
Drift Counteraction Optimal Control: Theory and
Applications to Autonomous Cars and Spacecraft

by

Robert A. E. Zidek

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2017

Doctoral Committee:

Professor Ilya V. Kolmanovsky, Chair
Professor Ella M. Atkins
Associate Professor Anouck R. Girard
Professor Jing Sun

Robert A. E. Zidek

robzidek@umich.edu

ORCID iD: 0000-0002-8684-5121

© Robert A. E. Zidek 2017

To my grandmother, Thea Weß.

ii

ACKNOWLEDGMENTS

First and foremost, I sincerely thank my advisor Prof. Ilya Kolmanovsky. Words cannot
describe how grateful I am for his steady support, help, and guidance over the years, which
have been invaluable for my personal and professional growth. He is truly a remarkable
person and one of the smartest people I know, who can always tell a joke and put a smile
on your face. I couldn’t have wished for a better advisor and mentor.

I am grateful to Prof. Ella Atkins, Prof. Anouck Girard, and Prof. Jing Sun for joining
my dissertation committee and offering useful feedback and suggestions about my research.
I especially thank Prof. Ella Atkins. Her classes on Aerospace Information Systems and
Robotics have made me a better engineer and researcher.

I also acknowledge the National Science Foundation (Award Number EECS 1404814)
for funding this project.

Many thanks go to Prof. Alberto Bemporad. I have learned a lot about MPC and math-
ematical programming from him. His help has been crucial in the development of the MPC
approaches in this work. I also thank Dr. Rohit Gupta for helping me understand and apply
advanced mathematical concepts and Dr. Chris “Crispy” Petersen for his valuable insights
into space flight applications and feedback about my work. I also thank my other labmates
and colleagues for their feedback that has helped me improve this work.

Finally, thank you to my family and friends for supporting me throughout my life and
laughing with me every day. Special thanks go to Julia Hlavac for her tremendous love and
support, and to my wonderful parents, Edeltraud and Walter, for everything.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . xi

List of Appendices . xiii

List of Abbreviations . xiv

Abstract . xvi

Chapter

1 Introduction . 1

1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Literature Review . 5
1.4 Contributions and Dissertation Outline 6

2 Deterministic DCOC – DP Approaches . 11

2.1 Problem Formulation . 11
2.2 Theoretical Results . 12
2.3 Proportional Feedback VI . 18

2.3.1 Theoretical Results . 18
2.3.2 Practical Considerations . 20
2.3.3 Adaptive Proportional Feedback VI 22

2.4 ADP Approach . 23
2.5 Base-Trajectory VI . 24

2.5.1 Theoretical Results . 25
2.5.2 Numerical Implementation . 27

2.6 Numerical Case Studies . 30
2.6.1 LEO Satellite Station Keeping 1 30
2.6.2 VDP Oscillator 1 and LEO Satellite Station Keeping 2 36

iv

2.6.3 VDP Oscillator 2 and N-S GEO Satellite Station Keeping 44
2.6.4 Spacecraft Attitude Control . 52

2.7 Summary . 59

3 Deterministic DCOC – Open-Loop Solutions and MPC 60

3.1 Problem Formulation . 60
3.2 Open-Loop Solutions . 61

3.2.1 Linear Systems . 61
3.2.2 Nonlinear Systems . 67

3.3 MPC Scheme . 68
3.4 Numerical Case Studies . 72

3.4.1 VDP Oscillator and Spacecraft Attitude Control 1 72
3.4.2 GEO Satellite Station Keeping & Spacecraft Attitude Control 2 . 78

3.5 Summary . 94

4 Stochastic DCOC – DP Approaches . 96

4.1 Problem Formulation . 96
4.2 Boundedness of Expected First Exit-Time and Value Function 97
4.3 Other Theoretical Results . 100
4.4 Proportional Feedback VI . 105

4.4.1 Theoretical Results . 105
4.4.2 Adaptive Proportional Feedback VI with Damping 108

4.5 Application: Driving Policies for Autonomous Vehicles 109
4.5.1 Driving Model . 109
4.5.2 Extension of DCOC Framework to Hybrid Systems 113
4.5.3 ADP Approach . 115
4.5.4 Numerical Case Study . 117

4.6 Other Numerical Case Studies . 123
4.6.1 Stochastic Pendulum . 123
4.6.2 Glider Flight Management . 126
4.6.3 Adaptive Cruise Control . 128

4.7 Summary . 130

5 Stochastic DCOC – Tree-Based SMPC . 132

5.1 Problem Formulation . 132
5.2 Scenario Tree . 133
5.3 MILP Formulation . 137
5.4 SMPC Strategy . 141

5.4.1 Theoretical Results . 141
5.4.2 Implementation . 142

5.5 Numerical Case Studies . 143
5.5.1 Influence of Number of Tree Nodes 144
5.5.2 Adaptive Cruise Control . 146
5.5.3 Driving Policies for Autonomous Vehicles 148

5.6 Summary . 159

v

6 Other Developments for Systems with Disturbances 161

6.1 Motivation and Problem Formulation . 161
6.2 TPBVP Solution . 163

6.2.1 Case Ã is invertible . 164
6.2.2 Case Ã is not invertible . 165

6.3 Error Estimation . 167
6.4 Numerical Case Study: Spacecraft Orbital Maneuver 170

6.4.1 Control Problem . 170
6.4.2 Linear Model Results . 171
6.4.3 Nonlinear Model Results . 173

6.5 Summary . 176

7 Conclusions and Future Directions . 177

7.1 Conclusions . 177
7.2 Future Directions . 179

Appendices . 182

Bibliography . 197

vi

LIST OF FIGURES

1.1 DCOC problem subject to system (1.1): state trajectories in r1-r2 plane of two
different solutions. The dashed red line indicates the constraints. 1

1.2 DCOC application: GEO satellite station keeping. Left: satellite position rela-
tive to target orbit in N-S / E-W plane. Right: normalized fuel mass over time.
The dashed red lines indicate the constraints. 3

1.3 DCOC application: driving policy that maximizes the average time that other
cars stay outside the red area. 3

2.1 Illustration of (2.34), x and x′ sufficiently close such that maxu∈U{Vn(f(x, u))+
g(x, u)} = Ṽ (x′)+ [d(x)+ c̃n(x)][Vn(x)− Ṽ (x′)]+g(x, π̃∗(x)), d(x) ∈ [0, 1)
and c̃n(x)→ 0. 22

2.2 LEO satellite station keeping problem (case study 1), proportional feedback
VI (2.25). Top: number of iterations, Niter, until convergence vs. proportional
gain k. Bottom: difference between Vn and Vn−1 according to (2.68) vs. n. . . 33

2.3 LEO satellite station keeping problem (case study 1), adaptive proportional
feedback VI (2.37). Top: number of iterations until convergence,Niter, vs. learn-
ing rate δ. Bottom: difference between Vn and Vn−1 according to (2.68) vs. n. . 34

2.4 LEO satellite station keeping problem (case study 1) – initial altitude of 300
km: altitude r − rE (top) and control input u (bottom) vs. time. 36

2.5 LEO satellite station keeping problem (case study 1) – initial altitude of 275
km: altitude r − rE (top) and control input u (bottom) vs. time. 37

2.6 VDP oscillator problem (case study 1). Top: number of iterations until con-
vergence vs. gain k. Bottom: computation time (until convergence) vs. gain
k. 39

2.7 VDP oscillator problem (case study 1), x0 = [1.5, 3, 0]>. Top: r1 vs. r2.
Bottom: control u vs. time. 40

2.8 LEO satellite station keeping problem (case study 2). Top: number of itera-
tions until convergence vs. gain k. Bottom: computation time (until conver-
gence) vs. gain k. 42

2.9 LEO satellite station keeping problem (case study 2), initial 300 km circular
orbit. Top: altitude vs. time. Bottom: spacecraft mass m vs. time. 43

2.10 VDP oscillator problem (case study 2) – one control variable, x0 = [1, 2, 0]>.
Top: state trajectory in r1-r2 plane. Bottom: approximation of the value func-
tion vs. time. 46

vii

2.11 VDP oscillator problem (case study 2) – two control variables, x0 = [1, 2, 0]>.
Top: state trajectory in r1-r2 plane. Bottom: approximation of the value func-
tion vs. time. 47

2.12 N-S GEO satellite station keeping problem, x0 = [0, 0, 10, 0]>. Position r
(top) and velocity v (middle) relative to nominal orbit vs. time as well as fuel
(bottom) vs. time. 50

2.13 N-S GEO satellite station keeping problem, x0 = [0, 0, 10, 0]>. Control input
(top) and approximation of the value function (bottom) vs. time. 51

2.14 Spacecraft attitude control problem: model of an axisymmetric spacecraft. . . . 53
2.15 Spacecraft attitude control problem for nominal disturbance [see (2.86) and

(2.87)], nominal grid [see (2.89)], and initial condition ω0,1 = ω0,2 = θ0,1 =
θ0,2 = 0, m0 = 15.27 kg. Top: attitude parameters in complex plane (left)
and propellant mass m vs. time (right). Bottom: control moments u1 and u2

vs. time (left) and approximation of value function vs. time (right). 57

3.1 Illustration of effects of constraint tightening and recovery controller when
linear-based MPC scheme is applied to nonlinear model. Top: state trajecto-
ries without constraint tightening. Bottom: state trajectories with constraint
tightening and recovery controller. 70

3.2 VDP oscillator case study. Top: state trajectories in r1-r2 plane. Bottom:
control input u vs. time. 74

3.3 Spacecraft attitude control case study. Uncontrollable Euler angle θ vs. time
(top) as well as control inputs αw1 (middle) and αw3 (bottom) vs. time. 77

3.4 GEO satellite station keeping problem, continuous-thrust case: spacecraft po-
sition relative to GEO reference orbit, thrust forces in Hill’s frame, and accu-
mulated ∆v vs. time. 84

3.5 GEO satellite station keeping problem, MPC-Continuous-Time simulation in
the on/off-thrust case: spacecraft position relative to GEO reference orbit,
thrust forces in Hill’s frame, and accumulated ∆v vs. time. 86

3.6 Spacecraft attitude control problem, one RW (p = 1): Euler angles, RW speed,
and control input vs. time. 91

3.7 Spacecraft attitude control problem, two RWs (p = 2): Euler angles, RW
speeds, and control inputs vs. time. 92

3.8 Spacecraft attitude control problem, three RWs (p = 3): Euler angles, RW
speeds, and control inputs vs. time. 95

4.1 Driving model: traffic example. 110
4.2 Autonomous driving problem – ADP (Lmax = 10): number of iterations Niter

until convergence vs. proportional gain k for different λ. 121
4.3 Autonomous driving problem – ADP (Lmax = 10): sample trajectories of

relative time gap Tg,c for the ego car’s current lane (top left), relative time gap
Tg,o for other lane (top right), velocity vm of ego car (bottom left), and lane
change indicator lm of ego car (bottom right) over time. 122

viii

4.4 Autonomous driving problem – conventional DP (Lmax = 10): sample trajec-
tories of relative time gap Tg,c for the ego car’s current lane (top left), relative
time gap Tg,o for other lane (top right), velocity vm of ego car (bottom left),
and lane change indicator lm of ego car (bottom right) over time. 122

4.5 Autonomous driving problem – ADP: average first exit-time τ̄ vs. Lmax. 123
4.6 Stochastic pendulum problem: number of iterations until convergence vs. learn-

ing rate δ. 124
4.7 Stochastic pendulum problem – sample results for some random disturbance

profile. Top: angle φ vs. time. Middle: angular velocity ω vs. time. Bottom:
control input during the first 25 sec vs. time. 125

4.8 Glider flight management problem: number of iterations until convergence
vs. learning rate δ (top) and example trajectories showing the altitude h vs. time
(middle) and the range s vs. time (bottom). 128

4.9 Adaptive cruise control problem, DP-based solution: number of iterations until
convergence vs. learning rate δ. 129

4.10 Adaptive cruise control problem, DP-based solution: sample trajectories over
time of time gap Tg between the two vehicles (top left), follower vehicle ve-
locity vf (top right), acceleration of follower vehicle a (bottom left), and lead
vehicle velocity vl (bottom right). 130

5.1 Scenario tree example for 12 nodes, including |SN | = 6 leaf nodes. 133
5.2 Numerical case study on SMPC strategy and influence of number of tree

nodes: sample trajectories showing the states r1 (top left) and r2 (top right)
as well as the control input u (bottom left) and disturbance w (bottom right)
vs. t. 145

5.3 Numerical case study on SMPC strategy and influence of number of tree
nodes: average first exit-time τ̄ vs. N (1000 random simulations for each N). . 145

5.4 Numerical case study on SMPC strategy and influence of number of tree
nodes: average (left) and worst-case time (right) to compute control ut (Steps
2–14 in Algorithm 5.2) vs. N (1000 random simulations for each N). 146

5.5 Adaptive cruise control problem, SMPC solution with additional penalty on
control input (weight βa = 0.01): sample trajectories over time of time gap
Tg between the two vehicles (top left), follower vehicle velocity vf (top right),
acceleration of follower vehicle a (bottom left), and lead vehicle velocity vl

(bottom right). 147
5.6 SMPC – autonomous driving case study: sample trajectories of relative time

gap Tg,c for the ego car’s current lane (top left), relative time gap Tg,o for other
lane (top right), velocity vm of ego car (bottom left), and lane change indicator
lm of ego car (bottom right) over time. 153

5.7 Hybrid SMPC with vcruise = vmin – autonomous driving case study: sample
trajectories of relative time gap Tg,c for the ego car’s current lane (top left),
relative time gap Tg,o for other lane (top right), velocity vm of ego car (bottom
left), and lane change indicator lm of ego car (bottom right) over time. 158

5.8 Hybrid SMPC – autonomous driving case study: average first exit-time τ̄ (for
1000 random simulations) vs. cruise speed vcruise. 158

ix

5.9 Hybrid SMPC with vcruise = 23 m/sec – autonomous driving case study: sam-
ple trajectories of relative time gap Tg,c for the ego car’s current lane (top left),
relative time gap Tg,o for other lane (top right), velocity vm of ego car (bottom
left), and lane change indicator lm of ego car (bottom right) over time. 159

6.1 LQ optimal control problem of spacecraft orbital maneuvering: linear model
results. Top: relative control input error urel(t) = ‖u(t)− upwlin(t)‖ / ‖u(t)‖
for ∆t = 100 sec. Bottom: average error eavrg according to (6.42) vs. sampling
time ∆t. 172

6.2 LQ optimal control problem of spacecraft orbital maneuvering: computation
times vs. ∆t. Top: time to build the matrices in (6.11) and (6.20). Middle:
time to solve the TPBVP. Bottom: time to compute x̃pwlin(t) and upwlin(t) for
all tk. 173

6.3 LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme: control input acceleration in Hill’s frame vs. time. . 174

6.4 LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme: spacecraft position in Hill’s frame vs. time. 175

6.5 LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme: spacecraft velocity in Hill’s frame vs. time. 175

x

LIST OF TABLES

2.1 VDP oscillator problem (case study 1), DP approach. Time to compute DCOC
policy (k = 1) and first exit-time τ(x0, π̃

∗) for x0 = [1.5, 3, 0]> for different
grids G̃ = GD(a, b, [q0, q0, q0]>). 39

2.2 VDP oscillator problem (case study 1), ADP-Kriging approach. Time to com-
pute DCOC policy (k = 1.8) and first exit-time τ(x0, π̃

∗) for x0 = [1.5, 3, 0]>

for different training sets G̃ = GD(a, b, [3, 3, 3]>) ∪ lhs(nlhs). 40
2.3 LEO satellite station keeping problem (case study 2), DP approach. Time to

compute DCOC policy (k = 1) and time tτ(x0,π̃∗) at constraint violation for
initial 300 km circular orbit and different G̃ = GD(a, b, [q0, q0, 0, q0, q0]>). . . 42

2.4 LEO satellite station keeping problem (case study 2), ADP-Kriging approach.
Time to compute DCOC policy (k = 1.8) and time tτ(x0,π̃∗) at constraint vi-
olation for an initial 300 km circular orbit for G̃ = GD(a, b, [3, 3, 0, 3, 3]>) ∪
lhs(nlhs). 43

2.5 VDP oscillator problem (case study 2) with one control variable. ∆V (x) ac-
cording to (2.74) and time steps until constraint violation τ(x, π) for x =
[1, 2, 0]> as well as required time (wall time) to compute the respective control
policies on G. 46

2.6 VDP oscillator problem (case study 2) with two control variables. ∆V (x)
according to (2.74) and time steps until constraint violation τ(x, π) for x =
[1, 2, 0]> as well as required time (wall time) to compute the respective control
policies on Gdis. 48

2.7 N-S GEO satellite station keeping problem. ∆V (x) according to (2.74) and
time steps until constraint violation τ(x, π) for x = [0, 0, 10, 0]> as well as
required time (wall time) to compute the respective control policies on Gdis. . . 52

2.8 Spacecraft attitude control problem: spacecraft parameters. 55
2.9 Spacecraft attitude control problem: influence of state and time space dis-

cretization on the simulation results for nominal disturbance [see (2.86) and
(2.87)] and ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg. 58

2.10 Spacecraft attitude control problem: robustness analysis of the solution with
respect to uncertainties in the disturbances for an initial condition of ω0,1 =
ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg, where the controller is based on the
nominal approximation of V (i.e., assuming nominal disturbances). 59

xi

3.1 VDP oscillator case study, open-loop control sequences with different param-
eters: first exit-time τ and computation time (worst-case over 100 simulation
runs). 73

3.2 Spacecraft attitude control case study, open-loop control sequences with dif-
ferent parameters: first exit-time τ and worst-case computation time over 100
simulation runs. 75

3.3 Model parameters for spacecraft attitude control problem. 88

4.1 Autonomous driving problem – ADP (Lmax = 10), performance of different
NN: computation time tcomp to obtain DCOC policy, number of iterationsNiter

until convergence, and average first exit-time τ̄ 119
4.2 Autonomous driving problem – ADP (Lmax = 10): computation time tcomp to

obtain DCOC policy, number of iterations Niter until convergence, number of
samples without convergence, and average first exit-time τ̄ for λ = 2.5×10−4

[λ = 5× 10−4] (λ = 7.5× 10−4). 120
4.3 Autonomous driving problem – conventional DP (Lmax = 10): computation

time tcomp to obtain DCOC policy, number of iterations Niter until conver-
gence, and average first exit-time τ̄ for different grids nsc × nso × nvm × nL×
nvc × nvo (number of discrete values considered for each variable), where
nvm = 4 and nvc = nvo = 5 are fixed. 121

4.4 Autonomous driving problem – ADP (Lmax = 10): average first exit-time τ̄
for different vmin. 123

5.1 Adaptive cruise control problem, SMPC solution: influence of control input
penalty weight βa on average first exit-time τ̄ (for 1000 random simulations). . 147

6.1 LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme, case 1: cost values and final states for different con-
trollers. 176

6.2 LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme, case 2: cost values and final states for different con-
trollers. 176

xii

LIST OF APPENDICES

A Rotational Dynamics of a Rigid Body with Time-Varying Mass/Inertia Prop-
erties . 182

B Proof of Theorem 3.2 . 188

C Nonlinear Model for GEO Satellite Station Keeping Problem 190

D Nonlinear Model for Spacecraft Attitude Control Problem 193

E Proof of Lemma 4.1 . 196

xiii

LIST OF ABBREVIATIONS

ACC adaptive cruise control

ADP approximate/adaptive dynamic programming

CW Clohessy-Wiltshire

DCOC drift counteraction optimal control

DP dynamic programming

ECI Earth-centered inertial

E-W East-West

GEO geostationary Earth orbit

HJB Hamilton-Jacobi-Bellman

iff if and only if

LEO low Earth orbit

LP linear program

LQ linear quadratic

MILP mixed-integer linear program

MINLP mixed-integer nonlinear program

MPC model predictive control

NLP nonlinear program

NN neural network

N-S North-South

ODE ordinary differential equation

PDE partial differential equation

xiv

RW reaction wheel

SMPC stochastic model predictive control

SRP solar radiation pressure

TPBVP two point boundary value problem

UAV unmanned aerial vehicle

USC upper semi-continuous

VDP van der Pol

VI value iteration

VSI variable specific impulse

xv

ABSTRACT

Many engineering systems are subject to persistent disturbances or dynamics that cause

the process variables to drift. This dissertation studies the problem of how to control such

systems in order to maximize the time or total yield before prescribed constraints are vio-

lated. This problem is referred to as drift counteraction optimal control (DCOC) since the

controller may be viewed as counteracting drift in order to delay constraint violation.

The first part of this dissertation focuses on deterministic DCOC problems, i.e., prob-

lems where the system behavior is described by a deterministic model. Conditions for

the existence of a solution are derived and an optimal control strategy is characterized in

terms of the value function. Moreover, properties of the first exit-time, i.e., the first time

instant at which constraint violation occurs, and of the value function are studied, where

both are shown to be upper semi-continuous (USC) with respect to the state variables under

suitable conditions. New algorithms based on dynamic programming (DP), approximate

dynamic programming (ADP), and model predictive control (MPC) are developed to obtain

solutions or good-quality approximations of solutions. In terms of DP, an enhanced ver-

sion of the value iteration (VI) algorithm is proposed that converges to the value function

faster than conventional VI in a numerical setting. Based on the enhanced VI algorithm, an

ADP approach is obtained to mitigate the curse of dimensionality. Another DP-based algo-

rithm, referred to as base-trajectory VI, is proposed, which converges to the value function

by gradually connecting pieces of an optimal control policy. A mixed-integer nonlinear

program is derived that obtains open-loop solutions to deterministic DCOC problems and

good-quality suboptimal solutions are obtained with a similar nonlinear program without

xvi

integer variables. In the linear systems case, a mixed-integer linear program (MILP) and

a standard linear program (LP) are formulated to obtain open-loop solutions and good-

quality approximations of solutions, respectively. Based on linear model approximation,

the MILP and LP are used to implement an MPC strategy that can be effective in DCOC

of nonlinear systems. New applications of deterministic DCOC are proposed with a fo-

cus on spacecraft control, where the effectiveness of the developed approaches in delaying

constraint violation is demonstrated in several numerical case studies.

In the second part of this dissertation, the assumption of perfect information is relaxed

and the developments for the case of deterministic DCOC are extended to the case of

stochastic systems. Conditions are derived under which the average first exit-time and

value function are bounded from above, which are necessary conditions for the existence

of a solution to stochastic DCOC problems. Further conditions are provided that guarantee

the existence of a solution and an optimal control policy is characterized. Moreover, the

average first exit-time is shown to be USC with respect to the state variables under suit-

able assumptions. The enhanced VI algorithm for the deterministic case is extended to

stochastic systems, where the proof of convergence requires a different approach. Similar

to the deterministic case, an ADP approach is presented that mitigates the curse of dimen-

sionality. Another contribution is a novel tree-based stochastic MPC (SMPC) approach to

solve stochastic DCOC problems. A scenario tree with a specified number of tree nodes is

used to encode the most likely system behavior, where each path on the tree corresponds to

a distinct disturbance scenario. For linear discrete-time systems with an additive random

disturbance, an MILP obtains solutions arbitrarily close to the optimal solution for a suffi-

cient number of tree nodes. In order to compensate for an incomplete scenario tree and/or

unmodeled effects, feedback is provided by recomputing the MILP solution over a reced-

ing time horizon based on the current disturbance and state variables. New applications of

stochastic DCOC are introduced with a focus on automated and autonomous driving and a

variety of numerical case studies of such DCOC problems are treated in this dissertation.

xvii

CHAPTER 1

Introduction

1.1 Problem Statement

The problem addressed in this dissertation can be stated as follows: given a deterministic
(stochastic) system and a set of prescribed constraints on the system’s process and control
variables, find a control strategy that maximizes the (expected value of the) time or total
yield before at least one of the constraints is violated. For each admissible control strategy,
it is assumed that constraint violation occurs in finite time (with probability one), so that
the problem may be defined. Such problems are referred to as drift counteraction optimal
control (DCOC) problems since the solution may be viewed as counteracting drift imposed
by disturbances or system dynamics in order to delay constraint violation and maximize
(expected) total yield.

r
1

-2 0 2

r 2

0

0.5

1

Figure 1.1: DCOC problem subject to system (1.1): state trajectories in r1-r2 plane of two
different solutions. The dashed red line indicates the constraints.

As an example, consider the deterministic discrete-time system,

1

r1,t+1 = r1,t − ut + 1

r2,t+1 = r2,t − 0.1ut,
(1.1)

where the states at a time instant t ∈ Z≥0 are given by r1,t and r2,t, and ut ∈ [0, 1] denotes
the control input. The objective is to find a control strategy that maximizes the time that
r1,t ∈ [−3, 3] and r2,t ∈ [0, 1]. The solution to this DCOC problem is not unique. For
initial states r1,0 = −3 and r2,0 = 1, the optimal number of time steps until constraint
violation is 17. One possible solution is given by the control sequence 0, 0, ..., 0, 1, 1, ..., 1,
the corresponding state trajectory to which is plotted in the r1-r2 plane in Figure 1.1 (black
line). In addition to the constraints (dashed red line), the state trajectory of another solution
is also plotted in Figure 1.1 (blue line).

The objective of the dissertation is to develop methods to systematically compute such
optimal control policies, provide insight into the solution properties, and to apply the de-
veloped methods to solve engineering problems.

1.2 Motivation

DCOC problems can be found in many engineering systems, in particular, those with

• large persistent disturbances (e.g., wind gusts or drag),

• limited control authority (e.g., underactuated systems),

• finite resources (fuel, energy, component life, etc.),

causing the process variables of the system to drift. In order to maintain the operation of
the system in a safe and/or efficient region for as long as possible, control algorithms need
to be designed that counteract the drift in an optimal way.

For example, consider a satellite in geostationary Earth orbit (GEO), which is the most
frequently used Earth orbit. Typical position windows for GEO satellites are around±0.05

deg in longitude and latitude. The satellite is subject to orbital perturbations (gravity of
the Moon and Sun as well as other planets, solar radiation pressure (SRP), etc.), requiring
regular thrusting for station keeping. Eventually, the satellite runs out of fuel and position
constraints are violated. The objective of DCOC is to find a thrust strategy that delays this
event in order to increase the operational time of the satellite.

2

This is illustrated in Figure 1.2, which shows the trajectory of an example GEO satellite
when using a DCOC strategy. The left plot in Figure 1.2 shows the satellite position rela-
tive to its target orbit in the plane defined by the North-South (N-S) and East-West (E-W)
directions. The available fuel (the fuel mass is normalized here) can be seen in the right
plot. The dashed red lines in Figure 1.2 indicate the prescribed constraints on the satellite
position and fuel. In this example, the satellite thrusters use all available fuel in the begin-
ning, which is followed by a long coasting phase. Constraints are violated for the first time
after about seven days (see lower right corner in left plot of Figure 1.2) and the satellite
reenters the prescribed position window before constraints are violated again.

E-W Position (km)
-10 -5 0 5 10

N
-S

 P
os

iti
on

 (
km

)

-10

-5

0

5

10

time (days)
0 2 4 6

fu
el

0

0.5

1

Figure 1.2: DCOC application: GEO satellite station keeping. Left: satellite position
relative to target orbit in N-S / E-W plane. Right: normalized fuel mass over time. The
dashed red lines indicate the constraints.

Figure 1.3: DCOC application: driving policy that maximizes the average time that other
cars stay outside the red area.

Another area of DCOC applications is automated and autonomous driving. Automated
and autonomous vehicles may improve road safety, provide greater convenience for hu-
mans, and lower cost of transportation in the future. Car following or adaptive cruise
control (ACC) can be formulated as a DCOC problem, where the objective is to control the

3

acceleration of the follower vehicle such that the distance to the lead vehicle (with the lead
vehicle velocity modeled as a random disturbance) stays within a prescribed range for as
long as possible. This car following problem can be extended by taking into account lateral
motion as well, i.e., allowing lane changes. In this case, the objective of DCOC may be
to generate a driving policy that maximizes the expected time that none of the surrounding
cars (treated as random disturbances) enters a prescribed safe zone around the ego car as
illustrated in Figure 1.3.

Besides satellite station keeping and autonomous driving, other DCOC applications are,
for example:

• Energy management of hybrid electric vehicles: there are two or more distinct power
sources, e.g., an engine and an electric motor with a battery. The objective is to
control the power flows in this system in order to maximize the vehicle’s range. The
problem may be formulated as a stochastic control problem where, e.g., the wheel
power demand is treated as a random disturbance.

• Spacecraft attitude control: the spacecraft orientation is subject to drift caused, e.g.,
by SRP, and the objective is to generate counteracting torques, e.g., using reaction
wheels or thrusters, such that the orientation stays within prescribed bounds for as
long as possible. The control authority may be limited due to underactuation or a
saturated reaction wheel (RW).

• Glider flight management: consider the flight of a glider airplane with uncertain
lift conditions, where the objective is to find an optimal flight path that maximizes
the expected time of flight (time in air). An additional constraint may be imposed
requiring the glider to stay within a prescribed range.

• Hover control of an unmanned aerial vehicle (UAV): given random wind distur-
bances, the DCOC problem is formulated with the objective of satisfying tight con-
straints on the UAV position for as long as possible. Similarly, the objective may be
to maximize the expected time of following a moving target (which is an additional
random disturbance), i.e., find a control strategy such that the UAV stays within a
certain range of the target for as long as possible.

• Dynamic positioning of offshore vessels: find a control strategy that maintains the
vessel position and heading within prescribed bounds for as long as possible by using
its propellers and thrusters, where environmental forces (wind, current, waves, etc.)
act as random disturbances.

4

• Cancer treatment: find a treatment strategy (e.g., medication dosage and intervals)
that optimally counteracts cancer growth in order to maximize the expected lifetime
of a cancer patient.

1.3 Literature Review

The DCOC problem investigated in this dissertation is an optimal exit-time control prob-
lem. Similar problems were studied in the past for both deterministic and stochastic sys-
tems. The work by Lions [1] investigates optimal exit-time control problems in continuous-
time, where it is shown that, under suitable assumptions, the optimal control and its corre-
sponding value function satisfy the Hamilton-Jacobi-Bellman (HJB) equation in the viscos-
ity/weak sense. The notion of viscosity solutions to the HJB equation, which is a second-
order partial differential equation (PDE) in the stochastic case, is introduced in [2, 3]. Vis-
cosity solutions to the HJB equation and properties of the value function of optimal exit-
time control problems for continuous-time stochastic systems are also discussed in the book
by Fleming and Soner [4] as well as in [5–10].

Similar to the stochastic case, viscosity solutions to the HJB equation and properties
of the value function in the deterministic case (in which the HJB equation is a first-order
PDE) are discussed in the book by Bardi and Capuzzo-Dolcetta [11] as well as in [12–
21]. A different approach can be found in [22], where Lipschitz continuity and semi-
concavity results for the value function are obtained based on the maximum principle.
Moreover, Rungger and Stursberg [23] investigate the continuity of the value function for
hybrid systems with continuous-time dynamics.

However, most of the previous results on optimal exit-time control problems (both in
the deterministic and stochastic case) for continuous-time systems rely on conservative as-
sumptions, in particular: non-negative cost values (i.e., minimization of non-negative cost
functions) and/or cost functions with discount factors. In contrast, DCOC involves max-
imization problems with undiscounted non-negative yield functions such as the the prob-
lems envisioned in the previous section (Section 1.2). For continuous-time systems with
Wiener-Poisson inputs, a stochastic optimal control problem similar to the DCOC problem
is investigated by Kolmanovsky and Maizenberg [24], who obtain an explicit solution to
the HJB equation only for a simple scalar system. Similarly, in [25] a game-theoretic ap-
proach is used to obtain an explicit expression for the value function of a (continuous-time)
flow control time maximization problem with discount factor.

Explicit solutions to the HJB equation, however, only exist for special problems. Other-
wise, a solution can only be obtained approximately using numerical methods. The numer-

5

ical methods developed by Kushner et al. [26, 27] and their extensions, for example, [28],
are based on iteratively solving discretized versions of the problem using the value itera-
tion (VI) algorithm [29]. Under certain conditions, the sequence of solutions to the discrete
problems approaches the solution of the continuous problem [27, 30]. Another numeri-
cal approach is to represent the value function of the discretized problem as a tensor and
approximate the solution to the HJB equation by employing, for example, the alternating
least squares algorithm [31, 32] or tensor-based VI [33]. Raffard et al. [34] propose an
adjoint-based method to solve exit-time problems for hybrid systems with continuous-time
dynamics.

Instead of solving a PDE numerically, the formulation of optimal exit-time control
problems in discrete-time appears to be computationally more tractable for determining
a solution [29, 35]. Kolmanovsky et al. [35] consider the DCOC problem for stochastic
discrete-time systems and show that VI converges to the value function if an optimal solu-
tion exists. They also propose a numerical implementation of VI based on equidistant state
space discretization, a typical approach used in applications [36], and solve two DCOC
examples of hybrid electric vehicle powertrain management and oil extraction control. The
approach by Kolmanovsky et al. is furthermore used to solve other stochastic DCOC prob-
lems of hybrid electric vehicle energy management and adaptive cruise control [37], energy
management for a fuel cell and battery powered mini air vehicle [38], and glider flight man-
agement [39, 40].

1.4 Contributions and Dissertation Outline

The contributions of this dissertation are advancements in theory, methodology, and appli-
cations of DCOC for systems with discrete-time dynamics, extending the initial discrete-
time DCOC framework proposed by Kolmanovsky et al. [35]. The contributions can be
categorized into two parts: DCOC for deterministic systems (first part) and DCOC for
stochastic systems (second part). In particular, new approaches based on dynamic pro-
gramming (DP), approximate/adaptive dynamic programming (ADP), and model predic-
tive control (MPC) as well as approaches to obtain open-loop solutions are developed and
analyzed, and several new DCOC applications are proposed and investigated. The majority
of the contents of this dissertation has been originally published or submitted to scientific
journals [41, 42] or conference proceedings [43–51]. The individual contributions of this
dissertation and their corresponding chapters for the first part (deterministic systems) are:

6

Chapter 2 (DP approaches):

• Section 2.2 [41]: using DP techniques, properties of deterministic DCOC problems
are derived. Under suitable assumptions, the objective function and the first exit-time
[see (2.2)] are shown to be upper semi-continuous (USC). Furthermore, conditions
are derived under which a control policy is optimal and additional conditions are
provided that guarantee the existence of a solution to the DCOC problem.

• Section 2.3 [41, 43]: an enhanced version of the VI algorithm is developed that ob-
tains the value function faster than conventional VI (which is a special case of the
enhanced VI algorithm) in a numerical setting. The idea behind the enhanced algo-
rithm is to consider VI as a control problem with the objective of driving the error
in the DP equation (also referred to as the Bellman equation) to zero. The proposed
algorithm updates the value function in proportion to the error and an extension using
adaptive proportional gains is considered.

• Section 2.4 [41]: based on proportional feedback VI (Section 2.3), an ADP method
is proposed. The ADP method uses a function approximator such as a neural net-
work (NN) or Gaussian process to approximate the value function. Compared to
conventional DP techniques that approximate the value function on a mesh of dis-
crete points (and using interpolation to approximate the value function between the
grid points), the ADP method mitigates the curse of dimensionality and is computa-
tionally advantageous for higher-dimensional problems.

• Section 2.5 [44,49]: a new algorithm, referred to as base-trajectory VI, is developed.
The new algorithm converges to the value function by gradually connecting pieces
of an optimal control policy. This is achieved by traversing a base-trajectory until
deviating from it provides an improvement. It is shown that, in a numerical setting,
base-trajectory VI is more accurate (i.e., achieves better performance in terms of
longer exit-times) than conventional VI.

• Section 2.6 [41, 43–45, 49]: using the methods developed in Sections 2.3–2.5, sev-
eral numerical case studies are presented for the following DCOC problems: time
maximization of a van der Pol (VDP) oscillator (Sections 2.6.2.1 and 2.6.3.1), life
extension of a low Earth orbit (LEO) satellite (Sections 2.6.1 and 2.6.2.2) as well as
of a GEO satellite (Section 2.6.3.2), and spacecraft attitude control (Section 2.6.4).

7

Chapter 3 (open-loop solutions and MPC approach):

• Section 3.2 [42, 48]: for deterministic time maximization problems (i.e., maximize
the time before prescribed constraints are violated), a mixed-integer linear program
(MILP) is developed that obtains an open-loop solution for problems subject to linear
systems. The MILP is relaxed, yielding a standard linear program (LP) that generates
good-quality suboptimal solutions. In addition, an iterative procedure is proposed
to obtain a proper time horizon for the LP and MILP, respectively. For problems
subject to nonlinear systems, a similar mixed-integer nonlinear program (MINLP) is
developed, including a nonlinear program (NLP) as its relaxed version.

• Section 3.3 [42,45,48]: the LP and MILP (Section 3.2) are used to formulate an MPC
scheme, where, at each time instant, the LP or MILP is solved over a receding time
horizon based on the current state of the system. The first element of the obtained
open-loop control sequence is applied to the system, providing state feedback in
order to compensate for unmodeled effects.

• Section 3.4 [42, 45, 48]: using the developed MPC scheme, several numerical case
studies of drift counteraction for a VDP oscillator (Section 3.4.1.1), GEO satellite
station keeping (Section 3.4.2.1), and spacecraft attitude control (Section 3.4.2.2) are
treated. The results are compared against the respective open-loop solutions.

In the second part of this dissertation, the developments for deterministic systems are
extended to stochastic systems. The individual contributions for the second part (stochastic
systems) are listed as follows:

Chapter 4 (DP approaches):

• Section 4.2: conditions are obtained under which the expected value of the first exit-
time (first time instant of constraint violation) and the value function are bounded
from above.

• Section 4.3 [46]: based on Section 4.2, the results on upper semi-continuity of the
first exit-time and objective function of deterministic DCOC problems (Section 2.2)
are extended to the stochastic case. Moreover, conditions are derived that character-
ize an optimal control policy and the existence of a solution is analyzed.

• Section 4.4 [46]: proportional feedback VI for deterministic DCOC problems (Sec-
tion 2.3) is extended to the stochastic case. The proof of convergence requires a

8

procedure different from the deterministic case. The algorithm is extended using
adaptive proportional gains and a damping factor is introduced to prevent the itera-
tions from diverging in the adaptive setting.

• Section 4.5 [50]: the DCOC framework is used to generate driving policies for au-
tonomous vehicles. The traffic around the ego car is described by a stochastic hybrid
model, which is developed in Section 4.5.1. In Section 4.5.2, the DCOC framework
is extended to take into account such hybrid models. An ADP method similar to
the method for deterministic problems (Section 2.4) is presented in Section 4.5.3,
where NNs are used to approximate the value function. A numerical case study is
considered where the ADP method is compared against a conventional DP approach
(Section 4.5.4).

• Section 4.6 [46]: other numerical case studies of stochastic DCOC problems are
treated, including control of a pendulum (Section 4.6.1), glider flight management
(Section 4.6.2), and a car following problem (Section 4.6.3).

Chapter 5 (Tree-based SMPC approach):

• Section 5.2 [51]: a stochastic model predictive control (SMPC) approach is devel-
oped in this chapter to solve stochastic DCOC problems with the objective of max-
imizing the expected time before constraint violation. In order to optimize over a
subset of all possible scenarios, an algorithm is proposed to construct a scenario tree
that encodes the most likely system behavior for a specified number of tree nodes.

• Section 5.3 [51]: an MILP is proposed, the solution of which, assuming a linear
system model with additive random disturbances modeled by Markov chains, ap-
proaches a solution to the stochastic DCOC problem as the number of tree nodes
approaches infinity. In contrast to the open-loop solutions provided by the MILP and
LP in the deterministic case (Section 3.2), the MILP in the stochastic case takes into
account state feedback at future time instants.

• Section 5.4 [51]: the MILP from Section 5.3 is used to implement the tree-based
SMPC strategy. At each time instant, based on the current states and disturbances,
a new scenario tree is constructed with a specified number of nodes (Section 5.2)
and the corresponding MILP solution is computed. The first element of the solution,
i.e., the control associated with the root node of the scenario tree, is applied to the
system. This procedure is repeated at the next time instant, introducing feedback to
compensate for unmodeled effects as well as for not taking into account all possible

9

scenarios. If computing the MILP solution requires longer than available time, a
relaxed version without integer variables, which is a standard LP, is solved instead.

• Section 5.5 [51]: the developed tree-based SMPC scheme is applied to several numer-
ical case studies, including applications to ACC and driving policies for autonomous
cars, where the results of the SMPC scheme are compared to DP-based results (Sec-
tion 4.6). For the autonomous driving problem in Section 5.5.3, a special version of
the MILP is provided to account for potential lane changes. In addition, an effective
hybrid SMPC strategy is derived for drift counteraction by combining DCOC-based
lane change decision making with a DCOC-based car following controller.

In addition to DCOC, other developments on related topics of optimal control for sys-
tems with disturbances have appeared in a journal publication [52] and are presented in
Chapter 6. In particular, a closed-form approximate solution to a linear quadratic (LQ) op-
timal control problem with known time-varying disturbance term is developed in Chapter
6. The approach is demonstrated in Section 6.4 for a spacecraft orbital maneuver taking
into account J2 and J3 perturbation as well as atmospheric drag perturbation.

10

CHAPTER 2

Deterministic DCOC – DP Approaches

2.1 Problem Formulation

In this chapter, discrete-time nonlinear systems of the form

xt+1 = f(xt, ut), (2.1)

are considered, where xt ∈ Rn denotes the state vector at a discrete time instant t ∈ Z≥0

and f is a general nonlinear function (no restrictions on f are made at this point). The
control input vector at a time instant t is given by ut = π(xt), where π : Rn → U ⊂ Rp

is an admissible control policy and the set of admissible control policies is denoted by Π.
The first exit-time from a prescribed set G ⊂ Rn, given the initial state vector x0 ∈ G and
control policy π ∈ Π, is defined as follows

τ(x0, π) = inf {t ∈ Z≥0 : xt /∈ G} , (2.2)

where xt evolves according to (2.1). The DCOC problem is given by

J(x0, π) =

τ(x0,π)−1∑
t=0

g(xt, ut)→ max
π∈Π

, (2.3)

where x0 ∈ G and g : G× U → R+ is the instantaneous yield. Note that if g ≡ 1 in (2.3),
the objective is to maximize the first exit-time from G.

11

2.2 Theoretical Results

The approach in this chapter for solving the DCOC problem (2.3) is based on DP, where
the optimal control policy is characterized by the value function V , which is defined by

V (x) = sup
π∈Π

J(x, π). (2.4)

The following assumption about g is made.

Assumption 2.1. There exists a real-valued ḡ > 0 such that g(x, u) ≤ ḡ for all (x, u) ∈
G× U .

Theorem 2.1 provides conditions under which the total yield and the value function are
bounded. It is based on the following assumption about the first exit-time τ(x, π).

Assumption 2.2. There exists an integer T̄ > 0 such that τ(x, π) ≤ T̄ for all x ∈ G and
π ∈ Π.

This assumption is reasonable in DCOC problems in which every trajectory will even-
tually violate the constraints and the objective is either to delay this event or to maximize
yield before it happens. This is the case, for example, in applications where resources such
as fuel are limited, see Section 1.2, or where insufficient control authority is available.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 hold. Then there exists V̄ > 0 such that

J(x, π) ≤ V (x) ≤ V̄ for all x ∈ G and π ∈ Π.

Proof. Let x = x0 ∈ G be a given state and π ∈ Π. Using Assumptions 2.1 and 2.2,

J(x, π) =

τ(x,π)−1∑
t=0

g(xt, ut) ≤
τ(x,π)−1∑
t=0

ḡ ≤ T̄ ḡ. (2.5)

This and (2.4) imply that V (x) ≤ V̄ = T̄ ḡ.

Remark 2.1. Theorem 2.1 guarantees the existence of a maximizing sequence for all

x ∈ G, i.e., a sequence {πn} in Π such that J(x, πn) → supπ∈Π J(x, π) or, equivalently,

J(x, πn)→ V (x) for all x ∈ G.

The next theorem provides sufficient conditions for a control policy to be optimal.

12

Theorem 2.2. Let LπV (x) = V (x)−V (f(x, π(x))) and suppose Assumptions 2.1 and 2.2

hold. Then π∗ ∈ Π satisfies

Lπ
∗
V (x) = g(x, π∗(x)), if x ∈ G,

LπV (x) ≥ g(x, π(x)), if x ∈ G, π 6= π∗,

V (x) = 0, if x /∈ G,

(2.6)

for all x ∈ Rn and π ∈ Π if and only if (iff) π∗ maximizes J(x, π) for all x ∈ G. Further-

more, V (x) = J(x, π∗) and

π∗(x) ∈ Π∗(x) = arg max
u∈U

{g(x, u) + V (f(x, u))} . (2.7)

Proof. Since J(x, π) = 0 for all x /∈ G, V (x) = 0 for all x /∈ G. Now let x = x0 ∈ G be
a given state and π ∈ Π. For the first part of the proof, assume π∗ satisfies (2.6). Thus,

J(x, π) =

τ(x,π)−1∑
t=0

g(xt, π(xt))

≤
τ(x,π)−1∑
t=0

LπV (xt)

= V (x),

(2.8)

since V (xτ(x,π)) = 0 due to xτ(x,π) /∈ G. Similarly,

J(x, π∗) =

τ(x,π∗)−1∑
t=0

g(xt, π
∗(xt))

=

τ(x,π∗)−1∑
t=0

Lπ
∗
V (xt)

= V (x).

(2.9)

Equations (2.8) and (2.9) can be compared because V is bounded by Theorem 2.1, which
shows that J(x, π∗) ≥ J(x, π). It immediately follows from (2.6) that π∗(x) ∈ Π∗(x)

according to (2.7). For the second part of the proof, assume that π∗ maximizes J(x, π) for
all x ∈ G. Then, by (2.4), V (x) = J(x, π∗) for all x ∈ G. This implies

V (x) = g(x, π∗(x)) + J(f(x, π∗(x)), π∗)

= g(x, π∗(x)) + V (f(x, π∗(x))).
(2.10)

13

Since V (x) is the optimal value, it follows that, for any admissible policy π 6= π∗,

V (x) ≥ g(x, π(x)) + J(f(x, π(x)), π∗)

= g(x, π(x)) + V (f(x, π(x))).
(2.11)

Remark 2.2. The optimal control policy π∗ to (2.3), if it exists, may not be unique (see,

for example, Figure 1.1). In case of non-uniqueness, additional criteria, for instance, min-

imizing the 2-norm, may be used for selecting the control from the set of maximizers in

(2.7).

Theorem 2.3. If a solution to (2.3) exists, V is the unique solution to (2.6).

Proof. Suppose π∗ ∈ Π is a solution to (2.3). Furthermore, suppose that, in addition to V ,
another function V̂ satisfies (2.6). It follows from the proof of Theorem 2.2 and (2.9) that,
for all x ∈ G, V (x) = J(x, π∗) and V̂ (x) = J(x, π∗), which implies V̂ = V .

The existence of a solution to (2.3) can be studied using the set Π∗(x).

Theorem 2.4. A solution π∗ ∈ Π to the DCOC problem (2.3) exists for all x ∈ G iff the set

Π∗(x) defined in (2.7) is nonempty for all x ∈ G.

Proof. For the first part of the proof, assume that Π∗(x) is nonempty for all x ∈ G. Then
there exists π∗(x) = u∗ ∈ U such that

g(x, u∗) + V (f(x, u∗)) ≥ g(x, u) + V (f(x, u)), (2.12)

for all x ∈ G and u ∈ U . Therefore, according to Theorem 2.2, π∗ is a solution to (2.3). For
the second part of the proof, assume that a solution π∗ exists for all x ∈ G. This and (2.4)
imply that V (x) = J(x, π∗) for all x ∈ G. Consequently, by denoting u∗ = π∗(x) ∈ U ,

J(x, π∗) = g(x, u∗) + J(f(x, u∗), π∗)

≥ g(x, u) + J(f(x, u), π∗),
(2.13)

for all x ∈ G and u ∈ U . Using V (x) = J(x, π∗), (2.13) implies that, for all x ∈ G, there
exists u∗ = u∗(x) ∈ U such that g(x, u∗) + V (f(x, u∗)) ≥ g(x, u) + V (f(x, u)) for all
u ∈ U .

Using Theorem 2.4, in order to guarantee the existence of a solution to the DCOC
problem, conditions under which Π∗(x) is nonempty need to be found. Three separate

14

conditions under which this holds are provided in Theorem 2.5, where condition 2 relies on
Lemma 2.1. The following definition of upper semi-continuity adapted from [53] is used.

Definition 2.1. A real-valued function f(x) is USC at x ∈ G if, for all ε > 0, there exists
δ > 0 such that y ∈ G and ‖x− y‖ < δ imply f(y) < f(x) + ε. A real-valued function
f(x) is USC on G (i.e., with respect to x ∈ G) if it is USC at all x ∈ G.

Lemma 2.1. If V (x) is USC on G and f(x, u) is continuous with respect to u ∈ U for all

x ∈ G, then V (f(x, u)) is USC with respect to u ∈ U for all x ∈ G.

Proof. Define hx(u) = V (f(x, u)). It needs to be shown that, for every ε > 0, there exists
δ > 0 such that v, u ∈ U and ‖v − u‖ < δ imply hx(v) < hx(u) + ε for all x ∈ G, see
Definition 2.1. Since f(x, u) is continuous with respect to u ∈ U for all x ∈ G, for every
ε1 > 0, there exists δ1 > 0 such that

‖v − u‖ < δ1 ⇒ ‖f(x, v)− f(x, u)‖ < ε1, (2.14)

for all x ∈ G [54]. Moreover, since V is USC, for any ε2 > 0, there exists δ2 > 0 such
that, for all x ∈ G,

‖y − f(x, u)‖ < δ2 ⇒ V (y) < V (f(x, u)) + ε2. (2.15)

For ε > 0, using (2.15) with y = f(x, v), there exists δ2 > 0 such that

‖f(x, v)− f(x, u)‖ < δ2 ⇒ hx(v) < hx(u) + ε.

Thus, by taking ε1 = δ2 and δ1 = δ > 0 in (2.14), ‖v − u‖ < δ implies hx(v) < hx(u) +

ε.

Theorem 2.5. Suppose either

1. U is finite and Assumptions 2.1 and 2.2 hold.

2. U is compact, f(x, u) and g(x, u) are continuous and USC with respect to u ∈ U ,

respectively, for all x ∈ G, and V (x) is USC on G.

3. Assumption 2.2 holds and g ≡ 1.

Then a solution to the DCOC problem (2.3) exists for all x ∈ G.

Proof. It needs to be shown that Π∗(x) in (2.7) is nonempty for all x ∈ G since, due to
Theorem 2.4, this implies the existence of a solution to (2.3). Assume that 1 holds. By

15

Assumptions 2.1 and 2.2 and Theorem 2.1, both V and g are bounded for all x ∈ G and
u ∈ U . Consequently, their sum is bounded. Since U is finite and the maximum of a
bounded function over a finite set exists, Π∗(x) is nonempty for all x ∈ G. Now suppose
2 holds. By Lemma 2.1, V (f(x, u)) is USC with respect to u ∈ U for all x ∈ G. Since
the sum of two USC functions is USC, the sum of g and V in (2.7) is USC with respect
to u ∈ U for all x ∈ G. Because U is compact, it follows from the extension of the
Weierstrass theorem to USC functions [55] that Π∗(x) is nonempty for all x ∈ G. Finally,
suppose that 3 holds. Since g ≡ 1, the objective function is integer-valued and bounded
(by Assumption 2.2). Hence, according to (2.4), V (x) is integer-valued and bounded for
all x ∈ G. Because any bounded collection of integers has a maximum, Π∗(x) is nonempty
for all x ∈ G.

In the following, conditions are derived under which the first exit-time τ and the objec-
tive function J are USC.

Theorem 2.6. Suppose Assumption 2.2 holds, G is compact, and f(x, u) is continuous on

G× U . Then τ(x, π) is USC with respect to x ∈ G for all π ∈ CG(Π), where

CG(Π) = {π ∈ Π|π is continuous on G} (2.16)

is the set of admissible control policies that are continuous on G.

Proof. Let π ∈ CG(Π) be a given admissible control policy and x = x0 ∈ G be a given
state. Denote the trajectory that results from the control policy π by {xt}π. Consider
another trajectory {x̃t}π with x̃0 ∈ G that results from π. Using Definition 4.5 in [54], the
continuity of f , G being compact, and π ∈ CG(Π) imply that for all ε̃ > 0, there exists
δ > 0 such that

‖x̃0 − x0‖ < δ ⇒
∥∥x̃τ(x0,π) − xτ(x0,π)

∥∥ < ε̃, (2.17)

where τ(x0, π) is defined due to Assumption 2.2. Assumption 2.2 and the compactness of
G imply that there exists εG > 0 such that

∥∥x̃τ(x0,π) − xτ(x0,π)

∥∥ < εG ⇒ x̃τ(x0,π) /∈ G, (2.18)

where xτ(x0,π) /∈ G by the definition of τ . Take ε̃ = εG in (2.17) and note that x̃τ(x0,π) /∈ G
implies τ(x̃0, π) ≤ τ(x0, π). It then follows from (2.17) and (2.18) that for any ε > 0, there
exists δ > 0 such that ‖x̃0 − x0‖ < δ ⇒ τ(x̃0, π) < τ(x0, π) + ε, i.e., τ(x, π) is USC with
respect to x ∈ G for all π ∈ CG(Π).

16

Note that, in contrast to the results by Lions [1], who proves upper semi-continuity of
the first exit-time of continuous-time systems under the assumption of open-loop control
sequences, Theorem 2.6 assumes continuous state feedback control policies. It is straight-
forward to show that the result by Lions (continuous-time systems with open-loop control)
also holds for discrete-time systems. In this regard, let τ(x0, {ut}) be the first exit-time of
x0 when using the open-loop control sequence {ut}. Since f is continuous with respect to
u ∈ U and G is compact, by analogy to (2.17), it follows that, for all ε̃ > 0, there exists
δ > 0 such that

‖x̃0 − x0‖ < δ ⇒
∥∥x̃τ(x0,{ut}) − xτ(x0,{ut})

∥∥ < ε̃, (2.19)

for every admissible open-loop control sequence {ut}. Following the arguments of the
proof of Theorem 2.6, one obtains that there exists εG > 0 such that

∥∥x̃τ(x0,{ut}) − xτ(x0,{ut})
∥∥ < εG ⇒ x̃τ(x0,{ut}) /∈ G. (2.20)

Eventually, it follows that, for any ε > 0, there exists δ > 0 such that

‖x̃0 − x0‖ < δ ⇒ τ(x̃0, {ut}) < τ(x0, {ut}) + ε,

i.e., the first exit-time is also USC under the assumption of open-loop control sequences.
The next theorem extends the results on the first exit-time to the objective function J .

Theorem 2.7. Suppose Assumption 2.2 holds and G is compact. Furthermore, suppose

that f(x, u) and g(x, u) are continuous and USC on G × U , respectively. Then J(x, π) is

USC with respect to x ∈ G for all π ∈ CG(Π).

Proof. Let π ∈ CG(Π) be a given admissible control policy, x = x0 ∈ G be a given initial
state, and {xt}π be the corresponding trajectory. Moreover, let {x̃t}π be another trajectory
with initial state x̃0 ∈ G. Since τ(x, π) is integer-valued and USC with respect to x ∈ G
for all π ∈ CG(Π) (by Theorem 2.6), there exists δ1 > 0 such that

‖x̃0 − x0‖ < δ1 ⇒ τ(x̃0, π) ≤ τ(x0, π). (2.21)

In addition, for any ε > 0, the continuity of f and the upper semi-continuity of g imply that
there exists δ2 > 0 such that

‖x̃0 − x0‖ < δ2 ⇒
τ(x̃0,π)−1∑

t=0

g(x̃t, ũt) <

τ(x̃0,π)−1∑
t=0

(
g(xt, ut) +

ε

τ(x̃0, π)

)
, (2.22)

17

where ũt = π(x̃t) and ut = π(xt). Take δ = δ1 = δ2 sufficiently small such that (2.21) and
(2.22) hold. Then,

J(x0, π) =

τ(x0,π)−1∑
t=0

g(xt, ut)

=

τ(x̃0,π)−1∑
t=0

(g(xt, ut)− g(x̃t, ũt)) + J(x̃0, π)

+

τ(x0,π)−1∑
t=τ(x̃0,π)

g(xt, ut) > −ε+ J(x̃0, π),

(2.23)

since g is positive. Consequently, J(x̃0, π) < J(x0, π) + ε, which proves upper semi-
continuity of J(x, π) with respect to x ∈ G for all π ∈ CG(Π).

Upper semi-continuity of the value function V , however, cannot be inferred from Theo-
rem 2.7 since the supremum of infinitely many USC functions, see (2.4), may not be USC.
On the other hand, if g ≡ 1 and Assumption 2.2 holds, then V (x) = τ(x, π∗), where π∗ is a
solution to the DCOC problem, which exists by Theorem 2.5. Hence, assuming continuous
control policies, i.e., π ∈ CG(Π), V (x) is USC with respect to x ∈ G in this case (by
Theorem 2.6).

2.3 Proportional Feedback VI

2.3.1 Theoretical Results

According to (2.7), an optimal control policy π∗ is defined by the value function V , which
may be computed using conventional VI [35]. In the following, a modification of the VI
algorithm is developed that may provide faster convergence in a numerical setting. In this
regard, based on Theorem 2.2, the error at iteration n is defined as follows

en(x) = max
u∈U
{Vn(f(x, u)) + g(x, u)} − Vn(x), (2.24)

where en = 0 iff Vn = V . Then Vn(x) is updated in proportion to en(x) according to

Vn+1(x) = Vn(x) + ken(x), if x ∈ G,

Vn+1(x) = 0, if x /∈ G,
(2.25)

18

with k ∈ R as the proportional gain. Note that the conventional VI algorithm is a special
case of (2.24) and (2.25) for k = 1. The sequence of functions in (2.24) and (2.25) is
referred to as proportional feedback VI. It converges to V under the conditions stated in
Theorem 2.8. In order to prove Theorem 2.8, the sets

H = {x ∈ G : ∃u ∈ U s.t. f(x, u) ∈ G} , (2.26)

K0 = G ∩Hc, (2.27)

Km =

{
x ∈ H : f(x, u) ∈

m−1⋃
k=0

Kk ∪Gc,∀u ∈ U

}
, (2.28)

are defined, where Km, m ∈ Z≥0, are the sets of states that lead to trajectories exiting G in
at most m+ 1 steps and Sc is the complement of a set S . Moreover, Lemma 2.2 is used for
the proof of Theorem 2.8.

Lemma 2.2. Suppose Assumption 2.2 holds. Then there exists an integer m̄ ≥ 0 such that

the sets Km are nonempty for all m ≤ m̄ and G =
m̄⋃
m=0

Km.

Proof. Let m̄ ∈ Z≥0. By Assumption 2.2, there exists x∗ ∈ G and π∗ ∈ Π such that m̄ +

1 = τ(x∗, π∗) ≥ τ(x, π) for all x ∈ G and π ∈ Π. Denote the trajectory corresponding to
x∗ and π∗ by {x∗t}π∗ , where x∗0 = x∗. Then x∗t ∈ Km̄−t for t ∈ {0, 1, ..., m̄}. Furthermore,
by Assumption 2.2, for each x ∈ G, there exists an integer m̃(x) ≤ m̄ such that x ∈ Km̃(x).
Consequently, G =

⋃m̄
m=0Km.

Theorem 2.8. Suppose there exists a solution π∗ to (2.3) for all x ∈ G. Furthermore,

suppose k ∈ (0, 2) and let V0(x) ∈ R be defined for all x ∈ G. Then the sequence of

functions defined by (2.24) and (2.25) converges pointwise to V (x) for all x ∈ G.

Proof. The existence of a solution to (2.3) for all x ∈ G implies Assumptions 2.1 and 2.2.
Thus, by Lemma 2.2, there exists an integer m̄ ≥ 0 such that the sets Km defined by (2.27)
and (2.28) are nonempty and each x ∈ G can be assigned to one of the setsKm for m ≤ m̄.
Then proceed by induction. For all x ∈ K0, the existence of an optimal control policy π∗

implies that for n ≥ 1,

en(x) = g(x, π∗(x))− Vn(x) = V (x)− Vn(x), (2.29)

because Vn(f(x, u)) = 0 according to (2.25) due to f(x, u) /∈ G for all u ∈ U . Hence, by
(2.25), Vn+1(x) = Vn(x) + k[V (x)− Vn(x)], which can be written as

Vn+1(x)− V (x) = [1− k][Vn(x)− V (x)]. (2.30)

19

This and k ∈ (0, 2) imply that Vn(x) → V (x) for all x ∈ K0. Now assume that for some
m < m̄, Vn(x)→ V (x) for all x ∈ Kζ and ζ ∈ C = {0, 1, ...,m}. Then for all x ∈ Km+1,
it follows from f(x, π∗(x)) ∈ Kζ for some ζ ∈ C, that

en(x) = V (f(x, π∗(x))) + g(x, π∗(x)) + cn(x)− Vn(x)

= V (x) + cn(x)− Vn(x),
(2.31)

where cn(x)→ 0 due to Vn(x)→ V (x) for all x ∈ Kζ . Consequently, by (2.25),

Vn+1(x) = Vn(x) + k[V (x) + cn(x)− Vn(x)], (2.32)

and thus
Vn+1(x)− V (x)− cn(x) = [1− k][Vn(x)− V (x)− cn(x)]. (2.33)

Hence, Vn(x)→ V (x) for all x ∈ Km+1 due to k ∈ (0, 2).

Remark 2.3. While Theorem 2.8 guarantees pointwise convergence of proportional feed-

back VI, a proof of convergence of the corresponding control policies, generated according

to (2.7), is left to future research. Convergence of minimizer/maximizer sequences implying

convergence of control policies is a general issue in approximation methods for optimiza-

tion and optimal control [56]. Note that for 0 < k ≤ 1 and V0 = 0, it follows that

Vn(x) ≤ J(x, πn) ≤ V (x) for all x, where πn(x) ∈ arg maxu∈U{g(x, u) + Vn(f(x, u))}
is the approximation of the optimal control policy based on Vn at the current iteration n.

Since Vn → V , the total yield of πn converges to the optimal total yield. The numerical ex-

amples in Section 2.6 and others, including comparisons with mixed-integer programming

solutions in the linear system case [48], indicate that convergence to the optimal total yield

also occurs for V0 6= 0 and 1 < k < 2.

2.3.2 Practical Considerations

Theorem 2.8 assumes that iterations (2.25) are applied to each x ∈ G. However, in practice,
iterations (2.25) are applied to a discrete subset of G, which is denoted by G̃ = {xi ∈
G : i ∈ I} with I = {1, 2, ..., imax} (G is assumed to be a continuous set, which is
the case for most practical problems). For x /∈ G̃, Vn(x) is approximated by a function
approximator (e.g., linear interpolation). The approximation induces an error and, instead
of Vn → V , Vn → Ṽ as en(x) → 0 for all x ∈ G̃, where Ṽ is an approximation of the
value function. The corresponding control policy is denoted by π̃∗, which is defined by
(2.7) with V replaced by Ṽ . As G̃ becomes denser in G, it is expected that Ṽ → V and π̃∗

20

approaches an optimal control policy π∗.
The theoretical results in Theorem 2.8 suggest that the fastest convergence is achieved

when k = 1. However, the convergence behavior may be different when iterations (2.25)
are applied to the discretized problem, i.e., the discrete set G̃. To show this, suppose the
assumptions of Theorem 2.8 hold and there exists a point x′ ∈ G̃ with Vn(x′) → Ṽ (x′).
Now assume G̃ is such that there exists another point x ∈ G̃, sufficiently close to x′, for
which en(x) can be expressed as follows

en(x) = Ṽ (x′) + [d(x) + c̃n(x)][Vn(x)− Ṽ (x′)] + g(x, π̃∗(x))− Vn(x), (2.34)

with d(x) ∈ [0, 1) and c̃n(x)→ 0 as illustrated in Figure 2.1. Based on (2.25) and (2.34),

en+1(x) = [c̃n+1(x)− c̃n(x)][Vn+1(x)− Ṽ (x′)]+[1−k(1−d(x)− c̃n+1(x))]en(x). (2.35)

As n → ∞, updates (2.35) can be approximated as en+1(x) = [1 − k(1 − d(x))]en(x),
suggesting en(x)→ 0 and thus Vn(x)→ Ṽ (x), if

|1− k(1− d(x))| < 1. (2.36)

Now suppose for each x ∈ G̃, there exists a neighbor x′ ∈ G̃ such that en(x) can be
expressed by (2.34) with c̃n(x)→ 0. Then Vn(x)→ Ṽ (x) for all x ∈ G̃ if (2.36) holds for
all x ∈ G̃. Note that d(x) may be different for each x. Assuming that d(x) ∈ [0, 1) for all
x ∈ G̃, for some x ∈ G̃, d(x) may be close to 1 and convergence occurs for k ∈ (0, kmax)

with kmax > 2. However, there may be some x ∈ G̃ with d(x) close or equal to 0, requiring
k ∈ (0, 2) for convergence. Thus, in line with Theorem 2.8, convergence follows for
k ∈ (0, 2) if d(x) ∈ [0, 1) for all x ∈ G̃.

On the other hand, if G̃ and Ṽ are such that there exists x ∈ G̃ for which d(x) < 0,
i.e., there exists no neighbor x′ such that (2.34) holds with d(x) ∈ [0, 1), then k ∈ (0, kmax)

with kmax < 2 is required to satisfy (2.36) and establish Vn(x) → Ṽ (x) for all x ∈ G̃.
If there exists some x ∈ G̃ such that d(x) = 1, which is not possible in theory due to
Assumptions 2.1 and 2.2, no convergence would occur for any k.

In contrast to the theoretical case in Theorem 2.8, the fastest convergence may not be
achieved for k = 1, but for individual k = 1/(1 − d(x)) as implied by (2.36). Note that
k = 1 is the optimal gain only if d(x) = 0 for all x ∈ G̃, which represents the theoretical
case G̃ = G. This motivates the introduction of individual adaptive gains, as it is considered
in the following section (Section 2.3.3).

21

Figure 2.1: Illustration of (2.34), x and x′ sufficiently close such that
maxu∈U{Vn(f(x, u)) + g(x, u)} = Ṽ (x′) + [d(x) + c̃n(x)][Vn(x)− Ṽ (x′)] + g(x, π̃∗(x)),
d(x) ∈ [0, 1) and c̃n(x)→ 0.

Remark 2.4. For the discretized problem, convergence of (2.25) to Ṽ requires that G̃∩K0

is nonempty. This is because at least one x′ ∈ G̃ with Vn(x′) → Ṽ (x′) is required to

“initiate” convergence of the other points in G̃ as described by (2.34) – (2.36). In fact, for

each x′ ∈ K0, Ṽ (x′) = V (x′) and Vn(x′)→ V (x′), independent of G̃, if a solution to (2.3)
exists and k ∈ (0, 2), as can be inferred from (2.29) and (2.30).

2.3.3 Adaptive Proportional Feedback VI

As explained in the previous section (Section 2.3.2), k = 1 may not be the optimal choice
for fast convergence in a numerical setting. In fact, according to (2.36), the optimal gain
may be a function of the state vector x, i.e., k : G→ R+. Therefore, proportional feedback
VI is extended by introducing individual (i.e., state-dependent) gains. Furthermore, the
gains k(x) become adaptive in the sense that k(x) is large when the error en(x) is large and
k(x) is small when en(x) is small. Thus, adaptive proportional feedback VI with learning
rate δ ≥ 0 is as follows

Vn+1(x) = Vn(x) + kn(x)en(x), if x ∈ G,

Vn+1(x) = 0, if x /∈ G,

kn+1(x) = kn(x) + δen(x),

(2.37)

where the error en(x) is given by (2.24). It is straightforward to show that, if the conver-
gence conditions for k from Theorem 2.8 hold for each individual kn(x), i.e., if kn(x) ∈

22

(0, 2) is introduced as a bound for all x ∈ G and n ∈ Z≥0, then the sequence of func-
tions defined in (2.37) converges pointwise to V (x) for all x ∈ G. Note that the practical
considerations in Section 2.3.2 also hold for adaptive proportional feedback VI.

2.4 ADP Approach

In this section, an ADP approach is presented to obtain an approximation of the value
function and optimal control policy. The approach presented here employs proportional
feedback VI, see (2.25). Note that adaptive proportional feedback VI, see (2.37), may be
used as well.

As outlined in Section 2.3.2, proportional feedback VI is applied to a discretized subset
G̃ of G, where Vn(x) is computed according to

Vn(x) =

{
function approximator at x, if x ∈ G,
0, if x /∈ G.

(2.38)

After each iteration, the function approximator is updated using the data from the previous
iteration, denoted by

Vtrain = {Vtrain,xi : xi ∈ G̃}. (2.39)

The algorithm is considered to be converged, i.e., Vn → Ṽ , when |en(x)| ≤ ε for all
x ∈ G̃, where ε > 0 is a prescribed threshold. This procedure is outlined in Algorithm 1.

Algorithm 2.1 ADP procedure to compute approximations of value function and optimal
control policy

1: G̃← generate discrete subset of G
2: n← 0
3: Vtrain,x ← set initial values for each x ∈ G̃
4: V0 ← update function approximator based on Vtrain

5: while max
x∈G̃
|en(x)| > ε do

6: for each x ∈ G̃ do
7: Vtrain,x = Vn(x) + ken(x)
8: end for
9: Vn+1 ← update function approximator based on Vtrain

10: n← n+ 1
11: end while
12: Ṽ ← Vn

23

In analogy to (2.7), the approximation of the optimal control at x ∈ G is given by

π̃∗(x) ∈ arg max
u∈U

{
g(x, u) + Ṽ (f(x, u))

}
. (2.40)

Most ADP approaches use NNs as function approximators [57–60]. For the numerical
case studies in this chapter (Section 2.6.2), Gaussian processes [61, 62] are used, as initial
numerical studies suggest better results than with NNs.

2.5 Base-Trajectory VI

The focus of this section is on time maximization problems, i.e., DCOC problems with the
objective of maximizing the first exit-time (g ≡ 1),

J(x0, π) = τ(x0, π)→ max
π∈Π

. (2.41)

According to (2.7), the optimal control policy may be characterized by the value func-
tion, in this case,

π∗(x) ∈ arg max
u∈U

V (f(x, u)). (2.42)

The value function may be obtained with conventional or (adaptive) proportional feed-
back VI (Section 2.3). In this section, a different algorithm is proposed and it is shown
that, in a numerical setting, it is more accurate than conventional or (adaptive) proportional
feedback VI, i.e., it provides better control policies that satisfy constraints longer. Unlike
conventional or (adaptive) proportional feedback VI, the proposed algorithm converges to
the value function by gradually connecting pieces of an optimal control policy. Using a
specified base control policy, the corresponding base trajectory is traversed until deviating
from the base control provides an improvement. This approach is motivated by properties
of optimal control for spacecraft where the optimal solution consists of extensive coasting
phases with zero-control (no thrust) as the base policy [44, 45]. The proposed algorithm is
therefore referred to as base-trajectory VI.

Throughout this section, the following two assumptions are made.

Assumption 2.3. The set U contains the origin.

Assumption 2.4. A solution to problem (2.41) exists and is denoted by π∗.

Assumption 2.3 helps in the formulation of base-trajectory VI in Section 2.5.1. Note
that every nonempty set in Rp can be transformed by a change of coordinates (origin shift)
such that Assumption 2.3 is satisfied.

24

Remark 2.5. The existence of a solution by Assumption 2.4 implies that there exists T̄ > 0

such that τ(x, π) ≤ T̄ for all x ∈ G and π ∈ Π.

2.5.1 Theoretical Results

The base policy is defined as the zero-control policy π0. The zero-control policy and the
corresponding zero-control trajectory S0(x0) that emanates from x0 ∈ G are given by

π0 ∈ Π such that π0(x) = 0 for all x ∈ G, (2.43)

S0(x0) =
{
x0, x1 = f(x0, 0), x2 = f(x1, 0), ..., xτ(x0,π0)−1 = f(xτ(x0,π0)−2, 0)

}
. (2.44)

Moreover, the time instant that corresponds to a state x′ on the zero-control trajectory
S0(x0) is defined by

tx′(x0) = inf {t ∈ Z+ : xt−1 = x′ ∈ S0(x0)} . (2.45)

Base-trajectory VI is based on finding the state on the zero-control trajectory at which
it is optimal to switch to a different trajectory by using the control input u ∈ U . While,
without loss of generality, the zero-control policy is assumed as the base policy, an alterna-
tive policy, which ideally is known to be optimal on a subset of sets, can be chosen as the
base policy. With this idea, an expression for the value function V can be formulated as
stated in the following theorem, where the pair (x∗, u) ∈ S0(x)×U defines the state on the
zero-control trajectory at which the switch to a different trajectory occurs using the control
input u.

Theorem 2.9. Suppose Assumptions 2.3 and 2.4 hold. Then the value function V is the

unique solution to

Ṽ (x) = max
(x∗,u)∈S0(x)×U

{
Ṽ (f(x∗, u)) + tx∗(x)

}
, (2.46)

for all x ∈ G, and Ṽ (x) = 0 if x /∈ G.

Proof. For x /∈ G, τ(x, π) = 0 and thus V (x) = Ṽ (x) = 0. Now let x = x0 ∈ G be a
given initial state and apply (2.46) until the resulting state trajectory,

{
x, ..., x∗1, f(x∗1, u∗1), ..., x∗2, f(x∗2, u∗2), ..., xτ̃(x)

}
, (2.47)

exits G, where the corresponding exit-time is denoted by τ̃(x), which is bounded by As-

25

sumption 2.4 and Remark 2.5. Moreover, (x∗k, u∗k) in (2.47) is the argument that maxi-
mizes (2.46) when (2.46) is applied for the k-th time to evaluate V (f(x∗k−1, u∗k−1)), where
x , f(x∗0, u∗0). Hence, (2.46) may be written as

Ṽ (x) = tx∗1 + Ṽ (f(x∗1, u∗1))

= tx∗1(x) + tx∗2(f(x∗1, u∗1)) + ...+ Ṽ (xτ̃(x))

=

τ̃(x)−1∑
t=0

1

= τ̃(x),

(2.48)

since Ṽ (xτ̃(x)) = 0 due to xτ̃(x) /∈ G. It follows from (2.4), (2.46), (2.48), and the principle
of optimality [63] that Ṽ (x) = maxπ∈Π τ(x, π) = V (x).

In analogy to (2.46) from Theorem 2.9, the base-trajectory VI algorithm is defined as
follows

Vn(x) = max
(x∗,u)∈S0(x)×U

{Vn−1(f(x∗, u)) + tx∗(x)} , if x ∈ G,

Vn(x) = 0, if x /∈ G.
(2.49)

The sequence of functions in (2.49) is initialized by counting the steps on the zero-control
trajectory until the constraints are violated, i.e., V0(x) = τ(x, π0) for all x ∈ G. This is
summarized in Algorithm 2.2. The convergence of (2.49) is analyzed in Theorem 2.10.

Algorithm 2.2 Base-trajectory VI: compute V0(x), x ∈ G
1: x0 ← x
2: t← 0
3: while xt ∈ G do
4: xt+1 ← f(xt, 0)
5: t← t+ 1
6: end while
7: return V0(x)← t

Theorem 2.10. Suppose Assumptions 2.3 and 2.4 hold. Then the sequence {Vn(x)} defined

by (2.49) converges pointwise to V (x) for all x ∈ G.

Proof. First, it is shown by induction that {Vn(x)} is monotonically non-decreasing. For
n = 0, it follows from Algorithm 2.2 that V0(x) = τ(x, π0) for all x ∈ G, where π0 is

26

defined in (2.43). Consequently, for all x ∈ G,

V1(x) = max
(x∗,u)∈S0(x)×U

{V0(f(x∗, u)) + tx∗(x)}

≥ τ(x, π0) = V0(x).
(2.50)

Now assume that for some n, Vn(x) ≥ Vn−1(x) for all x ∈ G. Using this assumption and
(2.49), it follows that

Vn+1(x)− Vn(x) = max
(x∗,u)∈S0(x)×U

{Vn(f(x∗, u)) + tx∗(x)}

− max
(x∗,u)∈S0(x)×U

{Vn−1(f(x∗, u)) + tx∗(x)} ≥ 0,
(2.51)

which shows that {Vn(x)} is monotonically non-decreasing for all x ∈ G. Next, proceeding
by induction, it is shown that {Vn(x)} is bounded by V (x) for all x ∈ G. By Theorem 2.9,
V is the unique solution to (2.46). Hence,

V (x) = max
(x∗,u)∈S0(x)×U

{V (f(x∗, u)) + tx∗(x)}

≥ τ(x, π0) = V0(x).
(2.52)

Now assume that for some n, V (x) ≥ Vn(x) for all x ∈ G. Using this assumption as well
as (2.46) and (2.49), it follows that for all x ∈ G,

V (x)−Vn+1(x) = max
(x∗,u)∈S0(x)×U

{V (f(x∗, u)) + tx∗(x)}

− max
(x∗,u)∈S0(x)×U

{Vn(f(x∗, u)) + tx∗(x)} ≥ 0.
(2.53)

Since {Vn(x)} is a monotonic and bounded sequence, it converges pointwise to a function
Ṽ (x) defined by (2.46), where V = Ṽ according to Theorem 2.9.

Remark 2.6. For base-trajectory VI, the set S0(x)×U over which the expression in (2.49)
is maximized can be reduced to S0(x) × U \ {0}. This is because if (x∗, 0), where x∗ ∈
S0(x), maximizes (2.49), then Vn(x) = τ(x, π0). This implies that (xτ(x,π0)−1, u), where

xτ(x,π0)−1 ∈ S0(x), is also a maximizer in (2.49) for any u ∈ U .

2.5.2 Numerical Implementation

In the following, the numerical implementation of base-trajectory VI and conventional VI
[k = 1 in (2.25) or k0 ≡ 1 and δ = 0 in (2.37))] are compared. Note that similar results
hold when comparing base-trajectory VI with (adaptive) proportional feedback VI (k 6= 1).

27

Algorithm 2.3 Numerical implementation of base-trajectory VI: compute Vdis(x), x ∈ Gdis

1: V0(x)← output of Algorithm 2.2
2: n← 1, ∆V1(x)← 2ε
3: while ∆Vn(x) ≥ ε do
4: x0 ← x, t← 0
5: V̂max ← −1
6: while xt ∈ G do
7: V̂ ← max

u∈Udis\{0}
{Fn−1 (f(xt, u))}+ t, see (2.56)

8: if V̂ ≥ V̂max then
9: V̂max ← V̂

10: end if
11: xt+1 ← f(xt, 0)
12: t← t+ 1
13: end while
14: Vn(x)← V̂max

15: n← n+ 1
16: ∆Vn(x)← |Vn−1(x)− Vn−2(x)|
17: end while
18: return Vdis(x)← Vn−1(x)

For the numerical implementation of base-trajectory VI as well as of conventional VI,
a typical approach used in applications is considered, which is based on a discretization of
the problem. In analogy to Section 2.3.2, the discretized subsets of G and U are denoted
by

Gdis =
{
xi ∈ G, i ∈ Ix

}
, (2.54)

Udis =
{
ui ∈ U, i ∈ Iu

}
. (2.55)

Similar to Assumption 2.3, it is assumed that the set Udis contains the origin. Interpolation
is used to evaluate Vn at x /∈ Gdis,

Fn(x) = Interpolant [Vn] (x), if x ∈ G,

Fn(x) = 0, if x /∈ G,
(2.56)

where linear interpolation is used for the numerical case studies in this chapter. Conse-
quently, the approximate version of base-trajectory VI (2.49) is given by

Vn(x) = max
(x∗,u)∈S0(x)×Udis\{0}

{Fn−1(f(x∗, u)) + tx∗(x)}, if x ∈ G,

Vn(x) = 0, if x /∈ G,
(2.57)

28

where the exclusion of the origin for the control input is due to Remark 2.6. For each
x ∈ Gdis, the sequence of functions in (2.57) approaches Vdis pointwise, which is an ap-
proximation of the value function V . Algorithm 2.3 shows an implementation of (2.57),
where ε > 0 is a convergence threshold.

Using (2.57) or Algorithm 2.3, respectively, an approximation of the optimal control
policy π∗ is obtained for all x ∈ G,

πdis(x) ∈ arg max
u∈Udis

Fdis(f(x, u)), (2.58)

where

Fdis(x) = Interpolant [Vdis] (x), if x ∈ G,

Fdis(x) = 0, if x /∈ G.
(2.59)

Similar to (2.57), the approximate version of conventional VI is

Vn(x) = max
u∈Udis

Fn−1(f(x, u)) + 1, if x ∈ G,

Vn(x) = 0, if x /∈ G,
(2.60)

which yields the approximate value function Vdis,VI(x) for all x ∈ Gdis and an approxima-
tion of the optimal control policy for all x ∈ G,

πdis,VI(x) ∈ arg max
u∈Udis

Fdis,VI(f(x, u)), (2.61)

where Fdis,VI(x) is defined in analogy to Fdis(x) in (2.59).
In general, V 6= Vdis 6= Vdis,VI and π∗ 6= πdis 6= πdis,VI, which is mainly due to

the interpolation error imposed by (2.56). The interpolation error affects conventional
VI and base-trajectory VI differently. The fraction of Vn(x) that is affected by interpo-
lation is greater for conventional VI, where only 1/Vn(x) is not subject to an interpola-
tion error as can be seen in (2.60). In contrast, for base-trajectory VI, the fraction of
Vn(x) that is not directly affected by interpolation is tx∗(x)/Vn(x), where x∗ is part of
the argument that maximizes the expression in (2.57) and tx∗(x) ≥ 1 by (2.45). Conse-
quently, the interpolation error is smaller for base-trajectory VI. Hence, it is expected that∑

x∈Gdis
|V (x)−Vdis(x)| ≤

∑
x∈Gdis

|V (x)−Vdis,VI(x)| and πdis is closer to π∗ than πdis,VI.

Remark 2.7. Instead of using interpolation in (2.56), Fn and the approximate value func-

tion in (2.59) can be described by any suitable function approximator (for example, by

NNs). Hence, the ADP approach in Section 2.4 can be extended and, instead of using

29

proportional feedback VI, the proposed algorithm (i.e., base-trajectory VI) may be used to

train the respective function approximator in line 7 of Algorithm 2.1. The ADP implemen-

tation of base-trajectory VI will be investigated in future work, where similar advantages

over conventional or (adaptive) proportional feedback VI are expected due to its superior

accuracy (see above).

Remark 2.8. For base-trajectory VI, numerical studies (Section 2.6) suggest that, for each

x ∈ Gdis, there exists ith(x) ≥ 0 such that the optimal pair (x∗, u) that maximizes the

expression in (2.57) is the same for all subsequent iterations n > ith(x). Hence, when

n > ith(x), instead of traversing the zero-control trajectory from t = 0 to t = τ(x, π0) in

Algorithm 2.3, lines 4 to 14 in Algorithm 2.3 can be reduced to

Vn(x) = Fn−1 (f(x∗∗, u∗)) + tx∗∗(x), (2.62)

where

(x∗∗, u∗) ∈ arg max
S0(x)×Udis\{0}

{Fith(x) (f(x∗, u)) + tx∗(x)}. (2.63)

This reduces the computation time of base-trajectory VI. However, for most applications,

it is not possible to determine ith(x) exactly for each x ∈ Gdis. In the numerical case

studies in Section 2.6, a global ĩth is used sufficiently large such that ĩth > ith(x) for most

x ∈ Gdis, which yields an approximation of Vdis.

Remark 2.9. Both conventional or (adaptive) proportional feedback VI and base-trajectory

VI are parallelizable and multiple processing units (cores) may be used to obtain the ap-

proximate value function for all x ∈ Gdis. This is achieved by partitioning Gdis into ν sets

of similar size,

Gdis = Gdis,1 ∪Gdis,2 ∪ ... ∪Gdis,ν , (2.64)

where ν is the number of available processing units and the i-th core, i = 1, 2, ..., ν,

computes the value function for all x ∈ Gdis,i using either conventional or (adaptive)

proportional feedback VI or base-trajectory VI.

2.6 Numerical Case Studies

2.6.1 LEO Satellite Station Keeping 1

Using (adaptive) proportional feedback VI (Section 2.3), the objective in this case study
is to obtain a numerical approximation of a control policy that maximizes the operational

30

time of a LEO satellite. Hence, the yield function is g ≡ 1, i.e., g(x, u) = 1 for all (x, u) ∈
G × U . The case study considers a satellite in an equatorial near-circular LEO subject to
atmospheric drag and J2 perturbation. Thus, the satellite’s motion can be modeled in polar
coordinates (r, θ), where r is the radial distance from Earth’s center to the satellite and θ is
the polar angle of the position vector. The respective unit vectors are denoted by r̂ and θ̂.
The satellite’s velocity in the r̂-direction is vr and vθ is the rate of change of the polar angle.
Withm as the satellite’s mass, the state vector is given by x = [r, vr, θ, vθ,m]>. The control
input u ∈ U = {0, Ft} is an on-off thrust force Ft acting in the θ̂-direction. The discrete-
time model for the LEO satellite is obtained from the continuous-time model [64,65] using
Euler’s forward method with ∆t = 1 sec, yielding

xt+1 = xt + ∆t[vr,t, ar,t, vθ,t, aθ,t,−c|ut|]>, (2.65)

with
aθ,t = −2vr,tvθ,t/rt − FD,θ,t/(rtmt) + ut/(rtmt),

ar,t = rtv
2
θ,t − µ/r2

t − FD,r,t/mt − 3µr2
EJ2/(2r

4
t),

where FD,θ,t = Aθρcd,θ(rtvθ,t)
2/2 and FD,r,t = Arρcd,rvr,t|vr,t|/2. The parameters rE and

µ are Earth’s radius and gravitational parameter, respectively, and J2 = 1082.64× 10−6.
Note that the J2 perturbation term does not directly affect the polar angle due to the as-

sumption of an equatorial orbit. The parameters of the drag perturbation are the satellite’s
reference areas in radial and polar directions Ar and Aθ, respectively, as well as the respec-
tive drag coefficients cd,r and cd,θ. The atmospheric density is denoted by ρ. The constant
c in (2.65) is the effective velocity of the thruster’s exhaust jet, which may be expressed
using the specific impulse Isp of the thruster: c = Isp9.81m/s2.

The satellite that is considered is a three-unit (3-U) CubeSat with a dry mass of 4
kg. The satellite is assumed to have the following aerodynamic parameters: cd,r = 2.1,
Ar = 0.0374 m2, cd,θ = 2.3, and Aθ = 0.0154 m2. The parameters of the thruster are
adapted from a monopropellant hydrazine propulsion system for CubeSats described in
[66, 67]. The thrust force is Ft = 0.96 N and the specific impulse is Isp = 221.4 sec,
yielding c = 2, 171.4 m/sec. The propulsion system is of the size of a one-unit (1-U)
CubeSat and consequently comprises a third of the example satellite. It is assumed that the
propulsion system initially carries 350 g of fuel, thus m0 = 4.35 kg.

The objective in this example is to maximize the time that the satellite stays within±10

% of the nominal orbital altitude of h0 = 300 km. Therefore, given the fuel constraints

31

described above, the set one wants the state vector to remain inside is given by

G = {x : 270 km ≤ r − rE ≤ 330 km, m ≥ 4 kg}. (2.66)

For numerical implementation of (adaptive) proportional feedback VI (see Section 2.3.2),
the following discrete state space G̃ ⊂ G is considered

G̃ = {x : r − rE ∈ {270, 270 + 60/89, 270 + 120/89, ..., 330} km,

vr ∈ {−7, −7 + 14/29, −7 + 28/29, ..., 7}m/sec,

vθ ∈ {1.145, 1.145 + 0.023/19, 1.145 + 0.046/19, ..., 1.168} 10−3 rad/sec,

m ∈ {4, 4 + 0.35/9, 4 + 0.7/9, ..., 4.35} kg}.

According to the satellite model in (2.65), the polar angle θ has no effect on the other
states. Therefore, θ has no effect on G and, consequently, the value function V only de-
pends on r, vr, vθ, and m.

The density ρ for a circular equatorial 300 km orbit is between 2.23×10−11 kg/m3 and
3.72× 10−11 kg/m3 [68]. Here, a constant density of ρ = 3.5× 10−11 kg/m3 is assumed.

Note that for all states in G, the orbit will eventually decay (r < rE + 270 km) in finite
time using no control (u = 0) due to atmospheric drag. Using control (u ≥ 0) may extend
the time until r < rE + 270 km. However, the system will eventually violate m ≥ 4 kg in
finite time due to the finite amount of fuel. Based on these observations and Theorem 2.5,
the DCOC problem is well-posed and a solution exists. In the following, such solutions are
constructed numerically.

2.6.1.1 Proportional Feedback VI

First, proportional feedback VI, defined in (2.25), is analyzed. Throughout this case study,
linear interpolation is used to evaluate Vn(x) when x /∈ G̃ and the initial values are set to
V0(x) = 2 for all x ∈ H and Vn(x) = 1 for all x ∈ K0 and n ∈ Z≥0, where H and K0 are
given by (2.26) and (2.27), respectively. The convergence criterion for the algorithm is

max
x∈G̃
|en(x)| ≤ ε, (2.67)

where ε = 10−3.
The top of Figure 2.2 shows the number of iterations until convergence for different

values of the proportional gain k. The required number of iterations to convergence ap-
pears to decrease with increasing k. In contrast to Theorem 2.8 which requires k ∈ (0, 2),

32

convergence also occurs for k ≥ 2. This is due to the discretization of the state space for
numerical purposes as explained in Section 2.3.2. Conventional VI (k = 1) converges in
20524 iterations. From the investigated gains k ∈ {0.5, 0.75, 1, ...}, the slowest conver-
gence results for k = 0.5 (37659 iterations). The fastest convergence results for k = 2.75

with 8830 iterations, which is 2.3 times faster than with conventional VI. The algorithm
fails to converge for k ≥ 3.

k
0.5 1 1.5 2 2.5

N
ite

r
#104

1

2

3

4

n #104
0 0.5 1 1.5 2

"
V

n

0

1

2

3 k=0.5
k=1
k=2.75

Figure 2.2: LEO satellite station keeping problem (case study 1), proportional feedback VI
(2.25). Top: number of iterations, Niter, until convergence vs. proportional gain k. Bottom:
difference between Vn and Vn−1 according to (2.68) vs. n.

The following criterion is used to assess the difference between the functions Vn and
Vn−1 at each iteration n of the algorithm,

∆Vn = max
x∈G̃
|Vn(x)− Vn−1(x)| sgn(Vn(x∗)− Vn−1(x∗)), (2.68)

where x∗ ∈ arg maxx∈G̃ |Vn(x)− Vn−1(x)|. The bottom of Figure 2.2 shows the difference
between Vn and Vn−1 at each iteration n for k = 0.5, k = 1, and k = 2.75 using criterion
(2.68). For k = 2.75, ∆Vn initially oscillates around zero and becomes non-negative after

33

n = 8 iterations. Moreover, for the first 100 iterations, the differences between the current
and previous iteration are larger for k = 2.75 compared to k = 1 and k = 0.5. Hence,
larger updates to Vn can be made and the algorithm converges faster for k = 2.75.

2.6.1.2 Adaptive Proportional Feedback VI

/ #10-3
2 4 6 8 10 12 14

N
ite

r

4000

6000

8000

k
0
(x)=0.5

k
0
(x)=1

k
0
(x)=1.5

k
0
(x)=2

n
0 1000 2000 3000 4000 5000

"
V

n

0

2

4

6 k
0
(x)=1, /=0

k
0
(x)=1.5, /=0.005

k
0
(x)=2, /=0.013

Figure 2.3: LEO satellite station keeping problem (case study 1), adaptive proportional
feedback VI (2.37). Top: number of iterations until convergence, Niter, vs. learning rate δ.
Bottom: difference between Vn and Vn−1 according to (2.68) vs. n.

Now adaptive proportional feedback VI, see (2.37), is used to numerically solve the DCOC
problem. As before, the convergence criterion is given by (2.67) with ε = 10−3. The
number of iterations to convergence is shown in the top of Figure 2.3 for different learning
rates δ ∈ {0.001, 0.002, ...} and different initial gains k0(x) = k0 for all x ∈ G̃. For a
given initial gain k0(x), the number of iterations to convergence decreases with increasing
learning rate. Furthermore, for a given δ, convergence occurs faster with increasing k0(x).
However, the influence of k0(x) decreases with higher learning rates. The iterations fail
to converge for initial gains of 0.5 and 1 if δ ≥ 0.015 and for initial gains of 1.5 and 2
if δ ≥ 0.014. The fastest convergence is achieved with k0(x) = 2 and δ = 0.013 where

34

convergence occurs after 2882 iterations, which is more than seven times as fast as with
conventional VI. Note that for all different parameter settings, the same approximation of
the value function is obtained within the prescribed accuracy.

The difference between Vn and Vn−1 is plotted against the iteration number n for two
example cases, k0(x) = 2 with δ = 0.013 and k0(x) = 1.5 with δ = 0.005, in the
bottom of Figure 2.3. The plot also includes the first 5000 iterations of conventional VI
(k0(x) = 1 with δ = 0) for comparison. Due to the relatively small and static gain,
conventional VI only generates small updates to Vn(x) at each iteration. Therefore, given
the initial V0(x) = 2, convergence is slow where V (x) is large. In contrast, the adaptive
algorithm increases the gain where V (x) is large, which results in larger updates and thus
faster convergence. Using k0(x) = 2 with δ = 0.013, the sequence of functions Vn begins
to oscillate after about 1450 iterations. However, the oscillations decay within the next
50 iterations and the sequence eventually converges. The oscillations indicate that the
algorithm is close to becoming unstable for the given parameter values.

2.6.1.3 Sample Trajectories

An optimal control policy satisfies (2.7). Hence, since g ≡ 1, an approximation of an
optimal control policy is given by π̃∗(x) ∈ arg maxu∈U Ṽ (f(x, u)), where Ṽ is an ap-
proximation of the value function obtained by the numerical implementation of (adaptive)
proportional feedback VI (see Sections 2.6.1.1 and 2.6.1.2). During the closed-loop simu-
lations, cubic interpolation is used to evaluate Ṽ (x) if x /∈ G̃. The control policy is applied
to two test cases with different initial conditions.

For the first test case, the satellite is initially in a circular orbit of the nominal altitude
h0 = 300 km. The satellite’s altitude for the first two weeks is shown in Figure 2.4, where
the prescribed boundaries are indicated by blue lines. Note that the satellite would already
violate the altitude constraints after only 5.5 days without using any control (u ≡ 0). The
DCOC-based policy, however, steers the satellite into an elliptical orbit with an average
altitude of about 299 km. As seen in the bottom of Figure 2.4, this orbit is maintained by
using only sporadic control pulses. The fuel consumption in the first week is about 4.4 % of
the available fuel, where the majority of the fuel is used in the first minutes for establishing
the elliptical orbit. The fuel consumption in the second week is lower with approximately
2.8 % of the available fuel. The prescribed constraints are violated after 339 days.

The second test case assumes an initial circular orbit of 275 km altitude which is close to
the lower bound for r. The altitude for the first two weeks is shown in the top of Figure 2.5,
indicating that the DCOC-based control policy is able to maintain the satellite within the
specified constraints. The control inputs are shown in the bottom of Figure 2.5. Eventually,

35

the fuel is depleted and constraint violation occurs after 268 days. Without using any
control, the system violates the altitude constraints after only 14 minutes.

time (days)
0 2 4 6 8 10 12 14

A
lti

tu
de

 (
km

)

280

300

320

time (days)
0 2 4 6 8 10 12 14

co
nt

ro
l (

N
)

0

0.5

1

Figure 2.4: LEO satellite station keeping problem (case study 1) – initial altitude of 300
km: altitude r − rE (top) and control input u (bottom) vs. time.

2.6.2 VDP Oscillator 1 and LEO Satellite Station Keeping 2

This section presents two time maximization problems (J = τ , i.e., g ≡ 1) as numerical
case studies. A VDP oscillator is considered in the first case study (Section 2.6.2.1) and a
LEO satellite in the second case study (Section 2.6.2.2). In both case studies, an approx-
imation of the optimal control policy is computed with the ADP procedure in Algorithm
2.1. In contrast to most ADP approaches that are based on NNs [59,60], a Gaussian process
(Kriging interpolation) [61, 62] is employed to approximate the value function and Vn, see
(2.38), as initial numerical studies suggest better results than with NNs.

36

time (days)
0 2 4 6 8 10 12 14

A
lti

tu
de

 (
km

)

280

300

320

time (days)
0 2 4 6 8 10 12 14

co
nt

ro
l (

N
)

0

0.5

1

Figure 2.5: LEO satellite station keeping problem (case study 1) – initial altitude of 275
km: altitude r − rE (top) and control input u (bottom) vs. time.

The DACE toolbox for MATLAB [69] is used to represent the Kriging model, where a
linear regression model and a linear covariance function are chosen for the Kriging model
(options regpol1 and corrlin, respectively, in the DACE toolbox). The ADP approach is
compared to a common approach in conventional DP, where V is approximated on a set of
discrete points (grid), G̃ ⊂ G, with equidistant spacing. Iterations (2.25) are applied to the
grid using linear interpolation to approximate Vn between the grid points and Vn(x) = 0 if
x /∈ G. This approach is referred to as the DP approach in the following and the results of
the ADP and DP approach are compared. For both approaches, the initial values are set to
Vtrain,x = 1 (step 3 of Algorithm 2.1) and V0(x) = 1, respectively, for each point x of the
discretized set G̃ ⊂ G. A convergence threshold of ε = 0.1 is used for the VDP problem
and ε = 0.5 (due to greater first exit-times) for the LEO station keeping problem. Note that
there is no significant difference in the results when using ε < 0.1 for the VDP problem
and ε < 0.5 for the LEO station keeping problem.

In order to generate the discretized set G̃, a grid of qi points on R with equidistant

37

spacing from ai ≤ bi to bi is denoted by

gd(ai, bi, qi) =

{
ai, ai +

bi − ai
qi − 1

, ai + 2
bi − ai
qi − 1

, ..., bi

}
. (2.69)

Furthermore, an n-dimensional grid with q1 × q2 × ...× qn points is defined by

GD(a, b, q) = {x ∈ Rn : x1 ∈ gd(a1, b1, q1),

x2 ∈ gd(a2, b2, q2), ..., xn ∈ gd(an, bn, qn)},
(2.70)

where x = [x1, x2, ..., xn]>, a = [a1, ..., an]>, b = [b1, ..., bn]>, and q = [q1, ..., qn]>. In
addition, a set of nlhs points in Rn obtained by Latin hypercube sampling (lhs) is denoted by
lhs(nlhs). The discretization ofG for the ADP approach is constructed by combining (2.70)
and lhs(nlhs), i.e., G̃ = GD(a, b, q) ∪ lhs(nlhs), where the MATLAB function lhsdesign is
used to generate lhs(nlhs). All computations reported in this section (Section 2.6.2) are
performed in MATLAB 2015a on a laptop with an i5-6300 processor and 8 GB RAM.

2.6.2.1 VDP Oscillator 1

The discrete-time model of a forced van der Pol oscillator is obtained from the continuous-
time model based on Euler’s forward method,

xt+1 = xt + ∆t[r2,t, st, 1]>, (2.71)

where st = ut sin(ωr3,t)+2(1−r2
1,t)r2,t−r1,t, xt = [r1,t, r2,t, r3,t]

> denotes the state vector
at a time instant t, and the control input is ut. The sampling time is set to ∆t = 0.01 sec
and ω = 10 sec−1. The objective is to maximize the first exit-time from the set

G = {x : r1 ∈ [1, 3], r2 ∈ [1, 3]}, (2.72)

subject to control constraints defined by U = {−10,−9, ..., 0, ..., 9, 10}. In order to con-
struct GD(a, b, q), see (2.70), a = [1, 1, 0]> and b = [3, 3, 1 sec]>. For the ADP approach
where G̃ = GD(a, b, q) ∪ lhs(nlhs), q = [3, 3, 3]> is selected for the grid part. For the DP
approach, G̃ = GD(a, b, q) is parameterized by q = [q0, q0, q0]>.

Figure 2.6 (top) plots the number of iterations, Niter, until convergence against the
proportional gain factor k for the DP (q0 = 25) and ADP approach (nlhs = 25 for lhs).
The corresponding computation time tcomp is shown in Figure 2.6 (bottom). Note that
the configurations shown in Figure 2.6 converge to the same control policy for the ADP
approach (within the tolerance prescribed by ε). Likewise, the resulting control policies

38

in Figure 2.6 are the same for the DP approach. However, the DP control policy may be
different from the ADP control policy.

k
1 1.5 2 2.5 3 3.5 4

N
ite

r

50

100

150

200 ADP-Kriging n
lhs

=25

DP q
0
=25

k
1 1.5 2 2.5 3 3.5 4

t co
m

p (
se

c)

0

1

2

3

Figure 2.6: VDP oscillator problem (case study 1). Top: number of iterations until conver-
gence vs. gain k. Bottom: computation time (until convergence) vs. gain k.

q0 10 15 20 25 30 35

tcomp (sec) 0.2 0.45 1.2 2.13 3.53 5.8

τ(x0, π̃
∗) 52 58 59 59 59 59

Table 2.1: VDP oscillator problem (case study 1), DP approach. Time to compute DCOC
policy (k = 1) and first exit-time τ(x0, π̃

∗) for x0 = [1.5, 3, 0]> for different grids G̃ =
GD(a, b, [q0, q0, q0]>).

As can be seen in Figure 2.6, for the DP approach, Niter and tcomp decrease with in-
creasing gains until k = 1.5 and the approach fails to converge for k ≥ 1.95. Similarly,
the convergence rate improves with increasing k for the ADP approach and convergence
is maintained until k = 4.3. The observed convergence behavior is different from the the-
oretical results in Theorem 2.8 and depends on G̃ and Ṽ (here, either linear interpolation

39

or Kriging interpolation) as discussed in Section 2.3.2. The fastest convergence for the
DP approach is achieved with k = 1.5 (77 iterations), which is 1.5 times faster than with
conventional VI (k = 1). For the ADP approach, 36 iterations are required when k = 4.2,
which is 4.2 times faster than with conventional VI.

nlhs 15 25 35 45 55 65

tcomp (sec) 0.32 0.52 0.69 0.88 1.23 1.45

τ(x0, π̃
∗) 58 58 58 58 58 59

Table 2.2: VDP oscillator problem (case study 1), ADP-Kriging approach. Time to com-
pute DCOC policy (k = 1.8) and first exit-time τ(x0, π̃

∗) for x0 = [1.5, 3, 0]> for different
training sets G̃ = GD(a, b, [3, 3, 3]>) ∪ lhs(nlhs).

r
1

1 1.5 2 2.5 3

r 2

1

1.5

2

2.5

3 ADP-Kriging n
lhs

=25

DP q
0
=25

time (sec)
0 0.1 0.2 0.3 0.4 0.5

u

-10

-5

0

5

10

Figure 2.7: VDP oscillator problem (case study 1), x0 = [1.5, 3, 0]>. Top: r1 vs. r2.
Bottom: control u vs. time.

Table 2.1 lists tcomp and the corresponding first exit-time for x0 = [1.5, 3, 0]> for the DP
approach (k = 1) for different grid sizes. The computation time increases exponentially
with the grid size, whereas the solution approaches the optimal solution as G̃ becomes

40

denser in G (i.e., q0 → ∞). Similarly, Table 2.2 shows tcomp and τ(x0, π̃
∗) for the ADP

approach using different G̃. The first exit-times for x0 are similar to the DP approach while
less time is required for computing the ADP-based control policies. Figure 2.7 shows the
respective trajectories emanating from x0 for the DP (q0 = 25) and ADP control policy
(nlhs = 25) in the r1-r2 plane (top) and the control inputs over time (bottom). The state and
control constraints are indicated by dashed lines.

2.6.2.2 LEO Satellite Station Keeping 2

The satellite model (including parameters) is identical to the model used in Section 2.6.1,
except for the sampling time which is set to ∆t = 2 sec here. It is assumed that the
propulsion system initially carries 40 g of fuel (m0 = 4.04 kg) and the objective is to
maximize the time that the satellite stays within ±20 km of a nominal orbital altitude of
300 km. Hence,

G = {x : r − rE ∈ [280, 320] km, m ≥ 4 kg}. (2.73)

As explained in Section 2.6.1, the polar angle θ has no effect on the other states and the
DCOC problem is independent of θ. Thus, based on (2.70),

a = [rE + 280 km,−10 m/sec, 0, 0.001147 rad/sec, 4 kg]>,

b = [rE + 320 km, 10 m/sec, 0, 0.001167 rad/sec, 4.04 kg]>,

are used to construct a grid. In analogy to the previous example (Section 2.6.2.1), q =

[q0, q0, 0, q0, q0]> for the DP approach and q = [3, 3, 0, 3, 3]> combined with lhs(nlhs) for
the ADP approach.

Figure 2.8 shows the number of iterations (top) and computation time (bottom) until
convergence for different k using the DP (q0 = 50) and ADP approach (nlhs = 275).
In line with the previous case studies (Sections 2.6.1.1 and 2.6.2.1), the convergence rate
improves with increasing k until k reaches a certain limit. The DP and ADP approach fail to
converge for k ≥ 1.5 and k ≥ 2.1, respectively. While the computed value functions may
differ between the DP and ADP approach, both approaches converge to the same respective
approximate value function (within the accuracy prescribed by ε) for the configurations
shown in Figure 2.8, independent of k.

The fastest convergence for the DP approach is achieved with k = 1.2 (1.2 times
faster than conventional VI) and with k = 2 for the ADP approach (about twice as fast
as conventional VI). For an initial 300 km circular orbit, i.e., r0 = rE + 300 km and
x0 = [r0, 0, 0,

√
µ/r3

0, 4.04 kg]>, constraint violation occurs for the first time after about

41

31 days with the ADP policy compared to 23.7 days when using the DP approach.

k
0.8 1 1.2 1.4 1.6 1.8 2

N
ite

r
2000

3000

4000

5000

6000
ADP-Kriging n

lhs
=275

DP q
0
=50

k
0.8 1 1.2 1.4 1.6 1.8 2

t co
m

p (
ho

ur
s)

0

0.5

1

1.5

Figure 2.8: LEO satellite station keeping problem (case study 2). Top: number of iterations
until convergence vs. gain k. Bottom: computation time (until convergence) vs. gain k.

q0 30 40 50 60 70

tcomp (hours) 0.13 0.52 1.4 3.42 7.85

tτ(x0,π̃∗) (days) 2.6 1.7 23.7 26.7 31.1

Table 2.3: LEO satellite station keeping problem (case study 2), DP approach. Time to
compute DCOC policy (k = 1) and time tτ(x0,π̃∗) at constraint violation for initial 300 km
circular orbit and different G̃ = GD(a, b, [q0, q0, 0, q0, q0]>).

A relatively dense grid (q0 = 70) is required for the DP approach to achieve a sim-
ilar first exit-time performance as the ADP approach. Moreover, the DP approach takes
significantly longer to compute the control policy (see bottom of Figure 2.8). This can
also be verified in Tables 2.3 and 2.4 that list the respective computation time and first
exit-time for x0 for different grids G̃, where the required computation time of the DP ap-
proach increases exponentially with increasing grid size (curse of dimensionality). Hence,

42

the ADP approach appears to be more suitable for higher-dimensional problems than the
DP approach.

nlhs 250 275 300 325 350

tcomp (hours) 0.02 0.04 0.04 0.05 0.06

tτ(x0,π̃∗) (days) 30.9 31.1 31 31.6 31.4

Table 2.4: LEO satellite station keeping problem (case study 2), ADP-Kriging approach.
Time to compute DCOC policy (k = 1.8) and time tτ(x0,π̃∗) at constraint violation for an
initial 300 km circular orbit for G̃ = GD(a, b, [3, 3, 0, 3, 3]>) ∪ lhs(nlhs).

time (days)
0 5 10 15 20 25 30

al
tit

ud
e

(k
m

)

280

290

300

310

320 ADP-Kriging n
lhs

=325

DP q
0
=70

time (days)
0 5 10 15 20 25 30

m
 (

kg
)

4

4.01

4.02

4.03

4.04

Figure 2.9: LEO satellite station keeping problem (case study 2), initial 300 km circular
orbit. Top: altitude vs. time. Bottom: spacecraft mass m vs. time.

The respective trajectories of the satellite’s altitude and mass are plotted over time for
the DP (q0 = 70) and ADP approach (nlhs = 325) in Figure 2.9, where the constraints are
indicated by dashed lines. Compared to the ADP approach, the DP approach converges to
a different solution, which may indicate that the optimal control policy is not unique in this
problem.

43

2.6.3 VDP Oscillator 2 and N-S GEO Satellite Station Keeping

Using base-trajectory VI (Section 2.5), two numerical DCOC case studies of maximizing
the time until prescribed constraints are violated (i.e., g ≡ 1) are discussed in this section.
In the first case study (Section 2.6.3.1) a forced VDP oscillator is considered and in the
second case study (Section 2.6.3.2) N-S station keeping of a GEO satellite is addressed. In
both cases, the discrete-time model is obtained from the respective continuous-time model
using Euler’s forward method, where the sampling time is denoted by ∆t. The convergence
threshold for the numerical implementation of base-trajectory VI, see Algorithm 2.3, is set
to ε = 0.01.

The approximation of the value function and optimal control policy, obtained with base-
trajectory VI, are denoted by Vdis and πdis, respectively. Likewise, Vdis,VI and πdis,VI denote
the approximate value function and optimal control policy, respectively when using con-
ventional VI. In order to assess the numerical solutions, the following criterion is defined:

∆Vdis(x) = Fdis(x)/τ(x, πdis), (2.74)

where Fdis is given by (2.59). The criterion ∆Vdis,VI(x) for conventional VI is similarly
defined by replacing Fdis and πdis with Fdis,VI and πdis,VI. According to (2.4), the value
function equals the first exit-time when using an optimal control policy. Therefore, a nu-
merical solution is considered to be close to an optimal solution if ∆Vdis(x) or ∆Vdis,VI(x),
respectively, is close to 1.

Conventional VI and base-trajectory VI are both implemented as a C program in this
section (Section 2.6.3). All computations are performed on a computing node with two
six-core 2.67 GHz Intel Xeon X5650 processors, i.e., ν = 12, and 48 GB usable RAM.
The respective control policies are computed offline and used online for feedback control
during the simulations.

2.6.3.1 VDP Oscillator 2

The time-varying discrete-time model of a forced van der Pol oscillator considered in this
case study is

r1,t+1 = r1,t + ∆tr2,t,

r2,t+1 = r2,t + ∆t
(
αt sin(ωtt∆t) + 2(1− r2

1,t)r2,t − r1,t

)
,

(2.75)

where xt = [r1,t, r2,t, t]
> denotes the state vector and ut = [αt, ωt]

> is the control input
at a time instant t. Note that the time instant t is a part of the state vector because the

44

value function and the control policy depend on time since the system is time-dependent.
A sampling time of ∆t = 0.001 sec is used in this example. The state constraints are given
by

G = {x : r1 ∈ [1, 2], r2 ∈ [1, 2]}. (2.76)

Two different cases are treated: first, one control variable; second, two control variables.
For the first case, the control variable ωt is fixed to a constant value ωt ≡ 5 Hz and ut =

αt ∈ U = [−10, 10]. Using (2.69), G and U are discretized as follows

Gdis = {x : r1 ∈ gd(1, 2, 4), r2 ∈ gd(1, 2, 4), t ∈ gd(0, 1000, 10)},

Udis = gd(−10, 10, 21).

This discretization of G is referred to as the nominal grid. In order to generate trajectories
closer to the optimal solution, another grid on G with 105 equidistant points for each of
the states is defined. This discretization is referred to as the dense grid, which also uses
Udis = gd(−10, 10, 21). Based on Remark 2.8, ĩth = 150 for the nominal grid and ĩth =

600 for the dense grid. Note that a larger value of ĩth is expected to yield a more accurate
approximation of the optimal control policy, but increases computation times.

Figure 2.10 (top) shows example trajectories for an initial state x0 = [1, 2, 0]> using
four different control policies: πdis obtained by base-trajectory VI for the nominal grid
(solid black line); πdis,VI obtained by conventional VI for the nominal grid (dashed-dotted
green line); πdis obtained by base-trajectory VI for the dense grid (dashed red line); πdis,VI

obtained by conventional VI for the dense grid (dotted blue line). The bottom plot in Figure
2.10 displays the approximated value function Fdis or Fdis,VI, respectively, over time. It can
be seen that the solution of base-trajectory VI performs slightly better than the solution of
conventional VI for the nominal grid. In particular, the approximation of the value function
obtained by base-trajectory VI is closer to the actual value function, which decreases by
one at each time instant according to (2.6).

The slightly better performance of base-trajectory VI for the nominal grid is also veri-
fied in Table 2.5, which shows the performance criterion ∆V defined in (2.74) and the first
exit-time for the initial state vector [1, 2, 0]>, where the solution of base-trajectory VI gen-
erates a ∆V closer to one and satisfies the prescribed constraints two time steps longer than
the solution by conventional VI, i.e., τ(x, πdis) = 627 and τ(x, πdis,VI) = 625. The time to
compute the control policy with base-trajectory VI (run Algorithm 2.3 for all x ∈ Gdis) is
0.5 sec compared to 0.2 sec for conventional VI as seen in Table 2.5.

45

r
1

1 1.2 1.4 1.6 1.8 2
r 2

1

1.5

2

time (sec)
0 0.1 0.2 0.3 0.4 0.5 0.6

ap
pr

ox
im

at
e

V

0

200

400

600
base-trajectory VI: nominal grid
conventional VI: nominal grid
base-trajectory VI: dense grid
conventional VI: dense grid

Figure 2.10: VDP oscillator problem (case study 2) – one control variable, x0 = [1, 2, 0]>.
Top: state trajectory in r1-r2 plane. Bottom: approximation of the value function vs. time.

∆Vdis(x) or
∆Vdis,VI(x)

τ(x, πdis) or
τ(x, πdis,VI)

comp.
time

base-trajectory VI, nominal grid 0.926 627 0.5 sec

conventional VI, nominal grid 0.844 625 0.2 sec

base-trajectory VI, dense grid 1.007 632 10,834 sec

conventional VI, dense grid 1.014 632 143 sec

Table 2.5: VDP oscillator problem (case study 2) with one control variable. ∆V (x) ac-
cording to (2.74) and time steps until constraint violation τ(x, π) for x = [1, 2, 0]> as well
as required time (wall time) to compute the respective control policies on G.

For the dense grid, the solutions of base-trajectory VI and conventional VI are nearly
identical. According to Table 2.5, both solutions violate the constraints for the first time
after 632 steps and the respective performance criterion is close to one, indicating that
the solutions are close to an optimal solution. Base-trajectory VI requires more time to

46

compute the control policy for the dense grid (see Table 2.5), which can be reduced by
lowering ĩth.

Now consider the case of two control variables, where, in addition to α, ω serves as a
control variable. In this case, the control constraints are given by

U = {u : α ∈ {−10, 0, 10} , ω ∈ {0, 0.5, 1, ..., 5} Hz} ,

and Udis = U is used. The nominal discretization of G for this case is chosen as follows:

Gdis = {x : r1 ∈ gd(1, 2, 15), r2 ∈ gd(1, 2, 15), t ∈ gd(0, 1000, 30)},

and ĩth = 100 is set for base-trajectory VI (see Remark 2.8). Furthermore, another dis-
cretization referred to as the dense grid is constructed with gd(0, 1000, 251) for t and 35
non-equidistant points for each r1 and r2. The focus of the non-equidistant points for r1

and r2 is on the area where r1 ≥ 1.25 and r2 ≤ 1.15 since most optimal trajectories spend
a considerable amount of time there. When the dense grid is used, ĩth is set to 750.

r
1

1 1.2 1.4 1.6 1.8 2

r 2

1

1.5

2 base-trajectory VI: nominal grid
conventional VI: nominal grid
base-trajectory VI: dense grid
conventional VI: dense grid

time (sec)
0 0.2 0.4 0.6 0.8

ap
pr

ox
im

at
e

V

0

500

1000

Figure 2.11: VDP oscillator problem (case study 2) – two control variables, x0 = [1, 2, 0]>.
Top: state trajectory in r1-r2 plane. Bottom: approximation of the value function vs. time.

47

Figure 2.11 shows the state trajectories as well as the approximated value function
vs. time for x0 = [1, 2, 0]> and different control policies. Table 2.6 lists the corresponding
performance criteria ∆V , the first exit-times fromG, and the times required to compute the
control policies. The nominal grid solution of base-trajectory VI shows better performance
compared to both the nominal and dense grid solutions by conventional VI. This is because
the DCOC problem and the shape of the value function become more complex with two
control variables, increasing the interpolation error, which is greater for conventional VI
as described in Section 2.5.2. The nominal grid solution of base-trajectory VI satisfies the
constraints for 885 time steps, whereas only 841 (nominal grid) and 875 (dense grid) time
steps are achieved with conventional VI. With 38 sec, base-trajectory VI requires more
computation time for computing the control policy than conventional VI on the nominal
grid (6 sec) and less time than conventional VI on the dense grid (67 sec).

∆Vdis(x) or
∆Vdis,VI(x)

τ(x, πdis) or
τ(x, πdis,VI)

comp.
time

base-trajectory VI, nominal grid 0.879 885 38 sec

conventional VI, nominal grid 0.828 841 6 sec

base-trajectory VI, dense grid 0.961 896 9,842 sec

conventional VI, dense grid 0.844 875 67 sec

Table 2.6: VDP oscillator problem (case study 2) with two control variables. ∆V (x) ac-
cording to (2.74) and time steps until constraint violation τ(x, π) for x = [1, 2, 0]> as well
as required time (wall time) to compute the respective control policies on Gdis.

Base-trajectory VI applied to the dense grid generates the solution closest to an optimal
solution as indicated by the approximation of the value function plotted over time (bottom
plot in Figure 2.11) and ∆Vdis in Table 2.6. For the considered initial condition, constraint
violation occurs for the first time after 896 time steps. However, the computation time
for obtaining the control policy is considerably longer than for the other policies. The
computation time of base-trajectory VI can be reduced to some extent by lowering ĩth,
which may decrease the performance of the control policy. In general, there is a trade-off
between computation time and performance/accuracy of the control policy. As shown in
this case study and in the subsequent one (Section 2.6.3.2), base-trajectory VI applied to a
sparse grid (nominal grid) provides the best balance between computation time and control
performance.

48

2.6.3.2 N-S Station Keeping of a GEO Satellite

In this case study, a DCOC problem of N-S (out of orbital plane) GEO satellite station
keeping is treated, where the objective is to satisfy position and fuel constraints for as
long as possible. When the satellite is sufficiently close to the nominal orbit its motion is
accurately described by the linear Clohessy-Wiltshire (CW) equations [65], where the out-
of-plane (orbital plane) motion is decoupled from the in-plane motion. Thus, most GEO
station keeping approaches use separate control strategies for the N-S and E-W directions
[45, 70, 71]. Based on the CW equations, the following model for the N-S dynamics of the
GEO satellite is used,

rt+1 = rt + ∆tvt,

vt+1 = vt + ∆t
(
−n2

0rt + ut + ap(t∆t)
)
,

fuelt+1 = fuelt −∆t|ut|/unorm,

(2.77)

where r and v are the out-of-plane position and velocity of the satellite relative to the nom-
inal orbit, fuel ∈ Z≥0 is a normalized variable indicating the amount of fuel available for
maneuvering, and n0 = 7.3 × 10−5 rad/sec is the angular rate of the nominal geostation-
ary orbit. The state vector at a time instant t ∈ Z≥0 is xt = [rt, vt, fuelt, t]

>. A 4000 kg
satellite, equipped with a 0.2 N on/off-thruster for each of the north and south directions, is
considered, i.e., ut ∈ U = {−0.00005, 0, 0.00005} m/sec2. The state constraints for this
problem are given by

G = {x : r ∈ [−7.4, 7.4] km, v ∈ [−0.65, 0.65] m/sec, fuel ≥ 0}, (2.78)

where the position constraint is equivalent to a latitude window of ±0.01 deg.
The term ap(t∆t) in (2.77) describes time-varying orbital perturbations. Here, pertur-

bations due to solar radiation pressure, J2 (perturbation due to Earth’s non-spherical shape),
and the gravity of the Moon and Sun are taken into account. Given the state constraints,
the satellite’s trajectory, which is unknown in advance, is sufficiently close to the trajectory
of the nominal orbit such that ap(t∆t) can be computed in advance for all t based on the
known nominal orbit. More information on how to obtain ap(t∆t) can be found in [45].
For this problem, t = 0 corresponds to September 3, 2015, at 12 am (CT) with the position
of the nominal orbit being on the x-axis of the Earth-centered inertial (ECI) coordinate
frame [64].

A sampling time of ∆t = 10 sec is used. However, for computing the control poli-
cies, larger time increments of 1000 sec are employed by using the state transition formula

49

for linear discrete-time systems as in [45], i.e., t ∈ {0, 100, 200, ...}. This provides a
compromise between performance/accuracy of the controller and computation time. Dur-
ing the closed-loop simulations (∆t = 10 sec), the control value ut is computed every
1000 sec while ut is applied continuously throughout the subsequent 1000 sec. Moreover,
unorm = ∆t0.005 m/sec2 in (2.77), i.e., fuelt − fuelt+100 = 1 each time a nonzero control
is applied.

time (days)
0 2 4 6 8 10 12

r
(k

m
)

-5

0

5

time (days)
0 2 4 6 8 10 12

v
(m

/s
ec

)

-0.5

0

0.5

time (days)
0 2 4 6 8 10 12

fu
el

0

5

10
base-trajectory VI: nominal grid
conventional VI: nominal grid
base-trajectory VI: dense grid
conventional VI: dense grid

Figure 2.12: N-S GEO satellite station keeping problem, x0 = [0, 0, 10, 0]>. Position r
(top) and velocity v (middle) relative to nominal orbit vs. time as well as fuel (bottom)
vs. time.

50

For Gdis, r ∈ gd(−7.4 km, 7.4 km, 75), v ∈ gd(−0.65 m/sec, 0.65 m/sec, 75), fuel ∈
{0, 1, ..., 10}, and t ∈ gd(0, 120000, 500) are chosen as the nominal grid. Similarly, a
dense grid with 251 equidistant points for each r and v, 2500 equidistant points for t,
and fuel ∈ {0, 1, ..., 10} is constructed. Moreover, Udis = U . For base-trajectory VI,
ĩth = 30 for both the nominal and the dense grid. Note that base-trajectory VI converges
in 11 iterations due to the exact discretization of the variable fuel. This is not true for
conventional VI (1920 and 1837 iterations until convergence for the nominal and dense
grid, respectively) because, in contrast to base-trajectory VI, Vn(x) = Vn+k(x) does not
necessarily hold for each x ∈ Gdis with fuel = n and k ∈ Z+.

time (days)
0 2 4 6 8 10 12

u
(m

/s
ec

2)

#10-5

-5

0

5

time (days)
0 2 4 6 8 10 12

ap
pr

ox
im

at
e

V

#104

0

5

10
base-traj. VI: nominal grid
convent. VI: nominal grid
base-traj. VI: dense grid
convent. VI: dense grid

Figure 2.13: N-S GEO satellite station keeping problem, x0 = [0, 0, 10, 0]>. Control input
(top) and approximation of the value function (bottom) vs. time.

Figures 2.12 and 2.13 show the results for an initial x0 = [0, 0, 10, 0]>, i.e., 10 nonzero
control actions can be applied without violating the fuel constraint. Table 2.7 lists the cor-
responding ∆V and τ as well as computation times. As in the previous example, base-
trajectory VI performs better than conventional VI due to smaller interpolation errors.
While the computation times of base-trajectory VI and conventional VI are comparable,
constraints are violated after only 10.53 days (nominal grid) and 13 days (dense grid) when

51

using conventional VI.
Both solutions of base-trajectory VI violate the constraints around the same time: 13.5

days for the nominal grid and 13.49 days for the dense grid, indicating that the optimal
exit-time is around 13.5 days here. The slightly better result (longer time until constraint
violation) for the nominal/sparser grid may be attributed to the fact that convergence to the
value function is not uniform, see Theorem 2.10, and depends on Gdis for the discretized
problem. For both base-trajectory VI and conventional VI, it is expected that the respective
control policy approaches an optimal control policy pointwise as Gdis becomes denser in
G. As can be seen in Figure 2.12 (bottom) and Figure 2.13 (top), the control policies
obtained by the two algorithms are different. Base-trajectory VI yields policies that use
all of the available fuel in the beginning, whereas the policies obtained by conventional VI
wait about 3 days before starting to use the available fuel. This suggests that the optimal
control policy for this problem may not unique.

∆Vdis(x) or
∆Vdis,VI(x)

τ(x, πdis) or
τ(x, πdis,VI)

comp.
time

base-trajectory VI, nominal grid 0.97 116650 1871 sec

conventional VI, nominal grid 1.173 90967 959 sec

base-trajectory VI, dense grid 0.996 116596 67530 sec

conventional VI, dense grid 0.887 112356 64739 sec

Table 2.7: N-S GEO satellite station keeping problem. ∆V (x) according to (2.74) and time
steps until constraint violation τ(x, π) for x = [0, 0, 10, 0]> as well as required time (wall
time) to compute the respective control policies on Gdis.

2.6.4 Spacecraft Attitude Control

Base-trajectory VI (Section 2.5) is applied to attitude control of an axisymmetric space-
craft/rocket during a translational thrusting maneuver with a fixed thrust vector misalign-
ment. The spacecraft’s mass and inertia properties in this case study are time-varying due
to the mass flow required for the orbital maneuver. Given fuel constraints for the attitude
control system, the objective is to counteract the parasitic moment resulting from the thrust
vector misalignment and to maximize the time during which the orientation of the space-
craft symmetry axis stays within a prescribed cone. Numerical results are presented in
this section, including a robustness analysis of the DCOC-based controller with respect to
uncertainties in the thrust vector misalignment.

52

2.6.4.1 Model Formulation

The general rotational dynamics of a rigid body with time-varying mass and inertia prop-
erties are derived in Appendix A. Equation (A.12) in Appendix A states the governing
equation for a rigid body B with center of mass c using a body-fixed point z. The specific
spacecraft model considered in this case study is outlined in Fig. 2.14. A cylindrical space-
craft with four sections is considered. The first section comprises the main engine with
evenly distributed mass me. The engine is followed by the tanks of the oxidizer (ox) and
the fuel (f). Both the oxidizer and the fuel have initial masses mox,0 and mf,0, respectively,
which decrease at constant mass flow rates ṁox and ṁf , respectively. The slosh dynam-
ics in the tanks are neglected. The fourth section of the rocket is the payload with evenly
distributed mass mp.

Payload

E
n
g
i
n
e

Ox. Fuel

L:1.2 R:1.4
B:1.9 T:1.7

Figure 2.14: Spacecraft attitude control problem: model of an axisymmetric spacecraft.

The governing equations are resolved in the body-fixed principal frame FB with mutu-
ally perpendicular frame vectors (b̂1, b̂2, b̂3), where b̂3 is the symmetry axis of the spacecraft.
As shown in Figure 2.14, there is a thrust force ~Ft acting on the spacecraft that is misdi-
rected by an angle β relative to the symmetry axis. Moreover, the thrust force is displaced
relative to the point z by a radial distance d1 and longitudinal distance d2. As derived in
Appendix A, the equations describing the rotational dynamics of the spacecraft are

ω̇1 =
1

JT(t)− r2
3(t)mB(t)

[(
2r3(t)v3(t)mB(t) + r2

3(t)ṁB − J̇T(t)
)
ω1

+ u1 +M1 +
(
JT(t)− JR(t)− r2

3(t)mB(t)
)
ω2ω3 − r3(t)f2

]
,

(2.79)

53

ω̇2 =
1

JT(t)− r2
3(t)mB(t)

[(
2r3(t)v3(t)mB(t) + r2

3(t)ṁB − J̇T(t)
)
ω2

+ u2 +M2 +
(
JR(t)− JT(t) + r2

3(t)mB(t)
)
ω1ω3 + r3(t)f1

]
,

(2.80)

where ω1 and ω2 are the spacecraft’s angular velocity vector projections on its body-fixed
axes b̂1 and b̂2, respectively. The angular velocity projection ω3 = ω3(t) on the symmetry
axis b̂3 can be obtained explicitly as a function of time, see (A.29). The time-dependent
parameters r3(t) and v3(t) are the position and velocity of the center of mass c relative to
point z, see (A.19) and (A.20). Equation (A.14) describes the time-varying mass of the
spacecraft mB(t). The time-varying components of the moment of inertia JR(t), JT(t),
and its derivative J̇T(t) are given by (A.22), (A.23), and (A.25), respectively. The external
force acting along the b̂1-axis is f1 and likewise f2 is acting along the b̂2-axis. The external
moments around the two body-fixed axes are M1 and M2 (M3 = 0 is assumed). There are
two control inputs u1 ∈ {−α, 0, α} and u2 ∈ {−α, 0, α} which are the control moments
around the b̂1- and b̂2-axis, respectively.

In order to describe the attitude kinematics, a parametrization introduced by Tsiotras
and Longuski [72] is used. The orientation of the 3-axis of the inertial reference frame FA,
denoted by â3, expressed in the body-fixed frame FB, is described by the two variables θ1

and θ2,

θ1 =
b

1 + c
, θ2 = − a

1 + c
, (2.81)

where a, b, and c are the components of â3 expressed in the body-fixed frame, i.e., â3 =

ab̂1 + bb̂2 + cb̂3. Note that θ1 is the real part and θ2 is the imaginary part of a complex
variable θ which results from the stereographic projection σ : S2 \ {0, 0,−1} → C, where
S2 denotes the surface of the unit sphere in R3. Using θ1 and θ2 for attitude representation,
the kinematic equations are given by [72]

θ̇1 = ω3θ2 + ω2θ1θ2 +
ω1

2

(
1 + θ2

1 − θ2
2

)
, (2.82)

θ̇2 = −ω3θ1 + ω1θ1θ2 +
ω2

2

(
1 + θ2

2 − θ2
1

)
. (2.83)

The available propellant mass for the spacecraft’s attitude control system is denoted by
m. The differential equation describing m is as follows

ṁ = −cm (|u1|+ |u2|) , (2.84)

where cm > 0 is a constant. In summary, the time-dependent system is described by
five states: x = [ω1, ω2, θ1, θ2,m]>. There are two control inputs u1 and u2. The governing
equations are given by (2.79), (2.80), (2.82), (2.83), and (2.84). The continuous-time model

54

is converted into a discrete-time formulation using Euler’s forward method,

xk+1 = xk +
[
ω̇1(tk), ω̇2(tk), θ̇1(tk), θ̇2(tk), ṁ(tk)

]>
∆t, (2.85)

where a sampling time of ∆t = 0.3 sec is used in this case study.

2.6.4.2 Model Parameters

The engine characteristics and parameters of the spacecraft are similar to the A-4 engine
[73], which uses Hydrazine as fuel and Dinitrogen Tetroxide as the oxidizer. The engine
generates a thrust of Ft = 33360 N with Isp = 320 sec and oxidizer and fuel mass flow
rates of ṁox = 5.8 kg/sec and ṁf = 4.83 kg/sec, respectively. With an engine mass of
me = 117 kg, initial fuel and oxidizer masses of mf,0 = 2273 kg and mox,0 = 2727 kg, and
a payload mass of mp = 8000 kg, the total wet mass of the spacecraft is mB,0 = 13117 kg.
The burn time for the orbital maneuver is T = 200 sec. Note that this maneuver generates
an increase in velocity of ∆v = 0.56 km/sec. For this example, a nominal thrust vector
misalignment of β = 0.1 deg and d1 = 2 mm are assumed. Moreover, d2 = 1 m is chosen
(see Figure 2.14). Thus, the components of the external moment relative to point z are

M1 = d1Ft cos(β) = 66.7 Nm, M2 = d2Ft sin(β) = 58.2 Nm, M3 = 0. (2.86)

The components of the external force acting on the spacecraft are

f1 = −Ft sin(β) = −58.2 N, f2 = 0 Nm, f3 = Ft cos(β) = 33359.9 N. (2.87)

The attitude control system for the axes b̂1 and b̂2 comprises eight R-4D thrusters [74].
Each thruster can generate a force of 490 N with an Isp of 312 sec. With an effective lever
of 2.86 m, each pair of R-4D thrusters generates a moment of 1401 Nm about the respective
axis (b̂1 or b̂2) relative to point z. Thus, the control inputs u1 and u2 take values from the
set {−1401, 0, 1401} Nm. The constant that describes the propellant consumption of the
attitude control system is cm = 2/Isp/g/2.86 m = 2.285 × 10−4 sec/m2. The remaining
parameters of the spacecraft are summarized in the following table.

lp = 3 m lox,0 = 0.96 m le = 1.75 m lf,0 = 1.15 m

rE = 0.8 m rp = 1.5 m ρox = 1456 kg/m3 ρf = 1013 kg/m3

Table 2.8: Spacecraft attitude control problem: spacecraft parameters.

55

2.6.4.3 DCOC Problem and State Space Discretization

The state constraints are described by

G =

{
x ∈ R5 :

√
θ2

1 + θ2
2 ≤ θlimit, m ≥ 0

}
. (2.88)

The constraint on the orientation of the spacecraft symmetry axis in (2.88) defines a cone,
where a half angle of 0.5 deg is chosen here. This corresponds to θlimit = 0.004363 accord-
ing to (2.81). The minimum propellant mass for the attitude control system is m = 0.

The following nominal discretization is used for the numerical implementation of base-
trajectory VI (Algorithm 2.3),

Gdis =
{
x ∈ G : ω1, ω2 ∈ gr(−0.86 deg/sec, 0.86 deg/sec, 29),

θ1, θ2 ∈ gd(−0.004363, 0.004363, 17), m ∈ gd(0, 15.27 kg, 160)
}
,

(2.89)

where gd(...) is given by (2.69). In addition, the time horizon is discretized by t ∈ Tdis,
where

Tdis = gd(0, 200 sec, 40). (2.90)

In addition to the nominal discretization in (2.89) and (2.90), the influence of different
discretization choices on the solution is analyzed in the following.

2.6.4.4 Results

Base-trajectory VI (Algorithm 2.3) with linear interpolation in (2.56) is employed to ap-
proximate V at the points of the discretized state and time spaces. Based on Remark 2.8,
ith(x) = 8 is used for all x with m ≥ 0.77 kg. The sequence of functions is initialized as
V0(x) = 1 for all x ∈ K0 ∩ Gdis, where K0 is defined in (2.27), and V0(x) = 2 otherwise.
The method is implemented as a C program, where all simulations in this section (Section
2.6.4) are run on a desktop computer with an Intel Core i7-3770 processor and 15.8 GB
usable memory. The quality of a numerical solution is assessed with the ∆Vdis criterion,
defined in (2.74), where ∆Vdis = 1 for an optimal solution.

A computation time of 439 sec is required to solve the DCOC problem numerically.
Figure 2.15 shows the simulation results for an initial condition of ω0,1 = ω0,2 = θ0,1 =

θ0,2 = 0, m0 = 15.27 kg, and t0 = 0. The spacecraft stays inside the prescribed set G
during the entire maneuver time of 200 sec. This can be seen in Figure 2.15 (top), which
shows the trajectory of the attitude parameters in the complex plane, including the boundary
θlimit (red circle), as well as the propellant mass. The remaining propellant mass at the end

56

is 0.672 kg. The approximation of the value function is linearly decreasing in time as seen
in Figure 2.15 (bottom, right) and ∆Vdis = 0.9954, suggesting that the numerical solution
is close to an optimal solution (based on necessary conditions). The control input is plotted
in Figure 2.15 (bottom left).

3
1 #10-3

-5 0 5

3
2

#10-3

-5

0

5

time (sec)
0 50 100 150 200

m
 (

kg
)

0

5

10

15

20

0 50 100 150 200

u 1 (
N

m
)

-2000

0

2000

time (sec)
0 50 100 150 200

u 2 (
N

m
)

-2000

0

2000

time (sec)
0 50 100 150 200

ap
pr

ox
im

at
e

V

0

100

200

300

400

500

600

700

Figure 2.15: Spacecraft attitude control problem for nominal disturbance [see (2.86) and
(2.87)], nominal grid [see (2.89)], and initial condition ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0,
m0 = 15.27 kg. Top: attitude parameters in complex plane (left) and propellant mass m
vs. time (right). Bottom: control moments u1 and u2 vs. time (left) and approximation of
value function vs. time (right).

The influence of the state and time space discretization is investigated by defining two
additional discretizations. In addition to the nominal discretization in (2.89) with nω = 29

grid points for ω1 and ω2, nθ = 17 grid points for θ1 and θ2, and nt = 40 grid points for
the time, a dense discretization with nω = 32, nθ = 20, and nt = 45 as well as a sparse
discretization with nω = 25, nθ = 14, and nt = 36 are defined. Table 2.9 compares the
remaining mass at t = 200 sec, the criterion ∆Vdis, and the computation time for the three
discretizations: sparse, nominal, and dense. The computation time increases exponentially
with the density of the discretization (curse of dimensionality). The sparse grid requires
183 sec in contrast to the dense grid with 909 sec. However, the accuracy of the solution

57

improves with the grid density. The sparse grid solution is further away from the optimum,
whereas the solution of the dense grid is closer to being optimal (based on ∆Vdis). This is
also reflected in the remaining mass after 200 sec, where the solution of the sparse grid has
no propellant left after 200 sec (however not violating the constraints). Both the solutions
for the nominal and the dense grid have 0.672 kg propellant left at the end.

Discretization m(t = 200 sec) ∆Vdis Computational time

sparse: nω = 25, nθ = 14, nt = 36 0.0 kg 0.986 183 sec
nominal: nω = 29, nθ = 17, nt = 40 0.672 kg 0.9954 439 sec

dense: nω = 32, nθ = 20, nt = 45 0.672 kg 0.9988 909 sec

Table 2.9: Spacecraft attitude control problem: influence of state and time space dis-
cretization on the simulation results for nominal disturbance [see (2.86) and (2.87)] and
ω0,1 = ω0,2 = θ0,1 = θ0,2 = 0, m0 = 15.27 kg.

2.6.4.5 Robustness Analysis

The results in the previous section (Section 2.6.4.4) are based on exact knowledge of the
disturbances f1, f2, M1, and M2. Now the robustness of the solution is analyzed with
respect to uncertainties in the disturbances. The control policy based on the nominal ap-
proximation of V , obtained on the nominal grid [see (2.89)] and assuming the disturbance
values in (2.86) and (2.87), is used. However, the actual values of the disturbances are
increased/decreased from the nominal case by 10 %, 25 %, and 50 %.

Table 2.10 shows the differences in the solution for the initial condition ω0,1 = ω0,2 =

θ0,1 = θ0,2 = 0, m0 = 15.27. It can be seen that there are no significant differences
in the solutions for a 10 % uncertainty in the disturbances. The solutions for the 10 %

uncertainty case yield the same ∆Vdis = 0.9954 as the nominal solution. For a 25 % differ-
ence in actual disturbance values, however, the solutions start to deviate from the nominal
solution, yielding ∆Vdis = 1.031 (for 25 % increase) and ∆Vdis = 1.0742 (for 25 % de-
crease). Moreover, the constraints are violated before the end of the 200 sec maneuver. An
uncertainty of 50 % in the disturbances results in further performance degradation (based
on ∆Vdis and first exit-time). An interesting case is when the actual disturbances are zero
(f1 = f2 = M1 = M2 = 0). For this case and the particular initial condition, it would be
intuitive not to apply any control action. However, the controller is based on the nominal
disturbance values and tries to steer the system to a supposedly more efficient region. This
is certainly not optimal in this case and the constraints are violated after 145.8 sec with
∆Vdis = 1.3647.

58

Disturbances tτ(x,πdis) m(tτ(x,πdis)) or m(t = 200 sec) ∆Vdis

nominal > 200 sec 0.672 kg 0.9954
10 % increase from nominal > 200 sec 0.769 kg 0.9954
10 % decrease from nominal > 200 sec 0.769 kg 0.9954
25 % increase from nominal 193.2 sec 0.0 kg 1.031
25 % decrease from nominal 185.4 sec 0.0 kg 1.0742
50 % increase from nominal 163.5 sec 0.0 kg 1.2186
50 % decrease from nominal 153 sec 0.0 kg 1.3025

zero disturbances 145.8 sec 0.0 kg 1.3647

Table 2.10: Spacecraft attitude control problem: robustness analysis of the solution with
respect to uncertainties in the disturbances for an initial condition of ω0,1 = ω0,2 = θ0,1 =
θ0,2 = 0, m0 = 15.27 kg, where the controller is based on the nominal approximation of V
(i.e., assuming nominal disturbances).

2.7 Summary

The focus of this chapter was on deterministic DCOC problems that were analyzed and
solved using DP techniques. An optimal control policy was characterized by the value
function and several new methods, including proportional feedback VI (as well as its ex-
tension to adaptive gains), an ADP approach, and base-trajectory VI, were developed to
obtain the value function. In addition, properties of the value function and conditions for
the existence of a solution were derived.

Numerical case studies of different DCOC problems (VDP oscillator, LEO and GEO
satellite station keeping, and spacecraft attitude control) were treated. The numerical im-
plementations of the developed methods were shown to efficiently generate approximations
of optimal control policies that successfully counteract drift in order to delay constraint vi-
olations. In particular, proportional feedback VI was able to obtain a solution up to 4.2
times faster than conventional VI. Its extension, adaptive proportional feedback VI, con-
verged to a solution more than 7 times as fast as conventional VI. Furthermore, it was
demonstrated that base-trajectory VI is more accurate than (i.e., outperforms) conventional
VI in a numerical setting due to smaller interpolation errors. The developed ADP approach
was able to efficiently obtain good-quality suboptimal solutions. Compared to conventional
DP techniques, the ADP approach mitigates the curse of dimensionality and appears to be
more suitable for higher-dimensional DCOC problems.

59

CHAPTER 3

Deterministic DCOC – Open-Loop Solutions and
MPC

3.1 Problem Formulation

The deterministic DCOC problem considered in this chapter is formulated in analogy to
the previous chapter (Section 2.1). However, the sets describing the state and control con-
straints are assumed to be polyhedral and time-dependent here, i.e.,

Ut = {u ∈ Rp : Cc,tu ≤ bc,t}, (3.1)

Gt = {x ∈ Rn : Cs,tx ≤ bs,t}, (3.2)

where t ∈ Z≥0 denotes the time instant and Cc,t, Cs,t, bc,t, and bs,t are matrices and vectors,
respectively, of proper size.

Moreover, the focus is on a special class of problems with the objective of maximiz-
ing the first exit-time (time maximization problems). In addition to considering closed-
loop control policies (similar to Section 2.1), the open-loop formulation of the problem is
considered as well. In this regard, an open-loop control sequence is denoted by {ut} =

{u0, u1, u2, ...} and the set of admissible control sequences is given by

Useq = {{ut} : ut ∈ Ut for all t ∈ Z≥0}. (3.3)

Given an initial x0 ∈ G0 and the control sequence {ut} ∈ Useq, the corresponding first
exit-time for the open-loop case is defined as

τ(x0, {ut}) = inf{t ∈ Z+ : xt /∈ Gt}, (3.4)

where xt is the response of (2.1) to the initial condition x0 and control sequence {ut}. The

60

class of open-loop DCOC problems considered in this chapter is given by

max
{ut}∈Useq

τ(x0, {ut})

subject to xt+1 = ft(xt, ut).
(3.5)

Likewise, when closed-loop control policies are considered, the problem reads

max
π∈Π

τ(x0, π)

subject to xt+1 = ft(xt, π(xt, t)),
(3.6)

where π : Rn × Z≥0 → Ut ⊂ Rp, t ∈ Z≥0, is a control policy, the set of admissible control
policies is Π, and τ(x0, π) is as in (2.2). Note that the problem formulations in (3.5) and
(3.6) explicitly consider time-varying systems (as ft is time-dependent). Equivalently, a
time-varying system may be modeled by including the time instant t in the state vector x
as done in the previous chapter (Sections 2.6.2.1, 2.6.3.1, and 2.6.3.2).

Throughout this chapter, it is assumed that a solution to the DCOC problem [either
(3.5) or (3.6)] exists. Conditions for the existence of a solution can be found in Section 2.2.
In this case, since the objective function in (3.5) or (3.6), respectively, is integer-valued, a
solution to the respective DCOC problem exists under Assumption 2.2 since the maximum
value of a bounded integer-valued function exists.

Assumption 3.1. There exists a solution to both problems (3.5) and (3.6) for all x0 ∈ G0.

Remark 3.1. The optimal first exit-time of problems (3.5) and (3.6) is the same, i.e.,

τ(x0, {u∗t}) = τ(x0, π
∗), where {u∗t} is a solution to (3.5) and π∗ is a solution to (3.6),

since both problems are subject to the same nonlinear system model and {u∗t} can be con-

structed as {u∗t} = {π∗(x0, 0), π∗(f0(x0, π
∗(x0, 0)), 1), π∗(f1(...), 2), ...}.

3.2 Open-Loop Solutions

3.2.1 Linear Systems

In this section, the open-loop linear DCOC problem is considered, which is used in Sec-
tion 3.3 to formulate an MPC strategy that approximates the solution to the closed-loop
nonlinear problem (3.6). The linear problem may be obtained from the nonlinear prob-
lem by linearizing the nonlinear model about a certain reference trajectory and adding a
time-varying disturbance term dt. Then, in analogy to (3.5), the open-loop linear DCOC

61

problem is as follows

max
{ut}∈Useq

τ(x0, {ut})

subject to xt+1 = Atxt +Btut + dt,
(3.7)

where At ∈ Rn×n, Bt ∈ Rn×p, and dt ∈ Rn are time-dependent matrices and vectors,
respectively.

3.2.1.1 MILP Formulation

Consider the following MILP,

min
{ut},{δt}

N∑
t=1

δt s.t.

xt+1 = Atxt +Btut + dt

δt−1 ≤ δt

δt ∈ {0, 1} ⊂ Z

Cs,txt ≤ bs,t + 1Mδt

ut ∈ Ut,

(3.8)

where x0 ∈ G0, Ut is defined in (3.1), N ∈ Z+ is the time horizon, M ∈ R+, and 1 denotes
the n-dimensional vector of ones. The binary variable δt is an indicator variable for the
condition xt /∈ Gt, where Gt is a polyhedral set according to (3.2). Thus, in case xt /∈ Gt,
δt = 1 and a solution to the MILP exists if M is sufficiently large as stated in Lemma 3.1.
In the following, {xt} denotes a state trajectory corresponding to a control sequence {ut}
and the dynamics in (3.7).

Lemma 3.1. Assume M ∈ R+ is sufficiently large such that Cs,txt ≤ bs,t + 1M for all

t ∈ {0, 1, ..., N} and all {xt} satisfying (3.8) for any control sequence {ut} ∈ Useq and

x0 ∈ G0. Then a solution to (3.8) exists.

Proof. Let x0 ∈ G0 be a given initial condition. Since M is sufficiently large by assump-
tion, δt ≡ 1 is feasible for all {ut} ∈ Useq and {xt} satisfying xt+1 = Atxt + Btut + dt.
Since the number of possible δt sequences is finite and a feasible solution exists for at least
one of them, the solution existence to (3.8) follows.

In the following theorem, conditions are stated under which solutions to MILP (3.8) are
equivalent to solutions of the open-loop linear DCOC problem (3.7).

62

Theorem 3.1. Suppose Assumption 3.1 holds, N ≥ τ(x0, {ut}) for all {ut} ∈ Useq, x0 ∈
G0, and M is sufficiently large as in Lemma 3.1. Then solutions to MILP (3.8) and the

open-loop linear DCOC problem (3.7) are equivalent, i.e., a solution to the MILP is also a

solution to the open-loop linear DCOC problem and vice versa.

Proof. Let x0 ∈ G0 be a given initial condition. A solution to the open-loop linear DCOC
problem (3.7) exists by assumption. Suppose {u∗t} is a solution to (3.7) with corresponding
state trajectory {x∗t}. Then,

τ(x0, {u∗t}) ≥ τ(x0, {u′t}), (3.9)

for all {u′t} ∈ Useq with corresponding state trajectory {x′t}, where x0 = x∗0 = x′0. Now
(3.2), (3.4), the constraints in MILP (3.8), and N ≥ τ(x0, {ut}) for all {ut} ∈ Useq imply
that δ∗t = 1 for t ∈ {τ(x0, {u∗t}), ..., N} and δ′t = 1 for t ∈ {τ(x0, {u′t}), ..., N}, where
{δ∗t } and {δ′t} are solutions to MILP (3.8) for {ut} = {u∗t} and {ut} = {u′t}, respectively,
fixed. Consequently, δ∗t = 0 for t < τ(x0, {u∗t}) and δ′t = 0 for t < τ(x0, {u′t}). This and
(3.9) imply that

N∑
t=1

δ∗t = N − τ(x0, {u∗t}) + 1 ≤ N − τ(x0, {u′t}) + 1 =
N∑
t=1

δ′t, (3.10)

for all ({u′t}, {δ′t}) that satisfy the constraints of the MILP. Therefore, together with {δ∗t },
{u∗t} is a solution to the MILP.

For the second part of the proof, it needs to be shown that a solution to the MILP is
also a solution of (3.7), where a solution to the MILP exists by Lemma 3.1. Suppose that
({uMILP

t }, {δMILP
t }) solves the MILP, i.e.,

N∑
t=1

δMILP
t ≤

N∑
t=1

δ′t, (3.11)

for all ({u′t}, {δ′t}) that satisfy the constraints in (3.8). For a given admissible {u′t}, let {δ̄′t}
be such that δ̄′t = 0 iff t < τ(x0, {u′t}), which is always feasible with respect to (3.8) due
to M being sufficiently large by assumption. Hence,

τ(x0, {u′t}) = 1 +
N∑
t=1

(1− δ̄′t) = N + 1−
N∑
t=1

δ̄′t. (3.12)

63

Then, by (3.11),

τ(x0, {uMILP
t }) = min{t : δMILP

t = 1}

= N + 1−
N∑
t=1

δMILP
t ≥ N + 1−

N∑
t=1

δ̄′t = τ(x0, {u′t}),
(3.13)

for all {u′t} ∈ Useq. Consequently, {uMILP
t } is a solution to the DCOC problem (3.7).

In practice, the complexity of MILP (3.8) can be reduced if a lower bound τlb ∈ Z+

for the optimal first exit-time of the open-loop linear DCOC problem (3.7) is known, i.e.,
τ(x0, {u∗t}) ≥ τlb, where {u∗t} is a solution to (3.7). In this case, δt = 0 may be set for
t = 1, ..., τlb−1, yielding MILP (3.14). Compared to MILP (3.8), MILP (3.14) reduces the
number of binary variables to optimize from N to N − τlb + 1. Note that τlb can be chosen
as corresponding to exit-time under any given admissible control law.

min
{ut},{δτlb ,...,δN}

N∑
t=τlb

δt s.t.

xt+1 = Atxt +Btut + dt

δt−1 ≤ δt

δt ∈ {0, 1} ⊂ Z, t = τlb, ..., N

Cs,txt ≤ bs,t, t = 1, ..., τlb − 1

Cs,txt ≤ bs,t + 1Mδt, t = τlb, ..., N

ut ∈ Ut.

(3.14)

3.2.1.2 LP Formulation

MILP is in the class of NP-complete problems and the worst-case computation time grows
exponentially with the number of integer variables {δτlb , ..., δN} [75–77]. Consequently,
efficient and robust computation of a solution to (3.7) cannot be guaranteed with MILP.
Thus, MILP (3.14) is relaxed by replacing the binary variables δt with non-negative real
variables εt, which leads to a standard LP for which efficient and robust solvers exist. The
LP is stated in (3.15) in analogy to MILP (3.14), where εt ∈ R≥0 and qt ∈ R+ are weights.

As in MILP (3.14), τlb ∈ Z+ is a lower bound on the optimal first exit-time of the
open-loop linear DCOC problem (3.7) and εt = 0 for t = 1, ..., τlb − 1. The solution to
LP (3.15) is only guaranteed to be optimal with respect to (3.7) when the time horizon is
N = τ(x0, {u∗t})−1, where {u∗t} is a solution to (3.7). In contrast to the MILP formulation,

64

N ≥ τ(x0, {u∗t}) does not guarantee an optimal solution with respect to (3.7). Furthermore,
note that (3.15) does not require the upper bound M used in (3.14). On the other hand, if
such an M is known, under the additional constraint εt ≤ M and for qt ≡ 1/M , (3.15)
corresponds to the LP relaxation of (3.14) by setting δt = εt/M , 0 ≤ δt ≤ 1.

min
{ut},{ετlb ,...,εN}

N∑
t=τlb

qtεt s.t.

xt+1 = Atxt +Btut + dt

0 ≤ εt−1 ≤ εt

Cs,txt ≤ bs,t, t = 1, ..., τlb − 1

Cs,txt ≤ bs,t + 1εt, t = τlb, ..., N

ut ∈ Ut.

(3.15)

3.2.1.3 Iterative Procedure

The time horizon in Theorem 3.1 is assumed to satisfy N ≥ τ(x0, {ut}) for all admissible
control sequences {ut}. This condition can be restated asN ≥ τ(x0, {u∗t})−1, where {u∗t}
is a solution to the open-loop linear DCOC problem (3.7). It is straightforward to show that
solutions to the MILP can only be optimal with respect to (3.7) ifN satisfies this condition.
However, the optimal first exit-time is a priori unknown and, consequently, it is not possible
to choose N such that N ≥ τ(x0, {u∗t})− 1 is guaranteed to hold. Moreover, choosing N
very large, i.e., N � τ(x0, {u∗t}), is prohibitive because it increases the number of integer
variables, which in turn increases (possibly exponentially) the computation time.

A similar problem arises when solving LP (3.15). While the solution to the LP is not
guaranteed to be optimal with respect to (3.7) for N 6= τ(x0, {u∗t})− 1, the best solutions
appear to be obtained when N = τ(x0, {u∗t}) − 1 + γ for some small γ ∈ Z≥0 or when
τlb is close to τ(x0, {u∗t}). Therefore, an algorithm is proposed that iteratively updates N
while reducing the number of decision variables δt or εt, respectively, until a proper N is
found. The algorithm for the LP (Algorithm 3.1) is stated first because its solution may be
used to initialize the algorithm for the MILP (Algorithm 3.2).

The LP-based Algorithm 3.1 is as follows. In Step 1, the lower bound τlb is initialized
based on the zero-control solution (assuming 0 ∈ Ut for all t ∈ Z≥0; otherwise any other
admissible control sequence can be used to calculate a lower bound τlb). The time horizon
N is initialized by adding a constant αLP ∈ Z+ to τlb at Step 2. Then LP (3.15) is solved.
If the solution does not exit Gt for the current time horizon, the solution is used as a new

65

lower bound (Step 6) and the time horizon N is increased by αLP (Step 2). The procedure
is repeated until the solution exits Gt. The number of variables for each LP in Algorithm
3.1 is N(n+ p) +αLP + 1, where n and p are the dimensions of the state and control input
vectors, respectively.

Algorithm 3.1 Obtain suboptimal solution to (3.7) based on LP

1: τlb ← τ(x0, {0})
2: N ← τlb + αLP, αLP ∈ Z+

3: {uLP
t }, {εLP

τlb
, ..., εLP

N } ← solution of LP (3.15)
4: τ ← max{t ≤ N : εLP

t = 0}+ 1

5: if εLP
N = 0 then

6: τlb ← τ

7: go to Step 2
8: end if

There is a tradeoff between computation time and quality of the solution when choosing
the parameter αLP. In order to guarantee good-quality solutions, αLP needs to be small
because small updates on N ensure that the eventual N and τlb are close to the optimal first
exit-time [which yields LP solutions close to a solution of problem (3.7)]. On the other
hand, αLP being small may require several iterations (i.e., solving LP (3.15) several times)
in Algorithm 3.1 until the solution violates the prescribed constraints and Algorithm 3.1
terminates. Hence, a balance between the two extremes (αLP being too small or too large)
is desirable in order to efficiently obtain good-quality solutions with Algorithm 3.1.

Algorithm 3.2 Obtain solution to (3.7) based on MILP
1: τlb ← output of Algorithm 3.1
2: N ← τlb + αMILP

3: {uMILP
t }, {δMILP

τlb
, ..., δMILP

N } ← solution of MILP (3.14)
4: τ ← max{t ≤ N : δMILP

t = 0}+ 1

5: if δMILP
N = 0 then

6: τlb ← τ

7: go to Step 2
8: end if

Algorithm 3.2 outlines the iterative procedure based on MILP, which, according to The-
orem 3.1, obtains an optimal solution with respect to the open-loop linear DCOC problem
(3.7). The LP-based Algorithm 3.1 is used to initialize the lower bound τlb in Step 1. The

66

time horizon N is initialized in Step 2 by adding a constant integer αMILP to τlb as in Algo-
rithm 3.1. Then MILP (3.14) is solved and the time horizon and lower bound are updated
until the solution exits the set Gt. Note that this procedure can be very effective for solving
MILP because the number of binary variables at each iteration is αMILP + 1, where αMILP

is specified by the user.

3.2.2 Nonlinear Systems

After discussing the open-loop linear DCOC problem in the previous section (Section
3.2.1), this section focuses on the open-loop nonlinear DCOC problem (3.5). The pro-
gram that solves (3.5) is similar to MILP (3.14), whereas the linear equality constraints in
(3.14) are replaced by xt+1 = ft(xt, ut) to account for the nonlinear dynamics. This yields
the following MINLP,

min
{ut},{δτlb ,...,δN}

N∑
t=τlb

δt s.t.

xt+1 = ft(xt, ut)

δt−1 ≤ δt

Cs,txt ≤ bs,t, t = 1, ..., τlb − 1

Cs,txt ≤ bs,t + 1Mδt, t = τlb, ..., N

ut ∈ Ut
δt ∈ {0, 1} ⊂ Z, t = τlb, ..., N.

(3.16)

Theorem 3.2 provides conditions under which the solutions of the open-loop nonlinear
DCOC problem (3.5) and MINLP (3.16) are equivalent. The proof of Theorem 3.2 is
similar to the proof of Theorem 3.1 (linear case). For the sake of completeness, the proof
can be found in Appendix B, where the lower bound, τlb, on the optimal first exit-time is
explicitly considered. Similar to the assumptions in Lemma 3.1, the following assumptions
about M and the time horizon N are made.

Assumption 3.2. The time horizon of MINLP (3.16) is sufficiently large such that N ≥
τ(x0, {ut}) for all {ut} ∈ Useq and x0 ∈ G0. Moreover, M in (3.16) is sufficiently large
such that, for any {ut} ∈ Useq with corresponding state trajectory {xt} according to the
dynamics in (3.5), Cs,txt ≤ bs,t + 1M for all t = τlb, ..., N .

Theorem 3.2. Suppose Assumptions 3.1 and 3.2 hold. Then the solutions to the open-loop

nonlinear DCOC problem (3.5) and MINLP (3.16) are equivalent.

67

Proof. See Appendix B.

As MILP, MINLP is in the class of NP-complete problems. Moreover, there are no
MINLP solvers, especially in the online setting, that can obtain good-quality solutions to
(3.16) for the problems considered in this dissertation (see Section 3.4). Therefore, similar
to the linear problem in Section 3.2.1, MINLP (3.16) is relaxed by replacing the binary
variables with non-negative real variables, yielding the following NLP

min
{ut},{ετlb ,...,εN}

N∑
t=τlb

εt s.t.

xt+1 = ft(xt, ut)

0 ≤ εt−1 ≤ εt

Cs,txt ≤ bs,t, t = 1, ..., τlb − 1

Cs,txt ≤ bs,t + 1εt, t = τlb, ..., N

ut ∈ Ut.

(3.17)

NLP (3.17) is expected to obtain good-quality suboptimal solutions to the open-loop
nonlinear DCOC problem (3.5) for proper choices of the time horizon N and upper bound
τlb, i.e., N and τlb being close to the optimal first-exit time of problem (3.5). Similar to
Section 3.2.1.3 (Algorithms 3.1 and 3.2), iterative procedures may be defined to update the
time horizon and τlb of the respective nonlinear program, (3.16) or (3.17), until a proper
solution is found. This is not pursued here since (repeatedly) solving nonlinear programs
may take considerably longer than solving linear programs. Instead, based on linear model
approximation of the nonlinear model, the solution of either MILP (3.14) or LP (3.15)
(obtained by Algorithms 3.1 or 3.2) is used to set a proper τlb and time horizon for the
nonlinear program, which may be further increased if the corresponding solution does not
violate constraints.

3.3 MPC Scheme

This section describes how the MILP or LP formulation (Sections 3.2.1.1 and 3.2.1.2) is
used to implement feedback control in order to compensate for unmodeled effects online
and obtain a good-quality suboptimal solution to the closed-loop nonlinear DCOC problem
(3.6). In this regard, the nonlinear model in (3.6) is approximated by a linear model of the
form in (3.7), which may be obtained by linearizing the nonlinear model about a proper
reference trajectory. Due to the availability of efficient and robust LP solvers, the MPC

68

scheme presented here is based on LP (3.15). Feedback is provided by recomputing the
LP solution over a receding time horizon based on the current state vector of the system
and applying the first element of the computed control sequence to the system at each time
instant.

As outlined in the top of Figure 3.1, the linear-based MPC scheme may violate con-
straints (xt /∈ Gt) prematurely when applied to the nonlinear model (especially, when xt is
close to the boundary of Gt). This is due to unmodeled effects and may be prevented by
sufficiently tightening the constraints for control computation, meaning the control is com-
puted based on tightened state constraints in order to create a margin of safety. In analogy
to (3.2), the tightened state constraints are defined by

G̃t = {x ∈ Rn : C̃s,tx ≤ b̃s,t} ⊂ Gt, (3.18)

and, using qt ≡ 1, the modified LP for the MPC implementation is given by

min
{ut},{ετlb ,...,εN}

N∑
t=τlb

εt s.t.

xt+1 = Atxt +Btut + dt

0 ≤ εt−1 ≤ εt

C̃s,txt ≤ b̃s,t, t = 1, ..., τlb − 1

C̃s,txt ≤ b̃s,t + 1εt, t = τlb, ..., N

ut ∈ Ut,

(3.19)

where x0 ∈ G̃0. In addition, the MPC strategy is augmented by a controller that tries to
recover xt ∈ G̃t when the tightened constraints are violated (i.e., xt /∈ G̃t). This controller
is referred to as the recovery controller and is described by LP (3.20), which is similar to
LP (3.19),

min
{ut},{εt}

Nrecover∑
t=1

εt s.t.

xt+1 = Atxt +Btut + dt

0 ≤ εt

C̃s,txt ≤ b̃s,t + 1εt

ut ∈ Ut,

(3.20)

where x0 /∈ G̃0. In contrast to LP (3.19), initial constraint violation is assumed and the

69

inequality constraints εt−1 ≤ εt are removed. Thus, the control sequence obtained by LP
(3.20) tries to steer the state vector back into the set G̃t over the time horizon Nrecover.
Control computation based on G̃t [LP (3.19)], together with the recovery controller [LP
(3.20)], may prevent premature violation of the original constraints (xt /∈ Gt) as illustrated
in the bottom of Figure 3.1.

Premature constraint violation

Linear solution (open-loop)

Nonlinear solution with linear-based MPC (closed-loop)

Tightened constraints

Linear solution (open-loop)

Nonlinear solution with linear-based MPC, including recovery controller (closed-loop)

Constraints

Figure 3.1: Illustration of effects of constraint tightening and recovery controller when
linear-based MPC scheme is applied to nonlinear model. Top: state trajectories without
constraint tightening. Bottom: state trajectories with constraint tightening and recovery
controller.

The MPC strategy is outlined in Algorithm 3.3. At each time instant tsys, the current
state vector x(tsys) is acquired and used as the initial x0 for control computation (Step 4
of Algorithm 3.3). The time-dependent dynamics and constraints for the linear DCOC
problem (3.7) are obtained in Step 3 based on the current time instant tsys of the system for
t ∈ {0, 1, ..., Nub+αLP}, whereNub+αLP is the largest possible time horizon for LP (3.19)
andNrecover � Nub is used for the time horizon of LP (3.20). The parameterNub is defined
below. If the tightened state constraints are not satisfied by the current state, the recovery
controller [LP (3.20)] is employed in Step 6 of Algorithm 3.3. Otherwise, in combination
with a modified version of Algorithm 3.1, LP (3.19) is used for control computation. The
first element of the computed control sequence is applied to the system in Step 20.

The modifications of the iterative procedure in Algorithm 3.1 for the MPC strategy
include an upper bound, Nub, on the time horizon N (Step 15 of Algorithm 3.3). This
allows premature termination of the iteration if, for example, computation time limits need

70

to be satisfied. However, the optimal first exit-time for the current state vector may be
greater than Nub, which may lower the quality of the resulting solution.

Algorithm 3.3 LP-based MPC implementation
1: tsys ← 0

2: τlb,0 ← set initial lower bound
3: At, Bt, dt, G̃t, Ut ← obtain dynamics and constraints for all t ∈ {0, 1, ..., Nub + αLP}
4: x0 ← current state x(tsys)

5: if x0 /∈ G̃0 then
6: {ut} ← solution of LP (3.20)
7: else
8: τlb ← τlb,0

9: N ← τlb + αLP

10: if LP (3.19) is infeasible then
11: τlb ← min{τ̃(x0, {0}), Nub}; go to Step 9
12: end if
13: {ut}, {ετlb , ..., εN} ← solution of LP (3.19)
14: τ ← max{t ≤ N : εt = 0}+ 1

15: if εN = 0 AND N < Nub then
16: τlb ← τ ; go to Step 9
17: end if
18: τlb,0 ← min{τ − 1, Nub}
19: end if
20: Apply u0 as control input u(tsys) to the system
21: tsys ← tsys + 1; go to Step 3

In addition to Nub, the variable τlb,0 is introduced to initialize the lower bound, τlb, on
the optimal first exit-time of the open-loop linear DCOC problem for LP (3.19) in Step 8,
where τlb,0 is updated over the receding time horizon in Step 18 based on the first exit-time
of the previously computed solution. This significantly reduces the number of decision
variables εt of LP (3.19) and decreases computation times. However, Steps 10 – 12 need
to be added to check if LP (3.19) is feasible for the current τlb and N . This is important
because, at time instant tsys +1, the predicted τlb may be greater than the actual optimal first
exit-time for x0 ← x(tsys + 1) as a consequence of prediction errors caused by unmodeled
effects. In this case, LP (3.19) becomes infeasible. Feasibility is recovered by recomputing
τlb in Step 11 using the zero-control solution τ̃(x0, {0}) with respect to the tightened state
constraints given by G̃t, see (3.18), assuming 0 ∈ Ut (otherwise, any admissible control

71

sequence can be used).

3.4 Numerical Case Studies

3.4.1 VDP Oscillator and Spacecraft Attitude Control 1

Two numerical case studies of a VDP oscillator (Section 3.4.1.1) and of spacecraft attitude
control (Section 3.4.1.2) are considered. In both case studies, the underlying model is lin-
ear, obtained through linearization and discretization of the respective nonlinear continuous-
time model, and the open-loop linear DCOC problem (3.7) is investigated. In addition, the
MPC scheme proposed in Section 3.3 is simulated in closed-loop with the linear model,
even though the simulation model and the controller are based on the same model, i.e.,
there are no unmodeled effects. The performance of the MPC scheme when there are un-
modeled effects is investigated in Section 3.4.2. Since there are no unmodeled effects in
the two case studies, tightening the state constraints (see Figure 3.1) is not necessary and
G̃t = Gt [see (3.18)] for all t.

In both problems, the objective is to maximize the time until specified constraints are
violated for the first time. The simulations are stopped as soon as xt /∈ Gt and the respective
first exit-time is reported. Based on the developed approaches in Sections 3.2.1 and 3.3,
the performance of the following controllers is analyzed:

• MILP-direct / LP-direct (open-loop): direct solution of MILP (3.14) / LP (3.15)
with τlb = τ(x0, {0}).

• LP-iter / MILP-iter (open-loop): solution of LP or MILP using Algorithms 3.1 or
3.2, respectively.

• MPC (closed-loop): LP-based MPC implementation (Algorithm 3.3) withNub =∞
(i.e., no bound on N is used) and τlb,0 = τ(x0, {0}) in Step 2 of Algorithm 3.3.

The computation times reported in this section are for a laptop with an i5-6300 pro-
cessor and 8 GB RAM running MATLAB 2015a. The Hybrid Toolbox [78] (lpsol and
milpsol functions with default settings) is used for solving LPs and MILPs. For each MILP,
M = 100 and, for LPs, qt ≡ 1.

3.4.1.1 VDP Oscillator

Consider the continuous-time nonlinear model

r̈VDP = (1− r2
VDP)ṙVDP − rVDP + u. (3.21)

72

Let x = [r1, r2]> be the state vector, where r1 = rVDP and r2 = ṙVDP. Through lin-
earization about xlin = [1.5, 2]> and using Euler’s forward method with a sampling time
∆t = 0.015 sec, the discrete-time linear model with added sinusoidal disturbance is ob-
tained as follows[

r1,t+1

r2,t+1

]
=

[
1 0.015

−0.105 0.9812

][
r1,t

r2,t

]
+

[
0

0.015

]
ut +

[
0

0.05 sin(2πt∆t)

]
, (3.22)

where the control input is ut ∈ [−12, 12]. The state constraints for the DCOC problem are
given by

Gt ≡ {x : r1 ∈ [1, 2], r2 ∈ [1, 3]}.

Controller Parameter τ Computation time (msec)

MILP-direct
N = 45

N = 55

N = 75

44
44
44

7
10
14

MILP-iter
αLP = 25

αMILP = 5

αMILP = 10

αMILP = 15

44
44
44

10
11
11

LP-direct
N = 45

N = 55

N = 75

44
44
41

3
4
7

LP-iter
αLP = 5

αLP = 15

αLP = 25

44
44
43

7
4
7

Table 3.1: VDP oscillator case study, open-loop control sequences with different parame-
ters: first exit-time τ and computation time (worst-case over 100 simulation runs).

An initial x0 = [1, 3]> is assumed, for which the zero-control first exit-time τ(x0, {0})
is 15. Table 3.1 shows the first exit-time τ and the required computation time for the
open-loop controllers. The solution of the MILP-based iterative procedure (Algorithm 3.2)
is always optimal and the optimal first exit-time for this problem is 44. The LP-based
open-loop control sequences obtain a solution faster than with MILP. However, it is not
guaranteed that the optimal exit-time is achieved. The direct solution of LP (3.15) yields
an optimal solution when N is close to the optimal exit-time. Both LP-direct and MILP-
direct cannot find an optimal solution ifN < 43. On the other hand, the iterative procedures

73

(MILP-iter and LP-iter) do not rely on guessing N sufficiently large and are therefore more
robust in computing a solution to the DCOC problem.

r
1

1 1.2 1.4 1.6 1.8 2

r 2

1

1.5

2

2.5

3 MILP-iter
MPC

time (sec)
0 0.1 0.2 0.3 0.4 0.5 0.6

u

-10

-5

0

5

10

Figure 3.2: VDP oscillator case study. Top: state trajectories in r1-r2 plane. Bottom:
control input u vs. time.

The LP-based MPC implementation (Algorithm 3.3 with αLP = 25) obtains the optimal
first exit-time of 44. The average and worst-case computation times over all time instants
(over 100 simulation runs) are 2 msec and 7 msec, respectively, which suggests that it
is feasible to recompute the control input at each time instant in real-time. Figure 3.2
shows the state and control trajectories for the open-loop controller MILP-iter and the MPC
implementation. The state and control constraints are indicated by black dashed lines. The
trajectories are different but each exits Gt after 44 steps. Thus, the optimal solution is not
unique in this problem.

3.4.1.2 Spacecraft Attitude Control 1

The second problem is the attitude control of an underactuated spacecraft with the body-
fixed frame being a principal frame and principal axes denoted by 1, 2, and 3. The
spacecraft is equipped with two RWs aligned with the 1- and 3-axis, respectively, where

74

the moment of inertia of each wheel is Jw = 0.01 kgm2. The spacecraft principal mo-
ments of inertia are given by J1 = J2 = 800 kgm2 and J3 = 300 kgm2. The space-
craft orientation is subject to drift caused by a constant external torque (e.g., from so-
lar radiation pressure, where the orientation does not significantly change) with M1 =

−1.2 × 10−5 Nm, M2 = −10−5 Nm, and M3 = 0.9 × 10−5 Nm. The state vector is
x = [φ, θ, ψ, ω1, ω2, ω3, ωw1, ωw3]>, where φ, θ, and ψ are the 3-2-1 Euler angles describ-
ing the spacecraft orientation, ω1, ω2, and ω3 are the spacecraft angular velocity vector
projections onto the principal axes, and ωw1 and ωw3 are the respective RW spin rates. The
control input vector is u = [αw1, αw3]> comprising the angular accelerations of the two
RWs, which are constrained by αw1, αw3 ∈ [−1, 1] rad/sec2. Note that since the spacecraft
is acted on by an external torque, its angular momentum is not conserved and the reduced
order equations, obtained by eliminating the angular velocities, cannot be used.

Controller Parameter τ Computation time (sec)

MILP-direct
N = 175

N = 200

N = 225

172
172
172

0.83
2.07
6.89

MILP-iter
αLP = 50

αMILP = 5

αMILP = 10

αMILP = 15

172
172
172

1.35
1.39
1.44

LP-direct
N = 175

N = 200

N = 225

172
172
77

0.45
0.65
0.86

LP-iter
αLP = 25

αLP = 50

αLP = 75

172
172
172

1.2
1.02
0.83

Table 3.2: Spacecraft attitude control case study, open-loop control sequences with dif-
ferent parameters: first exit-time τ and worst-case computation time over 100 simulation
runs.

The objective for this problem is to maintain x within the set

Gt ≡{x : φ, θ ∈ [44.995, 45.005] deg, ψ ∈ [44.95, 45.05] deg,

ωw1 ∈ [10, 200] rad/sec, ωw3 ∈ [−200,−10] rad/sec},

for as long as possible. This set is defined by bounds on spacecraft attitude and RW spin

75

rates (RWs must operate below maximum speeds and avoid zero crossing). The constraints
on the orientation are relatively tight, and correspond to precise pointing requirements re-
quired for some missions such as Kepler [79].

The discrete-time linear model is derived from the nonlinear continuous-time model
[65] by linearizing about xlin = [0, 0, 0, π/4, π/4, π/4, 190,−100]> and using Euler’s for-
ward method with a sampling time ∆t = 2 sec, yielding (for x and u in SI units) the
following discrete-time equations

xt+1 =



1 0 0 2 0 0 0 0

0 1 0 0 2 0 0 0

0 0 1 0 0 2 0 0

0 0 0 1 .003 0 0 0

0 0 0 −.003 1 −.005 0 0

0 0 0 0 .013 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


xt+



0 0

0 0

0 0

−.5× 10−5 0

0 0

0 −.7× 10−5

2 0

0 2


ut+



0

0

0

−3× 10−8

−.5× 10−8

6× 10−8

0

0


.

The numerical conditioning of each LP and MILP is improved by normalizing the state
vector according to x̂ = Otfx + otf , where Otf ∈ R8×8 and otf ∈ R8 are such that Gt

is transformed into Ĝt ≡ {x̂ : φ̂, θ̂, ψ̂, ω̂w1, ω̂w3 ∈ [0, 1]}, ω1, ω2 = −10−4 rad/sec,
ω3 = −10−2 rad/sec correspond to ω̂1, ω̂2, ω̂3 = 0, and ω1, ω2 = 10−4 rad/sec, ω3 =

10−2 rad/sec correspond to ω̂1, ω̂2, ω̂3 = 1.
The following results are for an initial x0 = xlin for which the zero-control exit-time

is 54. Table 3.2 shows the first exit-time and computation time for different open-loop
controllers. The results are similar to the VDP oscillator case study in Section 3.4.1.1.
The optimal first exit-time is 172, see MILP-based open-loop controllers in Table 3.2. The
LP-based open-loop controllers obtain an optimal solution if the time horizon N is close
to the optimal first-exit time. In contrast to LP-direct, the worst-case computation time of
MILP-direct increases exponentially with N , which, on the other hand, is prevented with
the iterative procedure (MILP-iter). The MPC strategy (Algorithm 3.3 with αLP = 50)
achieves the optimal first exit-time of 172. The worst-case computation time over 100
simulation runs is 1.14 sec. This is smaller than the sampling time (∆t = 2 sec), which
suggest that real-time computation is possible. On average (over 100 simulation runs), 0.33
sec are required to compute the control input at each time instant.

Constraint violation occurs due to the uncontrollable Euler angle θ reaching its pre-
scribed limit. Figure 3.3 (top) shows θ over time for the open-loop controller MILP-iter
and the MPC implementation, where the constraints are indicated by black dashed lines.

76

As for the VDP oscillator problem (Figure 3.2), the optimal solution is not unique here.
The control inputs are shown in Figure 3.3 (middle and bottom plot). It can be seen that
both controllers are aggressively accelerating/decelerating the RWs, which may increase
RW wear and the risk of RW failure. Hence, a term may be added to the objective function
of the respective mathematical program to penalize excessive control inputs. This approach
is pursued in Section 3.4.2.2 for a similar DCOC problem.

time (sec)
0 50 100 150 200 250 300

3
 (

de
g)

44.995

45

45.005

MILP-iter
MPC

time (sec)
0 50 100 150 200 250 300

,
w

1 (
ra

d/
se

c2)

-1

-0.5

0

0.5

1

time (sec)
0 50 100 150 200 250 300

,
w

3 (
ra

d/
se

c2)

-1

-0.5

0

0.5

1

Figure 3.3: Spacecraft attitude control case study. Uncontrollable Euler angle θ vs. time
(top) as well as control inputs αw1 (middle) and αw3 (bottom) vs. time.

77

3.4.2 GEO Satellite Station Keeping & Spacecraft Attitude Control 2

The LP-based MPC strategy from Section 3.3 is used to approximate a solution to the
closed-loop nonlinear DCOC problem (3.6) in this section. Numerical results for two
problems of GEO satellite station keeping (Section 3.4.2.1) and spacecraft attitude con-
trol (Section 3.4.2.2) are treated. In both problems, the open-loop solution of NLP (3.17) is
compared against the LP-based MPC strategy simulated in closed-loop with the discrete-
time nonlinear model. In addition, the MPC strategy is simulated in closed-loop with the
corresponding continuous-time nonlinear model in order to provide more realistic results,
where the control is held at a constant value during each sampling period (i.e., using a
zero-order hold). Hence, the following three simulation scenarios are analyzed:

• NLP-Discrete-Time: open-loop solution of NLP (3.17) simulated on the discrete-
time nonlinear model.

• MPC-Discrete-Time: MPC strategy (Algorithm 3.3) simulated in closed-loop with
the discrete-time nonlinear model.

• MPC-Continuous-Time: MPC strategy (Algorithm 3.3) simulated in closed-loop
with the continuous-time nonlinear model with a zero-order hold applied to the con-
trol input during each sampling period.

The GEO station keeping problem in Section 3.4.2.1 assumes a satellite subject to per-
turbations due to luni-solar gravity, SRP, and J2. Note that additional perturbations can
readily be included, which is not done here since the results are compared to [80] where
a satellite model with the aforementioned perturbations was considered. The satellite is
equipped with either continuous or on/off thrusters, which consume a certain amount of
fuel. Given an initial amount of fuel, the objective is to satisfy prescribed constraints on
the satellite position and remaining fuel for as long as possible. Compared to other station
keeping approaches [80–84], the DCOC approach yields the longest operation times for
GEO satellites by directly maximizing the time until constraint violation.

For the spacecraft attitude control problem in Section 3.4.2.2, RWs are used to coun-
teract drift caused by SRP disturbance torques. The cases of an underactuated spacecraft
(one or two operable RWs) [79, 85–87] as well as of a fully actuated spacecraft with one
RW being nearly saturated are considered. In both cases the control authority is limited.
Consequently, prescribed orientation constraints will eventually be violated and the objec-
tive is to delay this event. As in Section 3.4.1.2, this case study is motivated by frequent
situations, such as for the Kepler spacecraft [79,88,89], where pointing must be maintained
to be able to image while RWs have failed.

78

As in Section 3.4.1, all computations are performed in MATLAB 2015a on a laptop with
an i5-6300 processor and 8 GB RAM. LPs are solved with the Hybrid Toolbox [78] (lpsol

function with default settings). While the proposed framework (see Section 3.1) allows
the treatment of time-dependent state and control constraints, time-invariant constraints are
assumed in both problems (Gt ≡ G and Ut ≡ U). Similarly, At ≡ A and Bt ≡ B for the
respective linear DCOC problem (3.7).

3.4.2.1 GEO Satellite Station Keeping

Nonlinear Model
Let frame I be the ECI frame and frame H be Hill’s frame. The 1-axis of Hill’s frame
is pointing radially from the center of the Earth to the current position on the reference
orbit, i.e., along ~rGEO/E, and the 2-axis points in the orbital track direction of the GEO
reference orbit. The 3-axis completes the right hand rule, pointing out of the equatorial
plane in the GEO case. The spacecraft position vector relative to the GEO reference orbit,
resolved in Hill’s frame, is denoted by ~rSC/GEO|H = [r1, r2, r3]>. Similarly, the spacecraft
velocity relative to the reference orbit with respect to Hill’s frame, resolved in Hill’s frame,
is ~vSC/GEO/H|H = [v1, v2, v3]>. Using Euler’s forward method with ∆t = 500 sec, the
discrete-time nonlinear spacecraft model is obtained from the continuous-time nonlinear
model, derived in Appendix C, yielding

r1,t+1

r2,t+1

r3,t+1

v1,t+1

v2,t+1

v3,t+1


=



r1,t

r2,t

r3,t

v1,t

v2,t

v3,t


+ ∆t



v1,t

v2,t

v3,t

a1,t

a2,t

a3,t


, (3.23)

where, using rt =
√

(r1,t + r0)2 + r2
2,t + r2

3,t,

a1,t = −µE(r1,t + r0)

r3
t

+ 2n0v2,t + n2
0r1,t +

µE

r2
0

+
F1,t

mSC

+ dp,1,t,

a2,t = −µEr2,t

r3
t

− 2n0v1,t + n2
0r2,t +

F2,t

mSC

+ dp,2,t,

a3,t = −µEr3,t

r3
t

+
F3,t

mSC

+ dp,3,t.

(3.24)

79

The control variables F1, F2, and F3 are thrust forces projected on the axes of Hill’s frame,

u = [F1, F2, F3]>. (3.25)

Likewise, dp,1, dp,2, and dp,3 are time-dependent perturbations acting along the axes of
Hill’s frame according to (C.7)–(C.11), where disturbances due to luni-solar gravity, SRP,
and J2 are taken into account here. In all simulations, the initial positions of Earth, Moon,
and Sun are as of September 3, 2015, at 12 am (CT). The other parameters in (3.23) are the
spacecraft mass mSC, Earth’s gravitational parameter µE, the GEO radius r0 = 42160 km,
and the GEO angular rate n0, see (C.4). Since the fuel mass is assumed to be much smaller
than mSC, mSC is considered constant.

In addition to the six states in (3.23), another state is introduced that takes account of
the available fuel. To normalize fuel consumption, the accumulated ∆v (total change in
spacecraft velocity) due to accelerations generated by the thrust forces is introduced, i.e.,

∆vacc,t+1 = ∆vacc,t + ∆vt = ∆vacc,t + ∆t
‖ut‖1

mSC

, (3.26)

where ‖·‖1 denotes the 1-norm. In summary, the discrete-time nonlinear spacecraft model
is given by (3.23) and (3.26), where the control input vector is given by (3.25) and the state
vector is

x = [r1, r2, r3, v1, v2, v3,∆vacc]
>. (3.27)

The MATLAB function fmincon (with the interior-point algorithm) is used to solve
NLP (3.17). The time horizon N and the lower bound τlb in NLP (3.17) are chosen based
on the open-loop solution to the linearized problem obtained by Algorithm 3.1. Moreover,
the solution of Algorithm 3.1 serves as an initial guess to the nonlinear solver.

DCOC Problem
A station keeping window of ±0.01 degrees in longitude and latitude is considered, which
is an order of magnitude smaller compared to traditional station keeping approaches [82,
83, 90]. Note that future missions may require such small windows due to the growing
number of GEO satellites. The chosen constraints on longitude and latitude approximately
translate into position constraints of ±7.4 km for r1, r2, and r3. Hence, the set one wants
the state vector to remain inside for as long as possible is given by

G = {x ∈ R7 : ∆vacc ∈ [0,∆vacc,max], ri ∈ [−7.4, 7.4] km, i ∈ {1, 2, 3}}, (3.28)

80

where ∆vacc,max is a prescribed maximum value for the accumulated ∆v, equivalent to the
amount of fuel that is initially available to the control system. The tightened constraints
G̃t ≡ G̃ for the MPC implementation (see Figure 3.1) are obtained by reducing the position
window by 0.1 %, yielding

G̃ = {x ∈ R7 : ∆vacc ∈ [0,∆vacc,max], ri ∈ [−7.3926, 7.3926] km, i ∈ {1, 2, 3}}. (3.29)

The satellite is equipped with six thrusters, where each thruster can generate a maxi-
mum thrust force of Fth = 0.1 N, which is similar to the ion thruster discussed in [91].
Each thruster is assumed to point in one of the directions of Hill’s frame (positive and neg-
ative directions). Thus, in the case of continuous-thrust control, the control constraints are
given by

Ucont = {u ∈ R3 : Fi ∈ [−Fth, Fth], i ∈ {1, 2, 3}}. (3.30)

In the on/off-thrust case, each thruster can apply the discrete values {−Fth, 0, Fth} and,
consequently, the set of control constraints reads

Uon/off = {u ∈ Z3 : Fi ∈ {−Fth, 0, Fth}, i ∈ {1, 2, 3}}. (3.31)

In the following, both continuous-thrust and on/off-thrust are investigated. A spacecraft
mass of mSC = 4000 kg is assumed and the parameters for the SRP disturbance model in
(C.10) are Csrp = 9.1× 10−6 N/m2, crefl = 0.6, and SSC = 200 m2.

Linear Model
The linear discrete-time model for the MPC implementation is obtained by linearizing the
continuous-time nonlinear model in (C.6) about the GEO reference orbit, yielding the CW
equations [65], and employing Euler’s forward method to transform the continuous-time
model into discrete-time. Furthermore, the nonlinear evolution of the accumulated ∆v in
(3.26) is approximated by introducing the auxiliary variables

ζ = [ζ1, ζ2, ζ3]>, (3.32)

and augmenting the linear discrete-time dynamics in (3.7) as follows

xt+1 = Axt +B

[
ut

ζt

]
+ dt, (3.33)

where the matrices A and B are stated in (3.36) and (3.37), respectively. Moreover, the

81

constraints
− ζt ≤ ut ≤ ζt, for t ∈ {0, 1, ..., N − 1}, (3.34)

are added to LP (3.15), (3.19), and (3.20), and the weighted sum of ζt values is added to
the respective objective function. Thus, in the case of LP (3.15) or (3.19), the objective
function is modified to

N∑
t=τlb

εt + w
N−1∑
t=0

1>ζt, (3.35a)

and in the case of LP (3.20), the objective function is modified to

Nrecover∑
t=1

εt + w

Nrecover−1∑
t=0

1>ζt, (3.35b)

where w > 0 is a weight that is set to w = 0.005. The matrices of the linear discrete-time
model in (3.33) are as follows

A =



1 0 0 ∆t 0 0 0

0 1 0 0 ∆t 0 0

0 0 1 0 0 ∆t 0

3n2
0∆t 0 0 1 2n0∆t 0 0

0 0 0 −2n0∆t 1 0 0

0 0 −n2
0∆t 0 0 1 0

0 0 0 0 0 0 1


, (3.36)

B =


03×6

∆t
mSC

0 0 0 0 0

0 ∆t
mSC

0 0 0 0

0 0 ∆t
mSC

0 0 0

0 0 0 ∆t
mSC

∆t
mSC

∆t
mSC

 , (3.37)

where n0 is defined in (C.4) and the sampling time is ∆t = 500 sec.
Following [80], the time-varying disturbance term dt in (3.33) is computed in advance

for the known GEO reference orbit. This is achieved by replacing ~rM/SC, ~rS/SC, and ~rSC/E in
(C.7)–(C.11) with ~rM/GEO, ~rS/GEO, and ~rGEO/E, respectively, where, instead of the space-
craft position (SC), the known trajectory of the GEO reference orbit is used. Thus, the
disturbance accelerations for the GEO reference orbit are obtained at each time instant and
dt follows from multiplying these accelerations by the sampling time ∆t (Euler’s forward

82

method): dt = [01×3,∆td̄
>
p,t, 0]>, where d̄p,t is the instantaneous disturbance vector for the

GEO reference orbit, resolved in Hill’s frame, according to (C.7).
The numerical conditioning of each LP is improved by normalizing the state vector by

xnorm = Otfx + otf , where Otf and otf are such that the state constraints defined in (3.29)
are normalized as follows

G̃norm = {xnorm ∈ R7 : ∆vacc,norm ∈ [0, 1], rnorm,i ∈ [0, 1], i ∈ {1, 2, 3}},

and vi ∈ [−1, 1] m/sec corresponds to vnorm,i ∈ [0, 1], i ∈ {1, 2, 3}. This improves the nu-
merical conditioning of each LP and increases robustness and reduces computation times.
The parameters in Algorithm 3.3 are set to Nub = 600, αLP = 30, Nrecover = 5, and
τlb,0 = 300 as an initial guess in Step 2 of Algorithm 3.3.

Remark 3.2. If the optimal first exit-time of the linear problem is greater than the time hori-

zon N of LP (3.15) or (3.19), εt ≡ 0 for proper choices of w and the respective objective

function, see (3.35), becomes w
∑N−1

t=0 1>ζt. In this case, due to the additional constraints

in (3.34), the respective LP solution is equivalent to the minimum-fuel solution for the lin-

ear model that minimizes
∑N−1

t=0 ‖ut‖1. On the other hand, if N is greater than the optimal

first exit-time of the linear problem, there exists t∗ such that εt > 0 for all t ∈ [t∗, N], and

the respective LP solution may be different from the minimum-fuel solution. In fact, since

maximizing the first exit-time is not explicitly emphasized by the minimum-fuel solution,

constraint violation may occur earlier than for the DCOC-based solution.

Results for Continuous-Thrust
For the continuous-thrust case, the initial condition

x0 = [0, 0,−5 km, 0,−0.4 m/sec, 0, 0]>, (3.38)

is considered, and the maximum value for the accumulated ∆v in (3.28) is chosen as
1 m/sec. The results of the NLP-Discrete-Time and MPC-Discrete-Time simulations are
plotted in Figure 3.4, where the dashed lines indicate the state and control constraints. Fig-
ure 3.4 also shows the results of the MPC-Continuous-Time simulation (the continuous-
time nonlinear model is derived in Appendix C). For each case, constraint violation occurs
as a consequence of reaching the prescribed fuel limit or, equivalently, the limit on ∆vacc.
The trajectories for NLP-Discrete-Time and MPC-Discrete-Time simulations in Figure 3.4
are similar and constraint violation occurs after 415 time steps (2.4 days) for both ap-
proaches. This shows that the LP-based MPC scheme can be effective in the context of

83

DCOC of a nonlinear system.

time (days)
0 0.5 1 1.5 2 2.5

r 1 (
km

)

-5

0

5

MPC-Discrete-Time
NLP-Discrete-Time
MPC-Continuous-Time

time (days)
0 0.5 1 1.5 2 2.5

F
1 (

N
)

-0.1

-0.05

0

0.05

0.1

time (days)
0 0.5 1 1.5 2 2.5

r 2 (
km

)

-5

0

5

time (days)
0 0.5 1 1.5 2 2.5

F
2 (

N
)

-0.1

-0.05

0

0.05

0.1

time (days)
0 0.5 1 1.5 2 2.5

r 3 (
km

)

-5

0

5

time (days)
0 0.5 1 1.5 2 2.5

F
3 (

N
)

-0.1

-0.05

0

0.05

0.1

time (days)
0 0.5 1 1.5 2 2.5

"
 v

ac
c (

m
/s

ec
)

0

0.5

1

Figure 3.4: GEO satellite station keeping problem, continuous-thrust case: spacecraft po-
sition relative to GEO reference orbit, thrust forces in Hill’s frame, and accumulated ∆v
vs. time.

Applying the MPC strategy to the continuous-time nonlinear model results in control
trajectories similar to the MPC-Discrete-Time solution. However, the continuous-time dy-
namics extend constraint violation to 2.92 days, which is about 22 % greater than observed
in simulations on the discrete-time model, which may be due to the relatively large sam-
pling time (∆t = 500 sec) used for the discrete-time dynamics. The computation times
are as follows. About 53 min are required to solve NLP (3.17) with the MATLAB function
fmincon. In both MPC-Discrete-Time and MPC-Continuous-Time simulations, the MPC

84

strategy (Algorithm 3.3) requires on average 1.4 sec to compute the control input at each
time instant with a worst-case computation time of 16 sec (which is smaller than ∆t = 500

sec).

Results for On/Off-Thrust
In the on/off-thrust case, LPs (3.15), (3.19), and (3.20) become MILPs and NLP (3.17)
becomes an MINLP due to the discrete control inputs, see (3.31). However, since solving
mixed-integer programs is less robust than solving standard LPs, a different approach to
handle on/off-thrust is proposed.

As in the continuous-thrust case, a control ut = [F1,t, F2,t, F3,t]
> ∈ Ucont, see (3.30),

is computed at each time instant t ∈ Z≥0 using the LP-based MPC implementation in
Algorithm 3.3 with a sampling time of ∆t = 500 sec. The continuous-thrust control ut is
transformed into discrete thrust values based on thrust impulse equivalence, i.e.,

Fi,t∆t = sgn(Fi,t)Fthtth,i, (3.39)

for each i ∈ {1, 2, 3}, where tth,i ∈ [0,∆t] denotes the time of thrusting with sgn(Fi,t)Fth

in the i-direction of Hill’s frame and Fth = 0.1 N is the force generated by the respective
on/off thruster. Since tth,i ∈ [0,∆t], simulations need to be performed on the continuous-
time model. During each ∆t = 500 sec sampling interval, the following thrust forces are
applied to the continuous-time nonlinear model,

Fon/off,i(τ∆t) =

sgn(Fi,t)0.1 N, for τ∆t ∈ [0, tth,i],

0, otherwise,
(3.40)

where τ∆t ∈ [0,∆t], tth,i = (|Fi,t|/0.1 N)∆t according to (3.39), i ∈ {1, 2, 3} denotes
the respective direction of Hill’s frame, and ut = [F1,t, F2,t, F3,t]

> is provided by the MPC
strategy (Algorithm 3.3).

For the initial states in (3.38) and ∆vacc,max = 1 m/sec, the proposed on/off-thrust MPC
strategy (in MPC-Continuous-Time simulation) generates the same first exit-time of 2.92
days as the continuous-thrust control strategy in Figure 3.4. This result is expected since
both strategies are based on the MPC implementation in Algorithm 3.3 and the same thrust
impulses are applied to the system.

Now let the initial state vector be x0 = [0, 0, 0, 0, 0, 0, 0]> and ∆vacc,max = 10 m/sec,
i.e., 10 times as much fuel as in the continuous-thrust case (Figure 3.4) is available. Figure
3.5 shows the MPC-Continuous-Time solution in the on/off-thrust case. Constraint viola-
tion occurs for the first time after 85 days. Due to the chosen upper bound, Nub = 600,

85

on the LP time horizon in Algorithm 3.3, computation times are feasible and smaller than
the sampling time ∆t = 500 sec. On average, 11.2 sec are required to compute the control
input at each time/sampling instant. The worst-case computation time of 63.3 sec occurs
in the beginning when τlb,0 = 300 and several iterations are required in Algorithm 3.3 for
N to exceed Nub. The longer computation times of the MPC strategy in this case are due
to the longer time horizon, i.e., greater first exit-time.

0 20 40 60 80

r 1 (
km

)

-5

0

5

0 20 40 60 80

F
1 (

N
)

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80

r 2 (
km

)

-5

0

5

0 20 40 60 80

F
2 (

N
)

-0.1

-0.05

0

0.05

0.1

time (days)
0 20 40 60 80

r 3 (
km

)

-5

0

5

time (days)
0 20 40 60 80

F
3 (

N
)

-0.1

-0.05

0

0.05

0.1

time (days)
0 20 40 60 80

"
 v

ac
c (

m
/s

ec
)

0

5

10

Figure 3.5: GEO satellite station keeping problem, MPC-Continuous-Time simulation in
the on/off-thrust case: spacecraft position relative to GEO reference orbit, thrust forces in
Hill’s frame, and accumulated ∆v vs. time.

Note that the proposed MPC strategy (in MPC-Continuous-Time simulation, using
on/off-thrust) is able to satisfy the prescribed constraints for more than one year with an

86

initial amount of fuel equivalent to ∆vacc,max = 51.7 m/sec. This is a nearly 18 % im-
provement in efficiency compared to a recently published GEO station keeping strategy
that used quadratic-cost MPC [80], where, for a similar model using the same set of param-
eters, an accumulated ∆v of 61 m/sec was required to satisfy the same position constraints
[Eq. (3.28)] for one year. Furthermore, when increasing the size of the station keeping win-
dow to ±0.05 degrees in longitude and latitude, the proposed MPC strategy achieves 420
days without constraint violation for ∆vacc,max = 51.7 m/sec. This result suggests that, for
the larger station keeping window, the proposed MPC strategy is able to perform one year
of station keeping with a ∆vacc of approximately (365/420)51.7 m/sec = 44.9 m/sec.

3.4.2.2 Spacecraft Attitude Control 2

Nonlinear Model
The continuous-time nonlinear model for the spacecraft attitude control problem is derived
in Appendix D. Euler’s forward method is used to obtain the discrete-time model from the
continuous-time model for a chosen sampling time of ∆t = 2 sec. The state vector at a
time instant t ∈ Z≥0 is given by

xt = [φt, θt, ψt, ω1,t, ω2,t, ω3,t, ν1,t, ..., νp,t]
>, (3.41)

where φt, θt, and ψt are the 3-2-1 Euler angles, ω̄B/I,t = [ω1,t, ω2,t, ω3,t]
> is the spacecraft

angular velocity vector (angular velocity of the spacecraft body-fixed frame B relative to
an inertial reference frame I) expressed in the body-fixed frame, and ν̄t = [ν1,t, ..., νp,t]

>

contains the spin rates of the p RWs. The RW accelerations serve as control variables and
the control input vector for the discrete-time model is given by the instantaneous RW ac-
celerations, i.e., ut = [ν̇1,t, ..., ν̇p,t]

>. Thus, the discrete-time nonlinear model is as follows
φt+1

θt+1

ψt+1

ω̄B/I,t+1

ν̄t+1

 =


φt

θt

ψt

ω̄B/I,t

ν̄t

+ ∆t



1 s(φt)t(θt) c(φt)t(θt)

0 c(φt) −s(φt)

0 s(φt)/c(θt) c(φt)/c(θt)

 ω̄B/I,t
ᾱB/I,t

ut

 , (3.42)

where c(·) = cos(·), s(·) = sin(·), t(·) = tan(·), and ᾱB/I,t = ˙̄ωB/I,t according to (D.5),
i.e.,

ᾱB/I,t = J̄−1(τ̄srp,t − S[ω̄B/I,t](J̄ ω̄B/I,t + JwWν̄t)− JwWut), (3.43)

87

where S is defined in (D.1). The SRP disturbance torque τ̄srp in (3.43) is a nonlinear
function of the spacecraft orientation, see (D.7)–(D.9). The other parameters of the model
are the moment of inertia matrix of the spacecraft bus, J , the moment of inertia of each
RW (assuming identical RWs) about its spin axis, Jw, and the locked inertia J̄ defined
in (D.4), as well as the orientations of the RW spin axes given by W , see (D.3). The
spacecraft parameters, adopted from [79], are listed in Table 3.3. Note that the vector
representing the direction of the Sun is resolved in the inertial frame I in Table 3.3 and
needs to be transformed into the spacecraft body-fixed frame B continuously using the
current orientation of the spacecraft.

Parameter Units Value

J kgm2 diag(430, 1210, 1300)

Jw kgm2 0.043
Lx, Ly, Lz m 2, 2.5, 5
lx, ly, lz m 0, 0.5, 0
q̂S|I - [0, 1/

√
2, 1/
√

2]>

ΦS W/m2 1367
c m/sec 299,792,458

Cdiff - 0.2

Table 3.3: Model parameters for spacecraft attitude control problem.

In this case study, the NLP in (3.17) is solved with the MATLAB function fmincon

using the sequential quadratic programming (SQP) algorithm with the open-loop solution
of the linearized problem (obtained by Algorithm 3.1) as an initial guess.

DCOC Problem
The DCOC problem is formulated with the objective to satisfy prescribed constraints on
spacecraft orientation and RW spin rates for as long as possible. The constraints define the
set

G = {x ∈ R6+p : φ ∈ [φmin, φmax], θ ∈ [θmin, θmax], ψ ∈ [ψmin, ψmax],

νi ∈ [νi,min, νi,max], i ∈ {1, 2, ..., p}},
(3.44)

where φmin < 0, θmin < 0, ψmin < 0, φmax > 0, θmax > 0, ψmax > 0, and νi,min ≤ νi,max ∈
R, i ∈ {1, 2, ..., p}. Similar to the GEO station keeping problem in Section 3.4.2.1, the state
constraints are tightened for the LP-based MPC implementation as illustrated in Figure 3.1

88

by reducing the orientation constraints by 0.4 %. This yields the following reduced set

G̃ = {x ∈ R6+p : 1.004φ ∈ [φmin, φmax], 1.004θ ∈ [θmin, θmax],

1.004ψ ∈ [ψmin, ψmax], νi ∈ [νi,min, νi,max], i ∈ {1, 2, ..., p}}.
(3.45)

In the following case studies, the attitude and RW spin rate constraints in (3.44) and
(3.45), respectively, are given by

φmin = θmin = −0.00175 rad, ψmin = −0.0175 rad, (3.46a)

φmax = θmax = 0.00175 rad, ψmax = 0.0175 rad, (3.46b)

νi,min = 10 rad/sec, νi,max = 250 rad/sec, i ∈ {1, 2, ..., p}. (3.46c)

Note that the lower bound on the RW spin rates is chosen to avoid zero speed crossings
and increase in RW wear and power consumption at low speeds. The initial states of the
spacecraft are assumed to be

[φ0, θ0, ψ0] = [−0.001, 0.00035,−0.0105] rad, (3.47a)

[ω1,0, ω2,0, ω3,0] = [3.5, 3.5, 35]× 10−5 rad/sec. (3.47b)

The maximum angular acceleration of each RW is 4 rad/sec2. Hence, U = {u ∈ Rp : ui ∈
[−4, 4] rad/sec2, i ∈ {1, 2, ..., p}}.

Linear Model
The linear discrete-time model for the LP-based MPC implementation (Algorithm 3.3) is
obtained by linearizing the continuous-time nonlinear model (derived in Appendix D) and
employing Euler’s forward method with a sampling time of ∆t = 2 sec. The initial RW
spin rates ν̄0 and φ = θ = ψ = 0 are chosen as the reference for the linear model. The
matrices and the disturbance term of the linear discrete-time model are therefore given by

A =

 I3×3 ∆tI3×3 03×p

∆tJ̄−1T I3×3 + ∆tJ̄−1JwS[Wν̄0] 03×p

0p×3 0p×3 Ip×p

 , (3.48)

B =

 03×p

−∆tJ̄−1JwW

∆tIp×p

 , d =

 03×1

∆tJ̄−1τ̄srp|φ=θ=ψ=0

0p×1

 , (3.49)

where S[·] is the skew-symmetric matrix defined in (D.1) and τ̄srp|φ=θ=ψ=0 is the SRP

89

torque when φ = θ = ψ = 0. Furthermore, T ∈ R3×3 in (3.48) results from numerically
linearizing the SRP torque in (D.9) about φ = θ = ψ = 0, i.e.,

τ̄srp ≈ τ̄srp|φ=θ=ψ=0 + T
[
φ θ ψ

]>
.

In order to increase robustness and reduce computation times, the numerical condi-
tioning of each LP is improved by normalizing the state vector x according to xnorm =

Otfx+ otf , where Otf and otf are such that the state constraints in (3.45) are normalized as
follows

G̃norm = {xnorm ∈ R6+p : φnorm ∈ [0, 1], θnorm ∈ [0, 1], ψnorm ∈ [0, 1],

νnorm,i ∈ [0, 1], i ∈ {1, 2, ..., p}},

and ωj ∈ [−10−3, 10−3] rad/sec corresponds to ωnorm,j ∈ [0, 1], j ∈ {1, 2, 3}.
Initial numerical results show that, compared to the NLP solution, the LP-based MPC

strategy (in MPC-Discrete-Time and MPC-Continuous-Time simulations) yields similar
first exit-times while, however, using substantially more control effort (see also middle and
bottom plots in Figure 3.3), which may be undesirable. Hence, in order to avoid excessive
control inputs, control inputs are penalized by considering the weighted sum of ‖ut‖1 val-
ues as an additional objective to be minimized. As for example in [92], this is achieved by
introducing the variables γt ∈ Rp for t ∈ {0, 1, ..., N − 1} and adding the weighted sum of
γt values to the objective functions of LPs (3.19) and (3.20), yielding, respectively,

N∑
t=τlb

εt + w
N−1∑
t=0

1>γt and
Nrecover∑
t=1

εt + w
Nrecover−1∑

t=0

1>γt, (3.50)

where the weight is set to w = 0.005 here. Moreover, the constraint −γt ≤ ut ≤ γt,
t ∈ {0, 1, ..., N−1}, is added to LPs (3.19) and (3.20). This approach is similar to the linear
approximation of the nonlinear dynamics of ∆vacc in the GEO satellite station keeping
problem, see (3.26) and (3.32)–(3.34), and Remark 3.2 also holds in this case.

In the following, the parameters in Algorithm 3.3 are set to Nub = 200, Nadd = 25,
Nrecover = 5, and τlb,0 = 100 (initial guess).

Results for One RW
First, the case of one operable RW (p = 1) with spin axis ḡ1 = [1/

√
3, 1/
√

3, 1/
√

3]>

(resolved in the spacecraft body-fixed frame) is considered. The set of state constraints
and initial condition of the spacecraft for this case study are given by (3.46) and (3.47),

90

respectively, and the initial RW speed is assumed to be ν0 = 100 rad/sec. Figure 3.6 shows
the trajectories of the Euler angles, RW speed, and control input for the NLP-Discrete-Time
and MPC-Discrete-Time simulations as well as for the MPC-Continuous-Time simulation
(where a zero-order hold is applied to the control during each 2 sec sampling interval).
The constraints are indicated by gray dashed lines in Figure 3.6. Both the NLP-Discrete-
Time and MPC-Discrete-Time solutions violate the constraints after 45 time steps, which
is equivalent to 90 sec (1.5 min). The respective trajectories are similar but different, which
indicates that the optimal solution to the DCOC problem in (3.5) or (3.6), respectively, may
not be unique in this case.

time (min)
0 0.5 1 1.5

?
 (

ra
d)

#10-3

-2

-1

0

1

2

MPC-Discrete-Time
NLP-Discrete-Time
MPC-Continuous-Time

time (min)
0 0.5 1 1.5

3
 (

ra
d)

#10-3

-2

-1

0

1

2

time (min)
0 0.5 1 1.5

A
 (

ra
d)

-0.02

-0.01

0

0.01

0.02

time (min)
0 0.5 1 1.5

8
1 (

ra
d/

se
c)

90

95

100

105

110

time (min)
0 0.5 1 1.5

u 1 (
ra

d/
se

c2)

-4

-2

0

2

4

Figure 3.6: Spacecraft attitude control problem, one RW (p = 1): Euler angles, RW speed,
and control input vs. time.

In MPC-Continuous-Time simulation, constraint violation occurs after 87.4 sec (1.46
min). The NLP solution is obtained in 49.9 sec with MATLAB’s fmincon function, which
is considerably faster compared to the GEO station keeping problem (Section 3.4.2.1) be-
cause of smaller first exit-times (and thus smaller time horizons). On average, the LP-based
MPC implementation (in both MPC-Discrete-Time and MPC-Continuous-Time simula-
tions) requires about 0.01 sec to compute the control input at each time instant and the

91

worst-case computation time is 0.08 sec.

Results for Two RWs

time (min)
0 1 2 3 4

?
 (

ra
d)

#10-3

-2

-1

0

1

2

MPC-Discrete-Time
NLP-Discrete-Time
MPC-Continuous-Time

time (min)
0 1 2 3 4

3
 (

ra
d)

#10-3

-2

-1

0

1

2

time (min)
0 1 2 3 4

A
 (

ra
d)

-0.02

-0.01

0

0.01

0.02

time (min)
0 1 2 3 4

8
1 (

ra
d/

se
c)

90

100

110

time (min)
0 1 2 3 4

u 1 (
ra

d/
se

c2)

-4

-2

0

2

4

time (min)
0 1 2 3 4

8
2 (

ra
d/

se
c)

210

220

230

240

250

time (min)
0 1 2 3 4

u 2 (
ra

d/
se

c2)

-4

-2

0

2

4

Figure 3.7: Spacecraft attitude control problem, two RWs (p = 2): Euler angles, RW
speeds, and control inputs vs. time.

Now two operable RWs are assumed (p = 2), which increases the spacecraft’s control
authority compared to p = 1. The spacecraft has a second RW with spin axis ḡ2 = [0, 1, 0]>

in addition to the RW with spin axis ḡ1 = [1/
√

3, 1/
√

3, 1/
√

3]>. The initial RW spin rates
are given by ν0 = [100, 230]> rad/sec.

The responses based on the LP-based MPC strategy (in MPC-Discrete-Time and MPC-

92

Continuous-Time simulations) as well as the NLP solution (in NLP-Discrete-Time simu-
lation) for the state constraints and initial condition in (3.46) and (3.47), respectively, are
plotted in Figure 3.7. The gray dashed lines in Figure 3.7 indicate the prescribed con-
straints. As for the case p = 1, the MPC solutions are close to the open-loop NLP solution.
There are differences, however, as the MPC strategy exploits a linear model and control
adjustments are required when the predicted trajectory differs from the actual trajectory
due to unmodeled effects. The NLP solution violates constraints after 122 time steps or
244 sec (4.1 min). Similarly, the MPC-Discrete-Time simulation shows constraint viola-
tion after 117 time steps or 234 sec (3.9 min). Constraint violation occurs after 240 sec
(4 min) in MPC-Continuous-Time simulation. In the worst-case, the MPC implementation
(in both MPC-Discrete-Time and MPC-Continuous-Time simulations) requires 0.22 sec to
compute the control ut at a time instant t ∈ Z≥0 and 0.05 sec on average. The open-loop
NLP solution, on the other hand, is computed in 136 sec.

Remark 3.3. With two operable RWs, the linear spacecraft model with incorporated SRP

torques becomes controllable under certain conditions [79]. Nevertheless, the spacecraft

has not enough control authority (due to the constraints on the control input) in this case

study to avoid violation of the relatively tight attitude constraints in (3.46) for the given

initial condition in (3.47). In addition, for all admissible control laws, the initial condition

in (3.47) may be outside their respective regions of attraction.

Results for Three RWs
In the case of three operable RWs (p = 3), the spacecraft is fully actuated. In this
case, a third RW with spin axis ḡ3 = [0, 0, 1]> is added to the two RWs with spin axes
ḡ1 = [1/

√
3, 1/
√

3, 1/
√

3]> and ḡ2 = [0, 1, 0]>. As before, the state constraints and initial
condition are as in (3.46) and (3.47). Initial RW speeds of ν0 = [100, 230, 249.7]> rad/sec

are assumed. Note that the third RW is initially near its saturation limit. Thus, the control
authority is limited and, despite being fully actuated, constraint violation occurs in finite
time for any admissible control law.

The NLP solution violates constraints after 216 time steps or 432 sec (7.2 min). For the
MPC implementation, constraint violation occurs after 209 time steps or 418 sec (6.97 min)
in the MPC-Discrete-Time case and after 419.6 sec (6.99 min) in the MPC-Continuous-
Time case. These relatively large differences versus the NLP solution can be attributed
to the weight w that emphasizes minimum control effort in LPs (3.19) and (3.20), see
(3.50). The respective first exit-times are improved by reducing w from 0.005 to 0.001.
This change results in constraint violation after 213 time steps or 424 sec (7.07 min) in

93

MPC-Discrete-Time simulation, which is within 1.5 % of the NLP solution. Furthermore,
with the modified weight, constraint violation occurs after 426.9 sec (7.12 min) in MPC-
Continuous-Time simulation. Further reducing w does not significantly improve the first
exit-times. Figure 3.8 shows the trajectories of the NLP solution as well as of the MPC
solutions (in MPC-Discrete-Time and MPC-Continuous-Time simulations) for w = 0.001.

A computation time of 461 sec is required to obtain the NLP solution. For the LP-
based MPC implementation, the worst-case time to compute the control is 1.12 sec and
0.14 sec are required on average. Thus, for the cases considered (p = 1, p = 2, and p = 3),
worst-case computation times are below the sampling time of ∆t = 2 sec. Computation
times can be further reduced by increasing ∆t and/or reducing the upper bound, Nub, on
the time horizon of LP (3.19) in Algorithm 3.3, which may, however, reduce the control
performance (i.e., lead to earlier constraint violation).

3.5 Summary

In this Chapter, mathematical programs were developed that lead to open-loop solutions of
deterministic DCOC problems with the objective of maximizing the first exit-time (i.e., the
time until prescribed constraints are violated for the first time). For DCOC problems where
the system dynamics are described by a linear model, an MILP and a standard LP were
developed that obtain optimal and good-quality suboptimal solutions, respectively. Simi-
lar programs were developed for the nonlinear case. Moreover, an iterative procedure was
presented that efficiently updates the time horizon of the respective mathematical program
until a proper solution is found. Based on linear model approximation of the system and
the open-loop solution provided by the LP, a computationally efficient MPC strategy was
developed, providing state feedback in order to compensate for unmodeled effects online.
In several numerical case studies, involving a VDP oscillator, GEO satellite station keep-
ing, and spacecraft attitude control, the developed mathematical programs and algorithmic
procedures successfully obtained optimal as well as good-quality suboptimal solutions to
the respective DCOC problems. In particular, the solutions of the LP-based MPC strategy
were close to the nonlinear programming solutions.

Compared to the DP-based techniques in Chapter 2 which are quite general and can
address a broad range of DCOC problems (see Section 2.1), the mathematical programs and
MPC scheme developed in this chapter do not suffer from the curse of dimensionality of DP
and higher-dimensional problems can readily be treated (e.g., problems with 9 states and
3 control variables such as the spacecraft attitude control problem with 3 RWs in Section
3.4.2.2). An additional advantage is that the mathematical programs and MPC scheme

94

facilitate the use of continuous control inputs in a numerical setting.

time (min)
0 1 2 3 4 5 6 7

?
 (

ra
d)

#10-3

-2

-1

0

1

2

MPC-Discrete-Time
NLP-Discrete-Time
MPC-Continuous-Time

time (min)
0 1 2 3 4 5 6 7

3
 (

ra
d)

#10-3

-2

-1

0

1

2

time (min)
0 1 2 3 4 5 6 7

A
 (

ra
d)

-0.02

-0.01

0

0.01

0.02

time (min)
0 1 2 3 4 5 6 7

8
1 (

ra
d/

se
c)

90

100

110

120

time (min)
0 1 2 3 4 5 6 7

u 1 (
ra

d/
se

c2)

-4

-2

0

2

4

time (min)
0 1 2 3 4 5 6 7

8
2 (

ra
d/

se
c)

220

230

240

250

time (min)
0 1 2 3 4 5 6 7

u 2 (
ra

d/
se

c2)

-4

-2

0

2

4

time (min)
0 1 2 3 4 5 6 7

8
3 (

ra
d/

se
c)

248

249

250

251

252

time (min)
0 1 2 3 4 5 6 7

u 3 (
ra

d/
se

c2)

-4

-2

0

2

4

Figure 3.8: Spacecraft attitude control problem, three RWs (p = 3): Euler angles, RW
speeds, and control inputs vs. time.

95

CHAPTER 4

Stochastic DCOC – DP Approaches

4.1 Problem Formulation

The problems considered here and in Chapter 5 are extensions of deterministic DCOC
(Chapters 2 and 3) to the case of stochastic systems. The focus in this chapter is on the
following class of discrete-time stochastic nonlinear systems,

xt+1 = f(xt, ut, wt), (4.1)

where f is a general nonlinear function, t ∈ Z≥0 denotes the time instant, x ∈ Rn is the
state vector, and w is a random disturbance modeled by a Markov chain, taking values in
the finite set

W = {w1, w2, ..., w|W |}, (4.2)

of cardinality |W | > 0. The transition probabilities of the Markov chain are given by

PW (wj|wi) = PW (wt+1 = wj|wt = wi) ∈ [0, 1], (4.3)

for all wi, wj ∈ W and t ∈ Z≥0. The control input at a time instant t is given by

ut = π(xt, wt) ∈ U ⊂ Rp, (4.4)

where π is a control policy and Π = {π : Rn ×W → U} is the set of admissible control
policies.

Let G ⊂ Rn be a set representing the prescribed state constraints. The random variable
τ (also referred to as the first exit-time from G) for a given control policy π ∈ Π and initial
x0 ∈ G and w0 ∈ W is as follows

τ(x0, w0, π) = inf{t ∈ Z≥0 : xt /∈ G}, (4.5)

96

where xt results from applying control policy π to system (4.1) with initial condition x0

and w0. The expected value of the first exit-time from G is given by

τ̄(x,w, π) = E{τ(x,w, π) |x,w, π}. (4.6)

The stochastic DCOC problem reads

J(x,w, π) = E


τ(x,w,π)−1∑

t=0

g(xt, ut) |x,w, π

→ max
π∈Π

, (4.7)

for x = x0 ∈ G, w = w0 ∈ W , and π ∈ Π, where g : G × U → R+ denotes the
instantaneous yield.

Similar to (2.4) in the deterministic case, the value function is defined as follows

V (x,w) = sup
π∈Π

J(x,w, π). (4.8)

4.2 Boundedness of Expected First Exit-Time and Value
Function

The following theorems provide conditions under which τ̄ (Theorem 4.1) and V (Theorem
4.2) are bounded. The following assumption is made in this regard.

Assumption 4.1. There exists T > 0 and w̄ ∈ W such that w̄ overpowers any admissible
control and the deterministic system,

xt+1 = f(xt, π(xt, w̄), w̄),

exits G in at most T steps for all x0 ∈ G and π ∈ Π. In addition, PW (w̄|w̄) > 0 and w̄ is
accessible from each w ∈ W .

Theorem 4.1. Suppose Assumption 4.1 holds. Then there exists T̄ > 0 such that

τ̄(x,w, π) ≤ T̄ ,

for all x ∈ G, w ∈ W , and π ∈ Π.

Proof. Let x ∈ G, w ∈ W , and π ∈ Π be a given initial condition and admissible control
policy, respectively, where the corresponding expected first-exit time may be expressed as

97

follows:

τ̄(x,w, π) =
∞∑
i=1

iP (τ(x,w, π) = i)

≤
∞∑
i=1

iP (τ(x,w, π) ≥ i),

(4.9)

where P (τ(x,w, π) = i) and P (τ(x,w, π) ≥ i) denote the probabilities that the first exit-
time is equal to i or greater than or equal to i, respectively. Using Assumption 4.1 and

ρw̄,T,i = Prob(w̄ occurs T times in a row prior to t = i− 1), (4.10)

P (τ(x,w, π) ≥ i) is bounded according to

P (τ(x,w, π) ≥ i) ≤ 1− ρw̄,T,i, (4.11)

where w̄ and T are defined in Assumption 4.1. Using Assumption 4.1 (in particular: w̄ is
accessible from every wi ∈ W) and denoting

qT = Prob(w̄ is reached from w in at most |W | steps)× [PW (w̄|w̄)]T , (4.12)

which is greater than zero due to the accessibility of w̄ and PW (w̄|w̄) > 0 by Assumption
4.1, it follows that

ρw̄,T,i ≥
b i−1
T+|W |c−1∑
k=0

(1− qT)kqT

= qT

(
1− (1− qT)b

i−1
T+|W |c

1− (1− qT)

)
= 1− (1− qT)b

i−1
T+|W |c,

(4.13)

where b·c is the floor operator. Hence, (4.11) becomes

P (τ(x,w, π) ≥ i) ≤ (1− qT)b
i−1

T+|W |c, (4.14)

and (4.9) may be written as follows

98

τ̄(x,w, π) ≤
∞∑
i=1

i(1− qT)b
i−1

T+|W |c

≤
∞∑
k=0

(k + 1)(T + |W |)2(1− qT)k

= (T + |W |)2

(
1− qT
q2
T

+
1

qT

)
=

(
T + |W |
qT

)2

= T̄ .

(4.15)

Theorem 4.2. Suppose Assumptions 2.1 and 4.1 hold. Then there exists V̄ > 0 such that

J(x,w, π) ≤ V (x,w) ≤ V̄ ,

for all x ∈ G, w ∈ W , and π ∈ Π.

Proof. In analogy to the proof of Theorem 4.1 and using Assumption 2.1,

J(x,w, π) ≤ ḡ
∞∑
i=1

iP (τ(x,w, π) = i)

≤ ḡ
∞∑
i=1

iP (τ(x,w, π) ≥ i),

(4.16)

for a given π ∈ Π, x ∈ G, and w ∈ W . Following the same steps as in the proof of
Theorem 4.1, one obtains that

J(x,w, π) ≤ ḡ

(
T + |W |
qT

)2

= V̄ , (4.17)

where qT is defined by (4.12). Together with (4.8), (4.17) implies that V (x,w) ≤ V̄ .

Remark 4.1. Theorem 4.2 guarantees the existence of a maximizing sequence for all x ∈ G
and w ∈ W , i.e., a sequence {πn} in Π such that J(x,w, πn) → supπ∈Π J(x,w, π) or,

equivalently, J(x,w, πn)→ V (x,w) for all x ∈ G and w ∈ W .

99

4.3 Other Theoretical Results

Let the expected value function for a control input u ∈ U be defined by

V̄ (x, u, w) =
∑
wi∈W

[
V (f(x, u, w), wi)PW (wi|w)

]
. (4.18)

Moreover, define the expression LπV (x,w) as follows

LπV (x,w) = V (x,w)− V̄ (x, π(x,w), w). (4.19)

The next theorem provides conditions for a control policy to be optimal. It is similar to
Theorem 2.2 in Section 2.2 (deterministic case).

Theorem 4.3. Suppose Assumptions 2.1 and 4.1 hold. Then π∗ ∈ Π satisfies

Lπ
∗
V (x,w) = g(x, π∗(x,w)), if x ∈ G,

LπV (x,w) ≥ g(x, π(x,w)), if x ∈ G, π 6= π∗,

V (x,w) = 0, if x /∈ G,

(4.20)

for all x ∈ Rn, w ∈ W , and π ∈ Π iff π∗ maximizes J(x,w, π). Moreover, V (x,w) =

J(x,w, π∗) and

π∗(x,w) ∈ Π∗(x,w) = arg max
u∈U

{g(x, u) + V̄ (x, u, w)}. (4.21)

Proof. Following similar steps as in the proof of Theorem 2.2 (the case V (x,w) = 0 if
x /∈ G is trivial), let x = x0 ∈ G and w = w0 ∈ W be a given initial condition and π ∈ Π.
Assume that π∗ ∈ Π satisfies (4.20). This implies that

J(x,w, π) = E


τ(x,w,π)−1∑

t=0

g(xt, π(xt, wt)) |x,w, π


≤ E


τ(x,w,π)−1∑

t=0

LπV (xt, wt) |x,w, π

 = V (x,w),

(4.22)

since V (xτ(x,w,π), ·) = 0. Similarly, for π∗, by (4.7) and (4.20),

100

J(x,w, π∗) = E


τ(x,w,π∗)−1∑

t=0

g(xt, π
∗(xt, wt)) |x,w, π∗


= E


τ(x,w,π∗)−1∑

t=0

Lπ
∗
V (xt, wt) |x,w, π∗

 = V (x,w).

(4.23)

Because V is bounded by Theorem 4.2 and Assumptions 2.1 and 4.1, (4.22) and (4.23)
can be compared which implies that J(x,w, π∗) ≥ J(x,w, π) for all x ∈ G, w ∈ W , and
π ∈ Π. It follows from (4.19) and (4.20) that π∗(x,w) ∈ Π∗(x,w) according to (4.21).

Now assume that π∗ maximizes J(x,w, π) for all x ∈ G and w ∈ W . Thus, V (x,w) =

J(x,w, π∗) and, similar to (2.10), it follows from (4.18) that

V (x,w) = g(x, π∗(x,w)) +
∑
wi∈W

[
J(f(x, π∗(x,w), w), wi, π∗)PW (wi|w)

]
= g(x, π∗(x,w)) + V̄ (x, π∗(x,w), w),

(4.24)

which implies that Lπ∗V (x,w) = g(x, π∗(x,w)). On the other hand, similar to (2.11), for
any admissible π 6= π∗, it is

V (x,w) ≥ g(x, π(x,w)) +
∑
wi∈W

[
J(f(x, π(x,w), w), wi, π∗)PW (wi|w)

]
= g(x, π(x,w)) + V̄ (x, π(x,w), w).

(4.25)

Consequently, LπV (x,w) ≥ g(x, π(x,w)).

Note that Remark 2.2 applies in the stochastic case as well. It is clear that a solution
to the DCOC problem (4.7) exists if the set Π∗(x,w) in (4.21) is nonempty for all x ∈ G
and w ∈ W , which is addressed in the following theorem that is similar to Theorem 2.4
(deterministic case).

Theorem 4.4. A solution π∗ ∈ Π to the stochastic DCOC problem (4.7) exists for all x ∈ G
and w ∈ W iff the set Π∗(x,w) in (4.21) is nonempty for all x ∈ G and w ∈ W .

Proof. If Π∗(x,w) is nonempty for all x ∈ G and w ∈ W , then there exists π∗(x,w) =

u∗ ∈ U such that g(x, u∗) + V̄ (x, u∗, w) ≥ g(x, u) + V̄ (x, u, w), for all x ∈ G and u ∈ U .
Hence, by Theorem 4.3, π∗ is a solution to (4.7). Now assume that an optimal control
policy π∗ exists for all x ∈ G and w ∈ W , implying that V (x,w) = J(x,w, π∗) for all

101

x ∈ G and w ∈ W . Consequently, by denoting u∗ = π∗(x,w) ∈ U ,

J(x,w, π∗) = g(x, u∗) +
∑
wi∈W

[
J(f(x, u∗, w), wi, π∗)PW (wi|w)

]
≥ g(x, u) +

∑
wi∈W

[
J(f(x, u, w), wi, π∗)PW (wi|w)

]
,

(4.26)

for all x ∈ G, w ∈ W , and u ∈ U . Since V (x,w) = J(x,w, π∗), it follows from (4.18)
and (4.26) that, for all x ∈ G and w ∈ W , there exists u∗ = u∗(x,w) ∈ U such that
g(x, u∗) + V̄ (x, u∗, w) ≥ g(x, u) + V̄ (x, u, w) for all u ∈ U .

Two separate conditions are provided in Theorem 4.5 that guarantee the existence of a
solution to the stochastic DCOC problem (4.7), where condition 2 is based on Lemma 4.1.
The proof of Lemma 4.1 follows the same steps as in the deterministic case (Lemma 2.1)
and can be found in Appendix E.

Lemma 4.1. If V (x,w) is USC with respect to x ∈ G for all w ∈ W and f(x, u, w) is

continuous with respect to u ∈ U for all x ∈ G and w ∈ W , then V̄ (x, u, w) is USC with

respect to u ∈ U for all x ∈ G and w ∈ W .

Proof. See Appendix E.

Theorem 4.5. Suppose either

1. U is finite and Assumptions 2.1 and 4.1 hold.

2. U is compact, f(x, u, w) and g(x, u) are continuous and USC with respect to u ∈ U ,

respectively, for all x ∈ G and w ∈ W , and V (x,w) is USC with respect to x ∈ G
for all w ∈ W .

Then a solution to (4.7) exists for all x ∈ G and w ∈ W .

Proof. It needs to be shown that Π∗(x,w) in (4.21) is nonempty for all x ∈ G and w ∈ W
since, by Theorem 4.4, this implies the existence of a solution. Assume that 1 holds. By
Assumptions 2.1 and 4.1 and Theorem 4.2, both V (and thus V̄) and g are bounded for all
x ∈ G, w ∈ W , and u ∈ U , respectively. Consequently, their sum is bounded. Since U is
finite and the maximum of a bounded function over a finite set exists, Π∗(x,w) is nonempty
for all x ∈ G and w ∈ W . Now suppose 2 holds. By Lemma 4.1, V̄ (x, u, w) is USC with
respect to u ∈ U for all x ∈ G and w ∈ W . Since the sum of two USC functions is USC,
the sum of g and V̄ in (4.21) is USC with respect to u ∈ U for all x ∈ G and w ∈ W .
Because U is compact, it follows from the extension of the Weierstrass theorem to USC
functions [55] that Π∗(x,w) is nonempty for all x ∈ G and w ∈ W .

102

The following Theorem 4.6 provides conditions under which the objective function
J is USC. In order to prove upper semi-continuity of J(x,w, π), the results from the
deterministic case in Theorem 2.7 are used. In what follows, a deterministic wt sequence
(that is feasible according to the Markov chain for wt) is denoted by {wt} and the set of
disturbance sequences that lead to xt deterministically exiting G in i ∈ Z+ steps, given
x = x0 ∈ G and π ∈ Π, is defined as follows

Wi(x, π) = {{w′t} : xt+1 = f(xt, π(xt, w
′
t), w

′
t) exits G in i ∈ Z+ steps}. (4.27)

In addition, the deterministic total yield for any {w′t} ∈ Wi(x, π), i ∈ Z+, is defined in
analogy to (2.3) as follows

J{w′t}(x, π) =
i−1∑
t=0

g(xt, ut), (4.28)

where xt evolves according to xt+1 = f(xt, π(xt, w
′
t), w

′
t).

The probability that, beginning at w = w0 ∈ W , the sequence {wt} occurs, is denoted
by P ({wt}) ∈ [0, 1]. Hence, in analogy to (4.9) and (4.16), J(x,w, π) may be expressed as

J(x,w, π) = lim
k→∞

k∑
i=1

∑
{wt}∈Wi(x,π)

J{wt}(x, π)P ({wt}), (4.29)

for all x ∈ G, w = w0 ∈ W , and π ∈ Π.
As in Chapter 2, for analyzing USC properties of the objective function, the set of

admissible control policies is reduced to control policies that are continuous on G for all
w ∈ W , i.e.,

π ∈ CG,W (Π) = {π ∈ Π |π is continuous on G for all w ∈ W}. (4.30)

Hence, by Theorems 2.1 and 2.7 and due to π ∈ CG,W (Π), the sequence in (4.29) is a
bounded sequence of USC functions. In order to conclude that J(x,w, π) is USC, it needs
to be shown that the sequence in (4.29) converges uniformly, see Proposition B.1 in [93].
This is done in Lemma 4.2.

Lemma 4.2. Suppose Assumptions 2.1 and 4.1 hold and π ∈ CG,W (Π). Then the sequence

in (4.29) converges uniformly for each x ∈ G, w ∈ W , and π ∈ Π.

Proof. Using the Weierstrass M -test [94], it needs to be shown that there exists a converg-
ing sequence {Mi}, i.e., limk→∞

∑k
i=1 Mi <∞, such that (absolute values are not required

103

since the expression is non-negative)∑
{wt}∈Wi(x,π)

J{wt}(x, π)P ({wt}) ≤Mi, (4.31)

for each x ∈ G, w ∈ W , π ∈ Π, and i ∈ Z+. Note that∑
{wt}∈Wi(x,π)

P ({wt}) = P (τ(x,w, π) = i),

which is the probability that the first exit-time is equal to i. Hence,∑
{wt}∈Wi(x,π)

J{wt}(x, π)P ({wt}) ≤
∑

{wt}∈Wi(x,π)

J{wt}(x, π)P (τ(x,w, π) = i)

≤
∑

{wt}∈Wi(x,π)

iḡP (τ(x,w, π) = i),
(4.32)

where the last step is due to Assumption 2.1. According to Assumption 4.1, (4.9), and
(4.11), P (τ(x,w, π) = i) ≤ (1 − qT)b

i−1
T+|W |c, where qT ∈ (0, 1] is defined by (4.12) and

T is as in Assumption 4.1. Thus, based on (4.32), Mi = iḡ(1 − qT)b
i−1

T+|W |c ≥ 0 satisfies
(4.31). Using (4.15),

lim
k→∞

k∑
i=1

Mi ≤ ḡ

(
T + |W |
qT

)2

<∞. (4.33)

Hence, by the Weierstrass M -test, the sequence in (4.29) converges uniformly for each
x ∈ G, w ∈ W , and π ∈ Π.

Theorem 4.6. Suppose Assumptions 2.1 and 4.1 hold. Furthermore, suppose that G is

compact, f(x, u, w) is continuous on G×U for all w ∈ W , and g(x, u) is USC on G×U .

Then J(x,w, π) is USC with respect to x ∈ G for all w ∈ W and π ∈ CG,W (Π).

Proof. Upper semi-continuity of J(x,w, π) with respect to x ∈ G for all w ∈ W and
π ∈ CG,W (Π) follows from (4.29), Lemma 4.2, and Proposition B.1 in [93]. Since the
sequence of bounded functions that are USC with respect to x ∈ G for a given admissible
π (by Theorems 2.1 and 2.7) in (4.29) is uniformly converging to J(x,w, π) for each x ∈ G
and w ∈ W (by Lemma 4.2), it follows from Proposition B.1 in [93] that J(x,w, π) is USC
with respect to x ∈ G for all w ∈ W and π ∈ CG,W (Π).

Note that upper semi-continuity of the value function cannot be concluded from Theo-
rem 4.6 since the supremum of infinitely many USC functions may not be USC.

104

4.4 Proportional Feedback VI

4.4.1 Theoretical Results

In this section, proportional feedback VI is extended to the case of stochastic systems. For
each x ∈ G and w ∈ W , the error en(x,w) at iteration n is defined by

en(x,w) = max
u∈U

{
g(x, u) +

∑
wi∈W

[
Vn(f(x, u, w), wi)P (wi|w)

]}
− Vn(x,w). (4.34)

Note that Vn is equal to the value function V iff en(x,w) = 0 for all (x,w) ∈ G×W , which
follows from Theorem 4.3. In analogy to (2.25), proportional feedback VI for stochastic
DCOC is given by

Vn+1(x,w) = Vn(x,w) + ken(x,w), if x ∈ G,

Vn+1(x,w) = 0, if x /∈ G,
(4.35)

for all x ∈ G andw ∈ W , where k ∈ R is a proportional gain factor. Note that conventional
VI follows for k = 1 in (4.35). In order to prove convergence of (4.35) to the value function,
Assumption 4.2 is made. Extensive numerical studies (for m ∈ {1, 2, ..., 100, ...}) suggest
that this assumption holds.

Assumption 4.2. If k ∈ (0, 2), then

lim
n→∞

km
n∑
j=0

(1− k)j
m−1∏
i=1

(
j

i
+ 1) = 1,

for all m ∈ Z≥1.

Theorem 4.7. Suppose Assumption 4.2 holds, k ∈ (0, 2), and a solution to the stochastic

DCOC problem (4.7) exists. Furthermore, let V0(x,w) ∈ R be defined for all x ∈ G and

w ∈ W and let g(xt, π(xt, wt)) = 0 for all t ≥ τ(x0, w0, π). Then the sequence of functions

given by (4.34) and (4.35) converges pointwise to V (x,w) for all x ∈ G and w ∈ W .

Proof. It is clear from (4.20) and (4.35) that Vn(x,w) = V (x,w) = 0 for all n if x /∈ G.
Now, for a given x ∈ G and w ∈ W , (4.34) and (4.35) can be written as

Vn+1(x,w) = Vn(x,w) + k[V (x,w) + βn(x,w)− Vn(x,w)]. (4.36)

It needs to be shown that, if k ∈ (0, 2), then βn(x,w) → 0 as n → ∞, which implies that
Vn converges to V . By setting x0 = x and w0 = w, it follows from (4.34), (4.35), and

105

(4.36) that

V (x,w) + βn(x,w) = E{Vn(x1, w1) |x,w, un}+ g(x, un), (4.37)

where, x1 and w1 are the state vector and disturbance at the next time instant and un ∈ U is
the maximizer in (4.34) based on Vn. The term E{...} denotes the expectation of Vn(x1, w1)

conditional on x, w, and un. According to (4.34) and (4.35), (4.37) may be written as

V (x,w) + βn(x,w) = g(x, un) + (1− k)E{Vn−1(x1, w1) |x,w, un}

+ kE{Vn−1(x2, w2) |x, x1, w, w1, u
n, un−1}+ kE{g(x1, u

n−1) |x,w, un},
(4.38)

where x2 andw2 are the state vector and disturbance two time instants ahead. By continuing
to apply (4.34) and (4.35), eventually (4.38) is expressed in terms of V0, reading

V (x,w) + βn(x,w) = g(x, un) + yg(n) + yV0(n), (4.39)

where yg(n) is a sum of expected values of g at the future states x1, x2, ..., xn using the
controls u0, ..., un−1. Similarly, yV0(n) is a sum of expected values of V0 at the future states
x1, ..., xn+1 and disturbances w1, ..., wn+1, which can be bounded by

|yV0(n)| ≤

∣∣∣∣∣
n∑
j=0

[
cnkj(1− k)n−jEV0(xj+1, wj+1)

]∣∣∣∣∣ , (4.40)

where c > 0 is a constant and the expectation is conditional on x, x1, ..., xn, w,w1, ..., wn,
and u0, ..., un. It follows from k ∈ (0, 2) that the terms with small j in (4.40) approach zero.
The remaining terms in (4.40) also vanish as n → ∞ due to the existence of a solution to
the DCOC problem (by assumption), as this implies Prob(xn /∈ G) → 1 as n → ∞.
Hence, V0(xn, wn) = 0 with probability one as n→∞ and yV0(n)→ 0. Consequently,

V (x,w) + lim
n→∞

βn(x,w) = lim
n→∞

(yg(n) + g(x, un)). (4.41)

The terms Eg(xm, u
n−m), ...,Eg(xm, u

0), where m ∈ {1, 2, ..., n}, (indicating condi-
tional dependence is omitted for brevity henceforth) are contained in yg(n). Based on
(4.34) and (4.35), one can write

yg(n) =
n∑

m=1

km
n−m∑
j=0

Nm(j)(1− k)jEg(xm, u
(n−m−j)), (4.42)

where Nm(j) ∈ Z≥0 denotes the number of times the term (1 − k)jEg(xm, ·) appears in

106

yg(n) for a given n, m ∈ {1, 2, ..., n}, and j ∈ {0, 1, ..., n−m}. It follows from (4.34) and
(4.35) that

Nm(j) = 1 if j = 0, (4.43a)

N1(j) = 1 for j ∈ Z≥0, (4.43b)

Nm(j) = Nm(j − 1) +Nm−1(j) for j ∈ Z+ and m ∈ {2, 3, ...}, (4.43c)

which can be summarized by

Nm(j) =
m−1∏
i=1

(
j

i
+ 1

)
. (4.44)

As n→∞, u0, u1, etc. in (4.42) and (4.41) approach optimal values due to the assump-
tion that a solution to the DCOC problem exists. Hence, by denoting an optimal control
policy by π∗, it follows from (4.42) and (4.44) that

lim
n→∞

yg(n) =
∞∑
m=1

Eg(xm, π
∗(xm, wm))km

∞∑
j=0

(1− k)j
m−1∏
i=1

(
j

i
+ 1

)
. (4.45)

Using Assumption 4.2 and k ∈ (0, 2), one obtains from (4.45) that

lim
n→∞

yg(n) =
∞∑
m=1

Eg(xm, π
∗(xm, wm))

= E

{
∞∑
m=1

g(xm, π
∗(xm, wm))

}

= E


τ(x,w,π∗)−1∑

m=1

g(xm, π
∗(xm, wm))

 ,

(4.46)

since g(xt, π
∗(xt, wt)) = 0 for all t ≥ τ(x,w, π∗) by assumption. Consequently, by (4.7)

and (4.46), (4.41) becomes

V (x,w) + lim
n→∞

βn(x,w) = J(x,w, π∗) = V (x,w), (4.47)

implying βn(x,w)→ 0 and thus Vn(x,w)→ V (x,w) as n→∞.

Note that Remark 2.3 about convergence of control policies also applies in the stochas-
tic case.

107

4.4.2 Adaptive Proportional Feedback VI with Damping

In theory, as in the deterministic case, the optimal gain for fast convergence of iterations
(4.35) is k = 1. However, in practice, iterations (4.35) are applied to a discrete subset G̃ of
G, where a function approximator (such as NNs or linear interpolation) is used to evaluate
V (x,w) if x /∈ G̃. In this regard, the same considerations as in Section 2.3.2 apply and
k = 1 may not be the optimal gain. Instead, the optimal gain may depend on x and w.
Moreover, it may depend on the selection of G̃ as well as of the function approximator and
convergence may occur for k ∈ (0, kmax), where kmax may be greater than 2 or, on the
contrary, kmax < 2. Therefore, individual adaptive gains kn : G̃×W → R+ are introduced
in this section. This approach is referred to as adaptive proportional feedback VI, which is
given by

Vn+1(x,w) = Vn(x,w) + kn(x,w)en(x,w), if x ∈ G

Vn+1(x,w) = 0, if x /∈ G

kn+1(x,w) = kn(x,w) + δen(x,w).

(4.48)

where δ ≥ 0 is the learning rate.
In addition, the algorithm is extended by including damping. This is because numerical

experiments with adaptive proportional feedback VI show that the error en(x,w) oscillates
between negative and positive values when diverging, i.e., when kn(x,w) > kmax(x,w).
Since kmax(x,w) may be unknown for a given (x,w) ∈ G̃ ×W , this can be detected by
comparing en(x,w) and en+1(x,w). If oscillations occur, the gain kn+1(x,w) is lowered
using a damping factor ζ ∈ (0, 1]. Adaptive proportional feedback VI with damping is as
follows, where δ ≥ 0 is the learning rate as in (4.48),

Vn+1(x,w) = Vn(x,w) + kn(x,w)en(x,w), if x ∈ G

Vn+1(x,w) = 0, if x /∈ G

kn+1(x,w) = kn(x,w) + δen(x,w), if en(x,w)en+1(x,w) ≥ 0

kn+1(x,w) = ζkn(x,w), if en(x,w)en+1(x,w) < 0.

(4.49)

In the theoretical case (where G̃ = G), it is straightforward to show that iterations (4.48)
and (4.49) converge to V if, in addition to the assumptions in Theorem 4.7, each individual
gain is bounded by kn(x,w) ∈ (0, 2) for all n ∈ Z≥0. However, this may not hold in
practice (where G̃ ⊂ G) as explained above and it is expected that, for proper choices of δ
and ζ , iterations (4.49) effectively adjust each individual gain to improve the convergence
rate.

108

4.5 Application: Driving Policies for Autonomous Vehi-
cles

This section focuses on using stochastic DCOC for high-level control and decision-making
of autonomous cars. The presented approach for autonomous driving is based on a hi-
erarchical control structure, where the DCOC-based controller provides optimal decision-
making (high-level) and low-level controllers execute the decisions by regulating the longi-
tudinal and lateral motion of the car. While the focus here is on high-level control, relevant
low-level controllers are discussed in [95–97].

One of the earliest relevant studies on modeling decision-making in driving can be
found in [98], where Markov chains calibrated from real traffic data are used. A set of
deterministic rules for lane-changing decisions for cars traveling at a constant velocity
is proposed in [99]. More complex probabilistic approaches can be found in [100–102].
A game theoretic approach for lateral and longitudinal decision-making is considered in
[103], where the control problem is decomposed into car following and lane-changing sub-
problems and a cost function is minimized.

In contrast to previous work, the application of stochastic DCOC provides a systematic
approach to generating driving policies that may enhance safety for autonomous cars by
maximizing the expected time that a prescribed minimum (safe) headway to the in-front
vehicle is maintained. In order to formulate the stochastic DCOC problem, a hybrid prob-
abilistic model that describes the motion of a car and its surrounding traffic is developed
in Section 4.5.1. Section 4.5.2 extends the DCOC framework to consider such hybrid sys-
tems. An ADP approach based on proportional feedback VI is proposed in Section 4.5.3
and a numerical case study is considered in Section 4.5.4.

4.5.1 Driving Model

A discrete-time stochastic hybrid model is formulated to describe the motion of a car and
its surrounding traffic. While the developments in this dissertation are limited to roads
with two lanes, which constitute the largest fraction of the multi-lane roads, the modeling
framework may readily be extended to more than two lanes as explained in Remark 4.2.

The proposed model considers three cars. Subscript “m” denotes the controlled/ego car
(“my car”) and subscripts “c” and “o” denote the closest cars ahead of the controlled car in
its current lane and in the other lane, respectively. The state vector at a time instant t ∈ Z≥0

is given by
xt = [sc,t, so,t, vm,t]

>,

109

where sc and so are the respective headways relative to the closest cars ahead in each lane,
and vm is the velocity of the controlled car. In addition,

wt = [vc,t, vo,t]
>,

is a random disturbance, where vc and vo are the respective velocities of the two cars ahead.
Note that the closest car ahead of the controlled car in the other lane is defined to be the
closest car with a relative distance s ≥ −(d + γ), where d is the length of the controlled
car and γ provides a margin of safety (here γ = 0 is used).

Figure 4.1: Driving model: traffic example.

Figure 4.1 shows a traffic situation at which the controlled/ego car is driving in the upper
lane (current lane) and car 1 is the closest car ahead in its current lane. The closest car ahead
in the other lane is car 3. If the velocity difference between car 2 and the controlled car,
v2 − vm, is positive, the distance between the two cars will eventually become s2 ≥ −d
and car 2 becomes the closest car ahead in the other lane, i.e., so = s2. Moreover, if car
3 cuts in between the controlled car and car 1, car 3 becomes the closest car ahead in the
current lane and either car 2 (if s2 ≥ −d) or car 4 becomes the closest car ahead in the
other lane. In addition to these scenarios, there are several other possible transitions, which
are addressed by introducing a discrete-valued variable θ.

The variable θ models possible scenarios/transitions from time instant t to t + 1. For
the two-lane case, seven different transitions can be identified, θ ∈ {1, 2, 3, 4, 5, 6, 7}. In
the following, ct and ot denote the closest cars ahead in the current and in the other lane,
respectively, at the time instant t. Similarly ct+1 and ot+1 denote the closest cars ahead in
the respective lanes at the time instant t+ 1. The possible transitions are given by

110

• θ = 1: ct remains the closest car ahead in the current lane (ct → ct+1) and ot remains
the closest car ahead in the other lane (ot → ot+1).

• θ = 2: ct remains the closest car ahead in the current lane (ct → ct+1) and a car other
than ot becomes the closest car ahead in the other lane (new car→ ot+1).

• θ = 3: a car other than ct or ot becomes the closest car ahead in the current lane
(new car → ct+1) and a car other than ct or ot becomes the closest car ahead in the
other lane (new car→ ot+1).

• θ = 4: a car other than ct becomes the closest car ahead in the current lane (new car→
ct+1) and ot remains the closest car ahead in the other lane (ot → ot+1).

• θ = 5: ot becomes the closest car ahead in the current lane (ot → ct+1) and a car
other than ct becomes the closest car ahead in the other lane (new car→ ot+1).

• θ = 6: ot becomes the closest car ahead in the current lane (ot → ct+1) and ct

becomes the closest car ahead in the other lane (ct → ot+1).

• θ = 7: a car other than ot becomes the closest car ahead in the current lane (new car→
ct+1) and ct becomes the closest car ahead in the other lane (ct → ot+1).

The control input vector at a time instant t is given by

ut = [am,t, lm,t]
> ∈ U = A× {0, 1},

where am ∈ A denotes the acceleration of the controlled car and lm ∈ {0, 1} indicates
whether to initiate a lane change (lm = 1) or not (lm = 0). In the case where lm,t = 1, the
current lane at the time instant t becomes the other lane at t + 1, whereas the other lane
at t becomes the current lane at t + 1. Furthermore, the relative time gaps are defined as
follows

Tg,c = sc/vm, Tg,o = so/vm. (4.50)

The driving model is given by

xt+1 = f(xt, ut, wt, θt) =

 sc,t+1

so,t+1

vm,t + ∆tam,t

 , (4.51)

where ∆t is the sampling time. Introducing the relative velocities ∆vc = vc − vm and
∆vo = vo − vm, sc,t+1 and so,t+1 in (4.51) are given by

111

sc,t+1 =


min{smax, sc,t + ∆t∆vc,t}, if θt ∈ {1, 2},

initc(Tg,c,t, Tg,o,t, θt), if θt ∈ {3, 4, 7},

min{smax, so,t + ∆t∆vo,t}, if θt ∈ {5, 6},

(4.52)

so,t+1 =


min{smax, so,t + ∆t∆vo,t}, if θt ∈ {1, 4},

inito(Tg,c,t, Tg,o,t, θt), if θt ∈ {2, 3, 5},

min{smax, sc,t + ∆t∆vc,t}, if θt ∈ {6, 7},

(4.53)

where smax is the maximum headway at which a car can be detected. If no car is ahead
of the controlled vehicle in the respective lane, sc = smax or so = smax, respectively. The
functions initc and inito in (4.52) and (4.53) set the value for sc in case θt ∈ {3, 4, 7} and
for so in case θt ∈ {2, 3, 5}, respectively, depending on the current relative time gaps. Both
initc and inito are defined below by (4.56) and (4.57), respectively.

As in [37], the velocities vc and vo are random variables that are modeled as Markov
chains and take values in the discrete set V = {vj : j ∈ Iv}. The probability of transitioning
from wt = [vi, vj]> to wt+1 = [vq, vr]>, given θt = p ∈ {1, 2, ..., 7}, is given by

PW (vq, vr|vi, vj, p) ∈ [0, 1], (4.54)

for all i, j, q, r ∈ Iv. Similarly, θ is a random variable and the probability that θt = p ∈
{1, 2, ..., 7}, given Tg,c,t = T i ∈ T , Tg,o,t = T j ∈ T , and lm,t = q ∈ {0, 1}, is denoted by
Pθ(p|T i, T j, q) ∈ [0, 1] for all i, j ∈ IT , where T = {T j : j ∈ IT} is a discrete set.

Unlike vc and vo, Tg,c and Tg,o are continuous variables and nearest-neighbor interpo-
lation is used to map Tg,c /∈ T and Tg,o /∈ T onto T when computing Pθ. The nearest-
neighbor operator that maps a point r ∈ R, where R is a continuous set, onto the discrete
set R̃ = {rj : j ∈ Ir} ⊂ R, is defined as

nnR̃(r) ∈ {rj ∈ R̃ :
∥∥rj − r∥∥

2
≤
∥∥ri − r∥∥

2
for all ri ∈ R̃}. (4.55)

Consequently, the probability that θt = p ∈ {1, 2, ..., 7}, given Tg,c,t, Tg,o,t, and lm,t = q ∈
{0, 1}, is

Pθ(p|nnT (Tg,c,t), nnT (Tg,o,t), q).

Similar to [37], the probabilities PW and Pθ may be calibrated based on observations
made in real or simulated traffic. Likewise, traffic observations may be used to calibrate
the functions initc and inito in (4.52) and (4.53), respectively. For a given T i, T j ∈ T and
θ = p ∈ {1, 2, ..., 7}, the respective output of initc and inito is the average value from

112

observations, i.e.,
initc(T

i, T j, p) = s̄c(T
i, T j, p), (4.56)

inito(T i, T j, p) = s̄o(T i, T j, p), (4.57)

where s̄c(T
i, T j, p) and s̄o(T i, T j, p) are the average values from observations for the given

T i, T j , and p. As for Pθ, nearest-neighbor interpolation according to (4.55) is used to map
Tg,c /∈ T and Tg,o /∈ T onto the discrete set T .

Remark 4.2. The driving model may readily be extended to multiple lanes, which will be

investigated in future work. Moreover, additional cars may be considered (e.g., closest

cars behind the ego car). This increases the complexity of the model due to the additional

states, control inputs (lm ∈ {−1, 0, 1}, where lm = 0 to stay in the current lane, lm = −1 to

switch to the left lane, and lm = 1 to switch to the right lane), and, especially, the increase

in possible transitions/scenarios θ. The increased complexity may be addressed by only

considering the most likely scenarios θ for a given condition (e.g., only consider the 5 most

likely scenarios to compute/estimate the states at the next time instant). This provides a

balance between model complexity and accuracy.

4.5.2 Extension of DCOC Framework to Hybrid Systems

The stochastic DCOC problem in (4.7) is extended to stochastic hybrid systems, where the
focus in this section is on time maximization problems (i.e., the objective is to maximize
the expected value of the first exit-time).

4.5.2.1 Problem Formulation

The DCOC (time maximization) problem for stochastic hybrid systems is given by

max
π∈Π

τ̄(x0, w0, π)

subject to xt+1 = f(xt, ut, wt, θt),
(4.58)

where τ̄(x0, w0, π) is the expected first exit-time defined in (4.6). As before, x ∈ Rn

and u ∈ U denote the state and control input vector, respectively, where ut = π(xt, wt)

and π ∈ Π. Furthermore, w ∈ W = {wj : j ∈ Iw} ⊂ Rnw and θ ∈ Iθ ⊂ Z+ are
random variables. The evolution of w is modeled as a Markov chain where the probability
of transitioning from wi to wj , given θ = p ∈ Iθ, is PW (wj|wi, p) for all i, j ∈ Iw. The

113

probability of θ = p ∈ Iθ, given x ∈ G, u ∈ U , and w ∈ W , is given by

Pθ(p|nnG̃(x), nnŨ(u), w), (4.59)

where G̃ ⊂ G and Ũ ⊂ U are prescribed discrete sets and nn is the nearest-neighbor
operator defined in (4.55).

Remark 4.3. For DCOC problems with stochastic hybrid systems as in (4.58), in order

to guarantee boundedness of the expected first exit-time and value function in analogy to

Theorems 4.1 and 4.2, respectively, Assumption 4.1 is extended as follows. In addition to

the disturbance w̄ ∈ W that overpowers any admissible control, for all x0 ∈ G and π ∈ Π,

there exists a scenario trajectory {θ̄t} that occurs with nonzero probability such that the

deterministic system,

xt+1 = f(xt, π(xt, w̄), w̄, θ̄t),

exits G in at most T steps. Moreover, PW (w̄|w̄, θ̄t) > 0 and w̄ is accessible from each

w ∈ W for all θ̄t ∈ {θ̄t}.

4.5.2.2 Optimal Control and Proportional Feedback VI

The value function is as in (4.8). In analogy to (4.18), using (4.58) and (4.59), the expected
value function for a control input u ∈ U is defined as follows

V̄ (x, u, w) =
∑
p∈Iθ

[∑
j∈Iw

V (f(x, u, w, p), wj)PW (wj|w, p)

]
Pθ(p|nnG̃(x), nnŨ(u), w).

(4.60)
According to (4.21), an optimal control policy π∗ (assuming one exists) maximizes the
expected value of the value function at the next time instant. Hence, with g ≡ 1 in this
case,

π∗(x,w) ∈ max
u∈U

V̄ (x, u, w). (4.61)

The value function V is computed with proportional feedback VI (4.35). Similar to
(4.34), the error en(x,w) at iteration n is given by

en(x,w) = max
u∈U

V̄n(x, u, w) + 1− Vn(x,w), (4.62)

114

where

V̄n(x, u, w) =
∑
p∈Iθ

[∑
j∈Iw

Vn(f(x, u, w, p), wj)PW (wj|w, p)

]
Pθ(p|nnG̃(x), nnŨ(u), w).

(4.63)
Note that the convergence properties in Theorem 4.7 also hold for DCOC problems of

the form (4.58) and the practical considerations stated in Section 2.3.2 apply here as well.
Hence, in practice, V is approximated on a mesh of discrete points (grid) G̃ ×W chosen
in the set G ×W and iterations (4.35) are applied with Vn approximated between the grid
points through interpolation. In Section 4.5.4, this approach is referred to as conventional
DP. Conventional DP is limited to lower-dimensional problems due to the curse of dimen-
sionality (the grid size and computational effort grow exponentially with the dimension).
Hence, a procedure based on ADP that mitigates the curse of dimensionality is proposed in
the next section (Section 4.5.3).

4.5.3 ADP Approach

A feedforward NN is used to approximate the value function, i.e., Ṽ (x,w) ≈ V (x,w) for
all x ∈ G and w ∈ W , and Ṽ (x,w) = 0 if x /∈ G. The NN consists of one input layer
with n + nw inputs, potentially several hidden layers, and an output layer with one linear
output neuron (1L). The neurons of the hidden layers are activated by logistic functions,
see [104]. Standard notation is used to denote an NN with, for example, two hidden layers
by 12-6-1L, where the first hidden layer contains 12 neurons and the second hidden layer
contains 6 neurons.

The NN is trained by the back-propagation algorithm with the momentum term, see
[104]. The set of training points is denoted by

Xtrain = {X1
train, X

2
train, ..., X

ntrain
train },

withXj
train ∈ G×W for each j ∈ {1, 2, ..., ntrain}. The output target values that correspond

to Xtrain are contained in

Vtrain = {V 1
train, V

2
train, ..., V

ntrain
train }.

In combination with proportional feedback VI (4.35) [see line 9 in Algorithm 4.1], the
ADP-based procedure to approximate V is given by Algorithm 4.1. The NN approximation
at iteration n is Ṽn and, for each j ∈ {1, 2, ..., ntrain} and (x,w) = Xj

train, ẽn(Xj
train, V

j
train)

115

is obtained in analogy to (4.62) and (4.63) by

ẽn(Xj
train, V

j
train) = max

u∈U

{∑
p∈Iθ

[∑
q∈Iw

Ṽn(f(x, u, w, p), wq)

× Pw(wq|w, p)
]
Pθ(p|nnG̃(x), nnŨ(u), w)

}
+ 1− V j

train.

(4.64)

To combine the advantages of online and batch learning, a mini-batch approach is em-
ployed in Algorithm 4.1, where the NN is updated based on average values of the output
error Ṽn(Xj

train) − V j
train over subsets of size nmb of the training data; ntrain/nmb ∈ Z+ is

assumed.

Algorithm 4.1 ADP procedure to approximately obtain the value function
1: Xtrain ← randomly generate ntrain points
2: V j

train ← 0 for all j ∈ {1, 2, ..., ntrain}
3: Ṽ0 ← 0
4: n← 0
5: while max

j∈{1,2,...,ntrain}
|ẽn(Xj

train, V
j

train)| > ε do

6: for i← 1 to ntrain/nmb do
7: q ← (i− 1)nmb

8: for j ← 1 to nmb do
9: V q+j

train ← V q+j
train + kẽn(Xq+j

train, V
q+j

train)
10: end for
11: Ṽn+1 ← update NN using {Xq+1

train, ..., X
q+nmb
train } and {V q+1

train, ..., V
q+nmb

train }
12: end for
13: n← n+ 1
14: end while
15: Ṽ ← Ṽn

The approximation π̃∗ of an optimal control policy follows from (4.61), where V [in
(4.60)] is replaced by Ṽ . The parameter ε in Algorithm 4.1 is a convergence threshold that
is set to ε = 0.01. In some cases in Section 4.5.4, the maximum error max |ẽn| in line 5
of Algorithm 4.1 approaches a value close to (but greater than) ε before increasing to large
values. While the maximum error may eventually decrease to small values again and satisfy
max |ẽn| < ε, this may take considerably long. Hence, the convergence criterion is slightly
modified for the case study in Section 4.5.4. In addition to max |ẽn| < 0.01, Algorithm
4.1 is considered to be converged if max |ẽn| < 0.05 and max |ẽn+1| > max |ẽn|. On the
other hand, if max |ẽ100+n| > 1 for some n ∈ Z≥0, Algorithm 4.1 is considered not to be
converged. Numerical studies show that the difference between the control policies based

116

on max |ẽn| < 0.01 and the modified convergence criterion is small, except the former may
require substantially more computation time.

4.5.4 Numerical Case Study

Closed-loop simulation results based on the driving model developed in Section 4.5.1 are
presented, where the respective model probabilities PW and Pθ are calibrated using traffic
observations. For each possible event, the respective probability is approximated by divid-
ing the number of times that the event is observed by the total number of observations. The
traffic data is obtained using the traffic simulator in [105] for a two-lane road involving 15
cars in the immediate vicinity of the controlled/ego car (car length: d = 6 m). The driving
simulator in [105] considers discrete vehicle velocities and accelerations. In this case study,
the surrounding cars can travel with five different velocities defined by

V = {17.2̄, 19.72̄, 22.2̄, 24.72̄, 27.2̄}m/sec,

which corresponds to V = {62, 71, 80, 89, 98} km/h. Note that a bar over a digit indicates
that the digit is repeating, e.g., 0.2̄ = 0.2222.... The study of more realistic traffic situations
(involving a denser or continuous velocity set) is left for future work.

For the relative time gaps Tg,c and Tg,o, T = {0.5, 1, 1.5, 2, 2.5, 3} sec is chosen as the
corresponding discrete set and the maximum headway at which a car can be detected is
smax = 90 m. The acceleration am of the controlled car can take values in the set A =

{−2.5, 0, 2.5}m/sec2. Hence, together with the lane change indicator lm ∈ {0, 1}, the
control constraints are given by U = A× {0, 1}, and Ũ = U . The model sampling time is
set to ∆t = 1 sec, whereas the time for completing lane changes may be greater than 1 sec;
this is the case in the chosen traffic simulator [105]. However, the driving model does not
depend on the actual time for lane changes because a lane change, initiated at time instant
t, is always considered to be completed at t+ 1 (after ∆t), even though the car may still be
traveling towards the new lane at t+ 1.

Initial results showed that the DCOC policy frequently initiates lane changes, which
may be dissatisfying for passengers. Therefore, similar to [103], a fourth state L is intro-
duced in order to limit the number of lane changes. This additional state evolves according
to

Lt+1 = min{Lmax, Lt + ∆t/sec} − Lmaxlm,t, (4.65)

where Lmax/∆t is equivalent to the minimum amount of time between two lane changes,

117

which is enforced by the constraint L ≥ 0. Thus, the state vector is given by

x = [sc, so, vm, L]>,

and the constraints for the DCOC problem (4.58) considered in this case study are given by
the following set

G = {x : Tg,c ≥ 0.5 sec, L ≥ 0, vmin ≤ vm ≤ vmax}, (4.66)

where vmin and vmax are the controlled car’s minimum and maximum velocity, respectively.
Instead of using the headway directly, the relative time gap Tg,c, defined in (4.50), is used
to acknowledge the influence of different traveling speeds. Note that in real traffic appli-
cations, an additional controller would be required to resolve cases of constraint violation,
i.e., when Tg,c < 0.5 sec, and recover constraint satisfaction. This may be achieved by ig-
noring the constraints on L and vm and allowing for larger decelerations/accelerations. As
the design of such a controller is not considered in this chapter, simulations are terminated
when constraints are violated.

In the following, ntrain = 2500 training points are used with a mini-batch size of
nmb = 50 and the momentum rate in the back-propagation algorithm is set to 0.85. The
time tcomp to compute the DCOC policy and the required number of iterations Niter un-
til convergence (the DCOC policy is computed offline by Algorithm 4.1) are reported.
For the ADP approach, these values are average values over 50 samples to account for
different training sets Xtrain, since Xtrain is generated randomly in Algorithm 4.1. More-
over, for each training set, 200 different closed-loop simulations are performed and the
average first exit-time τ̄ (averaged over 50 × 200 = 10000 samples) is reported. The
initial condition for the closed-loop simulations is given by sc,0 = 90 m, so,0 = 50 m,
vm,0 = 22.2̄ m/sec, L0 = Lmax, vc,0 = 22.2̄ m/sec, and vo,0 = 19.72̄ m/sec, and the mini-
mum and maximum velocities for the controlled/ego car in (4.66) are vmin = 19.72̄ m/sec

and vmax = 27.2̄ m/sec.
The procedure is parallelized and implemented in C, where all computations are per-

formed on a computing node with 12 cores (2.67 GHz Intel Xeon X5650 processors) and
48 GB RAM.1 For a learning rate of λ = 5 × 10−4 in the back-propagation algorithm and
a proportional gain of k = 1.6, Table 4.1 shows the computation time, number of itera-
tions until convergence, and the average first exit-time for different NN structures for the
case Lmax = 10. Out of the four NNs in Table 4.1, the 18-12-6-1L NN yields the best

1Flux computing cluster, Advanced Research Computing - Technology Services, University of Michigan,
http://arc-ts.umich.edu.

118

control performance and fastest computation time. The performance of the more complex
24-18-12-6-1L NN may be improved by increasing the number of training points, which,
however, would increase the computation time. The 18-12-6-1L NN is used for all subse-
quent computations in this section.

NN tcomp (sec) Niter τ̄ (sec)

6-1L 46.5 173.5 36.4

12-6-1L 14.8 64.9 285.4

18-12-6-1L 14 45.9 814.6

24-18-12-6-1L 23.8 40.2 698.8

Table 4.1: Autonomous driving problem – ADP (Lmax = 10), performance of different
NN: computation time tcomp to obtain DCOC policy, number of iterations Niter until con-
vergence, and average first exit-time τ̄ .

Table 4.2 summarizes tcomp, Niter, and τ̄ for Lmax = 10, different learning rates λ
(back-propagation algorithm), and different k (proportional feedback VI). Moreover, the
table shows the number of samples that did not converge (out of 50 total samples). While
τ̄ is nearly the same for all configurations of k and λ (τ̄ ≈ 820 sec, except for k = 1.9 and
λ = 7.5× 10−4), increasing k and λ improves the convergence rate and computation time.
If λ is too large, convergence may not be achieved. Of the configurations in Table 4.2, the
fastest convergence is achieved with λ = 5× 10−4 and k = 1.9 (10 sec and 32.4 iterations)
or with λ = 7.5×10−4 and k = 1.8 (10.6 sec and 22 iterations). For the three learning rates
in Table 4.2 and Lmax = 10, Niter is plotted against k in Figure 4.2, where λ = 7.5× 10−4

and k = 1.725 yield the fastest convergence rate (7.9 sec and 18.2 iterations).
For Lmax = 10, Table 4.3 shows tcomp, Niter, and τ̄ (also averaged over 10000 samples)

for conventional DP [with k = 1 in (4.35)], using different grid sizes. It can be seen that
the first exit-time improves with increasing grid size. On the other hand, increasing the
grid size increases the computation time nearly exponentially. While, for denser grids,
conventional DP achieves slightly better results than the ADP approach, computation times
are significantly longer as expected due to the curse of dimensionality. This is a limiting
factor for applications of DP to more complex and higher-dimensional traffic scenarios,
which may be treated with the ADP approach.

Example trajectories for the ADP approach and conventional DP are plotted in Figures
4.3 and 4.4, respectively, showing the relative time gaps Tg,c and Tg,o, the velocity vm of
the controlled car, and the lane change indicator lm. The dashed lines indicate the state and

119

control constraints. A distinguishing feature of the two approaches, which can be observed
in other simulation samples as well, is that the ADP-based policy regulates the velocity to
the prescribed minimum value, whereas the conventional DP policy changes the velocity
more frequently. Since both approaches provide approximations of the optimal solution
(yielding similar exit-times), it is not clear which strategy is more effective in maximizing
the expected first exit-time. Moreover, the optimal solution (if one exists) may not be
unique.

k tcomp (sec) Niter no convergence τ̄ (sec)

1.0
36.4 [18.6]

(18.1)
118 [60.1]

(40.7)
0 [0]
(36)

828.4 [828]
(817.9)

1.1
35.9 [17.5]

(15.9)
115 [56.9]

(37.5)
0 [0]
(15)

819.8 [819.2]
(814.8)

1.2
35 [16.6]

(14.8)
112.5 [54.2]

(34.6)
0 [0]
(1)

819.8 [816.3]
(819.2)

1.3
34.4 [15.9]

(13.8)
110.2 [51.9]

(31.9)
0 [0]
(0)

826.6 [823.2]
(817.8)

1.4
33.7 [15.3]

(13.5)
108.2 [49.6]

(29.3)
0 [0]
(0)

838.1 [804]
(834.5)

1.5
32.9 [14.8]

(13.1)
106.5 [47.7]

(26.9)
0 [0]
(0)

825.1 [810]
(828.6)

1.6
32.7 [14]

(11.5)
104.9 [45.9]

(24.6)
0 [0]
(0)

828.2 [814.6]
(813.8)

1.7
32 [13.6]

(10.3)
102.9 [44.3]

(20.7)
0 [0]
(0)

816.6 [821.6]
(818.2)

1.8
31.3 [13.2]

(10.6)
100.2 [42.8]

(22)
0 [0]
(0)

818.1 [816.5]
(813.9)

1.9
27.6 [10]

(82.5)
88.2 [32.4]

(157.3)
0 [0]
(38)

828.5 [817.6]
(82)

1.92
22.7 [11.7]

(n/a)
54.6 [37.5]

(n/a)
0 [0]
(50)

815.2 [826.5]
(n/a)

Table 4.2: Autonomous driving problem – ADP (Lmax = 10): computation time tcomp

to obtain DCOC policy, number of iterations Niter until convergence, number of samples
without convergence, and average first exit-time τ̄ for λ = 2.5 × 10−4 [λ = 5 × 10−4]
(λ = 7.5× 10−4).

120

The influence of Lmax and vmin on the first exit-time can be seen in Table 4.4 and
Figure 4.5. Figure 4.5 shows τ̄ plotted over Lmax. As expected, increasing Lmax, i.e.,
decreasing the allowed maximum frequency for lane changes, yields smaller τ̄ . In contrast
to the previous results where vmin = 19.72̄ m/sec, Table 4.4 lists the average first exit-time,
based on the ADP approach, for different vmin and Lmax = 10. When vmin is equal to the
lowest possible velocity of the surrounding cars, the optimal first exit-time is indefinite.
For vmin > 17.2̄ m/sec, τ̄ decreases with increasing vmin.

k
1 1.2 1.4 1.6 1.8 2

N
ite

r

50

100

150 6 = 2.5x10-4
6 = 5x10-4

6 = 7.5x10-4

Figure 4.2: Autonomous driving problem – ADP (Lmax = 10): number of iterations Niter

until convergence vs. proportional gain k for different λ.

nsc × nso × nL tcomp (sec) Niter τ̄ (sec)

2× 2× 2 19.8 1352 472.9

3× 3× 3 83 2427 545.4

4× 4× 4 100.3 1555 709

5× 5× 5 230.7 2246 779.7

6× 6× 6 367.8 2424 825.2

7× 7× 7 561.7 2634 857.5

8× 8× 8 988.1 3126 879.4

Table 4.3: Autonomous driving problem – conventional DP (Lmax = 10): computation time
tcomp to obtain DCOC policy, number of iterationsNiter until convergence, and average first
exit-time τ̄ for different grids nsc ×nso ×nvm ×nL×nvc ×nvo (number of discrete values
considered for each variable), where nvm = 4 and nvc = nvo = 5 are fixed.

121

time (min)
0 5 10 15 20

T
gc

 (
se

c)

0

2

4

time (min)
0 5 10 15 20

T
go

 (
se

c)

0

2

4

time (min)
0 5 10 15 20

v m
 (

m
/s

ec
)

20

22

24

26

28

time (min)
0 5 10 15 20

l m

0

0.5

1

Figure 4.3: Autonomous driving problem – ADP (Lmax = 10): sample trajectories of
relative time gap Tg,c for the ego car’s current lane (top left), relative time gap Tg,o for other
lane (top right), velocity vm of ego car (bottom left), and lane change indicator lm of ego
car (bottom right) over time.

time (min)
0 5 10 15

T
gc

 (
se

c)

0

2

4

time (min)
0 5 10 15

T
go

 (
se

c)

0

2

4

time (min)
0 5 10 15

v m
 (

m
/s

ec
)

20

22

24

26

28

time (min)
0 5 10 15

l m

0

0.5

1

Figure 4.4: Autonomous driving problem – conventional DP (Lmax = 10): sample trajec-
tories of relative time gap Tg,c for the ego car’s current lane (top left), relative time gap Tg,o

for other lane (top right), velocity vm of ego car (bottom left), and lane change indicator lm
of ego car (bottom right) over time.

122

vmin (m/sec) 17.2̄ 19.72̄ 22.2̄ 24.72̄ 27.2̄

τ̄ (sec) ∞ 820 200.7 85.4 36.9

Table 4.4: Autonomous driving problem – ADP (Lmax = 10): average first exit-time τ̄ for
different vmin.

L
max

5 10 15 20 25 30

av
er

ag
e
=

(s
ec

)

200

400

600

800

1000

1200

Figure 4.5: Autonomous driving problem – ADP: average first exit-time τ̄ vs. Lmax.

4.6 Other Numerical Case Studies

Other numerical case studies of stochastic DCOC problems are considered in this section.
The first problem in Section 4.6.1 is the control of a pendulum under random disturbance.
Section 4.6.2 considers glider flight management. An ACC problem is treated in Section
4.6.3. Each respective problem is solved using adaptive proportional feedback VI with
damping from Section 4.4.2, where iterations (4.49) are applied to a discrete subset (grid)
G̃ of G, using linear interpolation to evaluate Vn between the grid points. The convergence
criterion is set to max(x,w)∈G̃×W |en(x,w)| ≤ 0.01 and V0 ≡ 1.

4.6.1 Stochastic Pendulum

Consider a pendulum subject to a random horizontal disturbance force Fw, where Fw is
modeled by a Markov chain. The objective is to maximize the expected value of the first
exit-time (i.e., g ≡ 1). The discrete-time model is obtained from the continuous-time
model using Euler’s forward method. By denoting the pendulum’s angle by φ and its
angular velocity by ω, the discrete-time model reads

123

φt+1 = φt + ∆tωt,

ωt+1 = ωt + ∆t

[
Mu,t

ml2
− gE

l
sin(φt)−

Fw,t
ml

cos(φt)

]
,

(4.67)

with a sampling time of ∆t = 0.1 sec. The control input at a time instant t is Mu,t ∈ U =

[−1, 1] Nm. The length of the pendulum is l = 1 m, its mass is m = 1 kg, and gE = 9.81

m/sec2. The disturbance takes values from the set W = {−1.75,−0.75, 0, 0.75, 1.75} N
and the associated matrix of transition probabilities is

PW =


0.25 0.4 0.35 0 0

0.35 0.2 0.25 0.2 0

0.2 0.3 0.25 0.15 0.1

0.1 0.1 0.5 0.2 0.1

0.2 0.1 0.3 0.2 0.2

 .

The state constraints for this case study are given by the set

G = {φ, ω : φ ∈ [−0.4, 0.4] rad, ω ∈ [−1.2, 1.2] rad/sec} ,

which is discretized using an equidistant grid of 9 points ranging from -0.4 to 0.4 rad for φ
and an equidistant grid of 25 points from -1.2 to 1.2 rad/sec for ω. For numerical reasons,
the set U needs to be discretized as well, where an equidistant grid of 21 points from -1 to
1 Nm is used. The initial gains are set to k0 ≡ 1.

/ #10-3
0 1 2 3 4

of

 it
er

at
io

ns

500

1000

1500
no damping
with damping, 1=0.95
with damping, 1=0.75

Figure 4.6: Stochastic pendulum problem: number of iterations until convergence vs. learn-
ing rate δ.

Figure 4.6 shows the required number of iterations until convergence for different val-
ues of the learning rate δ using no damping (black dots), moderate damping with ζ = 0.95

124

(red x’s), and increased damping with ζ = 0.75 (green circles). For δ = 0 and no damp-
ing, the algorithm is identical to conventional VI which requires 1690 iterations to con-
verge. The convergence rate improves with increasing δ. There is no difference between
the damped and undamped algorithms up to δ ≥ 0.001 for which the undamped algorithm
fails to converge. With damping, however, the algorithm continuous to converge. The con-
vergence rate with moderate damping (ζ = 0.95) is faster than with increased damping
(ζ = 0.75). The moderate damping approach fails to converge for δ ≥ 0.004, whereas the
increased damping approach converges up to δ = 0.00475. For δ = 0.00375 and ζ = 0.95,
the algorithm requires 488 iterations to converge, which is more than three times as fast as
with conventional VI.

time (sec)
0 500 1000 1500 2000

?
 (

de
g)

-20

0

20

time (sec)
0 500 1000 1500 2000

!
 (

de
g/

se
c)

-50

0

50

time (sec)
0 5 10 15 20

M
u (

N
m

)

-1

0

1

Figure 4.7: Stochastic pendulum problem – sample results for some random disturbance
profile. Top: angle φ vs. time. Middle: angular velocity ω vs. time. Bottom: control input
during the first 25 sec vs. time.

125

Figure 4.7 shows sample trajectories of the states φ and ω over time (top and middle
plot) that result from applying the DCOC-based control policy to the pendulum for some
random disturbance profile. The disturbance is counteracted while the system stays inside
the prescribed set (dashed red lines in Figure 4.7) until about 2100 sec elapsed time. Note
that the value functions, approximated based on adaptive proportional feedback VI with
damping, are all identical (within numerical tolerances) for the different parameter settings
in Figure 4.6. The corresponding control input is shown in Figure 4.7 (bottom) for the first
25 sec, where the dashed red lines indicate the control constraints.

4.6.2 Glider Flight Management

In this section, a stochastic DCOC problem of glider flight management is treated in order
to maximize the expected time of flight. Let h [ft] be the altitude of the glider and s [miles]

its range (relative to a reference point). The following simplified model is considered to
describe the glider’s flight,

ht+1 =ht + (1− σt)(τtwth,t + ∆t(wd,t − vz,t)(1− τt))

− σt(∆hturn(1− τt)− τtwth,t),

st+1 = st + ∆t(1− σt)(1− τt)dtvt/3600,

dt+1 = dt − 2σtsgn(dt),

(4.68)

where ∆t = 60 sec and d ∈ {−1, 1} indicates the direction of flight. The variables
wth ∈ {0, 100, 200} ft (thermal strength) and wd ∈ {−6.67,−3.33, 0, 3.33} ft/sec (updraft
strength) are random inputs modeled by a Markov chain. In this case study, the transition
probabilities are state-dependent. The developed DCOC framework is readily extended to
consider state-dependent transition probabilities by replacing PW (wi|w) by PW (wi|w, x)

in (4.18), where x is the state vector. In this case, x = [h, s, d]> and w = [wth, wd]>.
For wth, there are two transition probability matrices Pth,s≤2 and Pth,s>2, where Pth,s≤2

is the transition probability matrix for s ≤ 2 miles and Pth,s>2 for s > 2 miles. Pth,s≤2 and
Pth,s>2, respectively, are given by 0.7 0.25 0.05

0.3 0.55 0.15

0.2 0.4 0.4

 ,
 0.75 0.05 0.2

0.3 0.3 0.4

0.55 0.2 0.25

 .
Similarly, two state-dependent transition probability matrices Pd,s≤3 and Pd,s>3 are consid-

126

ered for wd, which are, respectively, given by
0.04 0.25 0.7 0.01

0.1 0.25 0.55 0.1

0.05 0.1 0.7 0.15

0.01 0.04 0.75 0.2

 ,


0.02 0.07 0.83 0.08

0.01 0.08 0.81 0.1

0.01 0.03 0.65 0.31

0.01 0.05 0.54 0.4

 .

The control variables are τ ∈ {0, 1} (indicating whether to climb a thermal or not),
σ ∈ {0, 1} (indicating whether to turn 180 deg or not), and the horizontal velocity

v ∈ {34.0, 36.0, 38.0, 40.0, 42.0, 44.0, 46.0, 48.0, 52.0, 60.0, 66.0}mph.

The glider is assumed to perform a turn within 60 sec and the altitude decreases by ∆hturn =

250 ft during each turn. Note that it is also possible to turn while climbing a thermal. The
sink rate vz in (4.68) is a function of the horizontal velocity [39]: vz = 8.2582− 0.287v +

0.0038v2.
The objective is to maximize the expected first exit-time from the set

G = {x : h ∈ [1000, 3000] ft, s ∈ [0, 5] miles},

where both altitude and range constraints are taken into account. The set G is discretized
with an equidistant grid comprising 15 points for each h and s. The initial gains are set to
k0 ≡ 1.9.

Two different damping configurations are analyzed: ζ = 0.95 (less damping) and ζ =

0.93 (more damping). The number of iterations until convergence is shown for different
learning rates δ in the top of Figure 4.8. As in the previous case study (Section 4.6.1), larger
δ are possible with more damping. The fastest convergence is achieved with δ = 0.0022 for
ζ = 0.95 (53 iterations) and with δ = 0.014 for ζ = 0.93 (53 iterations). This corresponds
to a computation time of about 0.3 sec for a C implementation on a computing cluster with
12 cores. In contrast, conventional VI requires 205 iterations to converge (about 4 times as
long). Note that the algorithm does not converge (for δ ≥ 0) without damping due to the
large initial gains, k0 ≡ 1.9.

Sample trajectories of the altitude h and range s when using the computed DCOC
policy are plotted over time in the middle and bottom, respectively, of Figure 4.8, where
the constraints are indicated by dotted red lines.

127

/

0 0.005 0.01 0.015 0.02

of
 it

er
at

io
ns

100

200

300
conventional value iteration
new algorithm, 1=0.95
new algorithm, 1=0.93

time (min)
0 20 40 60 80 100

h
(f

t)

1000

1500

2000

2500

3000

time (min)
0 20 40 60 80 100

s
(m

ile
s)

0

2

4

Figure 4.8: Glider flight management problem: number of iterations until convergence
vs. learning rate δ (top) and example trajectories showing the altitude h vs. time (middle)
and the range s vs. time (bottom).

4.6.3 Adaptive Cruise Control

A stochastic ACC problem, similar to the problem in [37], is treated. Two vehicles are
involved, the lead vehicle and the follower vehicle. The objective is to control the speed
of the follower vehicle, vf , such that the time gap between the two vehicles, Tg = s/vf ,
where s is the relative distance, stays within prescribed bounds for as long as possible.
The speed of the lead vehicle vl is modeled by a Markov chain that takes values in the set
W = {26.4, 26.645, ..., 31.3} m/sec, containing 21 elements. The model is given by

st+1 = st + ∆t(vl,t − vf,t),

vf,t+1 = vf,t + ∆tat,
(4.69)

128

and the sampling time is ∆t = 1 sec. The control input at a time instant t is

at ∈ {−0.25,−0.125, 0, 0.125, 0.25} m/sec2,

which is the acceleration of the follower vehicle. The transition probabilities of the lead
vehicle velocity are similar to the values in [37], which are based on experimental data.
Moreover, as in [37], the possibility of another vehicle cutting in upfront is taken into
account by slightly modifying the model. Such an event may occur with a probability of
0.1 if the time gap Tg is greater than 2.2 sec. In case of another vehicle cutting in upfront,
the distance between the vehicles is set to half of the previous distance. Moreover, the
vehicle is assumed to cut in with a speed of 28.85 m/sec.

/

0 0.005 0.01 0.015 0.02 0.025 0.03

of

 it
er

at
io

ns

3000

4000

5000

6000
conventional value iteration
new algorithm, no damping
new algorithm, 1=0.95
new algorithm, 1=0.85

Figure 4.9: Adaptive cruise control problem, DP-based solution: number of iterations until
convergence vs. learning rate δ.

The state constraints for this problem are given by the set

G = {s, vf : Tg = s/vf ∈ [0.5, 2.5] sec, vf ≤ 30 m/sec},

which is discretized using an equidistant grid of 15 points from 10 to 80 m for s and 10
points from 25.4 to 30 m/sec for vf .

The initial gains are set to k0 ≡ 1. Figure 4.9 shows the number of iterations until
convergence for different learning rates δ and damping configurations, where the algorithm
fails to converge for δ > 0.001 without using damping. With damping, on the other hand,
δ can be further increased which improves the convergence rate. The fastest convergence
with a damping factor of ζ = 0.95 occurs for δ = 0.019 (2521 iterations, 3.2 sec com-
putation time for a C implementation on a 12-core cluster) before the algorithm fails to
converge (δ > 0.019). Larger learning rates are possible with more damping (ζ = 0.85),
where the fastest convergence is achieved with δ = 0.025 (2549 iterations). In contrast,
conventional VI (δ = 0, no damping) requires 6442 iterations, which is more than twice

129

as long. Note that the different configurations in Figure 4.9 converge to the same value
function (within the prescribed tolerance).

Sample simulation results are plotted in Figure 4.10, including the time history of the
time gap Tg (top left), the velocity of the follower vehicle vf (top right), the control input
(bottom left), and the disturbance, i.e., lead vehicle velocity vl (bottom right). The respec-
tive constraints are indicated by dotted red lines. On average (1000 random simulations),
constraint violation occurs after 2591 sec (43.2 min). As can be seen from the follower
vehicle velocity and acceleration plots (top right and bottom left plots in Figure 4.10), fre-
quent velocity changes are performed by the control policy, which may be uncomfortable
for passengers and inefficient in terms of fuel consumption. This issue may be addressed
by adding a control input penalty to the objective function, which is done in Section 5.5.2.

time (min)
0 10 20 30

T
g (

se
c)

0.5

1

1.5

2

2.5

time (min)
0 10 20 30

v f (
m

/s
ec

)
26

28

30

time (min)
0 10 20 30

a
(m

/s
ec

2)

-0.2

0

0.2

time (min)
0 10 20 30

v l (
m

/s
ec

)

26

28

30

Figure 4.10: Adaptive cruise control problem, DP-based solution: sample trajectories over
time of time gap Tg between the two vehicles (top left), follower vehicle velocity vf (top
right), acceleration of follower vehicle a (bottom left), and lead vehicle velocity vl (bottom
right).

4.7 Summary

This chapter treated the DCOC problem for stochastic systems using DP techniques. The-
oretical properties of the problem were studied, including conditions under which the ex-
pected value of the first exit-time and the value function are bounded from above, which
are necessary conditions for the existence of a solution, as well as characteristics of a so-
lution and additional conditions under which a solution exists. An enhanced version of
the VI algorithm was proposed. Numerical case studies of stochastic DCOC problems of

130

ACC, glider flight management, and pendulum control demonstrated that the enhanced VI
algorithm is able to obtain an approximation of the value function faster than conventional
VI for proper parameter settings.

Furthermore, based on stochastic DCOC, an approach for high-level control / decision-
making for autonomous cars was presented. A probabilistic driving model for a two-lane
road, which may be extended to multiple lanes in future work, was developed. Based on
this model, the stochastic DCOC problem was formulated with the objective of maintaining
a prescribed safe headway to the car in front for as long as possible (on average). An
ADP approach based on proportional feedback VI was proposed to obtain an approximate
solution. Numerical results showed that this approach can be advantageous compared to
conventional DP techniques. Moreover, in contrast to conventional DP, the ADP approach
may be able to treat higher-dimensional problems (e.g., multiple lanes and more complex
traffic scenarios).

131

CHAPTER 5

Stochastic DCOC – Tree-Based SMPC

5.1 Problem Formulation

The focus of this chapter is on stochastic DCOC problems with the objective of maximizing
the expected value of the first exit-time, i.e., g ≡ 1 in (4.7). Moreover, stochastic linear
systems of the form

xt+1 = Atxt +Btut + wt, (5.1)

are considered, where At and Bt are time-dependent matrices of proper dimension and wt
denotes a random disturbance at a time instant t ∈ Z≥0. As in Chapter 4, w is modeled by
a Markov chain that takes values in the finite set W , see (4.2), with transition probabilities
given by PW , see (4.3). Using the results of Sections 5.2 and 5.3, an SMPC scheme is pro-
posed in Section 5.4, where the linear-model-based [see (5.1)] solution is recomputed over
a moving time horizon based on the current state and disturbance to compensate for unmod-
eled effects. Thus, the proposed SMPC scheme can be effective in obtaining approximate
solutions to DCOC problems involving more general stochastic nonlinear system models.

In analogy to (4.6) and (4.7), the stochastic DCOC problem considered in this chapter
is as follows

max
π∈Π

τ̄(x,w, π), (5.2)

where τ̄(x,w, π) is the average (i.e., the expected value of the) first exit-time, which is
defined similarly to (4.5) by

τ(x0, w0, π) = inf{t ∈ Z≥0 : xt /∈ Gt}, (5.3)

where xt is the response of (5.1) to the initial condition x0 ∈ G0 and w0 ∈ W when using
the control policy

π ∈ Π = {π : Gt ×W × Z≥0 → Ut for all t ∈ Z≥0},

132

i.e., ut = π(xt, wt, t) in (5.1). Note that, in contrast to Chapter 4, the state constraints (given
by the sets Gt) and the control constraints (given by the sets Ut) can be time-dependent.

Throughout this chapter, the following assumption about the sets Gt and Ut is made.

Assumption 5.1. The sets Gt and Ut are polytopes for all t ∈ Z≥0, where Gt is expressed
as follows

Gt = {x : Ctx ≤ bt}. (5.4)

5.2 Scenario Tree

Figure 5.1: Scenario tree example for 12 nodes, including |SN | = 6 leaf nodes.

In order to optimize over a subset of all possible disturbance scenarios, similar to the work
in [106], a scenario tree is constructed that contains the most likely disturbance scenarios
for a given number of tree nodes. A tree node is denoted by η ∈ TN , where

TN = {η0, η1, ..., ηN},

denotes a tree with N + 1 nodes. The node η0 is the root node of the tree. The predecessor
of a node η ∈ TN is given by pre(η). The set of successors of a node η ∈ TN is denoted by

succ(η) = {ηsucc(η)
1 , η

succ(η)
2 , ..., η

succ(η)
|W | },

and the set of leaf nodes of TN has the form,

SN = {η ∈ TN : succ(η) ∩ TN = ∅}.

133

Figure 5.1 shows an example scenario tree T11 = {η0, η1, ..., η11} for a given Markov
chain with |W | = 3. For example, succ(η1) = {η2, η6, η11} and ηsucc(η1)

1 = η2, ηsucc(η1)
2 =

η6, and ηsucc(η1)
3 = η11 in Figure 5.1. The set of leaf nodes is S11 = {η5, η7, η8, η9, η10, η11}

in Figure 5.1.
A state vector xη, control input uη, disturbance wη, and time instant tη are associated

with each η ∈ TN , where xη0 = x0, wη0 = w0, and tη0 = 0 for the root node. Moreover,
for each η ∈ TN \ {η0}, xη satisfies the dynamics in (5.1),

xη = Atpre(η)x
pre(η) +Btpre(η)u

pre(η) + wpre(η). (5.5)

Algorithm 5.1 Generation of scenario tree TN
1: TN ← {η0}
2: C ← ∅
3: ρη0 ← 1
4: tη0 ← 0
5: xη0 ← x0

6: wη0 ← w0

7: i← 0
8: while i < N do
9: for j ∈ {1, 2, ..., |W |} do

10: wη
succ(ηi)
j ← wj (wj ∈ W)

11: tη
succ(ηi)
j ← tηi + 1

12: ρη
succ(ηi)
j ← ρηiPW (wj|wηi)

13: end for
14: C ← C ∪ succ(ηi)
15: ηi+1 ← arg maxη∈C ρ

η (pick any maximizer)
16: TN ← TN ∪ {ηi+1}
17: C ← C \ {ηi+1}
18: i← i+ 1
19: end while

The probability of reaching node η ∈ TN , starting from the root node, is given by

ρη = ρpre(η)PW (wη|wpre(η)) ∈ [0, 1], (5.6)

where ρη0 = 1. Algorithm 5.1 implements the scenario tree generation scheme. The set C
contains the candidate nodes that are considered when adding a node to the tree. At each
iteration, the node η ∈ C with the greatest probability ρη is chosen from the set of candidate
nodes, and the successors of η are added to the list of candidate nodes.

In general, the scenario tree TN contains |SN | ≥ 1 unique disturbance trajectories that

134

are denoted by

{wt}η = {wt : t ∈ Z[0,tη]}η = (w0, ..., w
pre(pre(η)), wpre(η), wη), (5.7)

for each leaf node η ∈ SN . For example, {wt}η9 = (w0, w
η1 , wη6 , wη9) in Figure 5.1.

For a given tree TN with initial x = x0 ∈ G0 and w = w0 ∈ W and control policy
πN ∈ Π, the deterministic first exit-time corresponding to the disturbance trajectory {wt}η,
see (5.7), is defined by

τ ηN(x,w, πN) = min{min{t ∈ Z[0,tη] : xt /∈ Gt} ∪ {tη + 1}}, (5.8)

for each η ∈ SN , where xt is the deterministic response of (5.1) under {wt}η when using
the control policy πN ∈ Π. Note that for some {wt}η, xt may not exit Gt for t ∈ Z[0,tη]; in
this case, τ ηN(x,w, πN) = tη + 1 in line with (5.8). The average first exit-time for a given
scenario tree TN and control policy πN ∈ Π is given by

τ̄N(x,w, πN) =
∑
η∈SN

τ ηN(x,w, πN)ρη. (5.9)

In analogy to the stochastic DCOC problem (5.2), the control problem of maximizing
the average first exit-time over a subset of disturbance scenarios defined by TN is as follows

max
πN∈Π

τ̄N(x,w, πN). (5.10)

The following sets are defined

Hη
N = {η0, ..., pre(pre(η)), pre(η), η}, for all η ∈ SN , (5.11)

KξN = {η ∈ SN : ξ ∈ Hη
N}, for all ξ ∈ TN , (5.12)

whereHη
N is the set of nodes of the disturbance scenario associated with leaf node η ∈ SN

and KξN is the set of leaf nodes whose associated disturbance scenarios contain the node
ξ ∈ TN . For example, in Figure 5.1,

Hη7
11 = {η0, η1, η2, η7} and Kη111 = {η5, η7, η9, η11}.

Moreover, for a given control policy π ∈ Π and scenario tree TN , N ∈ Z+, with initial
condition x = x0 ∈ G0 and w = w0 ∈ W , the set of leaf nodes η ∈ SN with associated

135

first exit-time τ ηN(x,w, π) = i ∈ Z+ is given by

ZN(π, i) = {η ∈ SN : τ ηN(x,w, π) = i}. (5.13)

The next result (Theorem 5.1) shows that, in terms of the average first exit-time, a solu-
tion to (5.10) is arbitrarily close to a solution (if one exists) of problem (5.2) for sufficiently
large N . Theorem 5.1 is based on Lemma 5.1.

Lemma 5.1.
lim
N→∞

τ̄N(x,w, π) = τ̄(x,w, π), (5.14)

for all x ∈ G0, w ∈ W , and π ∈ Π.

Proof. Let π ∈ Π be a given control policy and x ∈ G0 and w ∈ W be a given initial
condition. Then, by (5.9),

lim
N→∞

τ̄N(x,w, π) = lim
N→∞

∑
η∈SN

τ ηN(x,w, π)ρη

= lim
N→∞

 tN∑
i=1

i
∑

η∈ZN (π,i)

ρη

 ,

(5.15)

where tN = max{tη : η ∈ TN} + 1. Since W is a finite set, it follows from the tree
generation procedure (Algorithm 5.1) that eventually every branch corresponding to non-
zero probability of next disturbance value continuous. Thus, for each i ∈ Z+,

lim
N→∞

∑
η∈ZN (π,i)

ρη = Prob(τ(x,w, π) = i). (5.16)

Moreover, tN →∞ as N →∞. Consequently, (5.15) and (5.16) imply that

lim
N→∞

τ̄N(x,w, π) =
∞∑
i=1

iProb(τ(x,w, π) = i)

= τ̄(x,w, π).

(5.17)

Theorem 5.1. Suppose a solution to the stochastic DCOC problem (5.2) exists for all x ∈
G0 and w ∈ W . Then, for each x ∈ G0, w ∈ W , and ε > 0, there exists N̄ > 0 such that

τ̄(x,w, π∗N) + ε ≥ max
π∈Π

τ̄(x,w, π), (5.18)

136

where π∗N ∈ arg maxπN∈Π τ̄N(x,w, πN), for all N ≥ N̄ .

Proof. For a given initial x ∈ G0 and w ∈ W , let TN be the scenario tree for a given
N ∈ Z+. Moreover, let π∗ ∈ Π be a solution to the stochastic DCOC problem (5.2), which
exists by assumption, and let π∗N ∈ Π be a control policy that maximizes the average first
exit-time associated with TN according to (5.10), which exists due to the existence of a
solution to (5.2). It follows that

τ̄N(x,w, π∗N) ≥ τ̄N(x,w, π∗). (5.19)

The optimal average first exit-time of the DCOC problem may be written as follows

τ̄(x,w, π∗) = τ̄N(x,w, π∗) + τ̄Rest,N(x,w, π∗), (5.20)

where τ̄Rest,N is the average first exit-time of all scenarios not described by TN . By Lemma
5.1, τ̄N(x,w, π∗) approaches τ̄(x,w, π∗) as N → ∞ and thus τ̄Rest,N → 0. This implies
that for every ε > 0, there exists N̄ > 0 such that

τ̄(x,w, π∗) ≤ τ̄N(x,w, π∗) + ε, (5.21)

for all N ≥ N̄ . It follows from (5.19) and (5.21) that

τ̄N(x,w, π∗N) + ε ≥ τ̄(x,w, π∗), (5.22)

for all N ≥ N̄ . In analogy to (5.20), it follows from adding τ̄Rest,N(x,w, π∗N) to (5.22) that

τ̄(x,w, π∗N) + ε ≥ τ̄(x,w, π∗), (5.23)

for all N ≥ N̄ , which proves (5.18).

5.3 MILP Formulation

In this section, an MILP is proposed that solves (5.10), where, by Theorem 5.1, the average
first exit-time of a solution to (5.10) is arbitrarily close to the average first exit-time of a
solution to the stochastic DCOC problem (5.2) for a sufficiently large N .

In what follows, a set of control inputs for a given tree TN is denoted by

UN = {uη ∈ Utη : η ∈ TN \ SN}. (5.24)

137

Moreover, a given UN defines a control policy πUN according to

πUN (xη, wη, tη) = uη ∈ UN , (5.25)

for each η ∈ TN \ SN and xη satisfying (5.5) where upre(η) ∈ UN . Likewise, a control
policy π∗N ∈ Π defines a set of control inputs for a given tree TN by

UN(π∗N) = {uη = π∗N(xη, wη, tη) : η ∈ TN \ SN}, (5.26)

where xη satisfies (5.5) for upre(η) ∈ UN(π∗N).
Using (5.4) [see (5.27e)], (5.5) [see (5.27b)], and (5.24) [see (5.27a)], the MILP for a

given tree TN is as follows

min
UN ,DN

∑
η∈TN

∑
ξ∈Kη

δηρξ s.t. (5.27a)

xη = Atpre(η)x
pre(η) +Btpre(η)u

pre(η) + wpre(η), ∀η ∈ TN \ {η0} (5.27b)

δη ≥ δpre(η), ∀η ∈ TN \ {η0} (5.27c)

δη ∈ {0, 1} ⊂ Z, ∀η ∈ TN (5.27d)

Ctηx
η ≤ btη + 1Mδη, ∀η ∈ TN , (5.27e)

where
DN = {δη ∈ {0, 1} : η ∈ TN}, (5.28)

denotes a set of δη values for tree TN . Moreover,M is a large positive number, 1 denotes the
n-dimensional row vector of ones, and the control constraints uη ∈ Utη for all η ∈ TN \SN
are satisfied due to (5.24). The next result states conditions for the existence of a solution
to MILP (5.27).

Lemma 5.2. For a given TN , N ∈ Z+, suppose M > 0 is sufficiently large such that

Ctηx
η ≤ btη + 1M for all η ∈ TN and xη according to (5.27b) for any UN . Then a solution

to MILP (5.27) exists.

Proof. Because M is assumed to be sufficiently large, for a given TN , N ∈ Z+, δη = 1

for all η ∈ TN satisfies the constraints of the MILP for any UN . Since δη ∈ {0, 1}, the
number of possible DN is finite. Furthermore, ρξ ∈ [0, 1] for all ξ ∈ TN . Thus, a feasible
solution exists for at least one of theDN sets and the existence of a solution to MILP (5.27)
follows.

The following theorem shows that, under suitable assumptions and based on (5.25) and

138

(5.26), a solution to MILP (5.27) is equivalent to a solution to (5.10).

Theorem 5.2. Suppose Assumption 5.1 holds, a solution to (5.10) exists for all x ∈ G0 and

w ∈ W , and M is sufficiently large as in Lemma 5.2. Then U∗N is a solution to MILP (5.27)
if the control policy πU∗N according to (5.25) is a solution to (5.10). Likewise, π∗N ∈ Π is a

solution to (5.10) if UN(π∗N) according to (5.26) is a solution to MILP (5.27).

Proof. Let x = x0 ∈ G0 and w = w0 ∈ W be a given initial condition and TN be the
corresponding scenario tree, N ∈ Z+. For the first part of the proof, suppose π∗N is a
solution to (5.10). Thus,

τ̄N(x,w, π∗N) ≥ τ̄N(x,w, π#
N), (5.29)

for all π#
N ∈ Π. A solution to MILP (5.27) exists due to the assumptions and Lemma

5.2. Using (5.26), fix UN = UN(π∗N) in MILP (5.27) and denote the resulting DN by
D∗N = {δη∗ ∈ {0, 1} : η ∈ TN}. Similarly, let D#

N = {δη# ∈ {0, 1} : η ∈ TN}
denote the MILP solution when UN = UN(π#

N) is fixed. Hence, by (5.27c)–(5.27e), for
each η ∈ SN , δξ∗ = 1 iff tξ ≥ τ ηN(x,w, π∗N), δξ# = 1 iff tξ ≥ τ ηN(x,w, π#

N), δξ∗ = 0

iff tξ < τ ηN(x,w, π∗N), and δξ# = 0 iff tξ < τ ηN(x,w, π#
N) for all ξ ∈ Hη

N . Consequently,
according to (5.8), it follows that

τ ηN(x,w, π∗N) = tη + 1−
∑
ξ∈HηN

δξ∗, (5.30a)

τ ηN(x,w, π#
N) = tη + 1−

∑
ξ∈HηN

δξ#, (5.30b)

for all η ∈ SN . Then, using (5.9), (5.29), and (5.30), one obtains∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ∗)ρη = τ̄N(x,w, π∗N)

≥ τ̄N(x,w, π#
N) =

∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ#)ρη.
(5.31)

Consequently, ∑
η∈SN

∑
ξ∈HηN

δξ∗ρη ≤
∑
η∈SN

∑
ξ∈HηN

δξ#ρη. (5.32)

By (5.11) and (5.12), η ∈ SN and ξ ∈ Hη
N iff ξ ∈ TN and η ∈ KξN . Therefore, (5.32) is

equivalent to ∑
ξ∈TN

∑
η∈KξN

δξ∗ρη ≤
∑
ξ∈TN

∑
η∈KξN

δξ#ρη, (5.33)

139

which shows that UN(π∗N),D∗N is a solution to MILP (5.27). This completes the first part
of the proof.

For the second part of the proof, let U∗N ,D∗N be a solution to MILP (5.27), which exists
by Lemma 5.2, where D∗N = {δη∗ ∈ {0, 1} : η ∈ TN}. Hence,∑

η∈TN

∑
ξ∈KηN

δη∗ρξ ≤
∑
η∈TN

∑
ξ∈KηN

δη#ρξ, (5.34)

for any UN = U#
N fixed in MILP (5.27) with corresponding solutionD#

N = {δη# ∈ {0, 1} :

η ∈ TN}. Now define πU∗N according to (5.25). Since the dynamics in (5.1) and (5.27b) are
equivalent, it follows from (5.8) and (5.27c)–(5.27e) that, for each η ∈ SN ,

τ ηN(x,w, πU∗N) = min{min{tξ ∈ Z[0,tη] : δξ∗ = 1, ξ ∈ Hη
N} ∪ {t

η + 1}}

= tη + 1−
∑
ξ∈HηN

δξ∗. (5.35)

Thus, by (5.9), the average first exit-time of tree TN with control policy πU∗N is given by

τ̄N(x,w, πU∗N) =
∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ∗)ρη. (5.36)

In analogy, define πU#
N

according to (5.25). Hence,

τ̄N(x,w, πU#
N

) =
∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ#)ρη. (5.37)

Using (5.11) and (5.12), it follows from (5.34), (5.36), and (5.37) that

τ̄N(x,w, πU∗N)− τ̄N(x,w, πU#
N

) =
∑
η∈SN

∑
ξ∈HηN

(δξ# − δξ∗)ρη

=
∑
ξ∈TN

∑
η∈KξN

(δξ# − δξ∗)ρη ≥ 0,
(5.38)

implying that πU∗N is a solution to (5.10).

140

5.4 SMPC Strategy

5.4.1 Theoretical Results

For a given scenario tree TN with initial w ∈ W and root node wη0 = w, the control policy
πU∗N , derived from the MILP solution U∗N according to (5.25), maximizes the average first
exit-time τ̄N for a given TN (Theorem 5.2) and achieves average first exit-times τ̄ arbitrarily
close to the optimal value of the stochastic DCOC problem (5.2) for sufficiently large N
(Theorem 5.1). However, πU∗N is only defined for the disturbance scenarios encoded by tree
TN , which are the most likely scenarios for the specified N according to Algorithm 5.1.
Thus, starting at w0 = w, wt /∈ {wη : η ∈ TN , tη = t} may occur at some t ∈ Z+, i.e., a
disturbance scenario may occur that is not included in TN .

Therefore, an SMPC scheme is proposed using MILP (5.27), where the solution of
the MILP is recomputed at each time instant for an updated tree TN based on the current
state vector. This approach furthermore provides feedback to compensate for unmodeled
effects and can be effective in the context of controlling a nonlinear system and/or when
the exact disturbance model is unknown. In this case, the stochastic linear model in (5.1)
and the Markov chain for wt serve as an approximation of the nonlinear system and/or the
unknown disturbance model.

For a given x ∈ Gt0 , w ∈ W , and t0 ∈ Z≥0, the SMPC scheme defines the following
control policy πSMPC,N ∈ Π,

πSMPC,N(x,w, t0) = uη0 ∈ U∗N , (5.39)

where U∗N is a solution to MILP (5.27) for the scenario tree TN with root node η0 and
tη0 ← t0, xη0 ← x, and wη0 ← w in Steps 4–6 of Algorithm 5.1.

It follows from Theorems 5.1 and 5.2 that, in terms of first exit-time performance,
πSMPC,N in (5.39) is arbitrarily close to a solution (assuming one exists) of the stochastic
DCOC problem (5.2) for sufficienlty large N . This is summarized in Theorem 5.3.

Theorem 5.3. Suppose Assumption 5.1 holds, πSMPC,N is as in (5.39), M is sufficiently

large as in Lemma 5.2, and a solution to (5.2) exists for all x ∈ G0 and w ∈ W . Then, for

each x ∈ G0, w ∈ W , and ε > 0, there exists N̄ > 0 such that

τ̄(x,w, πSMPC,N) + ε ≥ max
π∈Π

τ̄(x,w, π), (5.40)

for all N ≥ N̄ .

Proof. The proof follows from the proofs of Theorems 5.1 and 5.2.

141

5.4.2 Implementation

Algorithm 5.2 SMPC implementation
1: t← 0

2: x← obtain current x(t)

3: w ← obtain current w(t)

4: TN ← output of Algorithm 5.1 with tη0 ← t, xη0 ← x, and wη0 ← w in Steps 4–6
5: tcomp ← 0

6: while computing solution of MILP (5.27) do
7: if tcomp > tmax then
8: go to Step 13
9: end if

10: tcomp ← update tcomp

11: end while
12: U∗N ← solution of MILP (5.27); go to Step 14
13: U∗N ← solution of LP (5.41)
14: u(t)← apply root node control uη0 ∈ U∗N to the system
15: t← t+ 1

16: go to Step 2

In practice, the SMPC strategy may be implemented as in Algorithm 5.2. At each time
instant t, the current state vector and disturbance are obtained in Steps 2 and 3 of Algorithm
5.2. Based on these values, a new scenario tree is constructed in Step 4 using Algorithm
5.1. Then a solution U∗N of MILP (5.27) is computed. Since MILP is NP-complete [75–77]
and computing a solution may take considerably long in the worst-case, an upper bound
tmax on the MILP computation time is specified. If the computation time tcomp is greater
than tmax, computation of an MILP solution is terminated (Steps 7–9) and a relaxed version
of the MILP, a standard LP, is solved instead. The LP for a given tree TN is obtained by
replacing the integer variables δη in MILP (5.27) by non-negative real variables εη for all
η ∈ TN . Thus, the LP is as follows

min
UN ,EN

∑
η∈TN

∑
ξ∈KηN

εηρξ s.t. (5.41a)

xη = Atpre(η)x
pre(η) +Btpre(η)u

pre(η) + wpre(η), ∀η ∈ TN \ {η0} (5.41b)

εη ≥ εpre(η) ≥ 0, ∀η ∈ TN \ {η0} (5.41c)

Ctηx
η ≤ btη + 1εη, ∀η ∈ TN , (5.41d)

142

where UN is as in (5.24) and a set of εη values for a tree TN is denoted by

EN = {εη ≥ 0 : η ∈ TN}. (5.42)

Note that a solution to LP (5.41) always exists because εη ≥ 0 can always be chosen
sufficiently large such that (5.41d) is satisfied for all η ∈ TN .

Remark 5.1. In contrast to the deterministic case in Chapter 3 where the solution of the

LP (i.e., the relaxed version of the MILP) provides good quality suboptimal solutions of the

DCOC problem for proper choices of the time horizon (i.e., the time horizon being close

to the optimal first exit-time), this may not hold here. This is because, for a given tree

TN , there are different scenarios {wt}η, η ∈ SN , with different time horizons tη. Thus,

TN may include scenarios with time horizons much greater than the associated optimal

first-exit time, i.e., tη � τ ηN(x,w, π∗N) for some {wt}η, for which the solution of LP (5.41)
may not be close to the solution of (5.2) or (5.10), respectively. Therefore, for the SMPC

implementation (Algorithm 5.2), the solution of LP (5.41) is only used if computing the

MILP solution requires longer than specified (tcomp > tmax).

The root node control input uη0 of the MILP solution U∗N (or the LP solution in case
tcomp > tmax) is applied to the system in Step 14 of Algorithm 5.2 and the procedure is
repeated at the next time instant t+ 1.

Note that similar to the deterministic case and Figure 3.1, the state constraints defined
by the sets Gt may be tightened for control computation when there are unmodeled effects
in order to avoid premature constraint violation. This is not pursued in this chapter.

5.5 Numerical Case Studies

Numerical case studies of stochastic DCOC problems of the form (5.2) are treated using
the SMPC strategy given by Algorithm 5.2. The first case study in Section 5.5.1 considers a
second-order linear system and investigates the influence of the number of tree nodes on the
solution. In the second case study (Section 5.5.2), the ACC problem that was solved with
DP techniques in Section 4.6.3 is solved with the SMPC strategy and results are compared.
Likewise, in the third case study in Section 5.5.3, the SMPC strategy serves as a driving
policy for an autonomous car and the driving problem on a two-lane road from Section
4.5 is considered. In order to reduce computation times, the scenario trees TN(wi) with
wη0 = wi are precomputed in all case studies and stored for each wi ∈ W instead of
constructing TN at each time instant. Hence, TN ← TN(w) in Step 4 of Algorithm 5.2.

143

All computations involving the SMPC strategy are performed in MATLAB 2015a on a
laptop with an i5-6300 processor and 8 GB RAM, where the Hybrid Toolbox [78] is used
to solve LPs and MILPs.

5.5.1 Influence of Number of Tree Nodes

In this case study, the influence of N on the solution is investigated, where a tree TN
contains N + 1 nodes. The following stochastic linear time-varying system is considered[

r1,t+1

r2,t+1

]
=

[
1 0.1

−0.1 1.2

][
r1,t

r2,t

]
+

[
0

0.5 sin(t/2)

]
ut +

[
0

wt

]
, (5.43)

where x = [r1, r2]> denotes the state vector and the control input is u ∈ [−1, 1]. The distur-
bance w takes values in the set W = {−1, 0, 1} with transition probabilities PW (wi|wj) =

[PW,Mat]j,i (j = row number and i = column number) given by the matrix

PW,Mat =

 0 0.8 0.2

0.3 0.5 0.2

0.35 0.4 0.25

 ,
for each i, j ∈ {1, 2, 3}. The constraints for the stochastic DCOC problem (5.2) are given
by the set

Gt ≡ {x : −2 ≤ r1 ≤ 2,−2 ≤ r2 ≤ 2}.

The time limit for computing a solution to the MILP in Algorithm 5.2 is set to tmax = 10

sec. The following results are for an initial x0 = [0, 0]> and w0 = −1. Figure 5.2 shows
sample trajectories, where the dashed red lines indicate the respective constraints. The
average first exit-time τ̄ for 1000 random simulations is plotted againstN in Figure 5.3. For
comparison, a DP solution with conventional VI applied to a discrete grid of the state space
using linear interpolation between the grid points (the set defining the control constraints
is discretized as well, using an equidistant grid with 21 points) is shown as a reference in
Figure 5.3 (dashed blue line), achieving τ̄ = 32.41 sec. This DP solution is obtained for
a relatively dense grid of 900000 points, which requires about 1.63 hours to compute the
control policy offline when implemented in C on a desktop computer (compiled code). Due
to the dense grids (for both Gt and Ut), the DP reference solution is expected to be close to
an optimal solution of the stochastic DCOC problem.

In line with Theorem 5.3, it can be seen in Figure 5.3 that the SMPC solution improves
with increasing N and approaches the DP reference solution (which is expected to be close

144

to an optimal solution), where the DP reference is slightly exceeded for N ≥ 500. Note
that the average first exit-time achieved by the SMPC strategy appears to be monotonically
non-decreasing when increasing N in this case, which may not hold in general.

t
0 20 40 60

r 1

-2

0

2

t
0 20 40 60

r 2

-2

0

2

t
0 20 40 60

u

-1

0

1

t
0 20 40 60

w

-1

0

1

Figure 5.2: Numerical case study on SMPC strategy and influence of number of tree nodes:
sample trajectories showing the states r1 (top left) and r2 (top right) as well as the control
input u (bottom left) and disturbance w (bottom right) vs. t.

N
100 200 300 400 500

av
rg

. =
 (

se
c)

25

30

35

SMPC
DP reference

Figure 5.3: Numerical case study on SMPC strategy and influence of number of tree nodes:
average first exit-time τ̄ vs. N (1000 random simulations for each N).

The computation time (in MATLAB) of the SMPC scheme for computing the control
input at each time instant according to Algorithm 5.2 (Steps 2–14) is shown in Figure 5.4
for different N . The left plot in Figure 5.4 shows the average computation time, which
increases nearly exponentially with N . The worst-case / maximum computation time is

145

shown in Figure 5.4 (right), where the prescribed limit on the MILP computation time
tmax = 10 sec is reached for N ≥ 400.

N
100 200 300 400 500

av
rg

. t
co

m
p (

se
c)

0

0.1

0.2

0.3

N
100 200 300 400 500

m
ax

. t
co

m
p (

se
c)

0

5

10

Figure 5.4: Numerical case study on SMPC strategy and influence of number of tree nodes:
average (left) and worst-case time (right) to compute control ut (Steps 2–14 in Algorithm
5.2) vs. N (1000 random simulations for each N).

5.5.2 Adaptive Cruise Control

The same ACC problem (same model, constraints, initial condition, etc.) as in Section 4.6.3
is now solved with the SMPC scheme. The results are compared against the DP-based so-
lution from Section 4.6.3, which achieves an average first exit-time of τ̄ = 2591 sec (1000
random simulations). Note that the simulation model is a stochastic hybrid model with
state-dependent probabilities for mode switches since there is a 10 % chance of another
vehicle cutting in upfront if the time gap Tg between the two vehicles is greater than 2.2
sec (see Section 4.6.3). The DP approach in Section 4.6.3 is able to explicitly consider
such hybrid models. On the other hand, the SMPC strategy assumes a linear model with
an additive random disturbance modeled by a Markov chain and neglects the possibility
of another vehicle cutting in upfront. It compensates for the unmodeled effects through
feedback (see Algorithm 5.2).

The parameter N is set to 100, meaning that scenario trees with 101 nodes are em-
ployed. With this, the SMPC strategy achieves an average first exit-time of τ̄ = 3120.7 sec
(1000 random simulations), which is an improvement of 20 % compared to the DP solu-
tion. The DP solution can be improved by using denser state space discretizations, which,
however, would increase computation times exponentially (curse of dimensionality). For
the SMPC strategy, 5 msec are required on average to compute the control input at each
time instant and a worst-case computation time of 60 msec is recorded.

Similar to the DP solution, see bottom left plot in Figure 4.10, the SMPC strategy
generates frequent velocity changes, which may be uncomfortable for passengers and in-
efficient (wasting fuel/energy). Hence, in order to avoid excessive control input (acceler-
ation/deceleration), control inputs are penalized by considering the weighted sum of |uη|

146

values as an additional objective to be minimized. As for example in [92], this is achieved
by introducing new variables γη ≥ 0 for each η ∈ TN \ SN . The weighted sum of γη

values is added to the objective functions of MILP (5.27) and LP (5.41). Moreover, for
each η ∈ TN \ SN , the constraint −γη ≤ uη ≤ γη is added to MILP (5.27) and LP (5.41).

In what follows, the factor for weighting the control input penalty is denoted by βa.
Note that for numerical reasons, the probability of each scenario, given by ρη for all η ∈
SN , is normalized by dividing ρη by the sum of the probabilities of all scenarios of tree TN ,
i.e., ρηnorm = ρη/

∑
ξ∈SN ρ

ξ. Instead of ρη, ρηnorm is used in (5.27a) and (5.41a).

βa 0 0.01 0.05 0.1

τ̄ (sec) 3120.7 1662 1074.1 46.1

Table 5.1: Adaptive cruise control problem, SMPC solution: influence of control input
penalty weight βa on average first exit-time τ̄ (for 1000 random simulations).

time (min)
0 10 20 30 40

T
g (

se
c)

0.5

1

1.5

2

2.5

time (min)
0 10 20 30 40

v f (
m

/s
ec

)

26

28

30

time (min)
0 10 20 30 40

a
(m

/s
ec

2)

-0.2

0

0.2

time (min)
0 10 20 30 40

v l (
m

/s
ec

)

26

28

30

Figure 5.5: Adaptive cruise control problem, SMPC solution with additional penalty on
control input (weight βa = 0.01): sample trajectories over time of time gap Tg between
the two vehicles (top left), follower vehicle velocity vf (top right), acceleration of follower
vehicle a (bottom left), and lead vehicle velocity vl (bottom right).

Table 5.1 shows the average first exit-time τ̄ for different control input penalty weights
βa. As expected, τ̄ decreases with increasing βa since a large βa emphasizes less intense
and less frequent acceleration/deceleration. The weight βa = 0.01 appears to provide a
good balance between a large τ̄ and a smoother velocity profile. Using the SMPC strategy
with βa = 0.01, Figure 5.5 shows the time history of the time gap Tg (top left), the velocity

147

of the follower vehicle vf (top right), the control input (bottom left), and the disturbance,
i.e., lead vehicle velocity vl (bottom right) for a random simulation, where the respective
constraints are indicated by dotted red lines. Compared to the DP solution (see sample
simulation in Figure 4.10) and SMPC with βa = 0, the intensity of the control inputs
(acceleration/deceleration) is considerably reduced in Figure 5.5 (bottom left), resulting in
a smoother trajectory of the follower vehicle velocity vf .

5.5.3 Driving Policies for Autonomous Vehicles

In this section, the two-lane road driving problem from Section 4.5 is solved with the SMPC
strategy. The simulation model (same as in Section 4.5) contains state-dependent transition
probabilities, which cannot be considered by the SMPC strategy due to the assumed transi-
tion probabilities for w in (4.3). Thus, in order to implement the SMPC strategy, the simu-
lation model is approximated by considering only the most likely scenario θ ∈ {1, 2, ..., 7}
(see Section 4.5.1), while the other scenarios are neglected. In this case, assuming no lane
change is performed by the ego car (lm = 0), the most likely scenario is θ = 1, meaning that
the closest car ahead in each lane remains the closest car ahead in the respective lane at the
next time instant, i.e., ct → ct+1 and ot → ot+1, because Pθ(1|T i, T j, 0) ≥ Pθ(q|T i, T j, 0)

for all q ∈ {1, 2, ..., 7} and T i, T j ∈ T (see Section 4.5.1).
In what follows, the car that is initially ahead of the ego car in its current lane is referred

to as car 1 and the car that is initially ahead of the ego car in the other lane is referred to as
car 2. The disturbance vector for the linear model in (5.1) is w = [v1, v2]> ∈ W = V × V
and, with a slight abuse of notation, the following transition probabilities forw are assumed,

PW,SMPC(wi|wj) = PW (vi1, v
i
2|v

j
1, v

j
2, 1), (5.44)

where PW is according to (4.54) and wi = [vi1, v
i
2]> ∈ W and wj = [vj1, v

j
2]> ∈ W . Note

that throughout this section, the parameters of the simulation model, including Pθ, PW , T ,
and V , are as in Section 4.5.4.

5.5.3.1 MILP Formulation

MILP (5.27) needs to be extended in order to consider lane changes. Following the devel-
opments in [75], this is achieved by introducing the variable z = [z1, z2]> ∈ R2 and the
binary variable l ∈ {0, 1}. Moreover, the headway to the vehicle in front of the ego car in
its current lane is modeled by

sm,t+1 = s1,t+1 − z1,t + z2,t, (5.45)

148

where s1 denotes the headway to car 1. Likewise, s2 denotes the headway to car 2. Based
on (4.52), s1 and s2 are modeled as follows

s1,t+1 = s1,t + v1,t − vm,t (5.46a)

s2,t+1 = s2,t + v2,t − vm,t, (5.46b)

where vm is the velocity of the ego car. As in (4.51), vm evolves according to

vm,t+1 = vm,t + am,t, (5.47)

where am,t is the instantaneous acceleration of the ego car.
If lt = 0, the ego car is in the lane of car 1 at the next time instant (and car 1 is the

closest car ahead in the ego car’s current lane), which requires z1,t = z2,t = 0 in (5.45).
On the other hand, if lt = 1, the ego car is in the lane of car 2 at the next time instant
(and car 2 is the closest car ahead in the ego car’s current lane), requiring z1,t = s1,t+1 and
z2,t = s2,t+1 in (5.45). This is encoded by the following inequalities [75]

z1,t ≤M1lt, z2,t ≤M2lt

z1,t ≥ m1lt, z2,t ≥ m2lt

z1,t ≤ s1,t+1 −m1(1− lt), z2,t ≤ s2,t+1 −m2(1− lt)
z1,t ≥ s1,t+1 −M1(1− lt), z2,t ≥ s2,t+1 −M2(1− lt),

(5.48)

where M1 � s1 and M2 � s2 are large numbers and m1 � s1 and m2 � s2 are small
numbers. Using (5.45)–(5.48), the extension of MILP (5.27) for the autonomous driving
problem is given by MILP (5.51), where, in analogy to (5.24),

UN = {uη = [aηm, l
η]> ∈ Utη = Atη × {0, 1} : η ∈ TN \ SN}, (5.49)

ΓN = {γη ≥ 0 : η ∈ TN \ SN}, and DN is given by (5.28). The acceleration constraints
for the ego car are defined by the set

At ≡ A = [amin, amax], (5.50)

where amin = −2.5 m/sec2 and amax = 2.5 m/sec2 in line with Section 4.5.4.
Note that (5.51m) and the sum of γη values in (5.51a) are added to MILP (5.51) to

penalize acceleration/deceleration as in Section 5.5.2, where βa ≥ 0 is the weight factor
for the cost in (5.51a).

149

min
UN ,DN ,ΓN

∑
η∈TN

∑
ξ∈KηN

δηρξ +
∑

η∈TN\SN

βaγ
η s.t. (5.51a)

sη1 = s
pre(η)
1 + v

pre(η)
1 − vpre(η)

m , ∀η ∈ TN \ {η0} (5.51b)

sη2 = s
pre(η)
2 + v

pre(η)
2 − vpre(η)

m , ∀η ∈ TN \ {η0} (5.51c)

sηm = sη1 − z
pre(η)
1 + z

pre(η)
2 , ∀η ∈ TN \ {η0} (5.51d)

vηm = vpre(η)
m + apre(η)

m , ∀η ∈ TN \ {η0} (5.51e)

zηi ≤Mil
η, i ∈ {1, 2}, ∀η ∈ TN \ SN (5.51f)

zηi ≥ mil
η, i ∈ {1, 2}, ∀η ∈ TN \ SN (5.51g)

z
pre(η)
i ≤ sηi −mi(1− lpre(η)), i ∈ {1, 2}, ∀η ∈ TN \ {η0} (5.51h)

z
pre(η)
i ≥ sηi −Mi(1− lpre(η)), i ∈ {1, 2}, ∀η ∈ TN \ {η0} (5.51i)

δη ≥ δpre(η), ∀η ∈ TN \ {η0} (5.51j)

δη ∈ {0, 1} ⊂ Z, ∀η ∈ TN (5.51k)

Ctη [s
η
m, v

η
m]> ≤ btη + 1Mδη, ∀η ∈ TN (5.51l)

− γη ≤ aηm ≤ γη, ∀η ∈ TN \ SN . (5.51m)

The initial values for the root node η0 are given by the states at the current time instant
t ∈ Z≥0: sη01 = sc,t, s

η0
2 = so,t, sη0m = sc,t, and vη0m = vm,t, where sc and so denote

the headways of the two cars ahead in the ego car’s current lane and in the other lane,
respectively. The initial disturbance is given by the current velocities of the two cars ahead:
wη0 = [vη01 , v

η0
2]> = [vc,t, vo,t]

>. Based on wη0 and the transition probabilities PW,SMPC

defined by (5.44), the scenario tree TN can be built according to Algorithm 5.1.
The implementation of the SMPC strategy for the autonomous driving problem follows

from Algorithm 5.2 and is summarized by Algorithm 5.3, where, instead of MILP (5.27),
MILP (5.51) is solved in Step 12. At each time instant t ∈ Z≥0, the root node control
values uη0 = [aη0m , l

η0]> of the current MILP solution are applied to the ego car, setting its
acceleration and lane change indicator lm at t.

In contrast to MILP (5.27) and LP (5.41), due to the binary variables lη, MILP (5.51)
cannot be transformed into an LP similar to (5.41). Hence, if no MILP solution is found
within the prescribed computation time (Steps 6–11 in Algorithm 5.3), lm,t = 0 (no lane
change is performed at t) and am,t is obtained by solving the LP of an ACC problem for
the ego car’s current lane, while neglecting the other lane. In analogy to LP (5.41), the LP
of the ACC problem for the ego car’s current lane (with additional penalty for accelera-
tion/deceleration) reads

150

min
UN ,EN ,ΓN

∑
η∈TN

∑
ξ∈KηN

εηρξ +
∑

η∈TN\SN

βaγ
η s.t. (5.52a)

sη1 = s
pre(η)
1 + v

pre(η)
1 − vpre(η)

m , ∀η ∈ TN \ {η0} (5.52b)

vηm = vpre(η)
m + apre(η)

m , ∀η ∈ TN \ {η0} (5.52c)

εη ≥ εpre(η) ≥ 0, ∀η ∈ TN \ {η0} (5.52d)

Ctη [s
η
1, v

η
m]> ≤ btη + 1εη, ∀η ∈ TN (5.52e)

− γη ≤ aηm ≤ γη, ∀η ∈ TN \ SN . (5.52f)

Algorithm 5.3 SMPC implementation for autonomous driving problem
1: t← 0

2: [sη01 , s
η0
2 , s

η0
m , v

η0
m]> ← obtain current states [sc(t), so(t), sc(t), vm(t)]>

3: [vη01 , v
η0
2]> ← obtain current disturbances [vc(t), vo(t)]>

4: TN ← output of Algorithm 5.1 with ρη
succ(ηi)
j ← ρηiPW,SMPC(wj|wηi) [see (5.44)]

in Step 12 and tη0 ← t, xη0 ← [sη01 , s
η0
2 , s

η0
m , v

η0
m]>, and wη0 ← [vη01 , v

η0
2]> in Steps 4–6

5: tcomp ← 0

6: while computing solution of MILP (5.51) do
7: if tcomp > tmax then
8: go to Step 14
9: end if

10: tcomp ← update tcomp

11: end while
12: U∗N ← solution of MILP (5.51)
13: [am(t), lm(t)]> ← apply root node control uη0 ∈ U∗N to the system; go to Step 16
14: U∗N ← solution of LP (5.52)
15: am(t)← apply root node control aη0m ∈ U∗N to the system; lm(t)← 0

16: t← t+ 1

17: go to Step 2

5.5.3.2 Numerical Results

The DCOC driving problem for a two-lane road from Section 4.5 is now solved with the
SMPC scheme given by Algorithm 5.3. The simulation model, parameters, initial condi-
tion, etc. are as in the numerical case study in Section 4.5.4. However, the constraint on

151

the lane change frequency and the corresponding state L [see (4.65)] are not considered
because, in contrast to the DP-based policies (without constraints on L) in Section 4.5.4,
the SMPC strategy does not generate an excessive amount of lane changes. This may be
due to the fact that, unlike the DP-based policies, the SMPC strategy assumes only a subset
(θ = 1) of all possible scenarios and the different model assumption leads to control poli-
cies with less frequent lane changes. Without the constraint on lane change frequency, the
constraints for the stochastic DCOC problem (5.2) in this section are given by the set

Gt ≡ G = {x : Tg,c ≥ 0.5 sec, vmin ≤ vm ≤ vmax}, (5.53)

where Tg,c = sc/vm is the time gap to the vehicle in front of the ego car in its current lane
and vmin = 19.72̄ m/sec and vmax = 27.2̄ m/sec. The state constraints are encoded for the
SMPC strategy [see (5.51l) and (5.52e)] by

Ct ≡

−1 0.5

0 1

0 −1

 , bt ≡

 0

vmax

−vmin

 . (5.54)

The parameters in Algorithm 5.3 are set to N = 50 and tmax = 1 sec and βa = 0.01 is
chosen (see Section 5.5.2). Note that that due to the unmodeled effects (only considering a
subset of all possible scenarios), Theorem 5.3 may not hold in this case and increasing N
may not improve the average first exit-time.

Figure 5.6 shows sample trajectories of the relative time gaps of the vehicles in front
of the ego car in its current lane and in the other lane and of the ego car velocity and lane
change indicator when using the SMPC strategy. The dashed red lines in Figure 5.6 indicate
the prescribed constraints, which are violated for the first time after about 23 min in this
case. On average (1000 random simulations), the SMPC strategy achieves a first exit-time
of τ̄ = 912 sec, which is considerably better than the values achieved by the DP-based
policies, see Tables 4.2 and 4.3. Note, however, that the DP-based policies constrain the
number of lane changes to at most 1 lane change per 10 sec. Without this hard constraint
on the lane change frequency, with the advantage of complete knowledge of the simulation
model (i.e., there are no unmodeled effects), the ADP approach (similar results hold for
conventional DP) achieves an average first exit-time of τ̄ = 1703.8 sec, where, however, a
lane change is performed every 2.9 sec on average. In contrast, the SMPC strategy yields
an average lane change frequency of 1 lane change per 144.2 sec.

While the DP-based policies (without constraints on the lane change frequency) are able
to achieve a better control performance due to taking into account all possible scenarios

152

of the simulation model, the computational complexity is higher compared to the SMPC
scheme. With both conventional DP and ADP, the respective control policy needs to be
computed offline, where conventional DP is limited due to the curse of dimensionality and
the ADP approach requires extensive tuning of the NN structure and training algorithm
until a proper solution is obtained. The SMPC strategy, on the other hand, is based on a
simpler model and the control input is computed online by solving either an MILP or a
standard LP. On average, computing the control input according to Algorithm 5.3 at each
time instant in MATLAB requires 81 msec and the worst case computation time is 1.03 sec
(in line with tmax = 1 sec), which can be further reduced by reducing tmax and/or N .

The SMPC strategy regulates the ego car velocity to vmin as can be seen in Figure 5.6
(bottom right) and in other simulation samples. On average, this results in large time gaps
to the vehicle in front of the ego car (see top left in Figure 5.6), which, however, increases
the possibility of another vehicle cutting in upfront. Since the SMPC strategy does not
consider such an event, this may reduce the average first exit-time. Therefore, a hybrid
SMPC strategy is proposed in the following section (Section 5.5.3.3) that combines MILP
(5.51) with two car following controllers (one for each lane).

time (min)
0 5 10 15

T
gc

 (
se

c)

0

2

4

time (min)
0 5 10 15

T
go

 (
se

c)

0

2

4

time (min)
0 5 10 15

v m
 (

m
/s

ec
)

20

22

24

26

28

time (min)
0 5 10 15

l m

0

0.5

1

Figure 5.6: SMPC – autonomous driving case study: sample trajectories of relative time
gap Tg,c for the ego car’s current lane (top left), relative time gap Tg,o for other lane (top
right), velocity vm of ego car (bottom left), and lane change indicator lm of ego car (bottom
right) over time.

5.5.3.3 Hybrid SMPC Strategy

In order to avoid large time gaps to the vehicle ahead and reduce the chances of another
vehicle cutting in upfront, the SMPC strategy from the previous section is combined with

153

car following problems for each lane. An MILP similar to MILP (5.51) is solved to make
lane change decisions and, for each lane, an additional MILP similar to the ACC case in
Section 5.5.2 is solved to obtain the acceleration of the ego car. The ACC-MILP for each
lane j ∈ {1, 2} follows from MILP (5.27) and is given by

min
UACC,N,j ,DN ,ΓN

∑
η∈TN

∑
ξ∈KηN

δηρξ +
∑

η∈TN\SN

βaγ
η s.t. (5.55a)

sηj = s
pre(η)
j + v

pre(η)
j − vpre(η)

m , ∀η ∈ TN \ {η0} (5.55b)

vηm = vpre(η)
m + a

pre(η)
m,j , ∀η ∈ TN \ {η0} (5.55c)

δη ≥ δpre(η), ∀η ∈ TN \ {η0} (5.55d)

δη ∈ {0, 1} ⊂ Z, ∀η ∈ TN (5.55e)

CACC,tη [s
η
j , v

η
m]> ≤ bACC,tη + 1Mδη, ∀η ∈ TN (5.55f)

− γη ≤ aηm,j ≤ γη, ∀η ∈ TN \ SN , (5.55g)

where
UACC,N,j = {aηm,j ∈ A : η ∈ TN \ SN}. (5.56)

In this case study, ACC-MILP (5.55) considers the following state constraints,

for j ∈ {1, 2}, 0.5 sec ≤ sj/vm ≤ 3 sec and vmin ≤ vm ≤ vmax, (5.57)

which, according to (5.55f), are encoded by

CACC,t ≡ CACC =


−1 0.5

1 −3

0 1

0 −1

 , bACC,t ≡ bACC =


0

0

vmax

−vmin

 . (5.58)

After the respective acceleration is obtained for each lane by solving ACC-MILP (5.55)
for j = 1 and j = 2, the MILP for making lane change decisions is solved. Based on the
ACC-MILP solutions UACC,N,1 and UACC,N,2, the MILP is given by (5.60), where

ULC,N = {lη ∈ {0, 1} : η ∈ TN \ SN}. (5.59)

154

min
ULC,N ,DN ,ΓN

∑
η∈TN

∑
ξ∈KηN

δηρξ +
∑

η∈TN\SN

βlγ
η s.t. (5.60a)

sη1 = s
pre(η)
1 + v

pre(η)
1 − vpre(η)

m , ∀η ∈ TN \ {η0} (5.60b)

sη2 = s
pre(η)
2 + v

pre(η)
2 − vpre(η)

m , ∀η ∈ TN \ {η0} (5.60c)

sηm = sη1 − z
pre(η)
1 + z

pre(η)
2 , ∀η ∈ TN \ {η0} (5.60d)

vηm = vpre(η)
m + a

pre(η)
m,1 − ypre(η)

1 + y
pre(η)
2 , ∀η ∈ TN \ {η0} (5.60e)

zηi ≤Mil
η, i ∈ {1, 2}, ∀η ∈ TN \ SN (5.60f)

zηi ≥ mil
η, i ∈ {1, 2}, ∀η ∈ TN \ SN (5.60g)

z
pre(η)
i ≤ sηi −mi(1− lpre(η)), i ∈ {1, 2}, ∀η ∈ TN \ {η0} (5.60h)

z
pre(η)
i ≥ sηi −Mi(1− lpre(η)), i ∈ {1, 2}, ∀η ∈ TN \ {η0} (5.60i)

yηi ≤ amaxl
η, i ∈ {1, 2}, ∀η ∈ TN \ SN (5.60j)

yηi ≥ aminl
η, i ∈ {1, 2}, ∀η ∈ TN \ SN (5.60k)

yηi ≤ aηm,i − amin(1− lpre(η)), i ∈ {1, 2}, ∀η ∈ TN \ SN (5.60l)

yηi ≥ aηm,i − amax(1− lpre(η)), i ∈ {1, 2}, ∀η ∈ TN \ SN (5.60m)

δη ≥ δpre(η), ∀η ∈ TN \ {η0} (5.60n)

δη ∈ {0, 1} ⊂ Z, ∀η ∈ TN (5.60o)

CLC,tη [s
η
m, v

η
m]> ≤ bLC,tη + 1Mδη, ∀η ∈ TN (5.60p)

− γη ≤ lη − lpre(η) ≤ γη, ∀η ∈ TN \ {SN ∪ {η0}} (5.60q)

lη0 ≤ γη0 . (5.60r)

Similar to (5.51f)–(5.51i), (5.60j)–(5.60m) are included to use the acceleration that
corresponds to the current lane, i.e., use the acceleration given by UACC,N,1 if the ego car
is in car 1’s lane (l = 0) or use UACC,N,2 if the ego car is in car 2’s lane (l = 1). In
addition, similar to penalizing excessive acceleration [see (5.51m) and (5.55g)], (5.60q)
and (5.60r) are included to penalize excessive lane changes, where βl ≥ 0 denotes the
associated weight in the cost function (5.60a).

The constraints for MILP (5.60) follow from (5.53). Hence, without the constraints on
the ego car velocity [which is controlled by ACC-MILP (5.55)], (5.60p) is defined by

CLC,t ≡
[
−1 0.5

]
, bLC,t ≡ 0. (5.61)

If the respective car ahead of the ego car is further away than the prescribed limit on the

155

time gap for the car following controller (which, according to (5.57), is 3 sec in this case
study), the acceleration is undefined. A simple proportional controller is implemented to
set the acceleration in this case. The proportional controller regulates the ego car velocity
to a prescribed cruise speed vcruise and is as follows

pv(vm, vcruise) =


amin, if Kp(vcruise − vm) < amin,

amax, if Kp(vcruise − vm) > amax,

Kp(vcruise − vm), otherwise,

(5.62)

where Kp is set to 0.25 in this case study.
Algorithm 5.4 defines the hybrid SMPC scheme. At each time instant, the current states

and disturbances are obtained. Based on these values, the scenario tree TN is generated in
Step 4. Then the accelerations for each lane j ∈ {1, 2} are computed in Steps 5–16,
depending on the respective current time gap sη0j /v

η0
m , either by solving ACC-MILP (5.55)

or by using the proportional controller in (5.62). Based on the accelerations for each lane,
the solution of MILP (5.60) is calculated to make a lane change decision in Step 26 and
the acceleration associated with the chosen lane is applied to the system (Steps 27–31). If
computing a solution to MILP (5.60) [Steps 18–24] takes longer than specified, no lane
change is performed at the current time instant and the acceleration for the current lane
(j = 1) is applied to the system. The procedure is repeated at the next time instant.

For the following simulations, the parameters are set to N = 35 and tmax = 1 sec.
The weights on acceleration and lane changing are chosen as βa = 0.01 and βl = 1,
respectively, as this setting appears to generate a reasonable level of control inputs (i.e., no
excessive acceleration and lane changing) in this specific case study.

The hybrid SMPC strategy (Algorithm 5.4) is applied to the same DCOC driving prob-
lem as in Sections 4.5.4 and 5.5.3.2 (same simulation model, parameters, initial condition,
etc.). Figure 5.7 shows trajectories for a random simulation when vcruise = vmin. It can be
seen that the ego car velocity is increased several times when required by the car follow-
ing controller. On average, this reduces the time gap to the vehicle in front and reduces
the risk of another vehicle cutting in upfront. Compared to the SMPC strategy defined by
Algorithm 5.3, the result is a larger average first exit-time, which is τ̄ = 1104.9 sec (1000
random simulations) in this case. Note that this value is also significantly larger than the
results achieved by the DP-based policies in Section 4.5.4, which, however, are subject to
hard constraints on the lane change frequency and can be improved by allowing larger lane
change frequencies, see Figure 4.5, or by removing the constraint on lane changes.

156

Algorithm 5.4 Hybrid SMPC strategy for autonomous driving problem
1: t← 0

2: [sη01 , s
η0
2 , s

η0
m , v

η0
m]> ← obtain current states [sc(t), so(t), sc(t), vm(t)]>

3: [vη01 , v
η0
2]> ← obtain current disturbances [vc(t), vo(t)]>

4: TN ← output of Algorithm 5.1 with ρη
succ(ηi)
j ← ρηiPW,SMPC(wj|wηi) [see (5.44)]

in Step 12 and tη0 ← t, xη0 ← [sη01 , s
η0
2 , s

η0
m , v

η0
m]>, and wη0 ← [vη01 , v

η0
2]> in Steps 4–6

5: for j ∈ {1, 2} do
6: if sη0j /vη0m > 3 sec then
7: U∗ACC,N,j ← ∅
8: for η ∈ TN \ SN do
9: aηm,j ← pv(v

η
m, vcruise), see (5.62)

10: vξm ← vηm + aηm,j , for all ξ ∈ succ(η) ∩ TN
11: U∗ACC,N,j ← U∗ACC,N,j ∪ {a

η
m,j}

12: end for
13: else
14: U∗ACC,N,j ← solution of ACC-MILP (5.55)
15: end if
16: end for
17: tcomp ← 0

18: while computing solution of MILP (5.60) do
19: if tcomp > tmax then
20: am(t)← apply root node control aη0m,1 ∈ U∗ACC,N,1 to the system
21: lm(t)← 0; go to Step 32
22: end if
23: tcomp ← update tcomp

24: end while
25: U∗LC,N ← solution of MILP (5.60)
26: lm(t)← apply root node control lη0 ∈ U∗LC,N to the system
27: if lm(t) = 0 then
28: am(t)← apply root node control aη0m,1 ∈ U∗ACC,N,1 to the system
29: else
30: am(t)← apply root node control aη0m,2 ∈ U∗ACC,N,2 to the system
31: end if
32: t← t+ 1; go to Step 2

Besides better average first exit-times, the reduced average time gap, achieved by the

157

additional car following controller, increases the number of lane changes as can be seen by
comparing the bottom right plots in Figures 5.6 and 5.7 (see also Figure 5.9). The number
of lane changes can be reduced (increased) by increasing (decreasing) the parameter βl,
where, for vcruise = vmin and βl = 1, the hybrid SMPC scheme yields an average lane
change frequency of 1 lane change per 60.3 sec.

time (min)
0 5 10 15 20 25

T
gc

 (
se

c)

0

2

4

time (min)
0 5 10 15 20 25

T
go

 (
se

c)

0

2

4

time (min)
0 5 10 15 20 25

v m
 (

m
/s

ec
)

20

22

24

26

28

time (min)
0 5 10 15 20 25

l m

0

0.5

1

Figure 5.7: Hybrid SMPC with vcruise = vmin – autonomous driving case study: sample
trajectories of relative time gap Tg,c for the ego car’s current lane (top left), relative time
gap Tg,o for other lane (top right), velocity vm of ego car (bottom left), and lane change
indicator lm of ego car (bottom right) over time.

v
cruise

 (m/sec)
20 21 22 23 24 25 26 27

av
er

ag
e
=

(s
ec

)

400

600

800

1000

1200

Figure 5.8: Hybrid SMPC – autonomous driving case study: average first exit-time τ̄ (for
1000 random simulations) vs. cruise speed vcruise.

The average first exit-time τ̄ is plotted for different cruise speeds in Figure 5.8. Using
vcruise = vmin promotes defensive driving and yields the largest τ̄ , whereas increasing vcruise

158

reduces τ̄ . On the other hand, larger vcruise reduce travel times, improve the traffic flow, and
may provide a better travel experience for passengers. Figure 5.9 shows sample trajectories
for vcruise = 23 m/sec.

time (min)
0 5 10 15

T
gc

 (
se

c)

0

2

4

time (min)
0 5 10 15

T
go

 (
se

c)

0

2

4

time (min)
0 5 10 15

v m
 (

m
/s

ec
)

20

22

24

26

28

time (min)
0 5 10 15

l m

0

0.5

1

Figure 5.9: Hybrid SMPC with vcruise = 23 m/sec – autonomous driving case study: sam-
ple trajectories of relative time gap Tg,c for the ego car’s current lane (top left), relative time
gap Tg,o for other lane (top right), velocity vm of ego car (bottom left), and lane change in-
dicator lm of ego car (bottom right) over time.

On average, 17 msec are required in MATLAB to compute the control input (am and
lm) at each time instant t with the hybrid SMPC strategy (i.e., execute Steps 2–31 of Al-
gorithm 5.4). A worst-case computation time of 145 msec is recorded (for 1000 random
simulations). Besides the lower number of tree nodes (N = 35 vs. N = 50), the reason
for the shorter computation times of the hybrid SMPC strategy is that dividing the control
problem into solving three smaller MILPs (one MILP for obtaining lane change decisions
and two MILPs for obtaining the accelerations for each lane), rather than solving one large
MILP (one MILP for obtaining both lane change decisions and accelerations), is computa-
tionally more efficient since MILP is NP-complete and worst-case computation times grow
exponentially with the number of decision variables.

5.6 Summary

In this chapter, an SMPC scheme was developed for solving stochastic DCOC problems
with the objective of maximizing the average / expected value of the first exit-time. The
developed SMPC strategy is based on a tree structure with a specified number of tree nodes

159

and the tree generation algorithm has been defined to emphasize the inclusion of the most
relevant scenarios. For stochastic linear systems, the SMPC strategy obtains solutions ar-
bitrarily close to the optimal solution in terms of average first exit-time performance by
repeatedly solving an MILP over a receding time horizon based on the current state vector
and disturbance. The effectiveness of the proposed SMPC strategy was demonstrated in
two numerical case studies, including a stochastic adaptive cruise control problem. More-
over, the SMPC strategy was applied to the DCOC driving problem for a two-lane road
from Section 4.5 and achieved comparable results to the DP-based policies from Section
4.5.4.

The advantage of DP-based techniques (Chapter 4) is that they are quite general and
able to address a broad range of DCOC problems without neglecting any effects of the
underlying system. However, they suffer from the curse of dimensionality or, in the ADP
case, may require extensive tuning and model training. On the other hand, the SMPC
approach is computationally more tractable, while, however, relying on a linear model
approximation of the underlying system.

160

CHAPTER 6

Other Developments for Systems with
Disturbances

The work in this chapter has been originally published in [52] and is separate from the
DCOC developments in Chapters 2 – 5.

6.1 Motivation and Problem Formulation

An LQ optimal control problem for a class of continuous-time linear systems with aug-
mented disturbance term is considered in this chapter. The class of systems is of the form

ẋ(t) = Ax(t) +Bu(t) + d(t), x(0) = x0, (6.1)

whereA andB are real matrices, x(t) ∈ Rn, u(t) ∈ Rm, and d(t) ∈ Rn is a time-dependent
disturbance term which is known in advance. Given an initial state x0, the objective is to
find a control u(t) over the finite time horizon [0, T] that minimizes the quadratic cost
functional

J =
1

2

∫ T

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt+

1

2
xT(T)Sx(T)→ min

u(t)
, (6.2)

with Q = Q> � 0 and R = R> � 0. For notational convenience, indicating the explicit
time dependence of time-dependent variables is omitted when it is clear from the context.

Problem (6.2) is relevant to many real-time optimal control applications, in particular,
those where preview is available or needs to be incorporated [107–110]. In the continuous-
time formulation, the optimal control problem (6.2) leads to a two point boundary value
problem (TPBVP) with mixed boundary conditions. A solution to this problem is based
on solving the Riccati differential equation. In addition, an ordinary differential equa-
tion (ODE) that accounts for the disturbance has to be solved [111, 112]. In general, there

161

is no explicit solution to this ODE and numerical and approximate approaches need to be
developed. Numerical approaches to solve this ODE are based on integrating backwards
in time, which may become computationally impractical, especially when larger time hori-
zons are considered.

An new approach is proposed in this chapter (Section 6.2) that solves problem (6.2) by
approximating the disturbance term d as a piecewise-linear function of time and a closed-
form approximate solution to the TPBVP is obtained. In addition, an upper bound on the
error between the optimal solution and the approximate solution when the piecewise-linear
disturbance approximation is used is derived in Section 6.3. Such an approximation yields
higher accuracy than piecewise-constant disturbance approximation common in sampled
data/discrete-time treatments of the problem.

The presented approach allows for fast computation of an approximation of the opti-
mal control, which facilitates potential onboard/real-time implementation. In particular,
this may be useful in applications of MPC with previewed disturbance [113–116] or with
disturbance scenarios [117], where an LQ problem with disturbance term similar to (6.2)
has to be solved repeatedly over a receding time horizon. Future research to address the
inclusion of constraints can further extend the use of the proposed technique for MPC with
preview to constrained problems.

As a subsequent numerical case study demonstrates (Section 6.4), the proposed strat-
egy can be effective in spacecraft orbital maneuvering problems to account for higher-order
gravity perturbations and air drag. Note that in this case study, the disturbance is computed
for the trajectory of the nominal/target orbit. Since, in the case study, the spacecraft is rela-
tively close to the known target orbit, the error is small and the simulation results show that
the proposed approach is effective in the context of controlling a nonlinear system, in par-
ticular, when recomputing the control over a receding time horizon using MPC techniques
to account for unmodeled effects (Section 6.4.3). At the same time, given that the focus
of the theoretical analysis is an LQ problem with previewed disturbance, simulation results
are also included for the linear model in Section 6.4.2 as they illustrate the conclusions
from the analysis in a setting consistent with the assumptions in this chapter.

The developments in this chapter are furthermore motivated by enhancing the imple-
mentation of a computational strategy to solve nonlinear optimal control problems [118],
where one iterates between using d to approximate a nonlinear term di+1 = φ(xi) in the
equations of motion evaluated on a current iteration i of the trajectory, and solving the
optimal control problem (6.2).

162

6.2 TPBVP Solution

The necessary conditions for optimality in problem (6.2) are provided by Pontryagin’s
maximum principle applied to the Hamiltonian H ,

H =
1

2

[
xTQx+ uTRu

]
+ ψ> [Ax+Bu+ d] . (6.3)

The optimal control minimizes the Hamiltonian. Hence, u = −R−1B>ψ, where ψ denotes
the vector of adjoint variables, which satisfy

ψ̇ = − (∂H/∂x)> = −Qx− A>ψ. (6.4)

Moreover, the transversality condition ψ(T) = Sx(T) must be satisfied. Consequently, it
follows that [

ẋ

ψ̇

]
=

[
A −BR−1B>

−Q −A>

][
x

ψ

]
+

[
d

0n×1

]
. (6.5)

By defining x̃> = [x>, ψ>] and d̃> = [d>, 01×n], (6.5) may be written as

˙̃x = Ãx̃+ d̃, (6.6)

with initial condition x̃>0 = x̃(0) =
[
x>0 , ψ

>
0

]
, where ψ0 is unknown. Using the transversal-

ity condition for ψ, the terminal state values at time T are x̃>(T) =
[
x>(T), (Sx(T))>

]
,

where x(T) is unknown. However, x(T) or x̃(T), respectively, can be computed according
to

x̃(T) = eÃT x̃0 +

T∫
0

eÃ(T−τ)d̃(τ)dτ. (6.7)

The key assumption for deriving a closed-form approximate solution to the TPBVP
is that the disturbance d is approximated by a piecewise-linear function of time. In this
regard, (ν − 1)-equidistant time intervals of length ∆t are considered: tk = (k − 1)∆t,
k = 1, 2, ..., ν, where the final time is tν = T = (ν − 1)∆t and t1 is at t = 0. In analogy,
d̃k = d̃ (tk) is defined. Then the piecewise-linear approximation (such an approximation
can also be referred to, actually more correct, as piecewise-affine) of the disturbance vector
d̃(t) at time t is given by

d̃pwlin(t) = d̃k +
d̃k+1 − d̃k

∆t
(t− (k − 1)∆t) , for t ∈ [tk, tk+1] . (6.8)

163

Consequently, the approximation of (6.7) using (6.8) is

x̃pwlin(T) = eÃT x̃0 +
ν−1∑
k=1


k∆t∫

(k−1)∆t

eÃ(T−τ)

[
d̃k +

d̃k+1 − d̃k
∆t

(τ − (k − 1)∆t)

]
dτ

 .

(6.9)

6.2.1 Case Ã is invertible

When Ã is non-singular, integration by parts of (6.9) and further simplification yields

x̃pwlin(T) = eÃT x̃0 + Ã−1

ν−1∑
k=1

{
eÃ(ν−k)∆td̃k − eÃ(ν−k−1)∆td̃k+1

+ Ã−1
(

eÃ(ν−k)∆t − eÃ(ν−k−1)∆t
)(d̃k+1 − d̃k

∆t

)}
.

(6.10)

The constant matrices Kk ∈ R2n×2n are defined as follows

Kk = eÃ(k−1)∆t, k = 1, 2, ..., ν, (6.11)

and (6.10) is rewritten as

x̃pwlin(T) =Kν x̃0 + Ã−1
(
Kν d̃1 −K1d̃ν

)
+(

Ã−1
)2

ν−1∑
k=1

{
(Kν+1−k −Kν−k)

(
d̃k+1 − d̃k

∆t

)}
,

(6.12)

which provides 2n equations to solve for the 2n unknowns contained in ψ0 and x(T). In
order to solve the system of linear equations, the sum of the second and third term in (6.12)
is denoted by q> =

[
q>1 , q

>
2

]
,

q = Ã−1
(
Kν d̃1 −K1d̃ν

)
+
(
Ã−1

)2
ν−1∑
k=1

{
(Kν+1−k −Kν−k)

(
d̃k+1 − d̃k

∆t

)}
, (6.13)

where q1 ∈ Rn and q2 ∈ Rn. It follows that

x̃pwlin(T) =

[
xpwlin(T)

Sxpwlin(T)

]
= Kν

[
x0

ψ0,pwlin

]
+ q, (6.14)

where xpwlin(T) and ψ0,pwlin are the approximations of x(T) and ψ0 using the piecewise-

164

linear disturbance term. By noting that Kν =

[
Kν,11 Kν,12

Kν,21 Kν,22

]
and Kν,ij ∈ Rn×n, the

solution to the TPBVP is given by[
xpwlin(T)

ψ0,pwlin

]
=

[
In×n −Kν,12CinvS Kν,12Cinv

−CinvS Cinv

][
Kν,11x0 + q1

Kν,21x0 + q2

]
, (6.15)

where Cinv = (SKν,12 −Kν,22)−1. Now, following the same steps, the solution to the state
equation can be derived, which, at the discrete time steps tk, reads

x̃pwlin (tk) =Kkx̃0,pwlin + Ã−1
(
Kkd̃1 −K1d̃k

)
+(

Ã−1
)2

k−1∑
i=1

{
(Kk+1−i −Kk−i)

(
d̃i+1 − d̃i

∆t

)}
,

(6.16)

and the approximate optimal control at the k-th time instant is

upwlin(tk) = −R−1B> [0n×n, In×n] x̃pwlin(tk). (6.17)

6.2.2 Case Ã is not invertible

When Ã is not invertible it has p ∈ {0, 1, ..., 2n− 1} nonzero eigenvalues and there exists
an invertible matrix M ∈ C2n×2n such that Ã can be decomposed as

Ã = M

[
J1 0p×(2n−p)

0(2n−p)×p J2

]
M−1, (6.18)

where J1 ∈ Cp×p is invertible and J2 ∈ R(2n−p)×(2n−p) is not invertible, see Chapter 6.2
in [119]. Therefore, the integral of the matrix exponential may be written as

tn+1∫
tn

eÃ(tk−τ)dτ = M

 −J−1
1

(
eJ1(tk−tn+1) − eJ1(tk−tn)

)
0p×(2n−p)

0(2n−p)×p

tn+1∫
tn

eJ2(tk−τ)dτ

M−1.

(6.19)
The integral of eJ2(tk−τ) with respect to τ depends on the number (algebraic multi-

plicity) of zero eigenvalues of Ã as well as on the dimension of the nullspace of Ã. A
procedure that distinguishes between the possible cases may be implemented for computa-
tion purposes, see [119]. In order to solve the integral of the matrix exponential in (6.9),

165

the following indefinite integrals or antiderivatives are defined,∫
eÃ(tk−τ)dτ = Fk(τ) + C,

∫
Fk(τ)dτ = Gk(τ) + C, (6.20)

where C ∈ R2n×2n is a constant matrix and Fk(τ) and Gk(τ) are the respective antideriva-
tives for a given k and τ ∈ [0, T]. Note that, in general, the antiderivative Z(x) of a
function z(x), x ∈ I , satisfies dZ(x)/dx = z(x) for x ∈ I , where

∫
z(x)dx = Z(x) + C

and C = const. With Fk and Gk, integration by parts of (6.9) yields

x̃pwlin(T) =eÃT x̃0 + Fν(T)d̃ν − Fν(0)d̃1+

ν−1∑
k=1

{
[Gν(k∆t)−Gν((k − 1)∆t)]

[
d̃k+1 − d̃k

∆t

]}
.

(6.21)

Based on (6.20), the following constant matrices are defined

F̃i,k = Fk((i− 1)∆t), G̃i,k = Gk((i− 1)∆t), (6.22)

with i = 1, 2, ..., ν and k = 1, 2, ..., ν. Using (6.11) and (6.22), (6.21) may be written as

x̃pwlin(T) = Kν x̃0 + F̃ν,ν d̃ν − F̃1,ν d̃1 +
ν−1∑
k=1

{[
G̃k+1,ν − G̃k,ν

] [d̃k+1 − d̃k
∆t

]}
. (6.23)

In analogy to (6.13), the constant vector q> =
[
q>1 , q

>
2

]
is defined in order to solve the

TPBVP,

q = F̃ν,ν d̃ν − F̃1,ν d̃1 +
ν−1∑
k=1

{[
G̃k+1,ν − G̃k,ν

] [d̃k+1 − d̃k
∆t

]}
. (6.24)

Now the initial adjoint variables ψ0,pwlin and the final state vector xpwlin(T) can be obtained
according to (6.15). Similarly, the solution to the state equations can be derived at the
discrete time steps tk,

x̃pwlin(tk) = Kkx̃0,pwlin+F̃k,kd̃k−F̃1,kd̃1+
k−1∑
i=1

{(
G̃i+1,k − G̃i,k

)(d̃i+1 − d̃i
∆t

)}
, (6.25)

and the approximate optimal control is computed according to (6.17).

166

6.3 Error Estimation

An upper bound for the error between the optimal solution x̃(t) and its approximation
x̃pwlin(t) is derived in this section. The following assumptions are made for the derivation.

Assumption 6.1. The function d̃(t) is twice continuously differentiable for t ∈ [0, T].

Assumption 6.2. The matrices S and Ã are such that CT exp
(
ÃT
)

= [K1, K2], where
K2 ∈ Rn×n has rank n and CT = [S, −In×n].

Numerical experiments suggest that Assumption 6.2 holds. This may be because the
diagonal elements of exp

(
ÃT
)

are nonzero in most applications (see infinite power series
representation for matrix exponentials [119] where the first term is the identity matrix)
and S is usually diagonal. In the following, ‖·‖ = ‖·‖p denotes the p-norm or Hölder
norm [119] of a vector or matrix and exp(·) = e(·).

Theorem 6.1. Suppose Assumptions 6.1 and 6.2 hold. Then, for t ∈ [0, T],

‖x̃(t)− x̃pwlin(t)‖ ≤ exp
(∥∥∥Ã∥∥∥ t)[max

a∈[0,T]

∥∥∥ ¨̃d(a)
∥∥∥ 4t∆t2/27 +M(∆t2)

]
,

where,

M(∆t2) = ‖CT‖

∥∥∥∥∥∥
[
CT exp

(
ÃT
)

C0

]−1
∥∥∥∥∥∥
∥∥∥exp

(
ÃT
)∥∥∥ max

a∈[0,T]

∥∥∥ ¨̃d(a)
∥∥∥ 4T∆t2/27,

with C0 = [In×n, 0n×n] and CT = [S, −In×n].

Proof. First, a bound for
∥∥∥d̃(t)− d̃pwlin(t)

∥∥∥ is derived. In contrast to the piecewise-linear

d̃pwlin(t), the continuous d̃(t) is differentiable at each of the discrete time points tk, k =

1, 2, ..., ν. Using Taylor’s Theorem, d̃(tk) and d̃(tk+1) are expressed as

d̃(tk) = d̃(t) + (tk − t) ˙̃d(t) +
1

2
(tk − t)2 ¨̃d(a1),

d̃(tk+1) = d̃(t) + (tk+1 − t) ˙̃d(t) +
1

2
(tk+1 − t)2 ¨̃d(a2),

(6.26)

where t ∈ [tk, tk+1], a1 ∈ [tk, t], and a2 ∈ [t, tk+1]. By noting that d̃(tk) = d̃k and
d̃(tk+1) = d̃k+1, the expression for d̃pwlin(t) in (6.8) can be stated as

d̃pwlin(t) =
tk+1 − t

∆t
d̃(tk)−

tk − t
∆t

d̃(tk+1). (6.27)

167

Using (6.26) and ∆t = tk+1 − tk, (6.27) becomes

d̃pwlin(t) = d̃(t) +
¨̃d(a1)

2∆t
(tk+1 − t)(tk − t)2 +

¨̃d(a2)

2∆t
(t− tk)(tk+1 − t)2. (6.28)

It follows from (6.28) that, for t ∈ [tk, tk+1], the error between d̃(t) and d̃pwlin(t) is bounded
by

∥∥∥d̃pwlin(t)− d̃(t)
∥∥∥ ≤ ∥∥∥∥∥ ¨̃d(a1)

2∆t
(tk+1 − t)(tk − t)2 +

¨̃d(a2)

2∆t
(t− tk)(tk+1 − t)2

∥∥∥∥∥
≤

∥∥∥ ¨̃d(a1)
∥∥∥

2∆t
(tk+1 − t)(tk − t)2 +

∥∥∥ ¨̃d(a2)
∥∥∥

2∆t
(t− tk)(tk+1 − t)2

≤ 2∆t2

27

(∥∥∥ ¨̃d(a1)
∥∥∥+

∥∥∥ ¨̃d(a2)
∥∥∥)

≤ 4∆t2

27
max

a∈[tk,tk+1]

∥∥∥ ¨̃d(a)
∥∥∥ ,

(6.29)

since (tk+1− t)(tk− t)2 ≤ 4∆t3/27 and (t− tk)(tk+1− t)2 ≤ 4∆t3/27. The error between
the solutions to the state equation (6.6) is denoted by e(t) = x̃(t)− x̃pwlin(t). Using (6.6),
the time derivative of the error is ė(t) = d̃(t)− d̃pwlin(t)+Ãe(t). Integrating this expression
yields

e(t) =

t∫
0

[
d̃(τ)− d̃pwlin(τ) + Ãe(τ)

]
dτ + e(0). (6.30)

It follows from (6.30) and the triangle inequality that

‖e(t)‖ ≤
t∫

0

∥∥∥d̃(τ)− d̃pwlin(τ)
∥∥∥ dτ +

t∫
0

∥∥∥Ã∥∥∥ ‖e(τ)‖ dτ + ‖e(0)‖ . (6.31)

Using the Gronwall-Bellman inequality [120], (6.31) becomes

‖e(t)‖ ≤

 t∫
0

∥∥∥d̃(τ)− d̃pwlin(τ)
∥∥∥ dτ + ‖e(0)‖

 exp
(∥∥∥Ã∥∥∥ t) . (6.32)

Next, an error bound for ‖e(0)‖ is derived. Using the transversality condition for the
adjoint variables as well as the fact that the initial error between the states is zero, the
following equations are obtained

CT e(T) = 0n×1, (6.33)

168

C0e(0) = 0n×1, (6.34)

where CT = [S, −In×n] and C0 = [In×n, 0n×n]. Using (6.30), (6.33) may be expressed as

CT exp
(
ÃT
)
e(0) + CT

T∫
0

exp
(
Ã(T − τ)

)(
d̃(τ)− d̃pwlin(τ)

)
dτ = 0n×1. (6.35)

Combining (6.34) and (6.35) yields

e(0) =

[
CT exp

(
ÃT
)

C0

]−1
 −CT T∫

0

exp
(
Ã(T − τ)

)(
d̃(τ)− d̃pwlin(τ)

)
dτ

0n×1

 ,
(6.36)

where the inverse exists by Assumption 6.2. Finally, (6.36) implies that

‖e(0)‖ ≤‖CT‖

∥∥∥∥∥∥
[
CT exp

(
ÃT
)

C0

]−1
∥∥∥∥∥∥

×
T/∆t∑
k=1


tk+1∫
tk

∥∥∥exp
(
Ã(T − τ)

)(
d̃(τ)− d̃pwlin(τ)

)∥∥∥ dτ

 .

(6.37)

Using (6.29) and (6.37), it follows that

‖e(0)‖ ≤ ‖CT‖

∥∥∥∥∥∥
[
CT exp

(
ÃT
)

C0

]−1
∥∥∥∥∥∥ max
τ∈[0,T]

∥∥∥exp
(
Ã(T − τ)

)∥∥∥ T

∆t

4∆t3

27
max
a∈[0,T]

∥∥∥ ¨̃d(a)
∥∥∥

≤ ‖CT‖

∥∥∥∥∥∥
[
CT exp

(
ÃT
)

C0

]−1
∥∥∥∥∥∥
∥∥∥exp

(
ÃT
)∥∥∥ 4T∆t2

27
max
a∈[0,T]

∥∥∥ ¨̃d(a)
∥∥∥ .

(6.38)

For notational convenience the error bound for e(0) is denoted by M , which is a function
of ∆t2,

M(∆t2) = ‖CT‖

∥∥∥∥∥∥
[
CT exp

(
ÃT
)

C0

]−1
∥∥∥∥∥∥
∥∥∥exp

(
ÃT
)∥∥∥ 4T∆t2

27
max
a∈[0,T]

∥∥∥ ¨̃d(a)
∥∥∥ . (6.39)

169

With (6.38) and (6.39), the error bound for e(t) in (6.32) may be stated as

‖e(t)‖ ≤
[
t
4∆t2

27
max
a∈[0,T]

∥∥∥ ¨̃d(a)
∥∥∥+M(∆t2)

]
exp

(∥∥∥Ã∥∥∥ t) . (6.40)

6.4 Numerical Case Study: Spacecraft Orbital Maneuver

The proposed method is applied to a spacecraft orbital maneuvering problem. The control
problem, including the nonlinear and linearized spacecraft model, is described in Section
6.4.1. Section 6.4.2 presents the open-loop solution based on the linear model and numeri-
cally quantifies the error incurred by the piecewise-linear approximation of the disturbance.
In Section 6.4.3, an MPC implementation of the linear-model-based controller is proposed
and closed-loop simulations on the nonlinear model are presented. All computations in this
section are performed in MATLAB 2015a on a laptop with an i5-6300 processor.

6.4.1 Control Problem

The following nonlinear equations of motion are considered,

r̈ = − µ

‖r‖3
2

r − 1

2BC
ρ ‖ṙ‖2 ṙ + fg + u, (6.41)

where r is the position vector of the spacecraft relative to the center of the attracting body,
u denotes the vector of control input accelerations, and µ is the gravitational parameter
associated with the two-body problem. The second term in (6.41) represents the pertur-
bation due to atmospheric drag, where BC is the spacecraft’s ballistic coefficient and ρ is
the density of the atmosphere which is computed using the NRLMSISE-00 model [68]. In
this model, the effect of a moving atmosphere is neglected. The third term fg in (6.41) is
a nonlinear function of r, representing the J2 and J3 perturbations, see [64], which, in ad-
dition to atmospheric drag, are the major perturbations in LEO. In general, the developed
approach allows to consider any kind of disturbances and additional perturbations can be
readily included.

An optimal control problem with the cost functional (6.2) is considered, where the
quadratic penalty on the control u reflects propellant consumption for a variable specific
impulse (VSI) thruster [121]. The linear model is obtained by linearizing the nonlin-
ear model in (6.41) around a circular target/desired orbit and is given by the CW equa-

170

tions [65]. The CW equations describe the motion of the spacecraft in Hill’s frame, where
the x-axis is along the radial direction and the z-axis is orthogonal to the orbital plane
of the nominal orbit (pointing in the direction of the nominal orbit’s angular momentum
vector). The y-axis completes the right hand frame. The state vector in Hill’s frame is
x> = [rx, ry, rz, vx, vy, vz], describing the position and velocity of the spacecraft relative
to the target orbit. The control vector is u> = [ux, uy, uz], where ux, uy, and uz are ac-
celerations in the respective directions of Hill’s frame. The time-varying disturbance term
as viewed from Hill’s frame is d> = [0, 0, 0, dx, dy, dz]. It is obtained by calculating the
respective disturbances, i.e., −0.5ρ0 ‖ṙ0‖2 ṙ0/BC + fg,0, for the known nominal orbit, and
then transforming the vectors from the ECI frame to Hill’s frame.

A generic spacecraft of massm = 250 kg is assumed. For the linear model, atmospheric
drag is only taken into account along the nominal orbital track direction (y-direction),
where a relevant surface area ofA = 5m2 and a drag coefficient of 2.5 is assumed, yielding
a ballistic coefficient of BC = 20 kg/m2. The weights for the cost function are chosen as
Q = 06×6, R = diag(10, 10, 10), and S = diag(106, 10, 106, 106, 106, 106), emphasizing
achieving desired final state (except for the final position, ry(T), on the target orbit) with
minimum propellant consumption with a VSI low-thrust engine. The emphasis on mini-
mum fuel consumption may be increased by either lowering the diagonal elements of S
or increasing the diagonal elements of R, which may, however, increase the error in the
final state. Note that the approach does not take into account hard constraints on the state
and control input. However, the matrices Q, R, and S provide tuning parameters by which
maximum state and control deviators can be affected. Moreover, in some problems, nearly
feasible solutions are acceptable, especially when no strictly feasible solution exists.

Two different cases with different target orbits and initial conditions are considered. In
each case, the maneuver time T is set to the orbital period of the nominal orbit. The first
case assumes a target orbit of 250 km altitude with inclination i = 30 deg, right ascension of
the ascending node RAAN = 50 deg, and orbital period T = 1.49 hours, where the initial
condition is given by rx(0) = ry(0) = 20 km and rz(0) = vx(0) = vy(0) = vz(0) = 0.
The second case assumes a 1000 km target orbit with i = −50 deg, RAAN = 0, and
orbital period T = 1.75 hours, where rx(0) = −100 km, ry(0) = 60 km, rz(0) = 40 km,
vx(0) = −80 m/sec, vy(0) = 10 m/sec, and vz(0) = 40 m/sec.

6.4.2 Linear Model Results

The results for the linear model (6.1) are analyzed here. Figure 6.1 (top) shows the time
history of the relative control input error urel(t) = ‖u(t)− upwlin(t)‖ / ‖u(t)‖ for the two

171

test cases using a sampling time of ∆t = tk+1 − tk = 100 sec, where u is the optimal
solution when the actual d rather than its approximation is used. Moreover, the average
error,

eavrg =
ν∑
k=1

‖x̃(tk)− x̃pwlin(tk)‖ /ν, (6.42)

of the augmented state vector is plotted against ∆t in the bottom of Figure 6.1. Note that
throughout this section the 2-norm and units of kilometers and seconds are used to compute
cost values and norms. The relative control input error incurred by the piecewise-linear
approximation of d with ∆t = 100 sec is less than 0.1 percent for most of the maneuver
time and never exceeds 0.8 percent according to Figure 6.1. Furthermore, in line with
Theorem 6.1, the average error eavrg can be bounded by a quadratic function of ∆t.

time (hours)
0 0.5 1 1.5

u re
l

#10-3

0

2

4

6
case 1
case2

"t (sec)
50 100 150 200

e av
rg

0

1

2

3

Figure 6.1: LQ optimal control problem of spacecraft orbital maneuvering: linear model
results. Top: relative control input error urel(t) = ‖u(t)− upwlin(t)‖ / ‖u(t)‖ for ∆t = 100
sec. Bottom: average error eavrg according to (6.42) vs. sampling time ∆t.

Figure 6.2 shows the required computation times for the proposed method for different
sampling times ∆t. The total computation time is the sum of the required time to build
the matrices in (6.11) and (6.20) (top plot in Figure 6.2), the time to solve the TPBVP,
i.e., obtain ψ0,pwlin (middle plot), and the time to compute the state and control sequences
for all tk (bottom plot). In general, the computation times are decreasing exponentially
with increasing ∆t and the major part of the total computation time is due to building the
matrices (top plot in Figure 6.2). For practical applications, this needs to be done only

172

once and can be performed offline. Solving the TPBVP and obtaining the state and control
sequences is performed substantially faster on the order of milliseconds.

In contrast, when the actual d rather than its approximation is used, the TPBVP solution
is obtained numerically using ode45 and fsolve in MATLAB. While the computation time
is affected by the initial guess of ψ0, for default solver settings and an initial guess of
ψ0 = 06×1, the computation time is about 7.8 sec for test case 1 and 9.3 sec for test case 2.
For poor initial guesses of ψ0, computation times are longer.

50 100 150 200

tim
e

(s
ec

)

0

10

20

30
case 1
case2

50 100 150 200

tim
e

(m
se

c)

0

1

2

3

"t (sec)
50 100 150 200

tim
e

(s
ec

)

0

0.2

0.4

Figure 6.2: LQ optimal control problem of spacecraft orbital maneuvering: computation
times vs. ∆t. Top: time to build the matrices in (6.11) and (6.20). Middle: time to solve
the TPBVP. Bottom: time to compute x̃pwlin(t) and upwlin(t) for all tk.

6.4.3 Nonlinear Model Results

An MPC implementation of the proposed approach is used to control the nonlinear space-
craft model. The sampling time is set to ∆t = 100 sec and, based on the current state,
the solution to the TPBVP is computed at every sampling instant tk, k = 1, 2, ..., ν − 1,
for a receding and shrinking time horizon T − tk. The controls upwlin(tk) and upwlin(tk+1)

are computed according to (6.17) and the control uinterp(t) = upwlin(tk) + (upwlin(tk+1) −
upwlin(tk))(t − tk)/∆t is applied to the nonlinear spacecraft model during the sampling
interval t ∈ [tk, tk+1). This receding horizon implementation provides a form of feedback
to compensate for unmodeled effects not present in the linear model. While the respec-
tive matrices in (6.11) and (6.20) are built offline before the maneuver (computation times

173

for ∆t = 100 sec: ≈ 0.3 sec for case 1 and ≈ 0.4 sec for case 2, see top plot in Figure
6.2), the computation times for recomputing the control are negligible. For recomputing
the control according to the proposed MPC scheme, a worst-case computation time over
all sampling instants of 1.5 msec is recorded for case 1 and 1.8 msec for case 2, where the
average computation time over all sampling instants is about 1 msec for both cases. Hence,
the MPC implementation appears to be suitable for real-time applications. Note that it is
not necessary to recompute the disturbance term d(t) since the nominal trajectory given by
the target orbit does not change.

Figures 6.3 – 6.5 show the control input accelerations as well as the spacecraft position
and velocity relative to the target orbit for cases 1 and 2 using the proposed MPC imple-
mentation. In both cases, the controller is able to drive the spacecraft to the desired target
orbit.

0 0.5 1 1.5

u x (
m

/s
ec

2)

0

0.1

0.2
case 1
case2

0 0.5 1 1.5

u y (
m

/s
ec

2)

0

0.2

time (hours)
0 0.5 1 1.5

u z (
m

/s
ec

2)

-0.02
-0.01

0
0.01

Figure 6.3: LQ optimal control problem of spacecraft orbital maneuvering: nonlinear
model results with MPC scheme: control input acceleration in Hill’s frame vs. time.

The cost values for the trajectories in Figures 6.3 – 6.5 are listed in Tables 6.1 and
6.2, which also include the final states. In addition to the MPC scheme based on the
piecewise-linear approximation of d (d̃pwlin), Tables 6.1 and 6.2 include the results when us-
ing the MPC scheme with either a piecewise-constant approximation of d, i.e., d̃pwconst(t) =

[d>(tk), 01×n]> for t ∈ [tk, tk+1), or without taking into account the disturbance when com-
puting the control (d̃ ≡ 02n×1).

174

0 0.5 1 1.5

r x (
km

)

-200

-100

0

100

case 1
case2

0 0.5 1 1.5

r y (
km

)
0

100
200
300

time (hours)
0 0.5 1 1.5

r z (
km

)

-20
0

20
40

Figure 6.4: LQ optimal control problem of spacecraft orbital maneuvering: nonlinear
model results with MPC scheme: spacecraft position in Hill’s frame vs. time.

0 0.5 1 1.5

v x (
m

/s
ec

)

-100

0

100

200 case 1
case2

0 0.5 1 1.5

v y (
m

/s
ec

)

-200

0

200

time (hours)
0 0.5 1 1.5

v z (
m

/s
ec

)

-50

0

50

Figure 6.5: LQ optimal control problem of spacecraft orbital maneuvering: nonlinear
model results with MPC scheme: spacecraft velocity in Hill’s frame vs. time.

It is evident that taking into account the disturbance for computing the control input
improves the performance as the controller with d̃ ≡ 02n×1 performs poorly compared to
the controllers based on d̃pwlin and d̃pwconst. Moreover, the piecewise-linear approximation

175

of d improves the performance compared to a piecewise-constant approximation, where
the advantage of using d̃pwlin increases with increasing ∆t. Note that the weight for ry(T)

(final position on the target orbit) is smaller compared to the terminal weights on the other
states, which explains the deviations compared to the other states in Tables 6.1 and 6.2.

J rx(T), m ry(T), m rz(T), m vx(T),
m
sec vy(T),

m
sec vz(T),

m
sec

d̃pwlin 0.16 −0.24 −29.9 −0.5 −3× 10−3 −3× 10−3 −9× 10−3

d̃pwconst 4.26 −0.87 −31.2 −2.8 −23× 10−3 −40× 10−3 −77× 10−3

d̃ ≡ 02n×1 2246 −66.5 −20.5 8.5 −1.3 0.23 0.15

Table 6.1: LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme, case 1: cost values and final states for different controllers.

J rx(T), m ry(T), m rz(T), m vx(T),
m
sec vy(T),

m
sec vz(T),

m
sec

d̃pwlin 0.42 0.6 −53.6 0.67 −6× 10−3 −9× 10−3 10× 10−3

d̃pwconst 2.28 0.21 −55.3 2.1 −18× 10−3 −60× 10−3 54× 10−3

d̃ ≡ 02n×1 921.1 −42.8 −47 −2.5 −0.88 0.14 −38× 10−3

Table 6.2: LQ optimal control problem of spacecraft orbital maneuvering: nonlinear model
results with MPC scheme, case 2: cost values and final states for different controllers.

6.5 Summary

Separate from the DCOC developments in this disseratation, an LQ optimal control prob-
lem for linear systems with previewed time-varying disturbance term d(t) was considered
in this chapter. A closed-form solution was derived based on Pontryagin’s maximum prin-
ciple by approximating d(t) by a piecewise-linear function of time using equidistant time
intervals. It was shown that the error due to the piecewise-linear approximation can be
bounded by a quadratic function of the length of the time intervals. The closed-form solu-
tion can readily be implemented in computer code and allows for fast computations in real-
time. Besides, the proposed approach can be used to warm start nonlinear optimal control
solvers that require a good initial guess for convergence and can, in addition, handle state
and control constraints. The approach was applied to spacecraft orbital maneuvering where
two numerical test cases with different initial conditions and target orbits were treated. In
both cases, the spacecraft was successfully driven to the prescribed target orbit using an
MPC implementation of the developed approach.

176

CHAPTER 7

Conclusions and Future Directions

7.1 Conclusions

This dissertation focused on theoretical and methodological advances of drift counteraction
optimal control (DCOC), in which the goal is to design control algorithms that maximize
the time or total yield before a given system violates prescribed constraints. Unlike con-
ventional control problems, there is no set-point or reference trajectory in DCOC, only a
set of constraints on the system’s process variables that need to be satisfied for as long as
possible. For both deterministic and stochastic settings of DCOC, theoretical results were
extended by this dissertation in several ways. In particular, properties of the first exit-time
and of the objective function of DCOC problems were studied, a solution to the DCOC
problem was characterized, and conditions for the existence of a solution were derived.

A variety of new algorithms that obtain solutions or good-quality approximations of
solutions to DCOC problems were proposed. Using dynamic programming (DP) tech-
niques, an enhanced version of value iteration (VI) was developed for both deterministic
and stochastic DCOC problems, where the value function is updated in proportion to the
error in the Bellman equation. The convergence behavior of the enhanced VI algorithm
was studied and it was shown that a solution can be obtained significantly faster than with
conventional VI in a numerical setting. Another DP-based algorithm, referred to as base-
trajectory VI, was also introduced based on the observation that in some problems, such as
in space applications, the optimal control action (such as zero thrust) is known for many
states. Base-trajectory VI was shown to be more accurate than conventional VI in a numer-
ical setting and able to generate better performing control policies. In addition, approxi-
mate dynamic programming (ADP) methods were proposed for both the deterministic and
stochastic case in order to mitigate the curse of dimensionality.

The DP-based theoretical characterization of the solution can be used for a broad range
of nonlinear system models and quite general DCOC problem formulations. However,

177

computationally, the DP-based methods are usually limited to lower-dimensional problems
due to the curse of dimensionality or, when using ADP methods, extensive tuning and
model training may be required to achieve good-quality results. This motivated the devel-
opment of model predictive control (MPC) approaches to DCOC as accomplished in this
dissertation. The proposed MPC approaches assume a linear model and obtain the con-
trol input at each time instant by repeatedly solving either a mixed-integer linear program
(MILP) or a standard linear program (LP) over a receding time horizon based on the current
state of the system. Since the respective LP and MILP were shown to be always feasible
under appropriate assumptions, this is computationally more robust compared to DP-based
techniques. The robustness of the MPC approaches was further increased by specifying a
computation time limit for solving MILPs, where, if the time limit is reached, the solution
of the related LP is used instead.

The proposed MPC approach for the deterministic case provides a drift counteraction
solution based on linear models which, in fact, under suitable assumptions and in con-
trast to usual MPC formulations, exactly coincides with the optimal control if there is no
model mismatch. Moreover, the MPC approach was also shown to be effective in DCOC of
nonlinear systems, obtaining solutions close to the respective optimum in terms of perfor-
mance. For stochastic systems, the proposed stochastic MPC (SMPC) scheme uses a tree
structure to encode the most likely system behavior. As the tree grows (i.e., the number of
tree nodes increases), the SMPC solution approaches the solution of the stochastic DCOC
problem, assuming the system is linear with additive random disturbances modeled by a
Markov chain. Similar to the deterministic case, the SMPC strategy applied to linearized
models is able to provide good-quality approximations of solutions to DCOC problems in
the case of more general stochastic nonlinear systems.

In addition to the MPC developments, a mixed-integer nonlinear program (MINLP)
was presented that obtains open-loop solutions to deterministic DCOC problems and good-
quality approximations of a solution are provided by a similar nonlinear program without
integer variables.

New practical applications of DCOC were identified with a focus on spacecraft control
and driving policies for autonomous vehicles. For spacecraft, satellite station keeping can
be formulated as a DCOC problem with the objective of finding a thrust strategy that, given
fuel limitations, counteracts drift imposed by orbital perturbations in order to maximize the
time that prescribed position constraints are satisfied. Hence, DCOC provides a systematic
and direct approach for extending the lifetime of a satellite before either its orbit decays
or it runs out of fuel. Furthermore, DCOC can be exploited for spacecraft attitude control
(specifically, underactutated spacecraft attitude control), where tight pointing constraints as

178

well as constraints on momentum exchange devices or fuel need to be satisfied for as long
as possible under disturbance torques from, for example, solar radiation pressure or atmo-
spheric drag. In terms of driving policies for automated or autonomous cars, an adaptive
cruise control (ACC) problem can be formulated as a DCOC problem. In the ACC case,
the objective is to control the acceleration of the follower vehicle such that the distance to
the lead vehicle stays within a prescribed range for as long as possible (on average), where
the lead vehicle velocity is modeled as a random disturbance. The DCOC car following
problem can be extended by also allowing lane changes. In this case, the objective is to
generate a driving policy that maximizes the average time that none of the surrounding cars
and other traffic participants such as cyclists, pedestrians, etc. (treated as random distur-
bances) enter a prescribed safe zone around the ego car. Several numerical case studies of
such application-oriented DCOC problems and other DCOC problems were successfully
treated in this dissertation using the developed framework.

7.2 Future Directions

Many topics for future research remain. Some of them are summarized in what follows.

Extend the framework of DCOC-based driving policies for autonomous cars
The DCOC-based driving policies for autonomous cars (see Sections 4.5 and 5.5.3) need
to be tested in different and more sophisticated traffic simulations and, ultimately, in real
traffic. In real traffic applications, a recovery controller is furthermore required to resolve
cases of constraint violation, i.e., when a car enters the prescribed safe zone around the ego
car. Direct comparisons to other driving approaches are necessary, where additional met-
rics (other than the average first exit-time τ̄) may be required to measure the performance
of a driving policy. Moreover, additional traffic scenarios may be considered such as roads
with more than two lanes (see Remark 4.2), highway merging and exiting (for example, by
prioritizing specific lanes), or intersections.

Derive simpler strategies from optimal strategies for DCOC applications
For practical applications of DCOC, it may be possible to derive simpler (e.g., rule-based)
control strategies from optimal control strategies to efficiently provide good-quality subop-
timal results. Machine learning techniques can also be used to approximate the solutions
to model predictive control problems.

179

Approaches to DCOC based on necessary conditions and indirect methods
Necessary optimality conditions for DCOC along the lines of Pontryagin’s maximum prin-
ciple deserve further study. The challenge is to acknowledge that, after leaving the set of
state constraints G, the state trajectory may reenter G indefinitely many times. One pos-
sible approach to address this issue is to describe the system by a hybrid model with two
modes. The system dynamics are represented by the first mode, whereas the second mode
models a switch to zero dynamics (i.e., ẋ = 0 or xt+1 = xt), which is activated when the
state trajectory hits the boundary of G. Such a model may be treated using similar steps
as involved in deriving hybrid variants of the maximum principle. In some cases, by an
appropriate selection of the set G, it may be possible to guarantee that the trajectory never
reenters G after the first exit. In such a case, significant simplifications to the problem and
necessary conditions can be made by discarding state constraints prior to the first exit-time
and only requiring a terminal constraint that the state is on the boundary of G at the ter-
minal time. In addition, fast indirect numerical schemes need to be developed to solve the
resulting boundary value problem.

Set-theoretic treatment of DCOC problems
The solution to DCOC problems may also be pursued using set theoretic methods. For
example, for deterministic DCOC problems with the objective of maximizing the first
exit-time, knowledge of the sets Km in (2.28) allows to construct an optimal control pol-
icy according to π∗(x) ∈ {u ∈ U : f(x, u) ∈ Km−1} for all x ∈ Km and m ∈
{1, 2, ..., τ(x, π∗) − 1}. The sets Km may be obtained with a VI-type algorithm using
DP techniques similar to the developments in [122].

Robust DCOC
Another approach for handling uncertainty is to assume that its values are set-bounded. Ro-
bust DCOC strategies can potentially be obtained by including set-bounded disturbances
and/or model parameters into the mathematical programs developed in this dissertation.

Other applications of DCOC
While the focus of this dissertation was on DCOC applications to autonomous cars and
spacecraft, DCOC techniques can be applied to many other engineering applications, some
of which are discussed in Section 1.2. In addition, an important field of DCOC applications
is system/component life-extending control. For example, DCOC may be used to derive
control strategies that extend the life of batteries in electric cars. New approaches may be
required to handle the relatively long time horizons that may arise in such problems. Other

180

classes of applications may include control of flexible aircraft where constraints are im-
posed on deflections, structural loads, and aircraft shape during aircraft maneuvers or when
responding to gusts and the aircraft is controlled to maximize time to constraint violation.
The application of DCOC to such problems to obtain maneuver and gust load alleviation
schemes will require dealing with high order models and multiple aircraft surfaces; it will
likely have to be approached within the MPC framework based on linear models.

181

APPENDIX A

Rotational Dynamics of a Rigid Body with
Time-Varying Mass/Inertia Properties

The notations for the derivation in this section are adopted from [123]. The position of a
point x relative to a point y is described by the physical vector ~rx/y. The physical vector
~rx/y resolved in the frame FA is denoted by ~rx/y|A. The time derivative of ~rx/y with respect

to the frame FA is denoted by
A•
~r x/y. The velocity of a point x relative to a point y with

respect to the frame FA is ~vx/y/A =
A•
~r x/y. Likewise, the acceleration of a point x relative to

a point y with respect to the frame FA is ~ax/y/A =
A••
~r x/y.

Let B be a rigid body andw and z are points. Then the following relation holds between
the moment on B relative to z and the moment on B relative to w:

~MB/z = ~MB/w − ~rz/w × ~fB, (A.1)

where ~fB denotes the total force acting on B. Now w is assumed to be an unforced particle
(a particle that has no force applied on it [123]). Then

~MB/w =
A•
~HB/w/A, (A.2)

where ~HB/w/A denotes the angular momentum of B relative to w with respect to the frame
FA. Substituting (A.1) into (A.2) yields

~MB/z =
A•
~HB/w/A −~rz/w × ~fB. (A.3)

By denoting the center of mass of the body B by c, it is straightforward to show that

~HB/w/A = ~HB/z/A + ~rc/z ×mB~vz/w/A + ~rz/w ×mB~vc/w/A, (A.4)

182

where mB is the time-varying total mass of the body B. The time derivative of (A.4) with
respect to frame FA yields

A•
~HB/w/A=

A•
~HB/z/A +ṁB

(
~rc/z × ~vz/w/A + ~rz/w × ~vc/w/A

)
+mB

(
~vc/z/A × ~vz/w/A + ~vz/w/A × ~vc/w/A + ~rz/w × ~ac/w/A + ~rc/z × ~az/w/A

)
,

(A.5)

with ṁB = dmB/dt. The velocity cross products in the second term on the right-hand side
in (A.5) can be simplified as follows

~vc/z/A × ~vz/w/A + ~vz/w/A × ~vc/w/A = ~vc/z/A × ~vz/w/A + ~vw/c/A × ~vz/w/A
=
(
~vc/z/A + ~vw/c/A

)
× ~vz/w/A

=
(
~vc/w/A + ~vw/z/A + ~vw/c/A

)
× ~vz/w/A

= −~vz/w/A × ~vz/w/A = 0.

(A.6)

Therefore, (A.5) becomes

A•
~HB/w/A=

A•
~HB/z/A +mB

(
~rz/w × ~ac/w/A + ~rc/z × ~az/w/A

)
+ ṁB

(
~rc/z × ~vz/w/A + ~rz/w × ~vc/w/A

)
.

(A.7)

Substituting (A.7) into (A.3) yields

~MB/z =
A•
~HB/z/A +mB~rc/z × ~az/w/A + ṁB~rc/z × ~vz/w/A

+ ~rz/w ×
(
mB~ac/w/A + ṁB~vc/w/A − ~fB

)
.

(A.8)

Since c is the center of mass of the body B, the translational momentum of B relative to

w with respect to frame FA is ~pB/w/A = mB~vc/w/A [123]. Thus,
A•
~p B/w/A= mB~ac/w/A +

ṁB~vc/w/A. Furthermore,
A•
~p B/w/A= ~fB since FA is an inertial frame and w is an unforced

particle. Consequently, the last term on the right-hand side in (A.8) is zero and (A.8)
becomes

~MB/z =
A•
~HB/z/A +~rc/z ×

(
mB~az/w/A + ṁB~vz/w/A

)
. (A.9)

Using the transport theorem and introducing the body-fixed frame FB with mutually per-

183

pendicular frame vectors (b̂1, b̂2, b̂3), (A.9) becomes

~MB/z =
B•
~HB/z/A +~ωB/A × ~HB/z/A + ~rc/z ×

[
mB

(
~az/c/B + 2~ωB/A × ~vz/c/B

+ ~αB/A × ~rz/c + ~ωB/A × (~ωB/A × ~rz/c) + ~ac/w/B

)
+ ṁB

(
~vz/c/B + ~ωB/A × ~rz/c + ~vc/w/A

)]
,

(A.10)

where ~ωB/A and ~αB/A =
A•
~ω B/A=

B•
~ωB/A are the physical angular velocity and angular accel-

eration vectors, respectively, of frame FB relative to frame FA. Again using the fact that
mB~ac/w/A + ṁB~vc/w/A = ~fB, (A.10) may be written as follows

~MB/z =
B•
~HB/z/A +~ωB/A × ~HB/z/A + ~rc/z ×

[
mB

(
~az/c/B + 2~ωB/A × ~vz/c/B

+ ~αB/A × ~rz/c + ~ωB/A × (~ωB/A × ~rz/c)
)

+ ṁB
(
~vz/c/B + ~ωB/A × ~rz/c

)
+ ~fB

]
.

(A.11)

~HB/z/A may be expressed using the physical inertia matrix ~IB/z of the body B relative to
the point z: ~HB/z/A = ~IB/z~ωB/A. Therefore, (A.11) becomes

~MB/z =
B•
~I B/z ~ωB/A + ~IB/z~αB/A + ~ωB/A ×

(
~IB/z~ωB/A

)
− ~rc/z ×

[
mB

(
~ac/z/B

+ 2~ωB/A × ~vc/z/B + ~αB/A × ~rc/z + ~ωB/A × (~ωB/A × ~rc/z)
)

+ ṁB
(
~vc/z/B + ~ωB/A × ~rc/z

)
− ~fB

]
.

(A.12)

This equation describes the general angular motion of a rigid body B with center of mass
c and time-varying mass and inertia properties. (A.12) is now resolved in the body-fixed
frame FB for the example axisymmetric spacecraft in Figure 2.14, where FB is assumed to
be the principal frame. The inertia matrix of the axisymmetric spacecraft B relative to the

184

body-fixed point z is expressed in frame FB as

Jz = ~IB/z|B =

 JT 0 0

0 JT 0

0 0 JR

 . (A.13)

The angular velocity vector is resolved in FB as ~ωB/A|B = [ω1, ω2, ω3]T, where ω1, ω2,
and ω3 are the angular velocity vector projections on the principal axes of B. Likewise,
~αB/A|B = [ω̇1, ω̇2, ω̇3]T, ~MB/z|B = [M1,M2,M3]T, ~fB|B = [f1, f2, f3]T, ~ac/z/B|B =

[a1, a2, a3]T, ~vc/z/B|B = [v1, v2, v3]T, and ~rc/z|B = [r1, r2, r3]T. It is assumed that the
spacecraft mass changes with a constant rate,

mB(t) = mB,0 − (ṁox + ṁf)t, (A.14)

wheremB,0, ṁox, and ṁf are constant scalars. Note that ṁox and ṁf are the mass flow rates
of the oxidizer and fuel, respectively. In analogy to (A.14), the time-varying masses of the
fuel and oxidizer are

mf(t) = mf,0 − ṁft, (A.15)

mox(t) = mox,0 − ṁoxt, (A.16)

where mf,0 and mox,0 are the initial fuel and oxidizer masses. The time-varying lengths of
the remaining fuel lf and oxidizer lox (see Figure 2.14) are

lf(t) = lf,0 − l̇ft, (A.17)

lox(t) = lox,0 − l̇oxt, (A.18)

where l̇f = ṁf/(πr
2
Eρf) and l̇ox = ṁox/(πr

2
Eρox) are constant scalars. Here, ρf and ρox are

the fuel and oxidizer density, respectively. The parameter rE is the radius of the engine and
tank section of the spacecraft as shown in Figure 2.14. It is assumed that the center of mass
is always on the symmetry axis (b̂3-axis as shown in Figure 2.14). Therefore, the first and
second component of ~rz/c|B, ~vz/c/B|B, and ~az/c/B|B are zero: r1 = r2 = 0, v1 = v2 = 0,
and a1 = a2 = 0. Using (A.14) – (A.18), the distance between the center of mass c and
point z is given by

r3(t) =
Cr3 +mox(t)

(
le + lox(t)

2

)
+mf(t)

(
le + lox,0 + lf(t)

2

)
mB(t)

, (A.19)

185

where Cr3 = mele/2 + mp(le + lox,0 + lf,0 + lp/2) is a constant scalar. me and mp denote
the masses of the engine and the payload, respectively. The velocity of the center of mass
c relative to point z with respect to frame FB is given by v3 = ṙ3,

v3(t) =
Cv3 −mox(t) l̇ox

2
− ṁox

lox(t)
2
−mf(t)

l̇f
2
− ṁf

lf(t)
2

+ r3(t)(ṁox + ṁf)

mB(t)
, (A.20)

where Cv3 = −ṁoxle − ṁf(le + lox,0) is a constant scalar. Likewise, the acceleration of
the center of mass c relative to point z with respect to frame FB is given by a3 = v̇3 = r̈3,
which yields

a3(t) =
Ca3 + 2v3(t)(ṁox + ṁf)

mB(t)
, (A.21)

where Ca3 = ṁoxl̇ox + ṁf l̇f is a constant scalar. The time-dependent components of the
inertia matrix in (A.13) follow from the parallel axis theorem. The principal moment of
inertia about the b̂3 axis relative to point z is given by

JR(t) =
1

2

(
CJR + r2

E [mox(t) +mf(t)]
)
, (A.22)

where CJR = r2
Eme + r2

pmp is a constant scalar. The parameter rp is the radius of the
payload section. The principal moment of inertia about the b̂1 or b̂2 axis is

JT(t) =CJT +mox(t)

(
r2

4
+
l2ox(t)

12
+

[
le +

lox(t)

2

]2
)

+mf(t)

(
r2

4
+
l2f (t)

12
+

[
le + lox,0 +

lf(t)

2

]2
)
,

(A.23)

where CJT = me

(
r2E
4

+ l2e
3

)
+mp

(
r2p
4

+
l2p
12

+
[
le + lox,0 + lf,0 + lp

2

]2
)

is a constant scalar.

The time derivatives with respect to frame FB of the principal moment of inertia are given
by

J̇R = −r
2
E

2
(ṁox + ṁf) , (A.24)

J̇T(t) =CJ̇T −
(
le +

lox(t)

3

)(
ṁoxlox(t) +mox(t)l̇ox

)
−
(
le + lox,0 +

lf(t)

3

)(
ṁoxlf(t) +mf(t)l̇f

)
− mox(t)lox(t)l̇ox +mf(t)lf(t)l̇f

3
,

(A.25)

186

where CJ̇T = −ṁox (r2
E/4 + l2e) − ṁf (r2

E/4 + (le + lox,0)2) is a constant scalar. Note that
J̇R in (A.24) is a constant scalar. The equations of motion for the example axisymmetric
spacecraft with time-varying mass/inertia properties follow from (A.12), yielding

ω̇1 =
1

JT(t)− r2
3(t)mB(t)

[
M1 +

(
2r3(t)v3(t)mB(t) + r2

3(t)ṁB − J̇T(t)
)
ω1

+
(
JT(t)− JR(t)− r2

3(t)mB(t)
)
ω2ω3 − r3(t)f2

]
,

(A.26)

ω̇2 =
1

JT(t)− r2
3(t)mB(t)

[
M2 +

(
2r3(t)v3(t)mB(t) + r2

3(t)ṁB − J̇T(t)
)
ω2

+
(
JR(t)− JT(t) + r2

3(t)mB(t)
)
ω1ω3 + r3(t)f1

]
,

(A.27)

ω̇3 =
M3 − ω3J̇R

JR(t)
, (A.28)

where ṁB = ṁox + ṁf is a constant scalar. Note that the time dependence of each mB,
r3, v3, JR, JT, and J̇T is explicitly stated in (A.26) – (A.28). It is self-evident that the state
variables ω1, ω2, and ω3 as well as ω̇1, ω̇2, and ω̇3 are also time-dependent. The same may
be true for the components of the moment M1, M2, and M3 as well as for the components
of the total force f1, f2, and f3.

In the following, M3 = 0 is assumed. Thus, the solution for ω3 is readily obtained since
(A.28) is decoupled from (A.26) and (A.27), i.e.,

ω3(t) =
ω3,0JR,0

JR,0 + J̇Rt
, (A.29)

where J̇R is given by (A.24), JR,0 = JR(0) = (r2
E(mox,0 +mf,0) + CJR) /2 is the initial

principal angular momentum about the symmetry axis, and ω3,0 is the initial angular veloc-
ity about the symmetry axis. The number of differential equations describing the system
may be reduced by substituting (A.29) into (A.26) and (A.27).

187

APPENDIX B

Proof of Theorem 3.2

For the proof of Theorem 3.2, {xt}, with x0 ∈ G0, denotes a state trajectory corresponding
to a control sequence {ut} and the dynamics xt+1 = ft(xt, ut).

Proof. For the first part of the proof, show that a solution to MINLP (3.16) is also a solution
to (3.5). By Assumption 3.1, there exists at least one control sequence {ut} ∈ Useq with
corresponding {xt} and first exit-time τ(x0, {ut}) ≥ τlb. Hence, because M is sufficiently
large according to Assumption 3.2, δt ≡ 1 is feasible. Since the number of possible δt
sequences is finite and a feasible solution exists for at least one of them, a solution to
MINLP (3.16) exists. Suppose that ({uNP

t }, {δNP
t }) is a solution to (3.16), i.e.,

N∑
t=τlb

δNP
t ≤

N∑
t=τlb

δ′t, (B.1)

for all ({u′t}, {δ′t}) that satisfy the constraints in (3.16). Moreover, for a given {u′t} ∈ Useq,
let {δ̄′t} be such that δ̄′t = 0 iff t < τ(x0, {u′t}), which is always feasible with respect to
(3.16) due to M being sufficiently large (Assumption 3.2). Consequently, because N is
sufficiently large according to Assumption 3.2,

τ(x0, {u′t}) = τlb +
N∑

t=τlb

(1− δ̄′t) = N + 1−
N∑

t=τlb

δ̄′t. (B.2)

Hence, by (B.1) and (B.2),

τ(x0, {uNP
t }) = min{t : δNP

t = 1}

= τlb +
N∑

t=τlb

(1− δNP
t) = N + 1−

N∑
t=τlb

δNP
t ≥ N + 1−

N∑
t=τlb

δ̄′t = τ(x0, {u′t}),
(B.3)

for all {u′t} ∈ Useq. It follows that {uNP
t } is a solution to (3.5).

188

For the second part of the proof, show that a solution to (3.5), which exists by Assump-
tion 3.1, is also a solution to MINLP (3.16). Suppose {u∗t} is a solution to (3.5). Thus,

τ(x0, {u∗t}) ≥ τ(x0, {u′t}), (B.4)

for all {u′t} ∈ Useq. Then (3.2) and (3.4), the constraints in (3.16), and N ≥ τ(x0, {ut})
for all {ut} ∈ Useq (Assumption 3.2) imply that δ∗t = 1 for t ∈ {τ(x0, {u∗t}), ..., N} and
δ′t = 1 for t ∈ {τ(x0, {u′t}), ..., N}, where {δ∗t } is the solution to (3.16) with {ut} = {u∗t}
fixed and {δ′t} is the solution to (3.16) with {ut} = {u′t} fixed. Assuming that the lower
bound in (3.16) satisfies τlb ≤ τ(x0, {u′t}), it follows that δ∗t = 0 for τlb ≤ t < τ(x0, {u∗t})
and δ′t = 0 for τlb ≤ t < τ(x0, {u′t}). This and (B.4) imply that

N∑
t=τlb

δ∗t =

τ(x0,{u∗t })−1∑
t=τlb

δ∗t +
N∑

t=τ(x0,{u∗t })

δ∗t

= N + 1− τ(x0, {u∗t}) ≤ N + 1− τ(x0, {u′t}) =
N∑

t=τlb

δ′t,

(B.5)

for all ({u′t}, {δ′t}) that satisfy the constraints of MINLP (3.16). Thus, ({u∗t}, {δ∗t }) is a
solution of MINLP (3.16).

189

APPENDIX C

Nonlinear Model for GEO Satellite Station
Keeping Problem

The derivation of the nonlinear spacecraft model for the GEO station keeping problem
in Section 3.4.2.1 is described here. With frame I as the ECI frame and frame H as
the Hill’s frame, a vector ~r, resolved in frame I, is transformed into frame H according
to ~r|H = OH/I~r|I , where OH/I is the respective orientation matrix. Likewise, ~r|I =

O>H/I~r|H = OI/H~r|H. In the following, r̄ = ~r|H is used to denote a vector resolved in
Hill’s frame. Furthermore, the time derivative of a vector ~r with respect to a frame F is

denoted by
F•
~r . The spacecraft position vector relative to Earth’s center is denoted by ~rSC/E

and the velocity and acceleration vectors with respect to frame I are ~vSC/E/I =
I•
~r SC/E and

~aSC/E/I =
I••
~r SC/E, respectively. Thus, employing the two-body problem in continuous-

time [65], it follows that

~aSC/E/I = − µE∥∥~rSC/E

∥∥3

2

~rSC/E +
~F

mSC

+ ~dp, (C.1)

where µE is Earth’s gravitational parameter, ~F denotes the thrust vector, mSC is the space-
craft mass, and ~dp is a vector containing perturbing accelerations. Instead of (C.1), the
spacecraft motion is described relative to a GEO reference orbit, i.e., ~rSC/GEO. Hence,
an expression for the relative acceleration vector with respect to Hill’s frame, ~aSC/GEO/H,
needs to be derived. It is ~aSC/GEO/H = ~aSC/E/H − ~aGEO/E/H, where

āGEO/E/H = −µE

r3
0

[
r0 0 0

]>
, (C.2)

190

with r0 as the constant distance between the GEO reference orbit and Earth’s center. On
the other hand,

~aSC/E/H = ~aSC/E/I + 2~ωI/H × ~vSC/E/I + ~ωI/H × (~ωI/H × ~rSC/E), (C.3)

where ~ωI/H denotes the angular velocity vector of frame I relative to frame H. Given the
constant angular rate of the GEO reference orbit,

n0 =
√
µE/r3

0, (C.4)

~ωI/H is resolved in Hill’s frame as ω̄I/H = [0, 0,−n0]>. Furthermore,

r̄SC/GEO = [r1, r2, r3]>,

v̄SC/GEO/H = [v1, v2, v3]>,

v̄GEO/E/I = [0, v0, 0]>,

with v0 =
√
µE/r0. Using (C.1), (C.3) is resolved in Hill’s frame as follows

āSC/E/H =− µE√
(r1 + r0)2 + r2

2 + r2
3

3

r1 + r0

r2

r3

+

 0

0

−2n0

×
 v1 − n0r2

v2 + v0 + n0r1

v3



+

 0

0

−n0

×
 n0r2

−n0(r1 + r0)

0

+
1

mSC

F1

F2

F3

+

dp,1

dp,2

dp,3

 ,
(C.5)

where F̄ = ~F |H = [F1, F2, F3]> and d̄p = ~dp|H = [dp,1, dp,2, dp,3]>. Combining (C.2),
(C.4), and (C.5) yields

āSC/GEO/H =− µE√
(r1 + r0)2 + r2

2 + r2
3

3

r1 + r0

r2

r3

+


2n0v2 + n2

0r1 + µE
r20

−2n0v1 + n2
0r2

0


+

1

mSC

F1

F2

F3

+

dp,1

dp,2

dp,3

 .
(C.6)

191

For the disturbance term ~dp, perturbing accelerations due to the gravity of the Moon and
Sun, SRP, and J2 are taken into account (additional perturbations can readily be included).
Thus,

~dp = ~dp,M + ~dp,S + ~dp,srp + ~dp,J2. (C.7)

The perturbations due to the gravity of Moon and Sun may be obtained according to the
three-body problem (spacecraft/Earth/Moon or spacecraft/Earth/Sun, respectively), yield-
ing

~dp,M = µM

(
~rM/SC∥∥~rM/SC

∥∥3

2

−
~rM/E∥∥~rM/E

∥∥3

2

)
, (C.8)

~dp,S = µS

(
~rS/SC∥∥~rS/SC

∥∥3

2

−
~rS/E∥∥~rS/E

∥∥3

2

)
, (C.9)

where ~rM/SC and ~rS/SC are the position vectors of the Moon and Sun relative to the space-
craft, respectively, and the position vectors of the Moon and Sun relative to Earth are ~rM/E

and ~rS/E, respectively. The gravitational parameters of the Moon and Sun are denoted by
µM and µS, respectively. The SRP and J2 perturbations are given by [64, 80]

~dp,srp = −Csrp
SSC(1 + crefl)

2mSC

~rS/SC∥∥~rS/SC

∥∥
2

, (C.10)

~dp,J2 =
3µEJ2r

2
E

2
∥∥~rSC/E

∥∥5

2

[(
5
~rSC/E · k̂I∥∥~rSC/E

∥∥2

2

− 1

)
~rSC/E − 2(~rSC/E · k̂I)k̂I

]
, (C.11)

where Csrp and crefl are constants, SSC is the spacecraft’s solar-facing area, rE is Earth’s
equatorial radius, k̂I is the 3-axis unit vector of frame I, and J2 = 1.08264 × 10−3. Now
the discrete-time model is obtained from the continuous-time model given by (C.6) and
(C.7)–(C.11) using Euler’s forward method, yielding[

r̄SC/GEO,t+1

v̄SC/GEO/H,t+1

]
=

[
r̄SC/GEO,t

v̄SC/GEO/H,t

]
+ ∆t

[
v̄SC/GEO/H,t

āSC/GEO/H,t

]
, (C.12)

where ∆t is the sampling time and (C.12) may be expressed as in (3.23) and (3.24).

192

APPENDIX D

Nonlinear Model for Spacecraft Attitude Control
Problem

The nonlinear spacecraft model for the attitude control problem in Section 3.4.2.1 is adopted
from [79]. As in Appendix C, for the derivation of the model, a physical vector is denoted
by ~r and a physical unit vector is denoted by r̂. The mathematical vector ~r|F is obtained
by resolving ~r in a given frame F . Two frames are considered, an inertial reference frame
denoted by I and the spacecraft body-fixed frame B, which is assumed to be a principal
frame. The notation r̄ = ~r|B is used to denote ~r resolved in frame B. The skew-symmetric
matrix associated with r̄ = [r1, r2, r3]> is defined as

S[r̄] =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (D.1)

The orientation of frame B relative to frame I is described by the 3-2-1 Euler angles ψ
(yaw), θ (pitch), and φ (roll). The continuous-time kinematic equations are given by [124]φ̇θ̇

ψ̇

 =
1

cos(θ)

cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)

0 cos(φ) cos(θ) − sin(φ) cos(θ)

0 sin(φ) cos(φ)

 ω̄B/I , (D.2)

where ~ωB/I is the angular velocity of frame B relative to I and ω̄B/I = [ω1, ω2, ω3]>.
The spacecraft is equipped with p RWs, where ḡi denotes the unit vector of the ith RW

spin axis resolved in the B frame. The spin rate of the ith RW is νi and ν̄ = [ν1, ν2, ..., νp]
>.

Moreover, let
W = [ḡ1, ḡ2, ..., ḡp]. (D.3)

All RWs are assumed to be identical and thin (moments of inertia about axes transversal

193

to spin axis are approximately zero). The moment of inertia about the RW spin axis is
denoted by Jw and the moment of inertia matrix of the spacecraft bus resolved in the B
frame is given by J = diag(J1, J2, J3). The locked inertia is defined as

J̄ = J + JwWW>. (D.4)

The continuous-time rotational dynamics of the spacecraft described in the B frame are
given by [79]

J̄ ˙̄ωB/I + S[ω̄B/I](J̄ ω̄B/I + JwWν̄) + JwW ˙̄ν = τ̄srp, (D.5)

where ˙̄ωB/I =
B•
ω̄B/I and ˙̄ν =

B•
ν̄ are the time derivatives with respect to frame B (and re-

solved in frame B) of the spacecraft and RW angular velocity vectors, respectively. Note

that
B•
ω̄B/I=

I•
ω̄B/I and

B•
ν̄≈

I•
ν̄ since the RWs are assumed to rotate orders of magnitude faster

than the spacecraft bus, i.e., ‖ν̄‖1 �
∥∥ω̄B/I∥∥1

.
The symbol τ̄srp in (D.5) denotes an external torque due to SRP, which is modeled based

on the assumption of a cuboid spacecraft with six flat panels. With Cdiff as the diffusion
coefficient, which is assumed to be the same for all panels, β = (4/9)Cdiff is defined.
Moreover, according to [125],

κ =
ΦS

c(rSC/S/rE/S)2
, (D.6)

where c is the speed of light, ΦS is the solar flux acting on the spacecraft, rE/S = 1 AU is the
nominal distance between Earth and Sun, and rSC/S is the distance between the spacecraft
and Sun, assuming rSC/S = 0.99 AU for this problem. Under the assumption that the
SRP acts identically across all points on the jth panel, the SRP acting on panel j may be
expressed as follows [79, 125]

~Pj = −κ(q̂j · q̂S)(q̂j + βq̂S), (D.7)

where q̂j is the normal to the surface of the jth panel (pointing outward from the spacecraft)
and q̂S points from the spacecraft towards the Sun. It follows that the SRP torque due to
the jth panel resolved in frame B is given by

τ̄srp,j = S[r̄j/O − r̄C/O]AjP̄j, (D.8)

where r̄C/O = [lx, ly, lz]
> denotes the position vector of the spacecraft’s center of mass,

C, relative to the geometric center, O, of the cuboid. The position vector of the geometric

194

center of the jth panel relative toO is given by r̄j/O, where j ∈ {x+, x−, y+, y−, z+, z−}.
Thus,

r̄x+/O = −r̄x−/O = [Lx/2, 0, 0]>,

r̄y+/O = −r̄y−/O = [0, Ly/2, 0]>,

r̄z+/O = −r̄z−/O = [0, 0, Lz/2]>,

where the surface areas of the panels are given by Ax+ = Ax− = LyLz, Ay+ = Ay− =

LxLz, and Az+ = Az− = LxLy. The total SRP torque is the sum of all panel contributions,

τ̄srp =
6∑
j=1

τ̄srp,jIj, (D.9)

where Ij = 1 if q̂j · q̂S > 0, i.e., the jth panel is facing the Sun, and Ij = 0 otherwise.
The discrete-time nonlinear model in (3.42) is obtained from the continuous-time non-

linear model given by (D.2)–(D.9) using Euler’s forward method.

195

APPENDIX E

Proof of Lemma 4.1

Proof. Define hxw(u) = V̄ (x, u, w). It needs to be shown that, for every ε > 0, there exists
δ > 0 such that v, u ∈ U and ‖v − u‖ < δ imply hxw(v) < hxw(u) + ε for all x ∈ G and
w ∈ W , see Definition 2.1. Since f(x, u, w) is continuous with respect to u ∈ U for all
x ∈ G and w ∈ W , for every ε1 > 0, there exists δ1 > 0 such that

‖v − u‖ < δ1 ⇒ ‖f(x, v, w)− f(x, u, w)‖ < ε1, (E.1)

for all x ∈ G [54]. Moreover, since V is USC with respect to x ∈ G for all w ∈ W , for
any ε2 > 0, there exists δ2 > 0 such that, for all x ∈ G and w ∈ W ,

‖y − f(x, u, w)‖ < δ2

⇒
∑
wi∈W

[
V (y, wi)PW (wi|w)

]
<
∑
wi∈W

[
V (f(x, u, w), wi)PW (wi|w)

]
+ ε2.

(E.2)

For ε > 0, using (E.2) with y = f(x, v, w), there exists δ2 > 0 such that

‖f(x, v, w)− f(x, u, w)‖ < δ2 ⇒ hxw(v) < hxw(u) + ε, (E.3)

according to (4.18). By taking ε1 = δ2 and δ1 = δ > 0 in (E.1), ‖v − u‖ < δ implies
hxw(v) < hxw(u) + ε.

196

BIBLIOGRAPHY

[1] Lions, P. L., “On the Hamilton-Jacobi-Bellman equations,” Acta Applicandae Math-
ematica, Vol. 1, No. 1, 1983, pp. 17–41.

[2] Crandall, M. G. and Lions, P.-L., “Viscosity solutions of Hamilton-Jacobi equa-
tions,” Transactions of the American Mathematical Society, Vol. 277, No. 1, 1983,
pp. 1–42.

[3] Crandall, M. G., Evans, L. C., and Lions, P.-L., “Some properties of viscosity so-
lutions of Hamilton-Jacobi equations,” Transactions of the American Mathematical
Society, Vol. 282, No. 2, 1984, pp. 487–502.

[4] Fleming, W. H. and Soner, H. M., Controlled Markov processes and viscosity solu-
tions, Vol. 25, Springer Science & Business Media, 2006.

[5] Barles, G. and Rouy, E., “A strong comparison result for the Bellman equation aris-
ing in stochastic exit time control problems and its applications,” Communications
in Partial Differential Equations, Vol. 23, No. 11-12, 1998, pp. 1995–2033.

[6] Bayraktar, E., Song, Q., and Yang, J., “On the continuity of stochastic exit time con-
trol problems,” Stochastic Analysis and Applications, Vol. 29, No. 1, 2010, pp. 48–
60.

[7] Touzi, N., Optimal stochastic control, stochastic target problems, and backward
SDE, Vol. 29, Springer Science & Business Media, 2012.

[8] Tang, S. and Zhang, F., “Path-dependent optimal stochastic control and viscosity
solution of associated Bellman equations,” arXiv preprint arXiv:1210.2078, 2012.

[9] Bokanowski, O., Picarelli, A., and Zidani, H., “Dynamic programming and error
estimates for stochastic control problems with maximum cost,” Applied Mathematics
& Optimization, Vol. 71, No. 1, 2015, pp. 125–163.

[10] Buckdahn, R. and Nie, T., “Generalized Hamilton-Jacobi-Bellman equations with
Dirichlet boundary condition and stochastic exit time optimal control problem,”
SIAM Journal on Control and Optimization, Vol. 54, No. 2, 2016, pp. 602–631.

[11] Bardi, M. and Capuzzo-Dolcetta, I., Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations, Springer Science & Business Media, 2008.

197

[12] Soner, H. M., “Optimal control with state-space constraint I,” SIAM Journal on Con-
trol and Optimization, Vol. 24, No. 3, 1986, pp. 552–561.

[13] Barles, G. and Perthame, B., “Discontinuous solutions of deterministic optimal stop-
ping time problems,” ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 21, No. 4, 1987, pp. 557–579.

[14] Barles, G. and Perthame, B., “Exit time problems in optimal control and vanishing
viscosity method,” SIAM Journal on Control and Optimization, Vol. 26, No. 5, 1988,
pp. 1133–1148.

[15] Barles, G., “Discontinuous viscosity solutions of first-order Hamilton-Jacobi equa-
tions: a guided visit,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 20,
No. 9, 1993, pp. 1123–1134.

[16] Blanc, A.-P., “Deterministic exit time control problems with discontinuous exit
costs,” SIAM journal on control and optimization, Vol. 35, No. 2, 1997, pp. 399–
434.

[17] Malisoff, M., “Viscosity solutions of the Bellman equation for exit time optimal
control problems with non-Lipschitz dynamics,” ESAIM: Control, Optimisation and
Calculus of Variations, Vol. 6, 2001, pp. 415–441.

[18] Malisoff, M., “Viscosity solutions of the Bellman equation for exit time optimal
control problems with vanishing Lagrangians,” SIAM Journal on Control and Opti-
mization, Vol. 40, No. 5, 2002, pp. 1358–1383.

[19] Malisoff, M., “Further results on the Bellman equation for optimal control problems
with exit times and nonnegative Lagrangians,” Systems & control letters, Vol. 50,
No. 1, 2003, pp. 65–79.

[20] Sinestrari, C., “Semiconcavity of the value function for exit time problems with
nonsmooth target,” Commun. Pure Appl. Anal, Vol. 3, No. 4, 2004, pp. 757–774.

[21] Motta, M. and Sartori, C., “The value function of an asymptotic exit-time opti-
mal control problem,” Nonlinear Differential Equations and Applications NoDEA,
Vol. 22, No. 1, 2015, pp. 21–44.

[22] Cannarsa, P., Pignotti, C., and Sinestrari, C., “Semiconcavity for optimal control
problems with exit time,” Discrete and Continuous Dynamical Systems, Vol. 6,
No. 4, 2000, pp. 975–997.

[23] Rungger, M. and Stursberg, O., “Continuity of the value function for exit time opti-
mal control problems of hybrid systems,” Decision and Control (CDC), 2010 49th
IEEE Conference on, 2010, pp. 4210–4215.

[24] Kolmanovsky, I. and Maizenberg, T. L., “Optimal containment control for a class of
stochastic systems perturbed by Poisson and Wiener processes,” American Control
Conference, 2002. Proceedings of the 2002, Vol. 1, 2002, pp. 322–327.

198

[25] Clark, J. and Vinter, R., “Stochastic exit time problems arising in process con-
trol,” Stochastics An International Journal of Probability and Stochastic Processes,
Vol. 84, No. 5-6, 2012, pp. 667–681.

[26] Kushner, H. J., Probability methods for approximations in stochastic control and for
elliptic equations, Vol. 129, Academic Press, 1977.

[27] Kushner, H. and Dupuis, P. G., Numerical methods for stochastic control problems
in continuous time, Vol. 24, Springer Science & Business Media, 2013.

[28] Rungger, M. and Stursberg, O., “A numerical method for hybrid optimal control
based on dynamic programming,” Nonlinear Analysis: Hybrid Systems, Vol. 5,
No. 2, 2011, pp. 254–274.

[29] Bertsekas, D. P., Dynamic Programming and Optimal Control, Vol. I, Athena Scien-
tific, Belmont, MA, 2005.

[30] Barles, G. and Souganidis, P. E., “Convergence of approximation schemes for
fully nonlinear second order equations,” Asymptotic analysis, Vol. 4, No. 3, 1991,
pp. 271–283.

[31] Beylkin, G. and Mohlenkamp, M. J., “Algorithms for numerical analysis in high
dimensions,” SIAM Journal on Scientific Computing, Vol. 26, No. 6, 2005, pp. 2133–
2159.

[32] Horowitz, M. B., Damle, A., and Burdick, J. W., “Linear Hamilton Jacobi Bellman
equations in high dimensions,” Decision and Control (CDC), 2014 IEEE 53rd An-
nual Conference on, 2014, pp. 5880–5887.

[33] Gorodetsky, A. A., Karaman, S., and Marzouk, Y. M., “Efficient high-dimensional
stochastic optimal motion control using tensor-train decomposition,” Robotics: Sci-
ence and Systems, 2015.

[34] Raffard, R. L., Hu, J., and Tomlin, C., “Adjoint-based optimal control of the ex-
pected exit time for stochastic hybrid systems,” Lecture Notes in Computer Science,
Vol. 3414, 2005, pp. 557–572.

[35] Kolmanovsky, I. V., Lezhnev, L., and Maizenberg, T. L., “Discrete-time drift coun-
teraction stochastic optimal control: theory and application-motivated examples,”
Automatica, Vol. 44, No. 1, 2008, pp. 177–184.

[36] Kolmanovsky, I. V., Sun, J., and Sivashankar, S. N., “An integrated software environ-
ment for powertrain feasibility assessment using optimization and optimal control,”
Asian Journal of Control, Vol. 8, No. 3, 2006, pp. 199–209.

[37] Kolmanovsky, I. V. and Filev, D. P., “Stochastic optimal control of systems with soft
constraints and opportunities for automotive applications,” IEEE Control Applica-
tions (CCA) & Intelligent Control (ISIC), 2009, pp. 1265–1270.

199

[38] Balasubramanian, K. and Kolmanovsky, I. V., “Range maximization of a direct
methanol fuel cell powered mini air vehicle using stochastic drift counteraction op-
timal control,” Proceedings of the 2012 American Control Conference (ACC), Mon-
treal, Canada, June 2012.

[39] Kolmanovsky, I. V. and Menezes, A. A., “A stochastic drift counteraction optimal
control approach to glider flight management,” Proceedings of the 2011 American
Control Conference, 2011, pp. 1009–1014.

[40] Menezes, A. A., Shah, D. D., and Kolmanovsky, I. V., “An evaluation of stochastic
model-dependent and model-independent glider flight management,” IEEE Trans-
actions on Control Systems Technology, Vol. PP, No. 99, 2017, pp. 1–17.

[41] Zidek, R. A. E. and Kolmanovsky, I. V., “Drift counteraction optimal control for
deterministic systems and enhancing convergence of value iteration,” Automatica,
Vol. 83, 2017, pp. 108–115.

[42] Zidek, R. A. E., Kolmanovsky, I. V., and Bemporad, A., “Spacecraft drift coun-
teraction optimal control: open-loop and receding horizon solutions,” Journal of
Guidance, Control, and Dynamics, 2017, under review.

[43] Zidek, R. A. E. and Kolmanovsky, I. V., “Deterministic drift counteraction optimal
control and its application to satellite life extension,” 54th IEEE Conference on De-
cision and Control (CDC), 2015, pp. 3397–3402.

[44] Zidek, R. A. E. and Kolmanovsky, I. V., “Deterministic drift counteraction optimal
control for attitude control of spacecraft with time-varying mass,” AIAA Guidance,
Navigation, and Control Conference, 2016, p. 0369.

[45] Zidek, R. A. E. and Kolmanovsky, I. V., “Geostationary satellite station keeping
using drift counteraction optimal control,” 26th AAS/AIAA Space Flight Mechanics
Meeting, 2016, pp. 989–1000.

[46] Zidek, R. A. E. and Kolmanovsky, I. V., “Stochastic drift counteraction optimal con-
trol and enhancing convergence of value iteration,” 55th IEEE Conference on Deci-
sion and Control (CDC), 2016, pp. 1119–1124.

[47] Zidek, R. A. E., Petersen, C. D., Bemporad, A., and Kolmanovsky, I. V., “Receding
horizon drift counteraction and its application to spacecraft attitude control,” 27th
AAS/AIAA Space flight mechanics meeting, 2017, pp. AAS 17–465.

[48] Zidek, R. A. E., Bemporad, A., and Kolmanovsky, I. V., “Optimal and receding hori-
zon drift counteraction control: linear programming approaches,” American Control
Conference (ACC), 2017, pp. 2636–2641.

[49] Zidek, R. A. E. and Kolmanovsky, I. V., “A new algorithm for a class of deterministic
drift counteraction optimal control problems,” American Control Conference (ACC),
2017, pp. 623–629.

200

[50] Zidek, R. A. E. and Kolmanovsky, I. V., “Optimal driving policies for autonomous
vehicles based on stochastic drift counteraction,” 20th IFAC World Congress, 2017,
pp. 292–298.

[51] Zidek, R. A. E., Kolmanovsky, I. V., and Bemporad, A., “Stochastic MPC approach
to drift counteraction,” American Control Conference (ACC), 2018, under review.

[52] Zidek, R. A. E. and Kolmanovsky, I. V., “Approximate closed-form solution to a
linear quadratic optimal control problem with disturbance,” Journal of Guidance,
Control, and Dynamics, Vol. 40, 2017, pp. 477–483.

[53] Yeh, J., Real analysis: theory of measure and integration, Vol. 2, World Scientific,
Singapore, 2006.

[54] Rudin, W., Principles of mathematical analysis, Vol. 3, McGraw-Hill, New York,
1964.

[55] Sundaram, R. K., A first course in optimization theory, Cambridge University Press,
Cambridge, UK, 1996.

[56] Dontchev, A. L. and Zolezzi, T., Well-posed optimization problems, Springer, 1993.

[57] Bertsekas, D. P. and Tsitsiklis, J. N., “Neuro-dynamic programming: an overview,”
Decision and Control (CDC), Proceedings of the 34th IEEE Conference on, Vol. 1,
1995, pp. 560–564.

[58] Werbos, P. J., “Reinforcement learning and approximate dynamic programming
(RLADP) – foundations, common misconceptions, and the challenges ahead,” Rein-
forcement Learning and Approximate Dynamic Programming for Feedback Control,
2012, pp. 1–30.

[59] Heydari, A., “Revisiting approximate dynamic programming and its convergence,”
IEEE Transactions on Cybernetics, Vol. 44, No. 12, 2014, pp. 2733–2743.

[60] Wei, Q., Liu, D., and Lin, H., “Value iteration adaptive dynamic programming for
optimal control of discrete-time nonlinear systems,” IEEE Transactions on Cyber-
netics, Vol. 46, No. 3, 2016, pp. 840–853.

[61] Matheron, G., “Principles of geostatistics,” Economic geology, Vol. 58, No. 8, 1963,
pp. 1246–1266.

[62] Deisenroth, M. P., Rasmussen, C. E., and Peters, J., “Gaussian process dynamic
programming,” Neurocomputing, Vol. 72, No. 7, 2009, pp. 1508–1524.

[63] Bellman, R., “The theory of dynamic programming,” Tech. rep., DTIC Document,
1954.

[64] Bate, R. B., Mueller, D. D., and White, J. E., Fundamentals of astrodynamics, Dover
Publications, New York, NY, 1971.

201

[65] Wie, B., Space vehicle dynamics and control, American Institute of Aeronautics and
Astronautics, Reston, VA, 2008.

[66] Schmuland, D. T., Masse, R. K., and Sota, C. G., “Hydrazine propulsion module
for CubeSats,” 25th Annual AIAA/USU Conference on Small Satellites, Logan, UT,
2011.

[67] Schmuland, D. T., Carpenter, C., and Masse, R. K., “Mission applications of
the MRS-142 CubeSat high-impulse adaptable monopropellant propulsion system
(CHAMPS),” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Ex-
hibit, Atlanta, GA, 2012.

[68] Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C., “NRLMSISE-00 empirical
model of the atmosphere: statistical comparisons and scientific issues,” Journal of
Geophysical Research: Space Physics, Vol. 107, No. A12, 2002.

[69] Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., “DACE-A Matlab Kriging
toolbox, version 2.0,” Tech. rep., 2002.

[70] Soop, E. M., Handbook of geostationary orbits, Vol. 3, Springer Science & Business
Media, 1994.

[71] Pocha, J. J., An introduction to mission design for geostationary satellites, Vol. 1,
Springer Science & Business Media, 2012.

[72] Tsiotras, P. and Longuski, J. M., “A new parameterization of the attitude kinematics,”
Journal of the Astronautical Sciences, Vol. 43, No. 3, 2008, pp. 243–262.

[73] Huzel, D. K. and Huang, D. H., “Design of liquid propellant rocket engines,” Tech.
Rep. NASA SP-125, Rocketdyne Division, North American Aviation, Inc., Wash-
ington, D.C., 1967.

[74] Sutton, G. P., History of Liquid Propellant Rocket Engines, American Institute of
Aeronautics and Astronautics, Inc., Reston, VA, 2006.

[75] Bemporad, A. and Morari, M., “Control of systems integrating logic, dynamics, and
constraints,” Automatica, Vol. 35, No. 3, 1999, pp. 407–427.

[76] Bertsimas, D. and Tsitsiklis, J. N., Introduction to linear optimization, Vol. 6, Athena
Scientific Belmont, MA, 1997.

[77] Richards, A. and How, J., “Mixed-integer programming for control,” Proceedings of
the 2005, American Control Conference, 2005., 2005, pp. 2676–2683.

[78] Bemporad, A., “Hybrid toolbox - user’s guide,” 2004, http://cse.lab.
imtlucca.it/˜bemporad/hybrid/toolbox.

[79] Petersen, C. D., Leve, F., Flynn, M., and Kolmanovsky, I., “Recovering linear con-
trollability of an underactuated spacecraft by exploiting solar radiation pressure,”
Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, 2015, pp. 826–837.

202

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox

[80] Weiss, A., Kalabić, U., and Di Cairano, S., “Model predictive control for simulta-
neous station keeping and momentum management of low-thrust satellites,” 2015
American Control Conference (ACC), 2015, pp. 2305–2310.

[81] Romero, P. and Gambi, J. M., “Optimal control in the east/west station-keeping
manoeuvres for geostationary satellites,” Aerospace Science and Technology, Vol. 8,
No. 8, 2004, pp. 729–734.

[82] Romero, P., Gambi, J. M., and Patiño, E., “Stationkeeping manoeuvres for geosta-
tionary satellites using feedback control techniques,” Aerospace Science and Tech-
nology, Vol. 11, No. 2, 2007, pp. 229–237.

[83] Lee, B.-S., Hwang, Y., Kim, H.-Y., and Park, S., “East-west station-keeping ma-
neuver strategy for COMS satellite using iterative process,” Advances in Space Re-
search, Vol. 47, No. 1, 2011, pp. 149–159.

[84] de Bruijn, F. J., Theil, S., Choukroun, D., and Gill, E., “Geostationary satellite
station-keeping using convex optimization,” Journal of Guidance, Control, and Dy-
namics, , No. null, 2015, pp. 605–616.

[85] Crouch, P. E., “Spacecraft attitude control and stabilization,” IEEE Transactions on
Automatic Control, Vol. AC-29, No. 4, 1984, pp. 321–331.

[86] Tsiotras, P. and Luo, J., “Control of underactuated spacecraft with bounded inputs,”
Automatica, Vol. 36, No. 8, 2000, pp. 1153–1169.

[87] Zavoli, A., De Matteis, G., Giulietti, F., and Avanzini, G., “Single-axis pointing of an
underactuated spacecraft equipped with two reaction wheels,” Journal of Guidance,
Control, and Dynamics, 2017.

[88] Larson, K. A., McCalmont, K. M., Peterson, C. A., and Ross, S. E., “Kepler mis-
sion operations response to wheel anomalies,” SpaceOps 2014 Conference, 2014, p.
1882.

[89] Van Cleve, J. E., Howell, S. B., Smith, J. C., Clarke, B. D., Thompson, S. E., Bryson,
S. T., Lund, M. N., Handberg, R., and Chaplin, W. J., “That’s how we roll: the
NASA K2 mission science products and their performance metrics,” Publications of
the Astronomical Society of the Pacific, Vol. 128, No. 965, 2016, pp. 075002.

[90] Martinez-Sanchez, M. and Pollard, J. E., “Spacecraft electric propulsion – an
overview,” Journal of Propulsion and Power, Vol. 14, No. 5, 1998, pp. 688–699.

[91] Goebel, D., Martinez-Lavin, M., Bond, T., and King, A., “Performance of XIPS
electric propulsion in on-orbit station keeping of the Boeing 702 spacecraft,” 38th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2002, p. 4348.

[92] Earl, M. G. and D’andrea, R., “Iterative MILP methods for vehicle-control prob-
lems,” IEEE Transactions on Robotics, Vol. 21, No. 6, 2005, pp. 1158–1167.

203

[93] Puterman, M. L., Markov decision processes: discrete stochastic dynamic program-
ming, John Wiley & Sons, 2014.

[94] Thomson, B. S., Bruckner, J. B., and Bruckner, A. M., Elementary real analysis,
www.classicalrealanalysis.com, 2008.

[95] Hatipoglu, C., Ozguner, U., and Redmill, K. A., “Automated lane change controller
design,” IEEE Transactions on Intelligent Transportation Systems, Vol. 4, No. 1,
2003, pp. 13–22.

[96] Guo, L., Ge, P.-S., Yue, M., and Zhao, Y.-B., “Lane changing trajectory planning
and tracking controller design for intelligent vehicle running on curved road,” Math-
ematical Problems in Engineering, Vol. 2014, 2014.

[97] Hu, C., Jing, H., Wang, R., Yan, F., and Chadli, M., “Robust H∞ output-feedback
control for path following of autonomous ground vehicles,” Mechanical Systems and
Signal Processing, Vol. 70, 2016, pp. 414–427.

[98] Worrall, R., Bullen, A., and Gur, Y., “An elementary stochastic model of lane-
changing on a multilane highway,” Highway Research Record, , No. 308, 1970.

[99] Gipps, P. G., “A model for the structure of lane-changing decisions,” Transportation
Research Part B: Methodological, Vol. 20, No. 5, 1986, pp. 403–414.

[100] Wu, J., Brackstone, M., and McDonald, M., “Fuzzy sets and systems for a motorway
microscopic simulation model,” Fuzzy Sets and Systems, Vol. 116, No. 1, 2000,
pp. 65–76.

[101] Toledo, T., Koutsopoulos, H. N., and Ben-Akiva, M., “Integrated driving behavior
modeling,” Transportation Research Part C: Emerging Technologies, Vol. 15, No. 2,
2007, pp. 96–112.

[102] Schubert, R., Schulze, K., and Wanielik, G., “Situation assessment for automatic
lane-change maneuvers,” IEEE Transactions on Intelligent Transportation Systems,
Vol. 11, No. 3, 2010, pp. 607–616.

[103] Wang, M., Hoogendoorn, S. P., Daamen, W., van Arem, B., and Happee, R., “Game
theoretic approach for predictive lane-changing and car-following control,” Trans-
portation Research Part C: Emerging Technologies, Vol. 58, 2015, pp. 73–92.

[104] Hertz, J., Krogh, A., and Palmer, R. G., Introduction to the theory of neural compu-
tation, Vol. 1, Basic Books, 1991.

[105] Oyler, D. W., Yildiz, Y., Girard, A. R., Li, N. I., and Kolmanovsky, I. V., “A game
theoretical model of traffic with multiple interacting drivers for use in autonomous
vehicle development,” American Control Conference (ACC), 2016, 2016, pp. 1705–
1710.

204

[106] Bernardini, D. and Bemporad, A., “Stabilizing model predictive control of stochas-
tic constrained linear systems,” IEEE Transactions on Automatic Control, Vol. 57,
No. 6, 2012, pp. 1468–1480.

[107] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and
Hirukawa, H., “Biped walking pattern generation by using preview control of zero-
moment point,” Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE Inter-
national Conference on, Vol. 2, 2003, pp. 1620–1626.

[108] Takaba, K., “A tutorial on preview control systems,” SICE 2003 Annual Conference,
Vol. 2, 2003, pp. 1388–1393.

[109] De Bruyne, S., Van der Auweraer, H., Anthonis, J., Desmet, W., and Swevers, J.,
“Preview control of a constrained hydraulic active suspension system,” Decision
and Control (CDC), 2012 IEEE 51st Annual Conference on, 2012, pp. 4400–4405.

[110] Li, Z., Kolmanovsky, I., Atkins, E., Lu, J., Filev, D., and Michelini, J., “Cloud
aided semi-active suspension control,” Computational Intelligence in Vehicles and
Transportation Systems (CIVTS), 2014 IEEE Symposium on, 2014, pp. 76–83.

[111] Moran, A., Mikami, Y., and Hayase, M., “Analysis and design of H∞ preview
tracking control systems,” 4th International Workshop on Advanced Motion Con-
trol (AMC), Vol. 2, 1996, pp. 482–487.

[112] Mianzo, L. and Peng, H., “A unified framework for LQ and H∞ preview control
algorithms,” Proceedings of the IEEE Conference on Decision and Control (CDC),
1998, pp. 2816–2821.

[113] Mehra, R. K., Amin, J. N., Hedrick, K. J., Osorio, C., and Gopalasamy, S., “Active
suspension using preview information and model predictive control,” Control Appli-
cations. Proceedings of the IEEE International Conference on, 1997, pp. 860–865.

[114] Cole, D., Pick, A., and Odhams, A., “Predictive and linear quadratic methods for
potential application to modelling driver steering control,” Vehicle System Dynamics,
Vol. 44, No. 3, 2006, pp. 259–284.

[115] Laks, J., Pao, L. Y., Simley, E., Wright, A., Kelley, N., and Jonkman, B., “Model
predictive control using preview measurements from lidar,” 49th AIAA aerospace
sciences meeting, 2011, pp. 2011–0813.

[116] Spencer, M. D., Stol, K. A., Unsworth, C. P., Cater, J. E., and Norris, S. E., “Model
predictive control of a wind turbine using short-term wind field predictions,” Wind
Energy, Vol. 16, No. 3, 2013, pp. 417–434.

[117] Calafiore, G. C. and Fagiano, L., “Robust model predictive control via scenario opti-
mization,” IEEE Transactions on Automatic Control, Vol. 58, No. 1, 2013, pp. 219–
224.

205

[118] Zidek, R. A. E. and Kolmanovsky, I. V., “Approximate optimal control of nonlinear
systems with quadratic performance criteria,” 2015 American Control Conference
(ACC), 2015, pp. 5587–5592.

[119] Bernstein, D. S., Matrix mathematics, Princeton University Press, Princeton, NJ,
2009.

[120] Khalil, H. K., Nonlinear systems, Prentice Hall, 3rd ed., 2002.

[121] Longuski, J. M., Guzman, J. J., and Prussing, J. E., Optimal control with aerospace
applications, Springer, 2014.

[122] Blanchini, F. and Miani, S., Set-theoretic methods in control, Springer, 2008.

[123] Bernstein, D. S., Geometry, kinematics, statics, and dynamics, Princeton University
Press, Princeton and Oxford, 2012.

[124] Hughes, P. C., Spacecraft attitude dynamics, Courier Corporation, 2004.

[125] Linares, R., Jah, M. K., Crassidis, J. L., Leve, F. A., and Kelecy, T., “Astrometric
and photometric data fusion for inactive space object mass and area estimation,”
Acta Astronautica, Vol. 99, 2014, pp. 1–15.

206

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	Abstract
	Introduction
	Problem Statement
	Motivation
	Literature Review
	Contributions and Dissertation Outline

	Deterministic DCOC – DP Approaches
	Problem Formulation
	Theoretical Results
	Proportional Feedback VI
	ADP Approach
	Base-Trajectory VI
	Numerical Case Studies
	Summary

	Deterministic DCOC – Open-Loop Solutions and MPC
	Problem Formulation
	Open-Loop Solutions
	MPC Scheme
	Numerical Case Studies
	Summary

	Stochastic DCOC – DP Approaches
	Problem Formulation
	Boundedness of Expected First Exit-Time and Value Function
	Other Theoretical Results
	Proportional Feedback VI
	Application: Driving Policies for Autonomous Vehicles
	Other Numerical Case Studies
	Summary

	Stochastic DCOC – Tree-Based SMPC
	Problem Formulation
	Scenario Tree
	MILP Formulation
	SMPC Strategy
	Numerical Case Studies
	Summary

	Other Developments for Systems with Disturbances
	Motivation and Problem Formulation
	TPBVP Solution
	Error Estimation
	Numerical Case Study: Spacecraft Orbital Maneuver
	Summary

	Conclusions and Future Directions
	Conclusions
	Future Directions

	Appendices
	Rotational Dynamics of a Rigid Body with Time-Varying Mass/Inertia Properties
	Proof of Theorem 3.2
	Nonlinear Model for GEO Satellite Station Keeping Problem
	Nonlinear Model for Spacecraft Attitude Control Problem
	Proof of Lemma 4.1
	Bibliography

