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Abstract 

 

 Structural fires in buildings are a persistent hazard in modern infrastructure and a potential 

threat to occupants and firefighters alike. In the pre-construction phases of building design, there 

has been a growing interest in the use of simulated natural fires as a direct input for modeling the 

fire-structure interaction problem. One common method to simulate the natural fire is through the 

use of computational fluid mechanics (CFD), where the fire development is treated as a fluid-flow 

problem. The structure is typically modeled using finite element analysis (FEA), as in other 

applications of structural engineering. However, the link between the fire and solid domains has 

not been standardized for structural fire engineering purposes in research or practice. In the post-

construction phases of the building lifecycle, for example, fire safety engineering is used to reduce 

the potential for fire and minimize threats to building occupants. While there have been many 

improvements in materials and design to attempt to limit the ignition of new fires in buildings over 

the last several decades, the fact remains that fire events still pose significant risks to firefighters. 

With this in mind, methods must be developed to provide new technology and solutions for the 

modern firefighter by using advances in computation and visualization.  

In this dissertation, modeling the fire-structure interaction problem and providing a real-

time system for fire monitoring are the two main focuses. Both contributions serve to improve the 

two different ends of the structural fire spectrum: research, analysis, and design on one end and 

sensor-assisted firefighting on the other. 

 First, to address the problem of modeling the fire-structure interaction, an approach is 

provided which used CFD-based boundary conditions from a fire simulation as input for the FEA-
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based model of the structure. The main components of this research are (i) the development of fire-

to-structure coupling methods linking the fluid and solid domains, (ii) the extension of a layered 

thermal shell element to include mechanical degrees of freedom (DOF) and provide a coupled 

thermo-mechanical shell element, and (iii) the use of these two contributions together to analyze 

structures exposed to local fires. The trapezoidal rule for numerical integration was used to 

represent spatially non-uniform heat fluxes computed in the CFD fire simulation as equivalent 

nodal fluxes in the FEA model of the structure. The thermo-mechanical shell element was coupled 

from its individual formulations using virtual work methods and ensuring consistency in the use 

of the layered representation of the governing equations for conduction heat transfer and structural 

deformation in the element. 

 Second, a proposed system for real-time fire monitoring in the post-ignition fire state of a 

building was developed to improve the technology of sensor-assisted firefighting from a 

computing perspective. The software system was designed to coordinate various data streams from 

a simulated wireless sensor network (WSN) to sub-models responsible for performing real-time 

calculations using the data measured by sensors. An event detection model for assessing smoke 

toxicity, burn threats, and fire spread was implemented as the first sub-model and its real-time 

performance was analyzed. Results from the event detection model were used to present an 

example of visualization using a building information model (BIM) as the platform for 

communicating hazard warnings to the incident commander and firefighters in this study.    
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Chapter 1 

Introduction 

 

At the intersection of fire safety and structural engineering is the field of structural fire 

engineering. The researchers who exist in this space are interested in providing solutions to the 

communities within fire protection engineering, which include members from civil, mechanical, 

and chemical engineering as well as material science. The variety of research at the intersection is 

reflected in the contributions presented here as this dissertation aims to provide solutions for two 

different groups in these fields. The overarching theme of this work is the development and use of 

computational methods and software tools to provide a better understanding of structural fires: 

from the mechanics and simulation aspects to firefighting and decision making. 

The common thread connecting fire safety (sprinkler design, evacuation, fire science, etc.) 

and structural fire engineering (for example, designing structures for fire resistance) is the desire 

to make the built environment safer for the occupants during the lifetime of the building. In the 

case of analysis and design, the goal is to understand the behavior of the fire as a hazard to the 

structure and occupants, as well as to provide a safer infrastructure for the public. Passive forms 

of fire suppression may be included in an attempt to limit the ignition of new fires and the 

subsequent effects of accidental fires. However, much of fire safety science trends into the post-

ignition state as well: the situation in which a fire is present and needs to be handled through the 

use of active fire suppression technology and human intervention by the fire department. 

The goal of this dissertation is to provide a contribution to both the pre-design phase 

(research, analysis, and simulation) as well as to the post-ignition state (firefighting intervention) 



2 

 

with two main tasks. In the interest of researchers and analysts, a thermo-mechanical shell element 

for coupled fire-structure simulation is presented first. Then, for the purpose of occupant and 

firefighter safety, a computational system for sensor-assisted firefighting is proposed. These two 

tasks each seek to increase safety in the built environment from the two different aspects of 

structural fire engineering through computational mechanics and fire safety through intelligent 

firefighting using computational tools. The first task is focused on fire-structure coupling using 

CFD-FEA simulation with thermo-mechanical shell finite elements and the representation of 

thermal boundary conditions as equivalent nodal fluxes. The second task is focused on real-time 

fire monitoring using multiple fire signatures to assess hazards and provide graphical warnings to 

firefighters during the post-ignition fire state in the building.  

Although these topics focus on different areas of the problem of structural fires in 

buildings, they both serve to provide new technology and approaches to one field that has 

traditionally relied on prescriptive building codes (structural fire engineering) and another which 

has not received the benefits of sensor networks at the same pace as other engineering fields (fire 

safety and firefighting). The following introduction to the individual topics describes the 

computational-mechanics-based approaches used for modeling the fire-structure interaction 

problem and then the methods used for providing a software framework for real-time fire 

monitoring and sensor-assisted firefighting. 

 

1.1 Task 1: The Fire-structure Interaction Problem 

In the field of structural fire engineering, there has been a growing interest over the last 

decade in the use of CFD to model natural fire scenarios in structures. The primary software used 

for this purpose is Fire Dynamics Simulator (FDS) [1]. However, one of the persistent challenges 
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for this field is the ability to employ such high-resolution fire simulations in the analysis of 

structures exposed to fires: the software tool exists, but its feasibility for use in research and 

analysis at the structural level is prohibitive. The difficulty lies in the fact that FDS is mainly used 

for modeling the combustion, chemistry, and corresponding fire growth of the fuel source using 

CFD. Also note that other researchers and analysts interested solely in smoke spread may also use 

FDS as well.  

In the context of the thermal and mechanical analysis of structural components, structures 

in the flow field of the fire, which is modeled as a fluid, are represented as solid obstacles with 

specific material properties, but the conduction model of the solid domain is not normally 

considered in the simulation. Thus, to perform a thermal analysis of the structure with non-uniform 

heating from a natural fire, some representation of the flow field acting on the structure must be 

transferred from the fire domain to the solid domain, where the solid model may be represented 

by a finite element model typically. This transfer of data from the fire simulation (FDS) to the 

solid model in a separate finite-element modeling software (e.g., Abaqus, ANSYS, deal.II, etc.) is 

challenging because of the different time increments used in each domain as well as the different 

spatial meshes. 

 Approaches to the fire-structure coupling problem using CFD and FEA can be divided 

into two particular methods: flux-based and temperature-based methods. The temperature-based 

methods typically include the use of an adiabatic surface temperature (AST), which is used to 

represent the non-uniform boundary conditions at specific points in the CFD domain on the 

surfaces of obstacles in the fire flow field as surface temperatures in the corresponding FEA model. 

The flux-based methods are designed to use incident, net, radiative, and/or convective heat fluxes 

measured on the surface of the obstacle in the CFD model as input for the FEA model through the 
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use of the corresponding non-uniform surface flux boundary conditions. In either case, from the 

analyst’s perspective, these various forms of output from a fire simulation are readily available in 

the FDS software.  

In this dissertation, the class of flux-based methods for coupling the fire to the structure 

were developed for mapping net and incident heat flux output from the FDS fire simulation to the 

appropriate locations in the domain of the FEA thermal model in order to provide representations 

of the temporally and spatially varying non-uniform boundary conditions on exposed surfaces in 

the solid domain. The differences in the time increments between the two domains were handled 

in a previous study [2] and the methods used for linking the two dissimilar spatial domains were 

developed here.  

Specifically, the surface fluxes were measured along a fine grid in the CFD domain on the 

exposed exterior of the structure’s surface and transferred to the FEA model. Then, the trapezoidal 

rule was used to compute equivalent nodal fluxes as a forcing term to use in the conduction heat 

transfer model (FEA). The proposed method is compared to other approximating techniques, 

including averaging, sampling, and least squares methods, for a 2D heat transfer problem. The 

results demonstrate that the proposed homogenization algorithm for handling the spatial non-

uniformity in the boundary conditions provides solutions for the temperature field that converge 

rapidly due to the energy-equivalent representation of the thermal boundary condition. The 

homogenization algorithm is then implemented in a 3D heat transfer model that uses thermal shell 

elements to model conduction through the solid. 

Once the fire-structure coupling technique was established in the conduction model, the 

coupled thermo-mechanical shell elements were formulated and implemented for use in the fire-

structure interaction problem through the use of virtual work methods. The layered formulation 
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for the thermal shell was developed first by Jeffers [3] to provide the finite element for conduction 

heat transfer analysis. Then, a mechanical shell element with displacement DOF was chosen from 

the literature to represent the deformation in the coupled element [4]. Using the method of virtual 

work, the two physical responses of heat transfer and structural deformation were combined in the 

coupled thermo-mechanical shell element formulation. This formulation was then implemented as 

a Fortran subroutine for use with the commercial FEA software Abaqus, which provides for the 

inclusion of user-defined subroutines as custom elements.  

Employing the thermo-mechanical shell elements in the coupled fire-structure simulation 

problem allows the analyst to perform this multi-step analysis in a single FEA model without re-

meshing and by solving for temperatures and displacements simultaneously. The current study 

demonstrates the accuracy and convenience of this approach for calculating deformations in the 

structure due to non-uniform heating from a simulated fire source.  

 

1.2 Task 2: Computational Framework for Real-time Fire Monitoring 

Sensor-assisted firefighting and real-time computation are two main goals for the future of 

active fire intervention in the post-ignition state in buildings. In their pioneering work on sensor-

assisted firefighting, Cowlard et al. [5] warns against some of the challenges of providing 

firefighting assistance in the form of data assimilation and visualization. The risk of information 

overload is ever-present and should be respected by any new technology designed for the purpose 

of improving the experience of extinguishing building fires. However, the call for research to 

provide solutions which assimilate data, real-time computation, and visualization was posed as a 

challenge to the field when this work was first published in 2010. To this end, the second topic of 

the dissertation is real-time fire monitoring and a focus on the proposed use of sensor 
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measurements to capture the progression of a fire in the building. Specifically, this topic is related 

to the post-ignition state, as opposed to the detection of new fires in a building. The intended end 

user for the fire-monitoring system described herein is the firefighter, where the work aims to 

provide a new contribution in the direction of sensor-assisted firefighting technology: a delicate 

topic requiring careful consideration of the intended user.  

The range of topics in the real-time monitoring space include hardware-related research 

such as the development of robust wireless-sensor technology for extreme conditions and the 

invention of other supplemental data acquisition tools, communications research for transmitting 

data from the scene of the fire to individual firefighters or a centralized repository, and the life-

safety and occupant-rescue aspects of hazard intervention. In particular, the real-time monitoring 

features covered in this dissertation are the components of computation and visualization for a 

distributed deployment system: a necessary supplemental technology for the true implementation 

of a future monitoring system. The problem is larger than one particular academic solution and the 

contribution of many researchers is necessary to provide field-ready tools for improving the 

practice of firefighting, including the necessary feedback from actual firefighters.  

The chapter on fire monitoring serves to establish a new research branch into the field, 

focusing on the sound computational aspects required for such a technology. As a new endeavor, 

the fire monitoring software presented here was established from the start by using proven software 

engineering techniques that are critical for research code development and reproducibility: version 

control, installation scripts, and a build system. The purpose of this effort was to provide the 

software foundation upon which the present work was built and future work can continue through 

inter-university collaboration. By establishing the use of high-quality software engineering tools 

early on in this project, developers will be able to provide the eventual future users with robust 
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scientific software to perform the overarching goal of monitoring fire events in real time using 

reliable computational tools. 

In its present state, the main contributions to the real-time fire monitoring problem are 

presented here with the appropriate focus on fire safety. The computational system was developed 

to handle incoming data from multiple sensor measurements and subsequently process this data in 

real time for a multi-room fire model. An event-detection model was designed to monitor the 

common hazards of smoke toxicity, burn threats, and fire spread that may occur during a real fire 

event. This model was linked to the main computing system using Lightweight Communications 

and Marshalling (LCM) [6] to coordinate data transfer between dissimilar applications. Finally, 

the potential for real-time visualization is demonstrated through the use of schedule simulation 

based on the output of the event detection model. Building information modeling software called 

AECOsim Building Designer (ABD) was used in a distributed system to create visualizations of 

the event detection model results as a post-processing feature. Integrating real-time measurements 

from sensors into the fire intervention strategy may provide a new technological advancement to 

the future practice of firefighting.  

 

1.3 Organization of the Dissertation 

The structure of this dissertation is based on the manuscript-style format. Each chapter that 

follows has either been published in a peer-reviewed journal, will be submitted to a journal, or 

exists as a stand-alone technical report; the distinction will be made clear in the following 

descriptions. Chapter 1, the current chapter, serves as the introduction and has provided an 

overview of the included material. 
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Contributions to the fire-structure interaction problem are described in three chapters. 

Chapter 2 presents the methods and applications of a fire-structure coupling technique from a 

journal article published in the Fire Safety Journal. These methods use the trapezoidal rule for 

numerical integration in two spatial dimensions to compute non-uniform thermal boundary 

conditions as the equivalent nodal forcing terms in a conduction heat transfer analysis. The heat 

transfer in the solid was modeled using the previously developed thermal shell element and the 

thermal boundary conditions were applied as non-uniform surface fluxes (temporally and 

spatially). Chapter 3 extends the formulation of the thermal shell element to include displacement 

DOF for use in coupled thermo-mechanical analyses; this manuscript will be submitted to Finite 

Elements in Analysis and Design. Additionally, the fire-structure coupling methods in Chapter 2 

were employed in the new thermo-mechanical shell element of Chapter 3 for use in coupled fire-

structure simulations. The final chapter on this topic, Chapter 4, is a technical report which 

describes this supplemental study to analyze the effects of relative time steps and mesh sizes on 

the solutions of the thermo-mechanical shell element models. Additionally, the coupled framework 

was used in the application of a structural I-beam exposed to a local fire.  

The second topic of the dissertation is the computational framework for real-time fire 

monitoring, and it consists of one main chapter and a supplemental appendix. First, Chapter 5, is 

a manuscript which will be submitted to the Fire Technology journal and provides the fire safety 

contributions to the proposed monitoring system. In this chapter, the development of an event 

detection model, the computational framework for fire monitoring, and the subsequent use of real-

time computing for visualization are presented. The corresponding appendix that follows is a 

technical report providing details on the initial establishment of the project as a new research-level 

software contribution. Here, the foundations of the computational fire-monitoring system were 
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developed through the use of modern scientific software engineering tools, such as version control 

and build systems. 

Finally, Chapter 6 serves as the conclusion and summary of the work, including the 

limitations and future outlook for this line of research. References used in each of the chapters are 

provided with the individual chapters as they appear in the dissertation, as opposed to being 

collected at the end of the document.  
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Chapter 2 

Spatial Homogenization Algorithm for Bridging Disparities in Scale between the Fire and 

Solid Domains  

 

The analysis of structures exposed to non-uniform heating from localized fires is a 

challenging task due to the spatially varying boundary conditions and the differences in scale 

between the fire simulation and solid heat transfer model. This chapter presents a spatial 

homogenization algorithm for capturing non-uniform boundary conditions from a high-resolution 

fire simulation in a low-resolution finite element heat transfer model of a structure. The 

homogenization algorithm uses numerical integration by the trapezoid rule to calculate the 

equivalent thermal flux vector in the finite element heat transfer model for a spatially varying 

surface flux. The proposed method is compared to other approximating techniques, including 

averaging, sampling, and least squares methods, for a 2D heat transfer problem. The results 

demonstrate that the proposed homogenization algorithm converges rapidly due to the energy-

equivalent representation of the thermal boundary condition. The homogenization algorithm is 

then implemented in a 3D heat transfer model that uses macro-level plate elements. For an 

application involving a horizontal plate exposed to a localized fire, the model is shown to converge 

to the results obtained by a solid finite element model. The homogenization algorithm combined 

with the plate heat transfer element proves to be an accurate and highly efficient means for 

analyzing structures with spatially varying thermal boundary conditions calculated by 

computational fluid dynamics.
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2.1 Introduction 

 Current methods for the fire-resistant design of structures emphasize the design for post-

flashover fire conditions and commonly use parametric fire models such as those found in 

Eurocode 1 [1]. Post-flashover fire models assume that the gas temperature is uniform within the 

compartment. Although intending to represent a worst-case structurally significant fire, post-

flashover fire models are limited to relatively small compartments with regular geometries. In large 

open spaces, fires tend to burn locally and oftentimes will travel across the floor plate and even 

spread across floors [2]. Under these conditions, the fire behavior can be rather complex and may 

be more accurately represented by a computational fluid dynamics (CFD) model.  

CFD models such as Fire Dynamics Simulator (FDS) [3] are well-established and provide 

an accurate representation of natural fire events. However, challenges arise when coupling the 

CFD fire model to a solid heat transfer model due to incompatibilities in mesh and disparities in 

scale between the fire and solid domains. Figure 2-1 illustrates the disparities in spatial and 

temporal scales for a one-way coupled system. Note that an extreme case of a fire impinging on 

the structure is shown for contrast. It can be seen that the fire simulation requires a time step and 

spatial resolution that is considerably smaller than is needed in the structural analysis due to fire 

dynamics being a “fast” physics. Yu and Jeffers [4] demonstrated that a time-averaged subcycling 

algorithm can overcome the differences in temporal scales between the fire simulation and solid 

heat transfer model in an accurate and efficient manner. However, the difference in spatial scale 

becomes particularly important when simulating the 3D temperature gradients in the structure.  
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Figure 2-1: Differences in scale for a sequentially coupled analysis (the extreme case of a fire impinging on a 

structure is shown) 

There have been a few efforts in recent years to couple a CFD fire model to a structural 

model in order to study structural response under natural fire effects. The NIST investigations into 

the World Trade Center collapses employed high-fidelity CFD fire models in conjunction with 

macro finite element structural models [5]. In the NIST investigations, the boundary conditions 

were expressed as a locally uniform gas temperature that was calculated by the CFD analysis. In a 

similar vein, Tondini et al. [6-7] established a framework to couple a CFD fire model to a structural 

model based on a locally uniform gas temperature. Wickstrom et al. [8] demonstrated that the 

boundary condition at the fire-structure interface could be expressed in terms of adiabatic surface 

temperature, which decouples the fire exposure from the structural surface temperature. These 

approaches are most suitable for situations in which the fire heats the structure by remote radiation 

or by heat transfer associated with an optically thick gas, in which case the fire exposure is 

relatively uniform over the structure’s surface. Temperature gradients along the lengths of 

members can be captured by discretizing the structural members into more elements [6]. However, 

temperature gradients along the lengths of members were not the focus of prior studies.   

Non-uniform heating in general is known to have a significant effect on the structural 

response [9-12]. Additionally, it has been shown that localized heating associated with a fire 
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impinging on a structure can be detrimental to the structural performance because it can produce 

structural effects (e.g., local buckling) that are not seen when the structure is heated uniformly 

[13]. It has not yet been determined whether fluctuations in boundary conditions due to a real fire 

impinging on a structure play a significant role in the thermo-mechanical response of the structure. 

It is clear that unprotected structures will be more sensitive to such localized effects, but even for 

unprotected members the effects have not been quantified. To this end, Chen et al. [14] established 

a coupling interface between a CFD fire model and finite element heat transfer model of a structure 

based on convection between the structure and a gas of non-uniform temperature. While able to 

simulate non-uniform heating along the lengths of members, the work by Chen et al. used 3D solid 

elements in the finite element model, resulting in a structural model that required excessive 

computational expense due to the fact that a fine mesh was needed to capture the cross-section 

response. Thus, although the CFD analysis continues to drive the total computing time in coupled 

fire-structure models, it is apparent that 3D solid finite elements are unnecessarily inefficient for 

thin-walled structures, leaving room for further improvement.  

To improve computational efficiency in the thermo-mechanical analysis of beams, plates, 

and shells, recent efforts by Jeffers et al. [15-17] have led to a class of macro heat transfer elements 

that can simulate the response of non-uniformly heated structures in an accurate and 

computationally efficient manner. Specifically, beam, plate, and shell heat transfer elements (Fig. 

2-2) were formulated for calculating the 3D thermal response of non-uniformly heated structures. 

A combination of finite element and control volume methods was used in the element formulations 

to solve the 3D conduction heat transfer equations in an accurate and efficient manner. The 

elements have a fiber-based or layered discretization to account for large temperature gradients 

over the cross-section or through the thickness, respectively. Temperatures along the length or in 
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plane are approximated by linear or quadratic shape functions. One advantage to the use of macro 

heat transfer elements is that the elements facilitate the transfer of data from a thermal analysis to 

a structural analysis because both models can have the same mesh.  

 

(a) 

x

y

z

Layer i

Node j
 

(b) 

Figure 2-2: Macro heat transfer elements: (a) fiber heat transfer element [15] and (b) plate/shell heat transfer 

element [16] 

The macro elements have been proven to provide computational savings that are more than 

an order of magnitude over 3D solid elements. In the case of the plate heat transfer element, for 

example, it was shown in a 3D verification study that the element provided the same level of 

accuracy as a 3D solid model and required 1.3 to 2.6 s to perform an analysis that required 830.7 

seconds for a 3D solid model [16]. The computational savings are related to the significant 

reduction in the number of temperature degrees of freedom that are needed in the heat transfer 

model. The macro elements also allow for a much coarser mesh along the length or in plane in the 

heat transfer analysis. In the analysis of a 4.0-m steel beam exposed to a localized fire, it was 



15 

 

shown that an element size of 50 cm to 100 cm in length provided a prediction of the thermo-

mechanical response that was comparable to a 3D solid model [15]. In the analysis of a 6-m×6-m 

concrete slab exposed to a localized fire, temperatures were accurate for an element that was 37.5 

cm in length in the previous study [18].  

This chapter concerns a spatial homogenization algorithm for overcoming the differences 

in spatial scales between the fire simulation and solid heat transfer model, with an emphasis on 

conduction heat transfer evaluated by macro finite elements. For macro elements in particular, it 

is necessary to consider the case in which the CFD grid is significantly finer than the finite element 

grid and requires homogenization of the data from the CFD analysis. A numerical integration 

scheme based on the trapezoid rule is employed in the calculation of the equivalent nodal flux 

vector for the heat transfer finite element. The proposed homogenization algorithm is compared to 

other methods for representing the spatially varying boundary condition, including averaging, 

sampling, and least squares methods. Following the 2D verification study, this chapter considers 

a 3D application of a horizontal plate exposed to localized fire, in which the fire exposure is 

simulated by CFD and the solid heat transfer analysis is conducted using the plate heat transfer 

element in [16].  

 

2.2 Governing Equations 

The equations governing conduction heat transfer by finite element analysis are expressed 

as follows: 

}{}]{[}]{[ RTKTC   (2.1) 
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where {T} is the field variable (temperature), [C] is the heat capacity matrix, [K] is the thermal 

conductivity matrix, {R} is the vector of thermal loads, which includes heat flux, radiation, and 

convection boundary conditions [19]. For the applications considered here, it is assumed that 

incident heat fluxes q" are calculated by CFD analysis and losses by convection and radiation are 

separately accounted for. Thus, the homogenization algorithm is presented for a flux boundary 

condition, although the methodology can readily be extended to convection and radiation boundary 

conditions. It is presently assumed for combustible solids that the pyrolysis gases flow outward 

from the surface, in which case there is no forcing term related to mass conservation that is passed 

into the solid model from the CFD analysis. 

 The vector of heat fluxes is obtained by summing the heat flux vectors for each of the 

elements in the structure. For an incident heat flux boundary condition, the vector {r} for an 

element is expressed as 

    
S

T
dSqNr  (2.2) 

where {N} is an array containing the element’s shape functions and q" is the heat flux acting over 

surface S. Under natural fire conditions, q" may vary greatly over the surface S due to turbulent 

flow as illustrated in Fig. 2-3a. Thus, the objective is to compute Eq. (2.2) as an equivalent nodal 

flux vector (Fig. 2-3b) that appropriately accounts for the non-uniformity in the boundary 

condition. This can be done by (i) replacing q" with a function that approximates the randomly 

varying boundary condition with a smooth (e.g., linear) function, or (ii) expressing Eq. (2.2) in a 

discrete form that preserves the non-uniformity in q". The former approach might be chosen for 

convenience due to compatibility with the standard finite element formulation, whereas the latter 

approach may be more precise, as shown in this chapter. Several methods were investigated for 

representing the non-uniform boundary condition for a 2D planar problem. Of the methods 
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investigated for the planar model, only the highest performing approach was used in the extension 

to a formulation for use with 3D finite elements. 

 

 (a) (b) 

Figure 2-3: 2D elements exposed to non-uniform surface flux: (a) non-uniform flux and (b) equivalent nodal 

fluxes 

 

2.2.1 2D Formulation 

In each method explored in the current study, the goal was to approximate Eq. (2.2) given 

the randomly varying heat flux q". For a 2D isoparametric element, Eq. (2.2) can be expressed as 

   






1

1

)()(  dtJqNr
T

 (2.3) 

where ξ is the natural coordinate ranging from -1 to 1; {N} is an array containing the element shape 

functions, which are expressed in terms of ξ; q" is the heat flux, which varies in ξ; t is the thickness 

of the element; and J is the determinant of the Jacobian matrix relating the natural coordinates ξη 

to the global xy coordinates.  

Four homogenization algorithms were investigated for handling a randomly distributed 

heat flux over the surface of an element, as illustrated in Fig. 2-4. The average value method applies 

a uniform heat flux equal to the average of the randomized fluxes over the surface of the element. 

The sampling method takes the flux values at the end points of the element and interpolates linearly 

between them. The least squares method fits the randomized flux data with a linear least squares 
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approximation. The trapezoid method preserves the randomized flux data and uses the trapezoid 

rule to numerically evaluate the integral in Eq. (2.3). The averaging, sampling, and least squares 

methods aim to smooth the randomized flux with a linear function, enabling the Gaussian 

quadrature rule to be used for numerical integration, whereas the trapezoid method expresses Eq. 

(2.3) in a discrete form that captures the randomized flux exactly. It should be noted that the 

trapezoid rule is superior to Gaussian quadrature for the integration of a random function because 

Gaussian quadrature is best-suited for the integration of low-order polynomials. However, 

averaging, sampling, and least squares methods are convenient methods for smoothing the data 

from a CFD analysis. This chapter considers the implications of smoothing the data vs. integrating 

the function in a more exact sense by studying the structural temperatures in realistic fire safety 

engineering applications.  

 

Figure 2-4: Overview of the four methods developed for 2D spatial homogenization 

The integral in Eq. (2.3) was evaluated numerically in each of the four methods. Numerical 

integration of the element’s flux vector {r} was accomplished using Gaussian quadrature in the 

averaging, sampling, and least squares methods, whereby the integral in Eq. (2.3) is expressed as 

   



n

i

i

T

ii tJqNWr
1

)()(   (2.4) 

In Gaussian quadrature, Wi represents the weighting constant associated with the sampling point 

ξi, which lies in the domain [-1, 1] along the isoparametric element’s edge. The heat flux q"(ξ) is 
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evaluated at Gauss point ξi based on the homogenization method that is used. The summation is 

carried out over n, the number of sampling points based on the quadrature rule that is employed. 

 The trapezoid rule was explored as an alternative to the methods based on Gaussian 

quadrature. This method was intentionally selected because it uses all of the data associated with 

the element in calculating the equivalent nodal flux vector (as opposed to sampling at the Gauss 

points). In this manner, the contribution of each measured heat flux from the fire simulation is 

accounted for as opposed to a sampling technique which could fail to catch peaks in the heat flux. 

By integrating the random flux over the surface, the nodal flux vector that is calculated by the 

trapezoid rule is equivalent in energy to the random heat flux that exists at the element’s surface. 

Figure 2-5 shows the application of the trapezoid rule in 2D for a non-uniform heat flux 

q"(ξ) at the η = 1 edge of the element. The data points refer to sensor data from the CFD fire 

simulation for incident heat fluxes. As shown in the figure, five heat flux data points are used to 

approximate the integral with four trapezoidal segments. In the general case for 2D elements using 

this method, n + 1 points are used for n trapezoidal segments along a given element’s edge. When 

using data from CFD, the width of each trapezoid segment is dependent on the spacing of the 

sensors in the fire simulation (i.e., the fidelity of the CFD mesh). It is assumed that the number of 

data points between end nodes is large in comparison to the number of nodes (a reflection of the 

differences in scale between the fire and solid heat transfer models). The integral in Eq. (2.3) is 

evaluated by applying the trapezoid rule using incident heat flux data from the fire simulation. For 

n + 1 data points,  
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Figure 2-5: Isoparametric element with non-uniform boundary condition 

 

2.2.2 3D Formulation 

The extension to 3D is essential for using the spatial homogenization algorithm in the 

calculation of equivalent nodal fluxes for non-uniform thermal boundary conditions applied over 

surfaces as opposed to edges of the element. Fig. 2-6a shows a spatially varying heat flux over the 

surface of a macro heat transfer element. As in the 2D case, equivalent nodal fluxes are to be 

calculated from the discrete data and applied at the nodes, as shown in Fig. 2-6b. The 

homogenization algorithm based on the trapezoid rule may be extended to a second dimension by 

simply applying the trapezoid rule to several slices of data in one dimension (for example, along 

the ξ-direction) and then subsequently applying the trapezoid rule in the second dimension (along 

the η-direction). 
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 (a) (b) 

Figure 2-6: 3D shell heat transfer element with non-uniform thermal load 

The heat flux vector of Eq. (2.3) can be re-written by adding another dimension to the 

expression of the heat flux vector for integrating over the surface: 

      









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),(),(  ddJqNdSqNr
T

S

T  (2.6) 

Note that the shape functions N, heat flux q", and Jacobian J are now functions of two coordinates, 

 and , representing the surface S over which the heat flux is applied. The Jacobian is used to 

map between the real space and the natural coordinates of the isoparametric element, as shown in 

Fig. 2-7. Note that the heat transfer finite element can have arbitrary geometry due to the 

isoparametric formulation. Thus, it is not necessary that the finite element grid overlay the CFD 

grid, provided that the CFD model can handle complex solid boundaries.  

 

Figure 2-7: Mapping between real and natural coordinates 
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Figure 2-8: A fine mesh for measuring fluxes in the CFD domain superimposed on a single finite element with 

nine nodes in this case 

 For a rectangular element, heat fluxes are measured over a uniform grid in the CFD domain 

as shown in Fig. 2-8. Equation (2.6) is used to calculate the heat flux vector for the element. First, 

integration is performed along the straight lines of the CFD grid in one dimension, as shown in 

Fig. 2-9, resulting in m + 1 integrals along the first dimension (say, in the ξ-direction as before). 

The integral at a particular line in natural coordinates along the element’s surface will be denoted 

as the integral j for j = 0, 1, …, m.  

 

Figure 2-9: Integration over a surface using the trapezoid rule 

From Eq. (2.6), it can be seen that each of the j integrals results in an array with the same 

size as the number of nodes in the element. The vector representing slice j is defined with a dummy 

variable {I}(j), where  
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Note that {I}(j) is based on the 1D trapezoid rule for  ranging from -1 to 1 and = j. In total, 

there are m vectors {I}(j) produced by integrating over the j = 0, 1, …, m slices of data. There are 

a total of n + 1 integration points in the ξ-direction. 

The integration over the surface of the element is computed by applying the trapezoid rule 

to vectors {I}(j) for  ranging for -1 to 1, i.e.,  
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This integration method requires calculation of the element flux vector by the trapezoid 

rule using the number of data points available at the surface of each element. It is not required that 

the CFD grid matches the FEA grid, although compatibility between meshes facilitates the transfer 

of data between the two models. For the case in which the CFD grid does not match the FEA grid, 

integration points are defined on the element in isoparametric coordinates (e.g., trapezoid rules of 

order h, h/2, and h/4 are shown in Fig. 2-10). The heat fluxes from the CFD grid points that are 

adjacent to the integration point are interpolated linearly to get the heat flux data that is passed into 

the trapezoid rule, as shown in Fig. 2-10.  

 

Figure 2-10: Relation between integration point sampling schemes and the relative mesh sizes in the CFD and 

FEA domains 
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2.3 Implementation 

With an efficient numerical method for calculating energy-equivalent nodal fluxes from 

spatially varying incident heat flux data obtained by a CFD fire simulation, the non-uniform 

thermal boundary conditions produced in a natural fire scenario can be passed into a finite element 

heat transfer analysis model. The averaging, sampling, and least squares methods were compared 

to the trapezoid method for spatial homogenization in two dimensions. The trapezoid method was 

extended for a 3D case and implemented in a macro heat transfer element [16] that has a coarse 

grid in relation to the CFD grid. It should be noted that the homogenization technique for handling 

non-uniform thermal boundary conditions is particularly useful for macro-level finite elements, 

which have a coarser element mesh in relation to the CFD grid.  

This chapter considers a sequentially coupled analysis in which the fire affects heat transfer 

to the structure but the structure does not affect the fire dynamics. A flow chart is provided in Fig. 

2-11, which shows the transfer of data through the analysis. In Fig. 2-11, the disparities in spatial 

scale between the fire and solid domains are handled using a homogenization algorithm based on 

sampling, averaging, least squares, or trapezoid methods. To conduct the analysis, a CFD 

simulation is performed to compute the incident heat flux acting on the surfaces of the structure. 

The homogenization algorithm transforms large sets of data describing boundary conditions at a 

structure’s surface into equivalent heat fluxes that act at the nodes of the finite element in the 

conduction heat transfer analysis. An input file is generated for the finite element heat transfer 

analysis, with the equivalent nodal heat fluxes specified as boundary conditions. The heat transfer 

model is then analyzed to determine the temperatures within the solid. For a two-way coupled 

system, surface fluxes and temperatures computed in the heat transfer analysis would be calculated 

at the CFD grid points by interpolation using the element’s shape functions. The methodology 
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presumes that the CFD grid is finer than the element mesh used in the solid heat transfer model, 

which is generally the case when macro heat transfer elements are used.  

 

Figure 2-11: Flowchart for sequentially coupled analysis 

 

2.3.1 2D Implementation 

A 2D application was considered for the evaluation of the homogenization algorithms 

based on averaging, sampling, least squares, and the trapezoid rule. In the 2D application, the 

conduction heat transfer to the solid was evaluated using eight-node (quadratic) solid elements 

with the equivalent nodal fluxes calculated by Eq. (2.4) for the averaging, sampling, and least 

squares methods, or Eq. (2.5) for the trapezoid method. On the heated surface, the boundary 

condition was expressed as a net heat flux, i.e.,  

netqq ""  (2.9) 
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which was assumed to be constant in time so as to avoid challenges associated with differences in 

time scale that would otherwise occur in a coupled fire-structure simulation. To simplify the 

problem, a random heat flux was generated in MATLAB as opposed to performing a CFD fire 

simulation for the 2D analysis. It was also assumed that the heat flux variation out of plane was 

negligible such that the problem could be treated as 2D. The 2D heat transfer analysis was 

performed in a special-purpose code that was written in MATLAB.  

 

2.3.2 3D Implementation 

As will be shown in the following sections, the trapezoid method was found to exhibit 

superior performance over the averaging, sampling, and least squares methods. The algorithm 

based on the trapezoid rule was therefore extended to 3D heat transfer in Section 2.2 and 

implemented with the layered plate heat transfer element in Fig. 2-2b [16] for an application 

involving a plate exposed to a localized fire. In the plate heat transfer element, a heat flux boundary 

condition is applied to a layer at the top or bottom of the plate using Eq. (2.2). For homogenization 

of a spatially varying heat flux, the trapezoid rule is applied according to Eqs. (2.7-2.8). The 

present analysis considers a nine-node quadratic plate element, although the formulation in Section 

2.2 is general and can be applied to any type and order of element. In the 3D case, the spatially 

varying heat flux was calculated by CFD analysis in Fire Dynamics Simulator (FDS). The 

boundary conditions are expressed in terms of an incident heat flux with losses to the surroundings 

by convection and radiation.  

 The 3D conduction heat transfer analysis was performed in Abaqus. A special purpose 

code was written in MATLAB to resolve the spatially varying surface fluxes into equivalent nodal 

fluxes according to the spatial homogenization algorithm in Eqs. (2.7-2.8). The plate heat transfer 
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element was implemented in Abaqus as a user-defined element (i.e., UEL subroutine). The 

equivalent nodal fluxes were specified using the *DFLUX command in the input file after they 

were calculated in a preprocessing program in MATLAB (see flowchart in Fig. 2-11).  

 

2.4 Results 

2.4.1 2D Application 

 The homogenization algorithms based on averaging, sampling, least squares, and the 

trapezoid rule were evaluated by considering a plate exposed to a random (i.e., non-uniform) net 

heat flux along one edge, as shown in Fig. 2-12. The average heat flux varied linearly from 10 

kW/m2 at the ends of the plate to 40 kW/m2 at the center of the plate. About the mean, the heat 

flux followed a random distribution that was bounded by a range of 20 kW/m2. The random heat 

flux can be seen in Fig. 2-12 along with the boundaries. The heat flux was assumed to be constant 

over the thickness of the plate (i.e., out of plane) and the plate was insulated out of plane such that 

the heating was restricted to two dimensions. 

 

Figure 2-12: 2D application involving a solid exposed to a random heat flux 

 The plate was 1.0 m long and 0.25 m deep with a uniform thickness of 0.1 m. The plate 

was made of steel (specific heat = 465 J/kg·K, density = 7,850 kg/m3, thermal conductivity = 54 
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W/m·K), and it was assumed that the material properties were independent of temperature for 

simplicity. The plate had an initial temperature of 20°C. At the start of the analysis, the bottom 

edge was instantaneously exposed to the non-uniform net heat flux, while a convective cooling 

condition was prescribed on the top surface with a heat transfer coefficient of 35 W/m2
·K and fluid 

temperature of 20°C. It was assumed that the bottom surface was exposed to the non-uniform heat 

flux and did not interact with the surroundings (i.e., there were no losses due to convection or 

radiation). A duration of 2,000 seconds was chosen for the analysis.  

The analysis was completed using several different mesh configurations to evaluate the 

accuracy of each method as the mesh was refined. A summary of the mesh configurations is 

provided in Table 2-1. The “exact” solution was obtained using a very fine mesh that provided a 

one-to-one correlation between the heat flux data and the finite element mesh. The results from 

the exact solution were used to calculate errors in the temperatures associated with each of the 

homogenization algorithms.  

Table 2-1: Mesh properties for the 2D case 

Element Size [m] 

Number of Elements 

Vertical Horizontal Total 

0.25 1 4 4 

0.125 2 8 16 

0.0625 4 16 64 

0.03125 8 32 256 

0.015625 16 64 1024 

 

The heat flux at the integration points for the averaging, sampling, least squares, and 

trapezoid methods is plotted in Fig. 2-13 for mesh configurations of 4 and 1024 elements. The 

actual heat flux is also plotted for comparison and is represented with a heavier line-weight. It can 

be seen that the averaging method (Fig. 2-13a) assumes a uniform heat flux based the average heat 

flux along the element’s length, whereas the sampling (Fig. 2-13b) and least-squares methods (Fig. 
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2-13c) fit the data with a linear function. The trapezoid rule method (Fig. 2-13d) uses the exact 

heat flux data in the calculation of the equivalent nodal heat flux vector.  

 
(a) 

 
(b) 

 
(c) 

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t 

F
lu

x
 [

k
W

/m
2
]

 

 

Actual Flux

Elements: 4

Elements: 1024

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t 

F
lu

x
 [

k
W

/m
2
]

 

 

Actual Flux

Elements: 4

Elements: 1024

-0.5 -0.25 0 0.25 0.5
0

10

20

30

40

50

Distance Along Plate [m]

H
e
a
t 

F
lu

x
 [

k
W

/m
2
]

 

 

Actual Flux

Elements: 4

Elements: 1024



30 

 

 
(d) 

Figure 2-13: Heat flux at the integration points: (a) averaging method, (b) sampling method, (c) least squares 

method, and (d) trapezoid rule  

The approximated heat fluxes shown in Fig. 2-13 were used in the heat transfer finite 

element analysis based on Eq. (2.4) or Eq. (2.5). The convergence of the solution was investigated 

based on the mesh configurations given in Table 2-1. The nodal temperatures at the heated surface 

of the plate were calculated for each method and compared to the “exact” (i.e., converged) finite 

element solution. The “exact” solution was defined as the solution obtained with an element size 

that corresponded to the spacing of flux data points (i.e., 4,096 elements arranged in a 32×128 

grid). Comparisons between the coarsest and finest element meshes are shown in Fig. 2-14 for 

each of the methods. Note that the nodal temperatures are shown to be connected by straight lines, 

although the temperatures are actually interpolated using the quadratic shape functions for the 8-

node element. From Fig. 2-14, it can be seen that least-squares (Fig. 2-14c) and trapezoid rule (Fig. 

2-14d) methods provide a high degree of accuracy for both the coarse and fine finite element 

meshes, although the least-squares method results in a noticeable difference in temperature 

prediction at the ends of the plate for the fine mesh. The averaging method gives reasonable results 

for the fine mesh, although some variations in the calculated temperatures can be seen at the end 

of the plate (Fig. 2-14a). The sampling method produces significant differences in the calculated 

temperatures when compared to the expected values for both the coarse and fine meshes, indicating 

poor convergence (Fig. 2-14b).  
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(a) (b) 

  
(c) (d) 

Figure 2-14: Heat flux at the integration points: (a) averaging method, (b) sampling method, (c) least squares 

method, (d) trapezoid rule method 

To better gauge the accuracy of the simulation, relative errors were calculated based on the 

l2-norm of the difference in temperature between the coarser element mesh employing the 

trapezoid rule and the converged finite element solution, as shown in Table 2-2. The data used for 

the comparison include all of the nodal temperatures along the heated edge of the plate. In general, 

the methods tend to converge to the exact solution as the number of elements increases. However, 

a consistent rate of convergence (i.e., consistently decreasing differences in temperatures between 

the reference solution and the increasingly fine mesh density) is not attainable with the sampling 

methods and, to some extent, the least squares methods. The increasing value of the norm with 

mesh refinement that is observed for the least-squares method is caused by a situation in which 
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too few data points exist over an element. The simulation time for each mesh size was comparable 

regardless of chosen approximation method. Overall, the trapezoid method leads to the smallest 

relative norm values in all cases and exhibits consistent convergence; it is therefore recommended 

for spatial homogenization. 

Table 2-2: Vector norm for relative differences in temperature 

Method 

Number of elements 

4 16  64 256 1024 

Averaging 4.36 1.37 1.07 1.01 1.77 

Sampling 7.14 6.75 9.52 4.73 5.32 

Least squares 1.04 0.82 1.20 0.99 1.78 

Trapezoid rule 0.85 0.59 0.41 0.24 0.26 

 

2.4.2 3D Application 

To evaluate the performance of the spatial homogenization algorithm based on the 

trapezoid rule, a 3D application was considered involving a horizontal plate subjected to a 

localized fire. The plate measured 2 × 1 m with a thickness of 5 cm and had constant thermal 

material properties, with a specific heat of 1,000 J/kg·K, density of 2,000 kg/m3, and thermal 

conductivity of 2 W/m·K. The plate was located 1 m above a heptane pool fire, which was 

characterized by a peak heat release rate of 500 kW within a fixed burn area of 1,600 cm2. The fire 

was modeled in FDS with a grid size of 5 cm for a total duration of 15 minutes. The FDS fire 

simulation displayed in Fig. 2-15 features sensors placed at 5-cm intervals along the top and bottom 

surfaces of the plate to measure the incident heat flux at each surface, resulting in 800 sensors on 

each of the top and bottom surfaces of the plate structure. Convection and radiation losses to 

ambient (T∞ = 20 °C) were modeled, with a heat transfer coefficient of 25 W/m2
·K and an 

emissivity of 0.8. 
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Figure 2-15: Fire simulation in FDS  

The homogenization algorithm was used in conjunction with the 4-node linear shell heat 

transfer element. A convergence study was performed to measure the performance of the shell 

element in conjunction with the homogenization algorithm. Four mesh configurations were 

considered for the plate model: 2×1, 4×2, 8×4, and 16×8, as shown in Fig. 2-16a. The shell element 

used five equally spaced layers over the thickness. For comparison, a solid element model was 

generated in Abaqus using eight-node (linear) brick elements (i.e., DC3D8 elements), as shown in 

Fig. 2-16b. Four elements were required through the thickness in order to calculate the temperature 

gradient through the thickness. An element size of 1.25 cm × 2.5 cm × 2.5 cm was chosen in order 

to preserve an appropriate aspect ratio. Thus, the mesh for the solid element model contained 40 

elements across the width of the plate, 80 elements along the length of the plate, and 4 elements 

through the thickness of the plate, for a total of 12,800 elements and 16,605 temperature degrees 

of freedom. An overview of the mesh details for each of the models is given in Table 2-3.  
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(a) (b) 

Figure 2-16: Mesh configurations used in the test: (a) shell element models of 2×1, 4×2, 8×4, and 16×8 

elements, each containing five layers through the thickness (not depicted); (b) solid element model with four 

elements through the thickness 

 

Table 2-3: Mesh properties for the 3D case 

Element Type Mesh DOF Edge Size [cm] 

Shell UEL 2 × 1 30 100 

Shell UEL 4 × 2 75 50 

Shell UEL 8 × 4 225 25 

Shell UEL 16 × 8 765 12.5 

Solid DC3D8 80 × 40 16,605 2.5 

 

 Surface flux data from the CFD fire simulation in FDS was written to the output file in 

one-second intervals. Rather than limiting the time step in the solid heat transfer model to one 

second, the time-averaged subcycling algorithm [4] was used with a time step of 10 seconds to 

increase the efficiency of the analysis. Subcycling was performed in MATLAB prior to the 

generation of the input files for the solid heat transfer models. The time-averaged heat flux 

measured at the sensor in the center of the plate is compared to the actual sensor data from FDS in 

Fig. 2-17. After subcycling, the homogenization algorithm based on the trapezoid rule was applied 

to calculate the equivalent nodal heat fluxes in the shell element models. Homogenization was not 

needed for the solid element model due to the fact that the mesh in the solid heat transfer model 

was finer than the CFD mesh.  
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Figure 2-17: Incident heat flux over time for a sensor at the center of the plate 

Accuracy was measured by comparing the shell models to the solid element model.  The 

spatial homogenization algorithm performed well when used with the shell heat transfer elements. 

Contour plots of the mid-surface temperatures at 12 minutes into the simulation are shown in Fig. 

2-18. Temperatures calculated by the shell models with spatial homogenization are shown in Fig. 

2-18 (a-d) while the temperatures calculated by the solid element model are shown in Fig. 2-18e. 

It can be seen that the shell model converges to the solution calculated by the solid element model. 

Temperatures are also plotted through the thickness to demonstrate the accuracy of the shell model 

in predicting cross-sectional temperatures. As illustrated in Fig. 2-19, a slice through the plate’s 

thickness was taken at the middle of the plate to illustrate the temperature gradients through the 

thickness. Temperatures are plotted for the solid element model (Fig. 2-20c) and for the coarsest 

(2×1) and finest (16×8) shell models (Figs. 2-20a and 2-20b, respectively). Temperature contours 

are shown at 6 and 12 minutes into the simulation. It can be seen that the shell model converges to 

the solid element model as the number of elements is increased. 
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(a) (b) 

 

  
(c) (d) 

 

 
(e) 

Figure 2-18: Contours of the temperature field at the mid-surface of the plate after 12 minutes of fire 

exposure (a) 2×1 shell model, (b) 4×2 shell model, (c) 8×4 shell model, and (d) 16×8 shell model, and (e) 80×40 

solid element model  
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A measure of the relative difference in the computed temperatures at the mid-surface of 

the plate is provided in the form of the relative l2-norm values, as given in Table 2-4. The reference 

solution for computing the norm values was based on the converged solid element model. The 

relative l2-norm values were calculated by interpolating between nodal temperatures in the shell 

models to retrieve the temperatures in the locations of nodes in the solid element model at the mid-

surface of the plate. The comparison in Table 2-4 was prepared using temperatures at the mid-

surface of the plate only. However, similar convergence properties were exhibited at the top and 

bottom surfaces of the plate as well. 

Table 2-4: Comparison between the shell model and the solid element model 

Model Details Percent Difference (Relative Norm) [%] Computing 

Time Element Mesh DOF 3 min 6 min 9 min 12 min 

Shell UEL 2 × 1 30 15.6 20.2 20.3 19.7 11.5 sec 

Shell UEL 4 × 2 75 3.2 4.0 4.0 3.8 13.8 sec 

Shell UEL 8 × 4 225 3.0 3.9 3.8 3.6 20.1 sec 

Shell UEL 16 × 8 765 1.2 1.5 1.5 1.4 47.4 sec 

DC3D8 80 × 40 16,605 -- -- -- -- 48.5 min 

 

 

 

 

Figure 2-19: Section for contour plots taken through the thickness 
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(a) 

 

(b) 

 

(c) 

Figure 2-20: Temperature field through the thickness at 6 min (top) and 12 min (bottom): (a) coarse shell 

mesh of 2×1, (b) fine shell mesh of 16×8, and (c) the solid element model 

 

The computing times are also reported in Table 2-4. The computing time shown in Table 

2-4 includes the subcycling process, the mapping of fluxes to the element surfaces, the 

computation of equivalent nodal fluxes, and the actual heat transfer analysis. The subcycling 

process required a mere 0.08 seconds for each model. The time required for the other components 

of the simulation was directly dependent on the number of degrees of freedom and the numerical 

integration scheme. As shown in Table 2-4, the 4×2 shell model employing homogenization by the 

trapezoid rule was within 4 percent of the solid element model and required only 13.8 seconds to 
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complete the analysis. The 16×8 shell model provided temperatures that were within 1.5 percent 

of the solid element model and required 47.4 seconds.  For comparison, the solid element model 

that was used as the reference solution required a total of 48.5 minutes and required significantly 

more degrees of freedom.   

 

2.5 Conclusions 

 A spatial homogenization algorithm was formulated for capturing non-uniform thermal 

boundary conditions associated with a CFD fire simulation. Energy-equivalent nodal fluxes were 

calculated for use with macro-level finite elements for heat transfer analysis, which have a coarser 

mesh in relation to the CFD grid. The method for calculating the nodal fluxes is based on the 

trapezoid rule for numerical integration. The proposed method was compared to other 

homogenization techniques including sampling, averaging, and least squares methods for a 2D 

application. The trapezoid rule approach offers superior performance because it more closely 

enforces conservation of energy by accounting for the variations in heat flux over the surface of 

the structure. 

The homogenization algorithm was extended to 3D analyses and implemented in a macro 

heat transfer element based on a shell formulation. The homogenization algorithm combined with 

the shell heat transfer element resulted in an extremely efficient and accurate solution that led to 

considerable time savings when compared to a solid-element model. Relative errors of less than 

1.5% were reached using 128 layered shell elements in a 16×8 configuration, requiring less than 

one minute (47.4 seconds) of computing time as opposed to the 48.5 minutes that were needed to 

complete the solid-element model. This chapter does not consider the cost of the CFD fire 

simulation, which still requires significant computational resources in a coupled fire-structure 

simulation. Additionally, the work described herein only considered a flat rectangular plate in the 
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3D application and additional work is needed to extend the methodology to tilted and curved 

geometries.  

The applications considered here involved unprotected structures subjected to localized 

fires with impinging flames. The situation is intended to represent a worst-case scenario in which 

the structure is highly sensitive to variations in surface fluxes and in which the surface fluxes vary 

considerably over small distances. It is acknowledged that protected structures will be less 

sensitive to variations in surface fluxes. Additionally, members heated by remote radiation and by 

optically thick gases may experience less severe fluctuations in surface heat fluxes and therefore 

may be suitably modeled by other means that assume uniform temperature. In this chapter, we 

advocate for an algorithmically consistent manner for representing the thermal boundary 

conditions, as achieved by the homogenization algorithm presented here.  
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Chapter 3 

Thermo-mechanical Shell Element for Coupled Fire-structure Analysis 

 

One modern approach to understanding the fire-structure interaction problem involves 

using a computational fluid dynamics (CFD) simulation to model the natural fire evolution within 

a structure. Using the output from the CFD-based fire simulation, one can then sequentially couple 

the fire boundary conditions to a thermal model of the structure for subsequent heat transfer 

analysis. A problem arises when the analyst needs to model the deformation in the structure due 

to the thermal exposure, which would require re-meshing in the finite element analysis (FEA), thus 

implying the need for another coupling between the thermal and mechanical FEA models. 

However, employing thermo-mechanical shell elements in the coupled fire-structure simulation 

problem allows for this multi-step analysis in a single FEA model without re-meshing thus solving 

for temperatures and displacements simultaneously. The current study demonstrates the accuracy 

and convenience of this approach for calculating deformations in the structure due to non-uniform 

heating from a simulated fire source. Performing the thermo-mechanical simulation in a single 

step after the completion of the fire simulation removes one phase of data transfer from the 

workflow, allowing for a streamlined two-step method using heat fluxes to compute temperatures 

and displacements in the structure based on measured heat fluxes from the CFD fire simulation. 

 

3.1 Introduction 

 The aim of fire-structure simulation is to characterize the temperature and displacement 

fields within the fire-exposed structure in an accurate and efficient manner. For thin-walled 
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structures, such as floor slabs in buildings or structural panels in naval vessels, finite-element 

approaches based on shell theory are the preferred means for analyzing the deformation response. 

The benefit of shell elements from a computational perspective is the reduction of the degrees of 

freedom (DOF) in structures with larger planar dimensions than the thickness dimension. Shells 

overcome the computational restrictions posed by 3D continuum-based elements, which may 

demand an excessively fine mesh of elements to capture bending behavior and maintain acceptable 

aspect ratios for the elements. This benefit is well known for the use of general shell elements, and 

a similar situation has been encountered in the 3D conduction heat transfer in thin-walled 

structures. In the fire-structure simulation problem, there are three key components requiring the 

selection of a set of analysis tools. Figure 3-1 presents a high-level view of the coupled fire-

structure interaction problem using data from a CFD-based fire simulation. 

 

Figure 3-1: Overview of the sequentially coupled fire-structure interaction problem using CFD-to-FEA 

coupling methods 

 The three main stages of analysis are shown in Fig. 3-1, i.e., (1) the high-resolution fire 

simulation using CFD software, (2) the fire-to-solid coupling for mapping the fire boundary 

conditions for non-matching meshes in the fire and solid domains, and (3) the thermo-mechanical 

response calculation using FEA. The simulation of fires using CFD is well-established as an 

accurate representation of natural fires. For example, the CFD-based fire simulation software is 
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Fire Dynamics Simulator (FDS), which was developed at the National Institute of Standards and 

Technology (NIST) [1], has been extensively validated against a wide range of fire experiments. 

However, limited work has been done on the coupling of the CFD fire simulation to the thermo-

mechanical simulation of structural shells, particularly with regards to the two phases of Fig. 3-1 

beyond the fire simulation. The primary focus of the current study is capturing the thermo-

mechanical response in the structure using coupled thermo-mechanical shell elements (the image 

on the right in Fig. 3-1). The work builds on prior research by the authors regarding fire-structure 

coupling methods [2,3] and the thermal analysis of shells [4–6].  

 Research in the field of general shell theory is expansive but the thermal shell elements 

available in the literature are limited to a few researchers. For example, the work by Surana’s team 

[7–12] has produced a series of foundational papers on topics ranging from axisymmetric thermal 

shells to three-dimensional hierarchical shells. One common theme among that line of work was 

to represent the through-thickness temperature field using a temperature DOF and its gradient 

computed at the mid-surface of the shell as a secondary DOF. Noor and Burton [13] gave a 

predictor-corrector method for the calculation of heat fluxes and temperature distributions in thick 

multilayered composite shells and plates. Mukherjee and Sinha [14] presented a formulation based 

on a Galerkin approach applied to the heat conduction problem in laminated composite plates as 

well. Noack, Rolfes, and Tessmer [15] formulated a layer-wise theory for heat conduction of 

hybrid structures and sandwich panels. The authors [4–6] formulated heat transfer shell elements 

for 3D transient conduction analysis in thin-walled structures. The approach provides a layered 

method for computing the temperature field through the thickness of the shell while providing 

bilinear or biquadratic temperature distributions in the plane of the element. Temperature DOF are 
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stacked at each node such that a single n-node thermal shell element with NL temperature layers 

would have n∙NL total temperature DOF in the element.  

 In the present work, a fully coupled thermo-mechanical shell element was developed to 

simultaneously solve for the temperature and displacement fields using the same finite-element 

mesh (i.e., made up of thermo-mechanical shell elements) to model the coupled response of thin-

walled structures. The element matrices and vectors associated with conduction heat transfer in 

the solid were computed using the previous formulation [4,5].  For the mechanical shell element 

formulation, a general-purpose shell was selected to couple with the thermal shell element. The 

theory presented by Kanok-Nukulchai [16] for a degenerated bilinear shell element was adapted 

here and used in conjunction with the thermal shell element; together, these formulations provided 

the basis for coupled temperature-displacement analyses. This formulation was selected for its 

specific use of a torsional stiffness term to resist rotations about the normal vector to the shell 

surface. Other recent approaches [17,18] have also addressed the drilling rotation problem using 

this method [16].  

 The thermal shell element presented by the authors [4,5] and the classical mechanical shell 

element presented by Kanok-Nukulchai [16] were combined using a standard virtual work 

approach [19] for finite-element coupled thermoelasticity. The process for formulating the 

coupled-element system of equations was used to develop non-symmetric element arrays of the 

coupled thermoelastic solid by starting from a temperature-dependent constitutive law. In this 

approach, layer-wise temperatures were considered DOF on the left-hand side of the system of 

equations as opposed to thermal strain forcing terms on the right-hand side. The coupled thermo-

mechanical shell element was subsequently implemented as a user-defined element in Abaqus 

through the UEL subroutine [20]. Numerical examples employing the thermo-mechanical shell 
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element are provided to demonstrate the performance of the formulation as implemented in 

Abaqus. The user subroutine UEL was used to include this element in the software.  

 

3.2 Coupled thermo-mechanical shell element 

 In the current study, two finite-element theories for shell elements were coupled to provide 

a thermo-mechanical shell element formulation for use in thermoelastic analyses. The formulation 

of this fully coupled shell element was intended for 3D transient temperature-displacement 

analyses and was implemented as a user element in Abaqus through the UEL subroutine, which 

was specifically designed for future use in one-way coupled fire-structure interaction problems. 

The main formulation for each of the individual shell theories used here has been published in 

previous work. Specifically, the thermal shell comes from a layered formulation for 3D conduction 

heat transfer analysis [5], while the original mechanical shell element is based on an equivalent 

single layer theory in which the element properties and arrays are computed only at the mid-surface 

of the element [16]. The main features of these original formulations will be discussed in the 

following subsections. 

 In the coupled formulation presented here, the main consideration for linking the two 

theories was properly handling the various temperature layers through the thickness from the 

thermal shell model. The coupled formulation was based on the principle of virtual work and uses 

descriptions of the finite-element approximation of the shell geometry and DOF from each 

individual formulation directly. The fully coupled shell element employs a bilinear displacement 

field approximation in the mid-surface plane and a bilinear temperature field within the plane of 

each thermal layer. The temperature field through the thickness is incorporated in the coupling 

stiffness terms by integrating in this direction with a piecewise-quadratic polynomial 
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approximation using Simpson’s quadrature rule. As a result, only four nodes need to be defined 

by the user at the corners of the mid-surface for each element and the calculation of nodal direction 

vectors was handled automatically in the Fortran implementation (i.e., UEL subroutine). 

 The virtual work approach to generate the coupled-element matrices was essential for 

solving for the temperatures and displacements simultaneously in the shell (i.e., in the same time 

iteration of the analysis) using the non-symmetric matrix solver in Abaqus. The result was a fully 

coupled thermo-mechanical shell finite element capable of any (odd) number of temperature 

layers. In the fire-structure simulation setting, some researchers have used heat transfer elements 

to calculate temperatures and then mapped the temperature field to the structural shell elements 

(e.g., [21]). Others (including the authors) have explored this route of coupled thermo-mechanical 

shell formulations that capture the 3D conduction and deformation in the structure simultaneously. 

 The total number of DOF is dependent on the number of layers selected for the analysis; 

the default value of five layers is typical [20]. The transfer process to map nodal temperatures from 

the thermal model to mechanical model, as seen in other attempts, was eliminated with this solution 

to the coupled thermo-mechanical problem. Currently, the element is limited to small-

displacement analysis and thermoelastic problems for this initial development. 

 

3.2.1 Thermal shell element 

The original formulation of the thermal plate provided a layered 3D finite element to model 

the conduction heat transfer in thin-walled structures [4]. The basis of the theory was the use of a 

collection of layers in the thickness direction comprising the full plate geometry in which the 

temperature variation of a given layer could be interpolated within the plane of that layer using 2D 

basis functions. Thermal plate element was extended to a more general formulation for 3D shells 
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[5] and later took into consideration triangular element geometry [6]. In general, the thermal shell 

theory in [4–6] research has proven to be efficient and accurate for modeling 3D thermal 

conduction in solid media.  

The thermal shell element provides a finite-element approach for solving the 3D heat 

conduction equation within a solid body:  
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Here, kx, ky, and kz represent the thermal conductivity in each principal direction; Q is the internal 

volumetric heat source; ρ is density; c is the specific heat; and T is the unknown temperature field 

within the solid medium. Derivatives present in Eq. (3.1) are with respect to the global x, y, and z 

directions and with respect to time t. The element was discretized into layers (Fig. 3-2) in which 

the temperature in the thickness direction was lumped at each layer and the temperature in the 

plane was approximated as bilinear or biquadratic.  

 

Figure 3-2: Layered thermal shell element, as originally presented in [5] 

 Using a combination of finite-element and control-volume approaches, the authors showed 

that the governing equations for the thermal shell element could be expressed in the form [5]: 

 TTTTT RUKUC   (3.2) 

Here, CT is the specific heat matrix, KT is the total conductivity matrix, RT contains the thermal 

forcing terms, and the array UT is a vector that contains all the temperature DOF in the system. For 
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the sake of brevity, the details of the formulation are not repeated here. The subscript T was 

included in Eq. (3.2) in order to distinguish these thermal terms from the mechanical terms in the 

coupled formulation that follows. Equations for CT, KT, and RT are given in [5]. Readers should 

refer to the original publications for these details. 

 The definition of the shell geometry requires only specification of the nodal coordinates at 

the mid-surface of the shell, as shown for the typical node in Fig. 3-3. The normal direction vectors 

(i.e., the vectors normal to the mid-surface) were computed internally within the Fortran 

implementation through the use of a standard algorithm [22]. 

 

Figure 3-3: Corner node at the mid-surface of the shell element, as originally presented in [5] 

 

3.2.2 Coupling approach 

 To discuss the mechanical shell element, a coupling approach is needed in order to define 

the foundation of the formulation. From the coupled formulation approach, the thermal and 

mechanical components will become clearly distinguishable. The coupled formulation begins with 

a typical statement of the principle of virtual work for a solid deformable body (or principle of 

virtual displacements). For brevity, the statement of virtual work is provided here for a deformable 

elastic body without explicit derivation: 

   dSdVdV TTT
ΦuFuσε   (3.3) 
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The expression given above involves both virtual displacements δu and virtual strains δε, signified 

by the δ present in each of the terms of the equality. The remaining components are the stresses σ, 

the body forces F, and the surface tractions Φ. The left-hand-side term is comprised of the single 

volume integral, which is integrated over the whole domain of the elastic body. The right-hand-

side has one volume integral for the body-force terms as well as a surface integral for capturing 

the applied traction forces on the boundary surface of the solid. That surface is a particular subset 

of the full element domain on which a boundary condition, namely the traction forces Φ, has been 

applied. 

 The formulation continues with the linear-elastic constitutive law, which takes into 

consideration thermal strains, and is divided into membrane and shear terms (presented here in a 

local coordinate system at the individual element level): 
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These expressions can be written more concisely in matrix-vector form as follows: 
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The σ33 stress term is restricted to zero, which is a common assumption in shell element 

formulations. The constant D can be expressed as E / (1 – ν)2 where E is the modulus of elasticity 

or Young’s Modulus and ν is Poisson’s Ratio in the above equations. G is the shear modulus; f is 

a shear correction factor of 5/6th which is the typical value for such shell elements; α is the thermal 

expansion coefficient; and θ is the temperature difference, which is defined as T – T0, where T0 is 
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the reference temperature representing a material state with zero thermal stress. In the formulation 

that follows, all material properties were assumed to be constant and independent of temperature. 

The thermal strain αθ is the main connection between the thermal and mechanical shell element 

formulations and is the basis of the thermo-mechanical coupled-shell approach. Notice that the 

strain terms associated with εth of Eq. (3.6) were not explicitly defined yet; these thermal strains 

can be expressed compactly as the following:  

   Aε 
T

th 0  (3.7) 

Recall θ is a scalar temperature difference at a particular location in the shell volume. 

In finite element formulation, the typical strain-displacement matrix B is used to relate 

strains and nodal displacements, i.e., ε = BU. In the work by Kanok-Nukulchai [16], the strain-

displacement relationship was conveniently written as follows: 
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The index I represents the Ith node in the element and the displacement vector is broken up into uI 

and ωI, which are the global displacements and rotations, respectively. In accordance with the 

original formulation, the B2m term is zero but shown here for completeness. The individual 

components of the strain-displacement matrix B were factored properly such that they only depend 

on the planar natural coordinates of ξ and η, while the ζ-dependency is explicitly visible in Eq. 

(3.8). Note that for the mechanical shell element, the array uI contains nodal translations and ωI 

contains nodal rotations for the Ith node of the element. The two terms are related by the finite-

element approximation for defining the displacement field within the element volume as follows: 
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The nodal basis functions are defined as each of the NI terms while the nodal translations and 

rotations are shown within the summation ranging over all the nodes (totaling n) in the element. 

The additional factors on the rotations are the element thickness t, the thru-thickness natural 

coordinate ζ, and a nodal coordinate-transformation matrix ΦI.  

Following Eq. (3.9), virtual deformations can be similarly defined: 
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The virtual strain-displacement relation can therefore be defined as follows for a bilinear 

displacement field (i.e., n = 4): 
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The membrane strains (εm) and shear strains (εs) are defined within the shell element domain based 

on the natural coordinates (ξ, η, ζ). In terms of virtual strains, the strain-displacement relation can 

be written in a more compact form as δε = BδU, which incorporates the virtual displacements. 

Thus, in Eq. (3.11) above, the UI term containing nodal displacements of the Ith node has become 

δUI to reflect the virtual nodal displacements.  

 

3.2.3 Mechanical shell element 

 By substituting the expressions for the strain-displacement relation and the stress-strain 

relation (taking into account temperature changes), the mechanical shell stiffness components as 

well as the thermo-mechanical coupling term can be established. Recall that the volume integral 

on the left-hand side of Eq. (3.3) is for the full volume of the solid body but note that, in using 

FEA, the virtual work equation is applied to a subset of the full volume; specifically, to that of a 
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single element. Using V(e) to denote the element’s volume, and substituting Eqs. (3.6-3.11), the 

internal energy term was transformed into the following form: 
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 As in Eq. (3.10), a summation over the nodes will be needed as well, with indices I and J ranging 

from 1, 2, …, n nodes, where n = 4 for the bilinear element considered here. Substituting the strain-

displacement relationship in Eq. (3.8) into the internal energy integral of Eq. (3.12) and using the 

matrix transpose properties to expand the first product gives the updated matrix-vector expression 

inside the integrand: 

  






  )()(
)()()( e

JJ

ss

JJ

mmTI

s

TI

m

TI dV
UBD

AUBD
BBU


  (3.13) 

The integrand of Eq. (3.13) now includes the scalar temperature difference, θ, as a variable. This 

temperature difference will later provide the connection to the actual temperature DOF of the 

layered thermal shell. Performing matrix multiplication in the above equation produces the 

following form: 
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Next, the individual terms can be separated into different integrals: 
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 Referring back to the original statement of virtual work presented in Eq. (3.3), the right-

hand-side terms can be reintroduced after substituting the above expression for internal energy and 

considering the finite-element basis functions used similarly for the right-hand side terms. Using 

the nodal contribution nomenclature from before (namely, the superscripts I and J), introducing 
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the right-hand-side, and again specifying the integrals for a typical element, the resulting equation 

becomes: 
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Here, RM is the right-hand-side forcing term for the mechanical shell element, which is defined as 

follows for the element (superscript I dropped for element-level equation here):  
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Note that a capital M is used to signify mechanical stiffness terms, and N contains the element’s 

basis functions. From the expression in Eq. (3.16), it is clear that, since the statement must hold 

for all virtual displacements δUI, all the terms within the main curly braces that right-multiply the 

virtual displacement term must sum to zero.  

 The familiar components of the element stiffness equations begin to appear in this 

development. The first two terms from Eq. (3.16) are given next and are exactly as presented in 

the original reference for this element [16]. Reproducing those terms here, the stiffness 

components of the mechanical shell element are: 
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Here, the subscripts m and s indicate the membrane and shear contributions to the stiffness. For 

these element arrays, a selective reduced integration technique was employed for reducing the 

shear locking effects in shell elements [22]. 

 In order to present the complete formulation of the mechanical shell element given in the 

original publication, it is important to briefly mention that a penalty method was used to generate 
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a third stiffness component for torsional restraint. The torsional stiffness was represented as Kt 

and its details are not reproduced from [16] here other than simply stating that this torsion term 

restricts free rotation about the surface normal of the shell element and left-multiplies the 

displacement DOF similar to how a typical stiffness term would in the prior development up to 

this point. Thus, the mechanical stiffness term KM is as follows: 
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The mechanical stiffness term can then be substituted into the main governing equation: 
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The form of Eq. (3.21) above is clearly incomplete as the element volume integral for the 

coupling term is still undefined. At this point in the development, it is typical for the thermal strain 

terms to be converted to right-hand-side forcing terms in which the thermal strain enters the FEA 

governing equations as a thermal load in the uncoupled thermo-mechanical analysis. However, the 

fully coupled formulation treats the temperatures as DOF to be solved for simultaneously with 

displacements.  

 

3.2.4 Coupled shell element 

 The remainder of the formulation presented here seeks to establish the thermoelastic 

stiffness components that are produced by the temperature change. As the temperature change only 

appears in the σ11 and σ22 stress terms, the thermoelastic coupling term can be isolated from the 

virtual work equation. In a typical finite element, strains ε are interpolated from nodal 

displacements U according to the strain-displacement matrix B, i.e., ε = BU. In the original 

formulation, the strain-displacement matrix was decomposed into membrane Bm and shear Bs 

terms to simplify the notation [16]; this was repurposed in Eq. (3.11) of the current study. Keeping 
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the original notation, the main coupling term that arises from this development is the integral seen 

in Eq. (3.21), which is isolated here: 
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Note that the thermal strain has been included as Aθ where θ is the temperature difference (a 

scalar). The negative sign in the front of Eq. (3.22) is to preserve the sign of this term, as it appears 

on the left-hand-side of Eq. (3.21). The negative sign is a result of the constitutive law, which 

subtracts thermal strains, as was seen in Eq. (3.6).  

Equation (3.22) will be separated into two different contributions. The first one appears on 

the left-hand side of the element equations (i.e., a coupling stiffness KC multiplied by the nodal 

temperatures UT). The second contribution is a forcing term on the right-hand side of the system 

of equations to include the reference temperature, which is expressed as R0 here. Writing the 

equation of motion for the mechanical shell element to include the coupling terms that arise from 

Eq. (3.22) gives the following equation: 
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In Eq. (3.23), KM is the elastic stiffness for the shell element, as defined in Eq. (3.20), UM is the 

vector of nodal displacements and rotations, and RM is the vector of nodal forces. These terms 

remain unchanged from the original formulation [16] and are denoted by superscripts I and J, 

which each range from nodes 1, 2, …, n; thus, the contributions from nodes I and J make up the 

(I, J) sub-matrix of KM. The superscript L that is appended to the new coupling term ranges from 

1, 2, …, NL number of layers in the layered thermal shell. Equation (3.23) gives the governing 

finite-element equations for a layered, deformable elastic body with a consideration for 

temperature variations through the volume of the solid as provided by the thermoelastic 
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constitutive law of Eq. (3.6). R0 is not explicitly given here; it represents the forcing term for the 

reference temperature T0 which arises from the temperature difference θ = T – T0. 

By bringing the governing equation of the thermal shell element from Eq. (3.2) together 

with the mechanical shell equation that includes thermoelastic coupling in Eq. (3.23), the full 

system of coupled equations for the thermo-mechanical shell element can finally be expressed in 

the following matrix-vector form for a single element of the fully assembled system: 
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This gives the form of the governing equations needed for a coupled analysis. The exact 

expressions of KC and R0 in Eq. (3.24) arise from the assumptions that are embedded in the thermal 

and mechanical shell formulations and these terms are unique to the coupled formulation. For 

completeness, the thermoelastic damping term CC is also shown in Eq. (3.24) as the pre-multiplier 

of velocity. However, in the quasi-static equilibrium problem presented here, the velocity DOF are 

assumed zero and are thus represented by the zero-vector in the equation (i.e., U̇M = 0). While not 

discussed in detail here, the thermoelastic damping term CC is defined in the ANSYS 

documentation [23] as the following: CC = –T0 (KC)T and may be used in problems with evidence 

of strong coupling. 

 The coupling stiffness matrix KC pre-multiplies temperature DOF on the left-hand-side of 

the governing system of equations in Eq. (3.24). Returning to the development that will lead to the 

desired final form given in Eq. (3.24), the typical strain-displacement matrix term Bm
I has been 

split into its two sub-components using the following relation from Eq. (3.8) to explicitly factor 

out the ζ component: Bm = [B1m   ζB3m]. Notice the natural coordinate ζ representing the through-

thickness direction has entered the integrand to left-multiply the submatrix (B3m)I; this will be 

important in the through-thickness integration step that follows.  
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 Recall that ζ is a natural coordinate in the through-thickness direction of the shell domain. 

The other two natural coordinates (ξ and η) in the planar dimensions of the shell element are located 

at the mid-surface. Additionally, the subscripts 1 and 3 were used in the definition of the Bm
I 

contributions. These labels come from [16] and it is important to note that they were used as 

subscripts and do not reflect any particular matrix entries. Also note that there is a (B2m)I term in 

Eq. (3.8) which is the zero matrix, as mentioned previously. 

 Substituting this expression of Bm
I and using the previous definitions for Dm, A, and θ in 

Eq. (3.24) produces the following integrand for the coupling term: 
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This updated expression in gives two terms in the full formulation: a left-hand-side stiffness 

component including the scalar T as nodal/layer DOF (shown next) and a right-hand-side forcing 

term taking into consideration the reference temperature T0 (the R0 component). For the first part 

of the coupling stiffness definition, the focus will be on representing the temperature DOF as left-

hand-side components while the reference temperature term will be saved for a later discussion.  

 The integrand of Eq. (3.25) may be simplified by multiplying the DmA product first and 

converting the integral to natural coordinates while introducing the Jacobian matrix J to provide 

the mapping of bases as in a typical isoparametric formulation. The result is the following 

expression, where the constant κ is introduced after the matrix multiplication of the two interior 

arrays Dm A: 
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Where κ represents the product of –αD(1 + ν). Then, κ can be factored out of the volume integral 

as follows:  
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(3.27) 

Three main features shall be noted to summarize the resulting expression in Eq. (3.27): 

1. The 3×1 array containing the thermoelastic constant κ in Eq. (3.26) effectively sums 

columns one and two of its pre-multiplier, namely the Bm
I matrix, and scales it by the 

thermoelastic constant κ, which was subsequently factored out to the front of the equation 

in the form shown in Eq. (3.27). 

2. The fiber integral (i.e., the integral for through-thickness integration) was highlighted using 

the curly braces above and will be important with regards to how the layers are handled. 

3. Temperature DOF will be introduced through the T variable above; as it was stated above, 

for now T is simply the continuous field variable T = T(ξ, η, ζ) in the shell element domain. 

The finite-element interpolation has not been introduced. 

3.2.5 Through-thickness integration 

 The expression given in Eq. (3.27) shows the fiber integral explicitly marked with curly 

braces. From this equation, we can define the coupling stiffness matrix KC as seen in Eq. (3.24) 

by using Simpson’s Rule for numerical integration through the thickness. This integration 

approach requires an odd number of sampling points; in this case, the sampling points are the ζ-

coordinate locations through the shell thickness where temperature DOF exist at the nodes. Thus, 

to use this approach, the thermo-mechanical shell element requires an odd number of layers, which 
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must be greater than or equal to three. This integration method uses a quadratic approximation of 

the temperature solution through the thickness and therefore two points or less is not sufficient.  

 Section 3.2.1 described the thermal shell element and discussed how temperature DOF 

were used through the thickness. An important relation in that development was the fact that at a 

particular layer in the shell, the temperature in that layer could be computed by using the element 

basis functions to interpolate among the nodal temperatures of that layer. The temperature of a 

point in layer k for the n-noded shell was computed as follows: 





n

I

kIITNT
1

)(
 (3.28) 

Once again, the basis functions of the element are signified by NI and superscript (k) has been 

added to denote layer k for clarity.  

 Using Simpson’s Rule for numerical integration through the thickness and the temperature 

field T as described in terms of nodal DOF as in Eq. (3.28), the fiber integral of Eq. (3.27) can be 

evaluated by addressing the contributions associated with B1m and B3m separately. First, notice that 

the B1m matrix in Eq. (3.27) is not multiplied by ζ. Since both B1m and B3m are independent of ζ, 

they do not need to remain within the fiber integral. The same thing can be said of the 3×1 array 

containing [1 1 0]T which serves to only add the first two columns of the Bm matrix that pre-

multiplies it. For the B1m matrix, the components of the fiber integral reduces to the following: 

dT


1

1

J

 

(3.29) 

Equation (3.28) is substituted into Eq. (3.29) and then Simpson’s 1/3rd Rule is applied. Specifically, 

Simpson’s Rule was used to evaluate the integrand at the layer coordinates ζk for layers k = 1, 2, 

…, NL during the numerical integration which gives: 
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In Eq. (3.30), the superscript (k) was added to the Jacobian matrix to indicate that it should be 

evaluated at each layer coordinate ζk and the basis-function array N was substituted into Eq. (3.30) 

as well. In the Simpsons 1/3rd Rule used here, the numerical integration weights can be seen as the 

{1, 4, 1} factors for the three points used per sub-integral. Another factor on the weights is the 

additional h/3 term where h is the distance between two integration points. For the isoparametric 

shell element mapped to the bi-unit domain, h is simply defined as 2.0 / (NL – 1) where the 2.0 

comes from the length of the interval [-1, 1] of the original integral. The general form of Eq. (3.30) 

is as follows: 
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(3.31) 

 The convenience of this approach can be seen from Eq. (3.31) whereby it is clear that the 

basis functions N have been factored out and now the nodal temperature DOF T(k) for k = 1, 2, …, 

NL are visible and consistent with the format of the original thermal shell element. This same 

approach was used for the B3m term in Eq. (3.28) as well. The details will be spared because Eq. 

(3.31) may be used in the same manner but now with an extra ζ term in the integrand that must be 

included in the numerical integration step. This was accomplished by means of adding a factor of 
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ζk applied to each term in the summation seen in Eq. (3.31) for use with the B3m partition previous 

shown in Eq. (3.27).  

 The details of the integration in the plane of the shell have been left out. The process is 

typical for a finite element employing Gaussian Quadrature in the plane. One feature to note from 

this development is the fact that the basis function array N does not need to remain within the fiber 

integrand because it is not a function of ζ and thus does not change through the thickness. By 

factoring out the temperature DOF from the evaluated fiber integral shown in Eq. (3.31), the 

coupling stiffness term KC remains. The approach for the reference temperature contribution is 

similar but extremely simplified due to T0 being a constant that does not vary through the thickness. 

The final note on the mechanical shell stiffness terms is that selective reduced integration was used 

for the integration of the mechanical shell element array while the standard 2×2 Gaussian 

quadrature was used layer-wise to form the element arrays of the thermal shell element. 

 

3.3 Numerical results 

 A series of verification studies will be presented in the following subsections that 

characterize the performance and highlight the benefits of the thermo-mechanical shell element 

presented here. The numerical results show a verification of the element through benchmark 

testing in preparation for the full fire-structure coupling procedure for particular applications in 

the intended final use case. Prior to performing tests with the coupled thermo-mechanical shell 

element, the implementation of the mechanical shell element was verified using traditional 

benchmark testing as provided, for example, in the Abaqus Benchmarks Manual [20]. Specifically, 

the sections of 2.3.1 The barrel vault roof problem and 2.3.2 The pinched cylinder problem were 

used to ensure the displacements were calculated accurately with this particular user-element 
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(UEL) implementation of the original element formulation. Verification of the thermal shell 

element implementation used here was performed in previous studies [4,5].  

For the barrel vault roof, the UEL computed the reference displacement at the desired node 

with an error of -3.3% using the coarsest mesh of 4×4 elements. The results improved to an error 

of -0.67% for the finest mesh of 18×18 used in this test. These results were comparable to the 

closest Abaqus library equivalent for this element: the S4 general shell element. Results for the S4 

element were +4.7% and +0.77% for the same meshes, respectively. For the pinched cylinder, 

using the finest mesh of 20×20 elements, the UEL computed the reference displacement with an 

error of +4.3% while S4 resulted in -4.0% error. Note that the for the torsion coefficient term 

mentioned earlier, a value of κT = 1.0 was used to produce these results with the UEL 

implementation (see [16] for details on the torsional stiffness term).  

3.3.1 Thermal stress in a cylinder 

 The first example using the thermo-mechanical shell element is a verification problem for 

computing the stress in a hollow cylinder subjected to a higher temperature (200 °C) on the inside 

surface and a lower temperature (100 °C) on the outer surface. These conditions on each of the 

surfaces were provided by specifying a temperature boundary at the surface of the shell element. 

This test was defined in the Abaqus Verification Manual (1.3.17 Thermal stress in a cylindrical 

shell) [20]. In Fig. 3-4 below, the full cylindrical structure is shown and the single-element mesh 

required for this benchmark is highlighted, as only one element was needed for this test. 

Additionally, a steady state condition was assumed according to the documentation.  
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Figure 3-4: Verification problem for analyzing thermal stress in a cylinder 

 The size of the element used in this test corresponds to one that subtends an angle of 11.25° 

at the center of the cylindrical shell opening; thus, it is consistent with a scenario in which 32 

elements compose the circumferential direction. Proper boundary conditions were specified for 

the stress analysis such that the rotations about the circumferential direction were constrained but 

the cylinder was allowed to extend freely due to thermal expansion along its axial dimension, in 

accordance with the original problem statement. A reference solution was given in the Abaqus 

Verification Manual [20] for this problem. The theoretical stress at the outer and inner surfaces of 

the cylindrical structure should be ±171.43 MPa, with the plus/minus sign depending on the 

surface. 

 Results computed by Abaqus using the Fortran implementation of the proposed thermo-

mechanical shell element matched this reference solution exactly. In fact, using the analytical 

solution for this problem to compute the stress with more significant digits, the thermo-mechanical 

shell element demonstrated more than sufficient accuracy, showing an absolute error of O(10-13) 

when comparing computed stresses with the analytical solution. The thermo-mechanical shell 

element presented here also performed the same as the similar elements provided in the Abaqus 

library for this problem, such as the S4T coupled temperature-displacement shell.    
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3.3.2 Simply supported heated plate 

 A simply supported plate problem for measuring deflection due to non-uniform heating 

was modified for a thermoelastic shell analysis. Originally, the reference solution for this problem 

was derived for a plate and presented in a classical mechanics textbook on plate and shell theory 

[24]. Since the model was specified for a plate problem, modifications were needed for the thermo-

mechanical shell version of this verification in order to provide proper in-plane restraint. The 

original plate problem and its boundary conditions are shown in Fig. 3-5 below; in this scenario, a 

linear temperature difference was applied through the thickness of the of the plate.  

 The original reference [24] provides a series solution to the partial differential equation for 

the out-of-plane displacement (i.e., along the z-axis in this model) for the deflection w(x, y) 

pertaining to this case. Using this provided solution, not given here for brevity, the deflection at 

any point could be obtained and compared with a finite-element model employing the thermo-

mechanical shell element. However, modifications were needed for using shell elements in this 

test in order to restrain in-plane, rigid-body motions. The boundary conditions used for the shell-

element model of this problem are given in Fig. 3-6, where in-plane translations were restrained 

on two edges to provide uniform thermal expansion towards the xmax and ymax sides. 



66 

 

 

Figure 3-5: Simply supported rectangular plate geometry and boundary conditions; the linear temperature 

through the thickness h is shown as well 

  

 

Figure 3-6: Simply supported plate with displacement boundary conditions explicitly defined for the 3D FEA 

model employing shell elements 

 The particular material properties and dimensions chosen for this problem were selected 

objectively, as the provided solution is general for any thermoelastic problem. Thus, the dimension 

a and b from the original diagram in Fig. 3-5 were 1.0 m and 2.0 m, respectively, and the thickness 

of the plate h was 0.1 m. The thermoelastic material properties were a Young’s modulus of 

2.0×1010 Pa, Poisson’s ratio of 0.20, and coefficient of thermal expansion of 1.0×10-5 m/(m∙°C). 



67 

 

Finally, the only load on the system was the linear temperature field prescribed through the 

thickness such that the difference T1 – T2 was equal to 100 °C.  

 For this test, two meshes were used for the FEA models: 4×8 and 8×16 elements in the 

plane of the plate model via the UEL implementation of the thermo-mechanical shell element in 

Abaqus. Five temperature layers were used through the thickness. In order to define the linear 

temperature field through the thickness, the exact temperature was specified at each layer. 

Therefore, in the five-layer case used here, temperatures of 0, 25, 50, 75, and 100°C were directly 

prescribed as the temperature DOF for each layer as input. This approach isolated the thermo-

mechanical coupling features that were targeted for investigation in the model; namely, this 

allowed for directly assessing the deformation based on a known temperature field.  

 The results of this verification test are shown in Fig. 3-7 below, where the out-of-plane 

displacement w was plotted along two lines of the plate. These lines correspond to the x = a/2 and 

y = 0 lines, referring to the coordinate system of Fig. 3-5 where these lines represent the centerlines 

in the x- and y-directions. The five curves in the figure come from the theory-based reference 

solution according to the original plate example [24], the results for the new thermo-mechanical 

shell element presented here (UEL), and, for comparison, the coupled temperature-displacement 

shell provided by Abaqus (S4T).  
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Figure 3-7: Comparison of the results for the out-of-plane displacement of the plate along the two centerlines 

of the domain using thermo-mechanical shell elements 

 To quantify the difference between the theoretical solution and the one obtained by the 

UEL for the w displacement along these two lines, the relative error based on the two-norm was 

computed. The 8×16 mesh was used for this comparison. Namely, the two-norm of the difference 

in the computed and reference solution, ||w – wUEL||2 was computed and then divided by the two-

norm of the solution, ||w||2, from the provided reference solution for w as an array composed of the 

scalar w evaluated at the nodes along each of the lines. Thus, the two-norm relative error between 

the shell element and the reference solution was 7.1×10-3 for the long edge and 4.9×10-3 for the 

short edge. As another measure of the accuracy, the displacement at the center of the plate, where 

the maximum deflection occurred, was recorded as 1.373 mm using the UEL shell; the reference 

solution at this point was 1.366 mm, which is a difference of 0.5% between the two. Additionally, 

the results for the two FEA solutions, UEL and S4T, matched each other exactly: the two-norm of 

the difference between displacements computed by the UEL and S4T models was zero, using full 

double-precision formatting to record the displacement output and compute the differences. In Fig. 

3-7 above, the w displacement in this case corresponded to the U3 displacement in Abaqus. The 

two-norms for the differences in displacements for the other components, such as U1-U2 

translations and UR1-UR2-UR3 rotations, were also zero when comparing the two FEA models at 
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all the nodes in the mesh. Thus, these two verification problems served to demonstrate the ability 

of the new implementation to accurately model three-dimensional deformation of the simply 

supported plate due to a prescribed temperature field through the thickness. 

 

3.4 Conclusions 

 In order to improve the state of fire-structure simulation methods, an approach using 

coupled thermo-mechanical shell elements was presented in the current study. By developing the 

finite-element equations for a coupled thermo-mechanical shell element and subsequently 

implementing the formulation as a Fortran subroutine in Abaqus, the presented shell element 

showed beneficial results from a computational modeling perspective and the verification 

problems demonstrated the accuracy of the coupled formulation.  

One of the practical limitations of this approach is the fact that a larger system of equations 

is solved for each increment of the coupled analysis: two uncoupled systems, of sizes m×m and 

n×n, are solved for the weakly coupled problem whereas an (m+n)×(m+n) system is solved in this 

strongly coupled formulation. Here, m is the total number of displacement DOF in the model 

originating from the mechanical shell element while n is the total number of temperature DOF in 

the model from the layered thermal shell for conduction heat transfer analysis. 

While this approach has shown promising early results, additional consideration and future 

research will be needed to apply these methods in scenarios with more structurally significant fire 

exposure. The use of fire-structure coupling methods will be employed in the next stages of the 

research in order to include boundary conditions from CFD-based fire simulations as input for the 

FEA model. For such cases, the analyst must consider the effects of temperature-dependent 
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material properties and the potential for large displacements or buckling: both features deserve 

additional exploration in the future work.  
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Chapter 4 

Applications of the Thermo-mechanical Shell Element in Coupled Fire-structure Analyses 

 

In the previous chapter, the formulation of the thermo-mechanical shell element was 

presented along with two verification problems. While the shell element was designed for the 

coupled fire-structure problem, applications of this new development using boundary conditions 

from a computational fluid dynamics (CFD) based fire simulation were not previously provided. 

The main goal of the current investigation was to demonstrate the capability of the thermo-

mechanical shell element implemented as a user-defined subroutine (UEL) in Abaqus. The fire-

structure coupling methods discussed in Chapter 2 were implemented in the coupled shell 

presented in Chapter 3. Two applications, one involving a rectangular plate and the other a 

structural I-beam, were chosen to show how the element can be used with spatially and temporally 

varying boundary conditions representing the CFD-based fire. Additionally, various choices of the 

mesh size and time step in coupled fire-structure simulations were selected to analyze the 

performance using different combinations of temporal and spatial discretization using a square 

plate model exposed to different thermal loads.  

 

4.1 Introduction 

 The concept of coupled fire-structure interaction problems has been discussed in Chapters 

2 and 3 thus far. The three main components of the coupled problem are the CFD-based fire 

simulation, the coupling of the thermal boundary conditions from the CFD model to the FEA 

model, and finally the thermo-mechanical analysis of the structure. Figure 3-1 in the previous 
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chapter presents a high-level view of the coupled fire-structure interaction problem using data from 

a CFD-based fire simulation. In addition to providing a means for modeling the thermo-mechanical 

response of structures through the use of shell elements (image in the right pane of Fig. 3-1), the 

coupling methods used to bridge the two domains together are also an important step in the fire-

structure interaction problem (image in middle pane of Fig. 3-1). In Chapter 2, the methods for 

sequentially coupling the thermal boundary conditions from the fire to the solid domain were 

presented. In Chapter 3, the formulation of the coupled thermo-mechanical shell element was 

provided. In the current chapter, applications employing the shell element with the coupling 

methods implemented at the element level are provided to show the use of this methodology in the 

fire-structure coupling problem.  

 Structural response under a wide range of potential fire hazards has been of increasing 

interest in recent structural fire engineering research and modeling the thermal boundary 

conditions using the CFD-based software of Fire Dynamics Simulator (FDS) is a popular approach 

for capturing the physics of a localized fire. For example, Zhang et al. [1] used adiabatic surface 

temperatures (AST) as the transfer data from FDS to an FEA model in ANSYS [2] for thermo-

mechanical analysis. Luo, Xie and DesJardin [3] provided a method for performing 2D fluid-

structure coupling based on a level-set function approach, specifically for use in the fire-structure 

problem. Chen, Luo, and Lua [4] developed a two-way coupling approach with a customized 

version of FDS and linked it with Abaqus, which formed the basis of the Abaqus Fire Interface 

Simulator Toolkit (AFIST). Tondini, Vassart, and Franssen [5] employed a partitioned solution 

approach to the fire-structure analysis in their development of an interface between CFD fire 

simulations and FEA heat transfer models for applications to compartment fire models. Finally, 



74 

 

Silva, Landesmann, and Ribiero [6] presented the Fire-Thermo-Mechanical Interface tool used for 

processing fire simulation results and transferring AST measurements to an FEA model. 

 The fact that researchers, including the authors of this current study, need to perform 

subsequent heat transfer and structural simulations is at least in part because FDS, which is the fire 

simulation software most typically relied upon, is not suited for its conduction analysis in the solid 

domain. This results in various users applying a wide range of assumptions regarding the 

representation of the boundary conditions (e.g., AST approaches vs. applied heat flux vs. 

simplified traveling fires, etc.), and the method for resolving the discrepancies in the mesh (e.g., 

sampling heat fluxes vs. averaging heat fluxes) and the time step. Presently, the ramifications of 

these varied assumptions are unknown.  

 Yu and Jeffers [7] showed that sampling boundary conditions in time could have a 

significant impact on accuracy of the computed temperatures in the solid due to heavy oscillations 

in heat fluxes that come from a CFD model. Beata and Jeffers [8] similarly showed that sampling 

data in space could have consequences if the solid and fluid models have significantly different 

meshes. However, few “best practices” have been identified in the literature for performing a fire-

structure simulation using a coupled CFD-to-FEA simulation approach. Moreover, the verification 

and validation of existing models is inconsistent, making reproducibility of results a major concern 

for this application. 

 In general, the transfer of any CFD-based output representing the thermal boundary 

conditions as the input of the FEA model for heat transfer is a key aspect for providing an accurate 

characterization of the non-uniform thermal boundary observed in localized fire scenarios. At its 

most fundamental level, the fire-structure coupling analysis is a fluid-structure interaction (FSI) 

problem that is assumed a one-way coupling such that the structural deformation and the 
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temperature field of the structure do not influence the fire simulation, which is appropriate for 

many applications. Partitioned systems for multiphysics problems, such as FSI simulations, are a 

practical approach to connect two field solutions; thus, a partitioned approach was employed in 

the current study as well.  

 Matthies and Steindorf [9] in part discuss one of the simplest and best-known types of 

partitioned approaches for FSI analysis problems, specifically the staggered approach, which 

represents a weak or loose coupling between the two domains of fluid and solid. Bathe and Zhang 

[10] focus on compatibility for general fluid-structure coupling in two-way systems; in particular, 

displacement and traction compatibility were presented as the essential criteria for interaction at 

an interface of the two domains. These two concepts also have parallels in the fire-structure 

interaction problem: (1) one-way coupling providing a thermal boundary condition based on CFD-

computed data and (2) defining a compatible finite-element representation of the thermal boundary 

condition at the interfacing surfaces. Additionally, partitioned approaches are attractive because 

they use two different solvers and source code to produce the coupled solution, which takes 

advantage of the expertise used to develop each code separately by the experts of the individual 

sciences [11].  

This chapter will mainly use the contributions from previous developments in the 

dissertation. Specifically, modeling the thermo-mechanical response of thin-walled structures to 

fires using the newly developed shell elements from Chapter 3 and implementing the fire-structure 

coupling methods based on partitioned solutions from Chapter 2. The relevant information from 

each chapter will be referred to in describing how the thermal boundary conditions from the fire 

simulation were used in the coupled fire-structure simulations. 
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4.2 Fire-structure Coupling using Shell Elements 

To handle the transfer of temporal data from the CFD-based fire simulation to the FEA 

model comprised of thermo-mechanical shell elements, a subcycling technique was used to allow 

multiple steps of the fluid-domain solution to be time-averaged and passed into the solid domain 

[7]. Specifically, the net heat flux along a rectilinear grid in the fire simulation was passed from 

the fire domain to the FEA model containing the structure. The time-averaging approach is based 

on computing the average of recent heat-flux measurements in the fire simulation within a small 

window (i.e., the temporal subcycling time step) and using that value as the input for the thermo-

mechanical model. The equation for computing the surface flux "q  at a particular time tn in the 

FEA simulation is provided in a previous study [7]: 
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The range of the summations in Eq. (4.1) is from one to m, where m is the number of time 

increments that fall within the given subcycling time step (window) and is based on the relative 

time increments used in the CFD and FEA simulations. In the case of the CFD model, this 

increment is related to the frequency at which data is written to the output file in FDS since the 

actual time step used to solve the CFD equations is possibly much smaller on some increments. 

The Δti term in Eq. (4.1) is the time step of the output frequency in FDS. When a uniform time 

step is used, the calculation in Eq. (4.1) reduces to a simple average of the measured heat fluxes in 

the subcycling step. If the CFD simulation provides heat fluxes every 1.0 seconds and the 

subcycling step is 10 seconds, then the average is computed for the 10 measured heat fluxes that 

fall into this moving window throughout the simulation.  
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Handling spatially non-uniform boundary conditions (such as a net flux) over the surfaces 

of solid models can be accomplished within the FEA solution framework once the computed 

surface fluxes are transferred from the fire simulation and mapped to the FEA mesh. Numerical 

integration is the basis for computing finite-element arrays, both left-hand-side and right-hand-

side terms, in any FEA simulation. Traditionally, Gaussian quadrature has been used to compute 

element arrays by integrating through finite-element volumes and surfaces. Gaussian quadrature 

is very accurate for the integration of smooth functions and especially polynomials, using a small 

number of sampling points over an element surface and/or through the volume.  

However, for the case of non-uniform heating conditions, as in the case of fire simulations, 

other methods exist which may be more appropriate for handling discretely measured data points 

as opposed to smooth functions. For example, integration of the forcing-term arrays at the element 

interfaces with non-uniform heating may be accomplished with the trapezoid rule for numerical 

integration by using as many available discrete data points as available at the element boundary 

[8]. The trapezoidal rule approach uses additional integration points in the element surface 

integrals to compute equivalent nodal fluxes from the non-uniform fluxes available at the surface. 

This approach was employed for the fire-structure simulations presented next together with the 

temporally non-uniform heating methods mentioned earlier. Details of these methods were 

provided in Chapter 2, where the methods coupling 2D and 3D non-uniform surface fluxes were 

presented. In the following subsections, applications of the thermo-mechanical shell element are 

provided to demonstrate the use of this new shell with the fire-structure coupling methods included 

as an additional subroutine in the UEL. 
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4.3 Plate Exposed to Local Fire 

 With the successful verification of the thermo-mechanical shell element in the previous 

chapter, the implementation of this element was upgraded to handle non-uniform thermal boundary 

conditions. The approach was consistent with previous work [7,8] but now in the setting of coupled 

temperature-displacement analyses in Abaqus. For this application, a flat plate was exposed to a 

localized fire simulated using FDS; specifically, FDS was used to compute a temporally and 

spatially non-uniform surface flux field which was sequentially applied as a net flux boundary 

condition in the FEA model on the  bottom surface of the plate. This form of one-way coupling 

allows the researcher or analyst to perform a single fire simulation (at a high computational 

expense) and use the data in various FEA models employing different mesh configurations, time 

steps, and other boundary conditions (at a significantly lower computational expense in 

comparison to the CFD-based fire simulation).  

 On the opposite surface (i.e., on the top of the plate) a uniform convection boundary 

condition with a heat transfer coefficient of 25 W/m2∙K and a sink temperature of 20°C was defined 

for this particular set of tests. The edge faces of the plate were thermally insulated. Displacement 

boundary conditions represent the same simply supported restraints as shown in Fig. 3-6 

previously for the flat plate verification problem in the last chapter. The remaining material 

properties and model details for the current plate problem are shown in Fig. 4-2 below as well. 
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Figure 4-1: Model details and material properties for the flat plate exposed to a local fire 

 Employing the newly presented element as a UEL in Abaqus, a series of coupled 

temperature-displacement analyses were completed for this single fire scenario. Note that a 

subcycling time step of 10 seconds was chosen for the data transfer process from FDS to the 

Abaqus model based on the temporal subcycling methods presented in an earlier study [7]. As in 

the two verification problems, five layers were used through the thickness of the shell elements.  

 The first demonstration of the results in this problem is the dependency of out-of-plane 

deflection on the FEA mesh chosen for the plate model (i.e., translation in the z-direction, such as 

w in the previous verification). Four different meshes were used in the plane of the plate model: 

2×4, 4×8, 8×16, and 16×32 elements. Each element had four nodes in accordance with the bilinear 

shell formulation presented earlier, where each node contained three translation DOF and three 

rotation DOF at the mid-surface of the shell and five temperature DOF corresponding to the five 

layers through the thickness. In Fig. 4-2 below, the temperature and corresponding displacement 

results throughout the duration of the fire event are shown for the node at the center of each mesh: 

at the location (x = 0, y = 0) with respect to the coordinate system in Fig. 3-6, specifically. The 

computed temperatures were provided for the bottom (non-uniform heating), mid-surface 

(interior), and top (convection boundary) layers in the model, however, the displacements were 

computed at the mid-surface only. 
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Figure 4-2: Temperature and displacement results at the center of the plate; temperatures provided at the 

top, middle, and bottom (highest temperatures) of the plate at this central point 

 The results for the computed temperatures and displacements along two lines in the plate 

domain are presented next. Specifically, with respect to the coordinate system on the plate 

reference surface shown in Fig. 3-6, the results are provided along the line of y = 0, for x = [-0.5, 

0.5], and the line x = 0, for y = [-1.0, 1.0]. The temperatures in Fig. 4-3 were the nodal temperatures 

at the non-uniformly heated (bottom) surface after three minutes and ten minutes, respectively. As 

in the previous demonstrations, the out-of-plane displacements are shown in Fig. 4-4 for at both 

three and ten minutes as well.  

 

Figure 4-3: Temperatures on the heated surface along the two centerlines of the plate at 3 min and 10 min 

using four different meshes 
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Figure 4-4: Displacement along the two centerlines of the plate at 3 min and 10 min 

 The following contour plots demonstrate the computed results in the plane of the plate at 

the final time step in order to show a representation of the final temperature and displacement 

fields. In Fig. 4-5, the mesh for each test is shown followed by the final temperature state at the 

heated (bottom) surface and the final out-of-plane displacement state. Qualitatively, these results 

show that by increasing the number of elements in model, thereby using more nodes and DOF, the 

computed profile of the temperature and displacement fields converge.   
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Figure 4-5: The meshes used for each test (top), the resulting temperature field for the heated surface at the 

final time step (middle), and the corresponding out-of-plane displacement at this time (bottom) 

 Simulation times for these models were recorded in two parts: first, preprocessing time for 

mapping the FDS boundary conditions to the FEA model, as described in Chapter 2, and second, 

the actual thermo-mechanical simulation of the structure using the shell element from Chapter 3. 

The preprocessing step, much like the fire simulation, was only needed one time; this is one benefit 

of the coupling procedure used which allows various FEA meshes to map the FDS output data 

individually. Preprocessing performed by MATLAB scripts required 1.1 sec for the 10-min worth 

of flux data used in this test. The time required for each transient temperature-displacement 

simulation in Abaqus was shown in Table 4-1 below, in addition to the final temperature and 
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displacement calculated by each model. The total time in the final column of Table 4-1 represents 

the Abaqus-measured CPU time found in the output DAT file plus the preprocessing time of 1.1 

sec mentioned earlier.  

Table 4-1: Properties of the FEA models and the required simulation times; note that the temperatures and 

displacements are the results at the final time step 

Mesh DOF 

Surface Temp. at 

Center [°C] 

Disp. at Center 

[mm] Total Time [s] 

2×4 165 113.8 -1.340 3.1 

4×8 495 106.6 -1.351 5.9 

8×16 1683 101.9 -1.349 16.5 

16×32 6171 99.7 -1.339 59.7 

 

 Convergence of the results for the nodal temperatures at the exposed surface as well as the 

transverse displacements was analyzed using the two-norm relative error. For the reference 

solution in this application, the finest mesh of 16×32 elements was used for comparison with the 

results of the other meshes. Figure 4-6 demonstrates the convergence behavior for the FEA meshes 

used in this study with respect to the total DOF in the system.  

 

Figure 4-6: Convergence plot for temperature and displacement; computed using the two-norm relative error 

between each mesh with the finest mesh (16×32) 

 



84 

 

4.4 Beam Exposed to Local Fire 

For the final numerical example, the fire-structure coupling method was extended to handle 

multiple interfaces, as in the case of the I-beam scenario shown in Fig. 4-7 below. This problem 

presents the need to map fluxes measured in the FDS fire simulation to multiple surfaces of the 

beam flanges and web. The particular shape selected for this test was a W460×52 wide-flange steel 

section. Dimensions and properties were defined in Fig. 4-7 as well and the fire source was 

modeled using FDS, just as in the plate fire problem previously, with the fire source offset from 

the beam center, as depicted in the figure. The beam was simply supported with a pinned 

connection at one end and a roller at the other, with torsion sufficiently restrained for stability of 

the beam member. This scenario allowed for bending as in a traditional beam problem, with the 

boundary conditions for the pin and roller defined at the neutral axis on each end of the beam. 

 

Figure 4-7: Beam model exposed to a local fire with dimensions and material properties provided; the fire is 

off center by 0.5 m in the CFD model 

 The purpose of this test was to demonstrate the ability of the thermo-mechanical shell 

element in conjunction with the fire-structure coupling techniques to model a realistic structural 

component exposed to a localized fire simulated by FDS. For example, Fig. 4-8 shows the final 

computed temperature distribution along the axial direction of the beam with the localized heating 

included in the analysis. Additionally, the displacement field is shown below it in the same image. 
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The results provided here used a modification of the coupling method described earlier which now 

uses a traditional 2×2 Gaussian quadrature approach for computing equivalent nodal fluxes from 

the non-uniform net heat flux data. This was appropriate in this case based on the relative sizes of 

the FEA elements and CFD cells; the appropriate trapezoidal rule application would also employ 

a 2×2 integration scheme for this test. Temperature results are shown at the mid-surface layer of 

each component of the beam model; in this test, only three total temperature layers were used in 

the through-thickness direction of the web and flanges. Additionally, the image in the right-most 

frame of Fig. 4-8 shows the beam deflection from its centerline corresponding to displacement in 

the x-axis for this particular model. 

 

Figure 4-8: Temperature and displacement results at the final time step along the neutral axis (middle of the 

web) and along the bottom flange centerline; the right image shows the displacement from the centerline (i.e., 

displacement U1 along the x-axis in the Abaqus model) 

 One of the benefits of this thermo-mechanical shell analysis combined with the fire-

structure coupling methods is the ability to perform the heat transfer and structural analysis using 

the same mesh and in a single analysis step (i.e., a multiple-time-increment coupled temperature-
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displacement analysis step). In the case of a beam application, the analyst may wish to refine the 

mesh in order to investigate the convergence of their FEA model or change some other parameter 

of the solid domain. It is important to note that the FDS fire simulation need only be completed 

one time for a given CFD mesh and the data can subsequently be mapped to various finite element 

models of the same structure.  

 For this particular mesh, 576 elements using three temperature layers totaled 5,913 thermal 

and mechanical DOF; the total computation time was less than two minutes for this mesh. The 

preprocessing step, much like the fire simulation, was only needed one time just as in the previous 

test with the flat plate. With three main sections in this I-beam model, namely the web and two 

flanges, the preprocessing step performed by the MATLAB scripts for data sorting and mapping 

required 8.8 seconds for this particular geometry. Note the increase in this computing time from 

the previous test, which only had one surface (the bottom of the plate) and required 1.1 seconds, 

while the I-beam model had six surfaces (top and bottom of the web and flanges). The actual 

simulation required was 98.3 seconds, as recorded in the Abaqus output file in terms of CPU time. 

Combined with the preprocessing step, the total time required was 107.1 seconds using Abaqus 

6.14 and MATLAB R2015b on a standard personal computing workstation with a 2.53 GHz 

processor in this case.  

 

4.5 Analysis of the Time Step and Mesh Size 

A test matrix was developed in order to strategically vary several analysis parameters 

related to the time step and mesh size used in the coupled fire-structure simulation. First, three 

boundary conditions were selected: a uniformly applied flux field, a bilinear flux field, and, finally, 

the net flux from a true fire simulation from Fire Dynamics Simulator (FDS). Second, three grid 
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sizes were chosen to represent these various boundaries as discrete data points: for example, using 

a coarse, medium, and fine grid to represent uniform, bilinear, and CFD-based heat flux data. 

These parameters were related to the boundary condition data only and change the representation 

of the thermal data as a thermal load on the structural system. The third variable was the subcycling 

time step used for representing temporally varying data from the fire simulation. Five subcycling 

steps were used to average the temporal data which was passed from the fire model to the structural 

model. Finally, the fourth variable was the size of the finite elements used in the FEA model 

containing the thermo-mechanical UEL elements. Five finite-element mesh sizes were chosen for 

this study, where each element size was halved in subsequent models.  

To test the impact of selecting particular time steps and mesh sizes, a square plate model 

was used as the basis for the suite of tests. The square plate measured 1.0  1.0 m in plane and 5 

cm thick. On one surface, an applied flux was used as the thermal boundary condition; on the 

opposite surface, a convection boundary was provided with a heat transfer coefficient of 25 

W/m2∙K and atmospheric temperature of 20°C. The model for this test is provided in Fig. 4-9 

below which shows a particular case of the FDS fire boundary. Figure 4-9 gives the basic test setup 

and fixed parameters while the different simulation variables used in the comparison study and are 

discussed further. Note that only the results of the thermal shell were analyzed here.  

 

Density: 2000 km/m3 
Conductivity: 2 W/(m∙K) 

Specific Heat: 1000 J/(kg∙K) 
Expansion Coef.: 1.0  10-5 / °C 

Young’s Modulus: 2.0  104 MPa 
Poisson’s Ratio: 0.2 

Reference Temp.: 20 °C 
Plate Thickness: 5 cm 

Exposure Duration: 10 min 

Figure 4-9: FDS model for a particular configuration used in the mesh size and time step study 

In total, there were three heating cases, three boundary grid sizes, five subcycling time 

steps, and five FEA mesh sizes, as mentioned previously. A summary of the actual values used for 
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each variable is given in Table 4-2 below. This series of testing resulted in 225 FEA simulations 

employing various sets of boundary data. In order to use the non-uniform thermal boundary 

condition coupling methods, uniform and bilinear boundary data was transformed in a standard 

way to match the same format as the output of a fire simulation conducted via FDS. Specifically, 

a constant value of 10.0 kW/m2 in the uniform case was represented as a set of discrete data points 

in a .csv file, as if it were “recorded” at discrete locations using standard heat flux devices in FDS. 

Each boundary condition was applied for 10 minutes in all of the cases presented here. 

Table 4-2: Overview of the variables used in the testing matrix 

3 Boundary Conditions:  uniform, bilinear, FDS fire 

 Uniform: Q(x, y, t) = 10.0 kW / m2 

 Bilinear: Q(x, y, t) = 10.0(x + y) 

 FDS Fire: Q(x, y, t) = (data from fire simulation) 

3 Boundary Grid Size:  coarse, medium, fine 

 For uniform and bilinear case:  [ 1,  1/4,  1/16 ] m 

 For FDS fire case only:  [1,  1/4,  1/10] m 

5 Subcycling Time Step:  [ 60,  30,  15,  10,  5 ] s 

5 Finite Element Edge Size:  [ 1,  1/2,  1/4,  1/8,  1/16 ] m 

225 Total Number of Tests 

 

In order to observe the results of choosing particular FEA mesh sizes relative to the 

boundary condition mesh size, the testing matrix presented in Table 4-2 provided several different 

combinations of boundary grid size and FEA mesh size. Note that for the case in which actual FDS 

fire simulation data was used, the discretization of the boundary mesh needed to change slightly 

to accommodate the device spacing in the FDS software in a convenient manner. As a result, the 

finest grid size used to represent boundary data was changed from 1/16-m to 1/10-m for the FDS-

generated fire data only, as shown in Table 4-2.  

The various cases produced by the relative sizes of each mesh are shown in Fig. 4-10 below. 
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The top row of labels gives the size of the FEA mesh, the far-left column of labels gives the size 

of the boundary grid size, and finally the bold number floating above each mesh is the “relative 

size” of the FEA mesh compared to the boundary data grid. For example, a bold value of 4 indicates 

the FEA mesh was “4 times the size” of the boundary grid mesh. In Fig. 4-10, the visible mesh 

(i.e., the structured cells) represents the FEA mesh sizes while the small circles represent the 

boundary data grid as individual FDS devices. 
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Figure 4-10: Comparison of the various mesh sizes used in the study and the corresponding boundary data 

grids; the number above each mesh is the ratio of the FEA element size (green outline of each element) to the 

CFD cell size (red dot for the center of each cell) 

In order to provide the raw results of all 225 tests, temperature-time plots were created for 

particular points in the plate domain; Fig. 4-11 shows the locations of the two particular points 
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used in the following plots. The planar view of the plate from above is shown with the points A 

and B located at the center of the plate area and the top-right corner, respectively. 

 

Figure 4-11: Diagram showing the locations of points on the plate selected for the temperature-time plots 

Results for the temperature at Point A for the uniform boundary condition are shown in 

Fig. 4-12, where the left, center, and right images correspond to the exposed surface (i.e., heated 

face), middle surface, and top surface of the plate, respectively. Similar results are shown in Fig. 

4-13 but at Point B for the bilinear boundary condition. Finally, Fig. 4-14 shows the results at Point 

A once again but for the FDS-computed surface fluxes. Note that every case is shown here 

resulting in 75 curves per case (i.e., per boundary condition). The reader should note that it is best 

to view these results in color, as this is simply an overview of the full suite of unfiltered results: 

more attention and detail will follow as particular cases were selected for discussion. However, for 

a very high-level view of the data, the finest boundary grid data is represented by the blue curves, 

the medium grid size by the black curves, and finally the coarsest grid was the red curves.   
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Figure 4-12: Temperature-time curve at Point A for the uniform boundary condition 

 

Figure 4-13: Temperature-time curve at Point B for the bilinear boundary condition 

 

Figure 4-14: Temperature-time curve at Point A for the FDS-based boundary conditions 

Upon initial inspection of the data, it was clear that for the bilinear case and the FDS case, 

there was no need to use the results from the single-data point representation of the boundary 

conditions (i.e., the red curves). This was not related to the performance of the shell but rather due 

to the fact that a single data point cannot accurately represent the boundary data of the bilinear 
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case or the FDS case in a meaningful way. Thus, the test results from the first row of Fig. 4-10 

were filtered out of the processing that follows. Proof of this claim can be seen in Figs. 4-13 and 

4-14 in which the lowest-magnitude groupings of test results in each case were those produced by 

the coarsest boundary grid; if viewing this report in color, notice that these were the red curves. 

In order to focus on the particular impact of the mesh sizes, a few cases have been selected 

for discussion next. For all three boundary cases, the coarse representation of boundary data was 

removed as mentioned in the previous segment. The finest data transfer time step (i.e., subcycling 

time step) of 5 seconds was chosen to filter the results even more. Finally, only temperatures at 

the exposed surface and the middle surface were considered. The temperature at either Point A or 

B at the final time of the simulations (i.e., at the 10-min mark). Thus, for each of the three cases 

(uniform, bilinear, and FDS data) and at each of the two layers (exposed and middle) there were 

10 tests: five using the medium data grid (1/4 m) and five using the fine data grid (1/10 m or 1/16 

m for the bilinear and FDS cases, respectively). Those five tests cover the range of FEA mesh sizes 

used in Table 4-2. Results from this subset of data are shown in Fig. 4-15 next. Figure 4-15 (a-c) 

show the results for the uniform, bilinear, and true FDS fire tests, respectively.  
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(a) 

 

(b) 

 

(c) 

 
Figure 4-15: Temperature results at the final step for either point A or B (as in previous figure) with respect 

to the FEA mesh size for the three cases of (a) uniform, (b) bilinear, and (c) FDS boundary conditions 

A similar filtering to show the dependence on time step choice is shown next. Here, the 

finest FEA mesh size of 1/16 m was chosen and the five results related to the time steps are shown 

in each of the images of Fig. 4-16; once again, all three boundary cases were considered and the 

coarse boundary grid was filtered out of these results. 
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(a) 

 

(b) 

 

(c) 

 
Figure 4-16: Temperature results at the final step for either point A or B (as in previous figure) with respect 

to the subcycling time step for the three cases of (a) uniform, (b) bilinear, and (c) FDS boundary conditions 

 

4.6 Discussion of Results 

The use of the thermo-mechanical shell element was presented in the first two cases for 

localized heating. The first case was a rectangular plate while the second case was an I-beam; the 
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main input to the system was the localized fire sources present in each model represented as 

thermal boundary conditions from the CFD-based fire simulation. Fire-structure coupling methods 

from previous studies and the methods from Chapters 2 and 3 were used to demonstrate the 

capability of using coupled shells in this application for localized heating. The analysis of the time 

step and mesh size on the results of the thermal analysis are discussed in more detail next.  

In the case of the uniform boundary conditions (Fig. 4-15a), there was no change in the 

results from using a finer mesh in representing the boundary data or in defining the elements of 

the FEA model. The bilinear case showed a slight dependence on the grid size of the boundary 

data that was more pronounced at the exposed surface (Fig. 4-15b). Finally, in Fig. 4-15c, there 

was a very significant dependence of the results on the grid size used in FDS (in this case, on the 

order of 50°C). This was an expected result as it is important to use the proper cell sizes for the 

FDS fire simulation before conducting any subsequent FEA tests; it was clear that the medium 

mesh used in the FDS simulation did represent a converged solution for that model. These trends 

for the boundary grid size continued for Fig. 4-16 when the subcycling time step was varied and 

the mesh size was held constant. However, there were nearly no changes in the final computed 

temperature results when the subcycling step was changed for a given boundary grid.  

The plate exposed to the local fire showed how the shell could be efficiently linked with 

fire simulation data; and finally the beam problem provided a practical application of the methods 

for a typical structural component. In terms of defining a policy for future use, it should be noted 

that starting with a correct representation of the fire physics in the FDS simulation is the first goal 

in making sure that the results are reliable. Without a sufficient resolution in the fire model, 

subsequent results will be tainted in this multi-model solution. Beyond this claim, referring back 

to the results in Fig. 4-15 for the finest grid, a clear convergence can be seen beyond the single-
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element FEA mesh condition for both the bilinear case and the case with FDS data (the single-

element result being the value positioned at a mesh size of 1.0 m). This behavior of consistent 

convergence for halving the element sizes is critical for obtaining accurate results by decreasing 

the sizes of the element mesh in the FEA model for a given loading condition. 
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Chapter 5 

Real-Time Fire Monitoring for the Post-Ignition Fire State in a Building 

 

During a fire event, environmental threats to building occupants and first responders 

include extreme temperatures, toxic gases, disorientation due to poor visibility coupled with 

unfamiliar surroundings, and a changing indoor environment. In addition to these hazards, 

firefighters often lack critical information for making decisions on the ground. The lack of 

information coupled with the dynamics of natural fire events leads to a number of near-misses, 

injuries, and deaths each year. Additionally, these challenges slow the rescue time of building 

occupants and prolong the progression of fire. Integrating real-time measurements from sensors 

into the fire intervention strategy may provide an opportunity for a new technological advancement 

to improve the practice of firefighting. Specifically, the integrated use of measurement, 

computation, and visualization could provide a unique new tool for aiding firefighters in their 

approach to extinguishing a fire and saving building occupants. In this study, a computational 

framework was developed for connecting real-time fire data to an event detection sub-model to 

demonstrate the possibility of real-time computing can be used for fire-monitoring and sensor-

assisted firefighting. A post-processed example showing this monitoring tool in conjunction with 

a Building Information Model (BIM) using schedule simulation is provided. The work serves as a 

step towards an intelligent firefighting system based on computing in an effort to provide real-time 

tools for effective decision making during the fire event. 

 

5.1 Introduction 

  This work is based on the anticipation of ubiquitous sensing technology of the future and 

the subsequent use of measured fire signatures (from these sensors) to help identify fire spread, 
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burn threats, smoke toxicity, and flashover in a way that would inform firefighters of impending 

dangers within the burning structure. This research aims to provide a flexible and extendible 

software infrastructure for a real-time fire monitoring system to be used with a wireless sensor 

network (WSN) of the future. It will provide firefighters the ability to make data-informed and 

computation-based decisions during a structural fire event. The novelty of the research lies in the 

use of multiple fire signatures to identify fire events in real-time and to graphically represent the 

information in BIM software to facilitate rapid decision-making during firefighting operations. 

While there are many challenges in terms of hardware, implementation, cost, feasibility, and 

adaptability, this chapter seeks to provide one part of the solution: a solid computational 

framework for integrating real-time fire data with computation and visualization for sensor-

assisted firefighting. 

 One such challenge in this line of research and development, which is also unique when 

compared with other applications such as indoor air quality monitoring, is clear: too much data 

and information without careful assimilation and presentation will be useless as an aid to 

firefighting. Cowlard et al. [1] has provided, in addition to the benefits, several cautionary 

warnings for using sensors, real-time data, modeling, and visualization as intentional tools for 

helping firefighters. Additionally, Silvani et al. [2] discusses some of the limitations of using a 

WSN in the fire-monitoring field from the hardware perspective. For example, issues related to 

time delays and loss of information are important factors to consider in the development of a 

practical WSN technology for fire monitoring, from a hardware and implementation standpoint 

specifically. Information overload [1] and hardware limitations [2] in conjunction with restrictions 

on time for strategizing during the fire are acknowledged as a challenge to this real-world 

implementation of a fire monitoring system. 
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 The goals of this research were to provide strong foundational contributions to the real-

time fire monitoring problem from a computing standpoint. Although the current system is not 

immediately field-ready, the following work shows recent advances towards a future where real-

time fire monitoring may indeed become a beneficial tool for strategic firefighting. Figure 5-1 

shows the proposed inclusion of a data-informed fire-monitoring system for providing feedback 

to the incident commander about the status of the fire. In the traditional firefighting approach, an 

improvised response must be taken at the scene of the fire event where very few details about the 

fire are available. In the present study, a real-time fire monitoring system was designed to use 

sensor data at the scene to provide more information about the fire status inside the building with 

the goal of augmenting the improvised response with data, computation, and visualization. 

 

Figure 5-1: The use of data measured at the scene of the fire event could provide an informed response using 

real-time computation augmented with the traditional improvised response 

 In the natural sciences and engineering fields, there has been a considerable research 

interest in monitoring the status of dynamic environments through the use of data and real-time 

computation. Advances in real-time remote monitoring technologies have been seen in several 
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non-fire-monitoring scenarios over the last decade, such as in water-quality and environmental 

monitoring applications [3–8], building energy and building hazard monitoring [9, 10], and indoor 

air quality monitoring [11]. In some cases, these sample applications are closely related to the 

problem of monitoring fires in the built environment. For example, Tilak et al. [7] discussed some 

of the challenges of real-time monitoring in the natural environment where conditions may be 

extreme and weathering becomes an issue for long-term monitoring. This problem exists in the 

fire monitoring arena as well, where extreme temperatures, lack of durable wireless technology, 

and toxic conditions make data collection difficult as the normal ambient conditions deteriorate 

during a fire. 

 Real-time monitoring of wildfires is a combination of the environmental application with 

the primary hazard of interest in current study, i.e., building fires. Several researchers have used 

WSN for the wildfire application, such as the system presented by Doolin and Sitar [12], which 

collected temperature, relative humidity, and barometric pressure at the scene of the wildfire event 

to track its progression over time. Additionally, work by Zervas et al. [13] brings multi-sensor data 

fusion to the wildfire monitoring field as well, also relying on a WSN but now including vision 

sensors. Yu, Wang, and Meng [14] applied a neural network approach with in-network data 

processing for real-time forest fire detection and forecasting. The method relies on using a larger 

number of cheap sensors densely distributed throughout a forest region. However, the use of real-

time monitoring techniques during firefighting within buildings has been difficult to implement 

and adopt on a large scale and has unique challenges compared to wildfire monitoring, including 

standards of firefighting practice. 

 Specifically, for the case of fires in buildings, Jiang et al. [15] developed a context-aware 

computing system, which was designed to integrate real-time fire data from both static and 
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dynamic environmental sensors carried by individual firefighters into the building for exchanging 

information between firefighters. Their platform, called Siren, used a peer-to-peer distributed 

architecture designed for mission-critical search-and-rescue procedures. The system provided 

context-aware warnings to individual firefighters at the scene of the fire event. Recent work by 

Takahashi et al. [16] aimed to provide firefighters with wearable technology for recording species 

concentrations and measurements of the particulates in the atmosphere during the overhaul phase 

(i.e., post-fire). Sha, Shi, and Watkins [17] demonstrated an example of this in the area of fire 

rescue. Their system, named FireNet, was designed as a WSN in which each individual firefighter 

was part of the network and broadcasted their local information to a main computer located with 

the incident commander. Lim et al. [18] proposed a framework which can detect fires quickly and 

support rescue activities using a WSN. They implemented a testing version and evaluated the 

performance via experiments with the intent of applying this technology to situations involving an 

outdoor public space, such as the case of a fire at a large public bus station. 

 Fire monitoring and fire detection are closely related topics because they involve the use 

of sensors to gather data and make decisions regarding the environmental conditions. The idea for 

using multiple fire parameters for fire detection is not a novel concept. However, using similar 

measurements beyond the detection of a fire was the basis for the current study. Multi-

sensor/multi-criteria methods often include measurements of smoke, temperature, species 

concentrations, and possibly other signatures to determine the presence of a fire. Many researchers 

have focused on developing the logic used to detect the critical event of fire ignition [19–26]. For 

example, Chen et al. [26] developed a fire alarm algorithm which used rate-of-increase values to 

define the rate thresholds for detecting a fire based on measuring smoke, carbon monoxide, and 

carbon dioxide. All of these approaches use some combination of thresholds, rates-of-increase, 
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and additional logic, and a few employed neural networks for the fire-detection problem. New 

research using video monitoring has expanded the use of camera technology to aid in the detection 

problem as well [27–29]. 

 For the current study, the research aimed to provide a building information modeling (BIM) 

–based visualization tool by integrating real-time fire monitoring data with three-dimensional 

models. Hajian and Becerik-Gerber [30] provide several inspiring points for the current work. In 

particular, the idea of updating the BIM with real-time data extends the application of BIM from 

construction stages into the occupancy stages of the building lifecycle in terms of continuity of 

use. Integrating real-time field data into BIM offers an exciting new opportunity for the 

Architecture, Engineering, and Construction (AEC) industry to use BIM beyond the construction 

phase [30].  

 Chen et al. [31] used real-time sensor data in BIM, where once again it was noted that 

current models in BIM are useful during construction but then are left static beyond the 

construction phase. Bringing BIM into use for dynamic evolution of the building status to present 

real-time building information could be beneficial to building managers during the lifecycle of the 

building, not just during construction, and then potentially for use by the responding fire 

department in the event of a fire. This particular case study by Chen et al. [31] focused on a de-

icing system for a bridge deck; the real-time data was used to assess the state of the bridge deck 

under various climate conditions as the environment changed over time. Additionally, Chen et al. 

[32] discusses the concept of “bridging BIM and building” (BBB) and highlights a growing interest 

in the idea of bringing BIM into the building management phase as well. Furthermore, Rueppel 

and Stuebbe [33] presented a BIM-based navigation platform for emergencies in large buildings. 

In the extensive review by Volk, Stengel, and Schultmann [34], the use of BIM in the context of 
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building assessment, management, and even monitoring are mentioned. For example, several 

applications in the setting of monitoring and performance measurement through the use of sensors 

are presented. These examples serve as a motivation for the potential to bring fire monitoring into 

this application of BIM as well, specifically in the post-ignition fire state of the building. 

 The primary objective of the current study was to create a real-time fire monitoring system 

to integrate measured sensor data, simulation sub-models, and visualization tools into a 

comprehensive package for delivering actionable information to the responding fire department 

during a live fire event. This included the development of the foundation for a real-time fire 

monitoring software and its sub-components using a distributed architecture (in this case, two 

workstations in the research lab). In Fig. 5-2, the high-level architecture shows the three main 

components of the system: (1) data collection at the scene of the fire event, (2) data coordination 

and subsequent computation at the central computing workstation, and finally (3) visualization 

through the use of BIM and live graphs. The goal was to use multiple fire signatures which could 

be collected at the scene of the fire event. For testing the proposed system, sensor simulators for 

pushing live data to the fire-monitoring system were used. Thus, in the lab environment, the sensor 

simulator and computing workstation were hosted on one machine (Ubuntu 14.04) and the 

visualization components were hosted on a second machine (Windows 7) to provide this 

distributed system.  

 

Figure 5-2: A three-component view of the major features used for real-time fire monitoring; data is collected 

within the building during the fire event and used for computation and visualization in the proposed system  
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 The system was designed for the integration of sub-models into the system, such as a new 

event detection model presented here, and with the flexibility to include additional features such 

as an inverse fire model [35] in the future. This required the development of the event detection 

model for determining updates to the fire status based on measured data from sensors and 

computed data from the sub-models. The integration of these sub-models was performed such that 

the process can be replicated for the inclusion of future models, thus lending flexibility and 

extensibility. Communication between the simulated sensors, sub-models, and main computing 

controller was provided through the use of Lightweight Communication and Marshalling (LCM) 

[36], which handled data transfer between models through the use of message-passing. This work 

included the design of methods for visualization of measured and computed data that are easy to 

interpret and informative in showing the progression of the fire in a building in real-time. BIM 

was used to showcase the potential for using data visualization in the fire monitoring application, 

but only as a playback feature for the current study.  

 The distributed architecture was chosen in anticipation of the desired use-case: field data 

collected at the fire scene (sensors) followed by data coordination, simulation, and other 

computation performed at a stationary location (computing workstation), and finally remote 

visualization received by firefighter or incident commander (laptop or some other mobile device). 

In various studies, multiple fire signatures have been used for determining the existence of a fire 

in a building. Extending this concept to the post-ignition state and measuring features such as 

temperature and oxygen concentration during the fire event can provide us with predictions of the 

heat release rate and several other important fire parameters. The newly developed event detection 

model uses the measured fire signatures and computes useful information for the visualization 

device in real time. The visualization tool for showing the progression of the fire in the building 



105 

 

would allow the responding fire department to receive time-sensitive information about the fire as 

an easily readable graphical representation of the status of the fire. 

 

5.2 LCM-Based Computing Infrastructure  

 The framework for wireless sensing in a fire rescue scenario presented by Lim et al. [18] 

details some of the most important requirements of a robust fire-monitoring system; specifically, 

they have noted fault-tolerant communication, low latency, remote management, and reuse of 

collected information as the main priorities for their system. These requirements are applicable to 

the present work as well. The integration of measurements from sensors with computing tools for 

real-time simulation and detection, and a scalable and efficient computing platform are also 

necessary. To this end, a distributed cyber-infrastructure customized for firefighter decision-

making was developed to provide a computing framework employing the message-passing 

capabilities of the LCM library [36]; an overview the proposed system is illustrated in Fig. 5-3, 

which includes the first two nodes of Fig. 5-2 and excludes the visualization component.  

Originally developed for robotics applications, LCM allows for low-latency message 

passing between applications, which, in the context of fire monitoring and visualization, would 

include connecting live data streams with various sub-models. In the current study, using simulated 

sensor data, each virtual sensor was connected to the main monitoring system through the use of 

individual data channels. LCM was used to provide this connection and to simulate the 

transmission of field-measured sensor data from the fire to an off-site server performing the 

computational work. On the right side of Fig. 5-3, the event detection model is shown as receiving 

data from the main fire monitoring program. Additionally, extra models can be connected in a 
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similar manner; the main program in the computing server controls the flow of data by directing 

new measurements from the sensors to the appropriate sub-models for further specific calculations.    

 At the core of the proposed system is the LCM message-passing network, which is a set of 

libraries that facilitate the interaction of various simulation modules through the use of consistent 

data structures. In LCM, messages are communicated between applications using these consistent 

data structures and communication is performed by transmission over pre-determined channels. 

For example, in Fig. 5-3, the various ribbons connecting each sensor to the central computing 

program are colored differently to visually represent these unique channels. Sensor i will only send 

messages on the SENSOR<i> channel and the main program will only expect to receive data from 

sensor i on this same SENSOR<i> channel by subscribing to the channel of each sensor and receiving 

new data whenever it is published by the sensors. The coordination of channel assignments and 

the publish/subscribe processes were all handled automatically in the system. This was provided 

by carefully establishing channels for the data to be transmitted between components of the system 

and determining in advance which data must be sent to each sub-model. This same approach of 

publish/subscribe is used to communicate between the main fire monitoring program and the sub-

models as well. 
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Figure 5-3: Overview of the proposed LCM-based monitoring system for real-time fire monitoring; the 

various colors of the links between different system components represent unique channels of communication 

in the LCM framework 

 One key feature of this system is the ability to use LCM with applications developed in 

various programming languages. For example, the main program for coordinating the 

computational work was implemented using Python and the event detection model is built from 

C++ source code. LCM provides the flexibility to use common data structures among these various 

components with ease: to employ a particular language-specific data structure, the necessary 

programming languages are supplied at compile time using unique compiler flags for each 

communicating component (a standard feature of the LCM library suite). Then, LCM compiles the 

agreed-upon-data structure for each language-specific application’s use during the simulation. 

Since Python is not a compiled language, this step consists of LCM automatically preparing the 

corresponding class containing the necessary member attributes.  

 Thus, only one LCM file describing the contents of the data package in a C-style structure 

is needed for defining a common data type between two models built from dissimilar languages. 

For example, to send a scalar variable such as temperature from the main fire monitoring program 
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to the event detection model for a particular sensor, one LCM file template must be created 

declaring temperature as a double precision member variable of the structure (a C-style struct) 

named, for example, send_to_edm for sending data from the main program to the event detection 

model. Both the main program (Python) and the event detection model (C++) are able to access 

the contents of a message sent from one to the other which is of this data type (send_to_edm). This 

is accomplished using both the Python and C++ compiler flags to compile the C-style LCM file 

prior to the simulation.  

 In Fig. 5-3, the Sensor class is shown to contain the private variables associated with one 

particular sensor in the system. Simulation of the sensor data is described in the following section, 

but the information in Fig. 5-3 serves to show which physical quantities are related to each sensor. 

A corresponding LCM data file is necessary for transmitting the variables from the sensors to the 

main computing program and then on to the sub-models, as mentioned previously. The C-style 

struct used for this purpose is shown in Fig. 5-4, where this derived data type is used as the 

common interface between two different components (i.e., between the sensor simulator and the 

main program as well as between the main program and the event detection model later).  

package sim_sensor; 
struct sensor_data 
{ 
  int16_t  sensorNum; 
  double sendTime; 
  double temperature; 
  double O2conc; 
  double COconc; 
  double CO2conc; 
  double   HCNconc; 
  double heatFlux; 
} 

Figure 5-4: The LCM data structure used as a common data type between the main monitoring program and 

the event detection sub-model (file sim_sensor.lcm) 
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import lcm 
import select 
from sim_sensor import sensor_data 
#========================================================== 
# FUNCTION TO HANDLE NEW INCOMING DATA 
  def edm_handler(channel, data): 
    msg = sensor_data.decode(data) 
    newSensorData.sensorNum = msg.sensorNum 
    newSensorData.heatFlux = msg.heatFlux 
    # ... continue for all variables in the sim_sensor.lcm 
#========================================================== 
# MAIN PROGRAM 
  lc = lcm.LCM() 
  newSensorData = sensor_data() 
 
  # subscribe to all sensor channels 
  for i in range(0, NUM_SENSORS): 
    lc.subscribe("Sensor" + str(i), edm_handler) 
 
  # main time loop 
  while ("on"): 
    # check if new msg was sent via LCM using "select" function 
    rfds,wfds,efds = select.select([lc.fileno()],[],[],timeout) 
 
    # if new msg received, then decode data and send to EDM:   
    if rfds: 
      lc.handle() 
      lc.publish("EDM_CHANNEL", newSensorData.encode()) 
      # check if sensors are still "on" 
Figure 5-5: Abbreviated version of the main fire monitoring program main_rtfm.py 

 Figures 5-5 and 5-6 serve to represent the basic components of the main fire monitoring 

program and the event detection model. The important component of these two abbreviated code 

samples is the import and #include statements in Fig. 5-5 and Fig. 5-6, respectively, which 

provides access to the LCM library and the compiled LCM data structure shown in Fig. 5-4. With 

this data type available to both applications, data between the two dissimilar programs (Python 

and C++) can be easily exchanged using LCM to publish and subscribe messages on specific 

channels. Additionally, both programs shown here rely on the select function to continuously 

monitor for incoming messages passed via LCM. This allows for nearly immediate processing of 

incoming data (for either the main program or the event detection model) as opposed to a polling 

approach in which each component requests new data at a pre-defined frequency. Data measured 
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from the sensors is stored in the private variables of the Sensor class objects in the event detection 

model such that when new data is available for sensor i, the variables are updated immediately 

upon receipt in this sub-model. The member functions for assessing the individual fire hazards are 

discussed in Section 5.4 and more details about the development full fire-monitoring system from 

a software engineering perspective can be found in Appendix A of the dissertation.  

#include <sys/select.h> 
#include <lcm/lcm-cpp.hpp> 
#include "sim_sensor/sensor_data.hpp" 
//========================================================== 
#include "DataHandler.h"    // custom class to handle LCM data 
#include "Sensor.h"         // custom class storing sensor data 
//========================================================== 
// (the following is inside the main EDM program) 
 
// initialize Sensor class objects with ID number 
Sensor sensorArray[NUM_SENSORS]; 
for (int i = 0; i < NUM_SENSORS; i++) 
  sensorArray[i].setID(i); 
 
// main time loop (exit criterion not shown) 
while (1) 
{ 
  // use "select" func. to check if new data arrived (not shown)  
  if ("new_data") 
  { 
    lcm.handle(); 
    // update data for each sensor in Sensor class (not shown) 
     
    // check each fire hazard at current sensor: 
    i = currentData.getSensorNum(); 
    smokeToxicity[i] = sensorArray[i].checkSmokeTox(); 
    burnThreat[i] = sensorArray[i].checkBurnThreat(); 
    fireStatus[i] = sensorArray[i].checkFireStatus(); 
     
    // write results to csv output file (not shown) 
  } 
} 

Figure 5-6: Abbreviated version of the main event detection model program main_edm.cpp 

 

5.3 Data Collection for Fire Monitoring 

There are several household devices which individually collect data on the status of the 

indoor environment: smoke detectors, carbon monoxide detectors, smart thermostats, and indoor 
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air quality sensors, to name a few. While not every home has all of these individual features and 

while there may not be an all-encompassing technology for collecting all these potential fire 

signatures and indicators in one device, yet the ability to monitor multiple features of the indoor 

climate in ambient conditions has increased within the last decade. Mainstream adoption of indoor 

environment-monitoring technology, such as the Nest Labs smart thermostat (www.nest.com) and 

the use of home security systems, appears to be a positive trend towards a future of increased 

monitoring capabilities. These features of the indoor environment related to comfort (ambient 

temperature), air quality (oxygen concentration, carbon dioxide, and other measurements of 

airborne species), and hazard (carbon monoxide, extreme temperature, smoke) may also be useful 

measurements for analyzing the evolving state of a fire during the post-ignition conditions in a 

structure. Many of these parameters could function as the input for a multiple-parameter fire-

monitoring system intended for tracking the fire status as it progresses and potentially spreads 

among several rooms. 

The specific sensor measurements used in the computational framework presented in this 

chapter are the gas temperature and radiative heat flux at the ceiling, as well as the species 

concentrations of oxygen (O2), carbon monoxide (CO), carbon dioxide (CO2), and hydrogen 

cyanide (HCN); these are the six fire signatures used in the following sections. The basis of the 

real-time fire monitoring system presented in the current study is the assumption of such a future 

sensing technology which is capable of monitoring several conditions of the indoor environment 

and treating the data as fire signatures, for example, these six mentioned here.  

The challenges of sensor measurement in extreme conditions such as fire are a known 

reality and an expected obstacle to real-time fire monitoring. The accuracy of instruments may be 

affected in high-temperature scenarios. This difficulty is faced in the experimental setting with 

http://www.nest.com/


112 

 

thermocouples and flux gauges and some of the problems have been discussed in other works as 

well. For example, Silvani et al. [2] discusses the issues with data losses and time delays using 

WSN in a forest fire monitoring application. In their study, which employed 2010 mote technology 

in the field, data transmission problems (losses) for sensors near the flames were potentially caused 

by the microwaves at the fire source. However, a key feature of a robust WSN is the resilience 

property [2], which is the ability to reroute information to avoid damaged sensors. Such a feature 

would also be necessary to help mitigate these potential hardware problems in the building setting. 

 In many experimental tests involving small-scale or full-scale fires, researchers have the 

ability to use multiple devices for data collection including several thermocouple trees, heat flux 

sensors, infrared cameras, and a variety of other useful tools for measuring the key features of the 

fire experiments. For example, in the tests conducted by Cowlard et al. [1], over 400 sensors were 

used to instrument a compartment. While not every experimental test has this level of 

instrumentation, the reality is that experiments allow for the use of multiple sensors and data 

acquisition systems. For the research setting, this is necessary and expected; however, even with 

the growing use of smart technology in the home, the ability to monitor in a residential setting is 

currently limited to approximately one device per room. For example, a traditional rule of thumb 

is to have one smoke detector for each room of the house and some families may be able to afford 

an additional CO-detector in the living room or dining room. 

 Smoke alarms and some CO-detectors can be used to determine whether a fire has started 

while reducing the possibility for false alarms. For those devices, and others with similar 

functionality, the goal is to decide if a fire exists and then provide an alarm if necessary. The hazard 

timeline is an important consideration in the post-ignition fire state in a building. Initially, 

everything in the building is in a normal ambient condition and there should only be acceptable, 



113 

 

trace levels of the other species concentrations in the air. An alarm would sound and the fire 

department would be notified in the event of a fire being detected by existing sensors, which may 

be indicated by smoke or temperature or some other measurement. 

 The period of interest for the current study is the post-ignition state after the first fire alarm 

has already sounded. Figure 5-7 highlights some of the main features of the fire progression and 

the focus on the post-ignition fire state in this chapter. The work presented was not designed to 

detect the presence of a new fire, but rather to assess the rooms of the building during the fire for 

use by the firefighters in making decisions about where to act, when to evacuate, and how to avoid 

dangers and prioritize aid, in general. 

 

Figure 5-7: The timeline of progression of a fire in a building; the aim for the current work is to provide a 

monitoring tool for the post-ignition state 

For the purposes of the current study, it was necessary to simulate the behavior of multiple 

sensors measuring data from their location in the test building to the main program. The n-sensor 

model was based on the assumption of the use of one sensor per room in all monitoring simulations, 

thus providing for the case of an n-room monitoring scenario. To send data at regular, but not 

perfectly timed, intervals, a simple sensor program was developed in C++ to map n sensors to n 

threads in a parallel manner. Using the OpenMP library for C++ [37] allows the simulation to 
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employ as many sensors as are needed for the multi-room monitoring case. The parallel directives 

of OpenMP were used to split the program into n similar threads, each responsible for reading 

from their designated data file. These data files were pre-populated with time-series data for 

simulating newly measured fire signatures. For the current monitoring purposes, a typical data file 

was created as file<i>.csv, where the i corresponds to the sensor/room number such that the 

thread with a process ID value of i should open, read, and send the data in the ith data file. In order 

to use, for example, four rooms in a test of the monitoring system, it was necessary to prepare the 

four corresponding data files with six columns corresponding to each of the six fire signatures 

mentioned earlier. From a hardware standpoint, this simulation of data was strictly related to the 

physical values (temperature, heat flux, etc.) as opposed to sensor signals (voltage, etc.); therefore, 

there was no provision of data conversion, signal processing, or calibration needed for these 

idealized sensors.  

 In addition to providing a unique data set to each sensor, every thread runs independently 

to simulate asynchronous message passing to the main monitoring program; this main system using 

the LCM-based infrastructure was described in detail in the previous section. The sensor 

simulation was accomplished using “wait” function called usleep between every pushed message. 

All the sensors in the model have a specified nominal frequency, fnom. However, if the nominal 

frequency was 1.0 Hz, instead of pushing data packages every 1.0 seconds, the wait function 

delayed the message by a random but bounded amount. In the following equations, fnom and z were 

specified as input for the group of sensors. The resulting nominal period, Pnom, for sending 

messages was simply the reciprocal of the nominal frequency:  

 
nom

nom
f

P
1

  (5.1) 
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The delay bound, z, was specified as a percentage of the nominal period in order to compute a 

maximum and minimum possible delay in sending: 

 

nomPzP  )0.1(min  

nomPzP  )0.1(max  

(5.2a) 

(5.2b) 

The waiting time, or the time between publishing two messages from the same sensor, was 

computed by taking a random number in the interval (Pmin, Pmax) from the uniform distribution. 

Specifying z as, say, 20% would lead to message-send waiting times within the interval of (0.80, 

1.20) seconds for the nominal frequency of 1.0 Hz mentioned earlier. The random number is drawn 

from this interval for every time step of the simulation and is unique to each sensor (i.e., to each 

thread). This waiting scheme was used to intentionally slow down the sensor message-sending, 

since the program is able to read from the data files much faster than 1.0 Hz, for example.  

The concept of asynchronous message sending is shown in Fig. 5-8, in which the nominal 

times and actual message times are illustrated. As part of the control in the main monitoring 

program, the user is able to launch the sensor-array from a simple menu before starting the 

simulation. Messages containing new data from the sensors may be sent either before or after the 

nominal time and in any order; they are all received and handled by the main program. Data from 

the simulated sensors was packaged and sent to the main program using LCM for message passing 

within the same machine: this is the lab-environment equivalent of measuring fire signatures and 

transmitting the data from a WSN in a real-world application. More information about the 

communication between sub-models is described in the following sections, as the details of how 

these asynchronous data packages are transferred from the sensor program to the main program is 

left out for now. The message passing from individual sensors to the main computing program 

represents a non-blocking send, meaning the sensor simulator does not wait for confirmation from 
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the recipient: data is pushed from the sensor immediately after its random delay described 

previously.  

 

Figure 5-8: The multi-threaded model for simulating multiple sensors with nominal time steps listed on the 

timeline to the left; each sensor is mapped to its own thread which accesses its own unique data file to read 

and push new data to the main monitoring program using an LCM data structure 

 

5.4 Event Detection Model 

This component of the research aimed to provide methods for determining key fire events 

from measured data collected by sensors. Thus, one of the primary objectives was to use detection 

methods that are efficient and reliable such that key information may be extracted in real time. In 

the post-ignition monitoring setting, sensitivity to nuisance sources is less of a concern than 

determining real threats efficiently and early enough to provide sufficient lead time in decision 

making. To achieve this objective, deterministic event detection methods were developed based 

on existing data and practices used in fire safety to maximize the available knowledge about the 
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fire progression without hindering the necessary work of firefighters. Methods for event detection 

were developed and implemented to specifically detect the following three hazards: 

1. Smoke toxicity based on the composition of gases 

2. Burn threats to building occupants and firefighters 

3. Fire status, namely, potential fire spread and impending flashover conditions 

 Using thresholds (i.e., set points and rates of rise) to detect fire events is a deterministic 

approach that is commonly used in fire detection. While there is a possibility for false alarms, 

thresholds are well-suited for instances in which a large enough dataset does not exist yet to allow 

neural networks to be formed (i.e., in the work by Jones [25]). Given the limited amount of data 

available during the developmental phases of the proposed monitoring system for training such a 

neural network algorithm, the present research focused on establishing set points and/or rates-of-

rise for temperatures and species concentrations that indicate smoke toxicity, burn threats, and the 

measure the status of the fire. Additionally, methods from fire safety engineering were used in 

real-time computation to assess the progression of certain threats (smoke toxicity and burn threats, 

specifically). In particular, the Fraction Effective Dose (FED) was used for instantaneous 

assessment of smoke toxicity and burn threats in the monitoring setting [38]. Note that these 

methods serve as a form of live data evaluation for remote monitoring purposes as opposed to 

using the measurements for true fire forecasting. 

 The thresholds were established based on relevant literature and existing experimental data. 

The event detection methods used here were tested in simple verification cases as well as realistic 

simulated fires using Fire Dynamics Simulator (FDS) [39]. In this section, one verification case is 

presented, which uses sample data from the Society of Fire Protection Engineers (SFPE) 

Handbook [40]. The final example provided at the end of this chapter demonstrates the use of the 
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event detection model in a real time simulation and in conjunction with the other components of 

the system described throughout the chapter. 

 With previous technology developed for detecting the presence of fires through various 

fire alarm algorithms presented in the literature, there are existing common thresholds for the 

present monitoring needs highlighted by this study. Recall that the proposed monitoring system 

has been designed to measure the fire signatures of temperature [°C], heat flux [kW/m2], and the 

concentrations of four gases: oxygen (O2) [%], carbon monoxide (CO) [ppm], carbon dioxide 

(CO2) [%], and hydrogen cyanide (HCN) [ppm]. The guiding principle for the development of an 

event detection model can be stated as follows: based on raw sensor data measuring these particular 

parameters, determine whether a threshold has been reached for either a raw data point (i.e., 

temperature at a particular time) or a computed value (i.e., the cumulative FED for smoke 

inhalation at a particular time) and assign a warning level for each hazard. From these numerical 

evaluations, we can establish logic for issuing warnings and providing feedback from the 

monitoring system to a visualization component as well.  

 These methods were intended to track the status of the fire as it progresses in the building. 

While many approaches have been used in the detection of new fire events, the methods used here 

aimed to extend detection into the post-ignition state such that the hazards mentioned be assessed 

as the fire evolves. The details of the event detection model follow for each of the three hazards. 

Additionally, the connection between the output of the event detection model and the visualization 

component will be described in Section 5.5 on visualization using BIM.  

 These methods were implemented as a C++ program in which each unique sensor was 

represented by its own object from the Sensor class. Each sensor (assuming one per room, as 

described in the previous section) is responsible for performing its own calculations to determine 
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if a particular hazard threshold has been reached.  For example, at every instance that data is 

received in the event detection model, the Sensor object will automatically check its own private 

variables, say, to compute smoke toxicity, using a particular member function for each hazard and 

then return the warning level as an integer which is stored for output to the visualization device: 

smokeWarning[i] = sensorArray[i].checkSmokeTox(); (for the sensor i in the simulation, located 

in room i). The other two member functions are checkBurnThreats() and checkFireStatus(); 

each hazard may return an integer warning from the set {0, 1, 2}, as described next, where each 

level corresponds to a different severity of effect. 

 

5.4.1 Hazard 1: Smoke Toxicity 

 Smoke toxicity has been seen as the cause of death for building occupants on many 

occasions. One way that it is understood is in terms of the concentration and exposure time which 

leads to either incapacitation or death. Alaire [41] discusses, for example, oxygen depletion in 

terms of what was observed in blood samples from autopsies of fire victims. This concept of blood 

concentration is useful in quantifying the effects of exposure to harmful gases. For example, in the 

case of CO, four minutes of exposure results in about 40% carboxyhemoglobin (COHb) in the 

bloodstream leading to incapacitation due to the CO binding with the hemoglobin in the blood 

[40]. But for the purpose of real-time monitoring of smoke toxicity levels, it is necessary to 

translate this information into engineering parameters for tracking human exposure during the fire 

event: something that has been established through the use of FED in the past.  

For the current study, toxicity levels were monitored using measurements of CO, CO2, 

HCN, and O2 (depletion of O2) based on limits that are linked to smoke inhalation incapacitation 

and death. According to the study by Alarie [41], if oxygen levels in the room of origin reach less 
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than 7%, then this will become a primary cause of local incapacitation and death. However, such 

low oxygen levels usually accompany very hot smoke which would cause skin surface and 

systemic hyperthermia to become major factors as well. Low oxygen levels plus extreme heat are 

fast-acting and principal factors leading to incapacitation and death [41]. Since burn threats due to 

such high-intensity heating represents another hazard altogether, they were handled in the 

following subsection. 

 Due to the nature of the hazard of smoke inhalation, checking thresholds instantaneously 

does not sufficiently capture the time of exposure to such harmful gases. Thus, the Fractional 

Effective Dose (FED) methods were implemented to assess each room in the building for smoke 

hazards [38], but in real time for this application. FED has been used in other applications as well, 

including smoke visualization [42],  path safety evaluation [43], fire simulation software such as 

FDS [39], evacuation planning based on GIS [44], and in research related to testing materials for 

smoke toxicity [45]. In recent years, Xu et al. [42] used FED in their definition of smoke hazard 

as part of a virtual reality tool using smoke visualization and evacuation pathfinding. FED has 

been used in various applications of fire safety and even visualization, but is not normally found 

in the real-time monitoring space. 

 While these expressions for FED that follow were designed for unprotected human 

exposure based on testing with rodents in the laboratory setting [38], there is still value in using 

these calculations for warning firefighters as well, even though personal protective equipment in 

a typical firefighting scenario can be expected. Using these FED indicators in real-time, though, 

can help provide assistance in assessing the smoke toxicity dangers with early warning, which 

could also improve decision-making for rescue applications of trapped building occupants or 

simply for avoiding severely toxic regions altogether if full evacuation was assumed. 
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The FED is typically used to determine the increasing threat due to exposure to toxic gases 

over time during a fire event. It is based on the concept of taking a summation of several 

consecutive, short, transient “exposure-doses” of harmful gases relative to known threatening 

levels of these gases. The basic equation for computing the FED is shown in Eq. (5.3) below: 
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In the equation, the summation includes the instantaneous concentration Ci and the short time 

interval Δti over which that concentration was measured. The denominator holds the limiting value 

of the total exposure-dose (Ct)max required to cause a reaction in 50% of the occupants. When the 

summation reaches a value of 1.0 at some point during the summation, the threshold has been 

crossed and the particular reaction is expected in 50% of the human population (where the reaction 

thresholds are typically incapacitation and death).  

The SFPE Handbook [40] as well as the FDS User Guide [39] provide us with the details 

of the empirical formulas that are used to assess smoke toxicity: specifically for irritants using the 

Fractional Lethal Dose (FLD) and asphyxiants using the FED. The primary equation for assessing 

smoke toxicity using FED was presented in the SFPE Handbook as follows: 
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The instantaneous FED at time ti can include multiple gases, as indicated in Eq. (5.4) above. In 

particular, carbon monoxide (CO) was one of the gases considered: 

 t
D

V
COFEDCO   036.15 ][)10317.3(  (5.5) 

The concentration of carbon monoxide is measured in units of ppm and is given by [CO]. The V 

term represents a breathing volume rate measured in units of L/min and has the following 

associated values: 8.5 L/min for resting or sleeping, 25 L/min for light work (which is typically 
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used and equivalent to walking to a fire exit), and 50 L/min which represents slow running or 

walking up a staircase [40]. The limitation is found in D, which represents the exposure-dose of 

COHb required for incapacitation (30% is default). Finally, the time step is defined as Δt = ti – ti-1 

(in minutes), which is the difference between the last two time steps received by the event detection 

model in this case.  

 Additionally, the effects due to hydrogen cyanide (HCN) were also considered: 

 t
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This formula is used in the SFPE Handbook and differs slightly from the FDS version in the 

calculation of FED. In this equation, the direct concentration of hydrogen cyanide is not used. 

Instead, the concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) must be subtracted 

first: [CN] = [HCN] – [NO2] – [NO] (all in units of ppm for this equation). Irritants such as NOx 

gases, hydrochloric acid (HCl), hydrobromic acid (HBr), hydrogen flouride (HF), formaldehyde, 

and acrolein may also exist within buildings during real fire events and they are handled in the 

SFPE Handbook. However, in the current study, none of the NOx gases nor any other irritants were 

measured or used in the simulations. As a result, [NO2] = [NO] = 0 and consequently the value of 

FLDirr in Eq. (5.4) is also zero.  

 Another important contribution in Eq. (5.4) is the hyperventilation factor, which serves to 

increase the occupants’ potential consumption of toxic gases during extreme conditions 

experienced during the fire: 
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Here, carbon dioxide [CO2] is passed into Eq. (5.7) in units of volume percentage. Similarly, 

oxygen depletion is handled in the final term of the FED equation given in Eq. (5.4): 
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Equations (5.4-5.8) were used in the event detection model to compute the FED of the smoke over 

time in the simulation. 

 Relating computed values to the warning levels for fire monitoring in this component of 

the model, FED > 1.0 corresponds to warning Level 1. If the oxygen percentage decreases to 7%, 

the warning is incremented by one as well (i.e., to Level 2). This limit of 7% is not checked in the 

FED (explicitly), but it is associated with rapid deterioration and death in previous fire events [41] 

and is thus included as another criteria for assessing the hazard level. Therefore the possible 

outcomes are warning levels in range of {0, 1, 2} as implemented here in the event detection model 

for smoke toxicity.  

 

5.4.2 Hazard 2: Burn Threats 

Burn threats are another concern for firefighters, even when shielded by personal protective 

equipment [46]. Burn threats were detected by monitoring critical temperatures and heat fluxes to 

bare skin. Additionally, extremely low oxygen levels usually accompany very hot smoke which 

would cause skin surface and systemic hyperthermia to become major factors as well [41]. Lawson 

[46] gives skin temperature values for human tolerance to burning, such as second degree burns 

occurring when the skin reaches 55°C. Also, skin is uncomfortable at 44°C and first-degree burns 

start at 48°C for reference. Naturally, there is a time component to this exposure as well, just as in 

the case of exposure to toxic gases. A 30-second exposure to 4.5 kW/m2 will cause second-degree 

burns to human skin; thus, a person standing within 6 m of a 600-kW fire for 30 seconds would 

likely receive a second-degree burn [46]. Firefighters can potentially avoid burns by limiting their 

time in high thermal radiation environments. 
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 Knowing that firefighters in the vicinity of hot flames can be affected, even if not present 

in the current room where the fire is located, there is a way to measure the “exposure-dose” to heat 

effects as well. Using the FED concept, burn threats may be assessed in real time using measured 

temperatures and heat fluxes [40, 42]. There exist empirical formulas for assessing convection and 

radiation effects based on the exposure-dose concept used for smoke in the preceding section, now 

applied to heating and burn effects for the current hazard assessment. 

In the most recent SFPE Handbook [40], the equations for time of tolerance and time to fatal 

injury are provided for convection heating as follows. 

 

7561.38963.1631 )104()102(   TTt pain

conv
 

10898.380403.918 )101()102(   TTt fatal

conv
 

(5.9a) 

(5.9b) 

From either of these equations (representing different levels of severity), we can obtain the time 

to pain or time to fatality, tconv, due to heating by convection at a particular instance during the fire 

event. From this, we can compute the instantaneous FEDconv as Δt / tconv and add it to the sum, seen 

later in an equation to follow. For radiation effects, when the radiative heat flux is greater than 2.5 

kW/m2, the equation is as follows: 
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If the heat flux is less than 2.5 kW/m2, then the expected time to pain or fatality for radiative 

heating, trad, is greater than 30 minutes. In the general form of Eq. (5.10), the numerator is 

represented by a constant value: r. There are various values of the r constant for different levels of 

severity [40]. The values of 1.33 and 16.7 seen in the numerators of the Eq. (5.10) represent two 

limits of pain tolerance (1.33) and third-degree burn (16.7) thresholds. These two values were 
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selected as the lower and upper limits, respectively, of the monitoring system for issuing visual 

warnings in accordance with the empirical equations.  

The combined effects of convective and radiative heating are seen in the FED equation for 

heat exposure: 
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The calculation in Eq. (5.11) was performed for each of the two levels, namely pain and fatality, 

from Eqs. (5.9-5.10) earlier. To translate these computed values into the desired warnings at an 

instant in time, if the pain tolerance version of the cumulative FED value in Eq. (5.11) reaches 1.0, 

then the warning is incremented by one. If the next threshold for fatality is reached, the warning is 

incremented by one again. In this approach, the lower bound pain tolerance threshold will be 

crossed first and then the more severe fatality threshold may be reached later as the conditions 

worsen for each individual room. The possible outcomes for warning levels are thus {0, 1, 2} for 

the burn threat model at any given time of the monitoring scenario.  

 

5.4.3 Hazard 3: Fire Status 

The goal for defining this hazard was to determine the fire status based on measurements 

of temperature and heat flux from the sensors and to assess whether flashover is impending. 

Naturally, fire spread and flashover are two main concerns in firefighting [47–50]. Flashover has 

been characterized from temperature and heat flux data (as shown in previous research [47, 51]) 

obtained from several experimental studies.  

 Recent work by Jones [25] presented a study using neural networks for determining the 

presence of fires as the main focus, but it also provides information on some traditional thresholds 

used for detection as well. In particular, typical values of set points and rate-of-rise criteria for 



126 

 

determining the presence of a fire (using single-point measurements) were provided. While many 

multi-criteria algorithms exist for detecting the presence of a fire in a building, it may not be 

appropriate to use measurements of species concentrations, for example carbon monoxide, as a 

fire-status indicator during the post-ignition state due to the potential for increased amounts of 

toxic combustion gases in the building atmosphere during this period. Thus, in order to assess the 

fire status in each room of the simulation, sensor measurements of temperature and radiative heat 

flux were isolated for this purpose.  

 The first warning level for the fire status hazard corresponds to threshold values of 57°C 

for the temperature and 0.6 kW/m2 for the heat flux measured at the ceiling. The temperature limit 

was adapted from Jones’ [25] comparisons with traditional threshold values for fire detection. The 

heat flux limiting value was mentioned by Guillaume [52], where this value was the minimum 

magnitude that could be recorded by the sensors used in the experiments of that study. The reason 

for using a heat flux value in determining the potential for fire spread is that checking the 

temperature alone could lead to a detection method that is too sensitive to hot upper layer gases 

accumulating in rooms away from the fire origin. The heat flux measurement combined with the 

temperature check is intended to help better identify locations where a fire may be present, 

potentially away from the room of origin, instead of just finding hot gases (which are handled by 

the burn threats hazard computations). These two threshold values for temperature and heat flux 

represent the conditions for a Level 1 warning in the fire status hazard. 

 Traditional practical criteria for determining flashover in an experimental test usually 

includes a radiative heat flux of 20 kW/m2 measured at floor level and a temperature just below 

the ceiling of 600°C [51]. Flames coming out of open windows and doors is another experimental 

observation in flashover [53]. In studies on flashover, experimental test results from several 
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independent researchers have been collected to arrive at acceptable thresholds for engineering 

purposes; specifically, the heat flux values exceeding 20 kW/m2 at the floor of the compartment 

and upper gas layer temperatures greater than 600°C near the ceiling are common values used to 

define the onset of flashover [47, 51, 53, 54].  

The literature review provided by Liang, Chow, and Liu [53] also gives a good overview 

of additional studies which have found flashover conditions occurring with some wide ranges of 

temperatures and heat fluxes as well. While both of the related studies [47, 51] mention the 

considerable amount of scatter in the test results as well, these values for the heat flux and gas 

temperature thresholds were considered representative of the majority of the experimental studies 

reviewed. While some research has cautioned the use of these criteria in the fire monitoring 

application [1], the value offered by using threshold checks of these two flashover indicators 

(temperature and heat flux) is still reasonable in conjunction with the additional information 

obtained from the two other hazard models regarding the progression of the fire over time.  

In order to provide potentially earlier warnings of impending flashover, these traditional 

threshold values of 20 kW/m2 at floor level and temperature just below the ceiling of 600°C were 

reduced to take into consideration the flashover transition period [55]: the transition period may 

be considered in the range of 500-600°C and 15-20 kW/m2. The range of 500-600 kW/m2 has been 

used in other recent reports defining flashover as well [56]. As a result, the thresholds used in the 

event detection model for the second warning level were reduced to the lower bounds of 500°C 

and 15 kW/m2 measured at the location of each sensor. These criteria provided the definition for a 

Level 2 warning in the fire status hazard. In the tests presented in this current study, the sensor 

measurements were located on the ceiling (as opposed to the floor for the heat flux measurement). 
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The ceiling location was chosen because this is the more likely location to find an existing detector, 

such as a smoke alarm.  

 

5.4.4 Summary and Testing 

 The information in the above subsections on the individual hazards has been collected into 

one table for convenience. Each of the hazards and the corresponding warning levels is presented 

in Table 5-1. The conditions in Table 5-1 were implemented in the event detection model as 

individual member functions for each sensor (one per room) in the simulation. For each hazard, 

the warning levels of {0, 1, 2} was tracked throughout the complete time history of the monitoring 

scenario and written to an output file for post-processing and analysis. Additionally, the FED 

values were also printed to the output files.   

Table 5-1: Thresholds and conditions used to define the event detection model 

Hazard Level 0 Level 1 Level 2 

1. Smoke Toxicity Normal Air Incapacitation 

FEDsmoke > 1.0 

No Oxygen (Fatal) 

O2 < 7% 

    

2. Burns to Skin No Threat Severe Pain 

FEDpain > 1.0 

Third-Degree (Fatal) 

FEDfatal > 1.0 

    

3. Fire Status Near Ambient Potential Fire 

57°C and 0.6 kW/m2 

Flashover (Fatal) 

500°C and 15 kW/m2 

 

In order to test the implementation, data from the example in the SFPE Handbook [40] for 

computing FED was used to compare with the real-time FED results in the current study, as well 

as to demonstrate the calculation of warning levels for a simple example problem. Results are 

shown here for a single-room application in which the data provided by the example [40] was used 

as input for the event-detection model. Table 5-2 shows the input (temperature, flux, and species) 

and then Table 5-3 follows with the computed output (FED and warning levels).  
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Table 5-2: Temperature, heat flux, and species concentration input for the event detection model test based 

on the SFPE Handbook example [40] 

Time Temp. O2 CO CO2 HCN Flux 

[sec] [°C] [%] [ppm] [%] [ppm] [kW/m2] 

60 20 20.9% 0 0.0% 0 0.0 

120 65 20.9% 0 0.0% 0 0.1 

180 125 19.0% 500 1.5% 50 0.4 

240 220 17.5% 2000 3.5% 150 1.0 

300 405 15.0% 3500 6.0% 250 2.5 

360 405 12.0% 6000 8.0% 300 2.5 

 

Table 5-3: Results computed from the event detection model for the example in the SFPE Handbook [40] 

    Smoke Burn Fire 

Time FEDsmoke FEDheat(pain) FEDheat(fatal) Toxicity Threats Status 

60 0.00 0.00 0.00 0 0 0 

120 0.00 0.02 0.00 0 0 0 

180 0.04 0.20 0.04 0 0 0 

240 0.41 1.77 0.23 0 1 1 

300 2.11 19.87 1.71 1 2 1 

360 6.17 37.97 3.19 1 2 1 

 

 For comparison with the SFPE Handbook results for the FED calculations, specifically 

Table 63.22 in that document, one might notice the slight difference in the FED for smoke toxicity 

presented in Table 5-3 of the current study. The difference arises from not including irritant gases 

(HCl, acrolein, and formaldehyde) in the current event detection model. All other differences are 

due to the small round-off errors encountered when performing these calculations by hand, as 

demonstrated in the SFPE Handbook example case, versus allowing the computer to store the FED 

as a floating-point number in the current real-time application of these methods.  

 

5.5 Visualization using BIM 

 The visualization component was developed to present the results of the sub-models in a 

manner that could be useful for firefighters in monitoring the status of the fire in real time. The 

system was desired to include a component within a Bentley BIM product that will allow the user 
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to visualize live information from the fire event (specifically, in real time). It was envisioned to 

transmit the live information to an incident commander who is using the visualization interface at 

the scene of the fire event and it should transmit this information wirelessly. The system was 

designed to use a 3D representation of the building environment with transmitted information 

included in this BIM model.  

 The reality of the implementation was an approach that resulted in the ability to play back 

discrete events from the fire monitoring simulation in a BIM environment a posteriori to 

demonstrate the ability of the sub-models to deliver time-sensitive information as visual 

representations of the evolving fire scene. This project used Bentley AECOsim Building Designer 

(ABD; www.bentley.com) as the primary visualization software for this task. Due to the some of 

the constraints in the ABD software, the BIM visualization had to be handled as a post-processing 

feature, as opposed to a real-time component of the monitoring system. The use of BIM in a real-

time manner is an extension of the original purpose of this software and thus such a limitation is 

simply a reflection of the current intended use of such tools: it is not intended for transient, real-

time data applications. A clear distinction between the automated real-time components and the 

post-processing demonstration will follow. 

 The full monitoring system was specifically designed for distributed deployment. In 

particular, the computing resources to be used for simulation, calculation, and data management 

were hosted on one machine dedicated to this purpose alone (Ubuntu 14.04). This single machine 

was responsible for running the main monitoring program, which received new data from the 

simulated sensors over time and coordinated data transfer to the various sub-models. The 

visualization features presented here were hosted on a second machine (Windows 7). Information 

needed to be transmitted from the remote computing workstation to the local visualization device. 

http://www.bentley.com/
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The system used the newly developed event-detection model to produce visualization-specific 

output intended for helping to identify fire hazards. This visualization-specific output was 

generated automatically in the monitoring system contained in the computing workstation and will 

be described next. Communication between the two machines is also discussed further. 

 Real-time data visualization techniques must be adapted to allow users to rapidly interpret 

critical information and evaluate alternative courses of action. Identifying fire hazards through the 

use of visual warnings displayed in the BIM environment could provide early warning for 

impending dangers as the severity of the conditions in the building are reflected in the codified 

warnings programmed into the visualization device. Thus, from the work completed in the 

development of the event detection model, it was necessary to link the computed results to visual 

ques relating numerical data to a graphical representation for a real-time setting. To connect 

computed values from the fire monitoring system to the visualization component, a post-

processing step was added. 

The LCM-based monitoring system described in the previous section included a function 

in the event detection model to write time history data for each sensor to its own output file in a 

standard way. The output from the event detection model included the measured temperatures, 

fluxes, and species concentrations received from each individual sensor in the event detection 

model (possibly at a different frequency than the sensor data generation) as well as the computed 

values of FED and the corresponding warning levels. For the purpose of visualization, the warning 

levels {0, 1, 2} for each of the three hazards discussed in the section on event detection were used 

to generate particular visual indicators in the BIM environment. In general, for each hazard, Level 

0 is associated with no danger or concern, Level 1 indicates a potentially non-lethal threat, and 
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Level 2, the most severe, indicating immediate danger and potential fatality. These levels were 

defined in Table 5-1 previously. 

Each of the warning levels {0, 1, 2} has standalone significance in assessing the danger in 

a particular compartment. However, to avoid a problem of information overload, additional logic 

was provided to combine the resulting warning levels into an aggregated threat level. With three 

hazards and three warning levels, a potential of 27 threat combinations arises: [0-1-1], [1-2-1], [1-

1-0], etc. The logic proposed here serves to reduce these combinations to four main scenarios and 

three particular threat levels: warning (yellow), danger (orange), and severe (red). The particular 

rules used to decipher computed results follow.  

First, if any one hazard (smoke, burns, or fire) reaches Level 1, for example the cases [1-

0-0] or [0-1-0] or [0-0-1], then the threat is considered a “warning” (yellow). Second, if any two 

hazards reach Level 1, for example the cases [1-1-0] or [1-0-1] or [0-1-1], then the threat increases 

to “danger” (orange). Third, if all three hazards reach Level 1, specifically the case [1-1-1], then 

the threat increases to “severe” (red). Fourth, and finally, if any one hazard reaches Level 2, then 

the threat is escalated to “severe” (red) immediately for that room. Since the hazards at Level 2 are 

associated with fatality and flashover, as shown in Table 5-1, this hazard condition is treated with 

immediate progression to the severe threat level.   

A Python script was developed for this post-processing step. It was employed after the 

simulation of the monitoring scenario in order to develop an example of using BIM with monitored 

data. It was used to translate the event detection model output, namely the hazard levels, into three 

new threat levels for every time step in the history of the fire monitoring scenario. Next, the Python 

script converted this integer-based data for the threat levels {0, 1, 2, 3} (corresponding to 

“initial/ambient” for 0, “warning”, “danger”, and “severe” threats, respectively) into a compatible 
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format for use in the BIM setting. Specifically, schedules of tasks were automatically generated 

from the threat-level data in the form of XML files that could be imported into Bentley ABD 

directly for visualization as schedule simulation. An overview of this process is shown in Fig. 5-9 

for the relevant components of the system. 

 

Figure 5-9: The post-processing step was included for use after fire monitoring in order to create XML-based 

schedules for animation in ABD; the tasks in the schedule were automatically created using start and finish 

times of each threat level based on the event detection model output 

The playback for visualization used the Bentley animation producer for schedule 

simulation. Each of the threat levels were linked to elements in the BIM which would change color 

based on the current threat level. In particular, the floor area of each room was used as the dynamic 

material for visualizing changes in the fire-monitoring scenario (Fig. 5-10). The threat levels were 

translated to tasks in the XML schedules; this was accomplished by determining the start and finish 

times of particular threats (warning, danger, and severe) and then assigning the appropriate 

corresponding color value (yellow, orange, and red, respectively); start of a higher threat level 

indicated the end of the lower level. The main benefit of this method is the ability to automatically 

generate the XML-based schedules for each room in the simulation. Included in the automation is 

the determination of the start and finish times of the threats, the assignment of the proper material 

colors for those events, and the appropriate formatting for XML compatibility accomplished 

through the use of the Python package lxml to create event trees. 
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Figure 5-10: Screenshot of the 3D BIM exterior walls and colored floor plates, highlighted here in magenta, 

used for visualizing threat levels; tasks in the XML schedules were tied to the magenta-colored floor elements 

 For example, the four rooms in Fig. 5-10 required four unique XML schedules containing 

the task information. It was then possible to import the files directly into the Bentley ABD 

animation producer. In Fig. 5-11, the imported schedules can be seen as the list of tasks that appear 

in the Schedule tree. While the XML tasks can be generated automatically by the process described 

above and shown in Fig. 5-9, one step of manual intervention was needed to enable this 

visualization in ABD. Specifically, the schedules in ABD can only contain information about the 

tasks themselves: start time, finish time, start color, finish color, unique identification numbers, 

task names, etc. However, no information about elements that exist in the BIM can be included in 

the XML-based schedule, i.e., the schedule is not aware of any of the physical components in the 

model. Thus, once all four schedules were imported, it was necessary to link each task (initial, 

warning, danger, and severe) to the proper room element, namely the floor plates shown previously 

in Fig. 5-10. While this manual intervention is not attractive from an automation standpoint, it at 

least allows the exploration into the use of real-time computed results in BIM environments. 
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Figure 5-11: Screenshot of the Animation Producer in Bentley ABD with the imported XML tasks present in 

the Schedule tree 

 An example of some of the details for a “warning” task are shown in Fig. 5-12, where the 

start and finish times are provided as well as the color codes corresponding to each time. The four 

possible tasks are represented as different color floor plates in that figure as well. The additional 

task “initial” simply serves to bring the color-changing floor plates into existence for use with the 

actual threat warnings that follow.  

 The incident commander and active firefighters were the intended recipients of the 

information via the BIM visualization module. The system aimed to present visualized data in 

order to facilitate rapid decision making during a real firefighting operation, as mentioned in the 

goals of this study. This implies the need to select only important information for such a decision-

making process as this system cannot make decisions for the users but rather indicate areas of 

importance based on the measured data and sub-model calculations presented in the previous 

sections. This system and others like it should present decision-making information in a way that 

potentially helps the incident commander in strategizing firefighting operations while not 

complicating operations with an abundance of data and distractions. 
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Figure 5-12: The four possible tasks are shown on the left with their corresponding colors; the actual 

representation of a "warning" task is shown to the right for Room 1 in XML format, where the start/finish 

times and colors were automatically generated from output generated by the event detection model 

 In addition to the playback showing a visualization of the event detection, a truly real-time 

feature was added that provides room-by-room graphs of the changing fire parameters. In 

particular, the changing temperature, heat flux, carbon monoxide, and oxygen levels were 

transmitted from the monitoring system to the visualization device using a local network. The live 

graph tool is launched at the beginning of the fire event on the visualization device. A connection 

with the computing device was established using a local network provided by the interoperable 

open-source software called http-server (https://github.com/indexzero/http-server). The http-

server program was used to create a local server for each computer and the IP address and port of 

each temporary server was used to provide a link between the two machines using different 

operating systems. This provided a live connection between the Ubuntu-based computing 

workstation and the Windows-based visualization device.  

https://github.com/indexzero/http-server
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Figure 5-13: Sample live data captured and plotted in real-time automatically in the monitoring simulation; 

these plots were generated on the visualization device (Windows) while the incoming data was being 

processed on the computing workstation (Ubuntu) 

 Using this connection, the visualization device automatically checked the main computing 

workstation for the most recent data updates and then the downloaded information was appended 

to a text file on the visualization end. The live plotting tool continuously checks this file for 

changes and plots the updated time series data for each room in the model in real time. An example 

of the live plots of results is shown in Fig. 5-13 to demonstrate a sample of this tool’s ability to 

plot updated information without user intervention in real time (for one room as a demonstration). 



138 

 

5.6 System Testing with Simulated Fire 

 To demonstrate the real-time monitoring system with a natural fire case, an FDS simulation 

was used for the four-room model seen in Fig. 5-10 in the BIM setting. The model represents a 

multi-room apartment with four main rooms and one hallway connecting them. The floor plan is 

shown in Fig. 5-14, which also identifies the fire locations and magnitudes as well as the sensor 

locations (one sensor per room). The total duration of the FDS fire model was 600 seconds (10.0 

minutes). Room 1 was 3×5 m and Rooms 2-4 were 3×4 m in the plan dimensions; the ceiling 

height was 2.5 m above the ground in the model 

 

Figure 5-14: The floor plan of the fire simulation is shown with the locations of the two fires (blue square in 

Room 1 and red square in Room 2); the sensor measurements used in this test were recorded at the centers of 

each room, specifically at the ceiling level, and are marked with green circles in the image 

 In Room 1, the fire was designed as a 100-kW propane fire in FDS and placed directly in 

the center of the room. The fire area was 40×40 cm and the ignition of the fire was intentionally 

delayed and then ramped from a magnitude of 0.0 to 1.0 over one second, starting at 180 seconds 

(3.0 minutes) into the simulation. Using the fire ramp in FDS, this magnitude was held constant at 

1.0 until 500 seconds (8.3 minutes) where it was reduced to 0.0 again until the end. In Room 2, the 

fire was slightly off center (50 cm from center), as seen in Fig. 5-14 as well. This fire had a peak 

heat release rate of 400 kW, used propane as the fuel, and also was 40×40 cm in size. The fire in 

Room 2 followed a t-squared fire curve with a slow growth factor, reaching a maximum magnitude 
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at 262 seconds (4.4 minutes) and held at that level until allowed to burn out at 400 seconds (6.7 

minutes). Additionally, the carbon monoxide yield was set to 0.50 and the soot yield to 0.01 for 

both fires. 

The output recorded at the four sensors (one for each room) was captured using point 

devices in FDS. Specifically, the gas temperature, radiative heat flux, and four species 

concentrations (O2, CO, CO2, and HCN) were measured at the ceiling at each of the device 

locations, totaling six fire signatures per room. Since the fuel source was propane and did not 

contain some combination of nitrogen and hydrogen, the resulting combustion products did not 

include HCN. As a result, the HCN measurements in the following output were zero for all times 

in the simulation. Data was written to the device output file at 1.0-second intervals for the duration 

of the fire simulation (10.0 minutes); this was only noted as a reminder that the output of the FDS 

fire simulation was used directly as input for the sensor simulation to read and push to the main 

computing system. Additionally, this fire simulation was conducted a priori in order to produce 

the time-series data that could be fed into the fire-monitoring system next in real-time, thus 

eliminating the delay caused by running the CFD analysis. The measurements for the six fire 

signatures are shown in Figs. 5-15 through 5-17, representing the output of the FDS simulation 

that was used as input to the fire-monitoring simulation. Note that the concentration [HCN] was 

zero for all measurements because the fuel source did not contain Nitrogen.  
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Figure 5-15: Time history of the gas temperature output from the FDS fire simulation for the four-room 

model; subsequently used as input for the fire monitoring system 

 

 

Figure 5-16: Time history of the radiative heat flux output from the FDS fire simulation for the four-room 

model; subsequently used as input for the fire monitoring system 
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Figure 5-17: Time history of the concentrations of carbon monoxide, oxygen, and carbon dioxide output from 

the FDS fire simulation for the four-room model; subsequently used as input for the fire monitoring system 

 The data presented in Figs. 5-15 through 5-17 was used as input for the fire monitoring 

system. Specifically, a Python code was used to interpret the FDS device output file 

(fire_devc.csv) and automatically create from that output four separate data files for the sensors 

to use. In the section of this chapter on data collection and sensor simulation, it was shown in Figs. 

5-3 and 5-8 that each sensor needs its own unique data file for its own unique thread to read and 

push packets of data to the main computing system. For the test of the system, the unique data files 

were created directly from the FDS output. The sensor simulation used a nominal frequency of 1.0 

Hz with a potential noise range of ±10%; thus, each sensor would send its new data packet every 
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0.9 to 1.1 seconds to the main program. The nominal frequency chosen for the main program to 

push new data to the event detection model was 0.5 Hz, meaning new data was sent to the event 

detection model for processing every 2.0 seconds in real time.  

 

Figure 5-18: Results of the real-time FED computation for smoke toxicity and burn threats due to heat; 

results were computed using measurements at one sensor location per room every 2.0 seconds as received by 

the event detection model for real-time calculation 

Data was passed from the sensors to the main program and then to the event detection 

model, as shown in Fig. 5-3 previously. The event detection model was responsible for computing 

the warning levels {0, 1, 2} described previously for each of the three hazards. For presentation 

purposes, the time-history of FED throughout the monitoring scenario is given here. Specifically, 

results are shown in Fig. 5-18 for the FED calculations for both smoke and heat (pain and fatality 

thresholds) for the duration of the test and for all four rooms. The threshold line for FED = 1.0 is 

also included in Fig. 5-18 for reference. It can be seen that the warning flag will be triggered at the 

time when the FED crosses this 1.0 limit. 
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 A view of the FDS model at 201 seconds into the simulation is shown in Fig. 5-19 to show 

the progression of the fire at a particular instant. At this time in the monitoring scenario, the 

warning level for the fire status check has just reached Level 1 for Rooms 1 and 2. The FED was 

only part of the real-time calculation: warning levels were computed as well. Results for the 

warnings computed for each of the three hazards are shown in Fig. 5-20 for each room in the 

model. Recall that these warnings for the hazards of smoke toxicity, burn threats, and fire status 

were based on FED values and the thresholds summarized in Table 5-1 earlier and can only be 

whole integer values {0, 1, 2} at any given time in the simulation.  

 

Figure 5-19: The FDS simulation is shown at 201 seconds, just after the warning for fire status in Rooms 1 

and 2 had increased to Level 1 
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Figure 5-20: Results from the event detection model for each of the three hazards: a) smoke toxicity, b) burn 

threats, and c) fire status; the warning levels of {0, 1, 2} are whole integers at every increment in the 

monitoring simulation using a 2.0-second time step 

 The data used for the plots in Figs. 5-18 and 5-20 was also used in post-processing to 

automatically generate XML-based schedules of tasks for the Bentley ABD animation producer. 

One schedule was created for each of the four rooms and then imported into the BIM environment. 
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After performing the manual linking step to connect tasks to elements in the model, a playback of 

the monitoring results was available using the schedule simulator. The XML schedule generator 

determined the start and finish times for each threat level experienced by each room; the tabular 

data for each threat level is shown in Table 5-4 for reference. For visualization purposes, a 

universal starting time was arbitrarily chosen as 07:00:00 and the schedule generator added the 

threat level start times in Table 5-4 to the universal starting point to get the values seen for start 

and finish times briefly seen in Fig. 5-11. For example, the warning (yellow) for Room 1 has a 

start time of 182 seconds; thus, in the XML file generator, this was translated to 00:03:02 and 

added to the universal start time to get 07:03:02 as can be seen in Fig. 5-11 previously. 

Table 5-4: Start times, in seconds, for each of the three threat levels based on event detection model output; 

the XML schedule generator determined these start times automatically and created the corresponding tasks 

for schedule simulation 

Location Warning – 1 Danger – 2 Severe – 3 

Room 1 182 320 524 

Room 2 160 232 308 

Room 3 528 N/A N/A 

Room 4 472 N/A N/A 

 

 The schedule simulator animation is presented as a video in the actual Bentley ABD 

environment. For the purpose of presentation in the current chapter, frames of the animation were 

selected to demonstrate the progression of the animation from initial, ambient conditions to the 

severe threat level. In the following set of images, the progression in Room 2 will be the focus, but 

the remaining rooms will be mentioned where appropriate. The first frame shown in Fig. 5-21 is 

the time of the first threat level of “warning” (yellow) reached by Room 2 at 160 seconds. By 

inspecting the temperature-time curve and the corresponding fluxes in Figs. 5-15 and 5-16, it can 

be seen that this first escalation in the threat level was due to triggering the fire status hazard 

(temperature and radiative heat fluxes greater than 57°C and 0.6 kW/m2, respectively).  
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 In the second frame, at a time of 232 seconds, the second threat level was reached as 

another hazard was detected and the threat level was raised to “danger” (orange). The second 

hazard was due to the FED for pain due to heating reaching the 1.0-threshold. By this time, Room 

1 has already reached its first threat level as well at 182 seconds. Similarly, in the next frame at 

308 seconds, the second threshold for the heat-related hazard (fatality from third-degree burns) 

exceeded 1.0, bringing the burn hazard to Level 2. Once any hazard reaches Level 2, the threat for 

that room immediately jumps to the “severe” (red) level. Finally, in the last frame of Fig. 5-21, the 

final frame of the visualization is given. Both Rooms 1 and 2 where the fires had started originally 

finished the simulation in the severe threat range and thus both appear red by the end. In Fig. 5-

21, screenshots from the visualization correspond to stages in the FDS simulation shown with 

HRRPUV and soot visible in the model. 

 One interesting result from this example was the fact that the first threat (warning) for 

Room 2 occurred at 160 seconds while the fire was actually ignited immediately in that room when 

the FDS simulation began. Recall from the descriptions of the two fires used in this test that the 

400-kW fire in Room 2 was designed with a t-squared fire curve having a slow growth factor. 

Referring back to Figs. 5-15 and 5-16, which shows the temperatures and radiative heat fluxes 

measured at the ceiling, the slow growth of the fire is evident in the slopes of these measurements 

leading up to the peak of the fire at 262 seconds. Connecting this example back to a realistic fire 

experience, the smoke alarm or carbon monoxide alarm would have been triggered much earlier 

than the 160-second warning shown here in Fig. 5-21 for Room 2. 
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Figure 5-21: Sample results using visualization in BIM; each stage of the threat progression in Room 2 is 

provided, where the FDS model is shown on the left and the Bentley ABD BIM with imported schedules 

appears on the right 
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 Investigating some of the data measurements at ceiling, a solely temperature-based fire 

detection method would have sounded the alarm around 60 seconds into the fire (using 

approximately 50°C as threshold). If carbon monoxide was used to detect the presence of a fire, 

where recommendations for this species as a detection signature range between approximately 10-

50 ppm according to some studies [25, 49], then the 77 ppm of carbon monoxide received by the 

event detection model at 18 seconds could have sounded a fire alarm even earlier as well. This 

exercise serves as a reminder that the purpose of the proposed fire monitoring system is to provide 

information about the progression of a fire in the post-ignition state of the building, assuming that 

traditional detection systems would already be in place for detecting ignition.   

Note that the presentation of the evolving status of the fire was done in post-processing. 

Preparation of the XML files for schedule simulation was performed automatically using the 

output of the event detection model. The demonstration of this visualization concept is meant to 

serve as a proof-of-concept for preparing easily identifiable information in a streamlined manner 

using a simple color scheme and attempting to avoid information overload [1] for the actual 

firefighting scenario.  

 

5.7 Performance Testing for the Real-time Requirement 

 In the previous example, only four rooms were used to demonstrate the features of the real-

time fire monitoring system. To this point, the near real-time computing performance for the case 

with a single sub-model (event-detection model) has not been discussed. The theoretical 

performance is expected to be sufficient when analyzing the computations involved in the event-

detection model for a single sensor. The computational demand is very low because there is no 

solver for any matrix equations in the event detection model: all the computation is comprised of 
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the base floating point operations (addition, subtraction, multiplication, and division) on scalar 

values with various compound logic loops (while, if, else). This results in a theoretically 

lightweight solution because the individual calculations associated with a single sensor are limited 

to the FED calculations and threshold checks resulting in approximately O(100) operations per 

sensor for each time increment. Thus, scaling from n sensors to 2n sensors is not a major concern 

from a floating-point operations standpoint. 

 In terms of the message-passing problem, scaling could become an issue for meeting the 

real-time requirement. For the four-room example shown, data collection was performed using a 

nominal frequency of 1.0 Hz and thus each of the four sensors would send their new data to the 

monitoring system for event detection approximately every 1.0 seconds. If the number of sensors 

grows, the number of messages sent through LCM increases for every time step. For example, in 

a 100-sensor model at 1.0 Hz, the system would need to handle 100 messages per second and then 

perform the subsequent event-detection calculations while trying to maintain the real-time feature. 

The computational demand is need to perform more calculations in the same small time window. 

 The scaling of the system was tested by employing more sensors and timing the data 

collection and the completion of the event-detection calculations. This test was designed to 

measure the computational cost of the real-time fire monitoring system and provide insight on the 

performance of the system. Recall from Fig. 5-3 that the data is transferred through the system 

using LCM. First, the simulated sensor measurements are made in the initial component: time 

series data is read from the file and published to main program using a waiting function in the 

sensor simulator, as discussed previously. This first time point is tsensor, which is any time that the 

sensor records a new measurement.  
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 Second, the sensor encodes the newly measured data and sends it to the main program in 

Fig. 5-3 using LCM: the time it is received is tmain. Since LCM is an efficient and reliable software 

library, the transfer of data from sensors to the main computing program is essentially immediate 

from a computational cost perspective. However, in the real application of this system for an actual 

fire scenario, this first data transfer represents the delay between a sensor measurement in the field 

and the arrival of the data for computation at a stable, remote location. A natural time delay would 

be expected for data transmission. In the computational case presented here, the delay is less than 

a fraction of a millisecond and thus tsensor is very nearly equal to tmain in these tests. Furthermore, 

comparing tsensor and tmain is essentially a measurement for how efficient LCM can encode and 

decode messages passed between two applications, which is something that the LCM developers 

have already provided.  

 The third and final stage of the data is in the event detection model after it has been 

forwarded from the main program. A data packet from the main program is encoded with the new 

measurements and sent to the event detection model using LCM. The message arrives in the event 

detection model, it is decoded, and is immediately used in the calculations discussed previously. 

The new event detection model results are written to an output file one line at a time for each 

calculation. After the last of the three hazard checks is made in the event detection model and the 

output is written to a file, another time sample is taken and given the label of tend for the time at 

the end of the event detection calculation for the current data set. Since the sensor simulator and 

the event detection model were both developed using C++, it is possible to measure these timings 

using the same tool. In particular, the gettimeofday function in conjunction with localtime was 

used to record the times tsensor and tend for every data message sent by every sensor throughout the 

duration of the simulation. Using these two time stamps gives a measure of the computational cost 
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required to perform the event-detection calculations on every packet of new data. The format and 

precision of this time measurement was chosen to give the hour, minute, and second at the current 

time. However, custom code was used to represent the seconds position to three digits after the 

decimal. Thus, a sample timing measurement during the monitoring simulation would be in the 

form of tsensor = 16:55:08.234, where the last position contains the seconds to three decimal places. 

In this format, the smallest measurable time increment was 1.0 ms. Then at some later point in 

time (when the event detection model is done performing its calculation on the current data), the 

time measurement would be taken again within that program: tend = 16:55:08.237 (for example).  

 The computing cost associated with each message and for every sensor was calculated as 

the difference between these two timing measurements: tcost = tend – tsensor (performed for every 

message in the system). For example, in the four-room example of the previous section, fire data 

was measured at a frequency of 1.0 Hz for 10 minutes resulting in 601 measurements (including 

the initial time of t = 0 seconds) per room for the duration of the simulation. Four rooms, each 

with 601 measurements, results in 2404 data messages sent to the event detection model for 

computational work to be performed and thus tcost was computed 2404 times for this case.  

 Since the goal of this analysis was to measure the performance of the system handling data 

in real time, the actual numerical values for the temperatures and species concentrations were not 

considered important. The data files used in the four-room example (i.e., four .csv files containing 

the time series data for each room) were copied several times to provide additional data files for 

the new cases of 8, 16, 32, 64, and 128 sensors. The same 1.0 Hz frequency was used with a 

random noise of 25% in the sensor delay times. These new cases provided a significantly higher 

message-passing volume for the system and the simulation time was cut back from 10 minutes 

down to five minutes for simplicity. Five minutes corresponded to 301 data messages per room 
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which resulted in 2408, 4816, 9632, 19264, and 38528 total messages and subsequent rounds of 

event detection model calculations in the simulation for the new cases of 8, 16, 32, 64, and 128 

sensors, respectively.  

 Aggregate statistics for the various cases were computed to analyze the performance. The 

difference tcost was computed for every message in the system for each of the cases (for example, 

it was computed 4816 times for the 16-room test). The smallest measurable difference for this 

calculation was 1.0 ms. For the real-time requirement, a target computing cost of 0.1 seconds per 

measurement for the 1.0 Hz case would be reasonable and was selected as the target deadline. In 

other words, if it takes less than 0.1 seconds (100 ms) to perform the event-detection calculations, 

then the system should perform sufficiently for the real-time scenario. The concern with such a 

high message volume in the cases of several rooms is that the event detection model must process 

new data serially and thus bottlenecks could theoretically occur.  

Table 5-5. Quantification of the system performance with respect to increasing number of sensors; the 

average computational cost, maximum observed single cost, and the standard deviation are all provided as 

well as the percentage of measurements that required ≤ 1.0 ms 

Sensors Messages Avg Cost [ms] Max Cost [ms] Std Dev [ms] Cost ≤ 1 ms 

4 2400 0.33 3.0 0.48 99.7% 

8 2408 0.29 3.0 0.46 99.8% 

16 4816 0.30 3.0 0.47 99.7% 

32 9632 0.28 4.0 0.46 99.7% 

64 19264 0.27 6.0 0.47 99.4% 

128 38528 0.24 10.0 0.45 99.6% 

 

 Thus, the aggregate statistics measured in this test serve to ensure that the system is 

performing efficiently for the purposes of real-time use. Table 5-5 provides the average computing 

cost for all the data measurements in each of the cases, as well as the maximum single cost 

observed in the test. The standard deviation and other characterizing features were included for 

completeness. For example, the percentage of messages requiring less than 1.0 ms (the smallest 

difference that could be measured) or equal to 1.0 ms using this timing function. Table 5-5 shows 



153 

 

that, for 32 sensors, 99.7% messages required less than or equal to 1.0 ms of computational time 

in the event detection model: 9608 of the 9632 messages. This is an acceptable performance for 

meeting the real-time requirement of the system. Note that for the four-room case, the full 10 

minutes from the previous system-testing example was used (600 seconds of data at 1.0 Hz 

frequency); the remaining cases used only the first five minutes (301 seconds at 1.0 Hz). The 

results show that for the number of sensors considered, the average computational cost of the event 

detection model was in the range of 0.24 ms to 0.33 ms with 99% of the calculations requiring 1.0 

ms or less. Figure 5-22 also shows the average cost and the maximum observed cost for each case 

in addition to the real-time target of 100 ms; the target deadline of 100 ms was sufficiently met in 

these tests. These timing results were obtained using Ubuntu 14.04 on a standard dual-core 

personal computing workstation with a 2.53 GHz processor. 

 

Figure 5-22: Computational cost quantified by the average time required for the event detection model to 

process the data; the maximum observed cost for a single data message is also provided as the upper bound  
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 The reason for the high efficiency of the calculations, as seen in the average cost, is due in 

large part to the robustness of LCM in handling large volumes of message-passing tasks. 

Additionally, the actual calculations associated with the event detection model are very lightweight 

for real-time computing purposes. Specifically, there is no matrix algebra involved, there are no 

solvers, and file input/output (i.e., reading/writing files) is very limited. 

 

5.8 Conclusion 

 The development of a real-time fire monitoring system has been presented. The 

components included the simulation of sensor data, formulation and implementation of an event 

detection model, and framework for coordinating data among these various components. 

Additionally, the potential for real-time visualization with BIM was demonstrated with a simple 

post-processing example using output from the event detection model to generate schedules. The 

components of this monitoring system were developed using various software packages and 

programming languages which were linked using LCM. The system was tested with a four-room 

example based on FDS-generated sensor data. In particular, monitoring was based on six fire 

signatures measured at the ceiling: upper layer gas temperature, radiative heat flux, and four 

species concentrations. 

 The current study lacks the ability to create fully automated visualization in real time, but 

the foundational work provided here will allow these features in the future. Full automation of the 

real-time visualization tool and the development of a user-friendly graphical user interface for 

receiving input from a user would be two main goals of the future work which would help bring 

the system closer to real-world application and improve user-friendliness. Tests were conducted 

using multiple sensors and an analysis of the performance for real-time applications was discussed 
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in this context. Coordinating data, managing computer memory, and ensuring the required 

calculation time is feasible for near real-time computing are all important factors that should be 

considered for future scalability. Most importantly, the authors do not have feedback from the 

intended user: firefighters and incident commanders. One way to increase the potential for 

adoption of new methods is to ensure that tools such as these are meeting the needs of the fire 

department in addition to being reliable solely from a research standpoint. 
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Chapter 6 

Conclusion 

 

The computational framework for modeling the fire-structure interaction problem was 

presented here by considering a three-stage, sequentially partitioned approach. First, the fire 

simulation was conducted in CFD using FDS to compute the thermal boundary condition for the 

structure. Second, the fire-structure coupling methods were used to transfer the thermal boundary 

conditions to the structure and compute equivalent nodal fluxes in the FEA model. Third, the 

thermo-mechanical shell element was used to compute the resulting temperatures and 

displacements in the FEA model based on the input from the CFD-based fire simulation. 

Altogether, this workflow represents the complete fire-structure coupling framework.  

Next, a system for real-time fire monitoring was developed to provide the computational 

means for using measured fire signatures in sensor-assisted firefighting. The components of data 

collection, real-time computing via sub-models, and finally visualization in the field were 

discussed. For the purposes of developing this system, sensor data and measurements were 

restricted to the simulation of sensor nodes as a component of the full system, rather than using 

physical hardware for this need. The real-time computing aspect using sub-models was 

demonstrated through a novel event detection model for analyzing live data and assessing the fire 

hazards. A proof-of-concept for real-time visualization in the BIM environment was presented as 

a demonstration of future use in such a setting. 
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6.1 The Fire-structure Interaction Problem 

The research presented in this dissertation has contributed to two different sides of the 

problem of structural fires. From the analysis and computational mechanics standpoint, the 

coupled thermo-mechanical shell element provides the researcher or designer a tool for analyzing 

structures exposed to fire using a partitioned solution approach. The fire simulation software FDS 

is not typically employed for its heat transfer calculations and it does not include the ability to 

compute deformations in the structure. Thus, Chapter 2 showed that using the trapezoidal rule for 

numerical integration and linking the thermal boundary condition data from FDS to the conduction 

heat transfer model in Abaqus, solutions for a non-uniformly heated plate were provided with good 

accuracy and very efficiently. Relative errors of less than 1.5% were reached using 128 thermal 

shells in a 16×8-element configuration, which required less than one minute (47.4 seconds) of 

computing time as opposed to the 48.5 minutes that were needed for the much higher-solution 

solid-element model. 

Coupling the FEA representations of the thermal and mechanical shell elements is an 

essential component of the fire-structure simulation framework for any analyst interested in both 

the thermal and mechanical response in the structure due to the presence of a local fire. Thus, in 

Chapter 3, using the virtual work approach, these two formulations were successfully coupled and 

verified using benchmark tests. In particular, for the thermal stress cylinder problem to compute 

the stress, the thermo-mechanical shell element demonstrated more than sufficient accuracy with 

an absolute error of O(10-13) when comparing computed stresses with this analytical solution. 

Using the simply supported plate verification, the solution with the coupled shell performed with 

a difference of 0.5% when compared with the reference solution.  
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The methods for coupling surface fluxes in the CFD fire simulation to the structure in the 

full thermo-mechanical FEA model provide an intuitive and general approach to handling 

temporally and spatially non-uniform fluxes in problems involving thin-walled structures. With 

the applications in Chapter 4, the fire-structure coupling methods were demonstrated with the 

thermo-mechanical shell to compute temperatures and displacements simultaneously in the FEA 

model. The convergence behavior was shown in plate exposed to the local fire while the I-beam 

model represented a practical use for this type of element with multiple interface surfaces. Finally, 

the relative time step and mesh size were discussed in the context of these coupled simulations 

through the use of 225 FEA simulations based on various thermal boundary conditions. From the 

perspective of future modeling using this approach, this study mainly emphasizes that properly 

modeling the fire simulation in FDS is a critical starting point to obtaining meaningful results (i.e., 

using the proper CFD mesh size in FDS). The use of a 5-second subcycling time step provided 

nearly identical results to the 30-second step, which was an important affirmation of prior research 

employing the time-averaging subcycling approach.  

 

6.2 Computational Framework for Real-time Fire Monitoring 

Contributions to the real-time fire monitoring problem were intended for use by the fire 

department, incident commander, and firefighters; this work was presented in Chapter 5. In this 

novel system, the computational framework for using real-time fire signatures in conjunction with 

sub-models and visualization tools in a distributed setting will provide an improvement to the state 

of sensor-assisted firefighting. The system efficiently coordinates the data from sensors to sub-

models using LCM, the output designed for visualization purposes will enable this technology to 

provide the fire department with dynamic BIM models in the future.  
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Lacking a robust WSN in this stage of the research, the fire-monitoring system used 

simulated sensors to asynchronously send messages to the main computational platform in a 

manner similar to realistic sensors. Data messages originating from the WSN were received at the 

main program for fire monitoring and subsequently coordinated to the proper sub-models in real 

time. Currently, one sub-model was developed and added to the system: an event detection model 

for assessing the hazards of the fire in real time. These hazards included measures of smoke 

toxicity, burn threats, and fire spread in the structure; the first two relying on using empirical 

formulas for the FED calculations from fire safety engineering in real-time to assess the hazards 

at the location of each unique sensor. The real-time goals were tested using up to 128 simulated 

sensors; this scenario would be comparable to installing a WSN in a small business. For the event-

detection model calculations, the system met the real-time requirement by processing new sensor 

measurements and assessing the fire hazards efficiently: less than 0.5% of the data required at least 

1.0 ms of computation time in the 128-sensor case. This efficiency is attributed to the lightweight 

implementation of the event detection model as well as the robustness of the LCM message-

passing library.    

In addition to these real-time components, a post-processing example showing the use of 

BIM as a visualization platform for issuing real-time warnings based on the changing threat levels 

computed by the event detection model. Although not immediately field-ready, this technology 

has provided the foundation for a real-time computing system in the arena of fire monitoring 

beyond ignition of the fire in the structure. A discussion of the software development process for 

this computational framework is presented in Appendix A.  
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6.3 Limitations and Future Work 

The shell element presented for capturing the coupled thermo-mechanical response of 

structures exposed to fire was developed in the first task of the dissertation research. One limitation 

for the coupled fire-structure simulation framework provided here is that the thermo-mechanical 

shell element was restricted to the thermoelastic range for the current study. For use in more 

applicable real-world scenarios, the shell element would need to be upgraded to consider 

temperature-dependent material properties and potentially non-linear geometric deformations. A 

second limitation is the fact that there is not sufficient experimental data to validate the 

implementation of the shell element. This validation stage would more be more beneficial once 

the shell formulation was extended for use in non-linear analyses. Additionally, one of the practical 

limitations for scalability of this approach is the fact that a larger system of equations is solved for 

each increment of the coupled analysis in comparison to solving the two systems separately in a 

weakly coupled approach.  

For real-time fire monitoring, the research was limited to the lab environment: specifically, 

the proposed system was not tested for a real-world fire-monitoring scenario. While the particular 

multi-criteria sensors discussed here may not yet exist, the methods for receiving real-time data 

from sensors have been in development in fields such as structural-health monitoring and water-

quality monitoring for the last decade and could be adopted for the fire monitoring scenario as 

well. Regardless, hardware from the sensing perspective is one broad area of future work both for 

the research presented here and the future of real-time fire monitoring.  

To this point, the event detection model was the only sub-model included while the future 

vision for the fire-monitoring system is to have multiple sub-models included and simultaneously 

providing real-time calculations leading to useful information for the firefighters. For example, the 
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inclusion of a multi-room inverse fire model would provide the system with a means for computing 

the heat release rate for each room from the measured fire signatures using a two-zone simulation 

model (CFAST). Including such an inverse fire model and other potentially useful real-time 

computing packages would provide the incident commander and firefighters with more 

information about the fire status through the duration of the fire. Ideally, another sub-model will 

be a fully automated feature for presenting real-time data in the BIM immediately for use in the 

field. Since BIM is a tool primarily used for the design and construction phases of building 

development, the ability to sync real-time data with the graphical display is a challenging feature 

to include. The future work for this component of the system would be to develop the proper 

software solution to allow for real-time data streams in the BIM platform chosen for this research: 

Bentley ABD.  

The two tasks presented in this dissertation have contributed to the structural fire problem: 

(1) from the perspective of computational modeling in the pre-construction phases and (2) with 

the intention of aiding firefighter during the post-ignition fire state in the building. The limitations 

and future work presented here are the areas in which these contributions can reach beyond the 

academic level and into the practical application space. While both topics are different in their 

approaches and uses, they each serve to improve aspects of fire safety that make the built 

environment safer for occupants and firefighters in our modern infrastructure. 
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Appendix A 

Software Development for Real-time Fire Monitoring 

 

The strategy for firefighting has remained relatively unchanged for years and the approach 

is almost completely based on improvisation and experience as very limited information is 

available to the fire department on approach to the event. In order to help address this issue, a 

recently funded research project in the Department of Civil and Environmental Engineering at the 

University of Michigan aims to take a step towards equipping firefighters with more data and a 

better understanding of the fire scene before arriving to the site of the event. Specifically, this new 

research project aims to provide computational tools in the form of event-detection and fire-

monitoring software that can be used in an advanced sensor network of the future. 

As a subset of the larger research project, the following report focuses on providing a 

reliable foundation for the new research effort by using strategies from software engineering and 

applying trusted methods from scientific computing. The result of this effort was the creation of 

version-controlled repositories for hosting the research project, migration to a TriBITS build 

system, the inclusion of a simple unit test to ensure required components are available on the user’s 

Linux system, and the creation of documentation which outlines the installation process for 

developers on the research project. The addition of these features will provide current and future 

developers on the project with a stable development environment and structured approach to the 

actual fire safety contributions that follow. By establishing the use of high-quality software 

engineering tools, developers on the main research project will be able to provide the eventual 

future users with robust research-quality software to perform the overarching goal of monitoring 
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fire events in real-time using a sound computational foundation. For context to the reader, this 

technical report was completed prior to the work presented in Chapter 5.  

 

A.1 Introduction 

The hazard of structural fires is still a real and modern danger. Structural fires cause 

numerous deaths per year in the United States and can result in extensive property damage as well 

[1]. The human and property impact of fires also affects those called to respond to the fire event: 

the firefighters. Environmental threats to building occupants and first responders include extreme 

temperatures, toxic gases (e.g., carbon monoxide, hydrogen cyanide), disorientation due to poor 

visibility coupled with unfamiliar surroundings, and a changing environment that may result in 

falling objects, structural collapse, or entrapment [2]. In addition to these severe environmental 

hazards, firefighters often lack critical information that might be useful in making decisions at the 

scene of the fire event. Additionally, toxic gases such as carbon monoxide and hydrogen cyanide 

are not detectable without the aid of technology. Limited knowledge about the contents of a 

building and the availability of oxygen may lead to a misperception regarding the nature of the fire 

(e.g., fire intensity, spread rate, and the potential for flashover). In addition to posing a direct threat 

to firefighters, these challenges can potentially slow the rescue of building occupants and prolong 

the progression of fire. 

The realization of a multi-criteria wireless sensor network (WSN) and real-time 

visualization network is an ambitious undertaking. The currently funded research project seeks to 

establish the computing infrastructure for such a multi-criteria WSN for real-time fire monitoring. 

A challenge lies in the need for technologies that enable rapid event detection, simulation, and 

visualization of the data so that actionable information may be extracted in real time. This work is 

motivated by complementary studies which aim to integrate sensor data within fire forecasting 
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simulations (e.g., Imperial College’s Fire Navigator [3]). The novelty of the research lies in the 

use of multiple fire signatures to identify fire events in real-time and to visualize the information 

in a Building Information Modeling (BIM) software to facilitate rapid decision-making during 

firefighting operations. If successful, the proposed research will open the door to future studies 

regarding the development of sensor technologies and full-scale validation, and its 

commercialization and widespread deployment via industry partners in the fire protection market. 

With a brief background of the research topic provided, this technical report will now address the 

computing needs for such a project. 

The objective of the work presented in this technical report was to advance the efforts of 

the existing research, which aims to provide this real-time fire monitoring tool for future fire 

department command centers and firefighters, through the use of software-engineering tools. Due 

to the ambitions of the overarching objectives in the main research project, the completed work 

presented herein was focused on making a step towards the realization of this goal from a 

computational perspective.  

In a typical fire scenario, the fire department is forced to send groups of firefighters into a 

structural fire event with minimal information about the current status of the fire. Fire detection is 

a simple binary response of a fire alarm: the fire is either present or it is not. Thus, the trigger for 

the fire department to respond is just the activation of the alarm at the site of the event. This method 

of fire response has been the approach for decades but with one major issue that is difficult to 

address: the built-in delay between initial alarm activation and arrival of the firefighters to the 

scene of the fire event. This is the case of the improvised response of firefighters (as seen in the 

top two images of Fig. 5-1 previously). While it is impossible to completely eliminate the delay 

between alarm activation and the arrival of first responders to the scene, it is practical to consider 
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equipping the fire department with more information regarding the status of the fire on their 

approach to the scene. Thus, the system to be designed for fire-real fire monitoring targets the post-

ignition state in the building, rather than the fire-detection problem.  

The current phase of the main research project, from which a subset of tasks were selected 

for the content of this technical report, aims to develop a computational framework for a robust 

fire monitoring tool without a particular physical sensor available at this time. The main 

computational features of such a tool include the following (also shown in Fig. 5-2): 

1. An internal network for connecting various components of the monitoring system; for 

example, software which may pass incoming data from a live sensor to one computational 

application and then communicate a computed result to another application for further use 

(i.e., an internal message-passing interface for handling data transfers between independent 

applications). 

2. A novel application for computing environmental variables within a burning building 

during a live fire event; for example, this application will produce real-time calculations 

for the observer (i.e., fire department) regarding key fire parameters such as fire spread and 

smoke toxicity levels. This will be the event detection model for assessing hazards in the 

building based on real-time data.  

3. The ability to add new applications in future development, such as an inverse fire model 

(IFM) to estimate the heat release rate in real-time based on the measured fire signatures; 

this will provide extensibility for future use as new applications like the IFM are developed 

for the system.  

There are many other important features that must be considered to practically develop such a 

monitoring tool, such as a visualization component for reporting computed results and other user-
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friendly interfacing features. However, the main focus of the current work is the computational 

component strictly used for producing numerical calculations. As a result, this report discusses the 

contributions to the development workflow for tasks that will be performed by the main computing 

workstation (as seen in Fig. 5-2 previously). 

Each of the computational components described above have had some previous work 

completed related to their implementation in the main research project. Part 1 above relies on a 

message-passing library and toolkit called Lightweight Communications and Marshalling (LCM) 

[4] which provides compatible C-style data structures to be passed between various applications 

written in C++, Fortran, Python, and other languages. LCM is an open-source package, from which 

the basic internal communication network has been established for use in the current project. The 

aim of Part 2 is to contribute a novel application for computing particular fire parameters based on 

incoming data from the fire event for characterizing phases of the fire spread. This component will 

be a module running simultaneously with other application (such as the IFM) to provide hazard 

assessment about the current fire scenario in real-time. The IFM mentioned in Part 3 works with a 

fire modeling software produced by NIST called the Consolidated Model of Fire and Smoke 

Transport (CFAST) [5] which is capable of performing fire simulations based on two-zone models; 

work on this component was completed in a previous project to predict heat-release rates during 

the fire event using a dedicated source code. 

Due to the scale of the overarching research project, this technical report focused on using 

pieces of these previous project developments and aimed to highlight the regions of the ongoing 

research where scientific computing practices can augment the overall goals of the main project. 

As a result, the effort turned towards establishing the fundamental components of the proposed 

new software based on trusted methods of software engineering. This early investment intended to 
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provide a stable environment for current developers on the project as well as future contributors. 

Specifically, the work for this project consisted of  (1) the provision of a third-party library (TPL) 

repository to host all necessary TPLs for the system, (2) the creation of a structured approach to 

automatically installing TPLs necessary for the research software, (3) the establishment of a 

version control system for handling the development stages of the research project, and (4) the 

creation of initial documentation for developers and users to understand the installation of the 

project software. 

 

A.2 Development of Research Software 

 One motivation for investing in the development of software infrastructure for this research 

project was to avoid the validation-centric development pattern which can lead to an unintentional 

waterfall-style workflow. A challenge in creating useful scientific software is that the researcher 

from time-to-time must be the project manager, planner, user, developer, and owner (to some 

degree) at various stages of the workflow. In the research setting, it is easy for an individual 

researcher to take on all these roles throughout the project without considering the bigger picture 

such as who the intended future users may be, who the next developers on the project may be, or 

what the limits or bounds of the project may be. Understanding a software project in a holistic and 

symbiotic way can have numerous benefits for the current and future developers, external 

collaborators, and the end users. 

Project planning and laying the foundation for high-quality deliverables is a valuable 

component of working on long-term projects, software or otherwise. There are parallels in 

construction projects of all sizes where the amount of planning is generally proportional to the 

complexity and duration of a project. Practicing good software engineering technique and 

considering the life-cycle of a research-level software project is an important aspect for providing 
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a solid framework for future development. Often overlooked and under-credited, developing 

project infrastructure and providing documentation with policies for future use can be critical for 

producing mature and portable applications. 

Sometimes the instinctual approach to developing a software solution is to immediately 

begin writing code and testing it simultaneously with the hope of fulfilling some sample solution 

or target value (for example, implementing a solver for a linear system Ax = b). This “validation-

centric” style is not suitable for larger, complex systems and is not practical when different teams 

may be working on various aspects of a long-term software project. Generally speaking, the casual 

observer may place an emphasis strictly on the net output of a developer’s effort: for example, in 

terms of the number of lines of code produced in a given time. Once again, a typical instinctual 

response to completing an assignment may be to get started with the code-writing process 

immediately without considering the overall structure. This may be a good approach for some 

situations but this method is not scalable. 

Orso provides a relatable exercise for thinking about the scalability of work on a large 

project in terms of the software engineering development process [6]. Imagine situations that may 

arise in a university setting: a homework exercise (roughly 102 lines of code), a small individual 

project (103 lines of code), and finally a group project or term project (104 lines of code). Success 

in these situations and the ability to complete the work is directly linked to the “programmer’s 

effort”, as Orso describes it [6]. However, for more complex systems, such as the creation of a 

word processor (105 lines of code), development of an operating system (106 lines of code), or 

even a new distributed system (107 lines code), the ability to complete the project is not simply a 

programming effort but rather a “software engineering effort” in this case [6]. The main idea is 

that planning to develop a complex system is just as important as the actual programming work 



172 

 

required on such a project, including in the scientific computing setting. Thus, using the methods 

of software engineering to coordinate long-term efforts on a complex project is an important step 

towards giving each developer on the project a better chance of producing more meaningful code. 

The goals of this project were aimed at laying the foundation for a new software project 

from a recently funded proposal with these qualities in mind. To quantify the level of complexity 

of the proposed research project in terms of the examples given here, the total volume of the project 

will fall somewhere between the term project and word processor mentioned earlier, with several 

smaller source code packages interacting with more complex third-party libraries and other 

operating systems. Thus, the focus on software engineering principles and providing a robust 

system for producing high-quality and portable software during the duration of the overall research 

project was a long-term goal of this work. 

 

A.3 Software Engineering Tools 

 By considering the main research project in the context of the software construction 

process, it is possible to categorize various aspects of the overarching research goals in terms of 

discrete software engineering components. In Fig. A-1, a pyramid representing the development 

process highlights some of the main features of software projects [7]. Speaking about the software 

construction in this regard, the problem statement at the foundation of the project can be defined 

for the current study using language from the original proposal: “To establish a computational 

infrastructure for handling a future multi-criteria wireless sensor network to be used in real-time 

fire monitoring.” With this perspective in mind, the current research study aims to develop the 

computational tools necessary for providing such a monitoring framework of the future, 

specifically in terms of data handling, computing various environmental statistics, and visualizing 

the results for the end user.   
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Figure A-1: The pyramid of software development 

Software requirements of the research work, the second step of the pyramid in Fig. A-1, 

include the development of novel source code for handling real-time fire data, the integration of 

existing software for computing key fire parameters, the use communication software for 

managing the transfer of data between applications, and finally the presentation of computed fire 

parameters and data in a visualization module using BIM technology. The proposed architecture 

for accomplishing the project requirements involves splitting the implementation into two distinct 

domains. First, a computational domain will host all the applications related to handling incoming 

raw sensor data, calculating various fire parameters, and formatting output for the visualization 

module. Second, the visualization module will use that output to produce an overview of all 

environmental statistics related to the fire including visualizations of the relevant fire-event data. 

Specifically, these two domains (the “computation” domain and the “visualization” domain) will 

be distributed on two systems (see Fig. 5-2). Due to funding-specific restrictions, which could be 

considered another project requirement, the visualization module must be completed using 

commercial BIM software produced by Bentley Systems called AECOsim Building Designer; this 

software is restricted to the Windows operating system. However, the compute machine must be 
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developed on a Linux machine in order to make use of some of the TPLs such as LCM (which will 

be discussed in later sections). 

Using existing software such as LCM and CFAST with the soon to be developed source 

code for computing environmental parameters related to the fire status, the work for this course 

project employed the tools of scientific computing specifically to migrate various components of 

the research project to a TriBITS build system. The goal of this effort was to provide for general 

portability for this future monitoring tool. Performing this migration enlisted the use of version 

control software for hosting the main research code. This project also focused on addressing the 

implementation of source code in terms of the overall software architecture by linking packages 

and TPLs within the TriBITS build system. The main deliverables were a version control system 

for handling the research source code of a new fire monitoring project and its required libraries, 

the development of installation scripts for making the research package more portable, and finally 

the creation of documentation to support current and future developers on the project as well as 

the end user. 

A.3.1 Version Control and Build System 

The first contribution to the new research project was to establish a version control system 

for both the project source code as well as the necessary third-party libraries (TPLs). One 

repository was dedicated to the project code and related files to create a TriBITS build system 

(discussed next). A second repository was created for maintaining the TPLs of the project. First, a 

private repository called fire_main was created on GitLab to host the packages of source code 

for the main research project. It is here that a TriBITS-based project framework was established 

from the various components of the research code. The top-level repository contains the necessary 

CMake files for building the TriBITS project, as would be expected for any traditional build 
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system. An overview of the top-level repository is shown in Fig. A-2 below. A subdirectory named 

packages was introduced to hold the source code of all the in-house developed research software 

such as the applications for processing incoming fire data to compute environmental statistics 

related to the fire scenario and eventually formatting the output for the visualization module. 

Specifically, one initial package was included in the subdirectory called 

packages/RTFM which was intended to serve as the model format for including future packages 

into this project. RTFM is the package which will contain the initial version of the source code for 

the real-time fire monitoring application developed in future research. Presently, only a simple 

message-passing test was added to this repository as an exploratory code for checking the build 

system and use of TPLs, as discussed next. It serves as a basic unit test to ensure the TPLs were 

installed properly and the TriBITS build system can locate and use their related header files, 

libraries, and executables. 

 
Figure A-2: A view of the top-level repository for fire_main, which is the main repository hosting the 

research project 
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Additionally, the subdirectory in fire_main/guide was provided in order to organize 

project documentation. At this stage of the project, only an installation guide has been provided 

for future developers and users as well as a simple cmake script which includes the necessary 

flags for building the project with the cmake command. Both of these documents in the guide 

subdirectory will be described in later sections. 

A.3.2 Third-Party Library Installation 

The second contribution using version control was the creation of  a public repository on 

GitHub to hold the necessary information for installing the TPLs of the research software; it was 

named fire_tpls. As with many complex projects, the research software that must be 

developed for the funded work will require the use of several TPLs. Currently, the project has a 

strict requirement of two specific TPLs: Lightweight Communications and Marshalling (LCM) 

and the Consolidated Model of Fire and Smoke Transport (CFAST). 

The LCM software is hosted on GitHub and will serve as a message-passing library for 

communicating raw and processed data between the various applications (i.e., between various 

packages, as discussed in the segment on fire_main). CFAST was developed by NIST for 

performing zone-model simulations of compartment fire scenarios; this software is also hosted on 

GitHub. As a result of this convenient hosting of both pieces of software on GitHub, users of those 

applications can acquire them easily using the git clone command from a terminal or by 

downloading a zip file with all their contents. While this process may be straightforward for an 

experienced user or developer, the steps for building the individual software packages may be 

difficult for a new researcher in the team. 

Regardless of the experience of the user, it is beneficial for future developers and users of 

the new fire-monitoring software to have a systematic, scripted method for installing TPLs and 
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linking them to the packages of the larger project-wide build system. Thus, to provide an automated 

approach for installing the TPLs of this research project, the fire_tpls repository was 

structured to include new scripts for TPL acquisition and installation on a new machine used in the 

future of this project. For example, if a new developer (or future user) is building the research 

software on a new machine, the script install_tpls.sh was developed for this project and 

can be called from the command line to install all specified TPLs. The implementation of the 

automatic TPL installation process for the LCM software (and in general for additional TPLs) is 

given more attention in the Results section to follow. This was one of the primary efforts presented 

in this report and its details are provided by outlining its main features during the detailed 

explanation provided later. The top-level view of the newly created fire_tpls repository can 

be seen in Fig. A-3 below. 

 

Figure A-3: A view of the top-level repository for fire_tpls which hosts the required TPLs for the 

research project 

 

A.3.3 Documentation and Policy 

 As mentioned previously, the fire_main/guide subdirectory contains information for 

developers and users of the new research software. Included in the guide subdirectory is the system 

documentation file. This document contains a guided step-by-step procedure for installing the 

required software of the research project. Instead of providing a list of terminal commands for the 
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user to apply blindly, the instruction set in the system documentation was designed to guide the 

user through the installation process using a narrative style. This helps to explain the installation 

process for a new user and also demystify the build process by describing the required environment 

variables and general infrastructure of the project along the way. 

 Creation of the System Documentation guide was enhanced through the process of testing 

the install process on multiple systems. For example, after one version of the documentation was 

completed, the new set of instructions was used to attempt installing the project software (TPLs 

and main source code) on a different machine. During the installation process, new notes were 

added to the documentation based on the experience. This lead to a better understanding of the 

software from a developer perspective and provided a set of instructions which better captured the 

user’s installation experience on different machines. The system documentation for installing the 

research code is provided in the repository for this project. 

 The term “policy” was used here as a generic descriptor for the process of creating the 

repositories and installation scripts for the research. This system was developed with expansion 

and portability in mind. Thus, when future TPLs are needed for the research software, the current 

structure of the build system will be able to support them through the use of new installation scripts 

based on the ones developed for this project. Similarly, for newly developed source code, 

additional packages may be added to the main repository and linked with the same methods used 

for the initial test package used here. While these concepts appear merely as concepts in this 

section, the details are covered in the deliverables section that follows where proof of these features 

is provided. 
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A.4 Research Deliverables 

The goal of this section is to demonstrate these foundational additions to the main research 

project for real-time fire monitoring. Since several components were integrated into one build 

system, it follows that the results should highlight the infrastructure investments made during the 

timeline of this technical report. As discussed throughout this report, the type of the work 

completed for this project was very much in the space of software engineering and so installation 

procedures, script-writing, and general organizational concepts were the main focus of the results 

presented herein. Thus, the nature of the results are tied to these topics as opposed to producing 

some desired numerical values. What follows is a straightforward presentation of the deliverables 

provided by this project with a discussion about the meaning and implications to follow. 

A.4.1 Automatic TPL Installation 

 As discussed earlier, one of the main efforts in this project was the development of an 

automatic TPL installation script for acquiring and building necessary external packages for the 

research software. Two known required TPLs exist for the main research project currently: LCM 

and CFAST. Thus, two scripts were created for acquiring and installing these external software 

packages which are hosted on GitHub. The LCM script lcm.sh was fully integrated into the 

fire_tpls repository, was part of the TriBITS build system, and was tested during this course 

project. The CFAST script cfast.sh was developed but not fully integrated into the project 

repository nor included in the TriBITS build system as of the current report. However, the CFAST 

script was tested and debugged on several machines. The details of the CFAST script will not be 

presented here as that work has not been implemented into the main project repository. 

 One important note about the fire_tpls repository is that the actual source code for a 

particular TPL is not tracked in this repository: instead the installation scripts provided here 
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automatically use the proper git clone commands to retrieve the required versions of the TPLs 

from their own respective repositories at the time of building and installing. This is a typical 

approach for larger projects that rely on external software; there is no need to keep the external 

source code in the main repository because it is already being hosted elsewhere by the original 

developers of that particular package. Thus, an automatic TPL installation process was made 

possible by a simple, extensible logic. Regarding this extensibility logic, the main installation 

script called install_tpls.sh was structured in such a way that future additional TPLs may 

be added into this installation process in a systematic and reliable manner. 

A new user must specify only one additional environment variable in the terminal to begin 

the installation process: the installation directory for the TPLs. This directory must be chosen as a 

stable location in the system which the user does not expect to change. The suggested default 

option for this choice is simply to create a new directory in the default $HOME location. This new 

directory must be exported as the environment variable $TPL_INSTALL_DIR during the 

installation process. For example, the documentation developed for this process recommends 

creating the $HOME/installed_tpls directory to serve as this install location. Error 

checking was provided in the install_tpls.sh script to ensure that the user does in fact 

specify the $TPL_INSTALL_DIR variable before the installation process begins. 

 A few specific features were included in the first script for installing individual TPLs; 

specifically, the script for installing LCM is described here. Version information for the LCM 

package is stored in a separate file called std_tpls.sh which keeps the cloning and installing 

process updated for future users. The current version of LCM is 1.3.1 but when 1.3.2 is released 

in the future, the developers on this project simply need to update the std_tpls.sh script to 

reflect this change in the version in one location only as opposed to rewriting the lcm.sh script. 
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It is a small manual edit in the repository that a developer will need to change only as frequently 

as the releases of LCM change (or it can remain the same version number if the project dictates). 

Other features of the lcm.sh script include the automatic creation of the build directory for LCM 

in a standardized way, the use of the wget command to retrieve the source code for LCM from its 

GitHub repository (once again, eliminating the need to track that source code in the fire_tpls 

repository), and a clean-up step which removes the unnecessary zip file for LCM once installed. 

Sample output for the automatic installation of LCM using the scripts from the new fire_tpls 

repository can be seen in Fig. A-4 below. 

 

Figure A-4: Terminal output from the automatic TPL installation process 

Another important consideration for this project was to change the default LCM build 

instructions and provide a more portable set of commands within the lcm.sh script to avoid using 

sudo on shared machines, such as Flux or Comet computing clusters or the University of 

Michigan CAEN computers. Using the default build instructions for LCM leads the user to employ 

the sudo make install and sudo ldconfig commands in the terminal during installation. 

This is a concern for the portability of the research software as LCM is a required TPL although 
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some networks may not grant the user sudo-level access. To handle this issue, the default 

configure step in the LCM build process was modified with a --prefix flag in the lcm.sh 

script which specifically redirects the default build location to a subdirectory of the 

$TPL_INSTALL_DIR discussed earlier (for the current user only to avoid the sudo issue). Then 

the make command and the make install steps follow without any need to use the sudo 

privileges in the process. 

Similarly, to avoid the sudo ldconfig command, which is used to configure dynamic 

linker run-time bindings, a new .bashrc_lcm file for the $HOME directory is automatically 

created from the lcm.sh script. The .bashrc_lcm file for LCM, and in general for future TPLs 

named .bashrc_<TPL>, contains a list of environment variables which tell the system where 

the libraries and header files are located for a particular TPL. This file is populated only once 

during the installation of each individual TPL (i.e., one .bashrc_<TPL> file must be generated 

per TPL) and is utilized by adding a source command to the main .bashrc file in the user’s 

$HOME directory. The addition of one source command per TPL to the main .bashrc file to 

load the environment variables in each individual .bashrc_<TPL> file is a lightweight method 

for ensuring that all libraries and headers are “discoverable” in the system while using the new 

research software. 

A.4.2 TriBITS Build System 

 Installing the TPLs for the project was one important component of the project but it would 

not be useful unless it was integrated into the main project repository and build system. This 

section describes the inclusion of the TPLs in the TriBITS build system and also discusses how a 

local source code package was used to provide a simple unit test of the software system based on 

a small message-passing example. Typically, the TriBITS source code would not be included in 



183 

 

the main research repository; thus it must be cloned into the source directory before building. This 

step is straightforward and described for the user in the documentation so that there is no confusion 

about a broken TriBITS links. Once in a new build directory, the fire_main/guide 

subdirectory provides the script for the user to perform the cmake command. Figure A-5 contains 

the full build script which equips users with the proper cmake command flags to discover the 

installed TPLs (presently, only for LCM). 

#!/bin/bash -e 

 
rm -rf CMake* 

 
source $HOME/.bashrc_lcm 

 
cmake -DCMAKE_INSTALL_PREFIX=$HOME/rtfm \ 
      -DmyProj_ENABLE_TriBITS=ON \ 
      -DmyProj_ENABLE_TESTS=ON \ 
      -DTPL_ENABLE_LCM=ON \ 
      -DLCM_INCLUDE_DIRS=$LCM_DIR/include/lcm \ 
      -DLCM_LIBRARY_DIRS=$LCM_DIR/lib \ 
      -DmyProj_ENABLE_RTFM=ON \ 
      -DmyProj_VERBOSE_CONFIGURE=ON \ 
      ../fire_main \ 
      &> configure.out 

Figure A-5: The build script for the main TriBITS project with flags for including LCM 

 

Once the script shown in Fig. A-5 is submitted in the build directory for the project, the 

typical installation toolchain continues with the make command, followed by unit tests (via 

ctest), and finally the make install command to complete the process. Note that for the 

unit tests, the typical TriBITS unit tests can be accessed in the top-level directory simply by 

running the ctest command after the make step in that directory. However, the more interesting 

case for the current project would be to ensure that LCM was installed correctly and that any 

packages depending on LCM and its libraries are properly linked. Thus, by navigating into the 

packages/RTFM subdirectory of the build directory for this project, the user can run the ctest 

command locally (i.e., within packages/RTFM) to perform a simple message-passing unit test. 
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This test will fail if LCM was not installed and linked to the main TriBITS project properly. 

Successful completion of this single unit test is shown in Fig. A-6 after performing the previously 

discussed installation process on a personal laptop. 

pbeata RTFM $ ctest 
Test project 

/mnt/c/Users/PaulA/Desktop/Ubuntu/NERS590/FIRE/BUILD/packages/RTFM 
    Start 1: RTFM_send_message 
1/2 Test #1: RTFM_send_message ................   Passed    0.06 sec 
    Start 2: RTFM_listener 
2/2 Test #2: RTFM_listener ....................   Passed    0.04 sec 

 
100% tests passed, 0 tests failed out of 2 

 
Label Time Summary: 
RTFM    =   0.10 sec 

 
Total Test time (real) =   0.13 sec 

Figure A-6: Results of ctest in the packages/RTFM subdirectory 

 

A.4.3 Discussion of Results 

The Results section provided more details about the automatic TPL installation and the 

TriBITS build system; some additional discussion of the presented material follows here. First, it 

should be noted that the main installation script was designed such that the user is free to specify 

which TPLs should be installed as all might not be needed for a particular machine. To account for 

this situation, if the user intends to install only LCM, all they must do is declare the environment 

variable BUILD_LCM=1 in the terminal during the installation process. This triggers the main 

installation script to call the LCM-specific script for installing this particular TPL (namely, 

lcm.sh). The extensible logic found in the install_tpls.sh script is shown in Fig. A-7. 
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# LCM 
if [ “${BUILD_LCM}” != “” ] ; then 
  ${STD_SCRIPTS_DIR}/lcm.sh 

fi 

 
... 

 
# <TPL_name> 
if [ “${BUILD_<TPL_name>}” != “” ] ; then 
  ${STD_SCRIPTS_DIR}/<TPL_name>.sh 

fi 

Figure A-7: A sample of the install_tpls.sh demonstrating the TPL installation logic 

 

Using this approach will allow the future developers to add more TPLs to this repository 

by following the logic used in install_tpls.sh whereby each new TPL is screened by an if 

statement to check for any BUILD_<TPL> environment variables equal to one, as with the LCM 

example shown here. Similarly, the current and future developers can use the lcm.sh script as a 

template for providing the automated installation steps for new TPLs. This method for installing 

the TPLs sequentially was derived from the approach used in the CASL/VERA project which has 

a similar TPL repository on GitHub called vera_tpls (https://github.com/CASL/vera_tpls). 

In general, it is not considered good practice to silently add several lines to the 

main .bashrc file of a machine. Thus, each addition of a source command to the 

system’s .bashrc file for the purposes outlined earlier is accompanied by a short warning in the 

terminal during installation: ***warning: modified $HOME/.bashrc with 2 new 

lines***. One new line provides the name of the TPL as a comment and the second line is the 

actual source command; this eliminates the concern of blindly adding new content to the end of 

a hidden file like the .bashrc file. As a final measure of safety, the installation script first uses 

the grep command to ensure that there are no other instances of a particular 

source .basrhc_<TPL> command in the .bashrc file before actually writing to it. This 

https://github.com/CASL/vera_tpls
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protects the user’s .bashrc file from multiple additions of the same lines in the case of multiple 

installs of the same TPLs on one machine. 

With regards to the system documentation, there should have been a more thorough 

consideration for prerequisite packages and libraries (such as g++, git, and cmake). This was 

discovered after trying to install the research software on a machine with a fresh install of Ubuntu. 

Sometimes these critical components are not included in certain systems and a new developer on 

the project might not know whether they exist on their current machine. Thus, one feature that was 

not addressed during creation of the documentation (but should be added in future work) was 

performing a check of prerequisites on a new machine for fresh installs of the product. At the very 

least, a list could be added to the documentation which tells the developer or user to use the flag 

known as --version or the which command for each prerequisite before starting the 

installation process just to ensure that the proper packages are available. 

 

A.5 Conclusions 

The contributions made during the development of this project’s foundation focused 

mainly on providing the software infrastructure for the current research in developing a 

computational tool for real-time fire monitoring. While this work was not dedicated to 

implementing a new feature in the form of source code for a particular fire monitoring application, 

it was successful in the establishing the infrastructure for a successful research-level software 

development process by using trusted methods from scientific computing and the fundamentals of 

software engineering.  

With these goals in mind, the work completed during this phase of the project produced a 

version control system for the new research project. Not only were two repositories simply 
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initialized for the work, but rather they were set up to encourage future use by considering potential 

additions of packages and TPLs, in a systematic way, at later stages of the project. With an 

understanding of the problem definition and initial requirements for the research project, a TriBITS 

build system was defined which included linking the required TPLs and packages. Additionally, a 

simple unit test of the build system, initial documentation, and an automatic TPL installation 

method were all generated from this initial investment. 

The work presented in this technical report was designed with the future success of the 

ongoing research project as a motivating factor. The report outlined the main concerns that needed 

to be addressed in order to provide a foundation for the real-time fire monitoring project: 

portability was one desired feature of the main research project. Thus, the future research extending 

from this foundational work will include ensuring that these contributions such as automatic TPL 

installation will be sufficient for larger shared resources such as Flux and Comet in the upcoming 

stages. The methods used in this course project were employed with portability in mind and this 

extension should prove that this effort was worthwhile. 

The main features of fire-monitoring system presented here are expected to encourage good 

software engineering practice in the future stages of the ongoing research. The use of version 

control as a tool for keeping a revision history of future project tasks will be a particularly 

important component. Specifically, the TriBITS build system should continue to provide the 

current and future developers with a stable repository which can be added to as more novel source 

code is generated. By using the packages subdirectories and demonstrating a templated way 

for installing multiple TPLs, the future development of this research software will now have the 

proper structure for handling additions of each kind. 
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With the addition of new in-house packages and more TPLs, the future developers can add 

to the newly formed documentation collection as well. However, a feature that was lacking from 

the foundation developed in this project was the provision of an actual policy document to help 

guide the architecture and workflow in the future software construction effort. The project needs 

policies in place that will promote this continued maintenance of the documentation by future 

developers in the research group and encourage the ongoing use of version control for new source 

code generation. 

One crucial component of the software development which must be addressed and was not 

considered in the current report was the concept of thorough unit testing. Most of the work was 

focused on organizing the new research into a stable collection of code, scripts, and documentation. 

Due to the current stage of the research, there was not much actual source code to perform unit 

testing with and the only unit test used in the process was a simple check to ensure that one package 

could successfully use LCM. Thus, a major focus of the future work will be to develop unit tests 

alongside the generation of novel source code during the upcoming stages of the research. This 

process will require the discipline of the development team to provide proper unit testing in order 

to ensure the reliability of the newly developed software. 
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