
Computational Approaches to Fire-structure Interaction and Real-time Fire Monitoring

by

Paul A. Beata

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

Doctor of Philosophy

(Civil Engineering and Scientific Computing)

in the University of Michigan

2017

Doctoral Committee:

Associate Professor Ann E. Jeffers, Chair

Professor Sherif El-Tawil

Professor Krishnakumar R. Garikipati

Professor Vineet R. Kamat

Paul A. Beata

pbeata@umich.edu

ORCID iD: 0000-0002-0445-4558

© Paul A. Beata 2017

ii

Dedication

This dissertation is dedicated to my fiancée and my inspiration: Lucia. I would not have been able

to complete this research without her love and support for the last five years. I want to thank her

for understanding me and working together to keep our long-distance relationship strong.

iii

Acknowledgements

My advisor Dr. Jeffers has influenced my research, education, and life in so many positive ways.

I want to thank her as my advisor and mentor, especially for the patience, understanding, and

guidance through the difficult times of graduate school. Most importantly, Dr. Jeffers allowed me

to explore my own interests in research and coursework and encouraged independent growth. I

would also like to thank my committee: Dr. Kamat, Dr. El-Tawil, and Dr. Garikipati. They have

been very helpful in this time leading up to the defense and have always been so nice to me over

the years. Additionally, Dr. Kochunas, who guided me through his class on scientific computing

and encouraged me during labs and office hours, has provided a major influence in my career

decisions and goals. Dr. Prevatt at the University of Florida helped me develop as an undergraduate

researcher and prepared me for graduate school. It was a pleasure working and learning alongside

all of my friends at Michigan from CEE, everyone from our 1267 office, and our awesome research

team (Qianru, Ha, and Alyssa). Also from our team, I want to thank my research brothers and best

friends, Ning and Jason, for our strong friendship and for all their support over the years; we shared

the best memories of grad school together. Finally, my parents and sister (Paul, Michelle, and

Gianna), who supported my decision to leave Florida and pursue my goals. They provided me with

the love and care that I needed to finish my degree, especially when things were the most

challenging. I especially want to thank my parents for their lifelong guidance and encouragement.

I would not have been able to complete this degree without my professors, friends, family, and my

fiancée, Lucia; I am extremely grateful for all of their support.

iv

Table of Contents

Dedication .. ii

Acknowledgements .. iii

List of Figures ... viii

List of Tables ... xv

Abstract ... xvi

Chapter 1 Introduction... 1

1.1 Task 1: The Fire-structure Interaction Problem .. 2

1.2 Task 2: Computational Framework for Real-time Fire Monitoring 5

1.3 Organization of the Dissertation ... 7

1.4 References ... 9

Chapter 2 Spatial Homogenization Algorithm for Bridging Disparities in Scale between the

Fire and Solid Domains .. 10

2.1 Introduction ... 11

2.2 Governing Equations .. 15

2.2.1 2D Formulation ... 17

2.2.2 3D Formulation ... 20

2.3 Implementation ... 24

2.3.1 2D Implementation .. 25

v

2.3.2 3D Implementation .. 26

2.4 Results ... 27

2.4.1 2D Application .. 27

2.4.2 3D Application .. 32

2.5 Conclusions ... 39

2.6 Acknowledgements ... 40

2.7 References ... 40

Chapter 3 Thermo-mechanical Shell Element for Coupled Fire-structure Analysis 42

3.1 Introduction ... 42

3.2 Coupled thermo-mechanical shell element ... 46

3.2.1 Thermal shell element ... 47

3.2.2 Coupling approach .. 49

3.2.3 Mechanical shell element .. 52

3.2.4 Coupled shell element ... 55

3.2.5 Through-thickness integration... 59

3.3 Numerical results .. 62

3.3.1 Thermal stress in a cylinder .. 63

3.3.2 Simply supported heated plate .. 65

3.4 Conclusions ... 69

3.5 Acknowledgements ... 70

3.6 References ... 70

Chapter 4 Applications of the Thermo-mechanical Shell Element in Coupled Fire-structure

Analyses ... 72

vi

4.1 Introduction ... 72

4.2 Fire-structure Coupling using Shell Elements .. 76

4.3 Plate Exposed to Local Fire .. 78

4.4 Beam Exposed to Local Fire ... 84

4.5 Analysis of the Time Step and Mesh Size .. 86

4.6 Discussion of Results .. 94

4.7 References ... 96

Chapter 5 Real-Time Fire Monitoring for the Post-Ignition Fire State in a Building 97

5.1 Introduction ... 97

5.2 LCM-Based Computing Infrastructure ... 105

5.3 Data Collection for Fire Monitoring ... 110

5.4 Event Detection Model ... 116

5.4.1 Hazard 1: Smoke Toxicity... 119

5.4.2 Hazard 2: Burn Threats ... 123

5.4.3 Hazard 3: Fire Status ... 125

5.4.4 Summary and Testing.. 128

5.5 Visualization using BIM ... 129

5.6 System Testing with Simulated Fire ... 138

5.7 Performance Testing for the Real-time Requirement ... 148

5.8 Conclusion .. 154

5.9 Acknowledgements ... 155

5.10 References ... 155

Chapter 6 Conclusion ... 159

vii

6.1 The Fire-structure Interaction Problem ... 160

6.2 Computational Framework for Real-time Fire Monitoring 161

6.3 Limitations and Future Work .. 163

Appendix A ... 165

viii

List of Figures

Figure 2-1: Differences in scale for a sequentially coupled analysis (the extreme case of a fire

impinging on a structure is shown) ... 12

Figure 2-2: Macro heat transfer elements: (a) fiber heat transfer element [15] and (b) plate/shell

heat transfer element [16] ... 14

Figure 2-3: 2D elements exposed to non-uniform surface flux: (a) non-uniform flux and (b)

equivalent nodal fluxes ... 17

Figure 2-4: Overview of the four methods developed for 2D spatial homogenization 18

Figure 2-5: Isoparametric element with non-uniform boundary condition 20

Figure 2-6: 3D shell heat transfer element with non-uniform thermal load 21

Figure 2-7: Mapping between real and natural coordinates .. 21

Figure 2-8: A fine mesh for measuring fluxes in the CFD domain superimposed on a single finite

element with nine nodes in this case ... 22

Figure 2-9: Integration over a surface using the trapezoid rule .. 22

Figure 2-10: Relation between integration point sampling schemes and the relative mesh sizes in

the CFD and FEA domains ... 23

Figure 2-11: Flowchart for sequentially coupled analysis .. 25

Figure 2-12: 2D application involving a solid exposed to a random heat flux 27

Figure 2-13: Heat flux at the integration points: (a) averaging method, (b) sampling method, (c)

least squares method, and (d) trapezoid rule ... 30

ix

Figure 2-14: Heat flux at the integration points: (a) averaging method, (b) sampling method, (c)

least squares method, (d) trapezoid rule method .. 31

Figure 2-15: Fire simulation in FDS ... 33

Figure 2-16: Mesh configurations used in the test: (a) shell element models of 2×1, 4×2, 8×4, and

16×8 elements, each containing five layers through the thickness (not depicted); (b) solid element

model with four elements through the thickness .. 34

Figure 2-17: Incident heat flux over time for a sensor at the center of the plate 35

Figure 2-18: Contours of the temperature field at the mid-surface of the plate after 12 minutes of

fire exposure (a) 2×1 shell model, (b) 4×2 shell model, (c) 8×4 shell model, and (d) 16×8 shell

model, and (e) 80×40 solid element model ... 36

Figure 2-19: Section for contour plots taken through the thickness ... 37

Figure 2-20: Temperature field through the thickness at 6 min (top) and 12 min (bottom): (a) coarse

shell mesh of 2×1, (b) fine shell mesh of 16×8, and (c) the solid element model 38

Figure 3-1: Overview of the sequentially coupled fire-structure interaction problem using CFD-to-

FEA coupling methods ... 43

Figure 3-2: Layered thermal shell element, as originally presented in [5] 48

Figure 3-3: Corner node at the mid-surface of the shell element, as originally presented in [5] . 49

Figure 3-4: Verification problem for analyzing thermal stress in a cylinder 64

Figure 3-5: Simply supported rectangular plate geometry and boundary conditions; the linear

temperature through the thickness h is shown as well .. 66

Figure 3-6: Simply supported plate with displacement boundary conditions explicitly defined for

the 3D FEA model employing shell elements .. 66

x

Figure 3-7: Comparison of the results for the out-of-plane displacement of the plate along the two

centerlines of the domain using thermo-mechanical shell elements ... 68

Figure 4-1: Model details and material properties for the flat plate exposed to a local fire 79

Figure 4-2: Temperature and displacement results at the center of the plate; temperatures provided

at the top, middle, and bottom (highest temperatures) of the plate at this central point 80

Figure 4-3: Temperatures on the heated surface along the two centerlines of the plate at 3 min and

10 min using four different meshes .. 80

Figure 4-4: Displacement along the two centerlines of the plate at 3 min and 10 min 81

Figure 4-5: The meshes used for each test (top), the resulting temperature field for the heated

surface at the final time step (middle), and the corresponding out-of-plane displacement at this

time (bottom) .. 82

Figure 4-6: Convergence plot for temperature and displacement; computed using the two-norm

relative error between each mesh with the finest mesh (16×32) .. 83

Figure 4-7: Beam model exposed to a local fire with dimensions and material properties provided;

the fire is off center by 0.5 m in the CFD model .. 84

Figure 4-8: Temperature and displacement results at the final time step along the neutral axis

(middle of the web) and along the bottom flange centerline; the right image shows the displacement

from the centerline (i.e., displacement U1 along the x-axis in the Abaqus model) 85

Figure 4-9: FDS model for a particular configuration used in the mesh size and time step study 87

Figure 4-10: Comparison of the various mesh sizes used in the study and the corresponding

boundary data grids; the number above each mesh is the ratio of the FEA element size (green

outline of each element) to the CFD cell size (red dot for the center of each cell) 89

xi

Figure 4-11: Diagram showing the locations of points on the plate selected for the temperature-

time plots ... 90

Figure 4-12: Temperature-time curve at Point A for the uniform boundary condition 91

Figure 4-13: Temperature-time curve at Point B for the bilinear boundary condition 91

Figure 4-14: Temperature-time curve at Point A for the FDS-based boundary conditions 91

Figure 4-15: Temperature results at the final step for either point A or B (as in previous figure)

with respect to the FEA mesh size for the three cases of (a) uniform, (b) bilinear, and (c) FDS

boundary conditions .. 93

Figure 4-16: Temperature results at the final step for either point A or B (as in previous figure)

with respect to the subcycling time step for the three cases of (a) uniform, (b) bilinear, and (c) FDS

boundary conditions .. 94

Figure 5-1: The use of data measured at the scene of the fire event could provide an informed

response using real-time computation augmented with the traditional improvised response 99

Figure 5-2: A three-component view of the major features used for real-time fire monitoring; data

is collected within the building during the fire event and used for computation and visualization in

the proposed system .. 103

Figure 5-3: Overview of the proposed LCM-based monitoring system for real-time fire

monitoring; the various colors of the links between different system components represent unique

channels of communication in the LCM framework .. 107

Figure 5-4: The LCM data structure used as a common data type between the main monitoring

program and the event detection sub-model (file sim_sensor.lcm) 108

Figure 5-5: Abbreviated version of the main fire monitoring program main_rtfm.py 109

Figure 5-6: Abbreviated version of the main event detection model program main_edm.cpp 110

xii

Figure 5-7: The timeline of progression of a fire in a building; the aim for the current work is to

provide a monitoring tool for the post-ignition state .. 113

Figure 5-8: The multi-threaded model for simulating multiple sensors with nominal time steps

listed on the timeline to the left; each sensor is mapped to its own thread which accesses its own

unique data file to read and push new data to the main monitoring program using an LCM data

structure... 116

Figure 5-9: The post-processing step was included for use after fire monitoring in order to create

XML-based schedules for animation in ABD; the tasks in the schedule were automatically created

using start and finish times of each threat level based on the event detection model output 133

Figure 5-10: Screenshot of the 3D BIM exterior walls and colored floor plates, highlighted here in

magenta, used for visualizing threat levels; tasks in the XML schedules were tied to the magenta-

colored floor elements... 134

Figure 5-11: Screenshot of the Animation Producer in Bentley ABD with the imported XML tasks

present in the Schedule tree... 135

Figure 5-12: The four possible tasks are shown on the left with their corresponding colors; the

actual representation of a "warning" task is shown to the right for Room 1 in XML format, where

the start/finish times and colors were automatically generated from output generated by the event

detection model ... 136

Figure 5-13: Sample live data captured and plotted in real-time automatically in the monitoring

simulation; these plots were generated on the visualization device (Windows) while the incoming

data was being processed on the computing workstation (Ubuntu) ... 137

Figure 5-14: The floor plan of the fire simulation is shown with the locations of the two fires (blue

square in Room 1 and red square in Room 2); the sensor measurements used in this test were

xiii

recorded at the centers of each room, specifically at the ceiling level, and are marked with green

circles in the image ... 138

Figure 5-15: Time history of the gas temperature output from the FDS fire simulation for the four-

room model; subsequently used as input for the fire monitoring system 140

Figure 5-16: Time history of the radiative heat flux output from the FDS fire simulation for the

four-room model; subsequently used as input for the fire monitoring system 140

Figure 5-17: Time history of the concentrations of carbon monoxide, oxygen, and carbon dioxide

output from the FDS fire simulation for the four-room model; subsequently used as input for the

fire monitoring system .. 141

Figure 5-18: Results of the real-time FED computation for smoke toxicity and burn threats due to

heat; results were computed using measurements at one sensor location per room every 2.0 seconds

as received by the event detection model for real-time calculation .. 142

Figure 5-19: The FDS simulation is shown at 201 seconds, just after the warning for fire status in

Rooms 1 and 2 had increased to Level 1 .. 143

Figure 5-20: Results from the event detection model for each of the three hazards: a) smoke

toxicity, b) burn threats, and c) fire status; the warning levels of {0, 1, 2} are whole integers at

every increment in the monitoring simulation using a 2.0-second time step.............................. 144

Figure 5-21: Sample results using visualization in BIM; each stage of the threat progression in

Room 2 is provided, where the FDS model is shown on the left and the Bentley ABD BIM with

imported schedules appears on the right ... 147

Figure 5-22: Computational cost quantified by the average time required for the event detection

model to process the data; the maximum observed cost for a single data message is also provided

as the upper bound .. 153

xiv

Figure A-1: The pyramid of software development ... 173

Figure A-2: A view of the top-level repository for fire_main, which is the main repository

hosting the research project .. 175

Figure A-3: A view of the top-level repository for fire_tpls which hosts the required TPLs for

the research project ... 177

Figure A-4: Terminal output from the automatic TPL installation process................................ 181

Figure A-5: The build script for the main TriBITS project with flags for including LCM 183

Figure A-6: Results of ctest in the packages/RTFM subdirectory 184

Figure A-7: A sample of the install_tpls.sh demonstrating the TPL installation logic . 185

xv

List of Tables

Table 2-1: Mesh properties for the 2D case .. 28

Table 2-2: Vector norm for relative differences in temperature ... 32

Table 2-3: Mesh properties for the 3D case .. 34

Table 2-4: Comparison between the shell model and the solid element model............................ 37

Table 4-1: Properties of the FEA models and the required simulation times; note that the

temperatures and displacements are the results at the final time step... 83

Table 4-2: Overview of the variables used in the testing matrix .. 88

Table 5-1: Thresholds and conditions used to define the event detection model 128

Table 5-2: Temperature, heat flux, and species concentration input for the event detection model

test based on the SFPE Handbook example [40] .. 129

Table 5-3: Results computed from the event detection model for the example in the SFPE

Handbook [40] .. 129

Table 5-4: Start times, in seconds, for each of the three threat levels based on event detection model

output; the XML schedule generator determined these start times automatically and created the

corresponding tasks for schedule simulation .. 145

Table 5-5. Quantification of the system performance with respect to increasing number of sensors;

the average computational cost, maximum observed single cost, and the standard deviation are all

provided as well as the percentage of measurements that required ≤ 1.0 ms 152

xvi

Abstract

 Structural fires in buildings are a persistent hazard in modern infrastructure and a potential

threat to occupants and firefighters alike. In the pre-construction phases of building design, there

has been a growing interest in the use of simulated natural fires as a direct input for modeling the

fire-structure interaction problem. One common method to simulate the natural fire is through the

use of computational fluid mechanics (CFD), where the fire development is treated as a fluid-flow

problem. The structure is typically modeled using finite element analysis (FEA), as in other

applications of structural engineering. However, the link between the fire and solid domains has

not been standardized for structural fire engineering purposes in research or practice. In the post-

construction phases of the building lifecycle, for example, fire safety engineering is used to reduce

the potential for fire and minimize threats to building occupants. While there have been many

improvements in materials and design to attempt to limit the ignition of new fires in buildings over

the last several decades, the fact remains that fire events still pose significant risks to firefighters.

With this in mind, methods must be developed to provide new technology and solutions for the

modern firefighter by using advances in computation and visualization.

In this dissertation, modeling the fire-structure interaction problem and providing a real-

time system for fire monitoring are the two main focuses. Both contributions serve to improve the

two different ends of the structural fire spectrum: research, analysis, and design on one end and

sensor-assisted firefighting on the other.

 First, to address the problem of modeling the fire-structure interaction, an approach is

provided which used CFD-based boundary conditions from a fire simulation as input for the FEA-

xvii

based model of the structure. The main components of this research are (i) the development of fire-

to-structure coupling methods linking the fluid and solid domains, (ii) the extension of a layered

thermal shell element to include mechanical degrees of freedom (DOF) and provide a coupled

thermo-mechanical shell element, and (iii) the use of these two contributions together to analyze

structures exposed to local fires. The trapezoidal rule for numerical integration was used to

represent spatially non-uniform heat fluxes computed in the CFD fire simulation as equivalent

nodal fluxes in the FEA model of the structure. The thermo-mechanical shell element was coupled

from its individual formulations using virtual work methods and ensuring consistency in the use

of the layered representation of the governing equations for conduction heat transfer and structural

deformation in the element.

 Second, a proposed system for real-time fire monitoring in the post-ignition fire state of a

building was developed to improve the technology of sensor-assisted firefighting from a

computing perspective. The software system was designed to coordinate various data streams from

a simulated wireless sensor network (WSN) to sub-models responsible for performing real-time

calculations using the data measured by sensors. An event detection model for assessing smoke

toxicity, burn threats, and fire spread was implemented as the first sub-model and its real-time

performance was analyzed. Results from the event detection model were used to present an

example of visualization using a building information model (BIM) as the platform for

communicating hazard warnings to the incident commander and firefighters in this study.

1

Chapter 1

Introduction

At the intersection of fire safety and structural engineering is the field of structural fire

engineering. The researchers who exist in this space are interested in providing solutions to the

communities within fire protection engineering, which include members from civil, mechanical,

and chemical engineering as well as material science. The variety of research at the intersection is

reflected in the contributions presented here as this dissertation aims to provide solutions for two

different groups in these fields. The overarching theme of this work is the development and use of

computational methods and software tools to provide a better understanding of structural fires:

from the mechanics and simulation aspects to firefighting and decision making.

The common thread connecting fire safety (sprinkler design, evacuation, fire science, etc.)

and structural fire engineering (for example, designing structures for fire resistance) is the desire

to make the built environment safer for the occupants during the lifetime of the building. In the

case of analysis and design, the goal is to understand the behavior of the fire as a hazard to the

structure and occupants, as well as to provide a safer infrastructure for the public. Passive forms

of fire suppression may be included in an attempt to limit the ignition of new fires and the

subsequent effects of accidental fires. However, much of fire safety science trends into the post-

ignition state as well: the situation in which a fire is present and needs to be handled through the

use of active fire suppression technology and human intervention by the fire department.

The goal of this dissertation is to provide a contribution to both the pre-design phase

(research, analysis, and simulation) as well as to the post-ignition state (firefighting intervention)

2

with two main tasks. In the interest of researchers and analysts, a thermo-mechanical shell element

for coupled fire-structure simulation is presented first. Then, for the purpose of occupant and

firefighter safety, a computational system for sensor-assisted firefighting is proposed. These two

tasks each seek to increase safety in the built environment from the two different aspects of

structural fire engineering through computational mechanics and fire safety through intelligent

firefighting using computational tools. The first task is focused on fire-structure coupling using

CFD-FEA simulation with thermo-mechanical shell finite elements and the representation of

thermal boundary conditions as equivalent nodal fluxes. The second task is focused on real-time

fire monitoring using multiple fire signatures to assess hazards and provide graphical warnings to

firefighters during the post-ignition fire state in the building.

Although these topics focus on different areas of the problem of structural fires in

buildings, they both serve to provide new technology and approaches to one field that has

traditionally relied on prescriptive building codes (structural fire engineering) and another which

has not received the benefits of sensor networks at the same pace as other engineering fields (fire

safety and firefighting). The following introduction to the individual topics describes the

computational-mechanics-based approaches used for modeling the fire-structure interaction

problem and then the methods used for providing a software framework for real-time fire

monitoring and sensor-assisted firefighting.

1.1 Task 1: The Fire-structure Interaction Problem

In the field of structural fire engineering, there has been a growing interest over the last

decade in the use of CFD to model natural fire scenarios in structures. The primary software used

for this purpose is Fire Dynamics Simulator (FDS) [1]. However, one of the persistent challenges

3

for this field is the ability to employ such high-resolution fire simulations in the analysis of

structures exposed to fires: the software tool exists, but its feasibility for use in research and

analysis at the structural level is prohibitive. The difficulty lies in the fact that FDS is mainly used

for modeling the combustion, chemistry, and corresponding fire growth of the fuel source using

CFD. Also note that other researchers and analysts interested solely in smoke spread may also use

FDS as well.

In the context of the thermal and mechanical analysis of structural components, structures

in the flow field of the fire, which is modeled as a fluid, are represented as solid obstacles with

specific material properties, but the conduction model of the solid domain is not normally

considered in the simulation. Thus, to perform a thermal analysis of the structure with non-uniform

heating from a natural fire, some representation of the flow field acting on the structure must be

transferred from the fire domain to the solid domain, where the solid model may be represented

by a finite element model typically. This transfer of data from the fire simulation (FDS) to the

solid model in a separate finite-element modeling software (e.g., Abaqus, ANSYS, deal.II, etc.) is

challenging because of the different time increments used in each domain as well as the different

spatial meshes.

 Approaches to the fire-structure coupling problem using CFD and FEA can be divided

into two particular methods: flux-based and temperature-based methods. The temperature-based

methods typically include the use of an adiabatic surface temperature (AST), which is used to

represent the non-uniform boundary conditions at specific points in the CFD domain on the

surfaces of obstacles in the fire flow field as surface temperatures in the corresponding FEA model.

The flux-based methods are designed to use incident, net, radiative, and/or convective heat fluxes

measured on the surface of the obstacle in the CFD model as input for the FEA model through the

4

use of the corresponding non-uniform surface flux boundary conditions. In either case, from the

analyst’s perspective, these various forms of output from a fire simulation are readily available in

the FDS software.

In this dissertation, the class of flux-based methods for coupling the fire to the structure

were developed for mapping net and incident heat flux output from the FDS fire simulation to the

appropriate locations in the domain of the FEA thermal model in order to provide representations

of the temporally and spatially varying non-uniform boundary conditions on exposed surfaces in

the solid domain. The differences in the time increments between the two domains were handled

in a previous study [2] and the methods used for linking the two dissimilar spatial domains were

developed here.

Specifically, the surface fluxes were measured along a fine grid in the CFD domain on the

exposed exterior of the structure’s surface and transferred to the FEA model. Then, the trapezoidal

rule was used to compute equivalent nodal fluxes as a forcing term to use in the conduction heat

transfer model (FEA). The proposed method is compared to other approximating techniques,

including averaging, sampling, and least squares methods, for a 2D heat transfer problem. The

results demonstrate that the proposed homogenization algorithm for handling the spatial non-

uniformity in the boundary conditions provides solutions for the temperature field that converge

rapidly due to the energy-equivalent representation of the thermal boundary condition. The

homogenization algorithm is then implemented in a 3D heat transfer model that uses thermal shell

elements to model conduction through the solid.

Once the fire-structure coupling technique was established in the conduction model, the

coupled thermo-mechanical shell elements were formulated and implemented for use in the fire-

structure interaction problem through the use of virtual work methods. The layered formulation

5

for the thermal shell was developed first by Jeffers [3] to provide the finite element for conduction

heat transfer analysis. Then, a mechanical shell element with displacement DOF was chosen from

the literature to represent the deformation in the coupled element [4]. Using the method of virtual

work, the two physical responses of heat transfer and structural deformation were combined in the

coupled thermo-mechanical shell element formulation. This formulation was then implemented as

a Fortran subroutine for use with the commercial FEA software Abaqus, which provides for the

inclusion of user-defined subroutines as custom elements.

Employing the thermo-mechanical shell elements in the coupled fire-structure simulation

problem allows the analyst to perform this multi-step analysis in a single FEA model without re-

meshing and by solving for temperatures and displacements simultaneously. The current study

demonstrates the accuracy and convenience of this approach for calculating deformations in the

structure due to non-uniform heating from a simulated fire source.

1.2 Task 2: Computational Framework for Real-time Fire Monitoring

Sensor-assisted firefighting and real-time computation are two main goals for the future of

active fire intervention in the post-ignition state in buildings. In their pioneering work on sensor-

assisted firefighting, Cowlard et al. [5] warns against some of the challenges of providing

firefighting assistance in the form of data assimilation and visualization. The risk of information

overload is ever-present and should be respected by any new technology designed for the purpose

of improving the experience of extinguishing building fires. However, the call for research to

provide solutions which assimilate data, real-time computation, and visualization was posed as a

challenge to the field when this work was first published in 2010. To this end, the second topic of

the dissertation is real-time fire monitoring and a focus on the proposed use of sensor

6

measurements to capture the progression of a fire in the building. Specifically, this topic is related

to the post-ignition state, as opposed to the detection of new fires in a building. The intended end

user for the fire-monitoring system described herein is the firefighter, where the work aims to

provide a new contribution in the direction of sensor-assisted firefighting technology: a delicate

topic requiring careful consideration of the intended user.

The range of topics in the real-time monitoring space include hardware-related research

such as the development of robust wireless-sensor technology for extreme conditions and the

invention of other supplemental data acquisition tools, communications research for transmitting

data from the scene of the fire to individual firefighters or a centralized repository, and the life-

safety and occupant-rescue aspects of hazard intervention. In particular, the real-time monitoring

features covered in this dissertation are the components of computation and visualization for a

distributed deployment system: a necessary supplemental technology for the true implementation

of a future monitoring system. The problem is larger than one particular academic solution and the

contribution of many researchers is necessary to provide field-ready tools for improving the

practice of firefighting, including the necessary feedback from actual firefighters.

The chapter on fire monitoring serves to establish a new research branch into the field,

focusing on the sound computational aspects required for such a technology. As a new endeavor,

the fire monitoring software presented here was established from the start by using proven software

engineering techniques that are critical for research code development and reproducibility: version

control, installation scripts, and a build system. The purpose of this effort was to provide the

software foundation upon which the present work was built and future work can continue through

inter-university collaboration. By establishing the use of high-quality software engineering tools

early on in this project, developers will be able to provide the eventual future users with robust

7

scientific software to perform the overarching goal of monitoring fire events in real time using

reliable computational tools.

In its present state, the main contributions to the real-time fire monitoring problem are

presented here with the appropriate focus on fire safety. The computational system was developed

to handle incoming data from multiple sensor measurements and subsequently process this data in

real time for a multi-room fire model. An event-detection model was designed to monitor the

common hazards of smoke toxicity, burn threats, and fire spread that may occur during a real fire

event. This model was linked to the main computing system using Lightweight Communications

and Marshalling (LCM) [6] to coordinate data transfer between dissimilar applications. Finally,

the potential for real-time visualization is demonstrated through the use of schedule simulation

based on the output of the event detection model. Building information modeling software called

AECOsim Building Designer (ABD) was used in a distributed system to create visualizations of

the event detection model results as a post-processing feature. Integrating real-time measurements

from sensors into the fire intervention strategy may provide a new technological advancement to

the future practice of firefighting.

1.3 Organization of the Dissertation

The structure of this dissertation is based on the manuscript-style format. Each chapter that

follows has either been published in a peer-reviewed journal, will be submitted to a journal, or

exists as a stand-alone technical report; the distinction will be made clear in the following

descriptions. Chapter 1, the current chapter, serves as the introduction and has provided an

overview of the included material.

8

Contributions to the fire-structure interaction problem are described in three chapters.

Chapter 2 presents the methods and applications of a fire-structure coupling technique from a

journal article published in the Fire Safety Journal. These methods use the trapezoidal rule for

numerical integration in two spatial dimensions to compute non-uniform thermal boundary

conditions as the equivalent nodal forcing terms in a conduction heat transfer analysis. The heat

transfer in the solid was modeled using the previously developed thermal shell element and the

thermal boundary conditions were applied as non-uniform surface fluxes (temporally and

spatially). Chapter 3 extends the formulation of the thermal shell element to include displacement

DOF for use in coupled thermo-mechanical analyses; this manuscript will be submitted to Finite

Elements in Analysis and Design. Additionally, the fire-structure coupling methods in Chapter 2

were employed in the new thermo-mechanical shell element of Chapter 3 for use in coupled fire-

structure simulations. The final chapter on this topic, Chapter 4, is a technical report which

describes this supplemental study to analyze the effects of relative time steps and mesh sizes on

the solutions of the thermo-mechanical shell element models. Additionally, the coupled framework

was used in the application of a structural I-beam exposed to a local fire.

The second topic of the dissertation is the computational framework for real-time fire

monitoring, and it consists of one main chapter and a supplemental appendix. First, Chapter 5, is

a manuscript which will be submitted to the Fire Technology journal and provides the fire safety

contributions to the proposed monitoring system. In this chapter, the development of an event

detection model, the computational framework for fire monitoring, and the subsequent use of real-

time computing for visualization are presented. The corresponding appendix that follows is a

technical report providing details on the initial establishment of the project as a new research-level

software contribution. Here, the foundations of the computational fire-monitoring system were

9

developed through the use of modern scientific software engineering tools, such as version control

and build systems.

Finally, Chapter 6 serves as the conclusion and summary of the work, including the

limitations and future outlook for this line of research. References used in each of the chapters are

provided with the individual chapters as they appear in the dissertation, as opposed to being

collected at the end of the document.

1.4 References

[1] McGrattan, K., Hostikka, S., Floyd, J., Baum, H., Rehm, R., Mell, W., & McDermott, R.

(2004). Fire dynamics simulator (version 5), technical reference guide. NIST special

publication, 1018(5).

[2] X. Yu and A. E. Jeffers, “A comparison of subcycling algorithms for bridging disparities in

temporal scale between the fire and solid domains,” Fire Saf. J., vol. 59, pp. 55–61, 2013.

[3] A. E. Jeffers and P. A. Beata, “Generalized shell heat transfer element for modeling the

thermal response of non-uniformly heated structures,” Finite Elem. Anal. Des., vol. 83, pp.

58–67, Jun. 2014.

[4] W. Kanok-nukulchai, “A simple and efficient finite element for general shell analysis,” Int.

J. Numer. Methods Eng., vol. 14, no. 2, pp. 179–200, 1979.

[5] A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, and J. L. Torero, “Sensor Assisted Fire

Fighting,” Fire Technol., vol. 46, no. 3, pp. 719–741, Jul. 2010.

[6] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight communications and

marshalling,” in Intelligent robots and systems (IROS), 2010 IEEE/RSJ international

conference on, 2010, pp. 4057–4062.

10

Chapter 2

Spatial Homogenization Algorithm for Bridging Disparities in Scale between the Fire and

Solid Domains

The analysis of structures exposed to non-uniform heating from localized fires is a

challenging task due to the spatially varying boundary conditions and the differences in scale

between the fire simulation and solid heat transfer model. This chapter presents a spatial

homogenization algorithm for capturing non-uniform boundary conditions from a high-resolution

fire simulation in a low-resolution finite element heat transfer model of a structure. The

homogenization algorithm uses numerical integration by the trapezoid rule to calculate the

equivalent thermal flux vector in the finite element heat transfer model for a spatially varying

surface flux. The proposed method is compared to other approximating techniques, including

averaging, sampling, and least squares methods, for a 2D heat transfer problem. The results

demonstrate that the proposed homogenization algorithm converges rapidly due to the energy-

equivalent representation of the thermal boundary condition. The homogenization algorithm is

then implemented in a 3D heat transfer model that uses macro-level plate elements. For an

application involving a horizontal plate exposed to a localized fire, the model is shown to converge

to the results obtained by a solid finite element model. The homogenization algorithm combined

with the plate heat transfer element proves to be an accurate and highly efficient means for

analyzing structures with spatially varying thermal boundary conditions calculated by

computational fluid dynamics.

11

2.1 Introduction

 Current methods for the fire-resistant design of structures emphasize the design for post-

flashover fire conditions and commonly use parametric fire models such as those found in

Eurocode 1 [1]. Post-flashover fire models assume that the gas temperature is uniform within the

compartment. Although intending to represent a worst-case structurally significant fire, post-

flashover fire models are limited to relatively small compartments with regular geometries. In large

open spaces, fires tend to burn locally and oftentimes will travel across the floor plate and even

spread across floors [2]. Under these conditions, the fire behavior can be rather complex and may

be more accurately represented by a computational fluid dynamics (CFD) model.

CFD models such as Fire Dynamics Simulator (FDS) [3] are well-established and provide

an accurate representation of natural fire events. However, challenges arise when coupling the

CFD fire model to a solid heat transfer model due to incompatibilities in mesh and disparities in

scale between the fire and solid domains. Figure 2-1 illustrates the disparities in spatial and

temporal scales for a one-way coupled system. Note that an extreme case of a fire impinging on

the structure is shown for contrast. It can be seen that the fire simulation requires a time step and

spatial resolution that is considerably smaller than is needed in the structural analysis due to fire

dynamics being a “fast” physics. Yu and Jeffers [4] demonstrated that a time-averaged subcycling

algorithm can overcome the differences in temporal scales between the fire simulation and solid

heat transfer model in an accurate and efficient manner. However, the difference in spatial scale

becomes particularly important when simulating the 3D temperature gradients in the structure.

12

Figure 2-1: Differences in scale for a sequentially coupled analysis (the extreme case of a fire impinging on a

structure is shown)

There have been a few efforts in recent years to couple a CFD fire model to a structural

model in order to study structural response under natural fire effects. The NIST investigations into

the World Trade Center collapses employed high-fidelity CFD fire models in conjunction with

macro finite element structural models [5]. In the NIST investigations, the boundary conditions

were expressed as a locally uniform gas temperature that was calculated by the CFD analysis. In a

similar vein, Tondini et al. [6-7] established a framework to couple a CFD fire model to a structural

model based on a locally uniform gas temperature. Wickstrom et al. [8] demonstrated that the

boundary condition at the fire-structure interface could be expressed in terms of adiabatic surface

temperature, which decouples the fire exposure from the structural surface temperature. These

approaches are most suitable for situations in which the fire heats the structure by remote radiation

or by heat transfer associated with an optically thick gas, in which case the fire exposure is

relatively uniform over the structure’s surface. Temperature gradients along the lengths of

members can be captured by discretizing the structural members into more elements [6]. However,

temperature gradients along the lengths of members were not the focus of prior studies.

Non-uniform heating in general is known to have a significant effect on the structural

response [9-12]. Additionally, it has been shown that localized heating associated with a fire

13

impinging on a structure can be detrimental to the structural performance because it can produce

structural effects (e.g., local buckling) that are not seen when the structure is heated uniformly

[13]. It has not yet been determined whether fluctuations in boundary conditions due to a real fire

impinging on a structure play a significant role in the thermo-mechanical response of the structure.

It is clear that unprotected structures will be more sensitive to such localized effects, but even for

unprotected members the effects have not been quantified. To this end, Chen et al. [14] established

a coupling interface between a CFD fire model and finite element heat transfer model of a structure

based on convection between the structure and a gas of non-uniform temperature. While able to

simulate non-uniform heating along the lengths of members, the work by Chen et al. used 3D solid

elements in the finite element model, resulting in a structural model that required excessive

computational expense due to the fact that a fine mesh was needed to capture the cross-section

response. Thus, although the CFD analysis continues to drive the total computing time in coupled

fire-structure models, it is apparent that 3D solid finite elements are unnecessarily inefficient for

thin-walled structures, leaving room for further improvement.

To improve computational efficiency in the thermo-mechanical analysis of beams, plates,

and shells, recent efforts by Jeffers et al. [15-17] have led to a class of macro heat transfer elements

that can simulate the response of non-uniformly heated structures in an accurate and

computationally efficient manner. Specifically, beam, plate, and shell heat transfer elements (Fig.

2-2) were formulated for calculating the 3D thermal response of non-uniformly heated structures.

A combination of finite element and control volume methods was used in the element formulations

to solve the 3D conduction heat transfer equations in an accurate and efficient manner. The

elements have a fiber-based or layered discretization to account for large temperature gradients

over the cross-section or through the thickness, respectively. Temperatures along the length or in

14

plane are approximated by linear or quadratic shape functions. One advantage to the use of macro

heat transfer elements is that the elements facilitate the transfer of data from a thermal analysis to

a structural analysis because both models can have the same mesh.

(a)

x

y

z

Layer i

Node j

(b)

Figure 2-2: Macro heat transfer elements: (a) fiber heat transfer element [15] and (b) plate/shell heat transfer

element [16]

The macro elements have been proven to provide computational savings that are more than

an order of magnitude over 3D solid elements. In the case of the plate heat transfer element, for

example, it was shown in a 3D verification study that the element provided the same level of

accuracy as a 3D solid model and required 1.3 to 2.6 s to perform an analysis that required 830.7

seconds for a 3D solid model [16]. The computational savings are related to the significant

reduction in the number of temperature degrees of freedom that are needed in the heat transfer

model. The macro elements also allow for a much coarser mesh along the length or in plane in the

heat transfer analysis. In the analysis of a 4.0-m steel beam exposed to a localized fire, it was

15

shown that an element size of 50 cm to 100 cm in length provided a prediction of the thermo-

mechanical response that was comparable to a 3D solid model [15]. In the analysis of a 6-m×6-m

concrete slab exposed to a localized fire, temperatures were accurate for an element that was 37.5

cm in length in the previous study [18].

This chapter concerns a spatial homogenization algorithm for overcoming the differences

in spatial scales between the fire simulation and solid heat transfer model, with an emphasis on

conduction heat transfer evaluated by macro finite elements. For macro elements in particular, it

is necessary to consider the case in which the CFD grid is significantly finer than the finite element

grid and requires homogenization of the data from the CFD analysis. A numerical integration

scheme based on the trapezoid rule is employed in the calculation of the equivalent nodal flux

vector for the heat transfer finite element. The proposed homogenization algorithm is compared to

other methods for representing the spatially varying boundary condition, including averaging,

sampling, and least squares methods. Following the 2D verification study, this chapter considers

a 3D application of a horizontal plate exposed to localized fire, in which the fire exposure is

simulated by CFD and the solid heat transfer analysis is conducted using the plate heat transfer

element in [16].

2.2 Governing Equations

The equations governing conduction heat transfer by finite element analysis are expressed

as follows:

}{}]{[}]{[RTKTC  (2.1)

16

where {T} is the field variable (temperature), [C] is the heat capacity matrix, [K] is the thermal

conductivity matrix, {R} is the vector of thermal loads, which includes heat flux, radiation, and

convection boundary conditions [19]. For the applications considered here, it is assumed that

incident heat fluxes q" are calculated by CFD analysis and losses by convection and radiation are

separately accounted for. Thus, the homogenization algorithm is presented for a flux boundary

condition, although the methodology can readily be extended to convection and radiation boundary

conditions. It is presently assumed for combustible solids that the pyrolysis gases flow outward

from the surface, in which case there is no forcing term related to mass conservation that is passed

into the solid model from the CFD analysis.

 The vector of heat fluxes is obtained by summing the heat flux vectors for each of the

elements in the structure. For an incident heat flux boundary condition, the vector {r} for an

element is expressed as

    
S

T
dSqNr (2.2)

where {N} is an array containing the element’s shape functions and q" is the heat flux acting over

surface S. Under natural fire conditions, q" may vary greatly over the surface S due to turbulent

flow as illustrated in Fig. 2-3a. Thus, the objective is to compute Eq. (2.2) as an equivalent nodal

flux vector (Fig. 2-3b) that appropriately accounts for the non-uniformity in the boundary

condition. This can be done by (i) replacing q" with a function that approximates the randomly

varying boundary condition with a smooth (e.g., linear) function, or (ii) expressing Eq. (2.2) in a

discrete form that preserves the non-uniformity in q". The former approach might be chosen for

convenience due to compatibility with the standard finite element formulation, whereas the latter

approach may be more precise, as shown in this chapter. Several methods were investigated for

representing the non-uniform boundary condition for a 2D planar problem. Of the methods

17

investigated for the planar model, only the highest performing approach was used in the extension

to a formulation for use with 3D finite elements.

 (a) (b)

Figure 2-3: 2D elements exposed to non-uniform surface flux: (a) non-uniform flux and (b) equivalent nodal

fluxes

2.2.1 2D Formulation

In each method explored in the current study, the goal was to approximate Eq. (2.2) given

the randomly varying heat flux q". For a 2D isoparametric element, Eq. (2.2) can be expressed as

   






1

1

)()( dtJqNr
T

 (2.3)

where ξ is the natural coordinate ranging from -1 to 1; {N} is an array containing the element shape

functions, which are expressed in terms of ξ; q" is the heat flux, which varies in ξ; t is the thickness

of the element; and J is the determinant of the Jacobian matrix relating the natural coordinates ξη

to the global xy coordinates.

Four homogenization algorithms were investigated for handling a randomly distributed

heat flux over the surface of an element, as illustrated in Fig. 2-4. The average value method applies

a uniform heat flux equal to the average of the randomized fluxes over the surface of the element.

The sampling method takes the flux values at the end points of the element and interpolates linearly

between them. The least squares method fits the randomized flux data with a linear least squares

18

approximation. The trapezoid method preserves the randomized flux data and uses the trapezoid

rule to numerically evaluate the integral in Eq. (2.3). The averaging, sampling, and least squares

methods aim to smooth the randomized flux with a linear function, enabling the Gaussian

quadrature rule to be used for numerical integration, whereas the trapezoid method expresses Eq.

(2.3) in a discrete form that captures the randomized flux exactly. It should be noted that the

trapezoid rule is superior to Gaussian quadrature for the integration of a random function because

Gaussian quadrature is best-suited for the integration of low-order polynomials. However,

averaging, sampling, and least squares methods are convenient methods for smoothing the data

from a CFD analysis. This chapter considers the implications of smoothing the data vs. integrating

the function in a more exact sense by studying the structural temperatures in realistic fire safety

engineering applications.

Figure 2-4: Overview of the four methods developed for 2D spatial homogenization

The integral in Eq. (2.3) was evaluated numerically in each of the four methods. Numerical

integration of the element’s flux vector {r} was accomplished using Gaussian quadrature in the

averaging, sampling, and least squares methods, whereby the integral in Eq. (2.3) is expressed as

   



n

i

i

T

ii tJqNWr
1

)()( (2.4)

In Gaussian quadrature, Wi represents the weighting constant associated with the sampling point

ξi, which lies in the domain [-1, 1] along the isoparametric element’s edge. The heat flux q"(ξ) is

19

evaluated at Gauss point ξi based on the homogenization method that is used. The summation is

carried out over n, the number of sampling points based on the quadrature rule that is employed.

 The trapezoid rule was explored as an alternative to the methods based on Gaussian

quadrature. This method was intentionally selected because it uses all of the data associated with

the element in calculating the equivalent nodal flux vector (as opposed to sampling at the Gauss

points). In this manner, the contribution of each measured heat flux from the fire simulation is

accounted for as opposed to a sampling technique which could fail to catch peaks in the heat flux.

By integrating the random flux over the surface, the nodal flux vector that is calculated by the

trapezoid rule is equivalent in energy to the random heat flux that exists at the element’s surface.

Figure 2-5 shows the application of the trapezoid rule in 2D for a non-uniform heat flux

q"(ξ) at the η = 1 edge of the element. The data points refer to sensor data from the CFD fire

simulation for incident heat fluxes. As shown in the figure, five heat flux data points are used to

approximate the integral with four trapezoidal segments. In the general case for 2D elements using

this method, n + 1 points are used for n trapezoidal segments along a given element’s edge. When

using data from CFD, the width of each trapezoid segment is dependent on the spacing of the

sensors in the fire simulation (i.e., the fidelity of the CFD mesh). It is assumed that the number of

data points between end nodes is large in comparison to the number of nodes (a reflection of the

differences in scale between the fire and solid heat transfer models). The integral in Eq. (2.3) is

evaluated by applying the trapezoid rule using incident heat flux data from the fire simulation. For

n + 1 data points,

        tJqNtJqNtJqNr n

T

n

n

i

i

T

i

T
)()()()(2)()(

1

1

00   




 (2.5)

20

Figure 2-5: Isoparametric element with non-uniform boundary condition

2.2.2 3D Formulation

The extension to 3D is essential for using the spatial homogenization algorithm in the

calculation of equivalent nodal fluxes for non-uniform thermal boundary conditions applied over

surfaces as opposed to edges of the element. Fig. 2-6a shows a spatially varying heat flux over the

surface of a macro heat transfer element. As in the 2D case, equivalent nodal fluxes are to be

calculated from the discrete data and applied at the nodes, as shown in Fig. 2-6b. The

homogenization algorithm based on the trapezoid rule may be extended to a second dimension by

simply applying the trapezoid rule to several slices of data in one dimension (for example, along

the ξ-direction) and then subsequently applying the trapezoid rule in the second dimension (along

the η-direction).

21

 (a) (b)

Figure 2-6: 3D shell heat transfer element with non-uniform thermal load

The heat flux vector of Eq. (2.3) can be re-written by adding another dimension to the

expression of the heat flux vector for integrating over the surface:

      










1

1

1

1

),(),( ddJqNdSqNr
T

S

T (2.6)

Note that the shape functions N, heat flux q", and Jacobian J are now functions of two coordinates,

 and , representing the surface S over which the heat flux is applied. The Jacobian is used to

map between the real space and the natural coordinates of the isoparametric element, as shown in

Fig. 2-7. Note that the heat transfer finite element can have arbitrary geometry due to the

isoparametric formulation. Thus, it is not necessary that the finite element grid overlay the CFD

grid, provided that the CFD model can handle complex solid boundaries.

Figure 2-7: Mapping between real and natural coordinates

22

Figure 2-8: A fine mesh for measuring fluxes in the CFD domain superimposed on a single finite element with

nine nodes in this case

 For a rectangular element, heat fluxes are measured over a uniform grid in the CFD domain

as shown in Fig. 2-8. Equation (2.6) is used to calculate the heat flux vector for the element. First,

integration is performed along the straight lines of the CFD grid in one dimension, as shown in

Fig. 2-9, resulting in m + 1 integrals along the first dimension (say, in the ξ-direction as before).

The integral at a particular line in natural coordinates along the element’s surface will be denoted

as the integral j for j = 0, 1, …, m.

Figure 2-9: Integration over a surface using the trapezoid rule

From Eq. (2.6), it can be seen that each of the j integrals results in an array with the same

size as the number of nodes in the element. The vector representing slice j is defined with a dummy

variable {I}(j), where

           







 





1

1
),(),(),(

)(
2

1

0

n

i

TTTj

jnjij

JqNJqNJqN
n

I


 (2.7)

23

Note that {I}(j) is based on the 1D trapezoid rule for  ranging from -1 to 1 and = j. In total,

there are m vectors {I}(j) produced by integrating over the j = 0, 1, …, m slices of data. There are

a total of n + 1 integration points in the ξ-direction.

The integration over the surface of the element is computed by applying the trapezoid rule

to vectors {I}(j) for  ranging for -1 to 1, i.e.,

        












 





1

1

)()()0(
2

1 m

j

mj
III

m
r (2.8)

This integration method requires calculation of the element flux vector by the trapezoid

rule using the number of data points available at the surface of each element. It is not required that

the CFD grid matches the FEA grid, although compatibility between meshes facilitates the transfer

of data between the two models. For the case in which the CFD grid does not match the FEA grid,

integration points are defined on the element in isoparametric coordinates (e.g., trapezoid rules of

order h, h/2, and h/4 are shown in Fig. 2-10). The heat fluxes from the CFD grid points that are

adjacent to the integration point are interpolated linearly to get the heat flux data that is passed into

the trapezoid rule, as shown in Fig. 2-10.

Figure 2-10: Relation between integration point sampling schemes and the relative mesh sizes in the CFD and

FEA domains

24

2.3 Implementation

With an efficient numerical method for calculating energy-equivalent nodal fluxes from

spatially varying incident heat flux data obtained by a CFD fire simulation, the non-uniform

thermal boundary conditions produced in a natural fire scenario can be passed into a finite element

heat transfer analysis model. The averaging, sampling, and least squares methods were compared

to the trapezoid method for spatial homogenization in two dimensions. The trapezoid method was

extended for a 3D case and implemented in a macro heat transfer element [16] that has a coarse

grid in relation to the CFD grid. It should be noted that the homogenization technique for handling

non-uniform thermal boundary conditions is particularly useful for macro-level finite elements,

which have a coarser element mesh in relation to the CFD grid.

This chapter considers a sequentially coupled analysis in which the fire affects heat transfer

to the structure but the structure does not affect the fire dynamics. A flow chart is provided in Fig.

2-11, which shows the transfer of data through the analysis. In Fig. 2-11, the disparities in spatial

scale between the fire and solid domains are handled using a homogenization algorithm based on

sampling, averaging, least squares, or trapezoid methods. To conduct the analysis, a CFD

simulation is performed to compute the incident heat flux acting on the surfaces of the structure.

The homogenization algorithm transforms large sets of data describing boundary conditions at a

structure’s surface into equivalent heat fluxes that act at the nodes of the finite element in the

conduction heat transfer analysis. An input file is generated for the finite element heat transfer

analysis, with the equivalent nodal heat fluxes specified as boundary conditions. The heat transfer

model is then analyzed to determine the temperatures within the solid. For a two-way coupled

system, surface fluxes and temperatures computed in the heat transfer analysis would be calculated

at the CFD grid points by interpolation using the element’s shape functions. The methodology

25

presumes that the CFD grid is finer than the element mesh used in the solid heat transfer model,

which is generally the case when macro heat transfer elements are used.

Figure 2-11: Flowchart for sequentially coupled analysis

2.3.1 2D Implementation

A 2D application was considered for the evaluation of the homogenization algorithms

based on averaging, sampling, least squares, and the trapezoid rule. In the 2D application, the

conduction heat transfer to the solid was evaluated using eight-node (quadratic) solid elements

with the equivalent nodal fluxes calculated by Eq. (2.4) for the averaging, sampling, and least

squares methods, or Eq. (2.5) for the trapezoid method. On the heated surface, the boundary

condition was expressed as a net heat flux, i.e.,

netqq "" (2.9)

26

which was assumed to be constant in time so as to avoid challenges associated with differences in

time scale that would otherwise occur in a coupled fire-structure simulation. To simplify the

problem, a random heat flux was generated in MATLAB as opposed to performing a CFD fire

simulation for the 2D analysis. It was also assumed that the heat flux variation out of plane was

negligible such that the problem could be treated as 2D. The 2D heat transfer analysis was

performed in a special-purpose code that was written in MATLAB.

2.3.2 3D Implementation

As will be shown in the following sections, the trapezoid method was found to exhibit

superior performance over the averaging, sampling, and least squares methods. The algorithm

based on the trapezoid rule was therefore extended to 3D heat transfer in Section 2.2 and

implemented with the layered plate heat transfer element in Fig. 2-2b [16] for an application

involving a plate exposed to a localized fire. In the plate heat transfer element, a heat flux boundary

condition is applied to a layer at the top or bottom of the plate using Eq. (2.2). For homogenization

of a spatially varying heat flux, the trapezoid rule is applied according to Eqs. (2.7-2.8). The

present analysis considers a nine-node quadratic plate element, although the formulation in Section

2.2 is general and can be applied to any type and order of element. In the 3D case, the spatially

varying heat flux was calculated by CFD analysis in Fire Dynamics Simulator (FDS). The

boundary conditions are expressed in terms of an incident heat flux with losses to the surroundings

by convection and radiation.

 The 3D conduction heat transfer analysis was performed in Abaqus. A special purpose

code was written in MATLAB to resolve the spatially varying surface fluxes into equivalent nodal

fluxes according to the spatial homogenization algorithm in Eqs. (2.7-2.8). The plate heat transfer

27

element was implemented in Abaqus as a user-defined element (i.e., UEL subroutine). The

equivalent nodal fluxes were specified using the *DFLUX command in the input file after they

were calculated in a preprocessing program in MATLAB (see flowchart in Fig. 2-11).

2.4 Results

2.4.1 2D Application

 The homogenization algorithms based on averaging, sampling, least squares, and the

trapezoid rule were evaluated by considering a plate exposed to a random (i.e., non-uniform) net

heat flux along one edge, as shown in Fig. 2-12. The average heat flux varied linearly from 10

kW/m2 at the ends of the plate to 40 kW/m2 at the center of the plate. About the mean, the heat

flux followed a random distribution that was bounded by a range of 20 kW/m2. The random heat

flux can be seen in Fig. 2-12 along with the boundaries. The heat flux was assumed to be constant

over the thickness of the plate (i.e., out of plane) and the plate was insulated out of plane such that

the heating was restricted to two dimensions.

Figure 2-12: 2D application involving a solid exposed to a random heat flux

 The plate was 1.0 m long and 0.25 m deep with a uniform thickness of 0.1 m. The plate

was made of steel (specific heat = 465 J/kg·K, density = 7,850 kg/m3, thermal conductivity = 54

28

W/m·K), and it was assumed that the material properties were independent of temperature for

simplicity. The plate had an initial temperature of 20°C. At the start of the analysis, the bottom

edge was instantaneously exposed to the non-uniform net heat flux, while a convective cooling

condition was prescribed on the top surface with a heat transfer coefficient of 35 W/m2
·K and fluid

temperature of 20°C. It was assumed that the bottom surface was exposed to the non-uniform heat

flux and did not interact with the surroundings (i.e., there were no losses due to convection or

radiation). A duration of 2,000 seconds was chosen for the analysis.

The analysis was completed using several different mesh configurations to evaluate the

accuracy of each method as the mesh was refined. A summary of the mesh configurations is

provided in Table 2-1. The “exact” solution was obtained using a very fine mesh that provided a

one-to-one correlation between the heat flux data and the finite element mesh. The results from

the exact solution were used to calculate errors in the temperatures associated with each of the

homogenization algorithms.

Table 2-1: Mesh properties for the 2D case

Element Size [m]

Number of Elements

Vertical Horizontal Total

0.25 1 4 4

0.125 2 8 16

0.0625 4 16 64

0.03125 8 32 256

0.015625 16 64 1024

The heat flux at the integration points for the averaging, sampling, least squares, and

trapezoid methods is plotted in Fig. 2-13 for mesh configurations of 4 and 1024 elements. The

actual heat flux is also plotted for comparison and is represented with a heavier line-weight. It can

be seen that the averaging method (Fig. 2-13a) assumes a uniform heat flux based the average heat

flux along the element’s length, whereas the sampling (Fig. 2-13b) and least-squares methods (Fig.

29

2-13c) fit the data with a linear function. The trapezoid rule method (Fig. 2-13d) uses the exact

heat flux data in the calculation of the equivalent nodal heat flux vector.

(a)

(b)

(c)

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t

F
lu

x
 [

k
W

/m
2
]

Actual Flux

Elements: 4

Elements: 1024

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t

F
lu

x
 [

k
W

/m
2
]

Actual Flux

Elements: 4

Elements: 1024

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t

F
lu

x
 [

k
W

/m
2
]

Actual Flux

Elements: 4

Elements: 1024

30

(d)

Figure 2-13: Heat flux at the integration points: (a) averaging method, (b) sampling method, (c) least squares

method, and (d) trapezoid rule

The approximated heat fluxes shown in Fig. 2-13 were used in the heat transfer finite

element analysis based on Eq. (2.4) or Eq. (2.5). The convergence of the solution was investigated

based on the mesh configurations given in Table 2-1. The nodal temperatures at the heated surface

of the plate were calculated for each method and compared to the “exact” (i.e., converged) finite

element solution. The “exact” solution was defined as the solution obtained with an element size

that corresponded to the spacing of flux data points (i.e., 4,096 elements arranged in a 32×128

grid). Comparisons between the coarsest and finest element meshes are shown in Fig. 2-14 for

each of the methods. Note that the nodal temperatures are shown to be connected by straight lines,

although the temperatures are actually interpolated using the quadratic shape functions for the 8-

node element. From Fig. 2-14, it can be seen that least-squares (Fig. 2-14c) and trapezoid rule (Fig.

2-14d) methods provide a high degree of accuracy for both the coarse and fine finite element

meshes, although the least-squares method results in a noticeable difference in temperature

prediction at the ends of the plate for the fine mesh. The averaging method gives reasonable results

for the fine mesh, although some variations in the calculated temperatures can be seen at the end

of the plate (Fig. 2-14a). The sampling method produces significant differences in the calculated

temperatures when compared to the expected values for both the coarse and fine meshes, indicating

poor convergence (Fig. 2-14b).

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t

F
lu

x
 [

k
W

/m
2
]

Actual Flux

Elements: 4

Elements: 1024

31

(a) (b)

(c) (d)

Figure 2-14: Heat flux at the integration points: (a) averaging method, (b) sampling method, (c) least squares

method, (d) trapezoid rule method

To better gauge the accuracy of the simulation, relative errors were calculated based on the

l2-norm of the difference in temperature between the coarser element mesh employing the

trapezoid rule and the converged finite element solution, as shown in Table 2-2. The data used for

the comparison include all of the nodal temperatures along the heated edge of the plate. In general,

the methods tend to converge to the exact solution as the number of elements increases. However,

a consistent rate of convergence (i.e., consistently decreasing differences in temperatures between

the reference solution and the increasingly fine mesh density) is not attainable with the sampling

methods and, to some extent, the least squares methods. The increasing value of the norm with

mesh refinement that is observed for the least-squares method is caused by a situation in which

32

too few data points exist over an element. The simulation time for each mesh size was comparable

regardless of chosen approximation method. Overall, the trapezoid method leads to the smallest

relative norm values in all cases and exhibits consistent convergence; it is therefore recommended

for spatial homogenization.

Table 2-2: Vector norm for relative differences in temperature

Method

Number of elements

4 16 64 256 1024

Averaging 4.36 1.37 1.07 1.01 1.77

Sampling 7.14 6.75 9.52 4.73 5.32

Least squares 1.04 0.82 1.20 0.99 1.78

Trapezoid rule 0.85 0.59 0.41 0.24 0.26

2.4.2 3D Application

To evaluate the performance of the spatial homogenization algorithm based on the

trapezoid rule, a 3D application was considered involving a horizontal plate subjected to a

localized fire. The plate measured 2 × 1 m with a thickness of 5 cm and had constant thermal

material properties, with a specific heat of 1,000 J/kg·K, density of 2,000 kg/m3, and thermal

conductivity of 2 W/m·K. The plate was located 1 m above a heptane pool fire, which was

characterized by a peak heat release rate of 500 kW within a fixed burn area of 1,600 cm2. The fire

was modeled in FDS with a grid size of 5 cm for a total duration of 15 minutes. The FDS fire

simulation displayed in Fig. 2-15 features sensors placed at 5-cm intervals along the top and bottom

surfaces of the plate to measure the incident heat flux at each surface, resulting in 800 sensors on

each of the top and bottom surfaces of the plate structure. Convection and radiation losses to

ambient (T∞ = 20 °C) were modeled, with a heat transfer coefficient of 25 W/m2
·K and an

emissivity of 0.8.

33

Figure 2-15: Fire simulation in FDS

The homogenization algorithm was used in conjunction with the 4-node linear shell heat

transfer element. A convergence study was performed to measure the performance of the shell

element in conjunction with the homogenization algorithm. Four mesh configurations were

considered for the plate model: 2×1, 4×2, 8×4, and 16×8, as shown in Fig. 2-16a. The shell element

used five equally spaced layers over the thickness. For comparison, a solid element model was

generated in Abaqus using eight-node (linear) brick elements (i.e., DC3D8 elements), as shown in

Fig. 2-16b. Four elements were required through the thickness in order to calculate the temperature

gradient through the thickness. An element size of 1.25 cm × 2.5 cm × 2.5 cm was chosen in order

to preserve an appropriate aspect ratio. Thus, the mesh for the solid element model contained 40

elements across the width of the plate, 80 elements along the length of the plate, and 4 elements

through the thickness of the plate, for a total of 12,800 elements and 16,605 temperature degrees

of freedom. An overview of the mesh details for each of the models is given in Table 2-3.

34

(a) (b)

Figure 2-16: Mesh configurations used in the test: (a) shell element models of 2×1, 4×2, 8×4, and 16×8

elements, each containing five layers through the thickness (not depicted); (b) solid element model with four

elements through the thickness

Table 2-3: Mesh properties for the 3D case

Element Type Mesh DOF Edge Size [cm]

Shell UEL 2 × 1 30 100

Shell UEL 4 × 2 75 50

Shell UEL 8 × 4 225 25

Shell UEL 16 × 8 765 12.5

Solid DC3D8 80 × 40 16,605 2.5

 Surface flux data from the CFD fire simulation in FDS was written to the output file in

one-second intervals. Rather than limiting the time step in the solid heat transfer model to one

second, the time-averaged subcycling algorithm [4] was used with a time step of 10 seconds to

increase the efficiency of the analysis. Subcycling was performed in MATLAB prior to the

generation of the input files for the solid heat transfer models. The time-averaged heat flux

measured at the sensor in the center of the plate is compared to the actual sensor data from FDS in

Fig. 2-17. After subcycling, the homogenization algorithm based on the trapezoid rule was applied

to calculate the equivalent nodal heat fluxes in the shell element models. Homogenization was not

needed for the solid element model due to the fact that the mesh in the solid heat transfer model

was finer than the CFD mesh.

35

Figure 2-17: Incident heat flux over time for a sensor at the center of the plate

Accuracy was measured by comparing the shell models to the solid element model. The

spatial homogenization algorithm performed well when used with the shell heat transfer elements.

Contour plots of the mid-surface temperatures at 12 minutes into the simulation are shown in Fig.

2-18. Temperatures calculated by the shell models with spatial homogenization are shown in Fig.

2-18 (a-d) while the temperatures calculated by the solid element model are shown in Fig. 2-18e.

It can be seen that the shell model converges to the solution calculated by the solid element model.

Temperatures are also plotted through the thickness to demonstrate the accuracy of the shell model

in predicting cross-sectional temperatures. As illustrated in Fig. 2-19, a slice through the plate’s

thickness was taken at the middle of the plate to illustrate the temperature gradients through the

thickness. Temperatures are plotted for the solid element model (Fig. 2-20c) and for the coarsest

(2×1) and finest (16×8) shell models (Figs. 2-20a and 2-20b, respectively). Temperature contours

are shown at 6 and 12 minutes into the simulation. It can be seen that the shell model converges to

the solid element model as the number of elements is increased.

36

(a) (b)

(c) (d)

(e)

Figure 2-18: Contours of the temperature field at the mid-surface of the plate after 12 minutes of fire

exposure (a) 2×1 shell model, (b) 4×2 shell model, (c) 8×4 shell model, and (d) 16×8 shell model, and (e) 80×40

solid element model

37

A measure of the relative difference in the computed temperatures at the mid-surface of

the plate is provided in the form of the relative l2-norm values, as given in Table 2-4. The reference

solution for computing the norm values was based on the converged solid element model. The

relative l2-norm values were calculated by interpolating between nodal temperatures in the shell

models to retrieve the temperatures in the locations of nodes in the solid element model at the mid-

surface of the plate. The comparison in Table 2-4 was prepared using temperatures at the mid-

surface of the plate only. However, similar convergence properties were exhibited at the top and

bottom surfaces of the plate as well.

Table 2-4: Comparison between the shell model and the solid element model

Model Details Percent Difference (Relative Norm) [%] Computing

Time Element Mesh DOF 3 min 6 min 9 min 12 min

Shell UEL 2 × 1 30 15.6 20.2 20.3 19.7 11.5 sec

Shell UEL 4 × 2 75 3.2 4.0 4.0 3.8 13.8 sec

Shell UEL 8 × 4 225 3.0 3.9 3.8 3.6 20.1 sec

Shell UEL 16 × 8 765 1.2 1.5 1.5 1.4 47.4 sec

DC3D8 80 × 40 16,605 -- -- -- -- 48.5 min

Figure 2-19: Section for contour plots taken through the thickness

38

(a)

(b)

(c)

Figure 2-20: Temperature field through the thickness at 6 min (top) and 12 min (bottom): (a) coarse shell

mesh of 2×1, (b) fine shell mesh of 16×8, and (c) the solid element model

The computing times are also reported in Table 2-4. The computing time shown in Table

2-4 includes the subcycling process, the mapping of fluxes to the element surfaces, the

computation of equivalent nodal fluxes, and the actual heat transfer analysis. The subcycling

process required a mere 0.08 seconds for each model. The time required for the other components

of the simulation was directly dependent on the number of degrees of freedom and the numerical

integration scheme. As shown in Table 2-4, the 4×2 shell model employing homogenization by the

trapezoid rule was within 4 percent of the solid element model and required only 13.8 seconds to

39

complete the analysis. The 16×8 shell model provided temperatures that were within 1.5 percent

of the solid element model and required 47.4 seconds. For comparison, the solid element model

that was used as the reference solution required a total of 48.5 minutes and required significantly

more degrees of freedom.

2.5 Conclusions

 A spatial homogenization algorithm was formulated for capturing non-uniform thermal

boundary conditions associated with a CFD fire simulation. Energy-equivalent nodal fluxes were

calculated for use with macro-level finite elements for heat transfer analysis, which have a coarser

mesh in relation to the CFD grid. The method for calculating the nodal fluxes is based on the

trapezoid rule for numerical integration. The proposed method was compared to other

homogenization techniques including sampling, averaging, and least squares methods for a 2D

application. The trapezoid rule approach offers superior performance because it more closely

enforces conservation of energy by accounting for the variations in heat flux over the surface of

the structure.

The homogenization algorithm was extended to 3D analyses and implemented in a macro

heat transfer element based on a shell formulation. The homogenization algorithm combined with

the shell heat transfer element resulted in an extremely efficient and accurate solution that led to

considerable time savings when compared to a solid-element model. Relative errors of less than

1.5% were reached using 128 layered shell elements in a 16×8 configuration, requiring less than

one minute (47.4 seconds) of computing time as opposed to the 48.5 minutes that were needed to

complete the solid-element model. This chapter does not consider the cost of the CFD fire

simulation, which still requires significant computational resources in a coupled fire-structure

simulation. Additionally, the work described herein only considered a flat rectangular plate in the

40

3D application and additional work is needed to extend the methodology to tilted and curved

geometries.

The applications considered here involved unprotected structures subjected to localized

fires with impinging flames. The situation is intended to represent a worst-case scenario in which

the structure is highly sensitive to variations in surface fluxes and in which the surface fluxes vary

considerably over small distances. It is acknowledged that protected structures will be less

sensitive to variations in surface fluxes. Additionally, members heated by remote radiation and by

optically thick gases may experience less severe fluctuations in surface heat fluxes and therefore

may be suitably modeled by other means that assume uniform temperature. In this chapter, we

advocate for an algorithmically consistent manner for representing the thermal boundary

conditions, as achieved by the homogenization algorithm presented here.

2.6 Acknowledgements

This work was supported by the United States Office of Naval Research under contract number

N00014-13-C-0373. Any opinions, findings, conclusions, or recommendations are those of the

authors and do not necessarily reflect the views of the sponsoring agency.

2.7 References

[1] Eurocode 1: Actions: General actions – Actions on structures exposed to fire, BS EN 1991-

1-2, British Standards Institution, London, 2009.

[2] J. Stern-Gottfried, G. Rein, Travelling fires for structural design - Part I: Literature review,

Fire Safety J. 54 (2012) 74-85.

[3] K. McGrattan, H. Baum, W. Mell, R. McDermott, Fire Dynamics Simulator (Version 5)

Technical Reference Guide – Volume 1: Mathematical Model, NIST Special Publication

1018-5, National Institute of Standards and Technology, Gaithersburg, MD, 2010.

[4] X. Yu, A.E. Jeffers, A comparison of subcycling algorithms for bridging disparities in

temporal scale between the fire and solid domains, Fire Safety J. 59 (2013) 55-61.

41

[5] K. Prasad, H. Baum, Federal building and fire safety investigation of the World Trade

Center Disaster—Fire structure interface and thermal response of World Trade Center,

NIST NCSTAR 1-5G, National Institute of Standards and Technology, Gaithersburg, MD,

2005.

[6] N. Tondini, O. Vassart, J.M. Franssen, Development of an interface between CFD and FE

software, in: Fontana, M., Frangi, A., and Knobloch, M. (Eds.), Proceedings of the 7th

International Conference on Structures in Fire, ETH Zurich, Zurich, 2012.

[7] N. Tondini, A. Morbioli, O. Vassart, S. Lechene, J.M. Franssen, An integrated modelling

strategy between FDS and SAFIR: the analysis of the fire performance of a composite

steel-concrete open car park, in: G.Q. Li et al. (Eds.), Proceedings of the 8th International

Conference on Structures in Fire, Shanghai, China, 2014.

[8] U. Wickström, D. Duthinh, K. McGrattan, Adiabatic surface temperature for calculating

heat transfer to fire exposed structures, Proceedings of the 11th Interflam Fire Science and

Engineering Conference, Interscience Communications, London, 2007.

[9] C. Culver, Steel column buckling under thermal gradients, J. Struct. Div. 92 (1972) 1853-

1865.

[10] P. Ossenbruggen, V. Aggarwal, C. Culver, Steel column failure under thermal gradients by

member, J. Struct. Div. 99 (1973) 727-739.

[11] J. Kruppa, Some results on the fire behavior of external steel columns, Fire Saf. J. 4 (1981)

247-257.

[12] J. Witteveen, L. Twilt, A critical view on the results of standard fire resistance tests on steel

columns, Fire Saf. J. 4 (1981) 259-270.

[13] C. Zhang, G.-Q. Li, A. Usmani, Simulating the behavior of restrained steel beams to flame

impingement from localized-fires, J. Constr. Steel Res. 83 (2013) 156-165.

[14] L. Chen, C. Luo, J. Lua, FDS and Abaqus coupling toolkit for fire simulation and thermal

and mass flow prediction, in: M. Spearpoint (ed.), Proceedings of the IAFSS 10th

International Symposium on Fire Safety Science, International Association for Fire Safety

Science, UK, 2011.

[15] A.E. Jeffers, E.D. Sotelino, An efficient fiber element approach for the thermo-structural

simulation of non-uniformly heated frames, Fire Safety J. 51 (2012) 18-26.

[16] A.E. Jeffers, Heat transfer element for modeling the thermal response of non-uniformly

heated plates, Finite Elements in Analysis and Design 63 (2013) 62-68.

[17] A.E. Jeffers, P.A. Beata, Generalized shell heat transfer element for modeling the thermal

responses of non-uniformly heated structures, Finite Element in Analysis and Design 83

(2014) 58-67.

[18] A.E. Jeffers, Triangular shell heat transfer element for the thermal analysis of non-

uniformly heat structures, J. Struct. Eng. (2015), to appear.

[19] R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and Applications of Finite

Element Analysis, 4th ed, John Wiley and Sons, U.S., 2002.

42

Chapter 3

Thermo-mechanical Shell Element for Coupled Fire-structure Analysis

One modern approach to understanding the fire-structure interaction problem involves

using a computational fluid dynamics (CFD) simulation to model the natural fire evolution within

a structure. Using the output from the CFD-based fire simulation, one can then sequentially couple

the fire boundary conditions to a thermal model of the structure for subsequent heat transfer

analysis. A problem arises when the analyst needs to model the deformation in the structure due

to the thermal exposure, which would require re-meshing in the finite element analysis (FEA), thus

implying the need for another coupling between the thermal and mechanical FEA models.

However, employing thermo-mechanical shell elements in the coupled fire-structure simulation

problem allows for this multi-step analysis in a single FEA model without re-meshing thus solving

for temperatures and displacements simultaneously. The current study demonstrates the accuracy

and convenience of this approach for calculating deformations in the structure due to non-uniform

heating from a simulated fire source. Performing the thermo-mechanical simulation in a single

step after the completion of the fire simulation removes one phase of data transfer from the

workflow, allowing for a streamlined two-step method using heat fluxes to compute temperatures

and displacements in the structure based on measured heat fluxes from the CFD fire simulation.

3.1 Introduction

 The aim of fire-structure simulation is to characterize the temperature and displacement

fields within the fire-exposed structure in an accurate and efficient manner. For thin-walled

43

structures, such as floor slabs in buildings or structural panels in naval vessels, finite-element

approaches based on shell theory are the preferred means for analyzing the deformation response.

The benefit of shell elements from a computational perspective is the reduction of the degrees of

freedom (DOF) in structures with larger planar dimensions than the thickness dimension. Shells

overcome the computational restrictions posed by 3D continuum-based elements, which may

demand an excessively fine mesh of elements to capture bending behavior and maintain acceptable

aspect ratios for the elements. This benefit is well known for the use of general shell elements, and

a similar situation has been encountered in the 3D conduction heat transfer in thin-walled

structures. In the fire-structure simulation problem, there are three key components requiring the

selection of a set of analysis tools. Figure 3-1 presents a high-level view of the coupled fire-

structure interaction problem using data from a CFD-based fire simulation.

Figure 3-1: Overview of the sequentially coupled fire-structure interaction problem using CFD-to-FEA

coupling methods

 The three main stages of analysis are shown in Fig. 3-1, i.e., (1) the high-resolution fire

simulation using CFD software, (2) the fire-to-solid coupling for mapping the fire boundary

conditions for non-matching meshes in the fire and solid domains, and (3) the thermo-mechanical

response calculation using FEA. The simulation of fires using CFD is well-established as an

accurate representation of natural fires. For example, the CFD-based fire simulation software is

44

Fire Dynamics Simulator (FDS), which was developed at the National Institute of Standards and

Technology (NIST) [1], has been extensively validated against a wide range of fire experiments.

However, limited work has been done on the coupling of the CFD fire simulation to the thermo-

mechanical simulation of structural shells, particularly with regards to the two phases of Fig. 3-1

beyond the fire simulation. The primary focus of the current study is capturing the thermo-

mechanical response in the structure using coupled thermo-mechanical shell elements (the image

on the right in Fig. 3-1). The work builds on prior research by the authors regarding fire-structure

coupling methods [2,3] and the thermal analysis of shells [4–6].

 Research in the field of general shell theory is expansive but the thermal shell elements

available in the literature are limited to a few researchers. For example, the work by Surana’s team

[7–12] has produced a series of foundational papers on topics ranging from axisymmetric thermal

shells to three-dimensional hierarchical shells. One common theme among that line of work was

to represent the through-thickness temperature field using a temperature DOF and its gradient

computed at the mid-surface of the shell as a secondary DOF. Noor and Burton [13] gave a

predictor-corrector method for the calculation of heat fluxes and temperature distributions in thick

multilayered composite shells and plates. Mukherjee and Sinha [14] presented a formulation based

on a Galerkin approach applied to the heat conduction problem in laminated composite plates as

well. Noack, Rolfes, and Tessmer [15] formulated a layer-wise theory for heat conduction of

hybrid structures and sandwich panels. The authors [4–6] formulated heat transfer shell elements

for 3D transient conduction analysis in thin-walled structures. The approach provides a layered

method for computing the temperature field through the thickness of the shell while providing

bilinear or biquadratic temperature distributions in the plane of the element. Temperature DOF are

45

stacked at each node such that a single n-node thermal shell element with NL temperature layers

would have n∙NL total temperature DOF in the element.

 In the present work, a fully coupled thermo-mechanical shell element was developed to

simultaneously solve for the temperature and displacement fields using the same finite-element

mesh (i.e., made up of thermo-mechanical shell elements) to model the coupled response of thin-

walled structures. The element matrices and vectors associated with conduction heat transfer in

the solid were computed using the previous formulation [4,5]. For the mechanical shell element

formulation, a general-purpose shell was selected to couple with the thermal shell element. The

theory presented by Kanok-Nukulchai [16] for a degenerated bilinear shell element was adapted

here and used in conjunction with the thermal shell element; together, these formulations provided

the basis for coupled temperature-displacement analyses. This formulation was selected for its

specific use of a torsional stiffness term to resist rotations about the normal vector to the shell

surface. Other recent approaches [17,18] have also addressed the drilling rotation problem using

this method [16].

 The thermal shell element presented by the authors [4,5] and the classical mechanical shell

element presented by Kanok-Nukulchai [16] were combined using a standard virtual work

approach [19] for finite-element coupled thermoelasticity. The process for formulating the

coupled-element system of equations was used to develop non-symmetric element arrays of the

coupled thermoelastic solid by starting from a temperature-dependent constitutive law. In this

approach, layer-wise temperatures were considered DOF on the left-hand side of the system of

equations as opposed to thermal strain forcing terms on the right-hand side. The coupled thermo-

mechanical shell element was subsequently implemented as a user-defined element in Abaqus

through the UEL subroutine [20]. Numerical examples employing the thermo-mechanical shell

46

element are provided to demonstrate the performance of the formulation as implemented in

Abaqus. The user subroutine UEL was used to include this element in the software.

3.2 Coupled thermo-mechanical shell element

 In the current study, two finite-element theories for shell elements were coupled to provide

a thermo-mechanical shell element formulation for use in thermoelastic analyses. The formulation

of this fully coupled shell element was intended for 3D transient temperature-displacement

analyses and was implemented as a user element in Abaqus through the UEL subroutine, which

was specifically designed for future use in one-way coupled fire-structure interaction problems.

The main formulation for each of the individual shell theories used here has been published in

previous work. Specifically, the thermal shell comes from a layered formulation for 3D conduction

heat transfer analysis [5], while the original mechanical shell element is based on an equivalent

single layer theory in which the element properties and arrays are computed only at the mid-surface

of the element [16]. The main features of these original formulations will be discussed in the

following subsections.

 In the coupled formulation presented here, the main consideration for linking the two

theories was properly handling the various temperature layers through the thickness from the

thermal shell model. The coupled formulation was based on the principle of virtual work and uses

descriptions of the finite-element approximation of the shell geometry and DOF from each

individual formulation directly. The fully coupled shell element employs a bilinear displacement

field approximation in the mid-surface plane and a bilinear temperature field within the plane of

each thermal layer. The temperature field through the thickness is incorporated in the coupling

stiffness terms by integrating in this direction with a piecewise-quadratic polynomial

47

approximation using Simpson’s quadrature rule. As a result, only four nodes need to be defined

by the user at the corners of the mid-surface for each element and the calculation of nodal direction

vectors was handled automatically in the Fortran implementation (i.e., UEL subroutine).

 The virtual work approach to generate the coupled-element matrices was essential for

solving for the temperatures and displacements simultaneously in the shell (i.e., in the same time

iteration of the analysis) using the non-symmetric matrix solver in Abaqus. The result was a fully

coupled thermo-mechanical shell finite element capable of any (odd) number of temperature

layers. In the fire-structure simulation setting, some researchers have used heat transfer elements

to calculate temperatures and then mapped the temperature field to the structural shell elements

(e.g., [21]). Others (including the authors) have explored this route of coupled thermo-mechanical

shell formulations that capture the 3D conduction and deformation in the structure simultaneously.

 The total number of DOF is dependent on the number of layers selected for the analysis;

the default value of five layers is typical [20]. The transfer process to map nodal temperatures from

the thermal model to mechanical model, as seen in other attempts, was eliminated with this solution

to the coupled thermo-mechanical problem. Currently, the element is limited to small-

displacement analysis and thermoelastic problems for this initial development.

3.2.1 Thermal shell element

The original formulation of the thermal plate provided a layered 3D finite element to model

the conduction heat transfer in thin-walled structures [4]. The basis of the theory was the use of a

collection of layers in the thickness direction comprising the full plate geometry in which the

temperature variation of a given layer could be interpolated within the plane of that layer using 2D

basis functions. Thermal plate element was extended to a more general formulation for 3D shells

48

[5] and later took into consideration triangular element geometry [6]. In general, the thermal shell

theory in [4–6] research has proven to be efficient and accurate for modeling 3D thermal

conduction in solid media.

The thermal shell element provides a finite-element approach for solving the 3D heat

conduction equation within a solid body:

t

T
cQ

z

T
k

zy

T
k

yx

T
k

x
zyx























































 (3.1)

Here, kx, ky, and kz represent the thermal conductivity in each principal direction; Q is the internal

volumetric heat source; ρ is density; c is the specific heat; and T is the unknown temperature field

within the solid medium. Derivatives present in Eq. (3.1) are with respect to the global x, y, and z

directions and with respect to time t. The element was discretized into layers (Fig. 3-2) in which

the temperature in the thickness direction was lumped at each layer and the temperature in the

plane was approximated as bilinear or biquadratic.

Figure 3-2: Layered thermal shell element, as originally presented in [5]

 Using a combination of finite-element and control-volume approaches, the authors showed

that the governing equations for the thermal shell element could be expressed in the form [5]:

 TTTTT RUKUC  (3.2)

Here, CT is the specific heat matrix, KT is the total conductivity matrix, RT contains the thermal

forcing terms, and the array UT is a vector that contains all the temperature DOF in the system. For

49

the sake of brevity, the details of the formulation are not repeated here. The subscript T was

included in Eq. (3.2) in order to distinguish these thermal terms from the mechanical terms in the

coupled formulation that follows. Equations for CT, KT, and RT are given in [5]. Readers should

refer to the original publications for these details.

 The definition of the shell geometry requires only specification of the nodal coordinates at

the mid-surface of the shell, as shown for the typical node in Fig. 3-3. The normal direction vectors

(i.e., the vectors normal to the mid-surface) were computed internally within the Fortran

implementation through the use of a standard algorithm [22].

Figure 3-3: Corner node at the mid-surface of the shell element, as originally presented in [5]

3.2.2 Coupling approach

 To discuss the mechanical shell element, a coupling approach is needed in order to define

the foundation of the formulation. From the coupled formulation approach, the thermal and

mechanical components will become clearly distinguishable. The coupled formulation begins with

a typical statement of the principle of virtual work for a solid deformable body (or principle of

virtual displacements). For brevity, the statement of virtual work is provided here for a deformable

elastic body without explicit derivation:

   dSdVdV TTT
ΦuFuσε  (3.3)

50

The expression given above involves both virtual displacements δu and virtual strains δε, signified

by the δ present in each of the terms of the equality. The remaining components are the stresses σ,

the body forces F, and the surface tractions Φ. The left-hand-side term is comprised of the single

volume integral, which is integrated over the whole domain of the elastic body. The right-hand-

side has one volume integral for the body-force terms as well as a surface integral for capturing

the applied traction forces on the boundary surface of the solid. That surface is a particular subset

of the full element domain on which a boundary condition, namely the traction forces Φ, has been

applied.

 The formulation continues with the linear-elastic constitutive law, which takes into

consideration thermal strains, and is divided into membrane and shear terms (presented here in a

local coordinate system at the individual element level):

)εε(Dσ thmmm

G

DD

DD























































12

22

11

12

22

11

00

0

0

















 (3.4)

sss
fG

fG
εDσ 


























23

13

23

13

0

0








 (3.5)

These expressions can be written more concisely in matrix-vector form as follows:







 








 


















ss

thmm

s

thm

s

m

s

m

εD

)εε(D

ε

)εε(

D

D

σ

σ

0

0
 (3.6)

The σ33 stress term is restricted to zero, which is a common assumption in shell element

formulations. The constant D can be expressed as E / (1 – ν)2 where E is the modulus of elasticity

or Young’s Modulus and ν is Poisson’s Ratio in the above equations. G is the shear modulus; f is

a shear correction factor of 5/6th which is the typical value for such shell elements; α is the thermal

expansion coefficient; and θ is the temperature difference, which is defined as T – T0, where T0 is

51

the reference temperature representing a material state with zero thermal stress. In the formulation

that follows, all material properties were assumed to be constant and independent of temperature.

The thermal strain αθ is the main connection between the thermal and mechanical shell element

formulations and is the basis of the thermo-mechanical coupled-shell approach. Notice that the

strain terms associated with εth of Eq. (3.6) were not explicitly defined yet; these thermal strains

can be expressed compactly as the following:

   Aε 
T

th 0 (3.7)

Recall θ is a scalar temperature difference at a particular location in the shell volume.

In finite element formulation, the typical strain-displacement matrix B is used to relate

strains and nodal displacements, i.e., ε = BU. In the work by Kanok-Nukulchai [16], the strain-

displacement relationship was conveniently written as follows:


 



























 n

I
I

I

I

s

I

s

I

s

I

m

I

m

I

m

s

m

1 321

321

ω

u

)BB(B

)BB(B

ε

ε




 (3.8)

The index I represents the Ith node in the element and the displacement vector is broken up into uI

and ωI, which are the global displacements and rotations, respectively. In accordance with the

original formulation, the B2m term is zero but shown here for completeness. The individual

components of the strain-displacement matrix B were factored properly such that they only depend

on the planar natural coordinates of ξ and η, while the ζ-dependency is explicitly visible in Eq.

(3.8). Note that for the mechanical shell element, the array uI contains nodal translations and ωI

contains nodal rotations for the Ith node of the element. The two terms are related by the finite-

element approximation for defining the displacement field within the element volume as follows:

   
 









n

I

IIII tξ,ηNξ,η,ζ
1 2

1
ωΦuU  (3.9)

52

The nodal basis functions are defined as each of the NI terms while the nodal translations and

rotations are shown within the summation ranging over all the nodes (totaling n) in the element.

The additional factors on the rotations are the element thickness t, the thru-thickness natural

coordinate ζ, and a nodal coordinate-transformation matrix ΦI.

Following Eq. (3.9), virtual deformations can be similarly defined:

   
 









n

I

IIII tξ,ηNξ,η,ζ
1 2

1
ωΦuU  (3.10)

The virtual strain-displacement relation can therefore be defined as follows for a bilinear

displacement field (i.e., n = 4):

 





















n

I

I

I

s

I

m

s

m

1

U
B

B

ε

ε
ε 




 (3.11)

The membrane strains (εm) and shear strains (εs) are defined within the shell element domain based

on the natural coordinates (ξ, η, ζ). In terms of virtual strains, the strain-displacement relation can

be written in a more compact form as δε = BδU, which incorporates the virtual displacements.

Thus, in Eq. (3.11) above, the UI term containing nodal displacements of the Ith node has become

δUI to reflect the virtual nodal displacements.

3.2.3 Mechanical shell element

 By substituting the expressions for the strain-displacement relation and the stress-strain

relation (taking into account temperature changes), the mechanical shell stiffness components as

well as the thermo-mechanical coupling term can be established. Recall that the volume integral

on the left-hand side of Eq. (3.3) is for the full volume of the solid body but note that, in using

FEA, the virtual work equation is applied to a subset of the full volume; specifically, to that of a

53

single element. Using V(e) to denote the element’s volume, and substituting Eqs. (3.6-3.11), the

internal energy term was transformed into the following form:

  






 





















)(
)(

e

ss

thmm

T

s

m
dV

εD

εεD
U

B

B
 (3.12)

 As in Eq. (3.10), a summation over the nodes will be needed as well, with indices I and J ranging

from 1, 2, …, n nodes, where n = 4 for the bilinear element considered here. Substituting the strain-

displacement relationship in Eq. (3.8) into the internal energy integral of Eq. (3.12) and using the

matrix transpose properties to expand the first product gives the updated matrix-vector expression

inside the integrand:

  






 )()(
)()()(e

JJ

ss

JJ

mmTI

s

TI

m

TI dV
UBD

AUBD
BBU


 (3.13)

The integrand of Eq. (3.13) now includes the scalar temperature difference, θ, as a variable. This

temperature difference will later provide the connection to the actual temperature DOF of the

layered thermal shell. Performing matrix multiplication in the above equation produces the

following form:

  )()()()()(eJJ

ss

TI

s

JJ

mm

TI

m

TI dVUBDBAUBDBU  (3.14)

Next, the individual terms can be separated into different integrals:

     )()()()()()()()()(e

m

TI

m

TIeJJ

ss

TI

s

TIeJJ

mm

TI

m

TI dVdVdV  ADBUUBDBUUBDBU    (3.15)

 Referring back to the original statement of virtual work presented in Eq. (3.3), the right-

hand-side terms can be reintroduced after substituting the above expression for internal energy and

considering the finite-element basis functions used similarly for the right-hand side terms. Using

the nodal contribution nomenclature from before (namely, the superscripts I and J), introducing

54

the right-hand-side, and again specifying the integrals for a typical element, the resulting equation

becomes:

     0)()()()()()()( 
I

M

e

m

TI

m

JeJ

ss

TI

s

eJ

mm

TI

m

TI dVdVdV RADBUBDBBDBU  (3.16)

Here, RM is the right-hand-side forcing term for the mechanical shell element, which is defined as

follows for the element (superscript I dropped for element-level equation here):

 )()(
ΦNFNR

eTeT

M dSdV (3.17)

Note that a capital M is used to signify mechanical stiffness terms, and N contains the element’s

basis functions. From the expression in Eq. (3.16), it is clear that, since the statement must hold

for all virtual displacements δUI, all the terms within the main curly braces that right-multiply the

virtual displacement term must sum to zero.

 The familiar components of the element stiffness equations begin to appear in this

development. The first two terms from Eq. (3.16) are given next and are exactly as presented in

the original reference for this element [16]. Reproducing those terms here, the stiffness

components of the mechanical shell element are:


)(

BD)B(K
eJ

mm

TI

m

IJ

m dV (3.18)


)(

BD)B(K
eJ

ss

TI

s

IJ

s dV (3.19)

Here, the subscripts m and s indicate the membrane and shear contributions to the stiffness. For

these element arrays, a selective reduced integration technique was employed for reducing the

shear locking effects in shell elements [22].

 In order to present the complete formulation of the mechanical shell element given in the

original publication, it is important to briefly mention that a penalty method was used to generate

55

a third stiffness component for torsional restraint. The torsional stiffness was represented as Kt

and its details are not reproduced from [16] here other than simply stating that this torsion term

restricts free rotation about the surface normal of the shell element and left-multiplies the

displacement DOF similar to how a typical stiffness term would in the prior development up to

this point. Thus, the mechanical stiffness term KM is as follows:

IJ

t

IJ

s

IJ

m

IJ

M KKKK  (3.20)

The mechanical stiffness term can then be substituted into the main governing equation:

I

M

e

m

TI

m

JIJ

M dV RAD)B(UK
)(   (3.21)

The form of Eq. (3.21) above is clearly incomplete as the element volume integral for the

coupling term is still undefined. At this point in the development, it is typical for the thermal strain

terms to be converted to right-hand-side forcing terms in which the thermal strain enters the FEA

governing equations as a thermal load in the uncoupled thermo-mechanical analysis. However, the

fully coupled formulation treats the temperatures as DOF to be solved for simultaneously with

displacements.

3.2.4 Coupled shell element

 The remainder of the formulation presented here seeks to establish the thermoelastic

stiffness components that are produced by the temperature change. As the temperature change only

appears in the σ11 and σ22 stress terms, the thermoelastic coupling term can be isolated from the

virtual work equation. In a typical finite element, strains ε are interpolated from nodal

displacements U according to the strain-displacement matrix B, i.e., ε = BU. In the original

formulation, the strain-displacement matrix was decomposed into membrane Bm and shear Bs

terms to simplify the notation [16]; this was repurposed in Eq. (3.11) of the current study. Keeping

56

the original notation, the main coupling term that arises from this development is the integral seen

in Eq. (3.21), which is isolated here:


)(

AD)B(
e

m

TI

m dV (3.22)

Note that the thermal strain has been included as Aθ where θ is the temperature difference (a

scalar). The negative sign in the front of Eq. (3.22) is to preserve the sign of this term, as it appears

on the left-hand-side of Eq. (3.21). The negative sign is a result of the constitutive law, which

subtracts thermal strains, as was seen in Eq. (3.6).

Equation (3.22) will be separated into two different contributions. The first one appears on

the left-hand side of the element equations (i.e., a coupling stiffness KC multiplied by the nodal

temperatures UT). The second contribution is a forcing term on the right-hand side of the system

of equations to include the reference temperature, which is expressed as R0 here. Writing the

equation of motion for the mechanical shell element to include the coupling terms that arise from

Eq. (3.22) gives the following equation:

II

M

L

T

IL

C

J

M

IJ

M 0RRUKUK  (3.23)

In Eq. (3.23), KM is the elastic stiffness for the shell element, as defined in Eq. (3.20), UM is the

vector of nodal displacements and rotations, and RM is the vector of nodal forces. These terms

remain unchanged from the original formulation [16] and are denoted by superscripts I and J,

which each range from nodes 1, 2, …, n; thus, the contributions from nodes I and J make up the

(I, J) sub-matrix of KM. The superscript L that is appended to the new coupling term ranges from

1, 2, …, NL number of layers in the layered thermal shell. Equation (3.23) gives the governing

finite-element equations for a layered, deformable elastic body with a consideration for

temperature variations through the volume of the solid as provided by the thermoelastic

57

constitutive law of Eq. (3.6). R0 is not explicitly given here; it represents the forcing term for the

reference temperature T0 which arises from the temperature difference θ = T – T0.

By bringing the governing equation of the thermal shell element from Eq. (3.2) together

with the mechanical shell equation that includes thermoelastic coupling in Eq. (3.23), the full

system of coupled equations for the thermo-mechanical shell element can finally be expressed in

the following matrix-vector form for a single element of the fully assembled system:








 



































T

M

T

M

T

CM

T

M

TC R

RR

U

U

K0

KK

U

U

CC

00 0




 (3.24)

This gives the form of the governing equations needed for a coupled analysis. The exact

expressions of KC and R0 in Eq. (3.24) arise from the assumptions that are embedded in the thermal

and mechanical shell formulations and these terms are unique to the coupled formulation. For

completeness, the thermoelastic damping term CC is also shown in Eq. (3.24) as the pre-multiplier

of velocity. However, in the quasi-static equilibrium problem presented here, the velocity DOF are

assumed zero and are thus represented by the zero-vector in the equation (i.e., U̇M = 0). While not

discussed in detail here, the thermoelastic damping term CC is defined in the ANSYS

documentation [23] as the following: CC = –T0 (KC)T and may be used in problems with evidence

of strong coupling.

 The coupling stiffness matrix KC pre-multiplies temperature DOF on the left-hand-side of

the governing system of equations in Eq. (3.24). Returning to the development that will lead to the

desired final form given in Eq. (3.24), the typical strain-displacement matrix term Bm
I has been

split into its two sub-components using the following relation from Eq. (3.8) to explicitly factor

out the ζ component: Bm = [B1m ζB3m]. Notice the natural coordinate ζ representing the through-

thickness direction has entered the integrand to left-multiply the submatrix (B3m)I; this will be

important in the through-thickness integration step that follows.

58

 Recall that ζ is a natural coordinate in the through-thickness direction of the shell domain.

The other two natural coordinates (ξ and η) in the planar dimensions of the shell element are located

at the mid-surface. Additionally, the subscripts 1 and 3 were used in the definition of the Bm
I

contributions. These labels come from [16] and it is important to note that they were used as

subscripts and do not reflect any particular matrix entries. Also note that there is a (B2m)I term in

Eq. (3.8) which is the zero matrix, as mentioned previously.

 Substituting this expression of Bm
I and using the previous definitions for Dm, A, and θ in

Eq. (3.24) produces the following integrand for the coupling term:

 
  












































)(

0

3

1)(

000

0

0
e

TI

m

TI

m dVTT

G

DD

DD









 B

B
 (3.25)

This updated expression in gives two terms in the full formulation: a left-hand-side stiffness

component including the scalar T as nodal/layer DOF (shown next) and a right-hand-side forcing

term taking into consideration the reference temperature T0 (the R0 component). For the first part

of the coupling stiffness definition, the focus will be on representing the temperature DOF as left-

hand-side components while the reference temperature term will be saved for a later discussion.

 The integrand of Eq. (3.25) may be simplified by multiplying the DmA product first and

converting the integral to natural coordinates while introducing the Jacobian matrix J to provide

the mapping of bases as in a typical isoparametric formulation. The result is the following

expression, where the constant κ is introduced after the matrix multiplication of the two interior

arrays Dm A:

 
 






dddT

TI

m

TI

m

  
   


























1

1

1

1

1

1 3

1

0

J
B

B

(3.26)

59

Where κ represents the product of –αD(1 + ν). Then, κ can be factored out of the volume integral

as follows:

 
 




 dddT
TI

m

TI

m

  
   










































1

1

1

1

1

1 3

1

0

1

1

J
B

B

(3.27)

Three main features shall be noted to summarize the resulting expression in Eq. (3.27):

1. The 3×1 array containing the thermoelastic constant κ in Eq. (3.26) effectively sums

columns one and two of its pre-multiplier, namely the Bm
I matrix, and scales it by the

thermoelastic constant κ, which was subsequently factored out to the front of the equation

in the form shown in Eq. (3.27).

2. The fiber integral (i.e., the integral for through-thickness integration) was highlighted using

the curly braces above and will be important with regards to how the layers are handled.

3. Temperature DOF will be introduced through the T variable above; as it was stated above,

for now T is simply the continuous field variable T = T(ξ, η, ζ) in the shell element domain.

The finite-element interpolation has not been introduced.

3.2.5 Through-thickness integration

 The expression given in Eq. (3.27) shows the fiber integral explicitly marked with curly

braces. From this equation, we can define the coupling stiffness matrix KC as seen in Eq. (3.24)

by using Simpson’s Rule for numerical integration through the thickness. This integration

approach requires an odd number of sampling points; in this case, the sampling points are the ζ-

coordinate locations through the shell thickness where temperature DOF exist at the nodes. Thus,

to use this approach, the thermo-mechanical shell element requires an odd number of layers, which

60

must be greater than or equal to three. This integration method uses a quadratic approximation of

the temperature solution through the thickness and therefore two points or less is not sufficient.

 Section 3.2.1 described the thermal shell element and discussed how temperature DOF

were used through the thickness. An important relation in that development was the fact that at a

particular layer in the shell, the temperature in that layer could be computed by using the element

basis functions to interpolate among the nodal temperatures of that layer. The temperature of a

point in layer k for the n-noded shell was computed as follows:





n

I

kIITNT
1

)(
 (3.28)

Once again, the basis functions of the element are signified by NI and superscript (k) has been

added to denote layer k for clarity.

 Using Simpson’s Rule for numerical integration through the thickness and the temperature

field T as described in terms of nodal DOF as in Eq. (3.28), the fiber integral of Eq. (3.27) can be

evaluated by addressing the contributions associated with B1m and B3m separately. First, notice that

the B1m matrix in Eq. (3.27) is not multiplied by ζ. Since both B1m and B3m are independent of ζ,

they do not need to remain within the fiber integral. The same thing can be said of the 3×1 array

containing [1 1 0]T which serves to only add the first two columns of the Bm matrix that pre-

multiplies it. For the B1m matrix, the components of the fiber integral reduces to the following:

dT


1

1

J

(3.29)

Equation (3.28) is substituted into Eq. (3.29) and then Simpson’s 1/3rd Rule is applied. Specifically,

Simpson’s Rule was used to evaluate the integrand at the layer coordinates ζk for layers k = 1, 2,

…, NL during the numerical integration which gives:

61

 

 

 )()()()()()(

)()()()()()(

)()()()()()(

JTNJTNJTN

JTNJTNJTN

JTNJTNJTN

JJJJ

NLNLNLNLNLNLh

h

h

dTdTdTdT
NL

NL
















1122

554433

332211

1

1

4
3

4
3

4
3

2

5

3

3

1



 













 (3.30)

In Eq. (3.30), the superscript (k) was added to the Jacobian matrix to indicate that it should be

evaluated at each layer coordinate ζk and the basis-function array N was substituted into Eq. (3.30)

as well. In the Simpsons 1/3rd Rule used here, the numerical integration weights can be seen as the

{1, 4, 1} factors for the three points used per sub-integral. Another factor on the weights is the

additional h/3 term where h is the distance between two integration points. For the isoparametric

shell element mapped to the bi-unit domain, h is simply defined as 2.0 / (NL – 1) where the 2.0

comes from the length of the interval [-1, 1] of the original integral. The general form of Eq. (3.30)

is as follows:














 









)()(
2

,...5,3

)()(
1

,...4,2

)()()1()1(

1

1

24
3

NLNL
NL

j

jj
NL

i

iih
dT JTJTJTJTNJ 

(3.31)

 The convenience of this approach can be seen from Eq. (3.31) whereby it is clear that the

basis functions N have been factored out and now the nodal temperature DOF T(k) for k = 1, 2, …,

NL are visible and consistent with the format of the original thermal shell element. This same

approach was used for the B3m term in Eq. (3.28) as well. The details will be spared because Eq.

(3.31) may be used in the same manner but now with an extra ζ term in the integrand that must be

included in the numerical integration step. This was accomplished by means of adding a factor of

62

ζk applied to each term in the summation seen in Eq. (3.31) for use with the B3m partition previous

shown in Eq. (3.27).

 The details of the integration in the plane of the shell have been left out. The process is

typical for a finite element employing Gaussian Quadrature in the plane. One feature to note from

this development is the fact that the basis function array N does not need to remain within the fiber

integrand because it is not a function of ζ and thus does not change through the thickness. By

factoring out the temperature DOF from the evaluated fiber integral shown in Eq. (3.31), the

coupling stiffness term KC remains. The approach for the reference temperature contribution is

similar but extremely simplified due to T0 being a constant that does not vary through the thickness.

The final note on the mechanical shell stiffness terms is that selective reduced integration was used

for the integration of the mechanical shell element array while the standard 2×2 Gaussian

quadrature was used layer-wise to form the element arrays of the thermal shell element.

3.3 Numerical results

 A series of verification studies will be presented in the following subsections that

characterize the performance and highlight the benefits of the thermo-mechanical shell element

presented here. The numerical results show a verification of the element through benchmark

testing in preparation for the full fire-structure coupling procedure for particular applications in

the intended final use case. Prior to performing tests with the coupled thermo-mechanical shell

element, the implementation of the mechanical shell element was verified using traditional

benchmark testing as provided, for example, in the Abaqus Benchmarks Manual [20]. Specifically,

the sections of 2.3.1 The barrel vault roof problem and 2.3.2 The pinched cylinder problem were

used to ensure the displacements were calculated accurately with this particular user-element

63

(UEL) implementation of the original element formulation. Verification of the thermal shell

element implementation used here was performed in previous studies [4,5].

For the barrel vault roof, the UEL computed the reference displacement at the desired node

with an error of -3.3% using the coarsest mesh of 4×4 elements. The results improved to an error

of -0.67% for the finest mesh of 18×18 used in this test. These results were comparable to the

closest Abaqus library equivalent for this element: the S4 general shell element. Results for the S4

element were +4.7% and +0.77% for the same meshes, respectively. For the pinched cylinder,

using the finest mesh of 20×20 elements, the UEL computed the reference displacement with an

error of +4.3% while S4 resulted in -4.0% error. Note that the for the torsion coefficient term

mentioned earlier, a value of κT = 1.0 was used to produce these results with the UEL

implementation (see [16] for details on the torsional stiffness term).

3.3.1 Thermal stress in a cylinder

 The first example using the thermo-mechanical shell element is a verification problem for

computing the stress in a hollow cylinder subjected to a higher temperature (200 °C) on the inside

surface and a lower temperature (100 °C) on the outer surface. These conditions on each of the

surfaces were provided by specifying a temperature boundary at the surface of the shell element.

This test was defined in the Abaqus Verification Manual (1.3.17 Thermal stress in a cylindrical

shell) [20]. In Fig. 3-4 below, the full cylindrical structure is shown and the single-element mesh

required for this benchmark is highlighted, as only one element was needed for this test.

Additionally, a steady state condition was assumed according to the documentation.

64

Figure 3-4: Verification problem for analyzing thermal stress in a cylinder

 The size of the element used in this test corresponds to one that subtends an angle of 11.25°

at the center of the cylindrical shell opening; thus, it is consistent with a scenario in which 32

elements compose the circumferential direction. Proper boundary conditions were specified for

the stress analysis such that the rotations about the circumferential direction were constrained but

the cylinder was allowed to extend freely due to thermal expansion along its axial dimension, in

accordance with the original problem statement. A reference solution was given in the Abaqus

Verification Manual [20] for this problem. The theoretical stress at the outer and inner surfaces of

the cylindrical structure should be ±171.43 MPa, with the plus/minus sign depending on the

surface.

 Results computed by Abaqus using the Fortran implementation of the proposed thermo-

mechanical shell element matched this reference solution exactly. In fact, using the analytical

solution for this problem to compute the stress with more significant digits, the thermo-mechanical

shell element demonstrated more than sufficient accuracy, showing an absolute error of O(10-13)

when comparing computed stresses with the analytical solution. The thermo-mechanical shell

element presented here also performed the same as the similar elements provided in the Abaqus

library for this problem, such as the S4T coupled temperature-displacement shell.

65

3.3.2 Simply supported heated plate

 A simply supported plate problem for measuring deflection due to non-uniform heating

was modified for a thermoelastic shell analysis. Originally, the reference solution for this problem

was derived for a plate and presented in a classical mechanics textbook on plate and shell theory

[24]. Since the model was specified for a plate problem, modifications were needed for the thermo-

mechanical shell version of this verification in order to provide proper in-plane restraint. The

original plate problem and its boundary conditions are shown in Fig. 3-5 below; in this scenario, a

linear temperature difference was applied through the thickness of the of the plate.

 The original reference [24] provides a series solution to the partial differential equation for

the out-of-plane displacement (i.e., along the z-axis in this model) for the deflection w(x, y)

pertaining to this case. Using this provided solution, not given here for brevity, the deflection at

any point could be obtained and compared with a finite-element model employing the thermo-

mechanical shell element. However, modifications were needed for using shell elements in this

test in order to restrain in-plane, rigid-body motions. The boundary conditions used for the shell-

element model of this problem are given in Fig. 3-6, where in-plane translations were restrained

on two edges to provide uniform thermal expansion towards the xmax and ymax sides.

66

Figure 3-5: Simply supported rectangular plate geometry and boundary conditions; the linear temperature

through the thickness h is shown as well

Figure 3-6: Simply supported plate with displacement boundary conditions explicitly defined for the 3D FEA

model employing shell elements

 The particular material properties and dimensions chosen for this problem were selected

objectively, as the provided solution is general for any thermoelastic problem. Thus, the dimension

a and b from the original diagram in Fig. 3-5 were 1.0 m and 2.0 m, respectively, and the thickness

of the plate h was 0.1 m. The thermoelastic material properties were a Young’s modulus of

2.0×1010 Pa, Poisson’s ratio of 0.20, and coefficient of thermal expansion of 1.0×10-5 m/(m∙°C).

67

Finally, the only load on the system was the linear temperature field prescribed through the

thickness such that the difference T1 – T2 was equal to 100 °C.

 For this test, two meshes were used for the FEA models: 4×8 and 8×16 elements in the

plane of the plate model via the UEL implementation of the thermo-mechanical shell element in

Abaqus. Five temperature layers were used through the thickness. In order to define the linear

temperature field through the thickness, the exact temperature was specified at each layer.

Therefore, in the five-layer case used here, temperatures of 0, 25, 50, 75, and 100°C were directly

prescribed as the temperature DOF for each layer as input. This approach isolated the thermo-

mechanical coupling features that were targeted for investigation in the model; namely, this

allowed for directly assessing the deformation based on a known temperature field.

 The results of this verification test are shown in Fig. 3-7 below, where the out-of-plane

displacement w was plotted along two lines of the plate. These lines correspond to the x = a/2 and

y = 0 lines, referring to the coordinate system of Fig. 3-5 where these lines represent the centerlines

in the x- and y-directions. The five curves in the figure come from the theory-based reference

solution according to the original plate example [24], the results for the new thermo-mechanical

shell element presented here (UEL), and, for comparison, the coupled temperature-displacement

shell provided by Abaqus (S4T).

68

Figure 3-7: Comparison of the results for the out-of-plane displacement of the plate along the two centerlines

of the domain using thermo-mechanical shell elements

 To quantify the difference between the theoretical solution and the one obtained by the

UEL for the w displacement along these two lines, the relative error based on the two-norm was

computed. The 8×16 mesh was used for this comparison. Namely, the two-norm of the difference

in the computed and reference solution, ||w – wUEL||2 was computed and then divided by the two-

norm of the solution, ||w||2, from the provided reference solution for w as an array composed of the

scalar w evaluated at the nodes along each of the lines. Thus, the two-norm relative error between

the shell element and the reference solution was 7.1×10-3 for the long edge and 4.9×10-3 for the

short edge. As another measure of the accuracy, the displacement at the center of the plate, where

the maximum deflection occurred, was recorded as 1.373 mm using the UEL shell; the reference

solution at this point was 1.366 mm, which is a difference of 0.5% between the two. Additionally,

the results for the two FEA solutions, UEL and S4T, matched each other exactly: the two-norm of

the difference between displacements computed by the UEL and S4T models was zero, using full

double-precision formatting to record the displacement output and compute the differences. In Fig.

3-7 above, the w displacement in this case corresponded to the U3 displacement in Abaqus. The

two-norms for the differences in displacements for the other components, such as U1-U2

translations and UR1-UR2-UR3 rotations, were also zero when comparing the two FEA models at

69

all the nodes in the mesh. Thus, these two verification problems served to demonstrate the ability

of the new implementation to accurately model three-dimensional deformation of the simply

supported plate due to a prescribed temperature field through the thickness.

3.4 Conclusions

 In order to improve the state of fire-structure simulation methods, an approach using

coupled thermo-mechanical shell elements was presented in the current study. By developing the

finite-element equations for a coupled thermo-mechanical shell element and subsequently

implementing the formulation as a Fortran subroutine in Abaqus, the presented shell element

showed beneficial results from a computational modeling perspective and the verification

problems demonstrated the accuracy of the coupled formulation.

One of the practical limitations of this approach is the fact that a larger system of equations

is solved for each increment of the coupled analysis: two uncoupled systems, of sizes m×m and

n×n, are solved for the weakly coupled problem whereas an (m+n)×(m+n) system is solved in this

strongly coupled formulation. Here, m is the total number of displacement DOF in the model

originating from the mechanical shell element while n is the total number of temperature DOF in

the model from the layered thermal shell for conduction heat transfer analysis.

While this approach has shown promising early results, additional consideration and future

research will be needed to apply these methods in scenarios with more structurally significant fire

exposure. The use of fire-structure coupling methods will be employed in the next stages of the

research in order to include boundary conditions from CFD-based fire simulations as input for the

FEA model. For such cases, the analyst must consider the effects of temperature-dependent

70

material properties and the potential for large displacements or buckling: both features deserve

additional exploration in the future work.

3.5 Acknowledgements

The authors would like to thank the Office of Naval Research’s support on contract number

N00014-13- C-0373, which funded a major portion of work completed during this project.

3.6 References

[1] McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire

dynamics simulator user’s guide, 6 edn. National Institute of Standards and Technology,

NIST Special Publication 1019, Gaithersburg.

doi:http://dx.doi.org/10.6028/NIST.SP.1019.

[2] X. Yu, A.E. Jeffers, A comparison of subcycling algorithms for bridging disparities in

temporal scale between the fire and solid domains, Fire Saf. J. 59 (2013) 55–61.

doi:10.1016/j.firesaf.2013.03.011.

[3] P.A. Beata, A.E. Jeffers, Spatial homogenization algorithm for bridging disparities in

scale between the fire and solid domains, Fire Saf. J. 76 (2015) 19–30.

doi:10.1016/j.firesaf.2015.05.008.

[4] A.E. Jeffers, Heat transfer element for modeling the thermal response of non-uniformly

heated plates, Finite Elem. Anal. Des. 63 (2013) 62–68. doi:10.1016/j.finel.2012.08.009.

[5] A.E. Jeffers, P.A. Beata, Generalized shell heat transfer element for modeling the thermal

response of non-uniformly heated structures, Finite Elem. Anal. Des. 83 (2014) 58–67.

doi:10.1016/j.finel.2014.01.003.

[6] A.E. Jeffers, Triangular Shell Heat Transfer Element for the Thermal Analysis of

Nonuniformly Heated Structures, 142 (2016) 1–9. doi:10.1061/(ASCE)ST.1943-

541X.0001335.

[7] K.S. Surana, P. Kalim, Isoparametric axisymmetric shell elements with temperature

gradients for heat conduction, Comput. Struct. 23 (1986) 279–289. doi:10.1016/0045-

7949(86)90219-1.

[8] K.S. Surana, R.K. Phillips, Three dimensional curved shell finite elements for heat

conduction, Comput. Struct. 25 (1987) 775–785. doi:10.1016/0045-7949(87)90169-6.

[9] K.S. Surana, N.J. Orth, Axisymmetric shell elements for heat conduction with p-

approximation in the thickness direction, Comput. Struct. 33 (1989) 689–705.

doi:10.1016/0045-7949(89)90243-5.

[10] K.S. Surana, G. Abusaleh, Curved shell elements for heat conduction with p-

approximation in the shell thickness direction, Comput. Struct. 34 (1990) 861–880.

doi:10.1016/0045-7949(90)90357-8.

[11] K.S. Surana, N.J. Orth, Three-dimensional curved shell element based on completely

71

hierarchical p-approximation for heat conduction in laminated composites, Comput.

Struct. 43 (1992) 477–494. doi:10.1016/0045-7949(92)90282-5.

[12] A. Bose, K.S. Surana, Piecewise hierarchical p-version axisymmetric shell element for

non-linear heat conduction in laminated composites, Comput. Struct. 47 (1993) 1–18.

doi:10.1016/0045-7949(93)90274-H.

[13] A.K. Noor, W.S. Burton, Steady-state heat conduction in multilayered composite plates

and shells, Comput. Struct. 39 (1991) 185–193. doi:10.1016/0045-7949(91)90086-2.

[14] N. Mukherjee, P.K. Sinha, A comparative finite element heat conduction analysis of

laminated composite plates, Comput. Struct. 52 (1994) 505–510. doi:10.1016/0045-

7949(94)90236-4.

[15] J. Noack, R. Rolfes, J. Tessmer, New layerwise theories and finite elements for efficient

thermal analysis of hybrid structures, Comput. Struct. 81 (2003) 2525–2538.

doi:10.1016/S0045-7949(03)00300-6.

[16] W. Kanok-nukulchai, A simple and efficient finite element for general shell analysis, Int.

J. Numer. Methods Eng. 14 (1979) 179–200. doi:10.1002/nme.1620140204.

[17] W.Y. Jung, S.C. Han, An 8-node shell element for nonlinear analysis of shells using the

refined combination of membrane and shear interpolation functions, Math. Probl. Eng.

2013 (2013). doi:10.1155/2013/276304.

[18] F.M. Adam, A.E. Mohamed, A.E. Hassaballa, Degenerated Four Nodes Shell Element

with Drilling Degree of Freedom, IOSR J. Eng. 3 (2013) 10–20.

[19] R.. Cook, D.. Malkus, M.. Plesha, R.. Witt, Concepts and Applications of Finite Element

Analysis, 2002.

[20] Abaqus 6.12 Documentation, (2012). Simulia.

[21] C. Zhang, J.G. Silva, C. Weinschenk, D. Kamikawa, Y. Hasemi, Simulation Methodology

for Coupled Fire-Structure Analysis: Modeling Localized Fire Tests on a Steel Column,

Fire Technol. 52 (2016) 239–262. doi:10.1007/s10694-015-0495-9.

[22] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element

Analysis, Prentice-Hall, Inc. (1987) 825. doi:620/.001/51535.

[23] ANSYS User Manual, (2012).

[24] S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill,

1959.

72

Chapter 4

Applications of the Thermo-mechanical Shell Element in Coupled Fire-structure Analyses

In the previous chapter, the formulation of the thermo-mechanical shell element was

presented along with two verification problems. While the shell element was designed for the

coupled fire-structure problem, applications of this new development using boundary conditions

from a computational fluid dynamics (CFD) based fire simulation were not previously provided.

The main goal of the current investigation was to demonstrate the capability of the thermo-

mechanical shell element implemented as a user-defined subroutine (UEL) in Abaqus. The fire-

structure coupling methods discussed in Chapter 2 were implemented in the coupled shell

presented in Chapter 3. Two applications, one involving a rectangular plate and the other a

structural I-beam, were chosen to show how the element can be used with spatially and temporally

varying boundary conditions representing the CFD-based fire. Additionally, various choices of the

mesh size and time step in coupled fire-structure simulations were selected to analyze the

performance using different combinations of temporal and spatial discretization using a square

plate model exposed to different thermal loads.

4.1 Introduction

 The concept of coupled fire-structure interaction problems has been discussed in Chapters

2 and 3 thus far. The three main components of the coupled problem are the CFD-based fire

simulation, the coupling of the thermal boundary conditions from the CFD model to the FEA

model, and finally the thermo-mechanical analysis of the structure. Figure 3-1 in the previous

73

chapter presents a high-level view of the coupled fire-structure interaction problem using data from

a CFD-based fire simulation. In addition to providing a means for modeling the thermo-mechanical

response of structures through the use of shell elements (image in the right pane of Fig. 3-1), the

coupling methods used to bridge the two domains together are also an important step in the fire-

structure interaction problem (image in middle pane of Fig. 3-1). In Chapter 2, the methods for

sequentially coupling the thermal boundary conditions from the fire to the solid domain were

presented. In Chapter 3, the formulation of the coupled thermo-mechanical shell element was

provided. In the current chapter, applications employing the shell element with the coupling

methods implemented at the element level are provided to show the use of this methodology in the

fire-structure coupling problem.

 Structural response under a wide range of potential fire hazards has been of increasing

interest in recent structural fire engineering research and modeling the thermal boundary

conditions using the CFD-based software of Fire Dynamics Simulator (FDS) is a popular approach

for capturing the physics of a localized fire. For example, Zhang et al. [1] used adiabatic surface

temperatures (AST) as the transfer data from FDS to an FEA model in ANSYS [2] for thermo-

mechanical analysis. Luo, Xie and DesJardin [3] provided a method for performing 2D fluid-

structure coupling based on a level-set function approach, specifically for use in the fire-structure

problem. Chen, Luo, and Lua [4] developed a two-way coupling approach with a customized

version of FDS and linked it with Abaqus, which formed the basis of the Abaqus Fire Interface

Simulator Toolkit (AFIST). Tondini, Vassart, and Franssen [5] employed a partitioned solution

approach to the fire-structure analysis in their development of an interface between CFD fire

simulations and FEA heat transfer models for applications to compartment fire models. Finally,

74

Silva, Landesmann, and Ribiero [6] presented the Fire-Thermo-Mechanical Interface tool used for

processing fire simulation results and transferring AST measurements to an FEA model.

 The fact that researchers, including the authors of this current study, need to perform

subsequent heat transfer and structural simulations is at least in part because FDS, which is the fire

simulation software most typically relied upon, is not suited for its conduction analysis in the solid

domain. This results in various users applying a wide range of assumptions regarding the

representation of the boundary conditions (e.g., AST approaches vs. applied heat flux vs.

simplified traveling fires, etc.), and the method for resolving the discrepancies in the mesh (e.g.,

sampling heat fluxes vs. averaging heat fluxes) and the time step. Presently, the ramifications of

these varied assumptions are unknown.

 Yu and Jeffers [7] showed that sampling boundary conditions in time could have a

significant impact on accuracy of the computed temperatures in the solid due to heavy oscillations

in heat fluxes that come from a CFD model. Beata and Jeffers [8] similarly showed that sampling

data in space could have consequences if the solid and fluid models have significantly different

meshes. However, few “best practices” have been identified in the literature for performing a fire-

structure simulation using a coupled CFD-to-FEA simulation approach. Moreover, the verification

and validation of existing models is inconsistent, making reproducibility of results a major concern

for this application.

 In general, the transfer of any CFD-based output representing the thermal boundary

conditions as the input of the FEA model for heat transfer is a key aspect for providing an accurate

characterization of the non-uniform thermal boundary observed in localized fire scenarios. At its

most fundamental level, the fire-structure coupling analysis is a fluid-structure interaction (FSI)

problem that is assumed a one-way coupling such that the structural deformation and the

75

temperature field of the structure do not influence the fire simulation, which is appropriate for

many applications. Partitioned systems for multiphysics problems, such as FSI simulations, are a

practical approach to connect two field solutions; thus, a partitioned approach was employed in

the current study as well.

 Matthies and Steindorf [9] in part discuss one of the simplest and best-known types of

partitioned approaches for FSI analysis problems, specifically the staggered approach, which

represents a weak or loose coupling between the two domains of fluid and solid. Bathe and Zhang

[10] focus on compatibility for general fluid-structure coupling in two-way systems; in particular,

displacement and traction compatibility were presented as the essential criteria for interaction at

an interface of the two domains. These two concepts also have parallels in the fire-structure

interaction problem: (1) one-way coupling providing a thermal boundary condition based on CFD-

computed data and (2) defining a compatible finite-element representation of the thermal boundary

condition at the interfacing surfaces. Additionally, partitioned approaches are attractive because

they use two different solvers and source code to produce the coupled solution, which takes

advantage of the expertise used to develop each code separately by the experts of the individual

sciences [11].

This chapter will mainly use the contributions from previous developments in the

dissertation. Specifically, modeling the thermo-mechanical response of thin-walled structures to

fires using the newly developed shell elements from Chapter 3 and implementing the fire-structure

coupling methods based on partitioned solutions from Chapter 2. The relevant information from

each chapter will be referred to in describing how the thermal boundary conditions from the fire

simulation were used in the coupled fire-structure simulations.

76

4.2 Fire-structure Coupling using Shell Elements

To handle the transfer of temporal data from the CFD-based fire simulation to the FEA

model comprised of thermo-mechanical shell elements, a subcycling technique was used to allow

multiple steps of the fluid-domain solution to be time-averaged and passed into the solid domain

[7]. Specifically, the net heat flux along a rectilinear grid in the fire simulation was passed from

the fire domain to the FEA model containing the structure. The time-averaging approach is based

on computing the average of recent heat-flux measurements in the fire simulation within a small

window (i.e., the temporal subcycling time step) and using that value as the input for the thermo-

mechanical model. The equation for computing the surface flux "q at a particular time tn in the

FEA simulation is provided in a previous study [7]:














m

i i

m

i ii

n

t

ttq
tq

1

1
)("

)(" (4.1)

The range of the summations in Eq. (4.1) is from one to m, where m is the number of time

increments that fall within the given subcycling time step (window) and is based on the relative

time increments used in the CFD and FEA simulations. In the case of the CFD model, this

increment is related to the frequency at which data is written to the output file in FDS since the

actual time step used to solve the CFD equations is possibly much smaller on some increments.

The Δti term in Eq. (4.1) is the time step of the output frequency in FDS. When a uniform time

step is used, the calculation in Eq. (4.1) reduces to a simple average of the measured heat fluxes in

the subcycling step. If the CFD simulation provides heat fluxes every 1.0 seconds and the

subcycling step is 10 seconds, then the average is computed for the 10 measured heat fluxes that

fall into this moving window throughout the simulation.

77

Handling spatially non-uniform boundary conditions (such as a net flux) over the surfaces

of solid models can be accomplished within the FEA solution framework once the computed

surface fluxes are transferred from the fire simulation and mapped to the FEA mesh. Numerical

integration is the basis for computing finite-element arrays, both left-hand-side and right-hand-

side terms, in any FEA simulation. Traditionally, Gaussian quadrature has been used to compute

element arrays by integrating through finite-element volumes and surfaces. Gaussian quadrature

is very accurate for the integration of smooth functions and especially polynomials, using a small

number of sampling points over an element surface and/or through the volume.

However, for the case of non-uniform heating conditions, as in the case of fire simulations,

other methods exist which may be more appropriate for handling discretely measured data points

as opposed to smooth functions. For example, integration of the forcing-term arrays at the element

interfaces with non-uniform heating may be accomplished with the trapezoid rule for numerical

integration by using as many available discrete data points as available at the element boundary

[8]. The trapezoidal rule approach uses additional integration points in the element surface

integrals to compute equivalent nodal fluxes from the non-uniform fluxes available at the surface.

This approach was employed for the fire-structure simulations presented next together with the

temporally non-uniform heating methods mentioned earlier. Details of these methods were

provided in Chapter 2, where the methods coupling 2D and 3D non-uniform surface fluxes were

presented. In the following subsections, applications of the thermo-mechanical shell element are

provided to demonstrate the use of this new shell with the fire-structure coupling methods included

as an additional subroutine in the UEL.

78

4.3 Plate Exposed to Local Fire

 With the successful verification of the thermo-mechanical shell element in the previous

chapter, the implementation of this element was upgraded to handle non-uniform thermal boundary

conditions. The approach was consistent with previous work [7,8] but now in the setting of coupled

temperature-displacement analyses in Abaqus. For this application, a flat plate was exposed to a

localized fire simulated using FDS; specifically, FDS was used to compute a temporally and

spatially non-uniform surface flux field which was sequentially applied as a net flux boundary

condition in the FEA model on the bottom surface of the plate. This form of one-way coupling

allows the researcher or analyst to perform a single fire simulation (at a high computational

expense) and use the data in various FEA models employing different mesh configurations, time

steps, and other boundary conditions (at a significantly lower computational expense in

comparison to the CFD-based fire simulation).

 On the opposite surface (i.e., on the top of the plate) a uniform convection boundary

condition with a heat transfer coefficient of 25 W/m2∙K and a sink temperature of 20°C was defined

for this particular set of tests. The edge faces of the plate were thermally insulated. Displacement

boundary conditions represent the same simply supported restraints as shown in Fig. 3-6

previously for the flat plate verification problem in the last chapter. The remaining material

properties and model details for the current plate problem are shown in Fig. 4-2 below as well.

79

Figure 4-1: Model details and material properties for the flat plate exposed to a local fire

 Employing the newly presented element as a UEL in Abaqus, a series of coupled

temperature-displacement analyses were completed for this single fire scenario. Note that a

subcycling time step of 10 seconds was chosen for the data transfer process from FDS to the

Abaqus model based on the temporal subcycling methods presented in an earlier study [7]. As in

the two verification problems, five layers were used through the thickness of the shell elements.

 The first demonstration of the results in this problem is the dependency of out-of-plane

deflection on the FEA mesh chosen for the plate model (i.e., translation in the z-direction, such as

w in the previous verification). Four different meshes were used in the plane of the plate model:

2×4, 4×8, 8×16, and 16×32 elements. Each element had four nodes in accordance with the bilinear

shell formulation presented earlier, where each node contained three translation DOF and three

rotation DOF at the mid-surface of the shell and five temperature DOF corresponding to the five

layers through the thickness. In Fig. 4-2 below, the temperature and corresponding displacement

results throughout the duration of the fire event are shown for the node at the center of each mesh:

at the location (x = 0, y = 0) with respect to the coordinate system in Fig. 3-6, specifically. The

computed temperatures were provided for the bottom (non-uniform heating), mid-surface

(interior), and top (convection boundary) layers in the model, however, the displacements were

computed at the mid-surface only.

80

Figure 4-2: Temperature and displacement results at the center of the plate; temperatures provided at the

top, middle, and bottom (highest temperatures) of the plate at this central point

 The results for the computed temperatures and displacements along two lines in the plate

domain are presented next. Specifically, with respect to the coordinate system on the plate

reference surface shown in Fig. 3-6, the results are provided along the line of y = 0, for x = [-0.5,

0.5], and the line x = 0, for y = [-1.0, 1.0]. The temperatures in Fig. 4-3 were the nodal temperatures

at the non-uniformly heated (bottom) surface after three minutes and ten minutes, respectively. As

in the previous demonstrations, the out-of-plane displacements are shown in Fig. 4-4 for at both

three and ten minutes as well.

Figure 4-3: Temperatures on the heated surface along the two centerlines of the plate at 3 min and 10 min

using four different meshes

81

Figure 4-4: Displacement along the two centerlines of the plate at 3 min and 10 min

 The following contour plots demonstrate the computed results in the plane of the plate at

the final time step in order to show a representation of the final temperature and displacement

fields. In Fig. 4-5, the mesh for each test is shown followed by the final temperature state at the

heated (bottom) surface and the final out-of-plane displacement state. Qualitatively, these results

show that by increasing the number of elements in model, thereby using more nodes and DOF, the

computed profile of the temperature and displacement fields converge.

82

Figure 4-5: The meshes used for each test (top), the resulting temperature field for the heated surface at the

final time step (middle), and the corresponding out-of-plane displacement at this time (bottom)

 Simulation times for these models were recorded in two parts: first, preprocessing time for

mapping the FDS boundary conditions to the FEA model, as described in Chapter 2, and second,

the actual thermo-mechanical simulation of the structure using the shell element from Chapter 3.

The preprocessing step, much like the fire simulation, was only needed one time; this is one benefit

of the coupling procedure used which allows various FEA meshes to map the FDS output data

individually. Preprocessing performed by MATLAB scripts required 1.1 sec for the 10-min worth

of flux data used in this test. The time required for each transient temperature-displacement

simulation in Abaqus was shown in Table 4-1 below, in addition to the final temperature and

83

displacement calculated by each model. The total time in the final column of Table 4-1 represents

the Abaqus-measured CPU time found in the output DAT file plus the preprocessing time of 1.1

sec mentioned earlier.

Table 4-1: Properties of the FEA models and the required simulation times; note that the temperatures and

displacements are the results at the final time step

Mesh DOF

Surface Temp. at

Center [°C]

Disp. at Center

[mm] Total Time [s]

2×4 165 113.8 -1.340 3.1

4×8 495 106.6 -1.351 5.9

8×16 1683 101.9 -1.349 16.5

16×32 6171 99.7 -1.339 59.7

 Convergence of the results for the nodal temperatures at the exposed surface as well as the

transverse displacements was analyzed using the two-norm relative error. For the reference

solution in this application, the finest mesh of 16×32 elements was used for comparison with the

results of the other meshes. Figure 4-6 demonstrates the convergence behavior for the FEA meshes

used in this study with respect to the total DOF in the system.

Figure 4-6: Convergence plot for temperature and displacement; computed using the two-norm relative error

between each mesh with the finest mesh (16×32)

84

4.4 Beam Exposed to Local Fire

For the final numerical example, the fire-structure coupling method was extended to handle

multiple interfaces, as in the case of the I-beam scenario shown in Fig. 4-7 below. This problem

presents the need to map fluxes measured in the FDS fire simulation to multiple surfaces of the

beam flanges and web. The particular shape selected for this test was a W460×52 wide-flange steel

section. Dimensions and properties were defined in Fig. 4-7 as well and the fire source was

modeled using FDS, just as in the plate fire problem previously, with the fire source offset from

the beam center, as depicted in the figure. The beam was simply supported with a pinned

connection at one end and a roller at the other, with torsion sufficiently restrained for stability of

the beam member. This scenario allowed for bending as in a traditional beam problem, with the

boundary conditions for the pin and roller defined at the neutral axis on each end of the beam.

Figure 4-7: Beam model exposed to a local fire with dimensions and material properties provided; the fire is

off center by 0.5 m in the CFD model

 The purpose of this test was to demonstrate the ability of the thermo-mechanical shell

element in conjunction with the fire-structure coupling techniques to model a realistic structural

component exposed to a localized fire simulated by FDS. For example, Fig. 4-8 shows the final

computed temperature distribution along the axial direction of the beam with the localized heating

included in the analysis. Additionally, the displacement field is shown below it in the same image.

85

The results provided here used a modification of the coupling method described earlier which now

uses a traditional 2×2 Gaussian quadrature approach for computing equivalent nodal fluxes from

the non-uniform net heat flux data. This was appropriate in this case based on the relative sizes of

the FEA elements and CFD cells; the appropriate trapezoidal rule application would also employ

a 2×2 integration scheme for this test. Temperature results are shown at the mid-surface layer of

each component of the beam model; in this test, only three total temperature layers were used in

the through-thickness direction of the web and flanges. Additionally, the image in the right-most

frame of Fig. 4-8 shows the beam deflection from its centerline corresponding to displacement in

the x-axis for this particular model.

Figure 4-8: Temperature and displacement results at the final time step along the neutral axis (middle of the

web) and along the bottom flange centerline; the right image shows the displacement from the centerline (i.e.,

displacement U1 along the x-axis in the Abaqus model)

 One of the benefits of this thermo-mechanical shell analysis combined with the fire-

structure coupling methods is the ability to perform the heat transfer and structural analysis using

the same mesh and in a single analysis step (i.e., a multiple-time-increment coupled temperature-

86

displacement analysis step). In the case of a beam application, the analyst may wish to refine the

mesh in order to investigate the convergence of their FEA model or change some other parameter

of the solid domain. It is important to note that the FDS fire simulation need only be completed

one time for a given CFD mesh and the data can subsequently be mapped to various finite element

models of the same structure.

 For this particular mesh, 576 elements using three temperature layers totaled 5,913 thermal

and mechanical DOF; the total computation time was less than two minutes for this mesh. The

preprocessing step, much like the fire simulation, was only needed one time just as in the previous

test with the flat plate. With three main sections in this I-beam model, namely the web and two

flanges, the preprocessing step performed by the MATLAB scripts for data sorting and mapping

required 8.8 seconds for this particular geometry. Note the increase in this computing time from

the previous test, which only had one surface (the bottom of the plate) and required 1.1 seconds,

while the I-beam model had six surfaces (top and bottom of the web and flanges). The actual

simulation required was 98.3 seconds, as recorded in the Abaqus output file in terms of CPU time.

Combined with the preprocessing step, the total time required was 107.1 seconds using Abaqus

6.14 and MATLAB R2015b on a standard personal computing workstation with a 2.53 GHz

processor in this case.

4.5 Analysis of the Time Step and Mesh Size

A test matrix was developed in order to strategically vary several analysis parameters

related to the time step and mesh size used in the coupled fire-structure simulation. First, three

boundary conditions were selected: a uniformly applied flux field, a bilinear flux field, and, finally,

the net flux from a true fire simulation from Fire Dynamics Simulator (FDS). Second, three grid

87

sizes were chosen to represent these various boundaries as discrete data points: for example, using

a coarse, medium, and fine grid to represent uniform, bilinear, and CFD-based heat flux data.

These parameters were related to the boundary condition data only and change the representation

of the thermal data as a thermal load on the structural system. The third variable was the subcycling

time step used for representing temporally varying data from the fire simulation. Five subcycling

steps were used to average the temporal data which was passed from the fire model to the structural

model. Finally, the fourth variable was the size of the finite elements used in the FEA model

containing the thermo-mechanical UEL elements. Five finite-element mesh sizes were chosen for

this study, where each element size was halved in subsequent models.

To test the impact of selecting particular time steps and mesh sizes, a square plate model

was used as the basis for the suite of tests. The square plate measured 1.0  1.0 m in plane and 5

cm thick. On one surface, an applied flux was used as the thermal boundary condition; on the

opposite surface, a convection boundary was provided with a heat transfer coefficient of 25

W/m2∙K and atmospheric temperature of 20°C. The model for this test is provided in Fig. 4-9

below which shows a particular case of the FDS fire boundary. Figure 4-9 gives the basic test setup

and fixed parameters while the different simulation variables used in the comparison study and are

discussed further. Note that only the results of the thermal shell were analyzed here.

Density: 2000 km/m3
Conductivity: 2 W/(m∙K)

Specific Heat: 1000 J/(kg∙K)
Expansion Coef.: 1.0  10-5 / °C

Young’s Modulus: 2.0  104 MPa
Poisson’s Ratio: 0.2

Reference Temp.: 20 °C
Plate Thickness: 5 cm

Exposure Duration: 10 min

Figure 4-9: FDS model for a particular configuration used in the mesh size and time step study

In total, there were three heating cases, three boundary grid sizes, five subcycling time

steps, and five FEA mesh sizes, as mentioned previously. A summary of the actual values used for

88

each variable is given in Table 4-2 below. This series of testing resulted in 225 FEA simulations

employing various sets of boundary data. In order to use the non-uniform thermal boundary

condition coupling methods, uniform and bilinear boundary data was transformed in a standard

way to match the same format as the output of a fire simulation conducted via FDS. Specifically,

a constant value of 10.0 kW/m2 in the uniform case was represented as a set of discrete data points

in a .csv file, as if it were “recorded” at discrete locations using standard heat flux devices in FDS.

Each boundary condition was applied for 10 minutes in all of the cases presented here.

Table 4-2: Overview of the variables used in the testing matrix

3 Boundary Conditions: uniform, bilinear, FDS fire

 Uniform: Q(x, y, t) = 10.0 kW / m2

 Bilinear: Q(x, y, t) = 10.0(x + y)

 FDS Fire: Q(x, y, t) = (data from fire simulation)

3 Boundary Grid Size: coarse, medium, fine

 For uniform and bilinear case: [1, 1/4, 1/16] m

 For FDS fire case only: [1, 1/4, 1/10] m

5 Subcycling Time Step: [60, 30, 15, 10, 5] s

5 Finite Element Edge Size: [1, 1/2, 1/4, 1/8, 1/16] m

225 Total Number of Tests

In order to observe the results of choosing particular FEA mesh sizes relative to the

boundary condition mesh size, the testing matrix presented in Table 4-2 provided several different

combinations of boundary grid size and FEA mesh size. Note that for the case in which actual FDS

fire simulation data was used, the discretization of the boundary mesh needed to change slightly

to accommodate the device spacing in the FDS software in a convenient manner. As a result, the

finest grid size used to represent boundary data was changed from 1/16-m to 1/10-m for the FDS-

generated fire data only, as shown in Table 4-2.

The various cases produced by the relative sizes of each mesh are shown in Fig. 4-10 below.

89

The top row of labels gives the size of the FEA mesh, the far-left column of labels gives the size

of the boundary grid size, and finally the bold number floating above each mesh is the “relative

size” of the FEA mesh compared to the boundary data grid. For example, a bold value of 4 indicates

the FEA mesh was “4 times the size” of the boundary grid mesh. In Fig. 4-10, the visible mesh

(i.e., the structured cells) represents the FEA mesh sizes while the small circles represent the

boundary data grid as individual FDS devices.

 1 1/2 1/4 1/8 1/16

1

1
/
4

1
/
1
0

1
/
1
6

Figure 4-10: Comparison of the various mesh sizes used in the study and the corresponding boundary data

grids; the number above each mesh is the ratio of the FEA element size (green outline of each element) to the

CFD cell size (red dot for the center of each cell)

In order to provide the raw results of all 225 tests, temperature-time plots were created for

particular points in the plate domain; Fig. 4-11 shows the locations of the two particular points

90

used in the following plots. The planar view of the plate from above is shown with the points A

and B located at the center of the plate area and the top-right corner, respectively.

Figure 4-11: Diagram showing the locations of points on the plate selected for the temperature-time plots

Results for the temperature at Point A for the uniform boundary condition are shown in

Fig. 4-12, where the left, center, and right images correspond to the exposed surface (i.e., heated

face), middle surface, and top surface of the plate, respectively. Similar results are shown in Fig.

4-13 but at Point B for the bilinear boundary condition. Finally, Fig. 4-14 shows the results at Point

A once again but for the FDS-computed surface fluxes. Note that every case is shown here

resulting in 75 curves per case (i.e., per boundary condition). The reader should note that it is best

to view these results in color, as this is simply an overview of the full suite of unfiltered results:

more attention and detail will follow as particular cases were selected for discussion. However, for

a very high-level view of the data, the finest boundary grid data is represented by the blue curves,

the medium grid size by the black curves, and finally the coarsest grid was the red curves.

91

Figure 4-12: Temperature-time curve at Point A for the uniform boundary condition

Figure 4-13: Temperature-time curve at Point B for the bilinear boundary condition

Figure 4-14: Temperature-time curve at Point A for the FDS-based boundary conditions

Upon initial inspection of the data, it was clear that for the bilinear case and the FDS case,

there was no need to use the results from the single-data point representation of the boundary

conditions (i.e., the red curves). This was not related to the performance of the shell but rather due

to the fact that a single data point cannot accurately represent the boundary data of the bilinear

92

case or the FDS case in a meaningful way. Thus, the test results from the first row of Fig. 4-10

were filtered out of the processing that follows. Proof of this claim can be seen in Figs. 4-13 and

4-14 in which the lowest-magnitude groupings of test results in each case were those produced by

the coarsest boundary grid; if viewing this report in color, notice that these were the red curves.

In order to focus on the particular impact of the mesh sizes, a few cases have been selected

for discussion next. For all three boundary cases, the coarse representation of boundary data was

removed as mentioned in the previous segment. The finest data transfer time step (i.e., subcycling

time step) of 5 seconds was chosen to filter the results even more. Finally, only temperatures at

the exposed surface and the middle surface were considered. The temperature at either Point A or

B at the final time of the simulations (i.e., at the 10-min mark). Thus, for each of the three cases

(uniform, bilinear, and FDS data) and at each of the two layers (exposed and middle) there were

10 tests: five using the medium data grid (1/4 m) and five using the fine data grid (1/10 m or 1/16

m for the bilinear and FDS cases, respectively). Those five tests cover the range of FEA mesh sizes

used in Table 4-2. Results from this subset of data are shown in Fig. 4-15 next. Figure 4-15 (a-c)

show the results for the uniform, bilinear, and true FDS fire tests, respectively.

93

(a)

(b)

(c)

Figure 4-15: Temperature results at the final step for either point A or B (as in previous figure) with respect

to the FEA mesh size for the three cases of (a) uniform, (b) bilinear, and (c) FDS boundary conditions

A similar filtering to show the dependence on time step choice is shown next. Here, the

finest FEA mesh size of 1/16 m was chosen and the five results related to the time steps are shown

in each of the images of Fig. 4-16; once again, all three boundary cases were considered and the

coarse boundary grid was filtered out of these results.

94

(a)

(b)

(c)

Figure 4-16: Temperature results at the final step for either point A or B (as in previous figure) with respect

to the subcycling time step for the three cases of (a) uniform, (b) bilinear, and (c) FDS boundary conditions

4.6 Discussion of Results

The use of the thermo-mechanical shell element was presented in the first two cases for

localized heating. The first case was a rectangular plate while the second case was an I-beam; the

95

main input to the system was the localized fire sources present in each model represented as

thermal boundary conditions from the CFD-based fire simulation. Fire-structure coupling methods

from previous studies and the methods from Chapters 2 and 3 were used to demonstrate the

capability of using coupled shells in this application for localized heating. The analysis of the time

step and mesh size on the results of the thermal analysis are discussed in more detail next.

In the case of the uniform boundary conditions (Fig. 4-15a), there was no change in the

results from using a finer mesh in representing the boundary data or in defining the elements of

the FEA model. The bilinear case showed a slight dependence on the grid size of the boundary

data that was more pronounced at the exposed surface (Fig. 4-15b). Finally, in Fig. 4-15c, there

was a very significant dependence of the results on the grid size used in FDS (in this case, on the

order of 50°C). This was an expected result as it is important to use the proper cell sizes for the

FDS fire simulation before conducting any subsequent FEA tests; it was clear that the medium

mesh used in the FDS simulation did represent a converged solution for that model. These trends

for the boundary grid size continued for Fig. 4-16 when the subcycling time step was varied and

the mesh size was held constant. However, there were nearly no changes in the final computed

temperature results when the subcycling step was changed for a given boundary grid.

The plate exposed to the local fire showed how the shell could be efficiently linked with

fire simulation data; and finally the beam problem provided a practical application of the methods

for a typical structural component. In terms of defining a policy for future use, it should be noted

that starting with a correct representation of the fire physics in the FDS simulation is the first goal

in making sure that the results are reliable. Without a sufficient resolution in the fire model,

subsequent results will be tainted in this multi-model solution. Beyond this claim, referring back

to the results in Fig. 4-15 for the finest grid, a clear convergence can be seen beyond the single-

96

element FEA mesh condition for both the bilinear case and the case with FDS data (the single-

element result being the value positioned at a mesh size of 1.0 m). This behavior of consistent

convergence for halving the element sizes is critical for obtaining accurate results by decreasing

the sizes of the element mesh in the FEA model for a given loading condition.

4.7 References

[1] C. Zhang, J.G. Silva, C. Weinschenk, D. Kamikawa, Y. Hasemi, Simulation Methodology

for Coupled Fire-Structure Analysis: Modeling Localized Fire Tests on a Steel Column,

Fire Technol. 52 (2016) 239–262. doi:10.1007/s10694-015-0495-9.

[2] S. A. S. Ansys, Reference Manual - version 12, Swanson Anal. Syst. Inc (2009).

[3] C. Luo, W. Xie, P.E. DesJardin, Fluid-Structure Simulations of Composite Material

Response for Fire Environments, Fire Technol. 47 (2011) 887–912. doi:10.1007/s10694-

009-0126-4.

[4] L. Chen, C. Luo, J. Lua, FDS and Abaqus Coupling Toolkit for Fire Simulation and Thermal

and Mass Flow Prediction, Fire Saf. Sci. 10 (2011) 1465–1477. doi:10.3801/IAFSS.FSS.10-

1465.

[5] N. Tondini, O. Vassart, J.-M. Franssen, Development of an Interface Between CFD and FE

Software, in: 7th Int. Conf. Struct. Fire, 2012: pp. 459–468.

[6] J.C.G. Silva, A. Landesmann, F.L.B. Ribeiro, Fire-thermomechanical interface model for

performance-based analysis of structures exposed to fire, Fire Saf. J. 83 (2016) 66–78.

doi:10.1016/j.firesaf.2016.04.007.

[7] X. Yu, A.E. Jeffers, A comparison of subcycling algorithms for bridging disparities in

temporal scale between the fire and solid domains, Fire Saf. J. 59 (2013) 55–61.

doi:10.1016/j.firesaf.2013.03.011.

[8] P.A. Beata, A.E. Jeffers, Spatial homogenization algorithm for bridging disparities in scale

between the fire and solid domains, Fire Saf. J. 76 (2015) 19–30.

doi:10.1016/j.firesaf.2015.05.008.

[9] H.G. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid–structure

interaction, Comput. Struct. 81 (2003) 805–812. doi:10.1016/S0045-7949(02)00409-1.

[10] K.-J. Bathe, H. Zhang, Finite element developments for general fluid flows with structural

interactions, Int. J. Numer. Methods Eng. 60 (2004) 213–232. doi:10.1002/nme.959.

[11] J. Degroote, P. Bruggeman, R. Haelterman, J. Vierendeels, Stability of a coupling technique

for partitioned solvers in FSI applications, Comput. Struct. 86 (2008) 2224–2234.

doi:10.1016/j.compstruc.2008.05.005.

97

Chapter 5

Real-Time Fire Monitoring for the Post-Ignition Fire State in a Building

During a fire event, environmental threats to building occupants and first responders

include extreme temperatures, toxic gases, disorientation due to poor visibility coupled with

unfamiliar surroundings, and a changing indoor environment. In addition to these hazards,

firefighters often lack critical information for making decisions on the ground. The lack of

information coupled with the dynamics of natural fire events leads to a number of near-misses,

injuries, and deaths each year. Additionally, these challenges slow the rescue time of building

occupants and prolong the progression of fire. Integrating real-time measurements from sensors

into the fire intervention strategy may provide an opportunity for a new technological advancement

to improve the practice of firefighting. Specifically, the integrated use of measurement,

computation, and visualization could provide a unique new tool for aiding firefighters in their

approach to extinguishing a fire and saving building occupants. In this study, a computational

framework was developed for connecting real-time fire data to an event detection sub-model to

demonstrate the possibility of real-time computing can be used for fire-monitoring and sensor-

assisted firefighting. A post-processed example showing this monitoring tool in conjunction with

a Building Information Model (BIM) using schedule simulation is provided. The work serves as a

step towards an intelligent firefighting system based on computing in an effort to provide real-time

tools for effective decision making during the fire event.

5.1 Introduction

 This work is based on the anticipation of ubiquitous sensing technology of the future and

the subsequent use of measured fire signatures (from these sensors) to help identify fire spread,

98

burn threats, smoke toxicity, and flashover in a way that would inform firefighters of impending

dangers within the burning structure. This research aims to provide a flexible and extendible

software infrastructure for a real-time fire monitoring system to be used with a wireless sensor

network (WSN) of the future. It will provide firefighters the ability to make data-informed and

computation-based decisions during a structural fire event. The novelty of the research lies in the

use of multiple fire signatures to identify fire events in real-time and to graphically represent the

information in BIM software to facilitate rapid decision-making during firefighting operations.

While there are many challenges in terms of hardware, implementation, cost, feasibility, and

adaptability, this chapter seeks to provide one part of the solution: a solid computational

framework for integrating real-time fire data with computation and visualization for sensor-

assisted firefighting.

 One such challenge in this line of research and development, which is also unique when

compared with other applications such as indoor air quality monitoring, is clear: too much data

and information without careful assimilation and presentation will be useless as an aid to

firefighting. Cowlard et al. [1] has provided, in addition to the benefits, several cautionary

warnings for using sensors, real-time data, modeling, and visualization as intentional tools for

helping firefighters. Additionally, Silvani et al. [2] discusses some of the limitations of using a

WSN in the fire-monitoring field from the hardware perspective. For example, issues related to

time delays and loss of information are important factors to consider in the development of a

practical WSN technology for fire monitoring, from a hardware and implementation standpoint

specifically. Information overload [1] and hardware limitations [2] in conjunction with restrictions

on time for strategizing during the fire are acknowledged as a challenge to this real-world

implementation of a fire monitoring system.

99

 The goals of this research were to provide strong foundational contributions to the real-

time fire monitoring problem from a computing standpoint. Although the current system is not

immediately field-ready, the following work shows recent advances towards a future where real-

time fire monitoring may indeed become a beneficial tool for strategic firefighting. Figure 5-1

shows the proposed inclusion of a data-informed fire-monitoring system for providing feedback

to the incident commander about the status of the fire. In the traditional firefighting approach, an

improvised response must be taken at the scene of the fire event where very few details about the

fire are available. In the present study, a real-time fire monitoring system was designed to use

sensor data at the scene to provide more information about the fire status inside the building with

the goal of augmenting the improvised response with data, computation, and visualization.

Figure 5-1: The use of data measured at the scene of the fire event could provide an informed response using

real-time computation augmented with the traditional improvised response

 In the natural sciences and engineering fields, there has been a considerable research

interest in monitoring the status of dynamic environments through the use of data and real-time

computation. Advances in real-time remote monitoring technologies have been seen in several

100

non-fire-monitoring scenarios over the last decade, such as in water-quality and environmental

monitoring applications [3–8], building energy and building hazard monitoring [9, 10], and indoor

air quality monitoring [11]. In some cases, these sample applications are closely related to the

problem of monitoring fires in the built environment. For example, Tilak et al. [7] discussed some

of the challenges of real-time monitoring in the natural environment where conditions may be

extreme and weathering becomes an issue for long-term monitoring. This problem exists in the

fire monitoring arena as well, where extreme temperatures, lack of durable wireless technology,

and toxic conditions make data collection difficult as the normal ambient conditions deteriorate

during a fire.

 Real-time monitoring of wildfires is a combination of the environmental application with

the primary hazard of interest in current study, i.e., building fires. Several researchers have used

WSN for the wildfire application, such as the system presented by Doolin and Sitar [12], which

collected temperature, relative humidity, and barometric pressure at the scene of the wildfire event

to track its progression over time. Additionally, work by Zervas et al. [13] brings multi-sensor data

fusion to the wildfire monitoring field as well, also relying on a WSN but now including vision

sensors. Yu, Wang, and Meng [14] applied a neural network approach with in-network data

processing for real-time forest fire detection and forecasting. The method relies on using a larger

number of cheap sensors densely distributed throughout a forest region. However, the use of real-

time monitoring techniques during firefighting within buildings has been difficult to implement

and adopt on a large scale and has unique challenges compared to wildfire monitoring, including

standards of firefighting practice.

 Specifically, for the case of fires in buildings, Jiang et al. [15] developed a context-aware

computing system, which was designed to integrate real-time fire data from both static and

101

dynamic environmental sensors carried by individual firefighters into the building for exchanging

information between firefighters. Their platform, called Siren, used a peer-to-peer distributed

architecture designed for mission-critical search-and-rescue procedures. The system provided

context-aware warnings to individual firefighters at the scene of the fire event. Recent work by

Takahashi et al. [16] aimed to provide firefighters with wearable technology for recording species

concentrations and measurements of the particulates in the atmosphere during the overhaul phase

(i.e., post-fire). Sha, Shi, and Watkins [17] demonstrated an example of this in the area of fire

rescue. Their system, named FireNet, was designed as a WSN in which each individual firefighter

was part of the network and broadcasted their local information to a main computer located with

the incident commander. Lim et al. [18] proposed a framework which can detect fires quickly and

support rescue activities using a WSN. They implemented a testing version and evaluated the

performance via experiments with the intent of applying this technology to situations involving an

outdoor public space, such as the case of a fire at a large public bus station.

 Fire monitoring and fire detection are closely related topics because they involve the use

of sensors to gather data and make decisions regarding the environmental conditions. The idea for

using multiple fire parameters for fire detection is not a novel concept. However, using similar

measurements beyond the detection of a fire was the basis for the current study. Multi-

sensor/multi-criteria methods often include measurements of smoke, temperature, species

concentrations, and possibly other signatures to determine the presence of a fire. Many researchers

have focused on developing the logic used to detect the critical event of fire ignition [19–26]. For

example, Chen et al. [26] developed a fire alarm algorithm which used rate-of-increase values to

define the rate thresholds for detecting a fire based on measuring smoke, carbon monoxide, and

carbon dioxide. All of these approaches use some combination of thresholds, rates-of-increase,

102

and additional logic, and a few employed neural networks for the fire-detection problem. New

research using video monitoring has expanded the use of camera technology to aid in the detection

problem as well [27–29].

 For the current study, the research aimed to provide a building information modeling (BIM)

–based visualization tool by integrating real-time fire monitoring data with three-dimensional

models. Hajian and Becerik-Gerber [30] provide several inspiring points for the current work. In

particular, the idea of updating the BIM with real-time data extends the application of BIM from

construction stages into the occupancy stages of the building lifecycle in terms of continuity of

use. Integrating real-time field data into BIM offers an exciting new opportunity for the

Architecture, Engineering, and Construction (AEC) industry to use BIM beyond the construction

phase [30].

 Chen et al. [31] used real-time sensor data in BIM, where once again it was noted that

current models in BIM are useful during construction but then are left static beyond the

construction phase. Bringing BIM into use for dynamic evolution of the building status to present

real-time building information could be beneficial to building managers during the lifecycle of the

building, not just during construction, and then potentially for use by the responding fire

department in the event of a fire. This particular case study by Chen et al. [31] focused on a de-

icing system for a bridge deck; the real-time data was used to assess the state of the bridge deck

under various climate conditions as the environment changed over time. Additionally, Chen et al.

[32] discusses the concept of “bridging BIM and building” (BBB) and highlights a growing interest

in the idea of bringing BIM into the building management phase as well. Furthermore, Rueppel

and Stuebbe [33] presented a BIM-based navigation platform for emergencies in large buildings.

In the extensive review by Volk, Stengel, and Schultmann [34], the use of BIM in the context of

103

building assessment, management, and even monitoring are mentioned. For example, several

applications in the setting of monitoring and performance measurement through the use of sensors

are presented. These examples serve as a motivation for the potential to bring fire monitoring into

this application of BIM as well, specifically in the post-ignition fire state of the building.

 The primary objective of the current study was to create a real-time fire monitoring system

to integrate measured sensor data, simulation sub-models, and visualization tools into a

comprehensive package for delivering actionable information to the responding fire department

during a live fire event. This included the development of the foundation for a real-time fire

monitoring software and its sub-components using a distributed architecture (in this case, two

workstations in the research lab). In Fig. 5-2, the high-level architecture shows the three main

components of the system: (1) data collection at the scene of the fire event, (2) data coordination

and subsequent computation at the central computing workstation, and finally (3) visualization

through the use of BIM and live graphs. The goal was to use multiple fire signatures which could

be collected at the scene of the fire event. For testing the proposed system, sensor simulators for

pushing live data to the fire-monitoring system were used. Thus, in the lab environment, the sensor

simulator and computing workstation were hosted on one machine (Ubuntu 14.04) and the

visualization components were hosted on a second machine (Windows 7) to provide this

distributed system.

Figure 5-2: A three-component view of the major features used for real-time fire monitoring; data is collected

within the building during the fire event and used for computation and visualization in the proposed system

104

 The system was designed for the integration of sub-models into the system, such as a new

event detection model presented here, and with the flexibility to include additional features such

as an inverse fire model [35] in the future. This required the development of the event detection

model for determining updates to the fire status based on measured data from sensors and

computed data from the sub-models. The integration of these sub-models was performed such that

the process can be replicated for the inclusion of future models, thus lending flexibility and

extensibility. Communication between the simulated sensors, sub-models, and main computing

controller was provided through the use of Lightweight Communication and Marshalling (LCM)

[36], which handled data transfer between models through the use of message-passing. This work

included the design of methods for visualization of measured and computed data that are easy to

interpret and informative in showing the progression of the fire in a building in real-time. BIM

was used to showcase the potential for using data visualization in the fire monitoring application,

but only as a playback feature for the current study.

 The distributed architecture was chosen in anticipation of the desired use-case: field data

collected at the fire scene (sensors) followed by data coordination, simulation, and other

computation performed at a stationary location (computing workstation), and finally remote

visualization received by firefighter or incident commander (laptop or some other mobile device).

In various studies, multiple fire signatures have been used for determining the existence of a fire

in a building. Extending this concept to the post-ignition state and measuring features such as

temperature and oxygen concentration during the fire event can provide us with predictions of the

heat release rate and several other important fire parameters. The newly developed event detection

model uses the measured fire signatures and computes useful information for the visualization

device in real time. The visualization tool for showing the progression of the fire in the building

105

would allow the responding fire department to receive time-sensitive information about the fire as

an easily readable graphical representation of the status of the fire.

5.2 LCM-Based Computing Infrastructure

 The framework for wireless sensing in a fire rescue scenario presented by Lim et al. [18]

details some of the most important requirements of a robust fire-monitoring system; specifically,

they have noted fault-tolerant communication, low latency, remote management, and reuse of

collected information as the main priorities for their system. These requirements are applicable to

the present work as well. The integration of measurements from sensors with computing tools for

real-time simulation and detection, and a scalable and efficient computing platform are also

necessary. To this end, a distributed cyber-infrastructure customized for firefighter decision-

making was developed to provide a computing framework employing the message-passing

capabilities of the LCM library [36]; an overview the proposed system is illustrated in Fig. 5-3,

which includes the first two nodes of Fig. 5-2 and excludes the visualization component.

Originally developed for robotics applications, LCM allows for low-latency message

passing between applications, which, in the context of fire monitoring and visualization, would

include connecting live data streams with various sub-models. In the current study, using simulated

sensor data, each virtual sensor was connected to the main monitoring system through the use of

individual data channels. LCM was used to provide this connection and to simulate the

transmission of field-measured sensor data from the fire to an off-site server performing the

computational work. On the right side of Fig. 5-3, the event detection model is shown as receiving

data from the main fire monitoring program. Additionally, extra models can be connected in a

106

similar manner; the main program in the computing server controls the flow of data by directing

new measurements from the sensors to the appropriate sub-models for further specific calculations.

 At the core of the proposed system is the LCM message-passing network, which is a set of

libraries that facilitate the interaction of various simulation modules through the use of consistent

data structures. In LCM, messages are communicated between applications using these consistent

data structures and communication is performed by transmission over pre-determined channels.

For example, in Fig. 5-3, the various ribbons connecting each sensor to the central computing

program are colored differently to visually represent these unique channels. Sensor i will only send

messages on the SENSOR<i> channel and the main program will only expect to receive data from

sensor i on this same SENSOR<i> channel by subscribing to the channel of each sensor and receiving

new data whenever it is published by the sensors. The coordination of channel assignments and

the publish/subscribe processes were all handled automatically in the system. This was provided

by carefully establishing channels for the data to be transmitted between components of the system

and determining in advance which data must be sent to each sub-model. This same approach of

publish/subscribe is used to communicate between the main fire monitoring program and the sub-

models as well.

107

Figure 5-3: Overview of the proposed LCM-based monitoring system for real-time fire monitoring; the

various colors of the links between different system components represent unique channels of communication

in the LCM framework

 One key feature of this system is the ability to use LCM with applications developed in

various programming languages. For example, the main program for coordinating the

computational work was implemented using Python and the event detection model is built from

C++ source code. LCM provides the flexibility to use common data structures among these various

components with ease: to employ a particular language-specific data structure, the necessary

programming languages are supplied at compile time using unique compiler flags for each

communicating component (a standard feature of the LCM library suite). Then, LCM compiles the

agreed-upon-data structure for each language-specific application’s use during the simulation.

Since Python is not a compiled language, this step consists of LCM automatically preparing the

corresponding class containing the necessary member attributes.

 Thus, only one LCM file describing the contents of the data package in a C-style structure

is needed for defining a common data type between two models built from dissimilar languages.

For example, to send a scalar variable such as temperature from the main fire monitoring program

108

to the event detection model for a particular sensor, one LCM file template must be created

declaring temperature as a double precision member variable of the structure (a C-style struct)

named, for example, send_to_edm for sending data from the main program to the event detection

model. Both the main program (Python) and the event detection model (C++) are able to access

the contents of a message sent from one to the other which is of this data type (send_to_edm). This

is accomplished using both the Python and C++ compiler flags to compile the C-style LCM file

prior to the simulation.

 In Fig. 5-3, the Sensor class is shown to contain the private variables associated with one

particular sensor in the system. Simulation of the sensor data is described in the following section,

but the information in Fig. 5-3 serves to show which physical quantities are related to each sensor.

A corresponding LCM data file is necessary for transmitting the variables from the sensors to the

main computing program and then on to the sub-models, as mentioned previously. The C-style

struct used for this purpose is shown in Fig. 5-4, where this derived data type is used as the

common interface between two different components (i.e., between the sensor simulator and the

main program as well as between the main program and the event detection model later).

package sim_sensor;
struct sensor_data
{
 int16_t sensorNum;
 double sendTime;
 double temperature;
 double O2conc;
 double COconc;
 double CO2conc;
 double HCNconc;
 double heatFlux;
}

Figure 5-4: The LCM data structure used as a common data type between the main monitoring program and

the event detection sub-model (file sim_sensor.lcm)

109

import lcm
import select
from sim_sensor import sensor_data
#==
FUNCTION TO HANDLE NEW INCOMING DATA
 def edm_handler(channel, data):
 msg = sensor_data.decode(data)
 newSensorData.sensorNum = msg.sensorNum
 newSensorData.heatFlux = msg.heatFlux
 # ... continue for all variables in the sim_sensor.lcm
#==
MAIN PROGRAM
 lc = lcm.LCM()
 newSensorData = sensor_data()

 # subscribe to all sensor channels
 for i in range(0, NUM_SENSORS):
 lc.subscribe("Sensor" + str(i), edm_handler)

 # main time loop
 while ("on"):
 # check if new msg was sent via LCM using "select" function
 rfds,wfds,efds = select.select([lc.fileno()],[],[],timeout)

 # if new msg received, then decode data and send to EDM:
 if rfds:
 lc.handle()
 lc.publish("EDM_CHANNEL", newSensorData.encode())
 # check if sensors are still "on"
Figure 5-5: Abbreviated version of the main fire monitoring program main_rtfm.py

 Figures 5-5 and 5-6 serve to represent the basic components of the main fire monitoring

program and the event detection model. The important component of these two abbreviated code

samples is the import and #include statements in Fig. 5-5 and Fig. 5-6, respectively, which

provides access to the LCM library and the compiled LCM data structure shown in Fig. 5-4. With

this data type available to both applications, data between the two dissimilar programs (Python

and C++) can be easily exchanged using LCM to publish and subscribe messages on specific

channels. Additionally, both programs shown here rely on the select function to continuously

monitor for incoming messages passed via LCM. This allows for nearly immediate processing of

incoming data (for either the main program or the event detection model) as opposed to a polling

approach in which each component requests new data at a pre-defined frequency. Data measured

110

from the sensors is stored in the private variables of the Sensor class objects in the event detection

model such that when new data is available for sensor i, the variables are updated immediately

upon receipt in this sub-model. The member functions for assessing the individual fire hazards are

discussed in Section 5.4 and more details about the development full fire-monitoring system from

a software engineering perspective can be found in Appendix A of the dissertation.

#include <sys/select.h>
#include <lcm/lcm-cpp.hpp>
#include "sim_sensor/sensor_data.hpp"
//==
#include "DataHandler.h" // custom class to handle LCM data
#include "Sensor.h" // custom class storing sensor data
//==
// (the following is inside the main EDM program)

// initialize Sensor class objects with ID number
Sensor sensorArray[NUM_SENSORS];
for (int i = 0; i < NUM_SENSORS; i++)
 sensorArray[i].setID(i);

// main time loop (exit criterion not shown)
while (1)
{
 // use "select" func. to check if new data arrived (not shown)
 if ("new_data")
 {
 lcm.handle();
 // update data for each sensor in Sensor class (not shown)

 // check each fire hazard at current sensor:
 i = currentData.getSensorNum();
 smokeToxicity[i] = sensorArray[i].checkSmokeTox();
 burnThreat[i] = sensorArray[i].checkBurnThreat();
 fireStatus[i] = sensorArray[i].checkFireStatus();

 // write results to csv output file (not shown)
 }
}

Figure 5-6: Abbreviated version of the main event detection model program main_edm.cpp

5.3 Data Collection for Fire Monitoring

There are several household devices which individually collect data on the status of the

indoor environment: smoke detectors, carbon monoxide detectors, smart thermostats, and indoor

111

air quality sensors, to name a few. While not every home has all of these individual features and

while there may not be an all-encompassing technology for collecting all these potential fire

signatures and indicators in one device, yet the ability to monitor multiple features of the indoor

climate in ambient conditions has increased within the last decade. Mainstream adoption of indoor

environment-monitoring technology, such as the Nest Labs smart thermostat (www.nest.com) and

the use of home security systems, appears to be a positive trend towards a future of increased

monitoring capabilities. These features of the indoor environment related to comfort (ambient

temperature), air quality (oxygen concentration, carbon dioxide, and other measurements of

airborne species), and hazard (carbon monoxide, extreme temperature, smoke) may also be useful

measurements for analyzing the evolving state of a fire during the post-ignition conditions in a

structure. Many of these parameters could function as the input for a multiple-parameter fire-

monitoring system intended for tracking the fire status as it progresses and potentially spreads

among several rooms.

The specific sensor measurements used in the computational framework presented in this

chapter are the gas temperature and radiative heat flux at the ceiling, as well as the species

concentrations of oxygen (O2), carbon monoxide (CO), carbon dioxide (CO2), and hydrogen

cyanide (HCN); these are the six fire signatures used in the following sections. The basis of the

real-time fire monitoring system presented in the current study is the assumption of such a future

sensing technology which is capable of monitoring several conditions of the indoor environment

and treating the data as fire signatures, for example, these six mentioned here.

The challenges of sensor measurement in extreme conditions such as fire are a known

reality and an expected obstacle to real-time fire monitoring. The accuracy of instruments may be

affected in high-temperature scenarios. This difficulty is faced in the experimental setting with

http://www.nest.com/

112

thermocouples and flux gauges and some of the problems have been discussed in other works as

well. For example, Silvani et al. [2] discusses the issues with data losses and time delays using

WSN in a forest fire monitoring application. In their study, which employed 2010 mote technology

in the field, data transmission problems (losses) for sensors near the flames were potentially caused

by the microwaves at the fire source. However, a key feature of a robust WSN is the resilience

property [2], which is the ability to reroute information to avoid damaged sensors. Such a feature

would also be necessary to help mitigate these potential hardware problems in the building setting.

 In many experimental tests involving small-scale or full-scale fires, researchers have the

ability to use multiple devices for data collection including several thermocouple trees, heat flux

sensors, infrared cameras, and a variety of other useful tools for measuring the key features of the

fire experiments. For example, in the tests conducted by Cowlard et al. [1], over 400 sensors were

used to instrument a compartment. While not every experimental test has this level of

instrumentation, the reality is that experiments allow for the use of multiple sensors and data

acquisition systems. For the research setting, this is necessary and expected; however, even with

the growing use of smart technology in the home, the ability to monitor in a residential setting is

currently limited to approximately one device per room. For example, a traditional rule of thumb

is to have one smoke detector for each room of the house and some families may be able to afford

an additional CO-detector in the living room or dining room.

 Smoke alarms and some CO-detectors can be used to determine whether a fire has started

while reducing the possibility for false alarms. For those devices, and others with similar

functionality, the goal is to decide if a fire exists and then provide an alarm if necessary. The hazard

timeline is an important consideration in the post-ignition fire state in a building. Initially,

everything in the building is in a normal ambient condition and there should only be acceptable,

113

trace levels of the other species concentrations in the air. An alarm would sound and the fire

department would be notified in the event of a fire being detected by existing sensors, which may

be indicated by smoke or temperature or some other measurement.

 The period of interest for the current study is the post-ignition state after the first fire alarm

has already sounded. Figure 5-7 highlights some of the main features of the fire progression and

the focus on the post-ignition fire state in this chapter. The work presented was not designed to

detect the presence of a new fire, but rather to assess the rooms of the building during the fire for

use by the firefighters in making decisions about where to act, when to evacuate, and how to avoid

dangers and prioritize aid, in general.

Figure 5-7: The timeline of progression of a fire in a building; the aim for the current work is to provide a

monitoring tool for the post-ignition state

For the purposes of the current study, it was necessary to simulate the behavior of multiple

sensors measuring data from their location in the test building to the main program. The n-sensor

model was based on the assumption of the use of one sensor per room in all monitoring simulations,

thus providing for the case of an n-room monitoring scenario. To send data at regular, but not

perfectly timed, intervals, a simple sensor program was developed in C++ to map n sensors to n

threads in a parallel manner. Using the OpenMP library for C++ [37] allows the simulation to

114

employ as many sensors as are needed for the multi-room monitoring case. The parallel directives

of OpenMP were used to split the program into n similar threads, each responsible for reading

from their designated data file. These data files were pre-populated with time-series data for

simulating newly measured fire signatures. For the current monitoring purposes, a typical data file

was created as file<i>.csv, where the i corresponds to the sensor/room number such that the

thread with a process ID value of i should open, read, and send the data in the ith data file. In order

to use, for example, four rooms in a test of the monitoring system, it was necessary to prepare the

four corresponding data files with six columns corresponding to each of the six fire signatures

mentioned earlier. From a hardware standpoint, this simulation of data was strictly related to the

physical values (temperature, heat flux, etc.) as opposed to sensor signals (voltage, etc.); therefore,

there was no provision of data conversion, signal processing, or calibration needed for these

idealized sensors.

 In addition to providing a unique data set to each sensor, every thread runs independently

to simulate asynchronous message passing to the main monitoring program; this main system using

the LCM-based infrastructure was described in detail in the previous section. The sensor

simulation was accomplished using “wait” function called usleep between every pushed message.

All the sensors in the model have a specified nominal frequency, fnom. However, if the nominal

frequency was 1.0 Hz, instead of pushing data packages every 1.0 seconds, the wait function

delayed the message by a random but bounded amount. In the following equations, fnom and z were

specified as input for the group of sensors. The resulting nominal period, Pnom, for sending

messages was simply the reciprocal of the nominal frequency:

nom

nom
f

P
1

 (5.1)

115

The delay bound, z, was specified as a percentage of the nominal period in order to compute a

maximum and minimum possible delay in sending:

nomPzP )0.1(min

nomPzP )0.1(max

(5.2a)

(5.2b)

The waiting time, or the time between publishing two messages from the same sensor, was

computed by taking a random number in the interval (Pmin, Pmax) from the uniform distribution.

Specifying z as, say, 20% would lead to message-send waiting times within the interval of (0.80,

1.20) seconds for the nominal frequency of 1.0 Hz mentioned earlier. The random number is drawn

from this interval for every time step of the simulation and is unique to each sensor (i.e., to each

thread). This waiting scheme was used to intentionally slow down the sensor message-sending,

since the program is able to read from the data files much faster than 1.0 Hz, for example.

The concept of asynchronous message sending is shown in Fig. 5-8, in which the nominal

times and actual message times are illustrated. As part of the control in the main monitoring

program, the user is able to launch the sensor-array from a simple menu before starting the

simulation. Messages containing new data from the sensors may be sent either before or after the

nominal time and in any order; they are all received and handled by the main program. Data from

the simulated sensors was packaged and sent to the main program using LCM for message passing

within the same machine: this is the lab-environment equivalent of measuring fire signatures and

transmitting the data from a WSN in a real-world application. More information about the

communication between sub-models is described in the following sections, as the details of how

these asynchronous data packages are transferred from the sensor program to the main program is

left out for now. The message passing from individual sensors to the main computing program

represents a non-blocking send, meaning the sensor simulator does not wait for confirmation from

116

the recipient: data is pushed from the sensor immediately after its random delay described

previously.

Figure 5-8: The multi-threaded model for simulating multiple sensors with nominal time steps listed on the

timeline to the left; each sensor is mapped to its own thread which accesses its own unique data file to read

and push new data to the main monitoring program using an LCM data structure

5.4 Event Detection Model

This component of the research aimed to provide methods for determining key fire events

from measured data collected by sensors. Thus, one of the primary objectives was to use detection

methods that are efficient and reliable such that key information may be extracted in real time. In

the post-ignition monitoring setting, sensitivity to nuisance sources is less of a concern than

determining real threats efficiently and early enough to provide sufficient lead time in decision

making. To achieve this objective, deterministic event detection methods were developed based

on existing data and practices used in fire safety to maximize the available knowledge about the

117

fire progression without hindering the necessary work of firefighters. Methods for event detection

were developed and implemented to specifically detect the following three hazards:

1. Smoke toxicity based on the composition of gases

2. Burn threats to building occupants and firefighters

3. Fire status, namely, potential fire spread and impending flashover conditions

 Using thresholds (i.e., set points and rates of rise) to detect fire events is a deterministic

approach that is commonly used in fire detection. While there is a possibility for false alarms,

thresholds are well-suited for instances in which a large enough dataset does not exist yet to allow

neural networks to be formed (i.e., in the work by Jones [25]). Given the limited amount of data

available during the developmental phases of the proposed monitoring system for training such a

neural network algorithm, the present research focused on establishing set points and/or rates-of-

rise for temperatures and species concentrations that indicate smoke toxicity, burn threats, and the

measure the status of the fire. Additionally, methods from fire safety engineering were used in

real-time computation to assess the progression of certain threats (smoke toxicity and burn threats,

specifically). In particular, the Fraction Effective Dose (FED) was used for instantaneous

assessment of smoke toxicity and burn threats in the monitoring setting [38]. Note that these

methods serve as a form of live data evaluation for remote monitoring purposes as opposed to

using the measurements for true fire forecasting.

 The thresholds were established based on relevant literature and existing experimental data.

The event detection methods used here were tested in simple verification cases as well as realistic

simulated fires using Fire Dynamics Simulator (FDS) [39]. In this section, one verification case is

presented, which uses sample data from the Society of Fire Protection Engineers (SFPE)

Handbook [40]. The final example provided at the end of this chapter demonstrates the use of the

118

event detection model in a real time simulation and in conjunction with the other components of

the system described throughout the chapter.

 With previous technology developed for detecting the presence of fires through various

fire alarm algorithms presented in the literature, there are existing common thresholds for the

present monitoring needs highlighted by this study. Recall that the proposed monitoring system

has been designed to measure the fire signatures of temperature [°C], heat flux [kW/m2], and the

concentrations of four gases: oxygen (O2) [%], carbon monoxide (CO) [ppm], carbon dioxide

(CO2) [%], and hydrogen cyanide (HCN) [ppm]. The guiding principle for the development of an

event detection model can be stated as follows: based on raw sensor data measuring these particular

parameters, determine whether a threshold has been reached for either a raw data point (i.e.,

temperature at a particular time) or a computed value (i.e., the cumulative FED for smoke

inhalation at a particular time) and assign a warning level for each hazard. From these numerical

evaluations, we can establish logic for issuing warnings and providing feedback from the

monitoring system to a visualization component as well.

 These methods were intended to track the status of the fire as it progresses in the building.

While many approaches have been used in the detection of new fire events, the methods used here

aimed to extend detection into the post-ignition state such that the hazards mentioned be assessed

as the fire evolves. The details of the event detection model follow for each of the three hazards.

Additionally, the connection between the output of the event detection model and the visualization

component will be described in Section 5.5 on visualization using BIM.

 These methods were implemented as a C++ program in which each unique sensor was

represented by its own object from the Sensor class. Each sensor (assuming one per room, as

described in the previous section) is responsible for performing its own calculations to determine

119

if a particular hazard threshold has been reached. For example, at every instance that data is

received in the event detection model, the Sensor object will automatically check its own private

variables, say, to compute smoke toxicity, using a particular member function for each hazard and

then return the warning level as an integer which is stored for output to the visualization device:

smokeWarning[i] = sensorArray[i].checkSmokeTox(); (for the sensor i in the simulation, located

in room i). The other two member functions are checkBurnThreats() and checkFireStatus();

each hazard may return an integer warning from the set {0, 1, 2}, as described next, where each

level corresponds to a different severity of effect.

5.4.1 Hazard 1: Smoke Toxicity

 Smoke toxicity has been seen as the cause of death for building occupants on many

occasions. One way that it is understood is in terms of the concentration and exposure time which

leads to either incapacitation or death. Alaire [41] discusses, for example, oxygen depletion in

terms of what was observed in blood samples from autopsies of fire victims. This concept of blood

concentration is useful in quantifying the effects of exposure to harmful gases. For example, in the

case of CO, four minutes of exposure results in about 40% carboxyhemoglobin (COHb) in the

bloodstream leading to incapacitation due to the CO binding with the hemoglobin in the blood

[40]. But for the purpose of real-time monitoring of smoke toxicity levels, it is necessary to

translate this information into engineering parameters for tracking human exposure during the fire

event: something that has been established through the use of FED in the past.

For the current study, toxicity levels were monitored using measurements of CO, CO2,

HCN, and O2 (depletion of O2) based on limits that are linked to smoke inhalation incapacitation

and death. According to the study by Alarie [41], if oxygen levels in the room of origin reach less

120

than 7%, then this will become a primary cause of local incapacitation and death. However, such

low oxygen levels usually accompany very hot smoke which would cause skin surface and

systemic hyperthermia to become major factors as well. Low oxygen levels plus extreme heat are

fast-acting and principal factors leading to incapacitation and death [41]. Since burn threats due to

such high-intensity heating represents another hazard altogether, they were handled in the

following subsection.

 Due to the nature of the hazard of smoke inhalation, checking thresholds instantaneously

does not sufficiently capture the time of exposure to such harmful gases. Thus, the Fractional

Effective Dose (FED) methods were implemented to assess each room in the building for smoke

hazards [38], but in real time for this application. FED has been used in other applications as well,

including smoke visualization [42], path safety evaluation [43], fire simulation software such as

FDS [39], evacuation planning based on GIS [44], and in research related to testing materials for

smoke toxicity [45]. In recent years, Xu et al. [42] used FED in their definition of smoke hazard

as part of a virtual reality tool using smoke visualization and evacuation pathfinding. FED has

been used in various applications of fire safety and even visualization, but is not normally found

in the real-time monitoring space.

 While these expressions for FED that follow were designed for unprotected human

exposure based on testing with rodents in the laboratory setting [38], there is still value in using

these calculations for warning firefighters as well, even though personal protective equipment in

a typical firefighting scenario can be expected. Using these FED indicators in real-time, though,

can help provide assistance in assessing the smoke toxicity dangers with early warning, which

could also improve decision-making for rescue applications of trapped building occupants or

simply for avoiding severely toxic regions altogether if full evacuation was assumed.

121

The FED is typically used to determine the increasing threat due to exposure to toxic gases

over time during a fire event. It is based on the concept of taking a summation of several

consecutive, short, transient “exposure-doses” of harmful gases relative to known threatening

levels of these gases. The basic equation for computing the FED is shown in Eq. (5.3) below:

 





n

i

ti

Ct

tC
FED

1 max)(
 (5.3)

In the equation, the summation includes the instantaneous concentration Ci and the short time

interval Δti over which that concentration was measured. The denominator holds the limiting value

of the total exposure-dose (Ct)max required to cause a reaction in 50% of the occupants. When the

summation reaches a value of 1.0 at some point during the summation, the threshold has been

crossed and the particular reaction is expected in 50% of the human population (where the reaction

thresholds are typically incapacitation and death).

The SFPE Handbook [40] as well as the FDS User Guide [39] provide us with the details

of the empirical formulas that are used to assess smoke toxicity: specifically for irritants using the

Fractional Lethal Dose (FLD) and asphyxiants using the FED. The primary equation for assessing

smoke toxicity using FED was presented in the SFPE Handbook as follows:

22

)()(OCOirrNOCNCOitot FEDVFLDFEDFEDFEDtFED
x

 (5.4)

The instantaneous FED at time ti can include multiple gases, as indicated in Eq. (5.4) above. In

particular, carbon monoxide (CO) was one of the gases considered:

 t
D

V
COFEDCO   036.15][)10317.3((5.5)

The concentration of carbon monoxide is measured in units of ppm and is given by [CO]. The V

term represents a breathing volume rate measured in units of L/min and has the following

associated values: 8.5 L/min for resting or sleeping, 25 L/min for light work (which is typically

122

used and equivalent to walking to a fire exit), and 50 L/min which represents slow running or

walking up a staircase [40]. The limitation is found in D, which represents the exposure-dose of

COHb required for incapacitation (30% is default). Finally, the time step is defined as Δt = ti – ti-1

(in minutes), which is the difference between the last two time steps received by the event detection

model in this case.

 Additionally, the effects due to hydrogen cyanide (HCN) were also considered:

 t
CN

FEDCN 



6

36.2

102.1

][
 (5.6)

This formula is used in the SFPE Handbook and differs slightly from the FDS version in the

calculation of FED. In this equation, the direct concentration of hydrogen cyanide is not used.

Instead, the concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) must be subtracted

first: [CN] = [HCN] – [NO2] – [NO] (all in units of ppm for this equation). Irritants such as NOx

gases, hydrochloric acid (HCl), hydrobromic acid (HBr), hydrogen flouride (HF), formaldehyde,

and acrolein may also exist within buildings during real fire events and they are handled in the

SFPE Handbook. However, in the current study, none of the NOx gases nor any other irritants were

measured or used in the simulations. As a result, [NO2] = [NO] = 0 and consequently the value of

FLDirr in Eq. (5.4) is also zero.

 Another important contribution in Eq. (5.4) is the hyperventilation factor, which serves to

increase the occupants’ potential consumption of toxic gases during extreme conditions

experienced during the fire:

1.7

)0004.2][1903.0exp(2

2




CO
VCO (5.7)

Here, carbon dioxide [CO2] is passed into Eq. (5.7) in units of volume percentage. Similarly,

oxygen depletion is handled in the final term of the FED equation given in Eq. (5.4):

123

 t
O

FEDO 



]))[9.20(54.013.8exp(

0.1

2
2

 (5.8)

Equations (5.4-5.8) were used in the event detection model to compute the FED of the smoke over

time in the simulation.

 Relating computed values to the warning levels for fire monitoring in this component of

the model, FED > 1.0 corresponds to warning Level 1. If the oxygen percentage decreases to 7%,

the warning is incremented by one as well (i.e., to Level 2). This limit of 7% is not checked in the

FED (explicitly), but it is associated with rapid deterioration and death in previous fire events [41]

and is thus included as another criteria for assessing the hazard level. Therefore the possible

outcomes are warning levels in range of {0, 1, 2} as implemented here in the event detection model

for smoke toxicity.

5.4.2 Hazard 2: Burn Threats

Burn threats are another concern for firefighters, even when shielded by personal protective

equipment [46]. Burn threats were detected by monitoring critical temperatures and heat fluxes to

bare skin. Additionally, extremely low oxygen levels usually accompany very hot smoke which

would cause skin surface and systemic hyperthermia to become major factors as well [41]. Lawson

[46] gives skin temperature values for human tolerance to burning, such as second degree burns

occurring when the skin reaches 55°C. Also, skin is uncomfortable at 44°C and first-degree burns

start at 48°C for reference. Naturally, there is a time component to this exposure as well, just as in

the case of exposure to toxic gases. A 30-second exposure to 4.5 kW/m2 will cause second-degree

burns to human skin; thus, a person standing within 6 m of a 600-kW fire for 30 seconds would

likely receive a second-degree burn [46]. Firefighters can potentially avoid burns by limiting their

time in high thermal radiation environments.

124

 Knowing that firefighters in the vicinity of hot flames can be affected, even if not present

in the current room where the fire is located, there is a way to measure the “exposure-dose” to heat

effects as well. Using the FED concept, burn threats may be assessed in real time using measured

temperatures and heat fluxes [40, 42]. There exist empirical formulas for assessing convection and

radiation effects based on the exposure-dose concept used for smoke in the preceding section, now

applied to heating and burn effects for the current hazard assessment.

In the most recent SFPE Handbook [40], the equations for time of tolerance and time to fatal

injury are provided for convection heating as follows.

7561.38963.1631)104()102(  TTt pain

conv

10898.380403.918)101()102(  TTt fatal

conv

(5.9a)

(5.9b)

From either of these equations (representing different levels of severity), we can obtain the time

to pain or time to fatality, tconv, due to heating by convection at a particular instance during the fire

event. From this, we can compute the instantaneous FEDconv as Δt / tconv and add it to the sum, seen

later in an equation to follow. For radiation effects, when the radiative heat flux is greater than 2.5

kW/m2, the equation is as follows:

 33.1

33.1

q
t pain

rad  (5.10a)

 33.1

7.16

q
t fatal

rad  (5.10b)

If the heat flux is less than 2.5 kW/m2, then the expected time to pain or fatality for radiative

heating, trad, is greater than 30 minutes. In the general form of Eq. (5.10), the numerator is

represented by a constant value: r. There are various values of the r constant for different levels of

severity [40]. The values of 1.33 and 16.7 seen in the numerators of the Eq. (5.10) represent two

limits of pain tolerance (1.33) and third-degree burn (16.7) thresholds. These two values were

125

selected as the lower and upper limits, respectively, of the monitoring system for issuing visual

warnings in accordance with the empirical equations.

The combined effects of convective and radiative heating are seen in the FED equation for

heat exposure:

 














n

i

i

radconv

heat t
tt

FED
1

11
 (5.11)

The calculation in Eq. (5.11) was performed for each of the two levels, namely pain and fatality,

from Eqs. (5.9-5.10) earlier. To translate these computed values into the desired warnings at an

instant in time, if the pain tolerance version of the cumulative FED value in Eq. (5.11) reaches 1.0,

then the warning is incremented by one. If the next threshold for fatality is reached, the warning is

incremented by one again. In this approach, the lower bound pain tolerance threshold will be

crossed first and then the more severe fatality threshold may be reached later as the conditions

worsen for each individual room. The possible outcomes for warning levels are thus {0, 1, 2} for

the burn threat model at any given time of the monitoring scenario.

5.4.3 Hazard 3: Fire Status

The goal for defining this hazard was to determine the fire status based on measurements

of temperature and heat flux from the sensors and to assess whether flashover is impending.

Naturally, fire spread and flashover are two main concerns in firefighting [47–50]. Flashover has

been characterized from temperature and heat flux data (as shown in previous research [47, 51])

obtained from several experimental studies.

 Recent work by Jones [25] presented a study using neural networks for determining the

presence of fires as the main focus, but it also provides information on some traditional thresholds

used for detection as well. In particular, typical values of set points and rate-of-rise criteria for

126

determining the presence of a fire (using single-point measurements) were provided. While many

multi-criteria algorithms exist for detecting the presence of a fire in a building, it may not be

appropriate to use measurements of species concentrations, for example carbon monoxide, as a

fire-status indicator during the post-ignition state due to the potential for increased amounts of

toxic combustion gases in the building atmosphere during this period. Thus, in order to assess the

fire status in each room of the simulation, sensor measurements of temperature and radiative heat

flux were isolated for this purpose.

 The first warning level for the fire status hazard corresponds to threshold values of 57°C

for the temperature and 0.6 kW/m2 for the heat flux measured at the ceiling. The temperature limit

was adapted from Jones’ [25] comparisons with traditional threshold values for fire detection. The

heat flux limiting value was mentioned by Guillaume [52], where this value was the minimum

magnitude that could be recorded by the sensors used in the experiments of that study. The reason

for using a heat flux value in determining the potential for fire spread is that checking the

temperature alone could lead to a detection method that is too sensitive to hot upper layer gases

accumulating in rooms away from the fire origin. The heat flux measurement combined with the

temperature check is intended to help better identify locations where a fire may be present,

potentially away from the room of origin, instead of just finding hot gases (which are handled by

the burn threats hazard computations). These two threshold values for temperature and heat flux

represent the conditions for a Level 1 warning in the fire status hazard.

 Traditional practical criteria for determining flashover in an experimental test usually

includes a radiative heat flux of 20 kW/m2 measured at floor level and a temperature just below

the ceiling of 600°C [51]. Flames coming out of open windows and doors is another experimental

observation in flashover [53]. In studies on flashover, experimental test results from several

127

independent researchers have been collected to arrive at acceptable thresholds for engineering

purposes; specifically, the heat flux values exceeding 20 kW/m2 at the floor of the compartment

and upper gas layer temperatures greater than 600°C near the ceiling are common values used to

define the onset of flashover [47, 51, 53, 54].

The literature review provided by Liang, Chow, and Liu [53] also gives a good overview

of additional studies which have found flashover conditions occurring with some wide ranges of

temperatures and heat fluxes as well. While both of the related studies [47, 51] mention the

considerable amount of scatter in the test results as well, these values for the heat flux and gas

temperature thresholds were considered representative of the majority of the experimental studies

reviewed. While some research has cautioned the use of these criteria in the fire monitoring

application [1], the value offered by using threshold checks of these two flashover indicators

(temperature and heat flux) is still reasonable in conjunction with the additional information

obtained from the two other hazard models regarding the progression of the fire over time.

In order to provide potentially earlier warnings of impending flashover, these traditional

threshold values of 20 kW/m2 at floor level and temperature just below the ceiling of 600°C were

reduced to take into consideration the flashover transition period [55]: the transition period may

be considered in the range of 500-600°C and 15-20 kW/m2. The range of 500-600 kW/m2 has been

used in other recent reports defining flashover as well [56]. As a result, the thresholds used in the

event detection model for the second warning level were reduced to the lower bounds of 500°C

and 15 kW/m2 measured at the location of each sensor. These criteria provided the definition for a

Level 2 warning in the fire status hazard. In the tests presented in this current study, the sensor

measurements were located on the ceiling (as opposed to the floor for the heat flux measurement).

128

The ceiling location was chosen because this is the more likely location to find an existing detector,

such as a smoke alarm.

5.4.4 Summary and Testing

 The information in the above subsections on the individual hazards has been collected into

one table for convenience. Each of the hazards and the corresponding warning levels is presented

in Table 5-1. The conditions in Table 5-1 were implemented in the event detection model as

individual member functions for each sensor (one per room) in the simulation. For each hazard,

the warning levels of {0, 1, 2} was tracked throughout the complete time history of the monitoring

scenario and written to an output file for post-processing and analysis. Additionally, the FED

values were also printed to the output files.

Table 5-1: Thresholds and conditions used to define the event detection model

Hazard Level 0 Level 1 Level 2

1. Smoke Toxicity Normal Air Incapacitation

FEDsmoke > 1.0

No Oxygen (Fatal)

O2 < 7%

2. Burns to Skin No Threat Severe Pain

FEDpain > 1.0

Third-Degree (Fatal)

FEDfatal > 1.0

3. Fire Status Near Ambient Potential Fire

57°C and 0.6 kW/m2

Flashover (Fatal)

500°C and 15 kW/m2

In order to test the implementation, data from the example in the SFPE Handbook [40] for

computing FED was used to compare with the real-time FED results in the current study, as well

as to demonstrate the calculation of warning levels for a simple example problem. Results are

shown here for a single-room application in which the data provided by the example [40] was used

as input for the event-detection model. Table 5-2 shows the input (temperature, flux, and species)

and then Table 5-3 follows with the computed output (FED and warning levels).

129

Table 5-2: Temperature, heat flux, and species concentration input for the event detection model test based

on the SFPE Handbook example [40]

Time Temp. O2 CO CO2 HCN Flux

[sec] [°C] [%] [ppm] [%] [ppm] [kW/m2]

60 20 20.9% 0 0.0% 0 0.0

120 65 20.9% 0 0.0% 0 0.1

180 125 19.0% 500 1.5% 50 0.4

240 220 17.5% 2000 3.5% 150 1.0

300 405 15.0% 3500 6.0% 250 2.5

360 405 12.0% 6000 8.0% 300 2.5

Table 5-3: Results computed from the event detection model for the example in the SFPE Handbook [40]

 Smoke Burn Fire

Time FEDsmoke FEDheat(pain) FEDheat(fatal) Toxicity Threats Status

60 0.00 0.00 0.00 0 0 0

120 0.00 0.02 0.00 0 0 0

180 0.04 0.20 0.04 0 0 0

240 0.41 1.77 0.23 0 1 1

300 2.11 19.87 1.71 1 2 1

360 6.17 37.97 3.19 1 2 1

 For comparison with the SFPE Handbook results for the FED calculations, specifically

Table 63.22 in that document, one might notice the slight difference in the FED for smoke toxicity

presented in Table 5-3 of the current study. The difference arises from not including irritant gases

(HCl, acrolein, and formaldehyde) in the current event detection model. All other differences are

due to the small round-off errors encountered when performing these calculations by hand, as

demonstrated in the SFPE Handbook example case, versus allowing the computer to store the FED

as a floating-point number in the current real-time application of these methods.

5.5 Visualization using BIM

 The visualization component was developed to present the results of the sub-models in a

manner that could be useful for firefighters in monitoring the status of the fire in real time. The

system was desired to include a component within a Bentley BIM product that will allow the user

130

to visualize live information from the fire event (specifically, in real time). It was envisioned to

transmit the live information to an incident commander who is using the visualization interface at

the scene of the fire event and it should transmit this information wirelessly. The system was

designed to use a 3D representation of the building environment with transmitted information

included in this BIM model.

 The reality of the implementation was an approach that resulted in the ability to play back

discrete events from the fire monitoring simulation in a BIM environment a posteriori to

demonstrate the ability of the sub-models to deliver time-sensitive information as visual

representations of the evolving fire scene. This project used Bentley AECOsim Building Designer

(ABD; www.bentley.com) as the primary visualization software for this task. Due to the some of

the constraints in the ABD software, the BIM visualization had to be handled as a post-processing

feature, as opposed to a real-time component of the monitoring system. The use of BIM in a real-

time manner is an extension of the original purpose of this software and thus such a limitation is

simply a reflection of the current intended use of such tools: it is not intended for transient, real-

time data applications. A clear distinction between the automated real-time components and the

post-processing demonstration will follow.

 The full monitoring system was specifically designed for distributed deployment. In

particular, the computing resources to be used for simulation, calculation, and data management

were hosted on one machine dedicated to this purpose alone (Ubuntu 14.04). This single machine

was responsible for running the main monitoring program, which received new data from the

simulated sensors over time and coordinated data transfer to the various sub-models. The

visualization features presented here were hosted on a second machine (Windows 7). Information

needed to be transmitted from the remote computing workstation to the local visualization device.

http://www.bentley.com/

131

The system used the newly developed event-detection model to produce visualization-specific

output intended for helping to identify fire hazards. This visualization-specific output was

generated automatically in the monitoring system contained in the computing workstation and will

be described next. Communication between the two machines is also discussed further.

 Real-time data visualization techniques must be adapted to allow users to rapidly interpret

critical information and evaluate alternative courses of action. Identifying fire hazards through the

use of visual warnings displayed in the BIM environment could provide early warning for

impending dangers as the severity of the conditions in the building are reflected in the codified

warnings programmed into the visualization device. Thus, from the work completed in the

development of the event detection model, it was necessary to link the computed results to visual

ques relating numerical data to a graphical representation for a real-time setting. To connect

computed values from the fire monitoring system to the visualization component, a post-

processing step was added.

The LCM-based monitoring system described in the previous section included a function

in the event detection model to write time history data for each sensor to its own output file in a

standard way. The output from the event detection model included the measured temperatures,

fluxes, and species concentrations received from each individual sensor in the event detection

model (possibly at a different frequency than the sensor data generation) as well as the computed

values of FED and the corresponding warning levels. For the purpose of visualization, the warning

levels {0, 1, 2} for each of the three hazards discussed in the section on event detection were used

to generate particular visual indicators in the BIM environment. In general, for each hazard, Level

0 is associated with no danger or concern, Level 1 indicates a potentially non-lethal threat, and

132

Level 2, the most severe, indicating immediate danger and potential fatality. These levels were

defined in Table 5-1 previously.

Each of the warning levels {0, 1, 2} has standalone significance in assessing the danger in

a particular compartment. However, to avoid a problem of information overload, additional logic

was provided to combine the resulting warning levels into an aggregated threat level. With three

hazards and three warning levels, a potential of 27 threat combinations arises: [0-1-1], [1-2-1], [1-

1-0], etc. The logic proposed here serves to reduce these combinations to four main scenarios and

three particular threat levels: warning (yellow), danger (orange), and severe (red). The particular

rules used to decipher computed results follow.

First, if any one hazard (smoke, burns, or fire) reaches Level 1, for example the cases [1-

0-0] or [0-1-0] or [0-0-1], then the threat is considered a “warning” (yellow). Second, if any two

hazards reach Level 1, for example the cases [1-1-0] or [1-0-1] or [0-1-1], then the threat increases

to “danger” (orange). Third, if all three hazards reach Level 1, specifically the case [1-1-1], then

the threat increases to “severe” (red). Fourth, and finally, if any one hazard reaches Level 2, then

the threat is escalated to “severe” (red) immediately for that room. Since the hazards at Level 2 are

associated with fatality and flashover, as shown in Table 5-1, this hazard condition is treated with

immediate progression to the severe threat level.

A Python script was developed for this post-processing step. It was employed after the

simulation of the monitoring scenario in order to develop an example of using BIM with monitored

data. It was used to translate the event detection model output, namely the hazard levels, into three

new threat levels for every time step in the history of the fire monitoring scenario. Next, the Python

script converted this integer-based data for the threat levels {0, 1, 2, 3} (corresponding to

“initial/ambient” for 0, “warning”, “danger”, and “severe” threats, respectively) into a compatible

133

format for use in the BIM setting. Specifically, schedules of tasks were automatically generated

from the threat-level data in the form of XML files that could be imported into Bentley ABD

directly for visualization as schedule simulation. An overview of this process is shown in Fig. 5-9

for the relevant components of the system.

Figure 5-9: The post-processing step was included for use after fire monitoring in order to create XML-based

schedules for animation in ABD; the tasks in the schedule were automatically created using start and finish

times of each threat level based on the event detection model output

The playback for visualization used the Bentley animation producer for schedule

simulation. Each of the threat levels were linked to elements in the BIM which would change color

based on the current threat level. In particular, the floor area of each room was used as the dynamic

material for visualizing changes in the fire-monitoring scenario (Fig. 5-10). The threat levels were

translated to tasks in the XML schedules; this was accomplished by determining the start and finish

times of particular threats (warning, danger, and severe) and then assigning the appropriate

corresponding color value (yellow, orange, and red, respectively); start of a higher threat level

indicated the end of the lower level. The main benefit of this method is the ability to automatically

generate the XML-based schedules for each room in the simulation. Included in the automation is

the determination of the start and finish times of the threats, the assignment of the proper material

colors for those events, and the appropriate formatting for XML compatibility accomplished

through the use of the Python package lxml to create event trees.

134

Figure 5-10: Screenshot of the 3D BIM exterior walls and colored floor plates, highlighted here in magenta,

used for visualizing threat levels; tasks in the XML schedules were tied to the magenta-colored floor elements

 For example, the four rooms in Fig. 5-10 required four unique XML schedules containing

the task information. It was then possible to import the files directly into the Bentley ABD

animation producer. In Fig. 5-11, the imported schedules can be seen as the list of tasks that appear

in the Schedule tree. While the XML tasks can be generated automatically by the process described

above and shown in Fig. 5-9, one step of manual intervention was needed to enable this

visualization in ABD. Specifically, the schedules in ABD can only contain information about the

tasks themselves: start time, finish time, start color, finish color, unique identification numbers,

task names, etc. However, no information about elements that exist in the BIM can be included in

the XML-based schedule, i.e., the schedule is not aware of any of the physical components in the

model. Thus, once all four schedules were imported, it was necessary to link each task (initial,

warning, danger, and severe) to the proper room element, namely the floor plates shown previously

in Fig. 5-10. While this manual intervention is not attractive from an automation standpoint, it at

least allows the exploration into the use of real-time computed results in BIM environments.

135

Figure 5-11: Screenshot of the Animation Producer in Bentley ABD with the imported XML tasks present in

the Schedule tree

 An example of some of the details for a “warning” task are shown in Fig. 5-12, where the

start and finish times are provided as well as the color codes corresponding to each time. The four

possible tasks are represented as different color floor plates in that figure as well. The additional

task “initial” simply serves to bring the color-changing floor plates into existence for use with the

actual threat warnings that follow.

 The incident commander and active firefighters were the intended recipients of the

information via the BIM visualization module. The system aimed to present visualized data in

order to facilitate rapid decision making during a real firefighting operation, as mentioned in the

goals of this study. This implies the need to select only important information for such a decision-

making process as this system cannot make decisions for the users but rather indicate areas of

importance based on the measured data and sub-model calculations presented in the previous

sections. This system and others like it should present decision-making information in a way that

potentially helps the incident commander in strategizing firefighting operations while not

complicating operations with an abundance of data and distractions.

136

Figure 5-12: The four possible tasks are shown on the left with their corresponding colors; the actual

representation of a "warning" task is shown to the right for Room 1 in XML format, where the start/finish

times and colors were automatically generated from output generated by the event detection model

 In addition to the playback showing a visualization of the event detection, a truly real-time

feature was added that provides room-by-room graphs of the changing fire parameters. In

particular, the changing temperature, heat flux, carbon monoxide, and oxygen levels were

transmitted from the monitoring system to the visualization device using a local network. The live

graph tool is launched at the beginning of the fire event on the visualization device. A connection

with the computing device was established using a local network provided by the interoperable

open-source software called http-server (https://github.com/indexzero/http-server). The http-

server program was used to create a local server for each computer and the IP address and port of

each temporary server was used to provide a link between the two machines using different

operating systems. This provided a live connection between the Ubuntu-based computing

workstation and the Windows-based visualization device.

https://github.com/indexzero/http-server

137

Figure 5-13: Sample live data captured and plotted in real-time automatically in the monitoring simulation;

these plots were generated on the visualization device (Windows) while the incoming data was being

processed on the computing workstation (Ubuntu)

 Using this connection, the visualization device automatically checked the main computing

workstation for the most recent data updates and then the downloaded information was appended

to a text file on the visualization end. The live plotting tool continuously checks this file for

changes and plots the updated time series data for each room in the model in real time. An example

of the live plots of results is shown in Fig. 5-13 to demonstrate a sample of this tool’s ability to

plot updated information without user intervention in real time (for one room as a demonstration).

138

5.6 System Testing with Simulated Fire

 To demonstrate the real-time monitoring system with a natural fire case, an FDS simulation

was used for the four-room model seen in Fig. 5-10 in the BIM setting. The model represents a

multi-room apartment with four main rooms and one hallway connecting them. The floor plan is

shown in Fig. 5-14, which also identifies the fire locations and magnitudes as well as the sensor

locations (one sensor per room). The total duration of the FDS fire model was 600 seconds (10.0

minutes). Room 1 was 3×5 m and Rooms 2-4 were 3×4 m in the plan dimensions; the ceiling

height was 2.5 m above the ground in the model

Figure 5-14: The floor plan of the fire simulation is shown with the locations of the two fires (blue square in

Room 1 and red square in Room 2); the sensor measurements used in this test were recorded at the centers of

each room, specifically at the ceiling level, and are marked with green circles in the image

 In Room 1, the fire was designed as a 100-kW propane fire in FDS and placed directly in

the center of the room. The fire area was 40×40 cm and the ignition of the fire was intentionally

delayed and then ramped from a magnitude of 0.0 to 1.0 over one second, starting at 180 seconds

(3.0 minutes) into the simulation. Using the fire ramp in FDS, this magnitude was held constant at

1.0 until 500 seconds (8.3 minutes) where it was reduced to 0.0 again until the end. In Room 2, the

fire was slightly off center (50 cm from center), as seen in Fig. 5-14 as well. This fire had a peak

heat release rate of 400 kW, used propane as the fuel, and also was 40×40 cm in size. The fire in

Room 2 followed a t-squared fire curve with a slow growth factor, reaching a maximum magnitude

139

at 262 seconds (4.4 minutes) and held at that level until allowed to burn out at 400 seconds (6.7

minutes). Additionally, the carbon monoxide yield was set to 0.50 and the soot yield to 0.01 for

both fires.

The output recorded at the four sensors (one for each room) was captured using point

devices in FDS. Specifically, the gas temperature, radiative heat flux, and four species

concentrations (O2, CO, CO2, and HCN) were measured at the ceiling at each of the device

locations, totaling six fire signatures per room. Since the fuel source was propane and did not

contain some combination of nitrogen and hydrogen, the resulting combustion products did not

include HCN. As a result, the HCN measurements in the following output were zero for all times

in the simulation. Data was written to the device output file at 1.0-second intervals for the duration

of the fire simulation (10.0 minutes); this was only noted as a reminder that the output of the FDS

fire simulation was used directly as input for the sensor simulation to read and push to the main

computing system. Additionally, this fire simulation was conducted a priori in order to produce

the time-series data that could be fed into the fire-monitoring system next in real-time, thus

eliminating the delay caused by running the CFD analysis. The measurements for the six fire

signatures are shown in Figs. 5-15 through 5-17, representing the output of the FDS simulation

that was used as input to the fire-monitoring simulation. Note that the concentration [HCN] was

zero for all measurements because the fuel source did not contain Nitrogen.

140

Figure 5-15: Time history of the gas temperature output from the FDS fire simulation for the four-room

model; subsequently used as input for the fire monitoring system

Figure 5-16: Time history of the radiative heat flux output from the FDS fire simulation for the four-room

model; subsequently used as input for the fire monitoring system

141

Figure 5-17: Time history of the concentrations of carbon monoxide, oxygen, and carbon dioxide output from

the FDS fire simulation for the four-room model; subsequently used as input for the fire monitoring system

 The data presented in Figs. 5-15 through 5-17 was used as input for the fire monitoring

system. Specifically, a Python code was used to interpret the FDS device output file

(fire_devc.csv) and automatically create from that output four separate data files for the sensors

to use. In the section of this chapter on data collection and sensor simulation, it was shown in Figs.

5-3 and 5-8 that each sensor needs its own unique data file for its own unique thread to read and

push packets of data to the main computing system. For the test of the system, the unique data files

were created directly from the FDS output. The sensor simulation used a nominal frequency of 1.0

Hz with a potential noise range of ±10%; thus, each sensor would send its new data packet every

142

0.9 to 1.1 seconds to the main program. The nominal frequency chosen for the main program to

push new data to the event detection model was 0.5 Hz, meaning new data was sent to the event

detection model for processing every 2.0 seconds in real time.

Figure 5-18: Results of the real-time FED computation for smoke toxicity and burn threats due to heat;

results were computed using measurements at one sensor location per room every 2.0 seconds as received by

the event detection model for real-time calculation

Data was passed from the sensors to the main program and then to the event detection

model, as shown in Fig. 5-3 previously. The event detection model was responsible for computing

the warning levels {0, 1, 2} described previously for each of the three hazards. For presentation

purposes, the time-history of FED throughout the monitoring scenario is given here. Specifically,

results are shown in Fig. 5-18 for the FED calculations for both smoke and heat (pain and fatality

thresholds) for the duration of the test and for all four rooms. The threshold line for FED = 1.0 is

also included in Fig. 5-18 for reference. It can be seen that the warning flag will be triggered at the

time when the FED crosses this 1.0 limit.

143

 A view of the FDS model at 201 seconds into the simulation is shown in Fig. 5-19 to show

the progression of the fire at a particular instant. At this time in the monitoring scenario, the

warning level for the fire status check has just reached Level 1 for Rooms 1 and 2. The FED was

only part of the real-time calculation: warning levels were computed as well. Results for the

warnings computed for each of the three hazards are shown in Fig. 5-20 for each room in the

model. Recall that these warnings for the hazards of smoke toxicity, burn threats, and fire status

were based on FED values and the thresholds summarized in Table 5-1 earlier and can only be

whole integer values {0, 1, 2} at any given time in the simulation.

Figure 5-19: The FDS simulation is shown at 201 seconds, just after the warning for fire status in Rooms 1

and 2 had increased to Level 1

144

Figure 5-20: Results from the event detection model for each of the three hazards: a) smoke toxicity, b) burn

threats, and c) fire status; the warning levels of {0, 1, 2} are whole integers at every increment in the

monitoring simulation using a 2.0-second time step

 The data used for the plots in Figs. 5-18 and 5-20 was also used in post-processing to

automatically generate XML-based schedules of tasks for the Bentley ABD animation producer.

One schedule was created for each of the four rooms and then imported into the BIM environment.

145

After performing the manual linking step to connect tasks to elements in the model, a playback of

the monitoring results was available using the schedule simulator. The XML schedule generator

determined the start and finish times for each threat level experienced by each room; the tabular

data for each threat level is shown in Table 5-4 for reference. For visualization purposes, a

universal starting time was arbitrarily chosen as 07:00:00 and the schedule generator added the

threat level start times in Table 5-4 to the universal starting point to get the values seen for start

and finish times briefly seen in Fig. 5-11. For example, the warning (yellow) for Room 1 has a

start time of 182 seconds; thus, in the XML file generator, this was translated to 00:03:02 and

added to the universal start time to get 07:03:02 as can be seen in Fig. 5-11 previously.

Table 5-4: Start times, in seconds, for each of the three threat levels based on event detection model output;

the XML schedule generator determined these start times automatically and created the corresponding tasks

for schedule simulation

Location Warning – 1 Danger – 2 Severe – 3

Room 1 182 320 524

Room 2 160 232 308

Room 3 528 N/A N/A

Room 4 472 N/A N/A

 The schedule simulator animation is presented as a video in the actual Bentley ABD

environment. For the purpose of presentation in the current chapter, frames of the animation were

selected to demonstrate the progression of the animation from initial, ambient conditions to the

severe threat level. In the following set of images, the progression in Room 2 will be the focus, but

the remaining rooms will be mentioned where appropriate. The first frame shown in Fig. 5-21 is

the time of the first threat level of “warning” (yellow) reached by Room 2 at 160 seconds. By

inspecting the temperature-time curve and the corresponding fluxes in Figs. 5-15 and 5-16, it can

be seen that this first escalation in the threat level was due to triggering the fire status hazard

(temperature and radiative heat fluxes greater than 57°C and 0.6 kW/m2, respectively).

146

 In the second frame, at a time of 232 seconds, the second threat level was reached as

another hazard was detected and the threat level was raised to “danger” (orange). The second

hazard was due to the FED for pain due to heating reaching the 1.0-threshold. By this time, Room

1 has already reached its first threat level as well at 182 seconds. Similarly, in the next frame at

308 seconds, the second threshold for the heat-related hazard (fatality from third-degree burns)

exceeded 1.0, bringing the burn hazard to Level 2. Once any hazard reaches Level 2, the threat for

that room immediately jumps to the “severe” (red) level. Finally, in the last frame of Fig. 5-21, the

final frame of the visualization is given. Both Rooms 1 and 2 where the fires had started originally

finished the simulation in the severe threat range and thus both appear red by the end. In Fig. 5-

21, screenshots from the visualization correspond to stages in the FDS simulation shown with

HRRPUV and soot visible in the model.

 One interesting result from this example was the fact that the first threat (warning) for

Room 2 occurred at 160 seconds while the fire was actually ignited immediately in that room when

the FDS simulation began. Recall from the descriptions of the two fires used in this test that the

400-kW fire in Room 2 was designed with a t-squared fire curve having a slow growth factor.

Referring back to Figs. 5-15 and 5-16, which shows the temperatures and radiative heat fluxes

measured at the ceiling, the slow growth of the fire is evident in the slopes of these measurements

leading up to the peak of the fire at 262 seconds. Connecting this example back to a realistic fire

experience, the smoke alarm or carbon monoxide alarm would have been triggered much earlier

than the 160-second warning shown here in Fig. 5-21 for Room 2.

147

Figure 5-21: Sample results using visualization in BIM; each stage of the threat progression in Room 2 is

provided, where the FDS model is shown on the left and the Bentley ABD BIM with imported schedules

appears on the right

148

 Investigating some of the data measurements at ceiling, a solely temperature-based fire

detection method would have sounded the alarm around 60 seconds into the fire (using

approximately 50°C as threshold). If carbon monoxide was used to detect the presence of a fire,

where recommendations for this species as a detection signature range between approximately 10-

50 ppm according to some studies [25, 49], then the 77 ppm of carbon monoxide received by the

event detection model at 18 seconds could have sounded a fire alarm even earlier as well. This

exercise serves as a reminder that the purpose of the proposed fire monitoring system is to provide

information about the progression of a fire in the post-ignition state of the building, assuming that

traditional detection systems would already be in place for detecting ignition.

Note that the presentation of the evolving status of the fire was done in post-processing.

Preparation of the XML files for schedule simulation was performed automatically using the

output of the event detection model. The demonstration of this visualization concept is meant to

serve as a proof-of-concept for preparing easily identifiable information in a streamlined manner

using a simple color scheme and attempting to avoid information overload [1] for the actual

firefighting scenario.

5.7 Performance Testing for the Real-time Requirement

 In the previous example, only four rooms were used to demonstrate the features of the real-

time fire monitoring system. To this point, the near real-time computing performance for the case

with a single sub-model (event-detection model) has not been discussed. The theoretical

performance is expected to be sufficient when analyzing the computations involved in the event-

detection model for a single sensor. The computational demand is very low because there is no

solver for any matrix equations in the event detection model: all the computation is comprised of

149

the base floating point operations (addition, subtraction, multiplication, and division) on scalar

values with various compound logic loops (while, if, else). This results in a theoretically

lightweight solution because the individual calculations associated with a single sensor are limited

to the FED calculations and threshold checks resulting in approximately O(100) operations per

sensor for each time increment. Thus, scaling from n sensors to 2n sensors is not a major concern

from a floating-point operations standpoint.

 In terms of the message-passing problem, scaling could become an issue for meeting the

real-time requirement. For the four-room example shown, data collection was performed using a

nominal frequency of 1.0 Hz and thus each of the four sensors would send their new data to the

monitoring system for event detection approximately every 1.0 seconds. If the number of sensors

grows, the number of messages sent through LCM increases for every time step. For example, in

a 100-sensor model at 1.0 Hz, the system would need to handle 100 messages per second and then

perform the subsequent event-detection calculations while trying to maintain the real-time feature.

The computational demand is need to perform more calculations in the same small time window.

 The scaling of the system was tested by employing more sensors and timing the data

collection and the completion of the event-detection calculations. This test was designed to

measure the computational cost of the real-time fire monitoring system and provide insight on the

performance of the system. Recall from Fig. 5-3 that the data is transferred through the system

using LCM. First, the simulated sensor measurements are made in the initial component: time

series data is read from the file and published to main program using a waiting function in the

sensor simulator, as discussed previously. This first time point is tsensor, which is any time that the

sensor records a new measurement.

150

 Second, the sensor encodes the newly measured data and sends it to the main program in

Fig. 5-3 using LCM: the time it is received is tmain. Since LCM is an efficient and reliable software

library, the transfer of data from sensors to the main computing program is essentially immediate

from a computational cost perspective. However, in the real application of this system for an actual

fire scenario, this first data transfer represents the delay between a sensor measurement in the field

and the arrival of the data for computation at a stable, remote location. A natural time delay would

be expected for data transmission. In the computational case presented here, the delay is less than

a fraction of a millisecond and thus tsensor is very nearly equal to tmain in these tests. Furthermore,

comparing tsensor and tmain is essentially a measurement for how efficient LCM can encode and

decode messages passed between two applications, which is something that the LCM developers

have already provided.

 The third and final stage of the data is in the event detection model after it has been

forwarded from the main program. A data packet from the main program is encoded with the new

measurements and sent to the event detection model using LCM. The message arrives in the event

detection model, it is decoded, and is immediately used in the calculations discussed previously.

The new event detection model results are written to an output file one line at a time for each

calculation. After the last of the three hazard checks is made in the event detection model and the

output is written to a file, another time sample is taken and given the label of tend for the time at

the end of the event detection calculation for the current data set. Since the sensor simulator and

the event detection model were both developed using C++, it is possible to measure these timings

using the same tool. In particular, the gettimeofday function in conjunction with localtime was

used to record the times tsensor and tend for every data message sent by every sensor throughout the

duration of the simulation. Using these two time stamps gives a measure of the computational cost

151

required to perform the event-detection calculations on every packet of new data. The format and

precision of this time measurement was chosen to give the hour, minute, and second at the current

time. However, custom code was used to represent the seconds position to three digits after the

decimal. Thus, a sample timing measurement during the monitoring simulation would be in the

form of tsensor = 16:55:08.234, where the last position contains the seconds to three decimal places.

In this format, the smallest measurable time increment was 1.0 ms. Then at some later point in

time (when the event detection model is done performing its calculation on the current data), the

time measurement would be taken again within that program: tend = 16:55:08.237 (for example).

 The computing cost associated with each message and for every sensor was calculated as

the difference between these two timing measurements: tcost = tend – tsensor (performed for every

message in the system). For example, in the four-room example of the previous section, fire data

was measured at a frequency of 1.0 Hz for 10 minutes resulting in 601 measurements (including

the initial time of t = 0 seconds) per room for the duration of the simulation. Four rooms, each

with 601 measurements, results in 2404 data messages sent to the event detection model for

computational work to be performed and thus tcost was computed 2404 times for this case.

 Since the goal of this analysis was to measure the performance of the system handling data

in real time, the actual numerical values for the temperatures and species concentrations were not

considered important. The data files used in the four-room example (i.e., four .csv files containing

the time series data for each room) were copied several times to provide additional data files for

the new cases of 8, 16, 32, 64, and 128 sensors. The same 1.0 Hz frequency was used with a

random noise of 25% in the sensor delay times. These new cases provided a significantly higher

message-passing volume for the system and the simulation time was cut back from 10 minutes

down to five minutes for simplicity. Five minutes corresponded to 301 data messages per room

152

which resulted in 2408, 4816, 9632, 19264, and 38528 total messages and subsequent rounds of

event detection model calculations in the simulation for the new cases of 8, 16, 32, 64, and 128

sensors, respectively.

 Aggregate statistics for the various cases were computed to analyze the performance. The

difference tcost was computed for every message in the system for each of the cases (for example,

it was computed 4816 times for the 16-room test). The smallest measurable difference for this

calculation was 1.0 ms. For the real-time requirement, a target computing cost of 0.1 seconds per

measurement for the 1.0 Hz case would be reasonable and was selected as the target deadline. In

other words, if it takes less than 0.1 seconds (100 ms) to perform the event-detection calculations,

then the system should perform sufficiently for the real-time scenario. The concern with such a

high message volume in the cases of several rooms is that the event detection model must process

new data serially and thus bottlenecks could theoretically occur.

Table 5-5. Quantification of the system performance with respect to increasing number of sensors; the

average computational cost, maximum observed single cost, and the standard deviation are all provided as

well as the percentage of measurements that required ≤ 1.0 ms

Sensors Messages Avg Cost [ms] Max Cost [ms] Std Dev [ms] Cost ≤ 1 ms

4 2400 0.33 3.0 0.48 99.7%

8 2408 0.29 3.0 0.46 99.8%

16 4816 0.30 3.0 0.47 99.7%

32 9632 0.28 4.0 0.46 99.7%

64 19264 0.27 6.0 0.47 99.4%

128 38528 0.24 10.0 0.45 99.6%

 Thus, the aggregate statistics measured in this test serve to ensure that the system is

performing efficiently for the purposes of real-time use. Table 5-5 provides the average computing

cost for all the data measurements in each of the cases, as well as the maximum single cost

observed in the test. The standard deviation and other characterizing features were included for

completeness. For example, the percentage of messages requiring less than 1.0 ms (the smallest

difference that could be measured) or equal to 1.0 ms using this timing function. Table 5-5 shows

153

that, for 32 sensors, 99.7% messages required less than or equal to 1.0 ms of computational time

in the event detection model: 9608 of the 9632 messages. This is an acceptable performance for

meeting the real-time requirement of the system. Note that for the four-room case, the full 10

minutes from the previous system-testing example was used (600 seconds of data at 1.0 Hz

frequency); the remaining cases used only the first five minutes (301 seconds at 1.0 Hz). The

results show that for the number of sensors considered, the average computational cost of the event

detection model was in the range of 0.24 ms to 0.33 ms with 99% of the calculations requiring 1.0

ms or less. Figure 5-22 also shows the average cost and the maximum observed cost for each case

in addition to the real-time target of 100 ms; the target deadline of 100 ms was sufficiently met in

these tests. These timing results were obtained using Ubuntu 14.04 on a standard dual-core

personal computing workstation with a 2.53 GHz processor.

Figure 5-22: Computational cost quantified by the average time required for the event detection model to

process the data; the maximum observed cost for a single data message is also provided as the upper bound

154

 The reason for the high efficiency of the calculations, as seen in the average cost, is due in

large part to the robustness of LCM in handling large volumes of message-passing tasks.

Additionally, the actual calculations associated with the event detection model are very lightweight

for real-time computing purposes. Specifically, there is no matrix algebra involved, there are no

solvers, and file input/output (i.e., reading/writing files) is very limited.

5.8 Conclusion

 The development of a real-time fire monitoring system has been presented. The

components included the simulation of sensor data, formulation and implementation of an event

detection model, and framework for coordinating data among these various components.

Additionally, the potential for real-time visualization with BIM was demonstrated with a simple

post-processing example using output from the event detection model to generate schedules. The

components of this monitoring system were developed using various software packages and

programming languages which were linked using LCM. The system was tested with a four-room

example based on FDS-generated sensor data. In particular, monitoring was based on six fire

signatures measured at the ceiling: upper layer gas temperature, radiative heat flux, and four

species concentrations.

 The current study lacks the ability to create fully automated visualization in real time, but

the foundational work provided here will allow these features in the future. Full automation of the

real-time visualization tool and the development of a user-friendly graphical user interface for

receiving input from a user would be two main goals of the future work which would help bring

the system closer to real-world application and improve user-friendliness. Tests were conducted

using multiple sensors and an analysis of the performance for real-time applications was discussed

155

in this context. Coordinating data, managing computer memory, and ensuring the required

calculation time is feasible for near real-time computing are all important factors that should be

considered for future scalability. Most importantly, the authors do not have feedback from the

intended user: firefighters and incident commanders. One way to increase the potential for

adoption of new methods is to ensure that tools such as these are meeting the needs of the fire

department in addition to being reliable solely from a research standpoint.

5.9 Acknowledgements

 The authors would like to thank the Society of Fire Protection Engineers (SFPE) and

Bentley Systems specifically for their funding provided through the Chief Donald J. Burns

Memorial Research Grant. The use of certain commercial software or products identified are not

intended to imply recommendation, endorsement, or implication by the sponsors or authors, that

the software or products are the best available for the purpose.

5.10 References

1. Cowlard A, Jahn W, Abecassis-Empis C, et al (2010) Sensor Assisted Fire Fighting. Fire

Technol 46:719–741. doi: 10.1007/s10694-008-0069-1

2. Silvani X, Morandini F, Innocenti E, Peres S (2015) Evaluation of a Wireless Sensor

Network with Low Cost and Low Energy Consumption for Fire Detection and

Monitoring. Fire Technol 51:971–993. doi: 10.1007/s10694-014-0439-9

3. Glasgow HB, Burkholder JM, Reed RE, et al (2004) Real-time remote monitoring of

water quality: a review of current applications, and advancements in sensor, telemetry,

and computing technologies. J Exp Mar Bio Ecol 300:409–448. doi:

10.1016/j.jembe.2004.02.022

4. Argent RM, Perraud J-M, Rahman JM, et al (2009) A new approach to water quality

modelling and environmental decision support systems. Environ Model Softw 24:809–

818. doi: 10.1016/j.envsoft.2008.12.010

5. Christodoulou S, Agathokleous A, Kounoudes A MM (2010) Wireless Sensor Networks

for Water Loss Detection. Eur Water 30:41–48.

6. Wong BP, Kerkez B (2016) Real-time environmental sensor data: An application to water

quality using web services. Environ Model Softw 84:505–517. doi:

156

10.1016/j.envsoft.2016.07.020

7. Tilak S, Hubbard P, Miller M, Fountain T (2007) The Ring Buffer Network Bus (RBNB)

DataTurbine Streaming Data Middleware for Environmental Observing Systems. In: Third

IEEE Int. Conf. e-Science Grid Comput. (e-Science 2007). pp 125–132

8. Brun-Laguna K, Watteyne T, Malek S, et al (2016) SOL: An end-to-end solution for real-

world remote monitoring systems. In: 2016 IEEE 27th Annu. Int. Symp. Pers. Indoor,

Mob. Radio Commun. IEEE, pp 1–6

9. Jang W-S, Healy WM, Skibniewski MJ (2008) Wireless sensor networks as part of a web-

based building environmental monitoring system. Autom Constr 17:729–736. doi:

10.1016/j.autcon.2008.02.001

10. Alahmad M, Nader W, Neal J, et al (2010) Real Time Power Monitoring & Integration

with BIM. In: IECON 2010 - 36th Annu. Conf. IEEE Ind. Electron. Soc. IEEE, pp 2454–

2458

11. Kumar P, Skouloudis AN, Bell M, et al (2016) Real-time sensors for indoor air

monitoring and challenges ahead in deploying them to urban buildings. Sci Total Environ

560–561:150–159. doi: 10.1016/j.scitotenv.2016.04.032

12. Doolin DM, Sitar N (2005) Wireless sensors for wildfire monitoring. In: Tomizuka M (ed)

Smart Struct. Mater. 2005 Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst. p

477

13. Zervas E, Mpimpoudis A, Anagnostopoulos C, et al (2011) Multisensor data fusion for

fire detection. Inf Fusion 12:150–159. doi: 10.1016/j.inffus.2009.12.006

14. Liyang Yu, Neng Wang, Xiaoqiao Meng (2005) Real-time forest fire detection with

wireless sensor networks. In: Proceedings. 2005 Int. Conf. Wirel. Commun. Netw. Mob.

Comput. 2005. IEEE, pp 1214–1217

15. Jiang X, Chen NY, Hong JI, et al (2004) Siren: Context-aware Computing for

Firefighting. In: Ferscha A, Mattern F (eds) Pervasive Comput. Second Int. Conf.

PERVASIVE 2004, Linz/Vienna, Austria, April 21-23, 2004. Proc. Springer Berlin

Heidelberg, Berlin, Heidelberg, pp 87–105

16. Takahashi F, Greenberg PS, Carranza S, et al (2017) Real-time measurements of

particulate and toxic gas concentrations. In: 15th Int. Conf. Fire Mater. 2017. pp 409–420

17. Sha K, Shi W, Watkins O (2006) Using Wireless Sensor Networks for Fire Rescue

Applications: Requirements and Challenges. In: 2006 IEEE Int. Conf. Electro/Information

Technol. IEEE, pp 239–244

18. Lim Y, Lim S, Choi J, et al (2007) A Fire Detection and Rescue Support Framework with

Wireless Sensor Networks. In: 2007 Int. Conf. Converg. Inf. Technol. (ICCIT 2007).

IEEE, pp 135–138

19. Milke JA, McAvoy TJ (1995) Analysis of signature patterns for discriminating fire

detection with multiple sensors. Fire Technol 31:120–136. doi: 10.1007/BF01040709

20. Pfister G (1997) Multisensor/Multicriteria Fire Detection: A New Trend Rapidly Becomes

State of the Art. Fire Technol 33:115–139. doi: 10.1023/A:1015343000494

21. Milke JA (1999) Monitoring Multiple Aspects of Fire Signatures for Discriminating Fire

Detection. Fire Technol 35:195–209. doi: 10.1023/A:1015432409522

22. Gottuk DT, Peatross MJ, Roby RJ, Beyler CL (2002) Advanced fire detection using multi-

signature alarm algorithms. Fire Saf J 37:381–394. doi: 10.1016/S0379-7112(01)00057-1

23. Milke JA, Hulcher ME, Worrell CL, et al (2003) Investigation of Multi-Sensor

Algorithms for Fire Detection. Fire Technol 39:363–382. doi: 10.1023/A:1025378100781

157

24. Rose-Pehrsson SL, Hart SJ, Street TT, et al (2003) Early Warning Fire Detection System

Using a Probabilistic Neural Network. Fire Technol 39:147–171. doi:

10.1023/A:1024260130050

25. Jones WW (2012) Implementing High Reliability Fire Detection in the Residential

Setting. Fire Technol 48:233–254. doi: 10.1007/s10694-010-0211-8

26. Chen S-J, Hovde DC, Peterson KA, Marshall AW (2007) Fire detection using smoke and

gas sensors. Fire Saf J 42:507–515. doi: 10.1016/j.firesaf.2007.01.006

27. Han D, Lee B (2009) Flame and smoke detection method for early real-time detection of a

tunnel fire. Fire Saf J 44:951–961. doi: 10.1016/j.firesaf.2009.05.007

28. Aralt TT, Nilsen AR (2009) Automatic fire detection in road traffic tunnels. Tunn Undergr

Sp Technol 24:75–83. doi: 10.1016/j.tust.2008.04.001

29. Wang L, Ye M, Ding J, Zhu Y (2011) Hybrid fire detection using hidden Markov model

and luminance map. Comput Electr Eng 37:905–915. doi:

10.1016/j.compeleceng.2011.09.011

30. Hajian H, Becerik-Gerber B (2009) A research outlook for real-time project information

management by integrating advanced field data acquisition systems and building

information modeling. In: Comput. Civ. Eng. pp 83–94

31. Chen J, Bulbul T, Taylor JE, Olgun G (2014) A case study of embedding real-time

infrastructure sensor data to BIM. In: Constr. Res. Congr. 2014 Constr. a Glob. Netw. pp

269–278

32. Chen K, Lu W, Peng Y, et al (2015) Bridging BIM and building: From a literature review

to an integrated conceptual framework. Int J Proj Manag 33:1405–1416. doi:

10.1016/j.ijproman.2015.03.006

33. Rueppel U, Stuebbe KM (2008) BIM-based indoor-emergency-navigation-system for

complex buildings. Tsinghua Sci Technol 13:362–367. doi: 10.1016/S1007-

0214(08)70175-5

34. Volk R, Stengel J, Schultmann F (2014) Building Information Modeling (BIM) for

existing buildings — Literature review and future needs. Autom Constr 38:109–127. doi:

10.1016/j.autcon.2013.10.023

35. Guo Q, Salinas A, Jeffers AE (2015) Inverse model for determining heat release rates. In:

Int. Fire Saf. Symp. pp 431–439

36. Huang AS, Olson E, Moore DC (2010) LCM: Lightweight communications and

marshalling. In: Intell. Robot. Syst. (IROS), 2010 IEEE/RSJ Int. Conf. pp 4057–4062

37. (2015) The OpenMP API specification for parallel programming.

38. Hartzell GE, Switzer WG, Priest DN (1985) Modeling of Toxicological Effects of Fire

Gases: V. Mathematical Modeling of Intoxication of Rats By Combined Carbon

Monoxide and Hydrogen Cyanide Atmospheres. J Fire Sci 3:330–342. doi:

10.1177/073490418500300504

39. McGrattan K, Hostikka S, McDermott R, et al (2015) Fire dynamics simulator user’s

guide. NIST special publication, 1019, (6)

40. Purser DA, McAllister JL (2016) Assessment of Hazards to Occupants from Smoke,

Toxic Gases, and Heat. In: Hurley MJ, Gottuk DT, Hall Jr. JR, et al (eds) SFPE Handb.

Fire Prot. Eng. Springer New York, New York, NY, pp 2308–2428

41. Alarie Y (2002) Toxicity of Fire Smoke. Crit Rev Toxicol 32:259–289. doi:

10.1080/20024091064246

42. Xu Z, Lu XZ, Guan H, et al (2014) A virtual reality based fire training simulator with

158

smoke hazard assessment capacity. Adv Eng Softw 68:1–8. doi:

10.1016/j.advengsoft.2013.10.004

43. Engineering T (2017) Pathfinder 2017: Technical Reference.

44. Tang F, Ren A (2012) GIS-based 3D evacuation simulation for indoor fire. Build Environ

49:193–202. doi: 10.1016/j.buildenv.2011.09.021

45. Chow CL, Chow WK, Lu ZA (2004) Assessment of smoke toxicity of building materials.

In: 6th Asia-Oceania Symp. Fire Sci. Technol. pp 132–142

46. Lawson JR (1997) Fire fighters’ protective clothing and thermal environments of

structural fire fighting. In: Perform. Prot. Cloth. Sixth Vol. ASTM International, pp 334–

352

47. Peacock RD, Reneke PA, Bukowski RW, Babrauskas V (1999) Defining flashover for fire

hazard calculations. Fire Saf J 32:331–345. doi: 10.1016/S0379-7112(98)00048-4

48. Su JZ, Crampton GP, Carpenter DW, et al (2002) Kemano Fire Studies--Part 2: Response

of A Residential Sprinkler System.

49. Su JZ, Crampton GP, Carpenter DW, et al (2003) Kemano Fire Studies--Part 1: Response

of Residential Smoke Alarms. Natl. Res. Counc. Canada

50. Stroup DW, Bryner NP, Lee J, et al (2004) Structural Collapse Fire Tests: Single Story,

Wood Frame Structures. Natl Inst Stand Technol Gaithersburg, MD, NISTIR 7094:84.

51. Babrauskas V, Peacock RD, Reneke PA (2003) Defining flashover for fire hazard

calculations: Part II. Fire Saf J 38:613–622. doi: 10.1016/S0379-7112(03)00027-4

52. Guillaume E, Didieux F, Thiry A, Bellivier A (2014) Real-scale fire tests of one bedroom

apartments with regard to tenability assessment. Fire Saf J 70:81–97. doi:

10.1016/j.firesaf.2014.08.014

53. Liang FM, Chow WK, Liu SD (2002) Preliminary Studies on Flashover Mechanism in

Compartment Fires. J Fire Sci 20:87–112. doi: 10.1177/0734904102020002746

54. Lee EWM, Lee YY, Lim CP, Tang CY (2006) Application of a noisy data classification

technique to determine the occurrence of flashover in compartment fires. Adv Eng

Informatics 20:213–222. doi: 10.1016/j.aei.2005.09.002

55. Hartin E (2015) Fire development and fire behavior indicators.

56. Alarifi AA, Dave J, Phylaktou HN, et al (2014) Effects of fire-fighting on a fully

developed compartment fire: Temperatures and emissions. Fire Saf J 68:71–80. doi:

10.1016/j.firesaf.2014.05.014

159

Chapter 6

Conclusion

The computational framework for modeling the fire-structure interaction problem was

presented here by considering a three-stage, sequentially partitioned approach. First, the fire

simulation was conducted in CFD using FDS to compute the thermal boundary condition for the

structure. Second, the fire-structure coupling methods were used to transfer the thermal boundary

conditions to the structure and compute equivalent nodal fluxes in the FEA model. Third, the

thermo-mechanical shell element was used to compute the resulting temperatures and

displacements in the FEA model based on the input from the CFD-based fire simulation.

Altogether, this workflow represents the complete fire-structure coupling framework.

Next, a system for real-time fire monitoring was developed to provide the computational

means for using measured fire signatures in sensor-assisted firefighting. The components of data

collection, real-time computing via sub-models, and finally visualization in the field were

discussed. For the purposes of developing this system, sensor data and measurements were

restricted to the simulation of sensor nodes as a component of the full system, rather than using

physical hardware for this need. The real-time computing aspect using sub-models was

demonstrated through a novel event detection model for analyzing live data and assessing the fire

hazards. A proof-of-concept for real-time visualization in the BIM environment was presented as

a demonstration of future use in such a setting.

160

6.1 The Fire-structure Interaction Problem

The research presented in this dissertation has contributed to two different sides of the

problem of structural fires. From the analysis and computational mechanics standpoint, the

coupled thermo-mechanical shell element provides the researcher or designer a tool for analyzing

structures exposed to fire using a partitioned solution approach. The fire simulation software FDS

is not typically employed for its heat transfer calculations and it does not include the ability to

compute deformations in the structure. Thus, Chapter 2 showed that using the trapezoidal rule for

numerical integration and linking the thermal boundary condition data from FDS to the conduction

heat transfer model in Abaqus, solutions for a non-uniformly heated plate were provided with good

accuracy and very efficiently. Relative errors of less than 1.5% were reached using 128 thermal

shells in a 16×8-element configuration, which required less than one minute (47.4 seconds) of

computing time as opposed to the 48.5 minutes that were needed for the much higher-solution

solid-element model.

Coupling the FEA representations of the thermal and mechanical shell elements is an

essential component of the fire-structure simulation framework for any analyst interested in both

the thermal and mechanical response in the structure due to the presence of a local fire. Thus, in

Chapter 3, using the virtual work approach, these two formulations were successfully coupled and

verified using benchmark tests. In particular, for the thermal stress cylinder problem to compute

the stress, the thermo-mechanical shell element demonstrated more than sufficient accuracy with

an absolute error of O(10-13) when comparing computed stresses with this analytical solution.

Using the simply supported plate verification, the solution with the coupled shell performed with

a difference of 0.5% when compared with the reference solution.

161

The methods for coupling surface fluxes in the CFD fire simulation to the structure in the

full thermo-mechanical FEA model provide an intuitive and general approach to handling

temporally and spatially non-uniform fluxes in problems involving thin-walled structures. With

the applications in Chapter 4, the fire-structure coupling methods were demonstrated with the

thermo-mechanical shell to compute temperatures and displacements simultaneously in the FEA

model. The convergence behavior was shown in plate exposed to the local fire while the I-beam

model represented a practical use for this type of element with multiple interface surfaces. Finally,

the relative time step and mesh size were discussed in the context of these coupled simulations

through the use of 225 FEA simulations based on various thermal boundary conditions. From the

perspective of future modeling using this approach, this study mainly emphasizes that properly

modeling the fire simulation in FDS is a critical starting point to obtaining meaningful results (i.e.,

using the proper CFD mesh size in FDS). The use of a 5-second subcycling time step provided

nearly identical results to the 30-second step, which was an important affirmation of prior research

employing the time-averaging subcycling approach.

6.2 Computational Framework for Real-time Fire Monitoring

Contributions to the real-time fire monitoring problem were intended for use by the fire

department, incident commander, and firefighters; this work was presented in Chapter 5. In this

novel system, the computational framework for using real-time fire signatures in conjunction with

sub-models and visualization tools in a distributed setting will provide an improvement to the state

of sensor-assisted firefighting. The system efficiently coordinates the data from sensors to sub-

models using LCM, the output designed for visualization purposes will enable this technology to

provide the fire department with dynamic BIM models in the future.

162

Lacking a robust WSN in this stage of the research, the fire-monitoring system used

simulated sensors to asynchronously send messages to the main computational platform in a

manner similar to realistic sensors. Data messages originating from the WSN were received at the

main program for fire monitoring and subsequently coordinated to the proper sub-models in real

time. Currently, one sub-model was developed and added to the system: an event detection model

for assessing the hazards of the fire in real time. These hazards included measures of smoke

toxicity, burn threats, and fire spread in the structure; the first two relying on using empirical

formulas for the FED calculations from fire safety engineering in real-time to assess the hazards

at the location of each unique sensor. The real-time goals were tested using up to 128 simulated

sensors; this scenario would be comparable to installing a WSN in a small business. For the event-

detection model calculations, the system met the real-time requirement by processing new sensor

measurements and assessing the fire hazards efficiently: less than 0.5% of the data required at least

1.0 ms of computation time in the 128-sensor case. This efficiency is attributed to the lightweight

implementation of the event detection model as well as the robustness of the LCM message-

passing library.

In addition to these real-time components, a post-processing example showing the use of

BIM as a visualization platform for issuing real-time warnings based on the changing threat levels

computed by the event detection model. Although not immediately field-ready, this technology

has provided the foundation for a real-time computing system in the arena of fire monitoring

beyond ignition of the fire in the structure. A discussion of the software development process for

this computational framework is presented in Appendix A.

163

6.3 Limitations and Future Work

The shell element presented for capturing the coupled thermo-mechanical response of

structures exposed to fire was developed in the first task of the dissertation research. One limitation

for the coupled fire-structure simulation framework provided here is that the thermo-mechanical

shell element was restricted to the thermoelastic range for the current study. For use in more

applicable real-world scenarios, the shell element would need to be upgraded to consider

temperature-dependent material properties and potentially non-linear geometric deformations. A

second limitation is the fact that there is not sufficient experimental data to validate the

implementation of the shell element. This validation stage would more be more beneficial once

the shell formulation was extended for use in non-linear analyses. Additionally, one of the practical

limitations for scalability of this approach is the fact that a larger system of equations is solved for

each increment of the coupled analysis in comparison to solving the two systems separately in a

weakly coupled approach.

For real-time fire monitoring, the research was limited to the lab environment: specifically,

the proposed system was not tested for a real-world fire-monitoring scenario. While the particular

multi-criteria sensors discussed here may not yet exist, the methods for receiving real-time data

from sensors have been in development in fields such as structural-health monitoring and water-

quality monitoring for the last decade and could be adopted for the fire monitoring scenario as

well. Regardless, hardware from the sensing perspective is one broad area of future work both for

the research presented here and the future of real-time fire monitoring.

To this point, the event detection model was the only sub-model included while the future

vision for the fire-monitoring system is to have multiple sub-models included and simultaneously

providing real-time calculations leading to useful information for the firefighters. For example, the

164

inclusion of a multi-room inverse fire model would provide the system with a means for computing

the heat release rate for each room from the measured fire signatures using a two-zone simulation

model (CFAST). Including such an inverse fire model and other potentially useful real-time

computing packages would provide the incident commander and firefighters with more

information about the fire status through the duration of the fire. Ideally, another sub-model will

be a fully automated feature for presenting real-time data in the BIM immediately for use in the

field. Since BIM is a tool primarily used for the design and construction phases of building

development, the ability to sync real-time data with the graphical display is a challenging feature

to include. The future work for this component of the system would be to develop the proper

software solution to allow for real-time data streams in the BIM platform chosen for this research:

Bentley ABD.

The two tasks presented in this dissertation have contributed to the structural fire problem:

(1) from the perspective of computational modeling in the pre-construction phases and (2) with

the intention of aiding firefighter during the post-ignition fire state in the building. The limitations

and future work presented here are the areas in which these contributions can reach beyond the

academic level and into the practical application space. While both topics are different in their

approaches and uses, they each serve to improve aspects of fire safety that make the built

environment safer for occupants and firefighters in our modern infrastructure.

165

Appendix A

Software Development for Real-time Fire Monitoring

The strategy for firefighting has remained relatively unchanged for years and the approach

is almost completely based on improvisation and experience as very limited information is

available to the fire department on approach to the event. In order to help address this issue, a

recently funded research project in the Department of Civil and Environmental Engineering at the

University of Michigan aims to take a step towards equipping firefighters with more data and a

better understanding of the fire scene before arriving to the site of the event. Specifically, this new

research project aims to provide computational tools in the form of event-detection and fire-

monitoring software that can be used in an advanced sensor network of the future.

As a subset of the larger research project, the following report focuses on providing a

reliable foundation for the new research effort by using strategies from software engineering and

applying trusted methods from scientific computing. The result of this effort was the creation of

version-controlled repositories for hosting the research project, migration to a TriBITS build

system, the inclusion of a simple unit test to ensure required components are available on the user’s

Linux system, and the creation of documentation which outlines the installation process for

developers on the research project. The addition of these features will provide current and future

developers on the project with a stable development environment and structured approach to the

actual fire safety contributions that follow. By establishing the use of high-quality software

engineering tools, developers on the main research project will be able to provide the eventual

future users with robust research-quality software to perform the overarching goal of monitoring

166

fire events in real-time using a sound computational foundation. For context to the reader, this

technical report was completed prior to the work presented in Chapter 5.

A.1 Introduction

The hazard of structural fires is still a real and modern danger. Structural fires cause

numerous deaths per year in the United States and can result in extensive property damage as well

[1]. The human and property impact of fires also affects those called to respond to the fire event:

the firefighters. Environmental threats to building occupants and first responders include extreme

temperatures, toxic gases (e.g., carbon monoxide, hydrogen cyanide), disorientation due to poor

visibility coupled with unfamiliar surroundings, and a changing environment that may result in

falling objects, structural collapse, or entrapment [2]. In addition to these severe environmental

hazards, firefighters often lack critical information that might be useful in making decisions at the

scene of the fire event. Additionally, toxic gases such as carbon monoxide and hydrogen cyanide

are not detectable without the aid of technology. Limited knowledge about the contents of a

building and the availability of oxygen may lead to a misperception regarding the nature of the fire

(e.g., fire intensity, spread rate, and the potential for flashover). In addition to posing a direct threat

to firefighters, these challenges can potentially slow the rescue of building occupants and prolong

the progression of fire.

The realization of a multi-criteria wireless sensor network (WSN) and real-time

visualization network is an ambitious undertaking. The currently funded research project seeks to

establish the computing infrastructure for such a multi-criteria WSN for real-time fire monitoring.

A challenge lies in the need for technologies that enable rapid event detection, simulation, and

visualization of the data so that actionable information may be extracted in real time. This work is

motivated by complementary studies which aim to integrate sensor data within fire forecasting

167

simulations (e.g., Imperial College’s Fire Navigator [3]). The novelty of the research lies in the

use of multiple fire signatures to identify fire events in real-time and to visualize the information

in a Building Information Modeling (BIM) software to facilitate rapid decision-making during

firefighting operations. If successful, the proposed research will open the door to future studies

regarding the development of sensor technologies and full-scale validation, and its

commercialization and widespread deployment via industry partners in the fire protection market.

With a brief background of the research topic provided, this technical report will now address the

computing needs for such a project.

The objective of the work presented in this technical report was to advance the efforts of

the existing research, which aims to provide this real-time fire monitoring tool for future fire

department command centers and firefighters, through the use of software-engineering tools. Due

to the ambitions of the overarching objectives in the main research project, the completed work

presented herein was focused on making a step towards the realization of this goal from a

computational perspective.

In a typical fire scenario, the fire department is forced to send groups of firefighters into a

structural fire event with minimal information about the current status of the fire. Fire detection is

a simple binary response of a fire alarm: the fire is either present or it is not. Thus, the trigger for

the fire department to respond is just the activation of the alarm at the site of the event. This method

of fire response has been the approach for decades but with one major issue that is difficult to

address: the built-in delay between initial alarm activation and arrival of the firefighters to the

scene of the fire event. This is the case of the improvised response of firefighters (as seen in the

top two images of Fig. 5-1 previously). While it is impossible to completely eliminate the delay

between alarm activation and the arrival of first responders to the scene, it is practical to consider

168

equipping the fire department with more information regarding the status of the fire on their

approach to the scene. Thus, the system to be designed for fire-real fire monitoring targets the post-

ignition state in the building, rather than the fire-detection problem.

The current phase of the main research project, from which a subset of tasks were selected

for the content of this technical report, aims to develop a computational framework for a robust

fire monitoring tool without a particular physical sensor available at this time. The main

computational features of such a tool include the following (also shown in Fig. 5-2):

1. An internal network for connecting various components of the monitoring system; for

example, software which may pass incoming data from a live sensor to one computational

application and then communicate a computed result to another application for further use

(i.e., an internal message-passing interface for handling data transfers between independent

applications).

2. A novel application for computing environmental variables within a burning building

during a live fire event; for example, this application will produce real-time calculations

for the observer (i.e., fire department) regarding key fire parameters such as fire spread and

smoke toxicity levels. This will be the event detection model for assessing hazards in the

building based on real-time data.

3. The ability to add new applications in future development, such as an inverse fire model

(IFM) to estimate the heat release rate in real-time based on the measured fire signatures;

this will provide extensibility for future use as new applications like the IFM are developed

for the system.

There are many other important features that must be considered to practically develop such a

monitoring tool, such as a visualization component for reporting computed results and other user-

169

friendly interfacing features. However, the main focus of the current work is the computational

component strictly used for producing numerical calculations. As a result, this report discusses the

contributions to the development workflow for tasks that will be performed by the main computing

workstation (as seen in Fig. 5-2 previously).

Each of the computational components described above have had some previous work

completed related to their implementation in the main research project. Part 1 above relies on a

message-passing library and toolkit called Lightweight Communications and Marshalling (LCM)

[4] which provides compatible C-style data structures to be passed between various applications

written in C++, Fortran, Python, and other languages. LCM is an open-source package, from which

the basic internal communication network has been established for use in the current project. The

aim of Part 2 is to contribute a novel application for computing particular fire parameters based on

incoming data from the fire event for characterizing phases of the fire spread. This component will

be a module running simultaneously with other application (such as the IFM) to provide hazard

assessment about the current fire scenario in real-time. The IFM mentioned in Part 3 works with a

fire modeling software produced by NIST called the Consolidated Model of Fire and Smoke

Transport (CFAST) [5] which is capable of performing fire simulations based on two-zone models;

work on this component was completed in a previous project to predict heat-release rates during

the fire event using a dedicated source code.

Due to the scale of the overarching research project, this technical report focused on using

pieces of these previous project developments and aimed to highlight the regions of the ongoing

research where scientific computing practices can augment the overall goals of the main project.

As a result, the effort turned towards establishing the fundamental components of the proposed

new software based on trusted methods of software engineering. This early investment intended to

170

provide a stable environment for current developers on the project as well as future contributors.

Specifically, the work for this project consisted of (1) the provision of a third-party library (TPL)

repository to host all necessary TPLs for the system, (2) the creation of a structured approach to

automatically installing TPLs necessary for the research software, (3) the establishment of a

version control system for handling the development stages of the research project, and (4) the

creation of initial documentation for developers and users to understand the installation of the

project software.

A.2 Development of Research Software

 One motivation for investing in the development of software infrastructure for this research

project was to avoid the validation-centric development pattern which can lead to an unintentional

waterfall-style workflow. A challenge in creating useful scientific software is that the researcher

from time-to-time must be the project manager, planner, user, developer, and owner (to some

degree) at various stages of the workflow. In the research setting, it is easy for an individual

researcher to take on all these roles throughout the project without considering the bigger picture

such as who the intended future users may be, who the next developers on the project may be, or

what the limits or bounds of the project may be. Understanding a software project in a holistic and

symbiotic way can have numerous benefits for the current and future developers, external

collaborators, and the end users.

Project planning and laying the foundation for high-quality deliverables is a valuable

component of working on long-term projects, software or otherwise. There are parallels in

construction projects of all sizes where the amount of planning is generally proportional to the

complexity and duration of a project. Practicing good software engineering technique and

considering the life-cycle of a research-level software project is an important aspect for providing

171

a solid framework for future development. Often overlooked and under-credited, developing

project infrastructure and providing documentation with policies for future use can be critical for

producing mature and portable applications.

Sometimes the instinctual approach to developing a software solution is to immediately

begin writing code and testing it simultaneously with the hope of fulfilling some sample solution

or target value (for example, implementing a solver for a linear system Ax = b). This “validation-

centric” style is not suitable for larger, complex systems and is not practical when different teams

may be working on various aspects of a long-term software project. Generally speaking, the casual

observer may place an emphasis strictly on the net output of a developer’s effort: for example, in

terms of the number of lines of code produced in a given time. Once again, a typical instinctual

response to completing an assignment may be to get started with the code-writing process

immediately without considering the overall structure. This may be a good approach for some

situations but this method is not scalable.

Orso provides a relatable exercise for thinking about the scalability of work on a large

project in terms of the software engineering development process [6]. Imagine situations that may

arise in a university setting: a homework exercise (roughly 102 lines of code), a small individual

project (103 lines of code), and finally a group project or term project (104 lines of code). Success

in these situations and the ability to complete the work is directly linked to the “programmer’s

effort”, as Orso describes it [6]. However, for more complex systems, such as the creation of a

word processor (105 lines of code), development of an operating system (106 lines of code), or

even a new distributed system (107 lines code), the ability to complete the project is not simply a

programming effort but rather a “software engineering effort” in this case [6]. The main idea is

that planning to develop a complex system is just as important as the actual programming work

172

required on such a project, including in the scientific computing setting. Thus, using the methods

of software engineering to coordinate long-term efforts on a complex project is an important step

towards giving each developer on the project a better chance of producing more meaningful code.

The goals of this project were aimed at laying the foundation for a new software project

from a recently funded proposal with these qualities in mind. To quantify the level of complexity

of the proposed research project in terms of the examples given here, the total volume of the project

will fall somewhere between the term project and word processor mentioned earlier, with several

smaller source code packages interacting with more complex third-party libraries and other

operating systems. Thus, the focus on software engineering principles and providing a robust

system for producing high-quality and portable software during the duration of the overall research

project was a long-term goal of this work.

A.3 Software Engineering Tools

 By considering the main research project in the context of the software construction

process, it is possible to categorize various aspects of the overarching research goals in terms of

discrete software engineering components. In Fig. A-1, a pyramid representing the development

process highlights some of the main features of software projects [7]. Speaking about the software

construction in this regard, the problem statement at the foundation of the project can be defined

for the current study using language from the original proposal: “To establish a computational

infrastructure for handling a future multi-criteria wireless sensor network to be used in real-time

fire monitoring.” With this perspective in mind, the current research study aims to develop the

computational tools necessary for providing such a monitoring framework of the future,

specifically in terms of data handling, computing various environmental statistics, and visualizing

the results for the end user.

173

Figure A-1: The pyramid of software development

Software requirements of the research work, the second step of the pyramid in Fig. A-1,

include the development of novel source code for handling real-time fire data, the integration of

existing software for computing key fire parameters, the use communication software for

managing the transfer of data between applications, and finally the presentation of computed fire

parameters and data in a visualization module using BIM technology. The proposed architecture

for accomplishing the project requirements involves splitting the implementation into two distinct

domains. First, a computational domain will host all the applications related to handling incoming

raw sensor data, calculating various fire parameters, and formatting output for the visualization

module. Second, the visualization module will use that output to produce an overview of all

environmental statistics related to the fire including visualizations of the relevant fire-event data.

Specifically, these two domains (the “computation” domain and the “visualization” domain) will

be distributed on two systems (see Fig. 5-2). Due to funding-specific restrictions, which could be

considered another project requirement, the visualization module must be completed using

commercial BIM software produced by Bentley Systems called AECOsim Building Designer; this

software is restricted to the Windows operating system. However, the compute machine must be

174

developed on a Linux machine in order to make use of some of the TPLs such as LCM (which will

be discussed in later sections).

Using existing software such as LCM and CFAST with the soon to be developed source

code for computing environmental parameters related to the fire status, the work for this course

project employed the tools of scientific computing specifically to migrate various components of

the research project to a TriBITS build system. The goal of this effort was to provide for general

portability for this future monitoring tool. Performing this migration enlisted the use of version

control software for hosting the main research code. This project also focused on addressing the

implementation of source code in terms of the overall software architecture by linking packages

and TPLs within the TriBITS build system. The main deliverables were a version control system

for handling the research source code of a new fire monitoring project and its required libraries,

the development of installation scripts for making the research package more portable, and finally

the creation of documentation to support current and future developers on the project as well as

the end user.

A.3.1 Version Control and Build System

The first contribution to the new research project was to establish a version control system

for both the project source code as well as the necessary third-party libraries (TPLs). One

repository was dedicated to the project code and related files to create a TriBITS build system

(discussed next). A second repository was created for maintaining the TPLs of the project. First, a

private repository called fire_main was created on GitLab to host the packages of source code

for the main research project. It is here that a TriBITS-based project framework was established

from the various components of the research code. The top-level repository contains the necessary

CMake files for building the TriBITS project, as would be expected for any traditional build

175

system. An overview of the top-level repository is shown in Fig. A-2 below. A subdirectory named

packages was introduced to hold the source code of all the in-house developed research software

such as the applications for processing incoming fire data to compute environmental statistics

related to the fire scenario and eventually formatting the output for the visualization module.

Specifically, one initial package was included in the subdirectory called

packages/RTFM which was intended to serve as the model format for including future packages

into this project. RTFM is the package which will contain the initial version of the source code for

the real-time fire monitoring application developed in future research. Presently, only a simple

message-passing test was added to this repository as an exploratory code for checking the build

system and use of TPLs, as discussed next. It serves as a basic unit test to ensure the TPLs were

installed properly and the TriBITS build system can locate and use their related header files,

libraries, and executables.

Figure A-2: A view of the top-level repository for fire_main, which is the main repository hosting the

research project

176

Additionally, the subdirectory in fire_main/guide was provided in order to organize

project documentation. At this stage of the project, only an installation guide has been provided

for future developers and users as well as a simple cmake script which includes the necessary

flags for building the project with the cmake command. Both of these documents in the guide

subdirectory will be described in later sections.

A.3.2 Third-Party Library Installation

The second contribution using version control was the creation of a public repository on

GitHub to hold the necessary information for installing the TPLs of the research software; it was

named fire_tpls. As with many complex projects, the research software that must be

developed for the funded work will require the use of several TPLs. Currently, the project has a

strict requirement of two specific TPLs: Lightweight Communications and Marshalling (LCM)

and the Consolidated Model of Fire and Smoke Transport (CFAST).

The LCM software is hosted on GitHub and will serve as a message-passing library for

communicating raw and processed data between the various applications (i.e., between various

packages, as discussed in the segment on fire_main). CFAST was developed by NIST for

performing zone-model simulations of compartment fire scenarios; this software is also hosted on

GitHub. As a result of this convenient hosting of both pieces of software on GitHub, users of those

applications can acquire them easily using the git clone command from a terminal or by

downloading a zip file with all their contents. While this process may be straightforward for an

experienced user or developer, the steps for building the individual software packages may be

difficult for a new researcher in the team.

Regardless of the experience of the user, it is beneficial for future developers and users of

the new fire-monitoring software to have a systematic, scripted method for installing TPLs and

177

linking them to the packages of the larger project-wide build system. Thus, to provide an automated

approach for installing the TPLs of this research project, the fire_tpls repository was

structured to include new scripts for TPL acquisition and installation on a new machine used in the

future of this project. For example, if a new developer (or future user) is building the research

software on a new machine, the script install_tpls.sh was developed for this project and

can be called from the command line to install all specified TPLs. The implementation of the

automatic TPL installation process for the LCM software (and in general for additional TPLs) is

given more attention in the Results section to follow. This was one of the primary efforts presented

in this report and its details are provided by outlining its main features during the detailed

explanation provided later. The top-level view of the newly created fire_tpls repository can

be seen in Fig. A-3 below.

Figure A-3: A view of the top-level repository for fire_tpls which hosts the required TPLs for the

research project

A.3.3 Documentation and Policy

 As mentioned previously, the fire_main/guide subdirectory contains information for

developers and users of the new research software. Included in the guide subdirectory is the system

documentation file. This document contains a guided step-by-step procedure for installing the

required software of the research project. Instead of providing a list of terminal commands for the

178

user to apply blindly, the instruction set in the system documentation was designed to guide the

user through the installation process using a narrative style. This helps to explain the installation

process for a new user and also demystify the build process by describing the required environment

variables and general infrastructure of the project along the way.

 Creation of the System Documentation guide was enhanced through the process of testing

the install process on multiple systems. For example, after one version of the documentation was

completed, the new set of instructions was used to attempt installing the project software (TPLs

and main source code) on a different machine. During the installation process, new notes were

added to the documentation based on the experience. This lead to a better understanding of the

software from a developer perspective and provided a set of instructions which better captured the

user’s installation experience on different machines. The system documentation for installing the

research code is provided in the repository for this project.

 The term “policy” was used here as a generic descriptor for the process of creating the

repositories and installation scripts for the research. This system was developed with expansion

and portability in mind. Thus, when future TPLs are needed for the research software, the current

structure of the build system will be able to support them through the use of new installation scripts

based on the ones developed for this project. Similarly, for newly developed source code,

additional packages may be added to the main repository and linked with the same methods used

for the initial test package used here. While these concepts appear merely as concepts in this

section, the details are covered in the deliverables section that follows where proof of these features

is provided.

179

A.4 Research Deliverables

The goal of this section is to demonstrate these foundational additions to the main research

project for real-time fire monitoring. Since several components were integrated into one build

system, it follows that the results should highlight the infrastructure investments made during the

timeline of this technical report. As discussed throughout this report, the type of the work

completed for this project was very much in the space of software engineering and so installation

procedures, script-writing, and general organizational concepts were the main focus of the results

presented herein. Thus, the nature of the results are tied to these topics as opposed to producing

some desired numerical values. What follows is a straightforward presentation of the deliverables

provided by this project with a discussion about the meaning and implications to follow.

A.4.1 Automatic TPL Installation

 As discussed earlier, one of the main efforts in this project was the development of an

automatic TPL installation script for acquiring and building necessary external packages for the

research software. Two known required TPLs exist for the main research project currently: LCM

and CFAST. Thus, two scripts were created for acquiring and installing these external software

packages which are hosted on GitHub. The LCM script lcm.sh was fully integrated into the

fire_tpls repository, was part of the TriBITS build system, and was tested during this course

project. The CFAST script cfast.sh was developed but not fully integrated into the project

repository nor included in the TriBITS build system as of the current report. However, the CFAST

script was tested and debugged on several machines. The details of the CFAST script will not be

presented here as that work has not been implemented into the main project repository.

 One important note about the fire_tpls repository is that the actual source code for a

particular TPL is not tracked in this repository: instead the installation scripts provided here

180

automatically use the proper git clone commands to retrieve the required versions of the TPLs

from their own respective repositories at the time of building and installing. This is a typical

approach for larger projects that rely on external software; there is no need to keep the external

source code in the main repository because it is already being hosted elsewhere by the original

developers of that particular package. Thus, an automatic TPL installation process was made

possible by a simple, extensible logic. Regarding this extensibility logic, the main installation

script called install_tpls.sh was structured in such a way that future additional TPLs may

be added into this installation process in a systematic and reliable manner.

A new user must specify only one additional environment variable in the terminal to begin

the installation process: the installation directory for the TPLs. This directory must be chosen as a

stable location in the system which the user does not expect to change. The suggested default

option for this choice is simply to create a new directory in the default $HOME location. This new

directory must be exported as the environment variable $TPL_INSTALL_DIR during the

installation process. For example, the documentation developed for this process recommends

creating the $HOME/installed_tpls directory to serve as this install location. Error

checking was provided in the install_tpls.sh script to ensure that the user does in fact

specify the $TPL_INSTALL_DIR variable before the installation process begins.

 A few specific features were included in the first script for installing individual TPLs;

specifically, the script for installing LCM is described here. Version information for the LCM

package is stored in a separate file called std_tpls.sh which keeps the cloning and installing

process updated for future users. The current version of LCM is 1.3.1 but when 1.3.2 is released

in the future, the developers on this project simply need to update the std_tpls.sh script to

reflect this change in the version in one location only as opposed to rewriting the lcm.sh script.

181

It is a small manual edit in the repository that a developer will need to change only as frequently

as the releases of LCM change (or it can remain the same version number if the project dictates).

Other features of the lcm.sh script include the automatic creation of the build directory for LCM

in a standardized way, the use of the wget command to retrieve the source code for LCM from its

GitHub repository (once again, eliminating the need to track that source code in the fire_tpls

repository), and a clean-up step which removes the unnecessary zip file for LCM once installed.

Sample output for the automatic installation of LCM using the scripts from the new fire_tpls

repository can be seen in Fig. A-4 below.

Figure A-4: Terminal output from the automatic TPL installation process

Another important consideration for this project was to change the default LCM build

instructions and provide a more portable set of commands within the lcm.sh script to avoid using

sudo on shared machines, such as Flux or Comet computing clusters or the University of

Michigan CAEN computers. Using the default build instructions for LCM leads the user to employ

the sudo make install and sudo ldconfig commands in the terminal during installation.

This is a concern for the portability of the research software as LCM is a required TPL although

182

some networks may not grant the user sudo-level access. To handle this issue, the default

configure step in the LCM build process was modified with a --prefix flag in the lcm.sh

script which specifically redirects the default build location to a subdirectory of the

$TPL_INSTALL_DIR discussed earlier (for the current user only to avoid the sudo issue). Then

the make command and the make install steps follow without any need to use the sudo

privileges in the process.

Similarly, to avoid the sudo ldconfig command, which is used to configure dynamic

linker run-time bindings, a new .bashrc_lcm file for the $HOME directory is automatically

created from the lcm.sh script. The .bashrc_lcm file for LCM, and in general for future TPLs

named .bashrc_<TPL>, contains a list of environment variables which tell the system where

the libraries and header files are located for a particular TPL. This file is populated only once

during the installation of each individual TPL (i.e., one .bashrc_<TPL> file must be generated

per TPL) and is utilized by adding a source command to the main .bashrc file in the user’s

$HOME directory. The addition of one source command per TPL to the main .bashrc file to

load the environment variables in each individual .bashrc_<TPL> file is a lightweight method

for ensuring that all libraries and headers are “discoverable” in the system while using the new

research software.

A.4.2 TriBITS Build System

 Installing the TPLs for the project was one important component of the project but it would

not be useful unless it was integrated into the main project repository and build system. This

section describes the inclusion of the TPLs in the TriBITS build system and also discusses how a

local source code package was used to provide a simple unit test of the software system based on

a small message-passing example. Typically, the TriBITS source code would not be included in

183

the main research repository; thus it must be cloned into the source directory before building. This

step is straightforward and described for the user in the documentation so that there is no confusion

about a broken TriBITS links. Once in a new build directory, the fire_main/guide

subdirectory provides the script for the user to perform the cmake command. Figure A-5 contains

the full build script which equips users with the proper cmake command flags to discover the

installed TPLs (presently, only for LCM).

#!/bin/bash -e

rm -rf CMake*

source $HOME/.bashrc_lcm

cmake -DCMAKE_INSTALL_PREFIX=$HOME/rtfm \
 -DmyProj_ENABLE_TriBITS=ON \
 -DmyProj_ENABLE_TESTS=ON \
 -DTPL_ENABLE_LCM=ON \
 -DLCM_INCLUDE_DIRS=$LCM_DIR/include/lcm \
 -DLCM_LIBRARY_DIRS=$LCM_DIR/lib \
 -DmyProj_ENABLE_RTFM=ON \
 -DmyProj_VERBOSE_CONFIGURE=ON \
 ../fire_main \
 &> configure.out

Figure A-5: The build script for the main TriBITS project with flags for including LCM

Once the script shown in Fig. A-5 is submitted in the build directory for the project, the

typical installation toolchain continues with the make command, followed by unit tests (via

ctest), and finally the make install command to complete the process. Note that for the

unit tests, the typical TriBITS unit tests can be accessed in the top-level directory simply by

running the ctest command after the make step in that directory. However, the more interesting

case for the current project would be to ensure that LCM was installed correctly and that any

packages depending on LCM and its libraries are properly linked. Thus, by navigating into the

packages/RTFM subdirectory of the build directory for this project, the user can run the ctest

command locally (i.e., within packages/RTFM) to perform a simple message-passing unit test.

184

This test will fail if LCM was not installed and linked to the main TriBITS project properly.

Successful completion of this single unit test is shown in Fig. A-6 after performing the previously

discussed installation process on a personal laptop.

pbeata RTFM $ ctest
Test project

/mnt/c/Users/PaulA/Desktop/Ubuntu/NERS590/FIRE/BUILD/packages/RTFM
 Start 1: RTFM_send_message
1/2 Test #1: RTFM_send_message Passed 0.06 sec
 Start 2: RTFM_listener
2/2 Test #2: RTFM_listener Passed 0.04 sec

100% tests passed, 0 tests failed out of 2

Label Time Summary:
RTFM = 0.10 sec

Total Test time (real) = 0.13 sec

Figure A-6: Results of ctest in the packages/RTFM subdirectory

A.4.3 Discussion of Results

The Results section provided more details about the automatic TPL installation and the

TriBITS build system; some additional discussion of the presented material follows here. First, it

should be noted that the main installation script was designed such that the user is free to specify

which TPLs should be installed as all might not be needed for a particular machine. To account for

this situation, if the user intends to install only LCM, all they must do is declare the environment

variable BUILD_LCM=1 in the terminal during the installation process. This triggers the main

installation script to call the LCM-specific script for installing this particular TPL (namely,

lcm.sh). The extensible logic found in the install_tpls.sh script is shown in Fig. A-7.

185

LCM
if [“${BUILD_LCM}” != “”] ; then
 ${STD_SCRIPTS_DIR}/lcm.sh

fi

...

<TPL_name>
if [“${BUILD_<TPL_name>}” != “”] ; then
 ${STD_SCRIPTS_DIR}/<TPL_name>.sh

fi

Figure A-7: A sample of the install_tpls.sh demonstrating the TPL installation logic

Using this approach will allow the future developers to add more TPLs to this repository

by following the logic used in install_tpls.sh whereby each new TPL is screened by an if

statement to check for any BUILD_<TPL> environment variables equal to one, as with the LCM

example shown here. Similarly, the current and future developers can use the lcm.sh script as a

template for providing the automated installation steps for new TPLs. This method for installing

the TPLs sequentially was derived from the approach used in the CASL/VERA project which has

a similar TPL repository on GitHub called vera_tpls (https://github.com/CASL/vera_tpls).

In general, it is not considered good practice to silently add several lines to the

main .bashrc file of a machine. Thus, each addition of a source command to the

system’s .bashrc file for the purposes outlined earlier is accompanied by a short warning in the

terminal during installation: ***warning: modified $HOME/.bashrc with 2 new

lines***. One new line provides the name of the TPL as a comment and the second line is the

actual source command; this eliminates the concern of blindly adding new content to the end of

a hidden file like the .bashrc file. As a final measure of safety, the installation script first uses

the grep command to ensure that there are no other instances of a particular

source .basrhc_<TPL> command in the .bashrc file before actually writing to it. This

https://github.com/CASL/vera_tpls

186

protects the user’s .bashrc file from multiple additions of the same lines in the case of multiple

installs of the same TPLs on one machine.

With regards to the system documentation, there should have been a more thorough

consideration for prerequisite packages and libraries (such as g++, git, and cmake). This was

discovered after trying to install the research software on a machine with a fresh install of Ubuntu.

Sometimes these critical components are not included in certain systems and a new developer on

the project might not know whether they exist on their current machine. Thus, one feature that was

not addressed during creation of the documentation (but should be added in future work) was

performing a check of prerequisites on a new machine for fresh installs of the product. At the very

least, a list could be added to the documentation which tells the developer or user to use the flag

known as --version or the which command for each prerequisite before starting the

installation process just to ensure that the proper packages are available.

A.5 Conclusions

The contributions made during the development of this project’s foundation focused

mainly on providing the software infrastructure for the current research in developing a

computational tool for real-time fire monitoring. While this work was not dedicated to

implementing a new feature in the form of source code for a particular fire monitoring application,

it was successful in the establishing the infrastructure for a successful research-level software

development process by using trusted methods from scientific computing and the fundamentals of

software engineering.

With these goals in mind, the work completed during this phase of the project produced a

version control system for the new research project. Not only were two repositories simply

187

initialized for the work, but rather they were set up to encourage future use by considering potential

additions of packages and TPLs, in a systematic way, at later stages of the project. With an

understanding of the problem definition and initial requirements for the research project, a TriBITS

build system was defined which included linking the required TPLs and packages. Additionally, a

simple unit test of the build system, initial documentation, and an automatic TPL installation

method were all generated from this initial investment.

The work presented in this technical report was designed with the future success of the

ongoing research project as a motivating factor. The report outlined the main concerns that needed

to be addressed in order to provide a foundation for the real-time fire monitoring project:

portability was one desired feature of the main research project. Thus, the future research extending

from this foundational work will include ensuring that these contributions such as automatic TPL

installation will be sufficient for larger shared resources such as Flux and Comet in the upcoming

stages. The methods used in this course project were employed with portability in mind and this

extension should prove that this effort was worthwhile.

The main features of fire-monitoring system presented here are expected to encourage good

software engineering practice in the future stages of the ongoing research. The use of version

control as a tool for keeping a revision history of future project tasks will be a particularly

important component. Specifically, the TriBITS build system should continue to provide the

current and future developers with a stable repository which can be added to as more novel source

code is generated. By using the packages subdirectories and demonstrating a templated way

for installing multiple TPLs, the future development of this research software will now have the

proper structure for handling additions of each kind.

188

With the addition of new in-house packages and more TPLs, the future developers can add

to the newly formed documentation collection as well. However, a feature that was lacking from

the foundation developed in this project was the provision of an actual policy document to help

guide the architecture and workflow in the future software construction effort. The project needs

policies in place that will promote this continued maintenance of the documentation by future

developers in the research group and encourage the ongoing use of version control for new source

code generation.

One crucial component of the software development which must be addressed and was not

considered in the current report was the concept of thorough unit testing. Most of the work was

focused on organizing the new research into a stable collection of code, scripts, and documentation.

Due to the current stage of the research, there was not much actual source code to perform unit

testing with and the only unit test used in the process was a simple check to ensure that one package

could successfully use LCM. Thus, a major focus of the future work will be to develop unit tests

alongside the generation of novel source code during the upcoming stages of the research. This

process will require the discipline of the development team to provide proper unit testing in order

to ensure the reliability of the newly developed software.

A.6 References

[1] M. Karter Jr., "Fire Loss in the United States During 2013", National Fire Protection

Association Journal, 2014.
[2] Federal Emergency Management Agency, "Firefighter Fatalities in the United States in

2011", 2012.
[3] N. Daniel and G. Rein, "The Fire Navigator: Forecasting the Spread of Building Fires on

the Basis of Sensor Data", Fire Protection Engineering Extra, no. 3, 2016.
[4] A. Huang, E. Olson and D. Moore, "Lightweight Communications and Marshalling for

Low-Latency Interprocess Communication", Massachusetts Institute of Technology, 2009.
[5] Peacock, R., Jones, W., Reneke, P., & Forney, G. (2005). CFAST–Consolidated Model of

Fire Growth and Smoke Transport (Version 6) User’s Guide. NIST Special Publication, 1041.

189

[6] A. Orso, "Software Development Process: Introduction and Overview",

https://classroom.udacity.com, 2016.
[7] B. Kochunas, "Software Engineering Practices & Development Workflows", Ann Arbor,

MI, 2016.

