendation policy rather than the one under an optimal

dynamic separating recommendation policy. Using a numerical simulation, we show

below that, when the correlation between θ1 and θ2 is high, there are instances where

the principal’s optimal recommendation policy is a dynamic pooling recommendation

policy.
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Consider a setting where Θ = {L,M,H} with pL = pM = pH = 1
3
. Assume that

the transition matrix P is given by

P :=


pL + 2ε

3
pM − ε

3
pH − ε

3

pL − ε
3

pM + 2ε
3

pH − ε
3

pL − ε
3

pM − ε
3

pH + 2ε
3

 , (4.38)

where ε ∈ [0, 1] denotes the persistence (i.e. correlation) of route r’s condition over

time. Figures 4.9 and 4.10 depict the optimal dynamic recommendation policy for

two pairs of σ2 and ∆. In the first example (see Figure 4.9), the parameters σ2 and ∆

satisfy the condition (4.22) of Theorem 4.2, while in the second example (see Figure

4.10) they do not satisfy it. As seen in Figures 4.9a and 4.9a, the performance of an

optimal dynamic pooling recommendation policy and an optimal dynamic separating

recommendation policy are decreasing in persistence ε. Figures 4.9b and 4.9b depict

the optimal dynamic recommendation policies for high values of ε. As we discussed

above, when the correlation between θ1 and θ2 is high, the principal prefers to employ

a dynamic pooling recommendation policy.
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Figure 4.9: Case (iii) - The optimal dynamic recommendation policy for {L,M,H} =
{1.3, 2.1, 2.6} (∆ = 0, σ2 = 0.2867)
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Figure 4.10: Case(iii) - The optimal dynamic recommendation policy for different
values of persistence ε, for {L,M,H} = {1.7, 2.3, 2.6} (∆ = 0.2, σ2 = 0.0867)

4.7 Conclusion

We investigated the problem of information disclosure mechanisms design in

transportation networks. We showed that the principal can improve the social welfare

by strategically disclosing information to the drivers, and coordinating the routing

recommendations she provides to them. We characterized a condition under which

the principal can implement the efficient routing outcome by utilizing her superior

information to provide informational incentives to the drivers. We also investigated a

two-time step dynamic setting where the drivers learn from their experience at t = 1.

We characterized different pieces of information from which the drivers can learn,

and examined the effect of each of them using numerical simulations. For future

research, we will investigate the dynamic setting more extensively and consider the

extension of our results for nonlinear congestion cost functions.
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Chapter 5

Stochastic Dynamic Games with Asymmetric

Information: A Common Information Approach

5.1 Introduction

5.1.1 Background and Motivation

Stochastic dynamic games with asymmetric information have been used to model

many situations arising in engineering, economic, and socio-technological network

applications. In these applications many decision makers/agents interact with each

other as well as with a dynamic system. They make private imperfect observations

over time, and influence the evolution of the dynamic system through their actions.

In this chapter we study a general class of dynamic games where the underlying

system has Markovian dynamics. Given the agents’ actions at every time, the system

state at the next time is a stochastic function of the current system state. The

instantaneous utility of each agent depends on the agents’ joint actions as well as

the system state. At every time, each agent makes a private noisy observation that

depends on the current system state and the agents’ past actions. Therefore, at

every time agents have asymmetric and imperfect information about the history of

the game. Moreover, at every time the information that an agent possesses about

the history of the game depends on the other agents’ past actions and strategies; this

phenomenon is known as signaling in the control theory literature. Therefore, the
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agents’ decisions and information are coupled and interdependent over time in these

games because (i) an agent’s utility depends on the other agents’ actions, (ii) the

evolution of the system state depends on the agents’ actions, (iii) the agents have

imperfect and asymmetric information about the history of the game, and (iv) at

every time an agent’s information depends on the agents’ (including his own) past

actions and strategies.

There are two main challenges in the study of dynamic games with asymmetric

information. First, because of the coupling and interdependence among the agents’

decisions and information over time, we need to determine the agents’ strategies

simultaneously for all times. Second, as the agents acquire more information over

time, the domains of their strategies grow.

In this chapter, we propose a general approach for the study of the class of games

described above and address the challenges stated above. We provide a set of con-

ditions sufficient to characterize an information state for every agent, where private

and common information are compressed over time in a mutually consistent man-

ner among the agents. Based on this information state, we propose the notion of

Common Information Based Pefect Bayesian Equilibrium (CIB-PBE) that charac-

terizes a set of outcomes for dynamic games. We provide a sequential decomposition

of the game over time based on the notion of CIB-PBE, and formulate a dynamic

program that enables us to compute the set of CIB-PBEs via backward induction.

We characterize specific instances of dynamic games where we can determine a set

of information states for the agents that have time-invariant domain. We determine

conditions that guarantee the existence of CIB-PBEs. We show that the proposed

approach to dynamic games can also be used to study dynamic teams with asym-

metric information, thus, we provide a framework for the study of a broad class of

dynamic multi-agent decision problems with asymmetric information.

To present clearly the key ideas and results appearing in this chapter we attempt

to connect and compare them with existing key ideas and results in stochastic control,

dynamic teams, and dynamic games with symmetric information. In the following

we briefly discuss some of these existing results. We then provide a quick overview

of our approach and results and compare them with related literature.
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The centralized stochastic control problem presents the simplest form of a deci-

sion making problem with only one agent where the main two challenges described

above are present. Partially Observed Markov Decision Process (POMDP) provides

a general model to describe a centralized control problem. In a POMDP, an agent

acquires imperfect observations about the system state over time; thus, he has a

growing domain for his strategies over time. Moreover, the information that the

agent acquires at any time is affected by his previous actions since his past actions

influence the evolution of the dynamic system. To address these two challenges the

notion of information state is introduced [67]. An information state in POMDP

can be defined as the agent’s belief about the current system state conditioned on

his information history. The definition of information state provides an approach

to compress the agent’s information in a way that is sufficient for decision making

purposes. Assuming that the agent has perfect recall, it is shown that his conditional

belief about the system state (i.e. information state) is independent of his strategies

over time; this result is known as policy-independence belief property [67, Lemma

6.5.10]. As a result, the problem of finding an optimal policy for the agent can be

sequentially decomposed over time so that the complexity of the agent’s decision

problem does not grow over time.

Our main objective in this chapter is to present an approach to compress the

agents’ information and to provide a decomposition of dynamic games with asym-

metric information similar to the one described for POMDPs above. Therefore,

we highlight the three main properties that underly the definition of an informa-

tion state in POMDPs as follows (see [76, 137]): (1) the information state can be

updated recursively, that is, at any time t the information state at time t can be

written as a function of the information state at t− 1 and the new information that

becomes available at t, (2) the agent’s belief about the information state at the next

time conditioned on the current information state and action is independent of his

information history, and (3) at any time t and for any arbitrary action the agent’s

expected instantaneous utility conditioned on the information state is independent

of his information history. In this chapter, we provide a generalization of these prop-

erties to decision problems with many strategic agents, and accordingly, present a
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general approach to study dynamic games with asymmetric information. Before, we

present our approach and results, we discuss the existing results that generalize the

approach and results for POMDPs to dynamic games with symmetric information

and dynamic teams below.1

The authors of [81] study dynamic games with symmetric information and pro-

pose an approach to compress the agents’ information over time, and sequentially

decompose the game over time. In a strategic setting, each agent has its own ob-

jective, thus, he chooses his strategy individually and privately so as to maximize

his own utility. The authors in [81] show that when agents have symmetric infor-

mation, the belief about the system state conditioned on the agents’ information

satisfies properties (1)-(3) described above; thus, it can be defined as an information

state for all agents. Similar to the policy-independence belief property in central-

ized stochastic control, they show that this information state is independent of the

agents’ private strategy choices. They consider a class of strategies for the agents,

called Markov strategies, that utilizes this information state, and show that this class

of strategies are closed under the agents’ best response mapping. Consequently, they

introduce the notion of Markov Perfect Equilibrium that characterizes a subset of

Subgame Perfect Equilibria (SPE) for dynamic games with symmetric information.

The notion of MPE characterizes a class of equilibria where the agents’ strategies

have time-invariant domain, and they can be computed sequentially via backward

induction.

The results of [67, 81] show that when agents have symmetric information in

dynamic teams and games, the conditional belief about the system state defines

an information state that can be used to compress the agents’ information and to

sequentially decompose the problem over time. However, this approach is not directly

applicable when the agents have asymmetric information over time. When the agents

have asymmetric information, they need to form beliefs about the other agents’

information, beliefs about the agents’ belief about the agents’ information, and so on.

1We note that dynamic teams with symmetric information do not introduce additional difficulties
compared to POMDPs. This is because in these problems all the agents share the objective and have
identical information at all times. Therefore, they can be treated as centralized control problems
with many actions (one for each agent).
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On one hand, these hierarchies of beliefs depend on the agents’ strategies over time.

On the other hand, the agents’ optimal strategies depend on the agents’ beliefs over

time. Thus, there is an interdependence between the agents’ strategies and beliefs

overtime. As a result, the results for dynamic games and teams with symmetric

information do not directly apply to dynamic games and teams with asymmetric

information.

The authors of [90, 91] study dynamic team problems with non-classical informa-

tion structure 2, where at every time agents possess common and private information.

They propose an approach to construct a dynamic team problem with symmetric in-

formation that is equivalent to the original problem as follows. For every agent,

they consider a fictitious agent who has access to the agent’s common information

but not his private information. At every time t, each fictitious agent chooses a

function/prescription that determines the corresponding agent’s action at t for every

possible realization of the agent’s private information. They show that the dynamic

team problem among the fictitious agents is equivalent to the original dynamic team

problem. However, the problem with the fictitious agents is a dynamic team problem

with symmetric information. Therefore, it can be solved using the existing results

for centralized stochastic control problems. In the problem with the fictitious agents,

the information state is given by the Common Information Based (CIB) belief about

the agents’ private information and the system state. Thus, in the original problem

the information state for each agent is given by the described-above CIB-belief and

his own private information. Using this information state, the authors of [90, 91]

provide a sequential decomposition of dynamic teams with asymmetric information,

and provide an approach to compress the agents’ common information over time.

We would like to point out that the proposed information state in [90, 91] requires

the agents to keep track of their private information (or his private memory that is a

predetermined function of his private information if they do not have perfect recall)

over time, and does not provide an approach on how to effectively compress it.

The approach proposed in [90, 91] for dynamic teams does not apply for dynamic

2A dynamic team has a non-classical information structure when each agent’s information de-
pends on other agents’ strategies (see [135])
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games with asymmetric information. This is because in games, an agent’s strategy

is his private information. Therefore, in the equivalent dynamic games among the

fictitious agents, the decisions of each fictitious agent, which prescribes an action

for every realization of the associated agent’s private information, is his own private

information; that is, the resulting game among fictitious agents is a dynamic game

with asymmetric information (hidden actions).

In this chapter, we propose a general approach for the study of dynamic games

with asymmetric information. We present a set of conditions sufficient to characterize

information states where the agents common and private information are compressed

in a mutually consistent manner. Based on these information states, we define a

class of equilibria called Common Information Baesd Perfect Bayesian Equilibria

(CIB-PBE) that generalize the notion of MPE to dynamic games with asymmetric

information. We provide a sequential decomposition of the game that enables us to

compute the set of CIB-PBEs by backward induction. Moreover, we show that our

results also apply to dynamic teams with asymmetric information, thus, generalize

the results of [90, 91] by providing an approach to effectively compress the agents’

private information in a mutually consistent manner. As a result, our results provide

an universal approach for the study of dynamic decision problems with many agents

in strategic and cooperative settings.

5.1.2 Related Literature

Dynamic games with asymmetric information have been investigated extensively

in literature in the context of repeated games; see [138, 42, 5, 79] and the references

therein. The key feature of these games is the absence of a dynamic system. More-

over, the works on repeated games study primarily their asymptotic properties when

the horizon is infinite and agents are sufficiently patient (i.e. the discount factor

is close one). In repeated games, agents play a stage (static) game repeatedly over

time. As a result, in the absence of strategic interactions with other agents, the

decision making problem that each agent faces is very simple. The main objective of

this strand of literature is to explore situations where agents can form self-enforcing
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punishment/reward mechanisms so as to create additional equilibria that improve

upon the payoffs that agents can get by simply playing an equilibrium of the stage

game over time. Recent works (see [55, 37, 111]) adopt approaches similar to those

used in repeated games to study infinite horizon dynamic games with asymmetric

information when there is an underlying dynamic Markovian system. Under certain

conditions on the system dynamics and the agents’ information structure, the au-

thors of [55, 37, 111] characterize a set of asymptotic equilibria when the agents are

sufficiently patient.

The problem that we study in this chapter is different from the ones in [138, 42,

5, 79, 55, 37, 111] in two aspects. First, we consider a class of stochastic dynamic

games where the underlying dynamic system has a general Markovian dynamics and

information structure, and we do not restrict our attention to asymptotic behaviors

when the horizon is infinite and/or the agents are sufficiently patient. Second, we

study situations where the decision problem that each agent faces, in the absence of

strategic interactions with other agents, is a POMDP, which is a complex problem

to solve by itself. Therefore, reaching (and computing) a set of equilibrium strate-

gies, which take into account the strategic interactions among the agents, is a very

challenging task. As a result, it is not very plausible for the agents to seek reaching

equilibria that are generated by the formation of self-enforcing punishment/reward

mechanisms similar to those used in infinitely repeated games (see Section 5.7 for

more discussion). We believe that our results provide new insight into the behav-

ior of strategic agents in complex and dynamic environments, and complement the

existing results in the repeated games literature with simple and (mostly) static

environments.

The works in [101, 27, 44, 70] consider dynamic zero-sum games with asymmetric

information. The authors of [27, 101] study zero-sum games with Markovian dynam-

ics and lack of information on one side (i.e. one informed player and one uninformed

player). The authors of [44, 70] study zero-sum games with Markovian dynamics

with lack of information on both sides. The problem that we study in this chapter

is different from the ones in [101, 27, 44, 70] in three aspects. First, we study a gen-

eral class of dynamic games that include dynamic zero-sum games with asymmetric
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information as a special case. Second, we consider a general Markovian dynamics

for the underlying system whereas the authors of [27, 101, 44, 70] consider a specific

Markovian dynamics where each agent observes perfectly a local state that evolves

independently of the other local states conditioned on the agents’ observable actions.

Third, we consider a general information structure for each agent that allows us to

capture scenarios with unobservable actions and imperfect observations that are not

captured in [27, 101, 44, 70].

The problems investigated in [89, 46, 97, 98, 127, 108] are the most closely related

to our problem. The authors of [89, 46] study a class of dynamic games where the

agents’ common information based belief is independent of their strategies; that is,

there is no signaling among them. This property allows them to apply ideas from the

common information approach developed in [90, 91], and define an equivalent dy-

namic game with symmetric information among the fictitious agents. Consequently,

they characterize a class of equilibria for dynamic games called Common Information

Based Markov Perfect Equilibrium. Our results are different from those in [89, 46] in

two aspects. First, we consider a general class of dynamic games where the agents’

CIB beliefs are strategy-dependent, thus, signaling is present. Second, the proposed

approach in [89, 46] requires the agents to keep track of all of their private informa-

tion over time. We propose an approach to effectively compress the agents’ private

information, and consequently, reduce the number of variables on which the agents

need to form CIB belief.

The authors of [97, 98, 127, 108] study a class of dynamic games with asymmetric

information where signaling occurs. When the horizon in finite, the authors of [97, 98]

introduce the notion of Common Information Based Perfect Bayesian Equilibrium,

and provide a sequential decomposition of the game over time. The authors of

[127, 108] extend the results of [97, 98] to finite horizon Linear-Quadratic-Gaussian

(LQG) dynamic games and infinite horizon dynamic games, respectively. The class

of dynamic games studied in [97, 98, 127, 108] satisfies the following assumptions:

(i) agents’ actions are observable (ii) each agent has a perfect observation of his own

local states/type (iii) conditioned on the agents’ actions, the evolution of the local

states are independent.
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In this chapter we relax assumptions (i)-(iii) of [97, 98, 127, 108], and study a

general class of dynamic games with asymmetric information, hidden actions, im-

perfect observations, and controlled and coupled dynamics. As a result, each agent

needs to form a belief about the other agents’ past actions and private (imperfect)

observations. Moreover, in contrast to [97, 98, 127, 108], an agent’s, say agent i’s,

belief about the system state and the other agents’ private information is his own pri-

vate information and is different from the CIB belief. In this chapter, we extend the

methodology developed in [97, 98] for dynamic games, and generalize the notion of

CIB-PBE. Furthermore, we propose an approach to effectively compress the agents’

private information and obtain the results of [97, 98, 127, 108] as special cases.

5.1.3 Contribution

We develop a general methodology for the study and analysis of dynamic games

with asymmetric information, where the information structure is non-classical. We

propose an approach to characterize a set of information states that effectively com-

press the agents’ private and common information in a mutually consistent manner.

As a result, we characterize a subclass of Perfect Bayesian Equilibria for dynamic

games with asymmetric information, called CIB-PBE, and provide a sequential de-

composition of these dynamic games over time. This decomposition provides a back-

ward induction algorithm to determine the set of CIB-PBEs. We characterize special

instances of dynamic games where we can identify a set of information states with

time-invariant domain. We provide conditions that guarantee the existence of CIB-

PBEs in dynamic games with asymmetric information. We show that the method-

ology developed in this chapter generalizes the existing results for dynamic teams

with non-classical information structure. The information state characterized in this

chapter provides a sufficient statistic for decision making purposes in strategic and

non-strategic settings. Therefore, we provide a universal approach to decision mak-

ing problems with strategic and non-strategic agents; our approach can be applied

to study dynamic games among teams of agents.
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5.1.4 Organization

The rest of the chapter is organized as follows. In Section 5.2, we describe our

model and formulate the dynamic game problem. In Section 5.3, we discuss the

main issues that arise in the study of dynamic games with asymmetric information.

We provide the formal definition of Perfect Bayesian Equilibrium in Section 5.4. In

Section 5.5, we propose an approach to compressing the agents’ common and private

information and define an information state for each agent. Accordingly, we propose

the notion of CIB assessment and CIB-PBE for dynamic games. In Section 5.6, we

present our main results and provide a sequential decomposition of dynamic games.

We compare the notion of CIB-PBE with other equilibrium concepts appropriate

for dynamic games with asymmetric information, and extend our results to dynamic

teams in Section 5.7. In Section 5.8, we discuss the role of assumptions we make in

the model of Section 5.2, and provide the extension of our results by relaxing them

under certain conditions. In Section 5.9, we determine conditions that guarantee the

existence of CIB-PBE. We conclude in Section 5.10. The proofs of all the theorems

and lemmas appear in Appendix D.

5.2 Model

1) System dynamics: There are N strategic agents who live in a dynamic Marko-

vian world over horizon T := {1, 2, ..., T}, T < ∞. Let Xt ∈ Xt denote the state

of the world at t ∈ T . At time t, each agent, indexed by i ∈ N := {1, 2, ..., N},
chooses an action ait ∈ Ait, where Ait denotes the set of available actions to him at t.

Given the collective action profile At := (A1
t , ..., A

N
t ), the state of the world evolves

according to the following stochastic dynamic equation,

Xt+1 = ft(Xt, At,W
x
t ), (5.1)

where W x
1:T−1 is a sequence of independent random variables. The initial state X1 is

a random variable that has a probability distribution η ∈ ∆(X1) with full support.

At every time t ∈ T , before taking an action, agent i receives a noisy private
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observation Y i
t ∈ Y it of the current state of the world Xt and the action profile At−1,

given by

Y i
t = Oi

t(Xt, At−1,W
i
t ), (5.2)

where W i
1:T , i ∈ N , are sequences of independent random variables. Moreover, at

every t ∈ T , all agents receive a common observation Zt ∈ Zt of the current state of

the world Xt and the action profile At−1, given by

Zt = Oc
t (Xt, At−1,W

c
t ), (5.3)

where W c
1:T , is a sequence of independent random variables. We note that the agents’

actions At−1 is commonly observable at t if At−1 ⊆ Zt. We assume that the random

variables X1, W x
1:T−1, W c

1:T , and W i
1:T , i ∈ N are mutually independent.

2) Information structure: Let Ht ∈ Ht denote the aggregate information of

all agents at time t. Assuming that agents have perfect recall, we have Ht =

{Z1:t, Y
1:N

1:t , A
1:N
1:t−1}, i.e. Ht denotes the set of all agents’ past observations and ac-

tions. The set of all possible realizations of the agents’ aggregate information is given

by Ht :=
∏

τ≤tZτ ×
∏

i∈N
∏

τ≤t Y iτ ×
∏

i∈N
∏

τ<tAiτ .
At time t ∈ T , the aggregate information Ht is not fully known to all agents, and

each agent may have asymmetric information about Ht. Let Ct := {Z1:t} ∈ Ct denote

the agents’ common information about Ht and P i
t := {Y i

1:t, A
i
1:t−1}\Ct ∈ P it denote

agent i’s private information about Ht, where P it and Ct denote the set of all possible

realizations of agent i’ private and common information at time t, respectively. In

Section 5.2.1, we consider and discuss several instances of information structures that

can be captured as special cases of our general model.

3) Strategies and Utilities: Let H i
t := {Ct, P i

t } ∈ Hi
t denote the information

available to agent i at t, where Hi
t denote the set of all possible realizations of agent

i’s information at t. Agent i’s behavioral strategy git, t ∈ T , is defined as a sequence

of mappings git : Hi
t → ∆(Ait), t ∈ T , that determine agent i’s action Ait for every

realization hit ∈ Hi
t of the history at t ∈ T .
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Agent i’s instantaneous utility at t depends on the state of the world Xt and the

collective action profile At, and is given by uit(Xt, At). Agent i chooses his behavioral

strategy gi1:T so as to maximize his total (expected) utility over horizon T , given by,

U i(X1:T , A1:T ) =
∑
t∈T

uit(Xt, At). (5.4)

To avoid measure-theoretic technical difficulties and for clarity and convenience

of exposition, we assume that all the random variables take values in finite sets.

Assumption 5.1. (Finite game) The sets Xt, Zt, Y it , Ait, i ∈ N , t ∈ T , are finite.

Moreover, we assume that given any sequence of actions a1:t−1 up to time t− 1,

every realization xt ∈ Xt for system state at t has a strictly positive probability of

realization.

Assumption 5.2. (Strictly positive transition matrix) For all t ∈ T , xt ∈ Xt and

a1:t−1 ∈ A1:t−1, we have P{xt|a1:t−1} > 0.

Furthermore, we assume that for any sequence of actions {a1:T}, all realizations

of private observations {y1:N
1:T } have a positive probability. That is, no agent can infer

perfectly another agent’s action based only on his private observations.

Assumption 5.3. (Imperfect private monitoring) For all t ∈ T , y1:t ∈ Y1:t, and

a1:t−1 ∈ A1:t−1, we have P{y1:t|a1:t−1} > 0.

We discuss the role of Assumptions 5.1-5.3 in Section 5.8, where we determine

conditions under which we can relax these assumptions, and obtain results similar

to those of Sections 5.5, and 5.6.

5.2.1 Special Cases

We discuss several instances of dynamic games with asymmetric information that

can be described as special cases of general model described above.

1) Nested information structure: Consider a two-player game with one informed

player and one uninformed player. At every time t ∈ T , the informed player makes a
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private perfect observation of the state Xt, i.e. Y 1
t = Xt. The uninformed player does

not have any observation of the state Xt. Both the informed and uninformed players

observe each others’ actions, i.e. Zt = {At−1}. Therefore, we have P 1
t = {X1:t},

P 2
t = ∅, and Ct = {A1

1:t−1, A
2
1:t−1} for all t ∈ T . The above nested information

structure corresponds to dynamic games with asymmetric information considered in

[101, 102, 71], where in [102, 71] the underlying state Xt is static.

2) Independent dynamics with observable actions: Consider an N -player game

where the state Xt := (X0
t , X

1
t , X

2
t , ..., X

N
t ) has N components. The agents’ actions

At are observable by all agents, i.e. At−1 ⊂ Zt for all t ∈ T . At every time t ∈ T ,

agent i makes a perfect observation of its local state X i
t as well as a global state

X0
t . Moreover, at time t all agents make a common imperfect observation of state

X i
t given by Zi

t = Oc
t (X

i
t , At−1,W

c,i
t ), i ∈ N . Conditioned on the agents’ collective

action At, each X i
t evolves independently over time as X i

t+1 = ft(X
i
t , At−1,W

x,i
t ) for

all i ∈ N and t ∈ T , where W x,i
t , i ∈ N , t ∈ T are mutually independent. Therefore,

we have P i
t = {X i

1:t} and Ct = {X0
1:t, Z

1:N
1:t , A1:t−1}. The above environment includes

the dynamic game with asymmetric information considered in [98, 97].

3) Delayed sharing information structure: Consider a N -player game with observ-

able actions where agents observe each others’ observations with d-step delay. That

is, P i
t = {Y i

t−d+1:t} and Ct = {Y1:t−d, A1:t−1}. We note that in the model we assume

that the agents’ common observation Zt at t is only a function of Xt and and At−1.

Therefore, to describe the game with delayed sharing information structure within the

context of our model we need to augment our state space to include the agents’ last

d observations as part of the augmented state. Define X̃t := {Xt,M
1
t ,M

2
t , ...,M

d
t }

as the augmented system state where M i
t := {At−i, Yt−i} ∈ At−i × Yt−i, i ∈ N ; that

is, M i
t serves as a temporal memory for the agents’ observation Yt−i at t− i. Then,

we have X̃t+1 = {Xt+1,M
1
t+1,M

2
t+1, ...,M

d
t+1} = {ft(Xt, At,W

x
t ), (Yt),M

1
t , ...,M

d−1
t }

and Zt = {Md
t } = {Yt−d}.

The above environment captures a connection between the symmetric information

structure and asymmetric information structure. The information asymmetry among

the agents increases as d increases.
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4) Perfectly controlled dynamics with hidden actions: Consider a N -player game

where the state Xt := (X1
t , X

2
t , ..., X

N
t ) has N components. Agent i, i ∈ N , perfectly

controls X i
t , i.e. X i

t+1 = Ait. Agent i’s actions Ait, t ∈ T , is not observable by all

other agents −i. Every agent i, i ∈ N , makes a noisy private observation Y t
i (Xt,W

i
t )

of the system state at t ∈ T . Therefore, we have P i
t := {A1:t, Y

i
1:t}, Ct = ∅.

5.3 Equilibrium Solution Concept

In this section we discuss the notion of an equilibrium solution concept for dy-

namic games with asymmetric information. We argue that an equilibrium solution

concept must consist of a pair of a strategy profile and a belief system (to be defined

below). We provide a comparison between approaches to dynamic games with asym-

metric information and dynamic teams with non-classical (asymmetric) information

structure, and discuss the importance of off-equilibrium path beliefs in dynamic

games.3

In a dynamic game, as described in Section 5.2, agents have private information

about the evolution of the game, and they do not observe the complete history of

the game given by {Ht, Xt}, t ∈ T . Therefore, at every time t ∈ T , each agent, say

agent i ∈ N , needs to form (i) an appraisal about the current state of the system

Xt and the other agents’ information H−it (appraisal about the history), and (ii)

an appraisal about how other agents will play in the future so as to evaluate the

performance of his strategy choices (appraisal about the future). Given the other

agents’ strategies g−i, agent i can utilize his own information H i
t at t ∈ T , along with

(i) other agents’ past strategies g−i1:t−1 and (ii) other agents’ future strategies g−it:T to

form these appraisals about the history and future of the game, respectively.4

3We refer the interested reader to the papers by Battigalli [13], Myerson and Remy [88], and
Watson [132]

4In dynamic teams, agents share the same objective, and thus, coordinate their strategies so
as to maximize their shared objective. This implies that in dynamic teams the agents’ strategies
g1:N

1:T are common knowledge among them. Therefore, agent i ∈ N can form appraisals about the
system’s history and its future by using his private information Hi

t along with commonly known
strategies g−i. As a result, the outcome of dynamic team problems can be fully characterized by
the agents’ strategy profile g.
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In dynamic games, each agent has his own objective and chooses his strategy gi so

as to maximize his objective. Thus, in contrast to dynamic teams, in dynamic games

strategy gi is agent i’s private information and not known to other agents. Therefore,

in dynamic games, each agent needs to form a prediction about the other agents’

strategies. We denote this prediction by g∗1:N
1:T to distinguish it from the strategy

profile g1:N
1:T that is actually being played by the agents. Following Nash’s idea, we

assume that agents share a common prediction g∗ about the actual strategy g. We

would like to emphasize that the prediction g∗ does not necessarily coincide with

the actual strategy g. As we point out later, one requirement of an equilibrium of a

game is that for every agent i ∈ N , the prediction g∗i must be an optimal strategy

for him given the other agents prediction strategy g∗−i.

Since an agent’s actual strategy, say agent i, is his own private information, it is

possible that agent i’s actual strategy gi is different from the prediction g∗i. Below

we discuss the implication of an agent’s deviation from the prediction strategy profile

g∗. For that matter, we first consider an agent who may want to deviate from g∗,

and then we consider an agent who faces such a deviation and his response.

In dynamic games, when agent i ∈ N chooses his strategy gi, he needs to know

how other agents will play for any choice of gi which can be different from the

prediction g∗i. Therefore, the prediction g∗ has to be defined at all the information

sets of every agent, those that have positive probability under g∗ as well as those

that have zero probability under g∗. Using the prediction g∗, any agent, say agent i,

can form an appraisal about the future of the game for any strategy choice gi, and

evaluate the performance of gi.5

By the same rationale, when agent i chooses gi he needs to determine his strategy

for all of his information sets, even those that have zero probability under g∗−i. This

is because it is possible that some agent j ∈ N may deviate from g∗j and play

a strategy gj that is different from the prediction g∗j. Agent i must foresee these

possible deviations by other agents and determine his response to these deviations.

5We note that this is not an issue in dynamic teams. In dynamic teams, agents coordinate in
advance their choice of strategy profile g, and no agent has an incentive to (privately) deviate from
it. Hence, the agents’ strategy profile g is only needed to be defined on information sets of positive
probability under g.
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To determine his optimal strategy gi at any information set, agent i needs to first

form an appraisal about the history of the game at t as well as an appraisal about

the future of the game using the strategy prediction g∗−i. For an information set hit

that is compatible with the prediction g∗−i given his strategy gi at t ∈ T (i.e. hit

has positive probability of being realized under g∗), agent i can use Bayes’ rule to

derive the appraisal about the history of the game at t. However, for an information

set hit that has zero probability under the prediction g∗−i given gi, agent i cannot

anymore rely on the prediction g∗ and use Bayes’ rule to form his appraisal about the

history of the game at t. The realization of history hit tells agent i that his original

prediction g∗−i1:t−1 is not (completely) correct, thus, he needs to revise his original

prediction g∗−i1:t−1 and to form a revised appraisal about the history of the game up

to t. Therefore, agent i must determine how to form/revise his appraisal about the

history of the game for every realization hit ∈ Hi
t, t ∈ T , that has zero probability

under g∗−i. We note that upon reaching an information set of measure zero, agent

i only revises his prediction g∗−i1:t−1 about other agents’ past strategies, but does not

change his prediction g∗−it:T about their future strategies. This is because we assume

that at equilibrium, the prediction g∗−it:T specifies a set of strategies for other agents

that are optimal in the continuation game that takes place after the realization of

the information set of zero probability under g∗1:t−1.6

We now describe how we can formalize the above issues that we need to consider

in the study of dynamic games with asymmetric information. Following the game

theory literature [43], agents’ appraisals about the history and future of the game can

be captured by an assessment that all agents commonly hold about the game. We

6We note that in dynamic teams, agents only need to determine their optimal strategy g for
information sets that have positive probability of realizations under g. As a result, a collective choice
of strategy is optimal at every information set with positive probability if and only if it maximizes
the (expected) discounted utility of the team from t = 1 up to T . However, in dynamic games
agents need to determine their strategies for all information sets irrespective of whether they have
zero or positive probability of realization under g∗. Therefore, if a choice of strategy gi maximizes
agent i’s (expected) discounted utility from t = 1 to T = 1, it does not imply that it is also optimal
at all information sets that have zero probability of realization under {g∗−i, gi}. Consequently,
unlike team problems, in dynamic games a choice of agent i’s strategy must be optimal for all
continuation games that follow after a realization of an information set hit irrespective of whether
it has zero or positive probability of realization.
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define an assessment as a pair of mappings (g∗, µ), where g∗ := {g∗it , i ∈ N , t ∈ T },
g∗it : Hi

t → ∆(Ait) denotes a prediction about agent i’s strategy at t, and µ := {µit, i ∈
N , t ∈ T }, µit : Hi

t → ∆(Xt ×H−it ), denotes agent i’s belief about the system state

Xt and agents −i’s information H−it given his information H i
t . The collection of

mappings µ := {µit, i ∈ N , t ∈ T } is called a belief system. For every i ∈ N , t ∈ T ,

and hit ∈ Hi
t, µ

i
t(h

i
t) denotes agent i’s belief about the history {Xt, H

−i
t } of the game,

and g∗−it:T denotes agent i’s prediction about all other agents’ continuation strategy

from t onward. We note that µit(h
i
t) determines agent i’s appraisal about the history

of the game when hit has either positive or zero probability under g∗. Therefore,

using an assessment (g∗, µ) each agent can fully construct at any t ∈ T appraisals

about the history and future of the game.

Using the definition of an assessment, we can extend the idea of Nash equilibrium

to dynamic games with asymmetric information. An equilibrium of the dynamic

game is defined as a common assessment (g∗, µ) among the agents that satisfies the

following conditions under the assumption that the agents are rational. (1) Agent

i ∈ N chooses his strategy gi1:T so as to maximize his total expected utility (5.4) in

all continuation games given the assessment (g∗, µ) about the game. Therefore, the

prediction g∗i1:T that other agents hold about agent i’s strategy must be a maximizer

of his total expected utility under the assessment (g∗, µ). (2) For all t ∈ T , agent i’s,

i ∈ N , belief µit(h
i
t) at information set hit ∈ Hi

t that has positive probability under

g∗, must be equal to the conditional probability distribution of {Xt, H
−i
t } given the

realization hit via Bayes’ rule when agents −i play according to g∗−i1:t . When hit has

zero probability under the assessment g∗, the belief µit(h
i
t) cannot be determined

via Bayes’ rule and must be revised. The revised belief must satisfy a certain set of

“reasonable” conditions so as to be compatible with agent i’s rationality. Various sets

of conditions have been proposed in the literature (see [43, 96]) to capture the notion

of ”reasonable” beliefs that are compatible with the agents’ rationality. Different

sets of conditions for off-equilibrium beliefs µit(h
i
t) result in the different equilibrium

concepts that are proposed for dynamic games with asymmetric information.

In this chapter, we consider Perfect Bayesian Equilibrium (PBE) as the equi-

librium solution concept. In the next section we provide the formal definition of
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PBE.

5.4 Perfect Bayesian Equilibrium

Perfect Bayesian Equilibrium (PBE) is a solution concept that has been widely

used in the economic literature for the study of dynamic games with asymmetric

information. The formal definition of PBE for dynamic games in extensive form can

be found in [96]. In this chapter, we use a state space representation for dynamic

games instead of an extensive game form representation, therefore, we need to adapt

the definition of PBE to this representation. We define a PBE as an assessment (g∗, µ)

that satisfies the sequential rationality and consistency conditions. The sequential

rationality condition requires that for all i ∈ N , the prediction g∗i is optimal for

agent i given the assessment (g∗, µ). The consistency condition requires that for all

i ∈ N , t ∈ T , and hit ∈ Hi
t, agent i’s belief µ(hit) must be compatible with prediction

g∗. We formally define these conditions below.

Let P(g∗−it:T ,g
∗i
t:T )

µit
{.|hit} denote the probability measure induced by the stochastic

process that starts at time t with initial condition {Xt, P
−i
t , pit, ct}, hit = {ct, pit},

where {Xt, P
−i
t } is distributed according to probability distribution µit(h

i
t), assuming

that agents i and−i take actions according to strategies g∗it:T and g∗−it:T , respectively. In

the sequel, to save some notation, we write Pg∗µ {.} instead of P(g∗−it:T ,g
∗i
t:T )

µit
{.} whenever

there is no confusion.

Definition 5.1 (Sequential rationality). We say that an assessment (g∗, µ) is se-

quentially rational if ∀i ∈ N , t ∈ T , and hit ∈ Hi
t, the strategy prediction g∗it:T is a

solution to

sup
git:T

E(g∗−it:T ,g
i
t:T )

µit

{
T∑
τ=t

uit(Xt, At)|hit

}
(5.5)

The sequential rationality condition (5.5) requires that, given the assessment

(g∗, µ), the prediction strategy gi∗t for agent i is an optimal strategy for him for

all continuation games after history realization hit ∈ H i, irrespective of whether
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hit has positive or zero probability under (g∗, µ). That is, the common prediction

g∗i about agent i’s strategy must be an optimal strategy choice for him since it

is common knowledge that he is a rational agent. We note that the sequential

rationality condition defined above is more restrictive than the optimality condition

for Bayesian Nash Equilibrium (BNE) which only requires (5.5) to hold at t = 1.

By the sequential rationality condition, we require the optimality of prediction g∗

even along off-equilibrium paths, and thus, we rule out the possibility of non-credible

threats. For example, an agent can threaten to play an action that is suboptimal for

himself upon a realization of a history that has zero probability under g∗. Such a

non-credible threat is not ruled out by considering only the optimality at t = 1 (see

[43] for more discussion).

The sequential rationality condition results in a set of constraints that the strategy

prediction g∗ must satisfy given a belief system µ. As we argued in Section 5.3,

the belief system µ must be also compatible with the strategy prediction g∗. The

following consistency condition captures such compatibility between the belief system

µ and the prediction g∗.

Definition 5.2 (Consistency). We say that an assessment (g∗, µ) is consistent if

i) For all i ∈ N , t ∈ T \{1}, hit−1 ∈ Hi
t−1, and hit ∈ Hi

t such that Pg∗µ {hit|hit−1} > 0,

the belief µit(h
i
t) must satisfy Bayes’ rule, i.e.

µit(h
i
t)(x1:t, p

−i
t ) =

Pg∗{hit, xt, p−it |hit−1}
Pg∗{hit|hit−1}

. (5.6)

ii) For all i ∈ N , t ∈ T \{1}, hit−1 ∈ Hi
t−1, and hit ∈ Hi

t such that Pg∗µ {hit|hit−1} = 0,

we have

µit(h
i
t)(x1:t, p

−i
t ) > 0

only if there exists an open loop strategy (A−i1:t−1 = â−i1:t−1, A
i
1:t−1 = ai1:t−1) such
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that

P(A−i1:t−1=â−i1:t−1,A
i
1:t−1=ai1:t−1){xt, p−it } > 0. (5.7)

The above consistency condition places a restriction on the belief system µ so

that it is compatible with the strategy prediction g∗. For information sets along

equilibrium paths, i.e. Pg
∗

µi1
{hit} > 0, µit(h

i
t) must be updated according to (5.6) via

Bayes’ rule since the observations of agent i are consistent with the prediction g∗.

For information sets along off-equilibrium paths, i.e. Pg
∗

µi1
{hit} = 0, agent i needs to

revise his belief about the strategy of agents −i as the realization of hit indicates that

some agent has deviated from prediction g∗−i1:t . As pointed out before, the revised

belief µi(hit) must be “reasonable”. Definition 5.2 provides a set of such “reasonable”

conditions captured by (5.6) and (5.7) that we discuss further below.

First, consider an information set hit along an off-equilibrium path such that

Pg
∗

µit−1
{hit|hit−1} > 0. That is, conditioned on reaching information set hit−1 at t − 1,

hit has a positive probability of realization under the prediction strategy g∗. Since

Pg
∗

µi1
{hit} = Pg

∗

µit−1
{hit|hit−1}P

g∗

µi1
{hit−1} and Pg

∗

µi1
{hit} = 0, we have Pg

∗

µi1
{hit−1} = 0. There-

fore, hit−1 is also an information set along an off-equilibrium path, and µi(hit−1) is a

revised belief that agent i holds at t− 1. Note that if the assessment (g∗, µ) satisfies

the sequential rationality condition, g∗ is a best response for all agents in all contin-

uation games that follow the realization of every information set of positive or zero

probability. Moreover, since Pg
∗
t−1

µit−1
{hit|hit−1} > 0, the realization of hit conditioned on

reaching hit−1 is consistent with the strategy prediction g∗t−1. Therefore, agent i does

not have any reason to further revise his belief about agents −i’s strategy beyond

the revision that results in µi(hit−1). As a result, agent i determines his belief µi(hit)

by utilizing his belief µi(hit−1) at t− 1 and updating it via Bayes’ rule assuming that

agents −i’ play according to the prediction g∗−it−1 (see (5.6) in part (i)).

Next, consider an information set hit along an off-equilibrium path such that

Pg
∗

µit
{hit|hit−1} = 0. That is, conditioned on reaching information set hit−1 at t − 1,

hit has a zero probability of realization under the prediction g∗. In this case, the

realization of hit indicates that agents −i have deviated from prediction g∗−i1:t−1, and
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this deviation has not been detected by agent i before. Therefore, agent i needs

to form a new belief on agents −i’s private information P−it and the state Xt by

revising µ(hit). Part (ii) of the consistency condition concerns such belief revisions

and requires that the support of agent i’s revised belief µ(hit) includes only the

states and private information that are feasible under the system and information

dynamics (5.1-5.2), that is, they are reachable under some open-loop control strategy

(A−i1:t−1 = â−i1:t−1, A
i
1:t−1 = ai1:t−1). We note that since we are using a state represen-

tation of the dynamic game, we need to impose such a requirement, whereas in the

equivalent extensive form representation of the game such a requirement is satisfied

by the construction of the game-tree.

Remark 5.1. Under Assumptions 5.2 and 5.3, we have P(A1:t−1=â1:t−1)
µ1 {x1:t, p

−i
t } > 0

for all (A1:t−1 = â1:t−1). Therefore part (ii) of the consistency conditions is trivially

satisfied. In the rest of the chapter, we ignore part (ii) and only consider part (i)

of the consistency condition. In Section 5.8, we discuss the case where we relax

Assumptions 5.2 and 5.3.

We can now provide the formal definition of PBE for the dynamic game of Section

5.2.

Definition 5.3. An assessment (g∗, µ) is called a PBE if it satisfies the sequential

rationality and consistency conditions.

The definition of Perfect Bayesian equilibrium provides a general formalization

of outcomes that are rationalizable (i.e. consistent with agents’ rationality) under

some strategy profile and belief system. However, in the following we argue that

there are computational and philosophical reasons that motivate us to define a sub

class of PBEs that provide a simpler and more tractable approach to characterizing

the outcomes of dynamic games with asymmetric information.

There are two major challenges in computing a PBE (g∗, µ). First, there is an

inter-temporal coupling between the agents’ strategy prediction g∗ and belief system

µ. According to the consistency requirement, the belief system µ has to satisfy a

set of conditions given a strategy prediction g∗. On the other hand, by sequential
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rationality, a strategy prediction g∗ must satisfy a set of optimality condition given

belief system µ. Therefore, there is a circular dependency between a prediction

strategy g∗ and a belief system µ over time. For instance, by sequential rationality,

agent i’s strategy gi∗t at time t depends on the agents’ future strategies g∗t:T and

on the agents’ past strategies g∗1:t−1 indirectly through the consistency condition

for µit. As a result, one needs to determine the strategy prediction g∗ and belief

system µ simultaneously for the whole time horizon so as to satisfy the sequential

rationality and consistency conditions, and thus, cannot sequentially decompose the

computation of PBE over time. Second, the agents’ information hit, i ∈ N , has

a growing domain over time. Hence, the agents’ strategies have growing domains

over time, and this feature further complicates the computation of PBEs of dynamic

games with asymmetric information.

The definition of PBE requires agents to keep track of all the observations they

acquire over time and form beliefs about the private information of all other agents.

As we show in the next section, agents do not need to keep track of all of their past

observations to reach an equilibrium. They can take into account fewer variables

for decision making purposes and ignore part of their past observations that are not

relevant to the continuation game at any time. As we argue in Section 5.7.2, the class

of simpler strategies proposed in this chapter characterize a more plausible prediction

about the outcome of the interaction among agents when the underlying system is

highly dynamic and there exists considerable information asymmetry among the

agents.

5.5 The Common Information Approach

We generalize the notion of Common Information Based PBE (CIB-PBE), first

introduced in [98, 97], and characterize a class of PBEs that utilize strategy choices

that are simpler than general behavioral strategies as they require agents to keep

track of only a compressed version of their information over time. We proceed as

follows. In Section 5.5.1 we provide sufficient conditions for the subset of private

information an agent needs to keep track of it over time for decision making pur-
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poses. In Section 5.5.2, we introduce the common information based belief as a

compressed version of the agents’ common information that is sufficient for decision

making purposes. Based on these compressions of the agents’ private and common

information, we introduce the notion of common information based assessments and

common information based perfect Bayesian equilibrium in Sections 5.5.3 and 5.5.4,

respectively.

5.5.1 Sufficient Private Information

The key ideas for compressing an agent’s private information appear in Defi-

nitions 5.4 and 5.5 below. We first characterize the subset of an agent’s private

information that is necessary for the agent’s decision making process, irrespective of

what strategies other agents play over time.

Definition 5.4 (Private payoff-relevant information). Let P i,pr
t = l̄it(P

i
t , Ct) denote

a private signal that agent i ∈ N forms at t ∈ T based on his private information P i
t

and common information Ct. We say P i,pr
t is a private payoff-relevant information

for agent i if for all open-loop strategies (A1:N
1:T = â1:N

1:T ), and for all t ∈ T ,

(i) it can be updated recursively as P i,pr
t = ζt(P

i,pr
t−1 , H

i
t\H i

t−1),

(ii) it satisfies

P(A1:N
1:T =â1:N1:T )

{
P i,pr
t+1

∣∣∣P i
t , Ct, at

}
= P(A1:N

1:T =â1:N1:T )
{
P i,pr
t+1

∣∣∣P i,pr
t , Ct, at

}
w.p.1 (5.8)

(iii) for all realizations {ct, pit} ∈ Ct × P it such that P(A1:N
1:T =â1:N1:T ){ct, pit} > 0,

E(A1:N
1:t−1=â1:N1:t )

{
uit(Xt, At)

∣∣∣ct, pit, at} = E(A−i1:t−1=â−i1:t)
{
uit(Xt, At)

∣∣∣ct, pi,prt , at

}
.

(5.9)

By assuming that all other agents play open loop strategies we remove the inter-

dependence between agents −i’s strategy choices and agent i’s information structure,

thus, we eliminate signaling among the agents. Fixing the open-loop strategies of
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agents −i, agent i faces a centralized stochastic control problem. Definition 5.4 says

that P i,pr
t , t ∈ T , is a private payoff-relevant information for agent i if (i) it can be

recursively updated, (ii) P i,pr
t includes all information in P i

t that is relevant to P i,pr
t+1

and (iii) agent i’s instantaneous conditional expected utility at any t ∈ T is only a

function of Ct, P
i,pr
t , and his action Ait at t. These three conditions are similar to

properties (1)-(3), described in Section 5.1, that define an information state for a

centralized stochastic control problem [76], but they concern only agent i’s private

information P i
t instead of the collection H i

t = {Ct, P i
t } of his private and common

information.7 We would like to point out that conditions (i)-(iii) can have many

solutions including the trivial solution P i,pr
t = P i

t .
8

While the definition of private payoff-relevant information suggests a possible

way to compress the information required for an agent’s decision making process, it

assumes that other agents play open-loop strategies and do not utilize the information

they acquire in real-time for decision making purposes. However, open-loop strategies

are not in general optimal for agents −i. As a result, to evaluate the performance of

any strategy choice gi agent i needs also to form a belief about the information that

other agents utilize to make decisions.

Definition 5.5 (Sufficient private information). We say Sit = lit(P
i
t , Ct), i ∈ N ,

t ∈ T , is sufficient private information for agents if,

(i) it can be updated recursively as Sit = φt(S
i
t−1, H

i
t\H i

t−1) for t ∈ T \{1},

(ii) it satisfies

P
{
St+1, Zt+1

∣∣∣Pt, Ct, At} = P
{
St+1, Zt+1

∣∣∣St, Ct, At} w.p.1, (5.10)

(iii) for every strategy profile g̃∗ : {g̃∗it : S it×Ct → ∆(Ait), i ∈ N , t ∈ T } and at ∈ At,
7We note that if we interpret a centralized control problem as a special case of our model where

N = 1, H1
t = Pt and Ct = ∅ for all t ∈ T , Definition 5.4 coincides with the definition of information

state for the single agent decision problem.
8An interesting research direction is to determine whether a minimal private payoff-relevant

information exists, and if so, characterize such a minimal payoff-relevant information. However,
such a direction is beyond the scope of this chapter, and we leave this topic for future research.
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t ∈ T ,

Eg̃
∗−i
1:t−1

{
uit(Xt, At)

∣∣∣ct, pit, at} = Eg̃
∗−i
1:t−1

{
uit(Xt, At)

∣∣∣ct, sit, at} , (5.11)

for all realizations {ct, pit} ∈ Ct × P it .

(iv) for every strategy profile g̃∗ : {g̃∗it : S it×Ct → ∆(Ait), i ∈ N , t ∈ T } and at ∈ At,
i ∈ N , and t ∈ T ,

Pg̃
∗−i
1:t−1,g

∗i
1:t−1

{
S−it

∣∣∣P i
t , Ct

}
= Pg̃

∗−i
1:t−1

{
S−it

∣∣∣Sit , Ct} w.p.1, (5.12)

In general, the sufficient private information S1:N
t is more restrictive than that

of private payoff relevant information P 1:N,pr
t . This is because S1:N

t , t ∈ T , needs to

satisfy condition (iv) in addition to conditions (i)-(iii). Moreover, condition (5.10)

requires that the belief about Zt+1 conditioned on {St, Ct, At} must be independent

of {Ht, At}. Furthermore, in contrast to condition (5.9) that assumes that agents

−i play open-loop strategies, condition (5.11) must be satisfied when agents play

closed-loop strategies. We note the definition of S1:T provides an interdependence

among agents’ sufficient private information S1:N
1:T through condition (iii) and (iv).

Specifically, by condition (iv) agent i’s sufficient private information Sit must be rich

enough so that he can form beliefs about agents −i’s sufficient private information

S−it . Note that in (5.11) and (5.12) the conditional probability distributions do

depend on the strategy prediction g∗. As we pointed out in Section 5.4, the agents’

actual strategy profile g may be different from the prediction g∗. We will discuss

the robustness of sufficient private information to possible unilateral deviations of

agents from g∗ in Section 5.6. We would like to point out that conditions (i)-(iv) of

Definition 5.5 can have many solutions including the trivial solution Sit = P i
t .

9

Definition 5.5 provides sufficient conditions under which agents can compress

their private information in a “mutually consistent’ manner. Below, we discuss a

9We do not discuss the possibility of finding a minimal set of sufficient private information in this
chapter, and leave it for future research as such investigation is beyond the scope of this chapter.
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few special instances of the general model 5.2, and identify the sufficient private

information S1:N
1:T .

Special Cases:

1) Nested information structure: The uninformed agent (agent 2) has no private

information, P 2
t = ∅. Thus, S2

t = ∅. For the informed agent (agent 1) consider

P 1,pr
t = Xt. Consequently, we can set S1

t = Xt. Note that P 2
t = ∅, thus, the

uninformed agent’s belief about P 1
t is the same as common belief.

2) Independent dynamics with observable actions: Consider P i,pr
t = X i

t . Note

that Xj
t , j = 1, 2, ..., N have independent dynamics given the collective action At

that is commonly observable by all agents. Therefore, agent i’s belief about Xj,

j 6= i, is the same as common belief, Pg{Xj
t |P i

t , Ct} = Pg{Xj
t |Ct}. Consequently, we

can set Sit = X i
t .

3) Delayed sharing information structure: Consider P i,pr
t = {Y i

t−d+1:t}. Since we

do not assume any specific structure for system dynamics and agents’ observations,

agent i’s complete private information P i
t is payoff-relevant for him. Therefore, we

set St = P i
t .

4) Perfectly controlled dynamics with hidden actions: Since agent i, i ∈ N ,

perfectly controls X i
t over time t ∈ T , we set Sit = {Ait−1, Y

i
t }.

5.5.2 Common Information based Belief

Based on the characterization of sufficient private information, we present a statis-

tic (compressed version) of the common information Ct that agents need to keep track

of over time for decision making purposes.

Consider the sufficient private information S1:N
t , t ∈ T . Define S it to be the

set of all possible realizations of Sit , and St :=
∏N

i=1 S it . Let γt : Ct → ∆(Xt × St)
denote a mapping that determines a conditional probability distribution over the

system state Xt and the agents’ sufficient private information St given the common

information Ct at time t. We call the collection of mappings γ := {γt, t ∈ T } a

common information based belief system (CIB belief system). Note that γt is only

148



a function of the common information Ct, and thus, it is computable by all agents.

Let Πγ
t := γt(Ct) denote the (random) common information based belief that agents

hold under belief system γ at t. We can interpret Πγ
t as the common belief that

each agent holds about the system state Xt and all the agents’ (including himself)

sufficient private information St at time t. In the rest of the chapter, we write Πt

and drop the superscript γ whenever such a simplification in notation is clear.

We show below that using the sufficient private information St along with the CIB

belief Πt, we can form a common information based assessment about the game. We

prove that such a common information based assessment is rich enough to capture a

subset of PBE.

5.5.3 Common Information based Assessment

As we discussed in Section 5.4, to form a prediction about the game we need to

determine an assessment about the game that is sequentially rational and consistent.

In the following we present an assessment that is based on the common information

based belief Πt and the sufficient private information Sit , i ∈ N .

Consider a class of strategies that utilize the information given by (Πt, S
i
t) for

agent i ∈ N at time t. We call the mapping σit : ∆(Xt × St) × S it → ∆(Ait) a

Common Information Based (CIB) strategy for agent i at time t. A CIB strategy

σi determines a probability distribution for agent i’s action Ait at time t given his

information (Πt, S
i
t). A CIB strategy is a behavioral strategy where agents only

use the common belief Πt = γt(Ct) (instead of the common information Ct), and

the sufficient private information Sit(P
i
t , Ct) (instead of complete private information

P i
t ). A collection of CIB strategies {σ1

1:T , ..., σ
N
1:T} is called a CIB strategy profile σ.

The set of CIB strategies is a subset of behavioral strategies, defined in Section 5.2,

as we can define,

g
(σ,γ),i
t (hit) := σit(π

γ
t , s

i
t).

In Section 5.4, we defined a consistency condition between strategy prediction

g∗ and a belief system µ. Below, we provide an analogous consistency condition
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between a CIB strategy prediction σ∗ and a CIB belief system γ.

Definition 5.6. A pair (σ∗, γ) of a CIB strategy prediction profile σ∗ and belief

system γ satisfies the consistency condition if

(i) for all t ∈ T \{1}10, zt ∈ Zt, πt−1 = γt−1(ct−1), and πt = γt({ct−1, zt}) such

that Pσ
∗
t
πt−1{zt} > 0, πt must satisfy Bayes’ rule, i.e.,

πt(xt, st) =
Pσ
∗
t
πt−1{xt, st, zt}
Pσ
∗
t
πt−1{zt}

, ∀xt ∈ Xt,∀st ∈ St, (5.13)

(ii) for all t ∈ T \{1}, ct−1 ∈ Ct−1, πt−1 = γt−1(ct−1), zt ∈ Zt, and πt = γt({ct−1, zt})
such that Pσ

∗
t
πt−1{zt} = 0, we have

πt(xt, st) > 0, ∀xt ∈ Xt,∀st ∈ St,

only if there exists an open-loop strategy (A1:t−1 = a1:t−1) such that P(A1:t−1=a1:t−1)
π1

{ct−1, zt} > 0, and

P(A1:t−1=a1:t−1)
π1

{xt, st} > 0, (5.14)

(iii) for all t ∈ T \{1}, ct−1 ∈ Ct−1, πt−1 = γt−1(ct−1), zt ∈ Zt, and πt = γt({ct−1, zt})
such that Pσ

∗
t
πt−1{zt} = 0, we have∑

xt∈Xt

πt(xt, st) > 0, ∀st ∈ St

if there exists an open-loop strategy (A1:t−1 = a1:t−1) such that P(A1:t−1=a1:t−1)
π1

{ct−1, zt} > 0, and ∑
xt∈Xt

P(A1:t−1=a1:t−1)
π1

{xt, st} > 0. (5.15)

10For t = 1, Πt is given by the conditional probability at t = 1 as Π1(x1, s1) :=
P{s1|x1,z1}∑

x̂1∈X1
P{z1|x̂1}η(x̂1) .
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Parts (i) and (ii) of Definition 5.6 follow from rationales similar to their analogues

in Definition 5.2, and require a CIB belief system to satisfy a sets of constraints

with respect to a CIB strategy profile that are similar to those for an assessment

(g∗, µ). Definition 5.6 requires an additional condition described by part (iii). By

(5.15), we require a CIB belief system γ consistent with the CIB strategy profile

σ∗ to assign a positive probability to every realization st of the agents’ sufficient

private information St that is “plausible” given the common information realiza-

tion ct = {ct−1, zt}; plausibility of st given ct means that there exists an open-loop

strategy profile (A1:t−1 = a1:t−1) consistent with the realization ct that leads to the

realization of st with positive probability. Therefore, part (iii) ensures that there

exists no incompatibility between the CIB belief Πt and the agents’ sufficient private

information St+1. As we show later (Section 5.5.4), such a compatibility allows each

agent to refine the CIB belief Πt using his own private information Sit , and to form

his private belief about the game.

Remark 5.2. Similar to Remark 5.1, Assumptions 5.2 and 5.3 imply that (5.14)

holds for all (A1:t−1 = a1:t−1) such that P(A1:t−1=a1:t−1){ct} > 0. Therefore, in the rest

of the chapter, we ignore part (ii) of the consistency condition for CIB belief sys-

tems. Moreover, under Assumptions 5.2 and 5.3, condition (5.15) is always satis-

fied. Therefore, condition (iii) is equivalent to having
∑

xt∈Xt πt(xt, pt) > 0 whenever

Pσ∗πt−1
{zt} = 0. In Section 5.8, we discuss the case where we relax Assumptions 5.2

and 5.3.

Given a CIB strategy profile prediction σ∗, a consistent CIB belief must satisfy

(5.13), which determines the CIB belief Πt at t in terms of the CIB belief Πt−1 at

t−1 and the new common information Zt at t. We define a CIB belief update rule as

a mapping ψt : ∆(Xt−1×St−1)×Zt → ∆(Xt×St), t ∈ T that determines recursively

the common belief

Πψ
t := ψt(Π

ψ
t−1, Zt), (5.16)

as a function of new common observation Zt at t and the common belief Πψ
t−1 at
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t− 1.11 The superscript ψ in Πψ
t indicates that the CIB belief Πψ

t is generated using

the CIB update rule ψ. Let γψ denote the common belief system that is equivalent

to the CIB update rule ψ. We call a CIB belief update rule ψ consistent with a

CIB strategy profile σ∗ if the equivalent CIB belief system γψ is consistent with σ∗

(Definition 5.6).

Define a CIB assessment (σ∗, γ) as a pair of CIB strategy profile σ∗ and a CIB

belief system γ. Below, we show that a consistent CIB assessment (σ∗, γ) is equivalent

to a consistent assessment (g∗, µ) as defined in Section 5.4 (Definition 5.2).

Lemma 5.1. For any given CIB assessment (σ∗, γ), there exists an equivalent as-

sessment (g∗, µ) of a behavioral strategy prediction g∗ and belief system µ such that:

i) the behavioral strategy g∗ is defined by

g∗it (hit) := σ∗it (πγt , s
i
t); (5.17)

ii) the belief system µ is consistent with g∗ and satisfies

Pg∗
{
s−it |hit

}
= P

{
s−it |πt, sit

}
, (5.18)

for all i ∈ N , t ∈ T ,hit ∈ Hi
t, and s−it ∈ S−it .

Lemma 5.1 shows that the set of consistent CIB assessment (σ∗, γ) is equivalent

to a subset of consistent assessments (g∗, µ). That is, using the CIB belief system

γ and CIB strategy profile σ∗, agents can form a consistent assessment about the

evolution of the game. Moreover, condition (5.18) implies that the CIB belief Πt

along with agent i’s sufficient information Sit capture all the information in H i
t that

is relevant to agent i’s belief about S−it .

11Upon reaching an information set of measure zero (parts (ii) and (iii) of Definition 5.6), the
revised CIB belief could be a function of Ct = {Ct−1, Zt}, not only Πt−1(Ct−1) and Zt. Therefore,
the set of CIB belief systems that are generated from CIB update rules is a subset of all consistent
CIB belief systems given by Definition 5.6. However, we argue that upon reaching an information
set of measure zero, it is more plausible to revise the CIB belief only as a function of relevant
information Πt−1(Ct−1) and Zt; Ct is irrelevant given Πt−1(Ct−1) and Zt.
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5.5.4 Common Information based PBE

Using the result of Lemma 5.1, we can define a class of PBE, called Common

Information based PBE (CIB-PBE), as a set of equilibria for dynamic games with

asymmetric information that can be expressed as CIB assessments.

Definition 5.7. A CIB assessment (σ∗, γ) is called a CIB-PBE if γ is consistent

with σ∗ (Definition 5.6), and the equivalent consistent assessment (g∗, µ), given by

Lemma 5.1, is a PBE.

In the following, we also call a consistent pair (σ∗, ψ) of a CIB strategy prediction

profile σ∗ and CIB belief update rule ψ a CIB-PBE if (σ∗, γψ) is a CIB-PBE.

Throughout Section 5.6, we assume that agents play according to the strategy

predictions g∗ (or CIB strategy predictions σ∗). However, an agent’s, say agent

i ∈ N ’s, actual strategy gi is his private information and could be different from

g∗ if such a deviation is profitable for him. The proposed class of CIB assessments

imposes two restrictions on agents’ strategies and beliefs compared to the general

class of assessment presented in Section 5.4. First, it requires that each agent i,

i ∈ N , must play a CIB strategy σ∗i instead of a general behavioral strategy g∗i.

Second, it requires that each agent i, i ∈ N , must form a belief about the status of

the game using only the CIB belief Πt along with his sufficient private information Sit

(instead of a general belief µit). A strategic agent i ∈ N does not restrict his choice

of strategy to CIB strategies, and may deviate from σ∗i to a non-CIB strategy gi if it

is profitable to him. Moreover, a strategic agent i, i ∈ N , does not limit himself to

form belief about the current status of the game only based on Πt and Sit , and may

instead use a general belief µi if it enables him to improve his expected utility. In

the next section, we address these strategic concerns, and show that no agent i ∈ N
wants to deviate from (Π, σ∗) and play a non-CIB strategy gi when all other agents

are playing according to CIB assessment (Π, σ∗). This result allows us to focus on

the class of CIB assessments, and develop a methodology to sequentially decompose

the dynamic game over time.
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5.6 Main Results

In this section, we show that the class of CIB assessments is rich enough to

capture the agents’ strategic interactions.We first show that when agents −i play

according to a CIB assessment (γt, σ
∗), agent i, i ∈ N , cannot mislead these agents

by playing a strategy gi different from σ∗i, thus, creating dual beliefs, one belief that

is based on the CIB assessment (γt, σ
∗) the functional form of which is known to all

agents, and another belief that is based on his private strategy gi that is only known

to him (Theorem 5.1). Then, we show that given that agents −i play CIB strategy

σ∗−i, agent i’s best response is a CIB strategy (Theorem 5.2).

We prove the result of Theorems 5.1 (resp. 5.2) for agent i ∈ N assuming that all

other agents −i are playing according to strategy prediction g∗−i (resp. σ∗−1). The

same results hold for every continuation game that starts at any time t ∈ T along

an off-equilibrium path; they can be proved by relabeling time t as time 1, and using

the CIB belief πt = γt(ct) and the corresponding µit(h
i
t), defined by Lemma 5.1, as

the initial common belief for the continuation game.

Using the results of Theorems 5.1 and 5.2, we present a methodology to deter-

mine the set of CIB-PBEs of stochastic dynamic games with asymmetric informa-

tion (Theorem 3). The proposed methodology leads to a sequential decomposition of

stochastic dynamic games with asymmetric information. This decomposition gives

rise to a dynamic program that can be utilized to compute CIB-PBEs via backward

induction. We proceed to formally states these results. All the proofs can be found

in the Appendix.

Theorem 5.1 (Policy-independence belief property). Consider a consistent assess-

ment (g∗, µ). If agents −i play according to strategy prediction g∗−i, then for every

behavioral strategy gi that agent i actually plays, we have

Pg∗,gi
{
xt, h

−i
t

∣∣∣hit} = Pg∗−i
{
xt, h

−i
t

∣∣∣hit} . (5.19)

Theorem 5.1 provides a generalization of the standard policy-independence belief
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property in the centralized control literature [67] into multi-agent decision making

problems. It states that under perfect recall agent i’s belief is independent of his

actual strategy gi. Therefore, agent i cannot mislead agents −i by deviating from

the CIB strategy prediction g∗i to a behavioral strategy gi so as to create dual beliefs

(described above) that he can use to his advantage.

Using the result of Theorem 5.1, we show that agent i ∈ N does not gain by

playing a non-CIB strategy g̃i when all other agents −i are playing CIB strategies

σ∗−i.

Theorem 5.2 (Closeness of CIB strategies). Consider a consistent CIB assessment

(σ∗, γ). If every agent j ∈ N , j 6= i plays the CIB strategy σ∗j, then, there exists a

CIB strategy σi for agent i that is a best response to σ∗−i.

The results of Theorems 5.1 and 5.2 address the two restrictions (discussed above)

imposed in CIB assessments on the agents’ beliefs and strategies, respectively.

Based on these results, we restrict attention to CIB assessments, and provide a

sequential decomposition of dynamic games with asymmetric information. A CIB-

PBE is CIB assessment that is a fixed point under the best response map for all

agents. Below, we formulate a dynamic program that enables us to compute CIB-

PBEs of dynamic games with asymmetric information.

Consider a dynamic program over time horizon T ∪ {T + 1} with information

state {Πt, St}, t ∈ T . Let Vt := {V i
t : ∆(Xt ×St)×St → R, i ∈ N} denote the value

function that captures the continuation payoffs for all agents, for all realizations

of the CIB belief Πt and the agents’ private sufficient information St, t ∈ T . Set

V i
T+1 = 0 for all i ∈ N . For each stage t ∈ T of the dynamic program consider the

following static game.

Stage game Gt(πt,Vt+1, ψt+1): Given the value function Vt+1 and CIB update

rule ψt+1, we define the stage game Gt(πt, Vt+1, ψt) as a static game of asymmetric

information among agents for every realization πt. Each agent i ∈ N has private in-

formation Sit that is distributed according to πt, which is common knowledge among

the agents. Given a realization at of the agents’ collective action profile and a re-

alization st of the agents’ sufficient private information, agent i’s utility is given
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by

Ū i
t (at, st, πt, Vt+1, ψt+1) := Eπt

{
uit(Xt, at) + V i

t+1 (ψt+1(πt, Zt+1), St+1)
∣∣∣πt, st, at} .

(5.20)

BNE correspondence: We define the correspondenceBNEt (Vt+1, ψt+1), t ∈ T ,

as the correspondence mapping that characterizes the set of BNEs of the stage game

Gt(πt,Vt+1, ψt+1) for every realization of πt; this correspondence is given by

BNEt (Vt+1, ψt+1) := {σ∗t : ∀πt ∈ ∆(Xt × St), σ(πt, ·) is a BNE of Gt(πt, Vt+1, ψt+1)} .
(5.21)

We say σ∗(πt, ·) is a BNE of the stage game Gt(πt, Vt+1, ψt) if for all agents i ∈ N ,

and for all sit ∈ S it ,

σ∗i(πt, s
i
t) ∈ arg max

α∈∆(Ait)
Eπt
{
Ū i
t ((α, σ

∗−i(πt, S
−i
t )), St, πt, Vt+1, ψt+1)

∣∣∣πt, sit} . (5.22)

Below, we provide a sequential decomposition of dynamic games with asymmetric

information using the stage game and the BNE correspondence defined above.

Theorem 5.3 (Sequential decomposition). A pair (σ∗, ψ) of a CIB strategy profile

σ∗ and a CIB update rule ψ (equivalently, a CIB assessment (σ∗, γψt )) is a CIB-PBE

if (σ∗, ψ) solves the following dynamic program:

V i
T+1(·) := 0 ∀ i ∈ N , (5.23)

(5.24)
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for t ∈ T ,

σ∗t ∈ BNEt (Vt+1, ψt+1) , (5.25)

ψt+1 is consistent with σ∗, (5.26)

V i
t (πt, st) := Eσ

∗
t
πt,ψt+1

{
Ū i
t ((σ

∗(πt, St)), St, πt, Vt+1, ψt+1)
∣∣∣πt, sit} , i ∈ N . (5.27)

5.7 Discussion

Using the notion of CIB-PBE proposed in Sections 5.5 and 5.6, we provide a

sequential decomposition of dynamic games with asymmetric information over time.

The set of CIB-PBEs characterizes a set of equilibria in which the agents compress

their private and common information, thus, they play simpler strategies whose

domains do not grow as rapidly as those of behavioral strategies. We also identified

a special cases of the general model of Section 5.2, where the domain of CIB strategies

is time-invariant. In the following, we elaborate further on the notion of CIB-PBE. In

Section 5.7.1, we discuss the connections between the common information approach

to dynamic games presented in this chapter and the existing results on the common

information approach to dynamic teams. We show that the approach proposed in

this chapter to compress the agents’ private and common information extends to

dynamic teams. In Section 5.7.2, we discuss the relation between CIB-PBEs and

other equilibrium concepts for dynamic teams. We argue that the notion of CIB-PBE

provides a more plausible and robust characterization of the outcomes in dynamic

games where the information asymmetry among agents is high and the underlying

system is highly dynamic.

5.7.1 Dynamic Games vs. Teams

As pointed out in Section 5.1, the approach proposed in this chapter is inspired

by the common information approach proposed in [91, 90]. However, in dynamic

games among strategic agents there are additional challenges that are not present in

dynamic teams where agents cooperate. We discussed these challenges in Section 5.3,
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and presented an approach to address them in Sections 5.5 and 5.6. The approach

proposed to compress the agents’ private information (Definitions 5.4 and 5.5) can

be also applied to dynamic team problems, thus, it provides a new result and insight

on the common information approach to dynamic teams.

Consider a setting where each agent i ∈ N commits to play strategy gi; that is,

he is non-strategic and his strategy gi is known to all the other agents. Moreover,

assume that the agents have access to a public randomization device; that is at every

time t ∈ T they observe a public random signal ωt that is uniformly distributed on

[0, 1] and is independent across time. At each time t ∈ T , all agents can condition

their actions on the realization of ωt. We can then establish the following result.

Theorem 5.4. Assume that the agents are non-strategic and have access to a pub-

lic randomization device. Then, for any strategy profile g there exists an equiv-

alent CIB strategy profile σ that results in the same expected flow of utility, i.e.

Eg
{∑T

τ=t u
i
τ (g

1:N
τ (H1:N

τ ), Xτ )
}

= Eσ
{∑T

τ=t u
1:N
τ (σiτ (Πτ , S

1:N
τ ), Xτ )

}
, for all i ∈ N

and t ∈ T .

Consider the team problem that corresponds to the model of Section 5.2, where

all agents have the same utility uit(·, ·) = uteam
t (·, ·). For this dynamic team problem,

the result of Theorem 5.4 implies that we can restrict attention to the set of CIB

strategies without loss of generality. The result of Theorem 5.4 extends the results

of [91, 90] in two directions. First, it states that the restriction to the set of CIB

strategies is without loss of generality, while the results of [91, 90] only states that

this restriction is without loss of optimality. Second, the definition of CIB strategies

first presented in [91, 90] requires the agents to use all of their private information P i
t ,

i ∈ N (or all their private memory that is a predetermined function of their private

information if they do not have perfect recall); the result of Theorem 5.4 holds

for CIB strategies where the agents’ private information is effectively compressed

, thus, it generalizes the definition of CIB strategies. We would also like to note

that to achieve a general expected flow of utility agents may need to utilize a public

randomization device to construct correlated strategies. However, when our objective

is to determine an optimal strategy profile, we can restrict attention to CIB strategies
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without a public randomization device; this is because in dynamic teams we can

restrict attention to deterministic strategies without loss of optimality.

The results of Theorem 5.4 for dynamic teams along with the results in Section

5.6 for dynamic games, provide a general approach for the study of dynamic decision

problems with many agents and asymmetric information. As a result, our results

also extend to dynamic games among teams of agents and characterize a set of

information states for each agent in a mutually consistent manner.

5.7.2 CIB-PBE vs. Other Notions of Equilibrium

In Section 5.6, we showed that CIB assessments proposed in this chapter are

rich enough to capture a set of PBE. However, we would like to point out that the

concept of CIB-PBE does not capture all PBEs of a dynamic game in general. We

expand on the relation between the of CIB-PBE and PBE below. We argue that the

set of CIB-PBEs are more plausible to arise as the information asymmetry among

the agents increases and the underlying system is dynamic.

In Sections 5.5, we presented an approach to compress the agents’ private and

common information by providing conditions sufficient to characterize the informa-

tion that is relevant for decision making purposes. Such information compression

means that the agents do not incorporate into their decision making processes their

observations that are irrelevant to the continuation game. As we showed in Section

5.7.1, this information compression is without loss of generality for dynamic team

problems. However, this is not the case in dynamic games. In general, the set of

CIB-PBEs of a dynamic game is a subset of all PBEs of that game. This is be-

cause in a dynamic game agents can incorporate their past irrelevant observations

into their future decisions so as to create rewards (resp. punishments) that incen-

tivize the agents to play (resp. not play) specific actions over time. By compressing

the agents’ private and common information in CIB assessments, we do not capture

such punishment/reward schemes that are based on past irrelevant observations. Be-

low, we present an example where there exists a PBE that cannot be captured as a

CIB-PBE.
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Consider a two-agent repeated game with T = 2 and a payoff matrix given in

Table 5.1. At each stage, agent 1 chooses from {U,D}, and agent 2 chooses from

{L,M,R}. We assume that agents observe each others’ actions. Therefore, the

agents have no private information, and the sufficient private information and CIB

belief are trivial. The stage game has two equilibria in pure strategies given by

(D,M) and (U,R). Using the results of Theorem 3, we can characterize four CIB-

PBEs of the repeated game that correspond to the different combinations of the

two equilibria of the stage game as follows: (DD,MM), (UU,RR), DU,MR), and

(UD,RM). However, there exists an another PBE of the repeated game that cannot

be captured as a CIB-PBE. Consider the following equilibrium: Play (U,L) at t = 1.

If agent 2 plays L at t = 1 then play (U,R); otherwise, play (D,M) at t = 2. Note

that the agent 1’s decision at t = 2 depends on the agent 2’s action at t = 1, which

is a payoff-irrelevant information since the two stages of the game are independent.

L M R

U (8,3) (0,2) (2,10)

D (0,1) (1,2) (0,0)

Table 5.1: Payoff matrix

We would like to point out that there are instances of dynamic games with asym-

metric information, such as zero-sum dynamic games [109], where the equilibrium

payoffs for the agents are unique. In these games it is not possible to incorporate pay-

off irrelevant information so as to construct additional equilibria where the agents’

payoffs are different from the ones corresponding to CIB-PBEs; this is clearly the case

for zero-sum games since the agents do not cooperate on creating punishment/reward

schemes due to the zero-sum nature of the game.12

While it is true that in general, the set of PBEs of a dynamic game is larger

than the set of CIB-PBEs of that game, in the remainder of this section, we provide

three reasons on why in a highly dynamic environment with information asymmetry

among agents, CIB-PBEs are more plausible to arise as an outcome of a game.

12See Section 5.9 for the proof of existence for CIB-PBEs in zero-sum games.
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First, we argue that in the face of a highly dynamic environment, an agent with

partial observations of the environment should not behave fundamentally different

whether he interacts in a strategic or cooperative environment. From the single-

agent decision making point of view (i.e. control theory), CIB strategies are the

natural choice of an agent for decision making purposes (See Theorem 5.4). The

notion of CIB-PBE proposed in this chapter for dynamic games along with the

CIB approach to dynamic teams proposed in [91, 90] and extended in Section 5.7.1

provide a universal foundation for agents’ behavior in a dynamic environment with

information asymmetry among agents.

Second, we argue that in a highly dynamic environment with information asym-

metry among the agents, the formation of punishment/reward schemes that utilize

the agents’ payoff-irrelevant information requires prior complex agreements among

the agents; these complex agreements are sensitive to the parameters of the model

and are not very plausible to arise in practice when the decision making problem for

each agent is itself a complex task. We note that the set of PBEs that cannot be

captured as CIB-PBEs are the ones that utilize payoff-irrelevant information to cre-

ate punishment/reward schemes in the continuation game as in the example above.

However, such punishment/reward schemes require the agents to form a common

agreement among themselves on how to utilize such payoff-irrelevant information

and how to implement such punishment/reward schemes. The formation of such a

common agreement among the agents is more likely in games where the underlying

system is not highly dynamic (as in repeated games [79]) and there is no much infor-

mation asymmetry among agents. However, in a highly dynamic environment with

information asymmetry among agents the formation of such common agreement be-

comes less likely for the following reasons. First, in those environments each agent’s

individual decision making process is described by a complex POMDP; thus, strategic

agents are less likely to form a prior common agreement (that depend on the solution

of the individual POMDPs) in addition to solving their individual POMDPs. Second,

as the information asymmetry increases among agents, punishment/reward schemes

that utilize payoff-irrelevant information require a complex agreement among the

agents that is sensitive and not robust to changes in the assumptions on the infor-
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mation structure of the game. For instance, consider the example described above,

but assume that agents observe imperfectly each others’ actions at each stage (As-

sumption 5.3). Let 1− ε, ε ∈ (0, 1), denote the probability that agents observe each

others’ actions perfectly, and ε denote the probability that their observation is differ-

ent from the true action of the other agent. Then, the described non-CIB strategy

profile above remains as a PBE of the game only if ε ≤ 1
5
. The author of [86] provides

a general result on the robustness of above-mentioned punishment/reward schemes

in repeated games; he shows that the set of equilibria that are robust to changes in

information structure that affect only payoff-irrelevant signals does not include the

set of equilibria that utilize punishment/reward schemes described above.

Third, the proposed notion of CIB-PBE can be viewed as a generalization of

Markov Perfect Equilibrium [81] to dynamic games with asymmetric information.

Therefore, a similar set of rationales that support the notion of MPE also applies

to the notion of CIB-PBE as follows. First, the set of CIB assessments describe the

simplest form of strategies capturing the agents’ behavior that is consistent with the

agents’ rationality. Second, the class of CIB assessments captures the notion that

“bygones are bygones”, which also underlies the requirement of subgame perfection

in equilibrium concepts for dynamic games. That is, the agents’ strategies in two

continuation games that only differ in the agents’ information about payoff-irrelevant

events must be identical. Third, the class of CIB assessments embodies the principle

that “minor changes in the past should have minor effects”. This implies that if

there exists a small perturbation in the specifications of the game or the agents’ past

strategies that are irrelevant to the continuation game, the outcome of the continu-

ation game should not change drastically. The two-step example above presents one

such situation, where one equilibrium that is not CIB-PBE disappears suddenly as

ε→ 1
5
.

5.8 Extensions

In the model of Section 5.2, we presented a class of finite horizon dynamic games

under Assumptions 5.1-5.3. Assumption 5.1 enables us to avoid measure-theoretic
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technical difficulties and to provide a simple but comprehensive presentation of the

key ideas of the common information approach to dynamic games along with the

notion of CIB-PBE. Assumptions 5.2 and 5.3 enable us to simplify the computation

of beliefs along off-equilibrium paths. Below, we discuss Assumptions 5.1-5.3 and

present extensions of our results. In Section 5.8.1, we extend our results to infinite

horizon dynamic games with asymmetric information (i.e. T =∞). In Section 5.8.2,

we argue that when the agents’ action are observable we can relax Assumptions

5.2 and 5.3, and obtain a result similar to that of Theorem 5.3. In Section 5.8.3,

we discuss the assumption that is most crucial to the development of the common

information approach to dynamic games proposed in this chapter.

5.8.1 Infinite Horizon Games

In the model of Section 5.2, we assume that the horizon T is finite. Below, we

present a model similar to that of Section 5.2 with infinite horizon, i.e. T =∞.

Infinite Horizon Dynamic Game: There are N strategic agents who live in

a dynamic Markovian world over an infinite horizon. We consider a time-invariant

model where the system state, actions, and observations spaces are finite and time-

invariant, i.e. Xin = Xt, Ain = At, Zin = Zt, and Yin = Yt for all t ∈ N. Let Xt ∈ Xin

denote the system state at t ∈ N. Given the agents’ actions At at t, the system state

evolution is given by

Xt+1 = fin(Xt, At,W
x
t ), (5.28)

where {W x
t , t ∈ N} is a sequence of independent and identically distributed random

variables. The initial state X1 is a random variable with probability distribution

η ∈ ∆(Xin) with full support that is common knowledge among the agents.

At every time t ∈ N, each agent i ∈ N , receives a noisy observation Y i
t given by

Y i
t = Oi

in(Xt, At−1,W
i
t ), (5.29)

where {W i
t , t ∈ N, i ∈ N} is a sequence of independent and identically distributed
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random variables.

In addition, at every t ∈ T all agents receive a common observation Zt ∈ T given

by

Zt = Oc
in(Xt, At−1,W

c
t ), (5.30)

where {W c
t , t ∈ N} is a sequence of independent and identically distributed random

variables; the sequences {W x
t , t ∈ N}, {W c

t , t ∈ N}, and {W i
t , t ∈ N, i ∈ N} and the

initial state X1 are mutually independent.

Similar to the model of Section 5.2, let P i
t and Ct denote agent i’s, i ∈ N , private

and common information at t ∈ T , respectively. Agent i chooses his strategy so as

to maximize his discounted (expected) utility given by

U i
in(X,A) :=

∑
t∈N

δt−1uiin(Xt, At), (5.31)

where δ denotes the discount factor. We assume that Assumptions 5.2 and 5.3 are

satisfied.

We provide an extension of our results to infinite horizon dynamic games. For

that matter, we need the following definition.

Definition 5.8 (Time-invariant sufficient private information). We say Sit, i ∈ N ,

t ∈ N is a time-invariant sufficient private information if it is a sufficient private

information and has a time-invariant domain denoted by S iin, i ∈ N .

We note that for the special cases presented in Section 5.5 the characterized

sufficient private information is time-invariant. Let Πt denote the CIB belief about

(Xt, St) at t. Consider a class of CIB strategies that are based on time-invariant

sufficient private information. We call the mapping σis : ∆(Xt×Sin)×S iin → ∆(Aiin)

a stationary CIB strategy for agent i if Sit , i ∈ N , t ∈ T , is a time-invariant sufficient

private information. Similarly, we define a stationary CIB update rule as a time-

invariant mapping ψs : ∆(Xin×Sin)×Zt13 → ∆(Xin×Sin), that recursively determines

13Note that Zt is time-invariant.
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the CIB belief for all t ∈ T .

Definition 5.9. We say that a pair (σ∗s , ψs) of a CIB strategy profile σ∗s and a CIB

update rule ψin is a stationary CIB-PBE if (σ∗s , ψs) is a CIB-PBE, σ∗s is a stationary

CIB strategy profile, and ψs is a stationary update rule.

Based on Definition 5.9, we provide a sequential decomposition of dynamic games

with infinite horizon below.

Let Vs := {V i
s : ∆(Xt×Sin)×S iin → R, i ∈ N} denote a stationary value function

that captures the continuation payoff for all agents. Given a value function Vs and

a stationary update rule ψs, for every realization πt define the stationary stage game

Gs(πt, Vs, ψs) as a static game of asymmetric information among agents, where the

agents’ utilities are given by

Ū i
s(at, st, πt, Vs, ψs) := Eπt

{
uiin(Xt, at) + V i

s (ψs(πt, Zt+1), St+1)
∣∣∣πt, st, at} , (5.32)

for every realization of st ∈ Sin and at ∈ Ain.

Similar to (5.21), define the correspondence BNEs (Vt+1, ψt+1) as the stationary

correspondence that characterizes the set of BNEs of the stationary stage game

Gs(πt,Vs, ψs) for every realization of πt; this correspondence is given by

BNEs (Vs, ψs) := {σ∗s : ∀πs ∈ ∆(Xt × St), σ∗(πs, ·) is a BNE of Gs(πs, Vs, ψs)} .
(5.33)

The following theorem extends the result of Theorem 5.3 to dynamic games with

infinite horizon

Theorem 5.5. Consider a infinite-horizon dynamic game with asymmetric infor-

mation where there exists a time-invariant sufficient private information St ∈ Sin,

t ∈ N, for all agents. Then, a pair of (σ∗s , ψs) of a stationary CIB strategy profile σ∗s

and a stationary CIB update rule ψs is a stationary CIB-PBE if there exist a value
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function Vs(·, ·) that satisfies the following set of equations:

σ∗s ∈ BNEs(Vs, ψs), (5.34)

ψs is consistent with σ∗s , (5.35)

V i
s (π, si) = Eσ∗πt,ψs

{
Ū i
s((σ

∗(π, S)), S, π, Vs, ψs)
∣∣∣π, si} ,∀i ∈ N , s ∈ Sin, π ∈∆(Xin×Sin).

(5.36)

5.8.2 Signaling-free Beliefs

In the model of Section 5.2, we assume that P{xt|a1:t−1} > 0 (Assumption 5.2)

and P{y1:t|a1:t} > 0 (Assumption 5.3) for all t ∈ T . In the following we argue that

if the agents’ actions are observable these assumptions can be relaxed and a result

similar to that of Theorem 5.3 can be obtained.

As mentioned in Remark 5.2, condition (ii) of Definition 5.6 is trivially satisfied

under Assumptions 5.2 and 5.3. However, when we relax Assumptions 5.2 and 5.3,

we need to make sure that the solution of dynamic program described in Theorem

5.3 satisfies condition (ii) of Definition 5.6. To do so, we need to: (1) keep track of

the set of system states xt ∈ Xt and sufficient private information st ∈ St that are

feasible under the common information ct over time, i.e. they satisfy condition (ii)

of Definition 5.6 (see (5.14)), and (2) assert that this feasible set can be recursively

updated. These two conditions are required because in a dynamic program similar

to that of Theorem 5.3 we need to ensure the consistency conditions based on update

rule ψt+1, which utilizes the new common information Zt+1 at t + 1; see (5.26). For

that matter, we need to make the following assumption.

Assumption 5.4. (Observable Actions) At every time t ∈ T the agents’ actions At

are commonly observable by all agents, i.e. At ∈ Zt+1 for all t ∈ T \{T}.14

14We would like to point out that in the absence of Assumption 5.4 the set of feasible system
states cannot be updated recursively in general. For instance, consider a dynamic game with delay-
sharing information structure, where the agents observe At−d at time t with d delay, d > 1. In this
case, the set of feasible system states cannot be updated recursively since the agents’ actions At−d
observed at t affect the set of feasible system states at time t− d+ 1 < t.
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With Assumption 5.4 replacing Assumptions 5.2 and 5.3, we propose an approach

to keep track of feasible system states over time, and accordingly, present a result

similar to that of Theorem 5.3.

For every t ∈ T , let γft : Ct → ∆(Xt × St), be such that γft (ct) assigns a positive

probability to every system state xt ∈ Xt and sufficient private information st ∈ St
that are feasible under ct ∈ Ct. We note that under Assumption 5.4, the history of

all actions A1:t−1 ∈ Ct. We call the collection of mappings γft , t ∈ T a signaling-free

CIB belief system. Let Πf
t := γft (Ct) denote the (random) signaling-free CIB belief

at t. Note that by using the realization πft of the signaling-free CIB belief Πf
t , we

can rewrite condition (ii) of Definition 5.6 as

πt(xt, st) > 0 only if πft (xt, st) > 0. (5.37)

Under Assumption 5.4, Πf
t can be updated recursively as a function of Πf

t−1 and

the new common information Zt at t. Define the signaling-free CIB update rule as

a sequence of mappings ψf := {ψft : ∆(Xt−1 × St−1)×Zt → ∆(Xt × St), t ∈ T \{1}}
that are given by

πf1 (x1, s1) := π1(x1, s1),

πft (xt, st) := ψft (πt−1, zt)

:=

∑
xt−1,st−1

πft−1(xt−1, st−1)P{xt, st, zt\at−1|xt−1, st−1, at−1}∑
xt−1,st−1

πft−1(xt−1, st−1)P{zt\at−1|xt−1, st−1, at−1}
, (5.38)

for all xt ∈ Xt, st ∈ St, zt ∈ Zt, At−1 ∈ At−1, and t ∈ T \{1}. We note that the

signaling-free CIB update rule ψf does not depend on the agents’ strategy prediction

σ∗ or actual strategy σ.

Using (5.38), we can write the consistency condition (Definition 5.6) between σ∗t−1

and ψt in terms of Πt−1 and ψft , ∀t ∈ T \{1}. Therefore, we can present a dynamic

program similar to that of Theorem 5.3 by modifying the information state to be

{Πt,Π
f
t , St}. Accordingly, for all realizations of Πt, Πf

t , and St, t ∈ T , we define

the value function V̂t := {V̂ i
t : ∆(Xt × St) × ∆(Xt × St) × St → R, i ∈ N} as the
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continuation payoffs for all agents, and obtain the following result.

Theorem 5.6. A pair (σ∗, ψ) of a CIB strategy profile σ∗ and a CIB update rule ψ

(equivalently, a CIB assessment (σ∗, γψt )) is a CIB-PBE if (σ∗, ψ) solves the following

dynamic program:

V̂ i
T+1(·) := 0 ∀ i ∈ N , (5.39)

(5.40)

for t ∈ T ,

σ∗t ∈ BNE
(
Gt(V̂t+1, ψt+1)

)
, (5.41)

ψt+1 is consistent with σ∗ and ψft+1 (5.42)

V̂ i
t (πt, π

f
t , st) := Eσ

∗
t
πt,ψt+1

{
Ū i
t ((σ

∗(πt, St)), St, πt, π
f
t , V̂t+1, ψt+1)

∣∣∣πt, πft , sit} , i ∈ N .
(5.43)

We note that the dynamic program presented above is different from the one

described in Theorem 5.3 in two aspects. First, the information state {Πt,Π
f
t , St}

in Theorem 5.6 has an additional component, given by the signaling-free belief Πf
t ,

compared to the information state {Πt, St} in Theorem 5.3. Second, the consistency

condition (5.42) is in terms of σ∗t , ψt+1, and ψft+1 while (5.26) is in terms of σ∗t and

ψt+1

5.8.3 Common Observation of Deviations

In Sections 5.8.1 and 5.8.2, we demonstrated how our results can be extended to

infinite horizon dynamic games and to instances where we relax Assumptions 5.2-5.3.

In this section, we discuss the crucial assumption in our model that is necessary for

our results to hold.

In the common information approach presented in Section 5.5, we utilize the CIB

belief system γ to form a CIB assessment about the status of the game. As shown by
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Lemma 5.1, every agent i ∈ N can use the CIB belief system γ along with the agents’

CIB strategy σ∗ and his sufficient private information Sit to form his private belief

µi about the status of the game. The crucial requirement for the result of Lemma

5.1 to hold is that every realization sit ∈ S it of agent i’s sufficient private information

must be compatible with the CIB belief Πt, i.e.
∑

xt∈Xt,s−it ∈S
−i
t

Πt(xt, s
i
t, s
−i
t ) > 0.

This requirement is satisfied by condition (iii) in Definition 5.6 for realizations zt

of the new common information at t that have zero probability under πt−1, i.e.

Pσ∗πt−1
{zt} = 0. However, for realizations zt that have positive probability under πt−1,

i.e. Pσ∗πt−1
{zt} > 0, the compatibility condition between agent i’s sufficient private

information sit and the common belief πit is not satisfied in general. Therefore, we

argue that the crucial requirement that underlies our results and guarantees the

compatibility between the CIB belief Πt and the sufficient private information Sit ,

i ∈ N , at every t ∈ T can be summarized by the following assumption.15

Assumption 5.5. For all t ∈ T , a1:t ∈ A1:t, i ∈ N , pit ∈ P it and ct ∈ Ct,
Pπ1{pit, ct|a1:t} = 0 only if Pπ1{ct|a1:t} = 0.

Assumption 5.5 implies that every deviation that can be detected by agent i at

t must be also detectable by all agents at the same time t based on the common

information Ct. We note that Assumption 5.5 is satisfied under Assumptions 5.2

and 5.3, or Assumption 5.4. We do not provide a formal proof for the sufficiency of

Assumption 5.5, however, we provide an informal argument below.

Consider a dynamic game with unobservable actions where Assumption 5.5 is not

satisfied, that is, there exist i ∈ N , t ∈ T , pit ∈ P it , cit ∈ Cit , and a1:t ∈ A1:t such that

P{pit, ct|a1:t} = 0 and P{ct|a1:t} > 0. In this game, agent i can detect deviations from

a1:t at t when he observes {pit, ct}. Upon detecting the deviation, agent i needs to

revise his belief µit. However, if at time t no deviation can be detected based on the

common information ct, the CIB belief πt is not revised. Therefore, agent i cannot

rely anymore on the CIB belief πt to form his private belief µit using the construction

described by Lemma 5.1. Under Assumption 5.5, it is guaranteed that agent i wants

15As noted before, we maintain our assumptions that the system state, actions, and observations
spaces are finite.
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to revise his belief µit whenever the CIB belief Πt is revised. Therefore, for all t ∈ T ,

every realization of agent i’s sufficient private information Sit is compatible with

CIB belief Πt. Consequently, the result of Lemma 5.1 holds, and we can utilize the

CIB assessments to provide a decomposition of the dynamic game similar to that of

Theorem 5.3.

5.9 Existence

As we discussed in Section 5.7, there exist PBEs that cannot be described as

CIB-PBEs in general. Therefore, the standard results that guarantee the existence

of a PBE for dynamic games with asymmetric information [96, Proposition. 249.1]

cannot be used to guarantee the existence of a CIB-PBE in these games. In this

Section, we discuss the existence of CIB-PBEs for dynamic games with asymmetric

information. We provide conditions that are sufficient to guarantee the existence

of CIB-PBEs (Lemmas 5.2 and 5.3). Using the result of Lemma 5.2, we prove the

existence of CIB-PBEs for zero-sum dynamic games with asymmetric information

(Theorem 5.7). Using the result of Lemma 5.3, we identify instances of non-zero-sum

dynamic games with asymmetric information where we can guarantee the existence

of CIB-PBEs.

Lemma 5.2. The dynamic program given by (5.25)-(5.27) has at least one solution

at stage t if the value function Vt+1 is continuous in Πt+1.

We note that the condition of Lemma 5.2 is always satisfied for t = T by definition

of VT+1; see (5.20) and (5.23). However, for t < T , it is not straightforward to prove

the continuity of the value function Vt in πt in general. Given Vt+1 is continuous

in πt+1, the result of [85, Theorem 2] implies that the set of equilibrium payoffs for

the state game at t is upper hemicontinuous in πt. Therefore, if the stage game

Gt(πt,Vt+1, ψt+1) has a unique equilibrium payoff for every πt, we can show that

Vt is continuous in πt for t < T . Using this approach, we prove the existence of

CIB-PBEs for zero-sum games below, where the equilibrium payoff is unique.
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Theorem 5.7. For every dynamic zero-sum game with asymmetric information there

exists a CIB-PBE that is a solution to the dynamic program given by (5.25)-(5.27).

For dynamic non-zero-sum games, it is harder to establish that Vt is continuous in

πt for t < T since the set of equilibrium payoffs is not a singleton in general. However,

we conjecture that for every dynamic game with asymmetric information described

in Section 5.2, at every stage of the corresponding dynamic program, it is possible

to select a BNE for every realization of πt so that the resulting Vt is continuous in

πt.

In addition to the results of Lemma 5.2 and Theorems 5.7, we provide another

condition below that guarantees the existence of CIB-PBEs in some instances of

dynamic games with asymmetric information.

Lemma 5.3. A dynamic game with asymmetric information described in Section

5.2 has at least one CIB-PBE if there exits sufficient information S1:N
1:t such that the

CIB update rule ψ1:T is independent of σ∗.

The independence of CIB update rule from σ∗ is a condition that is not satisfied

for all dynamic games with asymmetric information. Nevertheless, we present below

special instances where this condition is satisfied.

1) Nested information structure with one controller: Consider the nested

information structure case described in Section 5.2. Assume that the evolution of

the system state is controlled only by the uniformed player and is given by Xt+1 =

ft(Xt, A
2
t ,Wt). For S1

t = Xt and S2
t = 0, it is easy to check that Pσ∗{πt+1|πt, at} =

P{πt+1|πt, at} for all πt+1, πt ,at and t ∈ T .

2) Independent dynamics with observable actions and no private val-

uation: Consider the model with independent dynamics and observable actions

described in Section 5.2. Assume that agent i’s, i ∈ N , instantaneous utility is given

by uit(At, X
−i
t ) (no private valuation); that is, agent i’s utility at t does not depend

on X i
t . It is easy to verify that Sit = ∅ is sufficient private information for agent i.

Hence, the condition of Lemma 5.3 is trivially satisfied.

3) Delayed sharing information structure with d = 1 Consider the delayed

sharing information structure described in Section 5.2 when delay d = 1 [7, 6]. Thus,

171



P i
t = {Y i

t }. Let Sit = P i
t = Y i

t . Then, it is easy to verify that the condition of Lemma

5.3 is satisfied.

4) Uncontrolled state process with hidden actions: Consider an N -player

game with uncontrolled dynamics given by Xt+1 = ft(Xt,Wt), t ∈ T . At every time

t ∈ T , agent i, i ∈ N , receives a noisy observation Y i
t = Oi

t(X
i
t , Z

i
t). The agents’

actions are hidden. Thus, P i
t = {Y i

1:t, A
i
1:t−1} and Ct = ∅. Hence, the condition

of Lemma 5.3 is trivially satisfied. We note that in the case where a subset of the

agents’ observation reveals to all agents’ with some delay, {i.e.} Ct ⊆ {Y1:t}, the

condition of Lemma 5.3 is also satisfied.

5.10 Conclusion

We proposed a general approach to study a dynamic game with asymmetric

information with finite or infinite time horizon. We presented a set of conditions suf-

ficient to characterize an information state for each agent that effectively compresses

his common and private information in a mutually consistent manner. We showed

that the above-mentioned information state provides a sufficient statistic for decision

making purposes in strategic and non-strategic settings. We introduced the notion

of Common Information based Perfect Bayesian Equilibrium that characterizes a set

of outcomes for the dynamic game. We provided a sequential decomposition of the

dynamic game over time, which leads to a dynamic program for the computation of

the set of CIB-PBEs of the dynamic game. We determined conditions under which

we can guarantee the existence of CIB-PBEs. Using these conditions, we proved the

existence of CIB-PBE for dynamic zero-sum games and special instances of dynamic

non-zero sum games.

For future research, we will investigate the problem of determining the mini-

mal information state in a dynamic game with asymmetric information. In the

examples presented in this chapter, we only characterized an information state that

compresses an agent’s private information by discarding a subset of his private in-

formation. Therefore, it will be interesting to identify instances of dynamic games

with asymmetric information where we can find an information state that compresses

172



an agent’s information by applying a functional transformation on his private and

common information. As another direction for future research, we will study the

development of a computationally efficient algorithm to solve the dynamic program

presented in this chapter and determine the set of CIB-PBEs for a general dynamic

game with asymmetric information.

173



Chapter 6

Conclusion

6.1 A Brief Summary

In this dissertation, we investigated problems arising in the design and analysis

of CPSs with strategic agents. We provided a general framework that captures a

broad range of CPSs with strategic agents. In a CPS, strategic agents may have

control over the decisions and/or possess information that is not available to the

designer. Accordingly, we identified two classes of design problems. In the first

class, the designer has control over decisions and resources but the strategic agents

possess private information that is crucial for the efficient operation of the CPS.

In the second class, the designer has superior information about the current status

of the system but strategic agents have control over decisions and resources in the

system. We identified specific design problems in power systems and transportation

networks that can be formulated according to the above classification in Chapters

2-4.

Motivated by the increasing integration of renewable energy and flexible loads into

power grids, we studied the design of electricity markets for renewable energy and

flexible loads in Chapters 2 and 3 as instances of the first class of design problems

described above. We proposed a stylized two-time step model that captures the

dynamic and uncertain nature of the generation from renewable resources and the

availability of flexible loads. We studied the design of forward bilateral contracts
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in Chapter 2 and showed that the optimal contract is a contingent contract that

allows a renewable generator/flexible load to adjust its commitment according to

the new information he receives over time. In Chapter 3, we studied the problem

of designing a pooling market for wind energy. Assuming that wind generators

receive private information about their generation capacity over time, we proposed a

dynamic market mechanism that outperforms the existing sequence of static markets,

e.g. the day-ahead market followed by the real-time market. We showed that the

main advantage of the dynamic mechanism is due to the designer’s ability to price

discriminate sellers with different levels of uncertainty in their generation and to

expose them to the risk of penalty charge. We characterized the benefit of wind

monitoring on the overall performance of the market and showed that it vanishes as

the number of possible generation technologies increases.

As an instance of the second class of design problems, we studied the problem

of optimal information provision in a transportation network in Chapter 4. We

investigated the design of public and private information disclosure mechanisms in

a parallel two-link network where the designer can provide information to drivers

about the condition of one of the links. We showed that the designer can improve

the social welfare by strategically disclosing information to the drivers. In particular,

we identified conditions under which the designer can achieve the socially efficient

outcome. We also investigated the design of information disclosure mechanisms in

a two-step dynamic setting where the condition of the network has an uncontrolled

Markovian dynamics and the drivers can learn from their past experience. Using

numerical simulations, we examined the effect of different pieces of information,

from which the drivers can learn, on the designer’s optimal information disclosure

mechanisms and its performance.

We investigated the analysis of CPSs with strategic agents in Chapter 5. We

consider a general dynamic game of asymmetric information with controlled Marko-

vian dynamics where strategic agents make private observations and take actions

over time. We presented a set of conditions sufficient to characterize an informa-

tion state for each agent that effectively compresses the agent’s private and common

information. We showed that the characterized information state provides a suffi-
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cient statistics for decision making purposes in strategic and non-strategic settings.

Consequently, the proposed methodology in this dissertation provides a universal ap-

proach to study dynamic games and teams including dynamic games among teams

of agents. Using the above-mentioned information state, we introduced the notion

of CIB-PBE which characterizes a subset of PBE of dynamic games. We provided a

sequential decomposition of the dynamic game and formulated a dynamic program

to determine the set of CIB-PBEs via backward induction.

6.2 Future Directions

The emergence of CPSs with strategic agents has created new challenges due to

the decentralizations of decisions and information as well as the agents’ autonomous

selfish behavior. In this dissertation, we studied specific design problems that are

motivated by applications in power systems and transportation networks and pro-

posed a general approach to determine a set of outcomes in these systems. Below,

we discuss s few directions which in our opinion provide valuable insights into the

design and analysis of CPSs with strategic agents.

6.2.1 Games among Teams of Agents

Throughout this dissertation, we assumed that agents are selfish and have ob-

jectives that are different from each other and that of the designer. While this

framework provides a general model to study CPSs with strategic and cooperative

(non-strategic) agents, it does not consider explicitly situations where a group of

agents have selfish objectives at a lower level but share a common objective at a

higher level. For instance, in a networked system each agent/community might have

a selfish objective at the microscopic level but all agents act as a team to protect

the overall operation of the networked system against external attacks at the macro-

scopic level; e.g. in a power grid, every generator tries to maximize his own revenue,

but at a network level all generators try to ensure the stability and reliability of the

power grid and protect it against malicious and/or accidental disruptions.
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A possible approach to study this class of problems is to investigate the problem

at the microscopic level as a game among agents, and the problem at the macroscopic

level as a game among teams of agents (e.g. attacker vs. defender). As we discussed

in Chapter 5, the methodology proposed in this dissertation can be used to study

dynamic games among teams of agents. We believe that investigations of this class

of problems can provide valuable insights towards a better design of resilient CPSs

that effectively respond to external disruptions.

6.2.2 Cyber-Physical-Social Systems and Bounded Rationality

Over the last few years, the emerging CPSs cease to be merely technological

systems as they interact more than ever with human users and can be viewed as

cyber-physical-social systems. In this dissertation, we attempted to study this new

class of socio-technological systems assuming that the users in these systems act as

rational Bayesian agents. This assumption enabled us to formulate stylized models

and provide analytical results that help to better understand the key ideas in the

design and analysis of CPSs with strategic agents. However, in many of these sys-

tems, the assumption that a normal human user acts as a rational Bayesian agent

is inaccurate. For instance, a human user tends to develop habits over time or does

not form his belief according to Bayesian inference methods [110, 107]. Therefore,

it is important to develop models that take into account the human users’ bounded

rationality, validate the models with real-data, and investigate how existing results

for rational Bayesian agents translate into these models.

6.2.3 Learning in CPS and Strategic Experimentation

The recent advances in data collection, storage, and processing technologies have

created new opportunities for the application of data-driven techniques in the de-

sign and analysis of CPSs. However, many of these techniques assume a passive

data generation process that is not affected by the design and the agents’ strategic

responses to it. In many of CPSs with strategic agents, the data available to the

designer is generated by the agents’ strategic behavior that incorporate the various
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effects of the data they generate on the overall characteristics of the CPS. For in-

stance, there are empirical evidences about fake user-generated data in Waze App

that attempt to trick the system into keeping the traffic out of certain residential

areas [52, 94, 103] or hiding the police locations [45]. Therefore, it is important

to consider the agents’ strategic behavior when we use data-driven methods for the

analysis and design of CPSs with strategic agents. Investigating agents’ incentives

in various environments where they strategically experiment and try to influence the

outcome these methods [54, 22] would provide valuable insights into the design and

improvement of data-driven CPSs that rely heavily on the user-generated data.
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Appendix A

Proofs of Chapter 2

Proof of lemma 2.1. The given mechanism (q, t) is incentive compatible, so we can

rewrite U(x) as

U(x) = max
x′
EW {t(x′)− C(q(x′),x,W )} (A.1)

By applying the envelope theorem [84] on (A.1), we get

∂U

∂xi
= − ∂EW {C(q(x′),x,W )}

xi

∣∣∣∣
x′=x

. (A.2)

The above equation along with the assumption on the monotonicity of the marginal

expected cost c(q,x) with respect to xi gives

∂U

∂xi
≤ 0, 1 ≤ i ≤ m (A.3)

∂U

∂xi
≥ 0,m < i ≤ n. (A.4)

Proof of lemma 2.2. The proof is by contradiction. Assume that there exist x,x′ ∈ χ
such that q(x) = q(x′) but t(x′) > t(x). Then a seller with type x is always better off

by reporting x′ instead of her true type x, which contradicts the IC constraint.
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Proof of Lemma 2.3. Consider the buyer’s objective (2.7). For any function t(·), we

can determine from (2.14) the cumulative distribution function for q∗, called Fq∗ .

Consequently, we can rewrite the buyer’s objective as

Eq∗ [V(q∗)− t(q∗)] =

∫ ∞
0

(V(l)− t(l)) dFq∗(l)

= (Fq∗(l)− 1) (V(l)− t(l))|∞0

+

∫ ∞
0

(1− Fq∗(l))
d (V(l)− t(l))

dl
dl. (A.5)

We have

(Fq∗(l)− 1) (V(l)− t(l))|∞0 = −t(0) (A.6)

because V(0) = 0 by assumption, and (Fq∗(∞)− 1) = 0.

Because of (A.6), we can rewrite (A.5) as

Eq∗ [V(q∗)− t(q∗)] =

∫ ∞
0

P (q∗ ≥ l) (V ′(l)− p(l)) dl

−t(0) (A.7)

where V ′(l) = dV(l)
dl

.

We can rewrite P (q∗ ≥ l) as

P (q∗≥ l)=P [x∈χ|argmax
l̂
EW
{
t(l̂)−C(l̂,x,W )

}
≥ l]. (A.8)

We implicitly assume that the seller’s problem given by (2.14) is continuous and

quasi-concave, so that from the first order optimality condition for (2.14) we obtain

p(q∗(x)) =
∂EW {C(l,x,W )}

∂l

∣∣∣∣
q∗(x)

= c(q∗(x),x). (A.9)

Therefore, from the optimality of q∗(x) and the quasi-concavity of (2.14), we must
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have p(l) > c(l; x) and p(l) < c(l; x) for l < q ∗ (x) and l > q∗(x), respectively. That

is, each type of the seller wishes to produce more than quantity l if and only if the

marginal price p(q) that she is paid at l is higher than the expected marginal cost of

production c(l,x) that she incurs at l. Consequently, combining (A.8) and (A.9) we

obtain

P (q∗ ≥ l) = P [x∈χ|p(l) ≥ c(l,x)] . (A.10)

Substituting (A.10) in (A.7), we obtain the following alternative expression for

the buyer’s objective

Eq∗ [V(q∗)−t(q∗)]=
∫ ∞

0

P [x∈χ|p(l)≥c(l,x)]

(V ′(l)−p(l)) dl− t(0). (A.11)

Proof of lemma 2.4. Let x,x′ ∈ χ, where x is a better type than x′. From IC for

seller’s type x we have

t(q(x))−EW{C(q(x),x,W )}

≥

t(q(x′))−EW{C(q(x′),x,W )} (A.12)

Similarly from IC for seller’s type x′ we have

t(q(x′))− EW {C(q(x′),x′,W )}

≥

t(q(x))− EW {C(q(x),x′,W )} (A.13)
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Subtracting (A.13) from (A.12), we get

EW {C(q(x),x′,W )} − EW {C(q(x′),x′,W )}

≥

EW {C(q(x),x,W )} − EW {C(q(x′),x,W )} (A.14)

By assumption, dEW{C(l,x,W )}
dl

≤ dEW{C(l,x′,W )}
dl

if x is a better type than x′. Therefore,

(A.14) holds if and only if

q(x) ≥ q(x′). (A.15)

Proof of corollary 2.2. Because of corollary 2.1, the VP constraint implies

U(x) = t(q(x))− EW [C(q∗(x),x,W )] = 0, (A.16)

which is equivalent to

t(0) +

∫ q∗(x)

0

p(l)dl = EW [C(q∗(x),x,W )] . (A.17)

Furthermore, from Lemma 2.4 it follows that if the worst type wishes to produce

more than q∗(x), then all types produce more than q∗(x). Therefore,

P [x ∈ χ|p(l) ≥ c(l,x)] = 1, for l ≤ q∗(x). (A.18)

Using (A.18), we can rewrite the objective function of problem (P3) as,

−

(
t(0) +

∫ q∗(x)

0

p(l)dl

)
+

∫ q∗(x)

0

V ′(l)dl

+

∫ ∞
q∗(x)

P [x ∈ χ|p(l) ≥ c(l,x)] (V ′(l)− p(l)) dl. (A.19)
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The term t(0) +
∫ q∗(x)

0
p(l)dl appears in both the objective (A.19) and the VP

constraint (A.17). Therefore, without loss of optimality, we can assume t(0) =

C(0,x), and set t(q(x)) = EW {C(q(x),x,W )}.
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Appendix B

Proofs of Chapter 3

B.1 Proofs of the Main Results

The proofs of Theorems 3.1-3.5 are based on Lemmas B.1-B.7 that we state below.

The proofs of Lemmas B.1-B.7 are given in Appendix B.2.

Let g(ω) denote the corresponding probability density function for ω, i.e. g(ω) :=
∂G(ω)
∂ω

.

First, we prove the following sufficient and necessary condition for the IC2 con-

straint (reporting the true ω) for the dynamic mechanism.

Lemma B.1 (revenue equivalence). If the dynamic mechanism is incentive compat-

ible, and the allocation rule q(τ, ω) is continuous in ω, then, for all ω and ώ,

Rτ,ω = Rτ,ώ −
∫ ω

ώ

Cθ(q(τ, ω̂); Θ(τ, ω̂))Θω(τ, ω̂)dω̂, (B.1)

and q(τ, ω) is increasing in ω. Moreover, if (B.1) holds and q(τ, ω) is increasing in

ω, then IC2 is satisfied.

We can now provide the proof for Theorem 3.1 using the result of Lemma B.1.
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Proof of Theorem 3.1. We note that the IC constraint (3.8) for the real-time

mechanisms implies the IC2 constraint for the dynamic mechanism (given by (3.11)),

by setting τ̂ = τ . By Lemma B.1, the IC2 constraint for the dynamic mechanism is

satisfied only if equation (3.13) holds.

Lemma B.1 characterizes the seller’s revenue in the dynamic mechanism given

that he tells the truth at T = 1 about his technology τ . To complete the charac-

terization of the seller’s optimal strategy at T = 2, we show, via Lemma B.2 below,

that if the seller misreports his technology at T = 1 (off-equilibrium path), he later

corrects his lie at T =2.

Lemma B.2. Consider the dynamic mechanism that satisfies the IC constraints for

ω and τ . If a seller with technology τ misreports τ̂ , τ̂ 6= τ , at T = 1, then, for every

wind realization ω at T = 2, he corrects his lie by reporting ω̂ = σ∗(τ̂ ; τ, ω) such that,

Θ(τ, ω) = Θ(τ̂ , ω̂). (B.2)

Remark: Note that by Assumption 3.2 on non-shifting support, for any τ, τ̂ , ω,

there exists a unique ω̂ (given the strict monotonicity of Θ(τ, ω) in ω) that satisfies

equation (B.2), and σ∗(τ̂ ; τ, ω) is well defined.

Using the results of Lemmas B.1 and B.2, we characterize below the seller’s

expected gain by misreporting his technology at T =1 in the dynamic mechanism.

Lemma B.3. For the dynamic mechanism that satisfies the set of IC constraints for

ω and τ , the maximum utility of the seller with technology τ reporting τ̂ at T = 1 is
given by,

Eω{t(τ̂ , σ∗(τ̂ ; τ, ω))− C(q(τ̂ , σ∗(τ̂ ; τ, ω)); Θ(τ, ω))}

= Rτ̂−
∫ ∫ σ∗(τ̂ ;τ,ω)

ω

Cθ(q(τ̂ , ω̂); Θ(τ̂ , ω̂))Θω(τ̂ , ω̂)dω̂dG(ω) (B.3)
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The following result, for the dynamic mechanism, characterizes the payments

that incentivize the seller to report truthfully his technology τ and wind speed ω.

Lemma B.4. For the dynamic mechanism, the set of IC constraints for τ , given by

(3.10), can be replaced by the following inequality constraints,

Rτi−Rτj≥RT(τj, τi; q)+RW(τj, τi; q) ∀i, j∈{2, ..,M}, i>j.

To provide the proof for Theorems 3.2-3.3, we need the following results for the

forward and the real-time mechanisms.

Lemma B.5. For the forward mechanism, the set of IC constraints and IR con-

straints, given by (3.6) and (3.7), respectively, can be replaced by the following con-

straints,

q(τ) only depends on τ

Rτi−Rτi−1
=RT(τi−1, τi; q) ∀i∈{2, ..,M},

Rτ1 ≥ 0.

Lemma B.6. For the real-time mechanism, the set of IC and IR constraints given

by (3.8) and (3.9), respectively, can be replaced by the following constraints,

q(τ, ω) only depends on Θ(τ, ω)

Rτi−Rτi−1
=RT(τi−1, τi; q)+RW(τi−1, τi; q) ∀i∈{2, ..,M − 1},

Rτ1 ≥ RP (τ1; q),

and the seller’s revenue satisfies (3.13).

Using the result of Lemmas B.4-B.6, we first provide the proof for Theorem 3.2.

Proof of Theorem 3.2. We first show that RT(τj,τi;q)≥ 0 and RW(τj,τi;q)≥ 0 for

i, j ∈ {1, ...,M}, i > j (strict if q(τj,ω) 6=0 for some ω).
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First, note that by Assumption 3.1 we have Θ(τi, ω) < Θ(τj, ω) for i > j. Thus,

C(q(τj, ω); Θ(τj, ω)) ≥ C(q(τj, ω); Θ(τi, ω)) with strict inequality if q(τj, ω) > 0.

Therefore,

RT(τj,τi;q):=

∫
(C(q(τj,ω);Θ(τj,ω))−C(q(τj,ω);Θ(τi,ω)))dG(ω)≥0,

with strict inequality if q(τj, ω) > 0 for a set of ω’s with positive probability.

Second, we have Cθ(q(τj, ω); Θ(τj, ω̂)) ≤ Cθ(q(τj, ω̂); Θ(τj, ω̂)) for ω ≤ ω̂ since

q(τ ; ω̂) is increasing in ω̂ by Lemma B.1 and C(q, θ) is increasing in q by Assumption

3.1. Moreover, by the result of Lemma B.2, we have σ∗(τj; τi, ω) ≥ ω for i > j.

Therefore, we have

RW(τj,τi;q):=

∫∫ σ∗(τj ;τi,ω)

ω

(Cθ(q(τj,ω);Θ(τj,ω̂))−Cθ(q(τj,ω̂);Θ(τj,ω̂)))

Θω(τj,ω̂)dω̂dG(ω)≥0,

since Θω(τj,ω̂)<0; the inequality is strict if q(τj, ω) > 0 for a set of ω’s with positive

probability.

In the following, we provide the proof for each part of Theorem 3.2 separately.

a) The proof for part (a) directly follows from the result of Lemma B.5.

b) The proof for part (b) directly follows from the result of Lemma B.6.

c) By the result of Theorem 3.1, the set of IC constraints (3.11) can be replaced by

(3.21,3.22). Moreover, by the result of Lemma B.4, we can reduce the set of IC

constraints (3.10) to the set of inequality constraints (3.23).

Furthermore, set of inequality constraints (3.23) implies that Rτ1 ≤ Rτ2 ≤ ... ≤
RτM since RT (τi−1, τi; q) ≥ 0 and RW (τi−1, τi; q) ≥ 0. Thus, the set of IR con-

straints (3.12) can be reduced to Rτ1 ≥ 0.
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Next, we provide the proof for Theorem 3.3.

Proof of Theorem 3.3. The proof directly follows from the result of Theorem 3.2.

We note that the objective functions in all the mechanism design problems are W ,

and the problems differ only in the set of constraints they have to satisfy.

• The set of constraints for the real-time mechanism, given by part (b) of Theo-

rem 3.2, is more restrictive than the set of constraints for the dynamic mech-

anism given by part (c) of Theorem 3.2. Therefore, the designer’s objective

Wdyanmic is higher than his objective Wreal-time.

• The set of constraints for the forward mechanism, given by part (a) of Theorem

3.2, is more restrictive than the set of constraints for the dynamic mechanisms,

given by part (c) of Theorem 3.2. Therefore, the designer’s objective Wdyanmic

is higher than his objective W forward.

We now provide the proof of Theorem 3.4 on the dynamic mechanism with no

penalty.

Proof of Theorem 3.4. (i) We note that the set of IC constraints (3.27,3.28)

for the dynamic mechanism with no penalty is identical to the set of IC constraints

(3.27,3.28) for dynamic mechanism. Therefore, constraints (3.30-3.32) directly follow

from the result of part (c) of Theorem 3.2.

Next, we show that the set of IR constraints (3.29) is satisfied if and only ifRτi,ω ≥
RP (τi; q) and the seller’s revenue satisfies (3.13). First, by part (i) of Theorem 3.1,

we have Rτ,ω is increasing in ω. Hence, the set of IR constraints (3.29) is satisfied

if and only if Rτi,ω ≥ 0, for all i ∈ {1, ...,M}. Second, using (3.13) along with
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Rτi,ω ≥ 0, i ∈ {1, ...,M}, we have,

Rτi ≥
∫ ω

ω

∫ ω

ω

Cθ(q(τi, ω̂); Θ(τ, ω̂))Θω(τi, ω̂)dω̂dG(ω)

=

∫ ω

ω

∫ ω

ω̂

Cθ(q(τi, ω̂); Θ(τi, ω̂))Θω(τi, ω̂)dG(ω)dω̂

=

∫ ω

ω

[1−G(ω̂)]Cθ(q(τi, ω̂); Θ(τi, ω̂))Θω(τi, ω̂)dω̂

= RP (τi; q).

Thus, the set of IR constraints (3.29) is satisfied if and only if (3.33) is satisfied.

(ii) We note that the objective functions in all the mechanism design problems are

W , and the problems differ only in the set of constraints they have to satisfy. The set

of constraints for the real-time mechanism, given by part (b) of Theorem 3.2, is more

restrictive than the set of constraints for the dynamic mechanisms with no penalty,

given by part (i) above. Therefore, the designer’s objectiveWdyanmic no penalty is higher

than his objective Wreal-time. Moreover, the set of constraints for the dynamic mech-

anism, given by part (c) of Theorem 3.2, is less restrictive than the set of constraints

for the dynamic mechanisms with no penalty, given by part (i) above. Therefore,

the designer’s objective Wdyanmic no penalty is lower than his objective Wdynamic.

To provide the proof for Theorem 3.5, we need the following result for the dynamic

mechanism with monitoring.

Lemma B.7. For the dynamic mechanism with monitoring, the set of IC and IR

constraints, given by (3.34) and (3.35), respectively, can be replaced by the following

constraints,

Rτi−Rτi−1
=RT(τi−1, τi; q) ∀i∈{2, ..,M − 1},

Rτ1 ≥ 0.

Using the result of Lemma B.7, we provide the proof of Theorem 3.5 below.
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Proof of Theorem 3.5. (i) The proof for part (i) directly follows from the result

of Lemma B.7.

(ii) The objective functions in all the mechanism design problems are W , and

the problems differ only in the set of constraints they have to satisfy. The set of

constraints for the dynamic mechanism, given by part (c) of Theorem 3.2, is more

restrictive than the set of constraints for the dynamic mechanisms with monitoring,

given by part (i) above. Therefore, the designer’s objective Wdyanmic with monitoring is

higher than Wdynamic. Moreover, by the result of Theorems 3.3 and 3.4, we have

Wdynamic ≥ Wdynamic no penalty ≥ Wreal-time and Wdynamic ≥ W forward.

(iii) Define the following modified payment function:

t̂(τ,ω) :=Eω{t(τ,ω)}+(C(q(τ,ω);Θ(τ,ω))−Eω{C(q(τ,ω);Θ(τ,ω))}) .

We have Eω{t̂(τ, ω)} = Eω{t(τ, ω)}. Thus, the seller’s strategic report for τ at T =1

does not change. Consider a modified mechanism with the modified payment function

t̂(τ, ω) and the original allocation function q(τ, ω). This modified mechanism satisfies

the set of IC constraint for τ and it satisfies the ex-post IR constraint, i.e.,

Rτ,ω = Eω{t(τ, ω)} − Eω {C(q(τ, ω); Θ(τ, ω))} = Rτ ≥ 0.

We note that with the monitoring of ω, the modified mechanism keeps the same

allocation function, and therefore, results in the same designer’s objectiveW , seller’s

revenue R, and buyer’s utility U .
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B.2 Proof of Lemmas

Proof of Lemma B.1. Assume that the IC for ω and ω̆ is satisfied. Then,

t(τ, ω)− C(q(τ, ω); Θ(τ, ω)) ≥ t(τ, ω̆)− C(q(τ, ω̆); Θ(τ, ω)),

t(τ, ω̆)− C(q(τ, ω̆; Θ(τ, ω̆)) ≥ t(τ, ω)− C(q(τ, ω); Θ(τ, ω̆)).

Therefore,

C(q(τ, ω̆); Θ(τ, ω̆))−C(q(τ, ω̆); Θ(τ, ω))≤Rτ,ω−Rτ,ω̆

≤C(q(τ, ω); Θ(τ, ω̆))−C(q(τ, ω); Θ(τ, ω)). (B.4)

Set ω̆ = ω− ε where ε→ 0. We have ∂Rτ,ω
∂ω

=Cθ(q(τ, ω); Θ(τ, ω))Θω(τ, ω).

Moreover, (B.4) implies that q(τ, ω̆) < q(τ, ω) for ω̆ < ω, since by assumption

Θ(τ, ω) is decreasing in ω and C(q̂; θ) is convex and increasing in q̂.

To prove the converse, assume that (B.1) holds and q(τ, ω) is increasing in ω.

Then, for any τ, ω, ω̆, we have

Rτ,ω−[t(τ, ω̆)− C(q(τ, ω̆); Θ(τ, ω))]= (B.5)

[Rτ,ω −Rτ,ω̆]−[C(q(τ, ω̆); Θ(τ, ω̆))−C(q(τ, ω̆); Θ(τ, ω))]

=

∫ ω̆

ω

Cθ(q(τ, ω̂); Θ(τ, ω̂))Θω(τ, ω̂)dω̂

−[C(q(τ, ω̆); Θ(τ, ω̆))−C(q(τ, ω̆); Θ(τ, ω))] ≥ 0,

where the last last inequality is true since Cθ(q; θ) is increasing in θ, Θ(τ, ω) is

decreasing in ω, and q(τ, ω) is increasing in ω.

Proof of Lemma B.2. We first note that by Assumption 3.2 and the monotonicity

of Θ(τ̂ , ω̂) in ω, there exists a unique ω̂ such that Θ(τ, ω) = Θ(τ̂ , ω̂), i.e. σ∗(τ̂ ; τ, ω)

is well defined.

Now, consider a seller with technology τ̂ and wind realization ω̂. Then, the IC2
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constraint requires

t(τ̂ , ω̂)−C(q(τ̂ , ω̂);Θ(τ̂ , ω̂))≥ t(τ̂ , ω′)−C(q(τ̂ , ω′);Θ(τ̂ , ω̂)) ∀ω′.

Replacing Θ(τ̂ , ω̂) by Θ(τ, ω) in the above equation, we get

t(τ̂ , ω̂)−C(q(τ̂ , ω̂);Θ(τ, ω))≥ t(τ̂ , ω′)−C(q(τ̂ , ω′);Θ(τ, ω)) ∀ω′.

Now, consider a seller with technology τ that misreported τ̂ at T =1, and has a wind

realization ω at T = 2. The above inequality asserts that it is optimal for him to

report ω̂ at T =2 so that Θ(τ, ω) = Θ(τ̂ , ω̂).

Proof of Lemma B.3. We have,

Eω{t(τ̂ , σ∗(τ̂ ; τ, ω))− C(τ̂ , σ∗(τ̂ ; τ, ω); Θ(τ, ω))}

=

∫
[t(τ̂,σ∗(τ̂;τ,ω))−C(q(τ̂,σ∗(τ̂;τ,ω));Θ(τ,ω))] dG(ω). (B.6)

Using Lemma B.2, we get∫
[t(τ̂ , σ∗(τ̂ ; τ, ω))− C(q(τ̂ , σ∗(τ̂ ; τ, ω)); Θ(τ, ω))] dG(ω)

=

∫
[t(τ̂,σ∗(τ̂;τ,ω))−C(q(τ̂,σ∗(τ̂;τ,ω));Θ(τ̂,σ∗(τ̂;τ,ω)))]dG(ω)

=

∫
Rτ̂ ,σ∗(τ̂ ;τ,ω)dG(ω). (B.7)

Then, by Lemma B.1,∫
Rτ̂ ,σ∗(τ̂ ;τ,ω)dG(ω)=∫ [
Rτ̂ ,ω−

∫ σ∗(τ̂ ;τ,ω)

ω

Cθ(q(τ̂ , ω̂); Θ(τ̂ , ω̂))Θω(τ̂ , ω̂)dω̂

]
dG(ω). (B.8)

193



Furthermore, Rτ̂ =
∫
Rτ̂ ,ωdG(ω); thus, the RHS of (B.8) can be rewritten as,

Rτ̂−
∫∫ σ∗(τ̂ ;τ,ω)

ω

Cθ(q(τ̂ , ω̂); Θ(τ̂ , ω̂))Θω(τ̂ , ω̂)dω̂dG(ω). (B.9)

The assertion of Lemma B.3 follows from (B.6)-(B.9).

Proof of Lemma B.4. We first prove that the set of IC constraints for τ given by

(3.10) can be reduced to Rτi−Rτj ≥RT(τj, τi; q)+RW for all i, j∈{2, ..,M}. Next,

we show that the set of IC constraints for τ can be further reduced to Rτi−Rτj ≥
RT(τj, τi; q)+RW(τj, τi; q) for only i>j, i, j∈{2, ..,M}.

Using Lemma B.3, we can rewrite the set of IC1 constraints , given by (3.10), as

follows,

Rτi−Rτj≥−
∫∫ σ∗(τj ;τi,ω)

ω

Cθ(q(τj,ω̂); Θ(τj,ω̂))Θω(τj,ω̂)dω̂dG(ω). (B.10)

Below, we prove that the RHS of (B.10) is equal to RT(τj,τi;q)+RW(τj,τi;q). We

have,

RT(τj,τi;q)=

∫
[C(q(τj,ω);Θ(τj,ω))−C(q(τj,ω);Θ(τi,ω))]dG(ω)

=

∫∫ Θ(τj ,ω)

Θ(τi,ω)

Cθ(q(τj, ω); θ̂)dθ̂dG(ω)

=

∫∫ ω

σ∗(τj ;τi,ω)

Cθ(q(τj, ω); Θ(τj, ω̂))Θω(τj, ω̂)dω̂dG(ω)

=−
∫∫ σ∗(τj ;τi,ω)

ω

Cθ(q(τj, ω); Θ(τj, ω̂))Θω(τj, ω̂)dω̂dG(ω), (B.11)

where the third equality results from a change of variable from θ̂ to ω̂ as θ̂ := Θ(ω̂, τj).

Note that Θ(τi, ω) = Θ(τj, σ
∗(τj; τi, ω)) by Lemma B.2, thus, the new boundaries of

integration with respect to ω̂ in (B.11) are given by σ∗(τj; τi, ω) and ω .
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Adding RT(τj, τi; q), given by (B.11), to RW (τj, τi; q), we obtain,

RT (τj, τi; q)+RW (τj, τi; q)=

−
∫∫ σ∗(τj ;τi,ω)

ω

Cθ(q(τj, ω̂); Θ(τj, ω̂))Θω(τj, ω̂)dω̂dG(ω), (B.12)

which is equal to RHS of (B.10).

Now we show that the set of IC constraints for τ can be further reduced to

Rτi−Rτj≥RT(τj, τi; q)+RW(τj, τi; q) for only i>j, i, j∈{1, ..,M}.
Using (B.12), we can write the set of inequality constraints (B.10) as,

RT (τj, τi; q)+RW (τj, τi; q)

≤Rτi−Rτj≤

−RT (τi, τj; q)−RW (τi, τj; q) ∀i, j∈{1, ...,M}, i>j, (B.13)

where the lower bound is from IC1 constraint that ensures τi does not report τj, and

the upper bound is from the IC1 constraint that ensures τj does not report τi. We

note that allocation q(τ, ω) is implementable if and only if the set of constraints de-

scribed by (B.13) has a feasible solution for Rτi , i∈{1, 2, ..,M}. Given an allocation

rule q(τ, ω), the set of constraints given by (B.13), has a feasible solutions only if for

any arbitrary increasing sequence (k1,k2),(k2,k3),· · · ,(km−1,km), where τkr−1 <τkr for
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2≤r≤m,

RT(τk1,τk2 ;q)+RW(τk1,τk2 ;q)

+RT(τk2,τk3 ;q)+RW(τk2,τk3 ;q)

...

+RT(τkm−1,τkm ;q)+RW(τkm−1,τkm ;q)

≤
m∑
r=2

[
Rτkr
−Rτkr−1

]
= Rτkm

−Rτk1

≤ −RT(τkm,τk1 ;q)−RW(τkm,τk1 ;q). (B.14)

In the following, we show that for a given implementable allocation q(τ, ω), the

set of constraints (B.13) can be reduced to

Rτi−Rτj≥RT(τj,τi;q)+RW(τj,τi;q) ∀i,j∈{1, ...,M}, i>j. (B.15)

We note thatW = S − (1−α)R, for α ∈ [0, 1]. Therefore, for a given allocation

function q(τ, ω), the designer wants to minimize R. Let R∗τ denote the optimal

seller’s revenue that satisfies (B.15) for a given implementable allocation function

q(τ, ω). Construct a graph with M nodes, where there is an edge between node i

and j if (B.15) is binding for i and j, i > j.

First, we note that the resulting graph must be connected. If not, then there exist

at least two unconnected clusters of nodes. Consider a cluster that does not include

node 1. Then one can reduce the value of R∗τ by ε > 0 for all the nodes in that

cluster without violating any of the constraints (B.15), and improve the outcome of

the mechanism by reducing the seller’s revenue R.

Now, assume that the optimal seller’s revenue R∗τ that is determined by only

considering the set of constraints (B.15), does not satisfy the set of constraints (B.13).
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Then, there exists i > j so that the following constraint is violated,

R∗τi −R
∗
τj
� −RT (τi, τj; q)−RW (τi, τj; q).

Let C = {(i, k1), (k1, k2), · · · , (km, j)} denote a path between node i and node j in

the connected graph constructed above. Then,

R∗τi −R
∗
τj

=
∑

(k̂,k)∈C

RT (τk̂, τk; q) +RW (τk̂, τk; q)

� −RT (τi, τj; q)−RW (τi, τj; q), (B.16)

which contradicts (B.14).

Proof of Lemma B.5. We can rewrite the set of IC constraints (3.6) as follows,

Rτi≥ t(τj)−Eω{C(q(τj);Θ(τi,ω))}

=Rτj+
[
Eω{C(q(τj);Θ(τj,ω))}−Eω{C(q(τj);Θ(τi,ω))}

]
,

=Rτj+RT (τj,τi; q) ∀i, j ∈ {1, ...,M},

where the last equality holds by definition. We proceed as follows. We first consider a

relaxed version of the forward mechanism design problem. We determine the solution

to the relaxed problem, and show it is also a feasible solution for the original forward

mechanism design problem.
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Consider the following relaxed version of the forward mechanism design problem,

maxW

subject to

Rτi≥ t(τi−1)−Eω{C(q(τi−1);Θ(τi,ω))}

=Rτi−1
+
[
Eω{C(q(τi−1);Θ(τi−1,ω))}−Eω{C(q(τi−1);Θ(τi,ω))}

]
,

i∈{2, ...,M}, (B.17)

Rτi ≥ 0, i∈{1, ...,M}, (B.18)

where we only include the set of IC constraints that ensures a seller with type τi does

not report type τi−1, and the other IC constraints are omitted.

Note that Eω{C(q(τi−1);Θ(τi−1,ω))} ≥ Eω{C(q(τi−1);Θ(τi,ω))} since Θ(τi−1,ω) ≥
Θ(τi,ω) by Assumption 3.1. Thus, from (B.17) we have Rτi ≥ Rτj for i > j. The

designer’s objective is W = S − (1−α)R. Therefore, for a given allocation function

q(τ, ω), the designer wants to minimize Rτi i ∈ {1, 2, ...,M}. Therefore, at the

optimal solution to the relaxed problem,

Rτi =Rτi−1
+
[
Eω{C(q(τi−1);Θ(τi−1,ω))}−Eω{C(q(τi−1);Θ(τi,ω))}

]
,

Rτ1 = 0.

Therefore, we can write,

Rτi =
i−1∑
j=1

[
Eω{C(q(τj);Θ(τj,ω))}−Eω{C(q(τj);Θ(τj+1,ω))}

]
. (B.19)
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Substituting Rτi , 1≤ i≤M , we get

S − (1− α)
M∑
i=1

piRτi

=
n∑
i=1

pi [V(q(τi))−Eω{C(q(τi); Θ(τi, ω))}]

−(1−α)
M∑
i=1

pi

i−1∑
j=1

[
Eω{C(q(τj);Θ(τj,ω))}−Eω{C(q(τj);Θ(τj+1,ω))}

]
=

M∑
i=1

pi [V(q(τi))−Eω{C(q(τi); Θ(τi, ω))}]−

(1−α)
M−1∑
j=1

(
M∑

i=j+1

pi

)[
Eω{C(q(τj);Θ(τj,ω))}−Eω{C(q(τj);Θ(τj+1,ω))}

]
=

M∑
i=1

pi

(
V(q(τi))−Eω{C(q(τi); Θ(τi, ω))}−

(1−α)

(
M∑

j=i+1

pj
pi

)[
Eω{C(q(τj);Θ(τj,ω))}−Eω{C(q(τj);Θ(τj+1,ω))}

])
.

By maximizing the above expression with respect to q(τi) and using the first-order

condition, we find that the optimal q(τi) is determined by the following equation

v(q)=Eω{c(q;Θ(τi,ω))}

+(1−α)
M∑

j=i+1

pi
pj

[
Eω{c(q;Θ(τi,ω))}−Eω{c(q;Θ(τi+1,ω))}

]
. (B.20)

The above equation has a unique solution since the LHS is decreasing in q by the

concavity of V(q), and the RHS is increasing in q by Assumption 3.1. Moreover, note

that the RHS is decreasing in i by Assumption 3.1, therefore, q(τi) > q(τj) for i > j.

Now, we show that the optimal solution to the relaxed problem satisfies the
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omitted constraints. Consider the IC constraint for type τi reporting τj. We need to

show that the utility of a seller with technology τi is higher when he reports truthfully

than his utility from misreporting τj. That is,

Rτi − [t(τj)− Eω{C(q(τj); Θ(τi, ω))}] =Rτi−Rτj

+[Eω{C(q(τj); Θ(τi, ω))}−Eω{C(q(τj); Θ(τj, ω))}]≥0.

For i > j, we can write,

Rτi−Rτj+[Eω{C(q(τj); Θ(τi, ω))}−Eω{C(q(τj, ω); Θ(τj, ω))}]

=
i−1∑
k=j

[
Eω{C(q(τk);Θ(τk,ω))}−Eω{C(q(τk);Θ(τk+1,ω))}

]
+[Eω{C(q(τj); Θ(τi, ω))}−Eω{C(q(τj); Θ(τj, ω))}]

=
i−1∑
k=j

[
Eω{C(q(τk);Θ(τk,ω))}−Eω{C(q(τk);Θ(τk+1,ω))}

]
−

i−1∑
k=j

[
Eω{C(q(τj);Θ(τk,ω))}−Eω{C(q(τj);Θ(τk+1,ω))}

]
≥ 0,

since q(τk) ≥ q(τj) and C(q̂; Θ(τk, ω)) − C(q̂; Θ(τk+1, ω)) is increasing in q̂ by As-

sumption 3.1.
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Similarly for i < j, we have,

Rτi−Rτj+[Eω{C(q(τj); Θ(τi, ω))}−Eω{C(q(τj, ω); Θ(τj, ω))}]

=−
j−1∑
k=i

[
Eω{C(q(τk);Θ(τk,ω))}−Eω{C(q(τk);Θ(τk+1,ω))}

]
+
[
Eω{C(q(τj); Θ(τi, ω))} − Eω{C(q(τj); Θ(τj, ω))}

]
=−

j−1∑
k=i

[
Eω{C(q(τk);Θ(τk,ω))}−Eω{C(q(τk);Θ(τk+1,ω))}

]
+

i−1∑
k=j

[
Eω{C(q(τj);Θ(τk,ω))}−Eω{C(q(τj);Θ(τk+1,ω))}

]
≥ 0,

where the last inequality is true since q(τk) ≤ q(τj) for k ≤ j, and C(q̂;Θ(τk,ω))−
C(q̂;Θ(τk+1,ω)) is increasing in q̂ by Assumption 3.1.

Proof of Lemma B.6. First we note that in the real-time mechanism the seller

reports τ and ω simultaneously, and his cost only depends Θ(τ, ω). Therefore, al-

location function q(τ, ω) and payment function t(τ, ω) must only depend on Θ(τ, ω)

rather than exact values of τ and ω. Therefore, the mechanism design problem can

be written only in terms of θ, where the buyer designs {q(θ), t(θ)}, and asks the seller

to report θ instead of (τ, ω). The reformulation of the real-time mechanism in terms

of θ can be written as follows,

max
q(·)
W (B.21)

subject to

IC : Rθ ≥ t(θ̂)− C(q(θ̂); θ), ∀θ, (B.22)

IR : Rθ ≥ 0, ∀θ. (B.23)

Claim B.1. The sets of IC constraints (B.22) and IR constraints (B.23) are satisfied
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if and only if

∂Rθ

∂θ
= −Cθ(q(θ); θ), (B.24)

Rθ ≥ 0, (B.25)

and q(θ) is decreasing in θ.

We prove the result of Claim B.1 below. Assume (B.22) is true. Consider the

following two IC constraints, where the first one requires that a seller with type θ

does not gain by misreporting θ̂, and the second one requires that a seller with true

type θ̂ does not gain by misreporting θ.

t(θ̂)− C(q(θ̂); θ̂) ≥ t(θ)− C(q(θ); θ̂),

t(θ)− C(q(θ); θ) ≥ t(θ̂)− C(q(θ̂); θ).

By subtracting the above two IC constraints, we obtain,

C(q(θ̂); θ̂)−C(q(θ̂); θ)≤Rθ−Rθ̂≤C(q(θ); θ̂)−C(q(θ); θ). (B.26)

Let θ̂ = θ + ε and take ε→ 0. Then ∂Rθ
∂θ

= −Cθ(q(θ); θ). Moreover, by (B.26),

C(q(θ̂); θ̂)−C(q(θ̂); θ)≤C(q(θ); θ̂)−C(q(θ); θ),

which along with Assumption 3.1, implies that q(θ)>q(θ̂) for θ<θ̂.

Furthermore, by Assumption 3.1 ∂Rθ
∂θ

= −Cθ(q(θ);θ) ≤ 0. Therefore, (B.23) is

satisfied if and only if Rθ≥0.

To prove the converse, assume that (B.24) and (B.25) hold and q(θ) is decreasing

in θ. First, we show that the IC constraints (B.22) are satisfied. For any θ and θ̂,
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we have

Rθ−
[
t(θ̂)− C(q(θ̂); θ)

]
=[Rθ −Rθ̂]−

[
C(q(θ̂); θ̂)−C(q(θ̂); θ)

]
=

∫ θ̂

θ

Cθ(q(θ̆); θ̆)dθ̆−
[
C(q(θ̂); θ̂)−C(q(θ̂); θ))

]
≥0,

where the second equality follows from (B.24) and the last inequality is true since

Cθ(q̂; θ) is decreasing in θ by Assumption 3.1, and q(θ) is decreasing in θ.

Moreover, we have Rθ = Rθ −
∫ θ
θ
Cθ(q(θ̂); θ̂)dθ̂≥ 0. This completes the proof of

Claim 1.

We note that q(τ, ω) only depends on Θ(τ, ω). Thus, the sets of constraints given

by (B.24) and (3.13) are equivalent.

Next, we show that we can replace the set of IR constraints (3.9) by Rτ1 =

RP (τ1; q). Equation (B.26) implies that Rθ ≥ Rθ̂ for θ < θ̂, since q(θ) is decreasing

in θ. That is, RΘ(τ1,ω) ≤ Rθ̂ for all θ̂. Thus, the set of IR constraints (3.9) is satisfied

if and only if Rτ1,ω ≥ 0. Therefore, by (B.24), we can write,

Rτ1 =Eω{RΘ(τ1,ω)}+Rτ1,ω

≥Eω{RΘ(τ1,ω)}

=

∫ ω

ω

∫ ω̂

ω

Cθ(q(τ1, ω̂); Θ(τ1, ω̂))Θω(τ1, ω̂)dω̂dG(ω)

=

∫ ω

ω

∫ ω

ω̂

Cθ(q(τ1, ω̂); Θ(τ1, ω̂))Θω(τ1, ω̂)dG(ω)dω̂

=

∫ ω

ω

[1−G(ω̂)]Cθ(q(τ1, ω̂); Θ(τ1, ω̂))Θω(τ1, ω̂)dω̂

= RP (τ1; q).

Finally, we show that Rτi−Rτi−1
=RT (τi−1,τi; q) +RW (τi−1,τi; q). Using (B.24),
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we have

Rτi−Rτi−1
=Eω̂{Rτi−1,ω̂}−Eω̂{Rτi−1,ω̂}

=Eω̂{RΘ(τi,ω̂)−RΘ(τi−1,ω̂)}

=−
∫ ∫ Θ(τi,ω̂)

Θ(τi−1,ω̂)

Cθ(q(θ̆); θ̆)dθ̆dG(ω̂).

By the change of variable θ̆ = Θ(τi−1, ω̂), we obtain,∫∫ Θ(τi,ω)

Θ(τi−1,ω)

Cθ(q(θ̆); θ̆)dθ̆dG(ω)

= −
∫∫ σ∗(τi−1;τi,ω)

ω

Cθ(q(τi−1, ω̂); Θ(τi−1, ω̂))Θω(τi−1, ω̂)dω̂dG(ω)

=

∫∫ ω

σ∗(τ̂ ;τ,ω)

Cθ(q(τ̂ , ω̂); Θ(τ̂ , ω̂))Θω(τ̂ , ω̂)dω̂dG(ω)

which is the same as the RHS of (B.10). Thus, from the proof of Lemma B.4, we

have Rτi −Rτi−1
= RT (τi−1, τi; q) +RW (τi−1, τi; q).

Proof of Lemma B.7. The IC constraint (3.34) for the dynamic mechanism with

monitoring is given by,

Eω{Rτi,ω}≥Eω{t(τj, ω)−C(q(τj,ω);Θ(τi,ω))} ∀τ,τj.

We can rewrite the above IC constraint as,

Rτi−Rτj ≥ Eω{t(τj,ω)− C(q(τj,ω);Θ(τi,ω))}−Rτj

=

∫
[C(q(τj,ω);Θ(τj,ω))−C(q(τj,ω);Θ(τi,ω))] dG(ω)

= RT (τj, τi; q) ∀τi,τj.
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Therefore, we can replace the set of IC constraints (3.34) by Rτi−Rτi ≥ RT (τj, τi; q)

for all i, j ∈ [1, ...,M ].

Using an argument similar to that of the proof of Lemma B.4, we can further

reduce the set of IC constraints to Rτi−Rτj ≥ RT(τj, τi; q) for only i > j, i, j ∈
{1, ..,M}.
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B.3 Closed Form Solutions

In this appendix, we provide closed form solutions for the mechanism design

problems formulated in Sections 3.4 and 3.6.

B.3.1 The forward mechanism

Using the results of Lemmas B.5, the optimal allocation q(τ) is given by the

unique solution to the following equation,

v(q) =Eω{c(q; Θ(τi, ω))}

+ (1−α)
i∑

j=i+1

pj
pi

[
Eω{c(q;Θ(τi,ω))}−Eω{c(q;Θ(τi+1,ω))}

]
;

the optimal payment function t(τi, ω), i∈ {1, 2, ...,M} is given by,

t(τi)=Eω{C(q(τi); Θ(τi, ω))}+Rτi

=Eω{C(q(τi); Θ(τi, ω))}

+
i+1∑
j=1

[
Eω{C(q(τj,ω);Θ(τj,ω))}−Eω{C(q(τj,ω);Θ(τj+1,ω))}

]
.

Proof. The proof follows directly from equations (B.19,B.20) (in the proof of Lemma

B.5), which determine the optimal allocation function q(τ) and the seller’s revenue

Rτ .
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B.3.2 The real-time mechanism

Using the result of Lemma B.6, the optimal allocation q(τ, ω) is given by the

unique solution to the following equation,1

v(q) = c(q; Θ(τ, ω)) + (1− α)
F (Θ(τ, ω))

f(Θ(τ, ω))
cθ(q; Θ(τ, ω));

the optimal payment function t(τ, ω) is given by,

t(τ, ω)=C(q(τ, ω); Θ(τ, ω))+Rτ,ω

=C(q(τ, ω); Θ(τ, ω))+

∫ θ

Θ(τ,ω)

Cθ(q(θ); θ)dθ.

Proof. Using (B.24) in the proof of Lemma B.6, we can write,

Rθ =

∫ θ

θ

Cθ(q(θ); θ)dθ,

by setting Rθ = Rτ1,ω = 0. Let F (θ) :=
∑M

i=1 piFi(θ) and f(θ) :=
∑M

i=1 pifi(θ).

Then, we can write,

W = S − (1− α)R

=

∫
[V(q(θ))−C(q(θ);θ)]dF (θ)−(1−α)

∫∫ θ

θ̂

Cθ(q(θ);θ)dθdF (θ̂)

=

∫
[V(q(θ))−C(q(θ);θ)]dF (θ)−(1−α)

∫∫ θ

θ

Cθ(q(θ);θ)dF (θ̂)dθ

=

∫
[V(q(θ))−C(q(θ);θ)]dF (θ)− (1−α)

∫
Cθ(q(θ);θ)F (θ)dθ

=

∫ [
V(q(θ))− C(q(θ); θ)− (1−α)

F (θ)

f(θ)
Cθ(q(θ); θ)

]
dF (θ).

1We assume that c(q; θ) + (1−α)F (θ)
f(θ) cθ(q; θ) is increasing in q for all θ.
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Hence, using Claim B.1 in the proof of Lemma B.6, we can rewrite the optimization

problem (B.21) as follows,

max
q(·)

∫ [
V(q(θ))−C(q(θ);θ)−(1−α)

F (θ)

f(θ)
Cθ(q(θ);θ)

]
dF (θ) (B.27)

subject to (B.28)

q(θ) is decreasing in θ.

Consider a relaxed version of the above optimization problem by ignoring the mono-

tonicity constraint on q(θ). The optimal solution q(θ) to the relaxed problem is

determined by maximizing the integrand in (B.28) for each θ, and is given by unique

solution to the following equation,

v(q) = c(q; θ) + (1−α)
F (θ)

f(θ)
cθ(q; θ). (B.29)

We note that if c(q; θ) + (1−α)F (θ)
f(θ)

cθ(q; θ) is increasing in θ, then the optimal q(θ)

determined above is decreasing in θ, and thus, automatically satisfies the ignored

monotonicity condition on q(θ).

B.3.3 The dynamic mechanism with monitoring

Using the results of Lemma B.7, the optimal allocation q(τ, ω) is given by the

unique solution to the following equation,

v(q) = c(q;Θ(τi,ω))+(1−α)
M∑

j=i+1

pj
pi

[
c(q;Θ(τi,ω))−c(q;Θ(τi+1,ω))

]
;
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the optimal payment function t(τi, ω), i∈ {1, 2, ...,M} is given by,

t(τi, ω)=C(q(τi, ω); Θ(τi, ω))+Rτi,ω

=C(q(τi, ω); Θ(τi, ω))

+
i+1∑
j=1

[
C(q(τj,ω);Θ(τj,ω))−C(q(τj,ω);Θ(τj+1,ω))

]
.

Proof. Using the result of Lemma B.7, the dynamic mechanism with monitoring is

given by the solution to the following optimization problem,

max W

subject to

Rτi −Rτi−1
= RT (τi−1, τi; q), i∈{2, ...,M},

Rτ1 ≥ 0.

Note that W = S − (1−α)R. As a result, at the optimal solution of the relaxed

problem we have,

Rτi = Rτi−1
+RT (τi−1, τi; q), i∈{2, ...,M},

Rτ1 = 0.
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Substituting Rτi , 1≤ i≤M , we obtain,

W= S − (1−α)
n∑
j=1

pjRτj

=S − (1−α)
M∑
j=1

(
pj

j−1∑
i=1

RT (τi, τi+1; q)

)

=S − (1−α)
M−1∑
i=1

(
M∑

j=i+1

pj

)
RT (τi, τi+1; q)

=
M∑
i=1

pi

∫
[V(q(τi, ω))−C(q(τi, ω); Θ(τi, ω))]dG(ω)− (1−α)

[
M−1∑
i=1

(
M∑

j=i+1

pj

)∫
[C(q(τi,ω);Θ(τi,ω))−C(q(τi,ω);Θ(τi+1,ω))]dG(ω)

]

=
M∑
i=1

pi

∫ [
V(q(τi, ω))−C(q(τi, ω); Θ(τi, ω))− (1−α)

[
M∑

j=i+1

pj
pi

[
C(q(τi,ω);Θ(τi,ω))−C(q(τi,ω);Θ(τi+1,ω))

]]
dG(ω)

]
.

By maximizing the integrand point-wise with respect to q(τi, ω) and using the first-

order condition, we find that the optimal value of q(τi, ω) is determined by the

following equation,

v(q) = c(q;Θ(τi,ω)) + (1−α)
M∑

j=i+1

pi
pj

[
c(q;Θ(τi,ω))−c(q;Θ(τi+1,ω))

]
.

The above equation has a unique solution since the LHS is decreasing in q by the

concavity of V(q), and the RHS is increasing in q by Assumption 3.1.
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B.3.4 The dynamic mechanism

For the dynamic mechanism there exists no closed form solution for arbitrary M

and parameters of the model, since the set of binding constraints from the inequal-

ity constraints given by (3.23) cannot be determined a priori, and depends on the

allocation function q(τ, ω) (see [12] for more discussion). However, for the case with

two possible technologies, i.e. M = 2, we provide the closed form solutions for the

dynamic mechanism in the following.

If c(q̂; Θ(τ1, ω))−Θω(τ1,ω)
pτ2
pτ1

G(ω)−G(σ∗(τ2;τ1,ω))
g(ω)

cθ(q̂;Θ(τ1,ω)) is increasing in q̂, for all

ω, the optimal allocation q(τ, ω) is given by the unique solution to the following

equations,

v(q(τ2,ω))=c(q(τ2, ω); Θ(τ2, ω)) (B.30)

v(q(τ1,ω))=c(q(τ1, ω); Θ(τ1, ω))−
[
(1−α)

pτ2
pτ1

Θω(τ1,ω)

G(ω)−G(σ∗(τ2;τ1,ω))

g(ω)
cθ(q(τ1,ω);Θ(τ1,ω))

]
; (B.31)

the optimal payment function t(τi, ω), is given by,

t(τ2, ω) :=C(q(τ2, ω); Θ(τ2, ω))

−
∫∫ ω

σ∗(τ2;τ1,ω)

Cθ(q(τ1, ω);Θ(τ1, ω))Θω(τ1, ω)dG(ω̂)dω

−
∫ ω

ω

Cθ(q(τ2, ω̂); Θ(τ2, ω̂))Θω(τ2, ω̂)dω̂

+

∫ ω

ω

[1−G(ω̂)]Cθ(q(τ2, ω̂);Θ(τ2, ω̂))Θω(τ2, ω̂)dω̂, (B.32)

t(τ1, ω) :=C(q(τ1, ω);Θ(τ1, ω))

−
∫ ω

ω

Cθ(q(τ1, ω̂); Θ(τ1, ω̂))Θω(τ1, ω̂)dω̂

+

∫ ω

ω

[1−G(ω̂)]Cθ(q(τ1, ω̂);Θ(τ1, ω̂))Θω(τ1, ω̂)dω̂. (B.33)
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Proof. The designer’s objective isW = S−(1−α)R. Therefore, given an allocation

function q(τ, ω), the designer wants to minimize the information rent Rτ such that

it satisfies the conditions of part (c) of Theorem 3.2. For M = 2, we have Rτ1 = 0

and Rτ2 =RT (τ1, τ2; q)+RW (τ1, τ2; q). Using the results of Lemma B.1 and B.4, we

can rewrite the dynamic mechanism design problem as,

max
q(·,·),t(·,·)

pτ2Sτ2 − (1− α)pτ2Rτ2 + pτ1Sτ1

subject to

Rτ2 =RT (τ1, τ2; q)+RW (τ1, τ2; q),

∂Rτ2,ω

∂ω
= Cθ(q(τ2, ω); Θ(τ2, ω))Θω(τ2, ω), (B.34)

∂Rτ1,ω

∂ω
= Cθ(q(τ1, ω); Θ(τ1, ω))Θω(τ1, ω), (B.35)

q(τ2, ω) and q(τ1, ω) are increasing in ω. (B.36)

Consider the following relaxation of the above problem, where the last three con-

straints are omitted.

max
q(·,·),t(·,·)

pτ2Sτ2 − (1− α)pτ2Rτ2 + pτ1Sτ1 (B.37)

subject to

Rτ2 =RT (τ1, τ2; q)+RW (τ1, τ2; q). (B.38)

Below, we determine the solution to the above relaxed problem and show that its

optimal solution also solves the original dynamic mechanism design problems. Using

212



(B.12) and (B.38), we obtain,

Rτ2=−
∫∫ σ∗(τ1;τ2,ω̂)

ω̂

Cθ(q(τ1, ω); Θ(τ1, ω))Θω(τ1, ω)dωdG(ω̂)

=−
∫∫ ω

σ∗(τ2;τ1,ω)

Cθ(q(τ1, ω); Θ(τ1, ω))Θω(τ1, ω)dG(ω̂)dω

=−
∫

[G(ω)−G(σ∗(τ2;τ1,ω))]Cθ(q(τ1,ω);Θ(τ1,ω))Θω(τ1,ω)dω

=−
∫

[G(ω)−G(σ∗(τ2;τ1,ω))]Cθ(q(τ1,ω);Θ(τ1,ω))Θω(τ1,ω)
dG(ω)

g(ω)
,

where the second equality results from changing the order of integration and

σ∗(τ1;τ2,σ
∗(τ2;τ1,ω))=ω. Therefore, we can write the objective function (B.37) as,

pτ2Sτ2−(1−α)pτ2Rτ2 +pτ1Sτ1 =

pτ2

∫
[V(q(τ2,ω))−C(q(τ2,ω);Θ(τ2,ω)]dG(ω)+

(1−α)pτ2

∫
[G(ω)−G(σ∗(τ2;τ1,ω))]Cθ(q(τ1,ω);Θ(τ1,ω))Θω(τ1,ω)

dG(ω)

g(ω)

+pτ1

∫
[V(q(τ1,ω))−C(q(τ1,ω);Θ(τ1,ω)]dG(ω)

= pτ2

∫
[V(q(τ2,ω))−C(q(τ2,ω);Θ(τ2,ω)]dG(ω)

+pτ1

∫ [
V(q(τ1,ω))−C(q(τ1,ω);Θ(τ1,ω))

+(1−α)
pτ2
pτ1

G(ω)−G(σ∗(τ2;τ1,ω))

g(ω)
Cθ(q(τ1,ω);Θ(τ1,ω))Θω(τ1,ω)

]
dG(ω).

By maximizing the integrands point-wise with respect to q(τi, ω) and using the first

order condition, i = 1, 2, we obtain equations (B.30) and (B.31). We note that the

allocation function q(τ1, ω), given by (B.31), is increasing in ω since by assumption

c(q; Θ(τ1, ω))−Θω(τ1,ω)
pτ2
pτ1

G(ω)−G(σ∗(τ2;τ1,ω))
g(ω)

Cθ(q;Θ(τ1,ω)) is increasing in q. Moreover,

the allocation function q(τ2, ω), given by (B.30), is increasing in ω by Assumption
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3.1. Therefore, the omitted constraint (B.36) in the original optimization problem is

satisfied automatically.

Below, we construct payment function t(τi, ω), i = 1, 2, such that the omit-

ted constraints (B.34) and (B.35) are satisfied, Eω{t(τ2,ω)−C(q(τ2,ω);Θ(τ2,ω))} =

RT(τ2,τ1;q)+RW(τ2,τ1;q), and Eω{t(τ1,ω)−C(q(τ1,ω);Θ(τ1,ω))}=0. Define,

t(τ2, ω) :=C(q(τ2, ω); Θ(τ2, ω)) +RT(τ2,τ1;q)+RW(τ2,τ1;q)

−
∫ ω

ω

Cθ(q(τ2, ω̂); Θ(τ2, ω̂))Θω(τ2, ω̂)dω̂

+

∫ ω

ω

[1−G(ω̂)]Cθ(q(τ2, ω̂);Θ(τ2, ω̂))Θω(τ2, ω̂)dω̂, (B.39)

t(τ1, ω) :=C(q(τ1, ω); Θ(τ1, ω))

−
∫ ω

ω

Cθ(q(τ1, ω̂); Θ(τ1, ω̂))Θω(τ1, ω̂)dω̂

+

∫ ω

ω

[1−G(ω̂)]Cθ(q(τ1, ω̂);Θ(τ1, ω̂))Θω(τ1, ω̂)dω̂. (B.40)

By the above definition, we have
∂Rτi,ω
∂ω

= Cθ(q(τi, ω); Θ(τi, ω))Θω(τi, ω) for i = 1, 2.

Thus, the omitted constraints (B.34) and (B.35) are satisfied. Moreover,

Eω{t(τ1,ω)−C(q(τ1,ω);Θ(τ1,ω))}=

−
∫∫ ω

ω

Cθ(q(τ2,ω̂);Θ(τ2,ω̂))Θω(τ2,ω̂)dω̂dG(ω)

−
∫ ω

ω

[1−G(ω)]Cθ(q(τ2,ω̂);Θ(τ2,ω̂))Θω(τ2,ω̂)dω̂

=

−
∫∫ ω

ω̂

Cθ(q(τ2,ω̂);Θ(τ2,ω̂))Θω(τ2,ω̂)dG(ω)dω̂

−
∫ ω

ω

[1−G(ω)]Cθ(q(τ2,ω̂);Θ(τ2,ω̂))Θω(τ2,ω̂)dω̂

=0,
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where the second equality results from changing the order of integration. Similarly,

Eω{t(τ2,ω)−C(q(τ2,ω);Θ(τ2,ω))} = RT(τ2,τ1;q)+RW(τ2,τ1;q).

Substituting RT(τ2,τ1;q)+RW(τ2,τ1;q) in (B.39) using (B.12), we obtain (B.32) and

(B.33).

B.3.5 The dynamic mechanism with no penalty

Similar to the dynamic mechanism, for the dynamic mechanisms with no penalty

there exists no closed form solution for arbitrary M and parameters of the model,

since the set of binding constraints from the inequality constraints, given by (3.32),

cannot be determined a priori, and it depends on allocation function q(τ, ω). More-

over, for the dynamic mechanisms with no penalty, we face additional difficulties by

imposing ex-post individual rationality, which results in the additional set of con-

straints (3.33) on the information rent. As a result, unlike the dynamic mechanism,

we cannot determine a priori the set of binding constraints from the ones given by

(3.32) and (3.33) even for M = 2.

For M = 2, the dynamic mechanisms with no penalty is given by the solution to

the following optimization problem.

max
q(·,·),t(·,·)

pτ2

∫
[V(q(τ2,ω))−C(q(τ2,ω);Θ(τ2,ω))]dG(ω)−(1−α)pτ2Rτ2

+ pτ1

∫
[V(q(τ1,ω))−C(q(τ1,ω);Θ(τ1,ω))]dG(ω)−(1−α)pτ1Rτ1 (B.41)

subject to

Rτ2 −Rτ1 ≥ RT (τ2, τ1; q) +RW (τ2, τ1; q) ≥ 0, (B.42)

Rτ1 = −
∫ ω

ω

[1−G(ω)]Cθ(q(τ1,ω̂);Θ(τ1,ω̂))Θω(τ1,ω̂)dω̂ ≥ 0, (B.43)

Rτ2 ≥ −
∫ ω

ω

[1−G(ω)]Cθ(q(τ2,ω̂);Θ(τ2,ω̂))Θω(τ2,ω̂)dω̂ ≥ 0. (B.44)
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The last two constraints result from using the results of part (d) of Theorem 3.2

(equation (3.33)) along with the result of Lemma B.1, and setting Rτi,ω ≥ 0, for

i = 1, 2. We note that constraint (B.43) is written as an equality (binding) constraint

(unlike (B.44)) since for any value of Rτ1 that does not bind (B.43), we can reduce

the value of Rτ1 by ε > 0 without violating any other constraints and improve the

objective function (B.41).

In the following, we determine the solution to the above optimization problem

for the specific example considered in Section 3.7. We have, C(q; θ) = θq, Θ(τ1, ω) =

(1− ω), Θ(τ1, ω) = (1− ω)2, V(q) = q − 1
2
q2, and G(ω) = ω for ω ∈ [0, 1].

From (B.43), we obtain,

Rτ1 =

∫ 1

0

q(τ1, ω)(1− ω)dω. (B.45)

It can be shown that constraints (B.44) is binding at the optimal solution.2 When

(B.44) is binding, we obtain,

Rτ2 =

∫ 1

0

q(τ2, ω)2(1− ω)2dω. (B.46)

Moreover, from (B.42), we obtain

Rτ2 −Rτ1 ≥
∫ 1

0

∫ 1−(1−ω)2

ω

q(τ1, ω̂)dω̂dω

=

∫ 1

0

∫ ω̂

1−
√

1−ω̂
q(τ1, ω̂)dωdω̂

=

∫ 1

0

[√
1− ω̂ − (1− ω̂)

]
q(τ1, ω̂)dω̂, (B.47)

where the first equality results from (B.12), and the second equality results from

changing the order of integration.

2To show this, one can solve the optimization problem (B.41) relaxing the constraint (B.44),
and show that the optimal solution violates the constraint (B.44).
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Using (B.45) and (B.46), we can rewrite (B.47) as,∫ 1

0

[
q(τ2, ω)2(1− ω)2 − q(τ1, ω)

√
1− ω

]
dω ≥ 0. (B.48)

Substituting (B.45) and (B.46) in (B.41), we can rewrite the optimization problem

as,

max
q(·,·),t(·,·)

pτ2

∫ 1

0

[
V(q(τ2,ω))−(1−ω)2q(τ2,ω)

−(1−α)2(1−ω)2q(τ2,ω)

]
dG(ω)

+ pτ1

∫ 1

0

[
V(q(τ1,ω))−(1−ω)q(τ1,ω)

−(1−α)(1−ω)q(τ1,ω)

]
dG(ω) (B.49)

subject to∫ 1

0

[
q(τ2, ω)2(1− ω)2 − q(τ1, ω)

√
1− ω

]
dω ≥ 0,

where we replaced constraint (B.42) by (B.48).

The Lagrangian for the above optimization problem is given by,

pτ2

∫ 1

0

[
V(q(τ2,ω))−

[
(3−2α)(1−ω)2−2λ(1−ω)2

]
q(τ2,ω)

]
dG(ω)

+ pτ1

∫ 1

0

[
V(q(τ1,ω))−

[
(2−α)(1−ω)+λ

√
1− ω

]
q(τ1,ω)

]
dG(ω).

Maximizing the integrands point-wise with respect to q(τi, ω), i = 1, 2, using the
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first order conditions and setting V(q) = q − 1
2
q2, we obtain,

q(τ2, ω) = max{1− (3−2α−2λ)(1−ω)2, 0}, (B.50)

q(τ1, ω) = max{1− (2−α)(1−ω)−λ
√

1− ω, 0}. (B.51)

The value of λ must be such that,

λ

∫ 1

0

[
q(τ2, ω)2(1− ω)2 − q(τ1, ω)

√
1− ω

]
dω = 0. (B.52)

By numerical evaluation, λ = 0 for α ≥ 0.07 and λ > 0 for α ≤ 0.07.

0 0.2 0.4 0.6 0.8 1
α

0

0.02

0.04

λ

Therefore, for α = 0.5, we have,

q(τ2, ω) = max{1−2(1−ω)2, 0}, (B.53)

q(τ1, ω) = max{1− 1.5(1−ω), 0}. (B.54)

Using Lemma B.1, the payment functions t(τi, ω) for i = 1, 2, is given by,

t(τ2,ω)=C(q(τ2,ω);Θ(τ2,ω))+

∫ ω

ω

Cθ(q(τ2,ω̂);Θ(τ2,ω))Θω(τ2,ω̂)dω̂, (B.55)

t(τ1,ω)=C(q(τ1,ω);Θ(τ1,ω))+

∫ ω

ω

Cθ(q(τ1,ω̂);Θ(τ1,ω))Θω(τ1,ω̂)dω̂. (B.56)
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Appendix C

Proofs of Chapter 4

Proof of Theorem 4.1. Given a public information disclosure mechanisms (M, ψ),

define W̄ (m) as the expected social welfare conditioned on the realization of message

m. Using (4.12) and (4.13), we have

W̄ (m) =

(
1

2
+

1

2
∆m

)(
a− 1

2
− 1

2
∆m

)
+

(
1

2
− 1

2
∆m

)(
E{θ|m} − 1

2
+

1

2
∆m

)
=

(
a+ E{θ|m} − 1

2

)
.

Therefore,

W = E{W̄ (M)} = E
{
a+ E{θ|M} − 1

2

}
=

(
a+ E {E{θ|M}} − 1

2

)
=

(
a+ µ− 1

2

)
,

where the last equality holds by the smoothing property of conditional expectation.

Proof of Lemma 4.1. We have xr(θ) = 1− xs(θ). Thus,
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Uσ(s, θ) = a− xs(θ) = a− 1 + xr(θ),

Uσ(r, θ) = θ − xr(θ) = θ − 1 + xs(θ).

Obedience condition (4.18) is satisfied if and only if,∑
θ∈Θ

pθx
s(θ)(a− xs(θ)) ≥

∑
θ∈Θ

pθx
s(θ)(θ − xr(θ))

⇔∑
θ∈Θ

pθx
s(θ)(a− θ + 1− 2xs(θ)) ≥ 0

⇔∑
θ∈Θ

pθx
s(θ)(

1

2
+

∆θ

2
− xs(θ)) ≥ 0.

Similarly, obedience condition (4.19) is satisfied if and only if,∑
θ∈Θ

pθx
r(θ)(θ − xr(θ)) ≥

∑
θ∈Θ

pθx
r(θ)(a− xs(θ))

⇔∑
θ∈Θ

pθx
r(θ)(θ − a+ 1− 2xr(θ)) ≥ 0

⇔∑
θ∈Θ

pθx
r(θ)(

1

2
− ∆θ

2
− xr(θ)) ≥ 0.

Proof of Theorem 4.2. By Lemma 4.1, the efficient routing policy in implementable
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if and only if

E
{(

1

2
+

∆θ

4

)((
1

2
+

∆θ

2

)
−
(

1

2
+

∆θ

4

))}
≥ 0,

and

E
{(

1

2
− ∆θ

4

)((
1

2
− ∆θ

2

)
−
(

1

2
− ∆θ

4

))}
≥ 0,

⇔

E
{

2∆θ + ∆2
θ

}
≥ 0,

and

E
{
−2∆θ + ∆2

θ

}
≥ 0,

⇔

2∆ + ∆2 + σ2 ≥ 0,

and

− 2∆ + ∆2 + σ2 ≥ 0.

By combining the last two inequalities, we establish the result.
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Appendix D

Proofs of Chapter 5

Proof of Lemma 5.1. For any given consistent CIB assessment (σ∗, γ), let g∗ denote

the behavioral strategy profile constructed according to (5.17). In the following, we

construct recursively a belief system µ that is consistent with g∗ and satisfies (5.18).

For t = 1, we have P i
1 = Y i

1 and C1 = Z1. Define

µit(h
i
1)(x1, p

−i
1 ) :=

P{y1, z1|x1}η(x1)∑
x̂1∈X1

P{pi1, z1|x̂1}η(x̂1)
. (D.1)

For t > 1, if Pg
∗

µit−1
{hit|hit−1} > 0 (i.e. no deviation from g∗t−1 at t − 1), define µit

recursively by Bayes’ rule,

µit(h
i
t)(xt, p

−i
t ) :=

Pg
∗

µit−1
{hit, xt, p−it |hit−1}

Pg∗
µit−1
{hit|hit−1}

. (D.2)

For t > 1, if Pg
∗

µit−1
{hit|hit−1} = 0 (i.e. there is a deviation from g∗t−1 at t − 1), define

µit as,

µit(h
i
t)(xt, p

−i
t ) :=

|Pt|
|St|

γt(ct)(xt, st)∑
ŝ−it ∈S

−i
t
γ(ct)(xt, ŝ

−i
t , s

i
t)
, (D.3)
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where sjt = ljt (p
j
t , ct) for all j ∈ N .

At t = 1, (5.18) holds by construction from (D.1).

For t > 1,

Pg∗{S−it |hit} = Pg∗{S−it |pit, ct}

= Pg∗{S−it |sit, ct}

=
Pg∗{S−it , sit|ct}
Pg∗{sit|ct}

=
πt(S

−i
t , s

i
t)∑

ŝ−it ∈S
−i
t
πt(ŝ

−i
t , s

i
t)

= P{S−it |sit, πt}

where the second equality follows from (5.12). Therefore, (5.18) holds for all t ∈
T .

Proof of Theorem 5.1. We prove the result by induction.

For t = 1 the result holds since the agents have not taken any action yet. Suppose

that (5.19) holds for t− 1. Then,

Pg∗,gi
{
xt,h

−i
t |hit

}
=
∑

xt−1∈Xt−1

Pg∗,gi
{
xt, xt−1, h

−i
t |hit

}
=
∑

xt−1∈Xt−1

Pg∗,gi
{
xt, xt−1, h

−i
t−1, a

−i
t−1, y

−i
t |hit−1, a

i
t−1, y

i
t, zt
}

=
∑

xt−1∈Xt−1

P{y−it |xt, at−1}Pg
∗,gi
{
xt, xt−1, h

−i
t−1, a

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
}

=
∑

xt−1∈Xt−1

[
P{y−it |xt,at−1}P{xt|xt−1,at−1}

Pg∗,gi
{
xt−1,h

−i
t−1,a

−i
t−1|hit−1,a

i
t−1,y

i
t,zt
} ]

=
∑

xt−1∈Xt−1

[
P{y−it |xt, at−1}P{xt|xt−1, at−1}g∗−it−1(h−it−1)(a−it−1)

Pg∗,gi
{
xt−1, h

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
} ]

(D.4)
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Consider the term Pg∗,gi
{
xt−1, h

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
}

in the expression above. We

have,

Pg∗,gi
{
xt−1, h

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
}

=
Pg∗,gi

{
xt−1, h

−i
t−1, y

i
t, zt|hit−1, a

i
t−1

}
Pg∗,gi

{
yit, zt|hit−1, a

i
t−1

}
=
∑
a−it−1,xt

P{yit, zt, xt|at−1, xt−1}g∗−it−1(h−it−1)(a−it−1)×

Pg∗,gi
{
xt−1, h

−i
t−1|hit−1, a

i
t−1

}
Pg∗,gi

{
yit, zt|hit−1, a

i
t−1

}
=
∑
a−it−1,xt

P{yit, zt|at−1, xt}P{xt, |xt−1, at−1}g∗−it−1(h−it−1)(a−it−1)×

Pg∗−i
{
xt−1, h

−i
t−1|hit−1

}∑
â−it−1,x̂t−1

Pg∗,gi
{
yit, zt, â

−i
t−1, x̂t−1|hit−1, a

i
t−1

} ,
(D.5)

where the last equality follows from the induction hypothesis (5.19) for t − 1. We

can write the term in the denominator of (D.5) as

Pg∗,gi
{
yit,zt, â

−i
t−1, x̂t−1|hit−1,a

i
t−1

}
=
∑
ĥ−it−1,x̂t

Pg∗,gi
{
yit, zt, â

−i
t−1, x̂t−1, ĥ

−i
t−1, x̂t|hit−1, a

i
t−1

}
=
∑
ĥ−it−1 ,̂xt

[
P{yit, zt|x̂t,ait−1, â

−i
t−1}P{x̂t|x̂t−1,a

i
t−1, â

−i
t−1}

g∗−it (ĥ−it−1)(â−it−1)Pg∗,gi
{
x̂t−1, ĥ

−i
t−1|hit−1,a

i
t−1

}]
=
∑
ĥ−it−1 ,̂xt

[
P{yit, zt|x̂t,ait−1, â

−i
t−1}P{x̂t|x̂t−1,a

i
t−1, â

−i
t−1}

g∗−it (ĥ−it−1)(â−it−1)Pg∗−i
{
x̂t−1, ĥ

−i
t−1|hit−1,a

i
t−1

}]
=Pg∗−i

{
yit,zt, â

−i
t−1, x̂t−1|hit−1,a

i
t−1

}
, (D.6)

where the last equality follows from the induction hypothesis (5.19) for t− 1.
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Substituting (D.6) in (D.5),

Pg∗,g−i
{
xt−1, h

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
}

= Pg∗−i
{
xt−1, h

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
}
. (D.7)

Combining (D.4) and (D.7), we obtain

Pg∗,gi
{
xt, h

−i
t

∣∣∣hit} = Pg∗−i
{
xt, h

−i
t

∣∣∣hit} ,
which establishes the induction step for t.

To provide the proof for Theorems 5.2 and 5.4, we need the following result.

Lemma D.1. Given a CIB strategy profile σ∗ and update rule ψ consistent with σ∗,

Pσ∗ψ {St+1,Πt+1|pt, ct, at} = Pσ∗ψ {St+1,Πt+1|st, πt, at}. (D.8)

for all st, πt, at.
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Proof of Lemma D.1. We have,

Pσ∗ψ {st+1, πt+1|pt, ct, at} = Pσ∗ψ {st+1, πt+1|pt, ct, at, πt}
Define Ẑ:={zt+1:πt+1=ψt+1(πt,zt+1)}; see (5.16)

=

=
∑

zt+1∈Ẑt

Pσ∗ψ {st+1, ψt+1(πt, zt+1)|pt, ct, at, πt}

=∑
yt+1,xt+1,xt,zt+1∈Ẑ

Pσ∗ψ {st+1, πt+1, yt+1, zt+1, xt+1, xt|st, ct, at, πt}

by system dynamics (5.1) and (5.2)
=∑

yt+1,xt+1,xt,zt+1∈Ẑ

[
Pσ∗ψ {st+1, πt+1|st, ct, at, πt, yt+1, zt+1, xt+1, xt}P{yt+1, zt+1|at, xt+1}

P{xt+1|xt, at}Pσ
∗{xt|st, ct, at}

]
Define Ŷ(zt+1):={yt+1:sjt+1=φjt+1(sjt ,{y

j
t+1,zt+1,a

j
t}),∀j}

=∑
xt+1,xt,zt+1∈Ẑ,yt+1∈Ŷ(zt+1)

[
Pσ∗ψ {st+1, πt+1|st, πt, at, yt+1, zt+1}P{yt+1, zt+1|at, xt+1}

P{xt+1|xt, at}Pσ
∗

ψ {xt|st, ct}
]

by Bayes’ rule
=∑

zt+1∈Ẑ,,yt+1∈Ŷ(zt+1),xt+1,xt

[
Pσ∗ψ {st+1, πt+1|st, πt, at, yt+1, zt+1}P{yt+1 ∈ Ŷ , zt+1 ∈ Ẑ|at, xt+1}

P{xt+1|xt, at}
Pσ∗ψ {xt, st|ct}
Pσ∗ψ {st|ct}

]
=∑

zt+1∈Ẑ,,yt+1∈Ŷ(zt+1),xt+1,xt

[
Pσ∗ψ {st+1, πt+1|st, πt, at, yt+1, zt+1}P{yt+1, zt+1|at, xt+1}

P{xt+1|xt, at}
πt(xt, st)∑
x̂t
πt(x̂t, st)

]
=

Pσ∗ψ {st+1, πt+1|st, πt, at}.
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Proof of Theorem 5.2. Consider a “super dynamic system” as the collection of the

original dynamic system along with agents −i who play according to CIB assessment

(σ∗, γ). We establish the claim of Theorem 5.2 in two steps: (i) we show that the

super dynamic system is a POMDP, and (ii) we show that {Πt, S
i
t} is an information

state for agent i when he faces the super dynamic system with the original utility

ui1:T (·, ·). Therefore, without loss of optimality, agent i can choose his best response

from the class of strategies that depend on the information state {Πt, S
i
t}, i.e. the

class of CIB strategies.

To establish step (i), consider X̃ := {Xt,Πt, St,Πt−1, St−1} as the system state

at t for the super dynamic system. Agent i’s observation at time t is given by

Ỹ i
t := {Y i

t , Zt}. To show that the super dynamic system is a POMDP, we need to

show that it satisfies the following properties:

(a) it has a controlled Markovian dynamics, that is,

Pσ∗ψ {x̃t+1|x̃1:t, a
i
1:t, ỹ

i
1:t} = Pσ∗ψ {x̃t+1|x̃t, ait}, ∀t ∈ T , (D.9)

(b) agent i’s observation Ỹ i
t is a function of system state X̃t along with the previous

action Ait−1, that is,

Pσ∗ψ {ỹit|x̃1:t, , a
i
1:t−1, ỹ

i
1:t−1} = Pσ∗ψ {ỹit|x̃t, ait−1}, ∀t ∈ T , (D.10)

(c) agent i’s instantaneous utility at t ∈ T can be written as a function ũt(x̃t, a
i
t) of

system state X̃t along with his action Ait, that is,

Eσ∗ψ
{
uit(Xt, At)|x̃1:t, a

i
1:t, ỹ

i
1:t

}
= ũt(x̃t, a

i
t), ∀t ∈ T . (D.11)
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Condition (a) is true because,

Pσ∗ψ {x̃t+1|x̃1:t, a
i
1:t, ỹ

i
1:t}

=

Pσ∗ψ {xt+1, πt+1, st+1, πt, st|x1:t, π1:t, s1:t, y
i
1:t, z1:t, a

i
1:t}

=∑
a−it ,zt+1,yt+1

Pσ∗ψ {xt+1, πt+1, st+1, a
−i
t , zt+1, yt+1|x1:t, π1:t, s1:t, y

i
1:t, z1:t, a

i
1:t}

by system dynamics (5.1) and (5.2)
=∑

a−it ,zt+1,yt+1

[
Pσ∗ψ {πt+1, st+1|x1:t, π1:t, s1:t, y

i
1:t, z1:t, a

i
1:t, a

−i
t , , xt+1, zt+1, yt+1}

P{zt+1, yt+1|xt+1, at}P{xt+1|xt, at}σ∗−it (πt, s
−i
t )(a−it )

]
Define Ẑ:={zt+1:πt+1=ψt+1(πt,zt+1)} and Ŷ(zt+1):={yt+1:sjt+1=φjt+1(sjt ,{y

j
t+1,zt+1,a

j
t}),∀j}

=∑
a−it ,zt+1∈Ẑ,yt+1∈Ŷ(zt+1)

[
Pσ∗ψ {zt+1, yt+1|st, πt, yt+1, zt+1, at}P{yt+1, zt+1|xt+1, at}P{xt+1|xt, at}

σ∗−it (πt, s
−i
t )(a−it )

]
=

Pσ∗ψ {xt+1, πt+1, st+1|xt, πt, st, ait}

=

Pσ∗ψ {x̃t+1|x̃t, ait}.
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Condition (b) is true because

Pσ∗ψ {ỹit|x̃1:t, , a
i
1:t−1, ỹ

i
1:t−1}

=

Pσ∗ψ {yit, zt|x1:t, π1:t, s1:t, y
i
1:t−1, z1:t−1, a

i
1:t−1}

=∑
a−it−1

Pσ∗ψ {yit, zt, a−it−1|x1:t, π1:t, s1:t, y
i
1:t−1, z1:t−1, a

i
1:t−1}

=∑
a−it−1

Pσ∗ψ {yit, zt|x1:t, π1:t, s1:t, y
i
1:t−1, z1:t−1, a

i
1:t−1, a

−i
t−1}σ∗−it (πt−1, st−1)(a−it−1)

by system dynamics (5.2)
=∑

a−it−1

Pσ∗ψ {yit, zt|xt, ait−1, a
−i
t−1}σ∗−it (πt−1, st−1)(a−it−1)

=

Pσ∗ψ {yit, zt|xt, πt−1, st−1, a
i
t−1}

=

Pσ∗ψ {ỹit|x̃t, ait−1}.

Condition (c) is true because

Eσ∗ψ
{
uit(Xt, At)|x̃1:t, a

i
1:t, ỹ

i
1:t

}
= Eσ∗ψ

{
uit(Xt, At)|xt, πt, st, x̃1:t−1, a

i
1:t, ỹ

i
1:t

}
= Eσ∗ψ

{
uit(Xt, (a

i
t,σ
∗−i(πt,s

−i
t )))|xt,πt,st, x̃1:t−1,a

i
1:t, ỹ

i
1:t

}
= uit(xt, (a

i
t, σ
∗−i(πt, s

−i
t )))

:= ũ(x̃t, a
i
t)

To establish step (ii), that it, to show that {Πt, S
i
t} is an information state for

agent i, we need to prove that (1) it can be updated recursively at t, i.e. it can be

determined using {Πt−1, S
i
t−1} and {Ỹ i

t , A
i
t} = {Y i

t , Zt, A
i
t}, (2) agent i’s belief about
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{Πt+1, S
i
t+1} conditioned on {Πt, S

i
t , A

i
t} is independent of H i

t , and (3) it is sufficient

to evaluate the agent i’s instantaneous utility at t for every action ait ∈ T , for all

t ∈ T .

Condition (1) is satisfied since Πt = ψt(Πt−1, Zt) and Sit = φt(S
i
t−1, {Y i

t , Zt, A
i
t})

for t ∈ T \{1}; see part (i) of Definition 5.5 and (5.16).

To prove condition (2) let

g∗jt (hjt) = σ∗jt (l(hjt), γt(ct)), (D.12)
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for all j ∈ N and t ∈ T . Then condition (2) is satisfied since

Pσ∗ψ {sit+1, πt+1|hit, ait}1

=∑
h−it ,a−it

Pσ∗ψ {sit+1, πt+1, h
−i
t , a

−i
t |hit, ait}

by Theorem 5.1 and (D.12)
=∑

h−it ,a−it

Pσ∗ψ {sit+1, πt+1|ht, at}Pg
∗−i{h−it |hit}g∗−it (h−it )(a−it )

=∑
h−it ,a−it ,s−it+1

Pσ∗ψ {sit+1, πt+1, s
−i
t+1|ht, at}Pg

∗−i{h−it |hit}g∗−it (h−it )(a−it )

by Lemma D.1 and s−it = l−it (h−it ) (see Definition 5.5)
=∑

h−it ,a−it ,s−it+1

Pσ∗ψ {st+1, πt+1|st, πt, at}Pg
∗−i{s−it |hit}g∗−it (h−it )(a−it )

by part (ii) of Lemma 5.1
=∑

s−it ,a−it ,s−it+1

Pσ∗ψ {st+1, πt+1|st, πt, at}P{s−it |sit, πt}g∗−it (h−it )(a−it )

by (D.12)
=∑

h−it ,a−it ,s−it+1

Pσ∗ψ {sit+1, πt+1, s
−i
t+1|ht, at}P{s−it |sit, πt}σ∗−it (πt, s

−i
t )(a−it )

=

Pσ∗ψ {sit+1, πt+1|sit, πt, ait}

.

1Note that πt(x̃t, s̃t) = Pσ∗{x̃t, s̃t|ct}, that is, given σ∗, πt is a function of ct.
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To prove condition (3), we need to show that for all ait ∈ Ait,

Eg∗−i{uti(Xt, A
−i
t , a

i
t)|hit} = Eg∗−i{uti(Xt, A

−i
t , a

i
t)|πt, sit}, (D.13)

for all hit, πt, s
i
t, t ∈ T .

By Lemma 5.1,

Pg∗−i{s−it |hit} = P{s−it |πt, sit}. (D.14)

Setting πt = γ(ct), and A−it = σ∗−i(πt, S
−i
t ),

Eσ∗ψ {uit(Xt, A
−i
t , a

i
t)|hit} = Eσ∗ψ {uit(Xt, σ

∗−i
t (πt, S

−i
t ), ait)|hit}

= Eσ∗ψ
{
Eσ∗{uit(Xt, σ

∗−i
t (πt, S

−i
t ), ait)|S−it , πt, sti, hit}

∣∣∣hit}
= Eσ∗ψ

{
Eσ∗{uit(Xt, σ

∗−i
t (πt, S

−i
t ), ait)|S−it , πt, sit, ct}

∣∣∣hit}
= Eσ∗ψ

{
Eσ∗{uit(Xt, σ

∗−i
t (πt, S

−i
t ), ait)|S−it , πt, sit, ct}

∣∣∣hit}
= Eσ∗ψ {uit(Xt, σ

∗−i
t (πt, S

−i
t ), ait)|πt, sit}. (D.15)

The first equality above is by substituting A−it = σ∗−it (πt, S
−i
t ). The second

equality follows from the smoothing property of conditional expectation. The third

equality holds by condition (iii) of Definition 5.5. The fourth equality holds since for

every xt, st, πt, ct,

P{xt|st, πt, ct} =
P{xt, st|πt, ct}
P{st, πt, ct}

=
πt(xt, st)∑
x̂t
πt(x̂t, st)

= P{xt|st, πT}.

The last equality is true by (D.14). By (D.15) we prove condition (3) for {Πt, S
i
t} to

be an information state, and thus establish the result of Theorem 5.2.

Proof of Theorem 5.3. Let (σ∗, ψ) denote a solution of the dynamic program. We
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note that the CIB update rule ψ is consistent with σ∗ by requirement (5.26). There-

fore, we only need to show that the CIB assessment (σ∗, ψ) is sequentially rational. To

prove it, we use the one-shot deviation principle for dynamic games with asymmetric

information [51]. To state the one-shot deviation, we need the following definitions.

Definition D.1 (One-shot deviation). We say g̃i is a one-shot deviation from g∗i if

there exists a unique hit ∈ Hi such that g̃it(h
i
t) 6= g∗it (hit), and g̃iτ (h

i
τ ) 6= g∗iτ (hiτ ) for all

hiτ 6= hit, h
i
τ ∈ Hi.

Definition D.2 (Profitable one-shot deviation). Consider an assessment (g∗, µ).

We say g̃i is a profitable one-shot deviation for agent i if g̃i is a one-shot deviation

from g∗i at hit such that g̃it(h
i
t) 6= g∗it (hit), and

E(g∗−i,g̃i)
µ

{
T∑
τ=t

uiτ (Xτ , Aτ )
∣∣∣hit
}
> E(g∗−i,g∗i)

µ

{
T∑
τ=t

uiτ (Xτ , Aτ )
∣∣∣hit
}

One-shot deviation principle [51]: A consistent assessment (g∗, µ) is a PBE

if and only if there exists no agent that has a profitable one-shot deviation.

Below, we show that the consistent CIB assessment (σ∗, ψ) satisfies the sequential

rationality condition using the one-shot deviation principle.

Consider an arbitrary agent i ∈ N , time t ∈ T , and history realization hit ∈ Hi
t.

Agent i has a profitable one-shot deviation at hit only if

σ∗it (πt, s
i
t) /∈ arg max

g̃it(h
i
t)∈∆(Ait)

Eσ∗π
{
Ū i
t ((σ

∗(πt, St)), St, πt, Vt+1, ψt+1)
∣∣∣hit} .

Given (πt, Vt+1, ψt+1, σ
∗
t ), the expected value of the function Ū i

t conditioned on

hit is only a function of sit, agent i’s belief about S−it , as well as agent i’s strategy

g̃it(h
i
t). Agent i’s belief about S−it given hit is only a function of sit and πt (see (5.18)).

Therefore, any solution to the maximization problem above can be written as a

function of πt and sit, that is, it is a CIB strategy σ̃it(πt, s
i
t) for agent i. Consequently,
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agent i has a profitable one-shot deviation only if

σ∗it (πt, s
i
t) /∈ arg max

σ̃it(πt,s
i
t)∈∆(Ait)

Eσ∗π
{
Ū i
t ((σ

∗(πt, St)), St, πt, Vt+1, ψt+1)
∣∣∣πt, sit} .

By (5.25), σ∗t is BNE of the stage game Gt(πt, Vt+1, ψt+1) at t (see also (5.21)),

i.e.

σ∗it (πt, s
i
t) ∈ arg max

σ̃it(πt,s
i
t)∈∆(Ait)

Eσ∗π
{
Ū i
t ((σ

∗(πt, St)), St, πt, Vt+1, ψt+1)
∣∣∣πt, sit} .

Consequently, there exists no profitable deviation from σ∗it (πt, s
i
t) at hit. Therefore,

there exists no agent that has a profitable one-shot deviation. Hence, by one-shot

deviation principle, the consistent CIB assessment (σ∗, ψ) is sequentially rational,

and thus, it is a CIB-PBE.

Proof of Theorem 5.4. Consider an arbitrary strategy profile g. We prove the exis-

tence of CIB strategy profile that is equivalent to g by construction.

With some abuse of notation, let σi(Πt, S
i
t , ω) denote agent i’s strategy using the

public randomization device ω. We construct a CIB strategy profile σt that has the

following properties:

(a) the induced distribution on {Πt+1, St+1} under σ coincides with one under g, i.e.

Pσ1:t {πt+1, st+1} = Pg1:t {πt+1, st+1} . (D.16)

(b) the continuation payoff for all the agents under σ is the same as that under g,

i.e.

Eg
{

T∑
τ=t

uiτ (Xτ , gτ (Hτ ))

}
= Eσ

{
T∑
τ=t

uiτ (Xτ , στ (Πτ , Sτ , ω))

}
, ∀i ∈ N .

(D.17)

We prove condition (a) with forward induction and condition (b) by backward

induction. We note that condition (a) is satisfied for t = 1, since at t = 1 no action
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has been taken. Moreover, condition (b) is satisfied for t = T + 1 since there is no

future.

Assume that condition (a) is satisfied from 1 to t, t ∈ T . We construct σt below

such that condition (a) is satisfied at t+ 1.

For every t ∈ T and i ∈ N , let Ki
t denote the dimension of Hi

t ⊆ RKi
t , i.e.

H i
t = {H i,1

t , H
i,2
t , ..., H

i,Ki
t

t }. Let F g

Hi,k
t |Πt,Sit

(·|·, ·), 1 ≤ k ≤ Ki
t , denote the cumulative

distribution function of H i,k
t conditional on Πt and Sit when the agents play according

to g. Define Ri,k
t := F g

Hi,k
t |Πt,Sit

(H i,k
t |Πt, S

i
t). The random variable Ri,k

t , 1 ≤ k ≤ Ki
T ,

is uniformly distributed on [0, 1], and it is independent of Πt and Sit . Let Ri
t :=

(Ri,1
t , R

i,2
t , ..., R

i,Ki
t

t ). We note that H i
t can be written as a function of (Πt, S

i
t , R

i
t) as

H i
t =F−1

Rit|Πt,Sit
(Ri

t,Πt,S
i
t)

:=(F−1

Ri,1t |Πt,Sit
(Ri,1

t ,Πt,S
i
t),F

−1

Ri,2t |Πt,Sit
(Ri,2

t ,Πt,S
i
t), ...,F

−1

R
i,Kit
t |Πt,Sit

(R
i,Ki

t
t ,Πt,S

i
t)),

where

F−1

Ri,kt |Πt,Sit
(Ri,k

t ,Πt, S
i
t) := inf{(ĥi,kt ∈ H

i,k
t : F g

Hi,k
t |Πt,Sit

(ĥi,kt |Πt, S
i
t) ≥ Ri,k

t },

for 1 ≤ k ≤ Ki
t .

We show below that Ri
t is independent of St.

Lemma D.2. The random variable Ri
t, i ∈ N , is independent of Πt and St for all

t ∈ T .

Proof of Lemma D.2. To prove that Ri
t is independent of Πt and St, we need to

show that Pg{Ri
t ∈ R̃i

t|Πt ∈ Π̃t, S
−i
t ∈ S̃−it , Sit ∈ S̃ it} = Pg{Ri

t ∈ R̃i
t} for all Π̃t ∈

B(∆(Xt × St))2, S̃−it ∈ 2S
−i
t 3, S̃ it ∈ 2S

i
t , and R̃i

t ∈ B([0, 1]).

2For any uncountable set Λ, B(Λ) denotes the Borel σ-field on Λ.
3For any finite set Λ, 2Λ denotes the power set of Λ.

235



First, we note that

Pg{s−it |ht} = Pg{s−it |st, ct} =
Pg{s−it , sit|ct}
Pg{sit|ct}

=
πt(s

−i
t , s

i
t)∑

ŝ−it
πt(ŝ

−i
t , s

i
t)

= P{s−it |st, πt}.

(D.18)

Therefore, we can write

Pg{S−it ∈ S̃−it |Πt ∈ Π̃t, S
i
t ∈ S̃ it}

by (D.18)
= Pg{S−it ∈ S̃−it |Πt ∈ Π̃t, S

i
t ∈ S̃ it , Ri

t ∈ R̃i
t}

=
Pg{S−it ∈ S̃−it , Ri

t ∈ R̃i
t|Πt ∈ Π̃t, S

i
t ∈ S̃ it}

Pg{Ri
t ∈ R̃i

t|Πt ∈ Π̃t, Sit ∈ S̃ it}

=
Pg{S−it ∈ S̃−it , Ri

t ∈ R̃i
t|Πt ∈ Π̃t, S

i
t ∈ S̃ it}

Pg{Ri
t ∈ R̃i

t}

=
Pg{Ri

t ∈ R̃i
t|Πt ∈ Π̃t, S

−i
t ∈ S̃−it , Sit ∈ S̃ it}Pg{S−it ∈ S̃−it |Πt ∈ Π̃t, S

i
t ∈ S̃ it}

Pg{Ri
t ∈ R̃i

t}
⇐⇒

Pg{Ri
t ∈ R̃i

t} = Pg{Ri
t ∈ R̃i

t|Πt ∈ Π̃t, S
−i
t ∈ S̃−it , Sit ∈ S̃ it}.

(D.19)

The first equality holds since H i
t is uniquely determined by (Πt, S

i
t , R

i
t) and vice

versa. The second equality is by Bayes’ rule. The third equality is true since Ri
t is

independent of Πt and Sit . The fourth equality is true by Bayes’ rule. By (D.19), Ri
t

is independent of Πt and St for all i ∈ N .

Using the result of Lemma D.2, we construct a CIB strategy profile σt equivalent

to gt as follows. Let R̂1:N
t (ω) denote a random vector the agents construct using the

public randomization device ω that has an identical joint cumulative distribution to

that of R1:N
t . Note that by Lemma D.2, the distribution of R1:N

t is independent of

St and Πt.
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Define,

σit(Πt, S
i
t , ω) := git(F

−1
Rit|Sit ,Πt

(R̂i
t(ω),Πt, S

i
t)). (D.20)

Then,

Pg1:t{πt+1, st+1|Ht} =Pg1:t{πt+1, st+1|Πt, St, Rt}
distribution

= Pg1:t{πt+1, st+1|Πt, St, R̂t}

=Pσ1:t{πt+1, st+1|Πt, St, R̂t}.

Taking the expectation of the left and right hand sides with respect to ω and Rt,

respectively, and using the fact that R̂(ω) and Rt are independent of St and Πt

(Lemma D.2), we obtain

Pσ1:t {πt+1, st+1|Πt, St} = Pg1:t {πt+1, st+1|Πt, St} w.p.1. (D.21)

By induction hypothesis, we have Pσ1:t−1 {πt, st} = Pg1:t−1 {πt, st}. Therefore,

taking the expectation from both sides of (D.21) with respect to Πt, St, we establish

that condition (a) holds for time t+ 1.

Next, assume that condition (b) is satisfied from t + 1 to T , t ∈ T . We prove

below that condition (b) is satisfied at t.

We have,

Eg{uit(Xt, At)|Ht} =Eg{uit(Xt, At)|Πt, St, Rt}
distribution

= Eg{uit(Xt, At)|Πt, St, R̂t}

=Eσ{uit(Xt, At)|Πt, St, R̂t}

Therefore, using condition (a) at time t, i.e Pσ1:t−1{st, πt} = Pg1:t−1{st, πt}, the

induction hypothesis on condition (b) for t + 1, and the fact that Rt and R̂t are
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identically distributed and independent of Πt and St, we obtain

Eg
{

T∑
τ=t

uiτ (Xτ , gτ (Hτ ))

}
= Eσ

{
T∑
τ=t

uiτ (Xτ , στ (Πτ , Sτ , ω))

}
,

where the last equality is true by induction hypothesis on (b) at t+ 1.

Proof of Theorem 5.5. The proof of Theorem 5.5 follows from an argument similar

to that of Theorem 5.3 using the one-shot deviation principle.

Let (σ∗s , ψs) denote a solution of the dynamic programming given by (5.34)-(5.36).

The CIB assessment (σ∗s , ψs) is consistent by construction. We prove that (σ∗s , ψs)

satisfies sequential rationality by using the one-shot deviation principle.

Agent i has a profitable one-shot deviation at hit only if

σ∗is (πt, s
i
t) /∈ arg max

g̃it(h
i
t)∈∆(Ait)

Eσ∗π
{
Ū i
s((σ

∗
s(πt, St)), St, πt, Vs, ψs)

∣∣∣hit} . (D.22)

Given (πt, Vs, ψs, σ
∗
s), the expected value of the function Ū i

s conditioned on hit is

only a function of sit, agent i’s belief about S−it , as well as agent i’s strategy g̃it(h
i
t).

By part (ii) of Lemma 5.1, agent i’s belief about S−it given hit is only a function of sit

and πt. Therefore, any solution to the maximization problem above can be written

as a function of πt and sit. Consequently, agent i has a profitable one-shot deviation

only if

σ∗is (πt, s
i
t) /∈ arg max

σ̃is(πt,s
i
t)∈∆(Ait)

Eσ∗π
{
Ū i
s((σ

∗(πt, St)), St, πt, Vs, ψs)
∣∣∣πt, sit} . (D.23)

By (5.34), σ∗s is BNE of the stage game Gs(πt, Vs, ψs) at t, i.e.

σ∗is (πt, s
i
t) ∈ arg max

σ̃is(πt,s
i
t)∈∆(Ait)

Eσ∗π
{
Ū i
s((σ

∗(πt, St)), St, πt, Vs, ψs)
∣∣∣πt, sit} . (D.24)

That is, there exists no profitable deviation from σ∗is (πt, s
i
t) at hit. Therefore, by

one-shot deviation principle, the consistent CIB assessment (σ∗s , ψS) is sequentially

rational, and thus, is a PBE.
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Proof of Theorem 5.6. The proof of Theorem 5.6 follows from an argument similar

to that of Theorem 5.3.

Proof of Lemma 5.2. We prove below that if Vt+1(·, st+1) is continuous in πt+1, then

the dynamic program has a solution at stage t, t ∈ T ; that is, there exists at least

one σ∗t such that σ∗t ∈ BNEt(Vt+1, ψt+1), where ψt+1 is consistent with σ∗t .

For every πt, define a perturbation of the stage game Gt(πt,Vt+1, ψt+1) by re-

stricting the set of strategies of each agent to mixed strategies that assign probability

of at least ε > 0 to every action ait ∈ Ait of agent i ∈ N ; for every agent i ∈ N we

denote this class of ε-restricted strategies by Σε,i
t and Σε

t := Σε,1
t × . . .×Σε,N

t . In the

following we prove that, for every ε > 0, the corresponding perturbed stage game

has an equilibrium σ∗,εt along with a consistent update rule ψεt+1.

We note that when the agents’ equilibrium strategies are perfectly mixed strate-

gies, then the update rule ψεt+1 is completely determined via Bayes’ rule. Therefore,

for every strategy profile σ∗,εt ∈ Σε
t we can write ψεt+1 := βt+1(σ∗,ε), where βt+1(σ∗,ε)

is Bayes’ rule where σ∗,ε is utilized (see (5.13))

For every agent i ∈ N , define a best response correspondence BRi,ε
t : Σε

t ⇒ Σε,i
t

as

BRi,ε
t (σ∗,εt ) :=

{
σit∈Σε,i

t :σit(πt,s
i
t)∈arg max

σ̂it∈Σε,it

Eσ
∗,ε
t ,σit{Ū i

t (At,St,πt,Vt+1,βt+1(σ∗t ))|sit,πt},

∀πt,sit

}
, (D.25)

which determines the set of all agent i’s best responses within the class of ε-restricted

strategies assuming that agents −i are playing σ∗−i,εt and the update rule ψεt+1 =

βt+1(σ∗,εt ).

For every i ∈ N and σ∗,ε ∈ Σε
t, we prove below that BRi,ε

t (σ∗t ) is non-empty,

convex, closed, and upper hemicontinuous.
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We note that

Eσ
∗,ε
t ,σit{Ū i

t (At, St, πt, Vt+1, βt+1(σ∗,εt ))|sit, πt}

=∑
ait

Eσ∗t ,Ait=ait{Ū i
t (At, St, πt, Vt+1, βt+1(σ∗t ))|sit, πt}σit(πt, sit)(ait)

=∑
ait

Ũσ∗

πt,sit
(ait)σ

i
t(πt, s

i
t)(a

i
t),

where Ũσ∗,ε

πt,sit
(ait) := Eσ

∗,ε
t ,Ait=a

i
t{Ū i

t (At, St, πt, Vt+1, βt+1(σ∗,εt ))|sit, πt}.
Therefore, for every πt, s

i
t, we have σit(πt, s

i
t) ∈ arg maxα∈∆(Ait):α(ait)≥ε,∀ait

∑
ait
Ũσ∗,ε

πt,sit

(ait)α(ait). We note that maxα∈∆(Ait):α(ait)≥ε,∀ait

∑
ait
Ũσ∗,ε

πt,sit
(ait)α(ait) is a linear program,

thus, by Theorem 16 of [93], the set of agent i’s best responses BRi,ε
t (σ∗,εt ) is closed

and convex. If Vt+1 is continuous in πt+1 then Vt+1 is continuous in agent i’s strategy

σit. Moreover, the instantaneous utility uit is continuous in agent i’s strategy σit.

Therefore, Ū i
t , given by (5.20), is continuous in agent i’ strategy σit. Therefore, by

the maximum theorem [95] the set of i’s best responses in upper hemicontinuous in

σ∗,εt and non-empty.

Consequently, we establish that for every i ∈ N , BRi,ε
t (σ∗t ) is closed, convex,

upper hemicontinuous, and non-empty for every σ∗t ∈ Σε
t. Define BRε

t := ×i∈NBRi,ε
t

where × denotes the Cartesian product. The correspondence BRε
t(σ
∗
t ) is closed,

convex, upper hemicontinuous, and non-empty for every σ∗t ∈ Σε
t since BRi,ε

t (σ∗t )

is closed, convex, upper hemicontinuous, and non-empty for every σ∗it ∈ Σi,ε
t for

all i ∈ N . Therefore, by Kakutani’s fixed-point theorem [23, Corollary 15.3], the

correspondence BRε
t has a fixed point. Therefore, every perturbed stage game has

an equilibrium σ∗,εt along with a consistent update rule ψt+1 = βt+1(σ∗,εt ).

Now consider the sequence of these perturbed games when ε → 0. Since the

set of agents’ strategies is compact, there exists a subsequence of these perturbed

games whose equilibrium strategies converge, say to σ∗t . Similarly let ψ∗t+1 denote

the convergence point of βt+1(σ∗,εT ). We note that ψ∗t+1 is consistent with σ∗t since
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βt+1(σ∗) (i.e. Bayes’ rule) is continuous in σ∗t . We show below that for every agent

i ∈ N , σ∗it is a best response for him given Vt+1, ψ
∗
t+1 when he chooses his strategy

from the unconstrained class of CIB strategies.

As we proved above, the set of agent i’s best responses BRi
t(σ
∗
t ) is upper hemicon-

tinuous and closed given ψ∗t+1. Therefore, σ∗t (πt, ·) is also a best response for agent i

in the stage game Gt(πt,Vt+1, ψ
∗
t+1). Consequently, σ∗t ∈ BNEt(Vt+1, ψ

∗
t+1) where

ψ∗t+1 is consistent with σ∗t .

Proof of Theorem 5.7. We have a Bayesian zero-sum game with finite state and ac-

tion spaces. By [34, Theorem 1] the equilibrium payoff is a continuous function of

the agents’ common prior/belief. Using this result, we prove, by backward induction,

that every stage of the dynamic program described by (5.25)-(5.27), has a solution

and Vt is continuous in πt for all t.

For t = T + 1 the dynamic program has a solution trivially since the agents

have utility for time less than or equal to T . Moreover, VT+1(., .) = 0 is trivially

continuous in πT+1.

For t ≤ T , assume that Vt+1 is continuous in πt+1. Then, by Lemma 5.2 the

dynamic program has a solution at t. We note that the continuation game from t

to T is a dynamic zero-sum game with finite state and actions spaces. Therefore, as

we argued above, by [34, Theorem 1] the agents’ equilibrium payoff at t (i.e. Vt) is

unique and is continuous in the agents’ common prior given by πt.

Therefore, by induction we establish the assertion of Theorem 5.7.

Proof of Lemma 5.3. Assume that ψ1:T is independent of σ. Then, the evolution

of Πt is independent of σ∗ and known a priori. As a result, we can ignore the

consistency condition (5.26) in the dynamic program. Given ψt+1, the stage game

Gt(πt,Vt+1, ψt+1) is a static game of incomplete information with finite actions

(given by A1:N
t ) and finite types (given by S1:N

t ) for every πt. Therefore, by the

standard existence results for finite games [43, Theorem 1.1], there exists an equi-

librium for the stage game BNEt(Vt+1, ψt+1). Consequently, the correspondence

BNEt(Vt+1, ψt+1) is non-empty for every t ∈ T , thus, the dynamic programming

given by (5.25-5.27) has a solution.
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[9] T. Başar and G. Olsder. Dynamic Noncooperative Game Theory, volume 23.
Siam, 1999.

242



[10] R. Balakrishna, M. Ben-Akiva, J. Bottom, and S. Gao. Information impacts
on traveler behavior and network performance: State of knowledge and future
directions. In Advances in dynamic network modeling in complex transportation
systems, pages 193–224. Springer, 2013.

[11] X. Ban, Y. Li, and J. Margulici. Optimal use of changeable message signs for
displaying travel times. 2009.

[12] M. Battaglini and R. Lamba. Optimal dynamic contracting: the first-order
approach and beyond. working paper, Available at SSRN 2172414, 2015.

[13] P. Battigalli. Strategic independence and perfect Bayesian equilibria. Journal
of Economic Theory, 70(1):201–234, 1996.

[14] M. Ben-Akiva, A. de Palma, and I. Kaysi. The impact of predictive informa-
tion on guidance efficiency: An analytical approach. In Advanced methods in
transportation analysis, pages 413–432. Springer, 1996.

[15] D. Bergemann and S. Morris. Bayes correlated equilibrium and the comparison
of information structures in games. Theoretical Economics, 11(2):487–522,
2016.

[16] D. Bergemann and S. Morris. Information design and Bayesian persuasion
information design, Bayesian persuasion, and Bayes correlated equilibrium.
The American Economic Review, 106(5):586–591, 2016.

[17] D. Bergemann and S. Morris. Information design: A unified perspective. 2017.

[18] K. Bimpikis, S. Ehsani, and M. Mostagir. Designing dynamic contests. In 16th
ACM conference on Economics and Computation (EC), pages 281–282, 2015.

[19] E. Bitar and K. Poolla. Selling wind power in electricity markets: The status
today, the opportunities tomorrow. In American Control Conference (ACC).
IEEE, 2012.

[20] E. Bitar, R. Rajagopal, P. Khargonekar, K. Poolla, and P. Varaiya. Bringing
wind energy to market. IEEE Transactions on Power Systems, 2012.

[21] E. Bitar and Y. Xu. On incentive compatibility of deadline differentiated
pricing for deferrable demand. In 52nd IEEE Conference on Decision and
Control (CDC). IEEE, 2013.

243



[22] P. Bolton and C. Harris. Strategic experimentation. Econometrica, 67(2):349–
374, 1999.

[23] K. Border. Fixed point theorems with applications to economics and game
theory. Cambridge university press, 1989.

[24] S. Borenstein. The trouble with electricity markets: understanding California’s
restructuring disaster. Journal of Economic Perspectives, pages 191–211, 2002.

[25] T. Borgers, D. Krahmer, and R. Strausz. An introduction to the theory of
mechanism design. Oxford University Press, 2015.

[26] K. Brunhuber. Shortcut-finding app Waze creating residential traffic
headaches, February 29 2016. [Online; posted 29-Februar-2016].

[27] P. Cardaliaguet, C. Rainer, D.h Rosenberg, and N. Vieille. Markov games
with frequent actions and incomplete information-the limit case. Mathematics
of Operations Research, 2015.

[28] H. Chao and R. Wilson. Multi-dimensional procurement auctions for power
reserves: Robust incentive-compatible scoring and settlement rules. Journal of
Regulatory Economics, 22(2):161–183, 2002.

[29] Ch. Chen, A. Skabardonis, and P. Varaiya. A system for displaying travel times
on changeable message signs. University of California, Berkeley, 94720:1720,
2003.

[30] J. Cochran, L. Bird, J. Heeter, and D. Arent. Integrating variable renew-
able energy in electric power markets. best practices from international experi-
ence. Technical report, National Renewable Energy Lab.(NREL), Golden, CO
(United States), 2012.

[31] P. Courty and L. Hao. Sequential screening. The Review of Economic Studies,
2000.

[32] P. Dasgupta, P. Hammond, and E. Maskin. The implementation of social
choice rules: Some general results on incentive compatibility. The Review of
Economic Studies, pages 185–216, 1979.

[33] A. De Palma, R. Lindsey, and N. Picard. Risk aversion, the value of informa-
tion, and traffic equilibrium. Transportation Science, 46(1):1–26, 2012.

244



[34] E. Einy, O. Haimanko, and B. Tumendemberel. Continuity of the value and
optimal strategies when common priors change. International Journal of Game
Theory, 41(4), 2012.

[35] J. Ely. Beeps. The American Economic Review, 107(1):31–53, 2017.

[36] R. Emmerink, P. Nijkamp, P. Rietveld, and J. Van Ommeren. Variable message
signs and radio traffic information: An integrated empirical analysis of drivers’
route choice behaviour. Transportation Research Part A: Policy and Practice,
30(2):135–153, 1996.

[37] J. Escobar and J. Toikka. Efficiency in games with Markovian private infor-
mation. Econometrica, 81(5):1887–1934, 2013.
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Markov perfect equilibria for linear-Gaussian games with asymmetric informa-
tion. SIAM J. Control Optim., 52(5):3228–3260, 2014.

[47] M. Halac, N. Kartik, and Q. Liu. Optimal contracts for experimentation. The
Review of Economic Studies, 83(3):1040–1091, 2016.

[48] M. Halac, N. Kartik, and Q. Liu. Contests for experimentation. Journal of
Political Economy, 125(5):000–000, 2017.

[49] T. Haring, J. Mathieu, and G. Andersson. Decentralized contract design for
demand response. In 10th International Conference on the European Energy
Market (EEM), pages 1–8. IEEE, 2013.

[50] J. Harsanyi. Games with incomplete information played by Bayesian players,
i–iii. Management science, 50(12 supplement):1804–1817, 2004.

[51] E. Hendon, H. Jacobsen, and B. Sloth. The one-shot-deviation principle for
sequential rationality. Games and Economic Behavior, 12(2):274–282, 1996.

[52] S. Hendrix. Traffic-weary homeowners and Waze are at war, again. guess who’s
winning?, June 5 2016. [Online; posted 5-June-2016].

[53] Y.i Ho. Team decision theory and information structures. Proceedings of the
IEEE, 68(6):644–654, 1980.

[54] J. Hörner and A. Skrzypacz. Learning, experimentation and information de-
sign. Technical report, Working Paper, 2016.

[55] J. Hörner, T. Sugaya, S. Takahashi, and N. Vieille. Recursive methods in
discounted stochastic games: An algorithm for δ → 1 and a folk theorem.
Econometrica, 79(4):1277–1318, 2011.

[56] NERC Intermittent and Variable Generation Task Force. Accommodating high
levels of variable generation. Technical report, North American Electric Reli-
ability Corp.(NERC), 2009.

[57] T. Jamasb and M. Pollitt. Electricity market reform in the European Union:
review of progress toward liberalization & integration. The Energy Journal,
pages 11–41, 2005.

246



[58] A. Kagiannas, D. Askounis, and J. Psarras. Power generation planning: a
survey from monopoly to competition. International journal of electrical power
& energy systems, 26(6):413–421, 2004.

[59] E. Kamenica and M. Gentzkow. Bayesian persuasion. The American Economic
Review, 101(6):2590–2615, 2011.

[60] G. Keller and S. Rady. Strategic experimentation with poisson bandits. The-
oretical Economics, 5(2):275–311, 2010.

[61] G. Keller, S. Rady, and M. Cripps. Strategic experimentation with exponential
bandits. Econometrica, 73(1):39–68, 2005.

[62] C. Klessmann, C. Nabe, and K. Burges. Pros and cons of exposing renewables
to electricity market risks a comparison of the market integration approaches
in Germany, Spain, and the UK. Energy Policy, 2008.

[63] Daniel Krähmer and Roland Strausz. Ex post information rents in sequential
screening. Games and Economic Behavior, 90:257–273, 2015.

[64] I. Kremer, Y. Mansour, and M. Perry. Implementing the wisdom of the crowd.
Journal of Political Economy, 122(5):988–1012, 2014.

[65] W. Krichene, J. Reilly, S. Amin, and A. Bayen. Stackelberg routing on parallel
networks with horizontal queues. IEEE Transactions on Automatic Control,
59(3):714–727, 2014.

[66] V. Krishna. Auction theory. Academic press, 2009.

[67] P.R. Kumar and P. Varaiya. Stochastic Systems: Estimation Identification and
Adaptive Control. Prentice-Hall, Inc., 1986.

[68] J. Laffont and J. Tirole. A Theory of Incentives in Procurement and Regula-
tion. MIT press, 1993.

[69] Y. Leng, L. Rudolph, A. Pentland, J. Zhao, and H. Koutsopolous. Managing
travel demand: Location recommendation for system efficiency based on mobile
phone data. arXiv preprint arXiv:1610.06825, 2016.

[70] L. Li, C. Langbort, and J. Shamma. Solving two-player zero-sum repeated
Bayesian games. arXiv preprint arXiv:1703.01957, 2017.

247



[71] L. Li and J. Shamma. Efficient strategy computation in zero-sum asymmetric
repeated games. arXiv preprint arXiv:1703.01952, 2017.

[72] W. Lin and E. Bitar. Forward electricity markets with uncertain supply: Cost
sharing and efficiency loss. In 53rd IEEE Conference on Decision and Control
(CDC), 2014.

[73] R. Lindsey, T. Daniel, E. Gisches, and A. Rapoport. Pre-trip information and
route-choice decisions with stochastic travel conditions: Theory. Transporta-
tion Research Part B: Methodological, 67:187–207, 2014.

[74] J. Liu, S. Amin, and G. Schwartz. Effects of information heterogeneity in
Bayesian routing games. arXiv preprint arXiv:1603.08853, 2016.

[75] L. Hansen M. Dewatripont and S. Turnovsky. Advances in Economics and
Econometrics: Theory and Applications, Eighth World Congress, volume 1.
Cambridge University Press, 2003.

[76] A. Mahajan and M. Mannan. Decentralized stochastic control. Annals of
Operations Research, 241(1-2):109–126, 2016.

[77] A. Mahajan and D. Teneketzis. Optimal design of sequential real-time com-
munication systems. IEEE Transactions on Information Theory, 55(11):5317–
5338, 2009.

[78] H. Mahmassani and R. Jayakrishnan. System performance and user response
under real-time information in a congested traffic corridor. Transportation
Research Part A: General, 25(5):293–307, 1991.

[79] G. Mailath and L. Samuelson. Repeated Games and Reputations. Oxford
university press Oxford, 2006.

[80] A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic Theory, vol-
ume 1. Oxford university press New York, 1995.

[81] E.c Maskin and J.n Tirole. Markov perfect equilibrium: I. observable actions.
Journal of Econonomic Theory, 100(2):191–219, 2001.

[82] J. Mathieu, T. Haring, J. Ledyard, and G. Andersson. Residential demand
response program design: Engineering and economic perspectives. In European
Energy Market (EEM), 2013 10th International Conference on the, pages 1–8.
IEEE, 2013.

248



[83] I. Milchtaich. Congestion games with player-specific payoff functions. Games
and Economic Behavior, 13(1):111–124, 1996.

[84] P. Milgrom and I. Segal. Envelope theorems for arbitrary choice sets. Econo-
metrica, pages 583–601, 2002.

[85] P. Milgrom and R. Weber. Distributional strategies for games with incomplete
information. Mathematics of Operations Research, 10(4):619–632, 1985.

[86] D. Miller. Robust collusion with private information. The Review of Economic
Studies, 79(2):778–811, 2012.

[87] R. Myerson. Multistage games with communication. Econometrica, 1986.

[88] R. Myerson and P. Reny. Open sequential equilibria of multi-stage games with
infinite sets of types and actions. Notes, 2015.

[89] A. Nayyar, A. Gupta, C. Langbort, and T. Başar. Common information based
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[137] S. Yüksel and T. Başar. Stochastic Networked Control Systems: Stabilization
and Optimization under Information Constraints. Springer Science & Business
Media, 2013.

[138] S. Zamir. Repeated games of incomplete information: Zero-sum. Handbook of
Game Theory, 1:109–154, 1992.

[139] Y. Zhao, J. Qin, R. Rajagopal, A. Goldsmith, and V. Poor. Wind aggregation
via risky power markets. IEEE Transactions on Power Systems, 2014.

253


