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ABSTRACT 

 

A Z-pinch is formed by driving a large axial current through a cylindrical liner, 

generating an azimuthal magnetic field so that the resulting Lorentz force implodes the 

system to high energy density conditions. During the implosion process, the magneto-

hydrodynamic (MHD) sausage and kink instabilities may couple to the acceleration-

driven magneto Rayleigh-Taylor (MRT) instability. These instabilities are particularly 

relevant to magnetized target fusion schemes such as the magnetized liner inertial fusion 

(MagLIF) concept being pursued at Sandia National Laboratories, where a Z-pinch driver 

is used to generate thermonuclear conditions by imploding a magnetized and preheated 

fusion fuel within a cylindrical liner. 

This thesis presents an experimental investigation of helical features that appear 

in magnetized, ultrathin foil-plasmas driven in a Z-pinch configuration by the 1-MA 

linear transformer driver at University of Michigan. Three types of cylindrical liner loads 

were designed to produce: (1) pure MHD modes (defined as being devoid of the 

acceleration-driven MRT instability) using a non-imploding geometry, (2) pure kink 

modes using a non-imploding, kink-seeded geometry, and (3) MRT-MHD coupled modes 

in an unseeded, imploding geometry. For each of these configurations, the effects of axial 

magnetic fields were determined using external Helmholtz coils that generated relatively 

small fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The 

resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy 

and visible self-emission on a fast framing camera. A tracking algorithm was developed 

to trace self-emission minima in order to carefully identify the azimuthal mode number. 

When no axial magnetic field was applied, the unseeded imploding and non-

imploding liners were found to develop an azimuthally symmetric sausage instability. 

Applying an axial magnetic field excited helically oriented instabilities, which are 
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demonstrated to be a manifestation of discrete eigenmodes. The pitch angle of the helix is 

governed by the simple equation   =  m/kR, from implosion to explosion, where m, k, 

and R are, respectively, the azimuthal mode number, axial wavenumber, and radius of the 

helical instability. Thus, the pitch angle increases (decreases) during implosion 

(explosion) as the plasma radius became smaller (larger). It was found that one (or at 

most two) discrete helical mode(s) developed for magnetized liners, with no apparent 

threshold on the applied Bz for the appearance of helical modes; increasing the axial 

magnetic field from zero to Bz = 0.5 T changed the relative weight between the m = 0 

sausage and m = 1 kink modes. Further increasing the applied axial magnetic fields 

excited the higher order m = 2 helical mode, consisting of two intertwined helices. 

Finally, the importance of seeding when compared to the intrinsic instability modes was 

investigated using the kink-seeded support structure. It was found that the seeded kink 

instability overwhelmed the intrinsic instability modes of the plasma, despite the 

magnitude and orientation of the applied axial magnetic field. The experimental results in 

this thesis are corroborated with the Weis-Zhang-Lau analytic theory on the effects of 

radial acceleration on the classical sausage, kink, and higher m modes.
 

 

 

 



1 

CHAPTER 1 

INTRODUCTION 

 

A fast Z-pinch is created by driving a large axial current through a cylindrical 

conductor, so that the self-generated Lorentz force implodes the system to create high 

energy density conditions. Z-pinches are particularly efficient at compressing matter; the 

external pressure that implodes the column (arising from the Lorentz force) increases 

inversely with the square of the radius during the implosion process. Z-pinch systems 

find applications in the production of x-ray and neutron radiation through gas puffs 

[SPI85, COV07], wire arrays [SPI88, SAN96, MAT 97, SAF16], and dense plasma foci 

[MAT65, SCH12], and in the production of thermonuclear fusion through magnetized 

target fusion schemes [KIR95, INT04, SLU10]. The x-rays produced from Z-pinches 

themselves find use in indirect drive inertial confinement fusion [CUN06], x-ray opacity 

measurements [BAI15], and fundamental atomic and astrophysics [BAI02, BAI03]. 

The high currents involved in Z-pinches typically result in a phase transition of 

the imploding matter to the plasma state. The large accelerations and inherent cylindrical 

geometry of Z-pinches render them unstable to a variety of instabilities characteristic to 

both acceleration-driven materials and current-driven plasmas. These include the 

magneto Rayleigh-Taylor instability of an accelerating interface [CUR60, HAR62, 

BUD90, SIN10, MCB12, ZIE12, WEI14, WZL15] and the traditional sausage and kink 

instabilities of a current-carrying plasma column [BEL06]. These instabilities proved 

disastrous for the early approaches to thermonuclear fusion in the 1950s, which used a Z-

pinch configuration to compress and confine a fusion fuel inside of a linear discharge 

tube [BIS58]. External magnetic fields directed along the axis of the pinch were applied, 

which stabilized the axisymmetric instability modes such as the sausage instability; 

however, helical modes such as the kink instability remained unstable [BUR58]. A 
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similar phenomenon arises in the tokomak, where the kink mode remains a threat while 

the sausage mode is completely stable.  

Modern approaches to fusion using magnetized target fusion schemes, such as the 

Magnetized Liner Inertial Fusion (MagLIF) program on the Z Machine at Sandia 

National Laboratories [SLU10, CUN12, MCB13, GOM14, GOM15], have demonstrated 

promising results by imploding and confining a fusion fuel inside of an initially solid 

cylindrical liner using a Z-pinch configuration. In MagLIF, the fusion fuel is laser pre-

heated and axially pre-magnetized, and the liner is imploded with ~20 MA of current 

from the Z Machine. The laser preheat is required to raise the initial fuel temperature so 

that thermonuclear conditions may be achieved upon adiabatic compression of the fuel by 

the liner. The axial magnetic field is flux-compressed in the fuel during the implosion, so 

that upon stagnation it is sufficiently large to confine fusion generated alpha particles and 

limit thermal conduction losses to the liner walls. In 2014, Gomez et al. demonstrated 

that both the pre-heat and axial magnetic field are required for MagLIF; fuel temperatures 

as high as 3 keV and deuterium-deuterium thermonuclear fusion yields in excess of 10
12

  

neutrons were obtained. Note that MagLIF is a hybrid between magnetic confinement 

fusion (MCF) and inertial confinement fusion (ICF). Thus, it might be subjected to 

instabilities common in MCF (e.g. kink-like) and instabilities in ICF (e.g. Rayleigh-

Taylor). The experimental study of the coupling between these instabilities is the main 

motivation for this thesis.  

Indeed, a main concern for MagLIF is the magneto Rayleigh-Taylor instability, 

which grows in the liner and feeds through to the fusion fuel [LAU11], limiting 

confinement and attainable gains. In 2012, studies of MRT by McBride et al. on the Z 

Machine at Sandia National Laboratories using unseeded, imploding cylindrical liners 

with no pre-applied axial magnetic field found instability structures that aligned 

themselves along roughly horizontal planes [MCB12, MCB13]. In this fashion, the 

interchange of the azimuthal magnetic field and plasma minimizes magnetic field line 

bending, favoring the axisymmetric structure. In 2013, these studies were repeated with 

the inclusion of a relatively weak axial magnetic field of 7 T by Awe et al., who found 
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multiple, intertwined helical structures develop in the liner that opened up (increased in 

pitch angle) as the liner imploded (see Figure 1.1), despite the puzzling fact that the 

external magnetic field lines tightly wound up (decreased in pitch angle) as the azimuthal 

magnetic field rapidly increased beyond 1000 T [AWE13, AWE14]. 

 

 

 

Figure 1.1. X-ray radiography of instability structures in imploding MagLIF liners. (a) 

Axisymmetric instability modes develop when no axial magnetic field is applied. (b) 

Helically oriented instability structures develop when an axial magnetic field of Bz = 7 T 

is applied. (c) The helical structures increase in pitch angle (open up) as the liner 

implodes. Images reproduced from Awe et al., Physical Review Letters 111, 235005 

(2013). 

 

There is a striking resemblance in the origin and persistence of the helical 

structures observed in Awe's experiments [AWE13, AWE14], and the origin and 

persistence of spiral structures in disk galaxies. The latter gives rise to the well-known 

winding dilemma in astronomy [SHU82, COM87, BER14], a puzzle on the persistence of 

observed spiral structures in disk galaxies despite the strong differential rotation of stars 

and matter in the galaxy, analogous to the persistence of helical features in Awe’s 

experiments despite the winding up of the external magnetic field during the implosion. 

The appearance of the spiral pattern in disk galaxies was quoted by Feynman [FEY64] as 

an outstanding problem, who also strongly suggested that it is a gravitational 
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phenomenon. The winding dilemma was resolved if one envisioned it as a wave 

phenomenon, the central theme in the Lin-Shu density wave theory [LIN64]. In this 

theory, density waves propagate through the background gas of the galaxy, stimulating 

the creation of stars that illuminate the bright spiral arms. The stars maintain a strong 

differential rotation about the galaxy axis but the density wave does not; therefore, the 

spirals do not wind up as time progresses. If the density wave has an azimuthal mode 

number m and a radial wavenumber k, the pitch angle of the spiral density wave at a 

radius R from the galaxy axis is then  = atan (m/kR) ~ m/kR for m << kR, and this pitch 

angle persists despite the strong differential rotation of matter in disk galaxies. Discrete 

spiral modes of density waves were later found [LAU76, LAU78] and compared with 

observation [SHU82, BER14].  

The resolution of the winding dilemma in disk galaxies via the use of discrete 

spiral modes motivated an interpretation of the helical features in Awe’s experiments via 

the use of discrete helical modes. This was first proposed by Weis, Zhang, Lau et al. in 

2015 [WZL15]. In this interpretation, the helical structures arise due to discrete, non-

axisymmetric eigenmodes, and persist despite the rapid increase and dominance of the 

azimuthal magnetic field; they are thus very similar to the discrete spiral modes that were 

used to explain the persistence of spiral arms in disk galaxies. This thesis provides a 

systematic experimental study of discrete helical modes in magnetized liner-plasmas, 

both seeded and unseeded, imploding and non-imploding, and with and without an 

external axial magnetic field.   

In order to investigate these helical structures, we used the 1-MA linear 

transformer driver at the University of Michigan. We first developed a technique to 

fabricate ultrathin liners with wall thicknesses of 400 nm [YAG15]; such an extremely 

thin liner permitted an appreciable acceleration and thus the sausage and helical modes 

could couple to the MRT instability. As a result, helical features similar to those observed 

in Awe et al. arose when a pre-imposed axial magnetic field was applied [AWE13, 

AWE14]. The nature of these helical features was investigated in detail in this thesis.  
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Experiments studying the physics of Z-pinch plasmas and associated plasma 

instabilities have been performed on university-scale pulsed power machines with peak 

current capabilities in the megaampere range [ZIE10, ZIE12, GOM10, BLE12, VAL14, 

SHL14, BUR15, ATO16]. These facilities have the advantages of a relatively low cost 

per shot and high repetition rate compared to large-scale experiments such those 

performed on the Z Machine at Sandia National Laboratories, allowing for increased 

flexibility in designing and performing physics experiments. However, metallic liner-

plasma implosions are difficult to study on small-scale experiments because the 

maximum attainable current is often insufficient to implode initially solid liners of 

reasonable geometry. These experiments typically focus on imploding wire arrays or the 

physics of non-imploding liners, such as the initiation of plasma and instabilities on the 

liner surface or the precursor plasma formed inside of the liner. To achieve an implosion 

with a relatively low current of ~1 MA (compared to ~20 MA on the Z Machine), a liner 

with sub-micron thickness is required, and this enabling technique becomes a key 

contributor to this thesis research [YAG15]. 

In Chapter 2, the theoretical background of magneto hydrodynamic (MHD) and 

acceleration-driven (MRT) instabilities is presented. The coupling of the MHD modes 

(such as the sausage and kink instabilities) to MRT is discussed. The three-region, sharp 

boundary, ideal MHD analytic model developed by Weis, Zhang, Lau et al. is presented. 

This model, together with equilibrium profiles from 1-D HYDRA simulations [MAR01, 

KON09] is used to analytically calculate instability growth rates for a cylindrical liner-

plasma with arbitrary acceleration and axial magnetic field. It is then used extensively to 

interpret the experimental results of this thesis. 

In Chapter 3, the experimental configuration is presented, including an overview 

of the 1-MA Linear Transformer Driver at the University of Michigan and its suite of 

diagnostics, including a 12-frame shadowgraphy and self-emission imaging system. In 

the second section of this chapter, the incorporation of two Helmholtz-like coils that are 

used to axially pre-magnetize the thin-foil liner loads is presented.  
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In Chapter 4, non-imploding liners using ultrathin aluminum foils were 

experimentally investigated [YAG16a]. By minimizing the acceleration of the liner, pure 

sausage and helical instabilities (defined as being devoid of MRT) were investigated. 

These experiments were configured in an unseeded (Section 4.1) or a kink-seeded 

(Section 4.2) geometry, and the modes were identified by carefully connecting the self-

emission features on the face of the liners to the instability bumps that were observed on 

the edges of the liner. For the unseeded geometry, it was found that, with no applied axial 

magnetic field, an azimuthally symmetric sausage instability developed. When an axial 

magnetic field was applied, a higher order helical mode developed, consisting of two 

intertwined helical structures. These helical structures spiraled in the same sense of 

rotation as the global magnetic field. For the kink-seeded geometry, it was found that the 

seeding dominated the intrinsic instability modes that arose in Section 4.1, despite the 

orientation of the applied axial magnetic field. In other words, once the helical mode was 

seeded, it persisted throughout the discharge. 

In Chapter 5, the liners were allowed to implode by modifying the liner support 

structure. Appreciable accelerations were obtained, enabling the sausage and helical 

modes of Chapter 4 to couple to the acceleration-driven MRT instability. It was found 

that the pitch angle of the helical instabilities increased during the implosion phase and 

decreased during the subsequent explosion stage (after the liner has stagnated and 

rebounded from the central support structure). These helical striations are interpreted as 

discrete, non-axisymmetric eigenmodes that persist from implosion to explosion despite 

the winding up of the external magnetic field. Their helical pitch angle obeys the simple 

relation  = m/kR, for m << kR, where m, k, and R are the azimuthal mode number, axial 

wavenumber, and radius, respectively [YAG16b]. These results are consistent with 

Awe’s helices, which were observed to increase in helical pitch angle during the 

implosion of the liner as a discrete helical eigenmode [WZL15]. Here, we add new 

insights to the nature of helical modes, outlined as follows [YAG16b]. We found that: (a) 

there is only one, or at the most two, dominant unstable eigenmodes for the axial 

magnetic field values tested (0.2 – 2.0 T), (b) there does not appear to be a sharp 
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threshold on the axial magnetic field for the emergence of the non-axisymmetric helical 

modes, and (c) higher axial magnetic fields yield higher azimuthal modes.  

 Finally, in Chapter 6, the conclusions of this work and suggestions for future 

research are presented and discussed. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

 Z-pinches are a particularly simple plasma confinement configuration. A current 

is driven through a cylindrical plasma column, generating an azimuthal magnetic field. 

The resulting self-generated Lorentz force is directed radially inward, and may be used to 

implode or confine the plasma. An equivalent description of the Lorentz force is attained 

through the concept of magnetic pressure, where               , where   is the 

magnetic field and    is the permeability of free space. For a conducting plasma, the 

magnetic pressure behaves similarly to kinetic pressure and is useful for understanding 

the dynamics and stability of a Z-pinch plasma.  

 When the external magnetic pressure is equal to the total internal pressure in a 

plasma column, a radial equilibrium will result, as shown in Figure 2.1(a-b). This 

equilibrium is unstable to perturbations in the plasma-vacuum interface. For the sausage 

instability shown in Figure 2.1(a), the plasma boundary is displaced radially inward by an 

azimuthally symmetric perturbation from the equilibrium. The current flowing in the 

system is unchanged; due to the decrease in radius, however, the magnetic field and 

associated magnetic pressure have now increased and will exceed the internal plasma 

pressure (assumed to be unchanged during the perturbation). The perturbed plasma 

boundary will therefore be driven further radially inward and a feedback process results 

which enhances the perturbation.  Therefore, the system is unstable to azimuthally 

symmetric perturbations, which will continue to develop until confinement is lost. 

 For the kink instability in Figure 2.1(b), the plasma is perturbed from its 

equilibrium position by a small helical bend or kink. The magnetic pressure on the right 

side of the plasma boundary increases due to the crowding of magnetic field lines, 

whereas the magnetic pressure on the left side of the plasma boundary decreases due to 
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the spreading out of magnetic field lines. Subsequently, a net pressure arises across the 

plasma column which will drive the plasma further away from the equilibrium. Thus, the 

system is unstable to kink or helical perturbations.  

 

  

Figure 2.1. Traditional (a) sausage and (b) kink instabilities. The plasma is perturbed 

from its equilibrium state, resulting in an increased magnetic pressure which enables the 

sausage or kink structure to continue developing.  

 

 The sausage and kink instabilities may be described by wavelike perturbations in 

cylindrical geometry with amplitude                        , where   is the 

azimuthal mode number and        is the axial wavelength of the instability (  is the 

axial wavenumber).  These perturbations result in the following dispersion relation for a 

plasma column with a constant density [WEI15], 
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In Equations (2.1) and (2.2),   is the total magnetic field vector,    and    are magnetic 

field components in the axial and azimuthal directions, respectively, ρ is the mass density 

of the plasma, R is the equilibrium radius, μ0 is the vacuum permeability, m is the 

azimuthal mode number, and Im and Km are the modified Bessel functions of order m of 

the first and second kind, respectively (the prime denotes differentiation with respect to 

the argument). When    is negative, an imaginary value for ω results, which may be 

expressed as      . Here,   is real-valued and positive, and is defined as the growth 

rate of the instability; the amplitude of perturbations will grow exponentially in time 

following            . When m = 0, Equation (2.1) describes the growth rate for the 

azimuthally symmetric sausage instability. When |m| = 1, Equation (2.1) describes the 

growth rate for the helical kink instability. When |m| > 1, Equation (2.1) describes the 

growth rate for multiple intertwined helical perturbations (see Section 2.1). 

 Equation (2.1) has three terms. The first two terms are stabilizing terms due to the 

magnetic tension of the azimuthal and axial magnetic field lines. The        term may 

be expanded to obtain 

 

                      , (2.3) 

 

From this equation, we see that the axial magnetic field tends to reduce the overall 

growth rate
1
 and that the azimuthal magnetic field tends to be stabilizing for higher order 

azimuthal mode numbers
2
 (e.g. modes with m > 0). The third term is the driving term for 

the instability and arises solely due to the azimuthal magnetic field (i.e., to the axial 

current). It is scaled to the Alfven speed,        
         , and is inversely 

proportional to the plasma radius—for a given current, a smaller radius increases the 

growth rate both directly and indirectly by increasing Bθ, which scales as ~1/R. It is 

important to note that the last term of Equation (2.1) vanishes as      (fixing   ). 

Thus, there is no current-driven instability (and therefore no sausage and helical 

instabilities) in the planar geometry of a stationary plasma. This is a well-known result in 

                                                 
1
 The exception arises when      , in which case the second term of Equation (2.1) vanishes.  

2
 Similarly, when      , the second term of Equation (2.1) vanishes despite the value of m and   . 
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ideal magneto-hydrodynamics (see, e.g. [LAU11]). Also, note the overall dependency of 

growth rate on density, which scales as          , indicating that the instabilities that 

develop in plasmas will typically have a much larger growth rate when compared to those 

in a solid liner or rod.  

 When the external magnetic pressure exceeds the total internal pressure in a 

plasma column, the plasma will radially implode, pinching along the z axis. The resulting 

acceleration is directed radially inward and is equivalent to an effective gravity in the 

plasma frame that is directed radially outward. In the frame of the plasma, this scenario 

corresponds to a heavy fluid (plasma) suspended above a light fluid (magnetic field, or 

possibly a lower density plasma) and is therefore unstable to the magneto Rayleigh-

Taylor instability (MRT), as shown in Figure 2.2. For this instability, wavelike 

perturbations continue to develop as the heavy fluid descends in the effective 

gravitational field, reducing the potential energy of the system. The magnetic field 

provides a stabilizing tension, depending on its orientation when compared to the 

wavevector of the instability perturbations. This is best understood by examining the 

MRT growth rate for planar geometry [HAR62, RYU00, LAU11, WEI14], 

 

                , (2.4) 

 

where g is the effective gravity the plasma-vacuum interface experiences, and is equal in 

magnitude (but opposite in direction) to the acceleration in the laboratory frame. The 

maximum stabilization arises when the magnetic field is oriented parallel to the 

perturbation wavevector, as shown in Equation (2.4). For a sufficiently large magnetic 

tension, the MRT growth rate will be imaginary and therefore completely stabilized. The 

perturbations will then oscillate, following the dependency              , where    is 

the absolute magnitude of   in Equation (2.4). Note when g = 0, this scenario is 

equivalent to the dispersion relation for Alfven waves, which arise from the magnetic 

tension aspect of magnetic field lines in plasmas. 

It is important to note that, in general, the most unstable mode is one that satisfies 

     , either from Equation (2.1) or Equation (2.4). Thus, there is the general notion 
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that the most unstable helical mode that should develop is the one in which the mode 

pattern is aligned with the external magnetic field. This notion is apparently inconsistent 

with Awe’s seminal experiments [AWE13, AWE14], whose resolution is one of the main 

purposes of this thesis [YAG16a, YAG16b]. 

 

 

Figure 2.2. Magneto Rayleigh-Taylor instability in an imploding cylindrical plasma. The 

plasma and magnetic field are analogous to the heavy and light fluids in the classical 

Rayleigh-Taylor instability. An acceleration vector directed radially inward in the 

laboratory frame is equivalent to an effective gravity directed outward in the moving 

frame of the plasma-vacuum interface. An axial magnetic field provides a stabilizing 

tension for the axisymmetric mode, as its field line is bent. 
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2.1 Instability Mode Descriptions 

 The physical picture of sausage and helical modes may be understood from their 

perturbations, which take the form                , where   is the azimuthal mode 

number (which may be positive, negative, or zero), and   is the axial wavelength of the 

instability. In this description, we take the axial wavevector k = 2π/λ to be always 

positive. The axisymmetric m = 0 mode and the helically oriented |m| = 1 mode are 

commonly referred to as the sausage and kink instabilities, respectively. For the |m| = 1 

mode, an azimuthal variation of 2π traces a constant perturbation a distance of one axial 

wavelength, resulting in a single helical structure.  For |m| > 1, an azimuthal variation of 

2π traces a constant perturbation a distance of |m| axial wavelengths, resulting in a 

structure consisting of |m| intertwined helices. In this thesis, all |m| > 1 modes are 

collectively referred to as helical modes, with the following sign convention for m. A 

helix is assigned a positive (negative) azimuthal mode number +m (-m) if this helix is in 

the same (opposite) sense of rotation as the global magnetic field, which has a nonzero 

axial magnetic field Bz in addition to azimuthal magnetic field Bθ. The sense of rotation is 

determined as follows. The spirals of the plasma helices and global magnetic field have 

an azimuthal component (which may be clockwise or counterclockwise) and an axial 

component (which may be up or down). The azimuthal component of the plasma helix is 

ambiguous and therefore assigned the same direction of the global magnetic field. Then, 

if the axial components are parallel (anti-parallel), the plasma helix and magnetic field 

have the same (opposite) sense of rotation and thus the sign of the mode is positive 

(negative). Note that for the positive m mode, the plasma helix need not be perfectly 

aligned with the global magnetic field; however, it must have the same sense of rotation 

as the global magnetic field. A helical mode with no sign attached to the azimuthal mode 

number (m) is used to indicate that there is no axial magnetic field.  

 In this convention, the -m modes tend to be more stable than the +m modes, 

because the former have a higher degree of magnetic field line bending (i.e.,        has 

a larger value), a well-known stabilizing influence for MHD modes. Figure 2.3 shows 

physical representation of the m = 0, m = +1, and m = +2 modes. In short, the positive 
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sign is used when the terms     and       are of the same sign, while the negative sign 

is used if they are of the opposite sign (see Equation (2.3)). Note the signs of   and   in 

the terms     and       dictate the direction of the plasma helix spiral, while the signs 

of    and    dictate the direction of the global magnetic field spiral [YAG16a]. 

 

 

Figure 2.3. Physical picture of instability structures with azimuthal mode number         

(a) m = 0, (b) m = +1, (c) m = -1, and (d) m = +2. Also shown is the axial wavelength λ, 

defined as the distance between adjacent instability structures. The global magnetic field 

is represented by the thin green line. A positive m (negative m) mode indicates the plasma 

helix rotates in the same (opposite) sense as the global magnetic field. The m = +1 and 

the m = -1 mode consist of a single helix, whereas the m = +2 mode consists of two 

intertwined helices (shown as dark and light gray in (d)). Note that in (d), when the light 

(or dark) helix traces an azimuthal angle of 2π, the axial distance advances by 2λ. 
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2.2 Discrete Helical Modes 

Consider a discrete helical mode of the form                  that has 

developed in the plasma, which undergoes an implosion and subsequent explosion, such 

as the |m| = 2 helical mode in Figure 2.4. If the helical mode persists during this process 

(with an approximately constant wavevector,  ), then the helical pitch angle  will 

dynamically vary, increasing in angle during the implosion process (as the plasma radius 

decreases) and decreasing in angle during the explosion process (as the plasma radius 

increases). The striation angle is then solely a function of the plasma radius and 

wavelength, and is determined as follows. For |m| > 1, an azimuthal variation of 2π traces 

a helical striation a distance of |m| axial wavelengths. Thus a total distance of         is 

traced in the r-θ plane (corresponding to a single circumference) while a distance of 

       is traced axially. The 3-D helical pitch angle is therefore given by the following 

equation 

 

                                         ,    (2.5) 

 

where m is the azimuthal mode number, k is the instability wavevector (k = 2π/λ) and R is 

the plasma radius. The approximation in the last term of Equation (2.5) assumes      

| |    , a condition usually satisfied. The projected 2-D striation angle in the 

Cartesian y-z plane is similarly determined. For an azimuthal variation of  , the net 

distance traced horizontally (in the y direction) is given by        (corresponding to the 

diameter) while the net distanced traced vertically (in the z direction) is         . 

Thus the 2-D striation angle (shown in Figure 2.4) is given by 

 

                            .  (2.6) 

 

Therefore, the 3-D striation angle may be obtained by multiplying the 2-D striation angle 

by a factor of 2/π [ATO16]. This factor is useful for measuring 3-D helical self-emission 

striations from their 2-D projection onto an imaging device. 
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Figure 2.4. Discrete |m| = 2 helical mode undergoing an implosion and subsequent 

explosion. The 3-D striation angle varies dynamically according to   =  m/kR, where m is 

the azimuthal mode number, k is the axial wavevector, and R is the radius of the plasma 

at which the helical mode is formed. The 2-D striation angle in the figure is the projection 

of the 3-D helical structure onto the 2-D Cartesian y-z plane. 

 

  



17 

2.3 Weis-Zhang-Lau Instability Growth Rate Theory 

 In an accelerating cylindrical liner, sausage and helical modes may couple to the 

magneto Rayleigh-Taylor instability when the liner undergoes radial acceleration. The 

general dispersion relation for this scenario was calculated analytically by Weis, Zhang,  

Lau et al. for an arbitrary axial magnetic field using linear perturbation theory, ideal 

MHD, and a three region sharp boundary model [WZL15]. While the majority of the 

experimental data in this thesis was taken at a time when the instabilities have grossly 

developed (likely beyond the direct applicability of perturbation theory), the Weis-

Zhang-Lau (WZL) theory may still be used to: (1) understand instability development 

that has occurred earlier in time when the instability amplitudes were small, and, in 

particular, to (2) determine the effects of axial magnetic fields on the various m-modes 

[WZL15, WEI15].  

 An overview of the three region model is shown in Figure 2.5. Sharp boundaries 

separate Regions I, II and III, which describe the regions outside of the liner, the liner, 

and inside of the liner, respectively. Each region has an associated axial magnetic field 

and density; however, for the following equations it is assumed the axial field is constant 

in each of the three regions, and that the density of the liner in Region II far exceeds the 

density of any plasma in Regions I and III. The azimuthal field is restricted to Region I 

only.   

2.3.1 Instability Coupling 

 The coupling of the sausage and helical modes to the MRT instability may be 

defined using the equilibrium condition for the liner, given by the following equation, 

 

       *   
  

    
 

   
+
 
 *     

  
 

   
+
   

,      (2.7)  

 

where g is the effective gravity experienced by the liner, ρ02 is the liner density, Δ is the 

liner thickness, and PI and PIII  are the kinetic pressure in Regions I and III. The first term 

in brackets on the right side of the equation represents the net pressure just outside of the 

liner (Poutside in Figure 2.5), the second term in brackets represents the net pressure on the 
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inside of the liner (Pinside in Figure 2.5). Using this equation, we may define instability 

coupling:  

 Pure MRT mode: |g| is maximized, Pinside  =  0 (implosion) 

 Pure MRT mode: |g| is maximized, Poutside  =  0 (stagnation and explosion) 

 Pure sausage/helical mode: g = 0, Poutside = Pinside 

 Coupled (g > 0): 0 < Pinside < Poutside (implosion) 

 Coupled (g < 0): 0 < Poutside < Pinside (stagnation and explosion) 

 The two cases for pure MRT and coupled modes are explicitly listed because of 

their unique characteristics. When g > 0, the outer interface of the liner is MRT unstable 

while the inner interface is MRT stable; however, instability ripples may feed-through to 

the inner surface [LAU11, WZL15]. When g < 0, which typically occurs during 

stagnation and the subsequent explosion, the inner surface of the liner is now unstable to 

the MRT instability. During a strong deceleration, |g| may be very large and cause the 

inner surface of the liner to become extremely unstable. This scenario is particularly 

relevant to MagLIF liners [WEI15, WZL15]. The outer interface of the liner is now MRT 

stable but remains unstable to the sausage and helical modes. The effect of the negative 

gravity is to reduce the overall instability growth rate on the outer interface. If |g| is 

sufficiently large, then the outer interface may even become stable to the sausage and 

helical modes, and thus perturbations will oscillate. A similar effect was observed in 

simulations of the imploding stage of a MagLIF liner, where small ripples oscillated on 

the MRT-stable inner surface of the liner due to the effects of a positive gravity [WEI15].  

 

 
Figure 2.5. Three region sharp boundary model of an accelerating liner with arbitrary 

axial magnetic field used to define instability coupling and calculate analytic growth rates 

for MRT-coupled sausage and helical modes. The effective gravity g is determined by the 

total pressure difference between Region I (Poutside) and III (Pinside). 
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2.4 Weis-Zhang-Lau Dispersion Relation 

The Weis-Zhang-Lau (WZL) dispersion relation is used in Chapter 4 and Chapter 5 

to calculate instability growth rates using parameters from the experiments. The 

dispersion relationship for perturbations of the form exp(iωt+imθ-ikz) is given by the 

following equations [WZL15], 

 

                     (2.8) 

 

               
              (2.9) 

  

                 (2.10) 
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                 (2.11) 

 

In Equations (2.8) – (2.11), a and R are the liner’s inner and outer radius, respectively, 

       is the perturbation wave number for axial wavelength  , ρ0 is the liner density 

and           
       

     is the Alfven speed contribution from the axial field in 

Regions II and III, respectively. The X terms are given by the following equations, 

 

     | | ̂| |
   | | ̂| |

 ,       (2.12) 
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The b terms are given by the following equations, 

 

         
  ,         (2.15) 

             | |          | |        (2.16) 

 

Finally, the    term is given by the following equation 

 

                  
    ̂| |  ̂ | || |             

  ,  (2.17) 

 

where  | |   | | | |  ,  ̂| |    | | | |  ,  | |   | | | |  , and  ̂| |    | | | |  . 
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For these equations, Im and Km are, respectively, the modified Bessel functions of order m 

of the first and second kind, where a prime denotes differentiation with respect to their 

arguments. The effective gravity in the liner frame is g, so that the liner acceleration in 

the laboratory frame is –g and thus in the opposite direction of the liner acceleration. The 

growth rate is taken as the most unstable mode with the largest negative imaginary part of 

the four eigenvalues of ω in the dispersion relation (Equation (2.8)). When the liners 

demonstrate an approximately constant velocity expansion, g may be set to zero and the 

dispersion relationship reduces to the pure sausage and helical modes for a cylindrical 

liner of finite thickness. 

 The instantaneous equilibrium profile will be inferred from the 1D HYDRA code 

[MAR01, KON09] and will be used in the dispersion relation, Equation (2.8), as was 

similarly done in [WEI14, WEI15, WZL15]. 
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CHAPTER 3 

EXPERIMENTAL CONFIGURATION 

 

The experiments were performed on the Michigan Accelerator for Inductive Z-

Pinch Experiments (MAIZE), a Linear Transformer Driver (LTD)
 
at the University of 

Michigan. MAIZE is capable of delivering 1-MA of current into a matched load at    

+100 kV charge [GIL09, KIM09, MAZ10]. For the inductive liner loads utilized for the 

work in this thesis, the charge was limited to +70 kV in order to reduce voltage on the 

capacitors and insulator, resulting in peak currents ranging from 500-600 kA. A cross-

section of the LTD is shown in Figure 3.1, which includes the energy storage, 

transmission lines, and load hardware. The basic component of the LTD is known as a 

brick, which consist of a capacitor-switch-capacitor connected in series, as shown in 

Figure 3.2. The MAIZE LTD consists of 40 bricks arranged in an annulus and connected 

in parallel. The power from the bricks is delivered to the load hardware (discussed in 

Section 3.1.1) using a coaxial-to-radial-to-triplate transmission line. Two ferromagnetic 

cores are situated between the bricks and the coaxial transmission line, and are essential 

components of an LTD, creating a high impedance path around the outer casing of the 

conducting capacitor housing. As this path is connected electrically in parallel to the load, 

the high impedance of the cores is necessary to direct the majority of the current to the 

load and not around the LTD casing. This design allows for extremely compact, scalable 

pulsed power machines, where multiple LTD cavities may be arranged in series and 

parallel, increasing the overall power of the device. This concept has motivated the 

design of a petawatt-class pulsed power machine using LTDs as the basic component 

[STY07, STY15]. 
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Figure 3.1. MAIZE Linear Transformer Driver, showing: (1) spark gap switch, (2) 40 nF 

capacitor, (3) iron core region (core not pictured), (4) coaxial transmission line section, 

(5) radial transmission line, (6) load region, (7) vacuum chamber, (8) oil chamber, and (9) 

high voltage insulator. The conducting outer ring (not pictured) connects the top and 

bottom blue plates in order to completely enclose the oil chamber. 

 

 

 

 

Figure 3.2.  Linear transformer driver brick, consisting of two capacitors and one switch. 

The two iron cores create an inductive path around the casing and direct the majority of 

the current to the load. The MAIZE LTD consists of 40 bricks arranged in parallel. Image 

reproduced from [ZIE10]. 
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3.1 Experimental Hardware 

3.1.1 Load Hardware 

Two types of load hardware were designed and are shown in Figure 3.3. Both 

designs are similar, consisting of a transmission line that is connected directly to the 

triplate and delivers power to the liner load. The transmission line and load hardware are 

located in a 1-m-diameter vacuum chamber. The liner loads consist of a 400 nm thick 

aluminum foil cut into a rectangular shape and wrapped around a dielectric support 

structure, which may be modified to investigate non-imploding, kink-seeded, or 

imploding plasmas. The liner loads are discussed in Section 3.1.2, below. The original 

load transmission line design is shown in Figure 3.3(a) and consists of two 4 cm wide 

return current plates. The large width significantly reduces the current density in the 

return current plates and therefore their contribution to the global magnetic field at the 

load region. This hardware was designed to demonstrate the feasibility of imploding an 

initially solid cylindrical liner using a sub-megaampere current pulse. The upgraded 

design is shown in Figure 3.3(b) and consists of a coaxial transmission line, where the 

liner load is connected to the inner coaxial conductor. The coaxial hardware was designed 

to enable the use of two Helmholtz-like coils, which slide around the outer coaxial 

conductor, as shown in Figure 3.4, and are capable of generating an axial magnetic field 

of up to 5.5 T for our system. The axial magnetization system is described in detail in 

Section 3.3 and Appendix A. The triplate system is connected to the coaxial transmission 

line using three adaptors, fabricated from aluminum. The effects of aluminum adaptors, 

when compared to stainless, were investigated using the ANSYS Maxwell model 

described in Section 3.3.2, and were found to negligibly perturb the axial magnetic field 

in the liner region.   
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Figure 3.3. (a) Original load hardware. The liner load is situated between two return 

current plates, and is fixed to the anode and slides into the cathode during vacuum 

pumpdown. (b) Upgraded load hardware for use in magnetized liner experiments. The 

Helmholtz coils and housing slide around the coaxial transmission line. 

 

 

 

Figure 3.4. Coil hardware. In (a), four 3/8 in. bolts (#1) connect plate #3 to plate #4, 

holding the coils in place. Four 1/4 in. bolts (#2) connect plate 4 (and therefore the entire 

coil structure) to the triplate. The coils are separated by a 2.54 cm plastic support (#5), 

which consists of four pieces that are machined to fit around coaxial load transmission 

line. (b) Magnetized load hardware configuration. The coaxial transmission line delivers 

power to the Al liner. The Helmholtz coils pre-impose an axial magnetic field of            

Bz = 0.2 – 5.5 T. 
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3.1.2 Liner Loads 

Three types of liner loads were fabricated to investigate non-imploding, kink-

seeded, and imploding cylindrical liner-plasmas. Each liner load has a unique support 

structure, which consists of a center dielectric region and two conducting end-caps, as 

shown in Figure 3.5. The support structure is required to support the ultrathin foil liners 

[YAG15]. When the chamber is placed under vacuum, atmospheric pressure compresses 

the AK gap of the radial transmission line by 1.2 mm, so that the liner load and load-

transmission line must account for this varying anode-cathode (AK) distance. The simple 

solution to this problem was to create ~7 mm diameter holes in the anode and cathode 

load transmission line structures, so that the liner and its support structure are able to 

slide during vacuum pumpdown. By fixing the liner load to the cathode or anode with a 

single set-screw, the unfixed end is able to slide into the opposing electrode. Without this 

sliding system, the 400 nm liner would be destroyed during vacuum pumpdown. 

The two end-caps are fabricated by wrapping a rectangular strip of 100 μm-thick 

aluminum tape (25 μm-thick aluminum and 75 μm-thick non-conducting adhesive) 

around a cylindrical dielectric rod (6.35 mm diameter, 3.4 mm height). The center 

dielectric region is designed to be 1 cm and may be unmodified for non-imploding liners, 

screw-threaded for kink-seeded liners, or have a reduced diameter for imploding liners. 

For the kink-seeded structure, the aluminum tape is placed directly around the ends of a 

3.4 mm length 1/4-20 in. imperial threaded rod. For the imploding geometry, the 

diameter is reduced to 1-2 mm on a table-top lathe, which enables the liner to implode 

over a distance of 1-2 mm.  

The final configuration is formed by wrapping a 400 nm-thick aluminum foil cut 

into a rectangular strip (1.5-cm by 2.2-cm) around the support structure, making contact 

with the aluminum tape on both ends. The length of the rectangular strip is cut slightly 

longer than the circumference of the support structure to ensure that there is an 

overlapping region and not a gap. At this point, wrinkles in the foil are smoothed by 

carefully adjusting the foil position of contact on the support structure. The thin-foil 

naturally adheres to the metallic support structure and therefore does not require an 
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adhesive to make electrical contact. The assembled liner is then loaded into the LTD so 

that the aluminum tape on the support regions makes electrical contact with the anode 

and cathode. Due to the slightly larger diameter of the anode and cathode holes when 

compared to the assembled liner, the contact is not initially expected to be azimuthally 

continuous. This imperfect contact may be responsible for large axially directed non-

uniformities in the self-emission observed in the liner early time, which are reduced later 

in time (likely as plasma from the 25 μm thick aluminum tape ablates and fills the anode 

and cathode holes). 

 

 

Figure 3.5. Liner load support structures. The center dielectric region is: (a) unmodified, 

for unseeded non-imploding liners, (b) threaded, for kink-seeded non-imploding liners, 

and (c) reduced diameter, for unseeded, imploding liners. The final configuration is 

shown in (d) and is identical for all liner loads, consisting of a 400 nm thick aluminum 

foil wrapped around the support structure, forming electrical contact at the conducting 

ends. 
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3.2 Diagnostics 

3.2.1 B-dot Loops 

 The current was measured using four B-dot loops situated in the anode plate of 

the radial transmission line at a radius of 44 cm. The basic principle behind the B-dot 

diagnostic may be understood as follows. A time-changing magnetic field is generated 

perpendicular to the flow of a time-changing current in the transmission line. This field 

diffuses through a loop of wire, inducing a voltage that is proportional to the derivative of 

the current, following Faraday’s Law of Induction. The loop of wire is typically oriented 

so that the normal vector of the area of the loop is parallel to the magnetic field to 

maximize the induced voltage signal. For the experiments in this thesis, only one of the 

radial transmission line B-dots produced a reliable signal for current measurements. 

Therefore, all current traces in Chapter 4 and Chapter 5 were measured using this B-dot. 

B-dots with larger area and multiple loops are currently being developed to increase the 

signal-to-noise ratio in order to improve our current measuring capabilities. 

3.2.2 Laser System Overview and Stability 

 The laser backlighter used for these experiments was a 2-ns pulse-length, 

frequency-doubled Nd:YAG laser for shadowgraphy and interferometry at 532 nm. The 

two beam-paths used are shown in Figure 3.6 and Figure 3.7. The first beam-path, used 

for the original experiments, split the beam into four paths/delays to image the plasma at 

20 ns intervals. One of the four beam paths incorporated an air wedge interferometer, 

which provided simultaneous images of shadowgraphy and interferometry. The beams 

intersected the load on the same horizontal plane at 1.3+0.2 degree intervals, giving a 

total angular spread of the four beams of 3.9 degrees. The shadowgraphs are captured 

using Canon Rebel XTi and XSi cameras. The resolutions for all beam paths are 

measured at better than 100 μm/line pair using a 1951 USAF resolution target.  Neutral-

density filters and 532 nm line-filters are used to limit plasma self-emission on the 

shadowgraph images.  
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The second beam-path, shown in Figure 3.7, incorporated both laser backlighting 

and self-emission using a 12-frame intensified CCD camera, gated at 10 ns. To 

successfully incorporate the laser with the framing camera, a beam-splitting system was 

devised that splits the single 2-ns laser pulse to generate 12+ beams that are 

superimposed in space but delayed temporally. This was accomplished by using a 3.05 m 

length resonating cavity with two 95%/5% beam splitters, corresponding to a 10 ns delay 

between pulses. The first beam splitter allowed the laser pulse to enter the cavity, and the 

second beam splitter directed the train of pulses through the target chamber and to the 

imaging system. Due to the two beam splitters, the intensity of each subsequent pulse is 

reduced by ~10%. The framing camera collected the 2 ns backlit image in addition to 

plasma self-emission (filtered at 532 nm, no neutral density) over the 10 ns framing-

camera window. This system allowed the tracking of individual features from the same 

angle of incidence in both shadowgraphy and self-emission with 12-frames over a 110 ns 

window. For both systems, a 2.36 mm thick plastic shield was placed between the load 

and vacuum window ports to protect the windows from load debris.  

 

Figure 3.6. Optical system used to generate four beams (not drawn to scale). The 

incident pulse (2 ns pulse length, 532 nm wavelength, 50 mJ) is split consecutively at 

three locations using the beamsplitters identified in the figure. The path difference and 

therefore temporal delay is approximately the same for the four beams (20 ns). The 

beams intersect the load on the same horizontal plane at 1.3 + 0.2 degree intervals, giving 

a total angular spread of the four beams of 3.9 degrees.  
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Figure 3.7. Optical system used to generate 12+ superimposed beams (not drawn to 

scale). The incident pulse (2 ns pulse length, 532 nm wavelength, 50 mJ) is passed 

through beam splitter BS1 so that a small fraction of the beam is trapped between the 

resonating cavity formed by mirrors M1, M2, and M3. Beam splitter BS2 directs a 

sequence of pulses to the target chamber. The 2 ns length pulses are delayed temporally 

by 10 ns due to the 3.05 m resonating cavity length. The beam is expanded after exiting 

BS2 and before traveling to the load. The resonating cavity M1-M2-M3 is conditionally 

stable. 

 

The stability of the resonating cavity may be determined using a ray transfer 

matrix analysis [SIL04]. The transfer matrix is determined by multiplying the matrices of 

the elements in the optical cavity, and can be expressed as a two-by-two matrix, 

 

  *
  
  

+ (3.1) 

 

Once the transfer matrix has been determined (see below), the stability of the system is 

given by the condition, 

 

   
     

 
   (3.2) 

 

Note the B and C components do not enter the stability criterion. For the planar system, 

the total transfer matrix T is simply the transfer matrix Td for propagation of light in free 

space over a distance d, given by 
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     *
  
  

+ (3.3) 

 

where d = 3.05 m is the distance traveled by a ray of light in the optical cavity (note the 

planar mirrors do not require matrix elements). The A and D components yield (A + D + 

2)/4 = 1, which indicates the planar mirror system is shown in Figure 3.7 is conditionally 

stable. This means, assuming perfect alignment, the laser beam will eventually expand 

beyond the size of the mirrors due to its inherent divergence. Small misalignments from 

the optical axis will cause the beam to eventually miss one of the mirrors. This was the 

case for the experimental setup, which only trapped ~12 beams. 

A new, stable system was devised (and is currently implemented) using concave 

mirrors (focal length f = 0.5 m) to produce a stable cavity with a 15 ns inter-beam delay. 

This system is shown in Figure 3.8, and includes the 355 nm ultraviolet beam path. The 

total transfer matrix now requires the concave mirrors to be included. The concave mirror 

matrix component is given by 

  [
  

     
] (3.4) 

 

so that the total transfer matrix is 

 

            (3.5) 

 

where     *
   

  
+ ,     *

   

  
+, and d1 = 1.003 m and d2 = 3.569 m are the 

distances between the concave mirrors traveling along the resonating cavity. Note the 

total distance d = d1 + d2 = 4.572 m corresponds to approximately 15 ns delays between 

beams. Carrying out the matrix multiplication yields matrix components A = -6.138 and 

D = 4.169, so that (A + D + 2)/4 = 0. 0078 satisfies the stability condition in         

Equation (3.2). To minimize beam deformation by the concave mirrors, the reflection 

angles must be kept small, as shown in Figure 3.8. Note that it may be possible to use the 

system in Figure 3.7 and include two lenses in the resonating cavity. For lenses with focal 

length  f  = 0.5 m and keeping the same distances d1 and d2 as the concave mirror cavity, 

the ray transfer matrix for this system is identical to Equation 3.5. 
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Figure 3.8. Stable optical system used to generate 12+ superimposed beams at 532 nm 

and a single beam at 355 nm (not drawn to scale). The incident pulse is passed through 

the 532/355 nm splitter, separating visible and ultraviolet components. The 532 nm beam 

is then passed through beam splitter BS1 so that a small fraction of the beam is trapped 

between the resonating cavity formed by the mirrors in black. Beam splitter BS2 directs a 

sequence of pulses to the target chamber. The 2 ns length pulses are delayed temporally 

by 15 ns due to the 4.572 m resonating cavity length. For stability, the distance between 

the concave mirrors is d = 1.003 m. The small reflection angles on the concave mirrors 

are required to minimize beam deformation. The locations of the beam expanders are 

identified using red arrows. 

 

3.2.3 Laser Deflection and Shadowgraphy 

 

When laser light is incident upon plasma, the rays of light will refract due to the 

plasma index of refraction. The plasma index of refraction is determined by the electron 

density, and can be estimated using the dispersion relation for simple plasma oscillations. 

The trajectory of the light rays thus primarily depends on the first and second derivative 

of the electron density in the plasma, and may be investigated using a variety of 

techniques, including laser deflection, Schlieren, shadowgraphy, and interferometry. The 

equation for laser deflection is determined by the first derivative in the index of 
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refraction, which yields a deflection angle θ given by the following equation 

 

    
 

  
∫   

 

 
  , (3.6) 

 

where L is the distance a light ray travels through the plasma, and n and n0 are the indices 

of refraction of the plasma and vacuum, respectively. Using the dispersion relation for a 

plasma wave, this equation may be expressed in terms of the electron density ne, 

 

         (
    

          
), (3.7) 

 

where λ is the laser wavelength, e and me are the electron charge and mass, respectively, c 

is the speed of light and    is the vacuum permittivity. The maximum gradient in electron 

density for our system may then be estimated as follows. The distance the laser light 

travels through the plasma is ~5 mm, the length from the plasma to the imaging lens is 2 

m, the diameter of the lens is 5 cm, and the wavelength of the laser light is 532 nm. Using 

Equation (3.7), the maximum electron density gradient that is capable of being collected 

by the lens is     2*10
19

/(cm
3
-mm). Density gradients above this value will be 

completely deflected outside of the imaging system and leave behind a dark region on the 

CCD. This dark region is typically referred to as the shadowgraph of the plasma, despite 

the shadowgraphy effect being due to the second derivative of the index of refraction 

(and therefore the second derivative of the electron density).  

 The shadowgraphy effect may be understood as follows. First, consider an object 

with a constant gradient in the index of refraction. Let us suppose that    is sufficiently 

small to be collected by the imaging system. Rays of laser light will be uniformly shifted 

by an angle according to Equation (3.7) and therefore uniformly illuminate the CCD, 

producing no variation in the intensity of light incident upon the CCD. Now, suppose that 

there is a second derivative in the index of refraction, i.e. a derivative in   . Rays of light 

will now be deflected non-uniformly, resulting in both bright and dark regions on the  
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CCD depending on whether the rays overlap or not. The change in light intensity I 

imaged on the CCD obeys the equation [HUD65] 

 

 
  

 
  ∫  

  

   

 

 
 

  

   
               , (3.8) 

 

where D is the distance from the plasma to the lens and L is the distance a ray of light 

travels through the plasma. This equation shows the dependency of bright and dark spots 

on the second derivative on the index of refraction due to the shadowgraphy effect. This 

method is useful for studying objects with sharp derivatives in gradients, such as the 

boundary of a shock front or plasma. However, the primary effect resulting in the plasma 

shadow appears to be due to the first derivative of the index of refraction and therefore 

due to laser deflection outside of the imaging system. This conclusion is determined by 

examining the interferometry data (which depends on constructive and destructive 

interference of two beams of light due to variations in phase, rather than the deflection of 

light rays) in Chapter 5, Section 5.1.1, which showed a density gradient of      

10
19

/(cm
3
-mm) at the very edge of the plasma, near the limit of density gradients that our 

system can support. Two additional effects to consider are: (1) the absorption of laser 

light by the plasma, which would also directly result in a shadow of the plasma, and, (2) 

the effects of neutral atoms, which deflect laser light in the opposite direction than that by 

electron gradients. 

 

3.2.4 Laser Interferometry 

 

 When laser light travels through a plasma and emerges, its phase is changed due 

to the index of refraction of the plasma. This change in phase can be used to calculate the 

index of refraction by combining the phase-shifted light with a beam of laser light that 

has not been phase shifted. This process results in bright and dark fringes that are due to 

constructive and destructive interference of the two beams. The analysis for extracting 

electron density from an interferogram is presented in Chapter 5. 
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One particularly common interferometry configuration is the Mach-Zehnder 

interferometer. For this configuration, a laser beam is split into two beams referred to as 

the reference beam and the probe beam. The probe beam is passed through the phase 

object (i.e. the plasma) and undergoes a shift in phase, while the reference beam passes 

through an adjacent region and is not shifted in phase. These two beams are subsequently 

combined using a beam-splitter in order to generate the interference pattern.  

 The interferometer used to obtain the electron density in Chapter 5 was an air-gap 

interferometer [PIK01]. For this type of system, the laser beam is split into two beams 

after having passed through the plasma (and a small region adjacent to the plasma), and 

having been collected by an imaging lens. This is accomplished using two right-angle 

prisms, arranged so that the focal point of the beam is situated in the air-gap between the 

prisms, as shown in Figure 3.9. The two beams, referred to as A and B (shown in red and 

blue in the image), are incident upon a CCD camera where their interference may be 

recorded. The two prisms are configured with a small, adjustable angle, which allows the 

separation of the two beams on the CCD to be controlled. For this technique, it is 

essential that the beam is offset from the center of the plasma z-axis, so that it consists of 

two portions, referred to as the: (1) reference and (2) phase-shifted regions. The reference 

region of beam A is then combined with the phase-shifted region of beam B, generating 

an interferogram. In order to obtain the fringe shift information (from which the electron 

density may be extracted), a post-shot interferogram is required to obtain a set of 

reference fringes. The reference interferogram is recorded after the shot when the liner is 

completely destroyed, enabling reference fringes that would otherwise be blocked by the 

liner to be recorded and compared to those of the imploding liner. An advantage to this 

technique is that the phase-shifted region of beam A simultaneously generates a 

shadowgraph on the CCD. In addition, the method generally results in a cleaner 

interferogram, as the reference beam and phase-shifted beam both experience nearly the 

same variations in phase as they travel through the vacuum windows, Lexan debris 

shield, and any other refractive objects in the optical path to the CCD. These variations 

are cancelled upon interference. Finally, this method is simple to configure and focus, 
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requiring only two right-angle prisms situated at the focal point of the imaging lens. 

Differences in path length of the reference and phase-shifted portions are inherently 

minimal, which may not be the case in Mach-Zehnder interferometry.  

 

 

 

Figure 3.9. Air wedge interferometer configuration. The beam axis (dashed line) is offset 

so that two regions are generated. Region 1 is unshifted in phase, and region 2 is shifted 

in phase as it propagates through the plasma. The beam is focused to a point between the 

two right angle prisms. The two prisms, separated by a small gap, split the single laser 

beam (black) into two beams (red and blue). Region 1 (unshifted) of the red beam is 

combined with region 2 (phase shifted) of the blue beam to generate an interference 

pattern on the image collector. Region 2 (phase shifted) of the red beam is used to 

generate a shadowgraph. Note: the colors indicate the color of the beam in the diagram 

and are not related to the wavelength of the laser. The dashed box indicates an image 

collecting device. 
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3.3 Implementation of Axial Magnetic Fields 

3.3.1 Coil Design and Power Delivery 

 A set of Helmholtz coils consisting of two 80-turn coils was used to pre-impose 

axial magnetic fields of 0.2 – 2.0 T. The coils were fabricated by Sandia National 

Laboratories [ROV14], and are the same coils utilized on the Z Machine to magnetize 

MagLIF experiments. The pulsed power system used to drive the coils is the same system 

used to drive the axial magnetic field on the Michigan Electron Long Beam Accelerator 

(MELBA), and consists of a 5 kV, 1.2 mF capacitor bank with an ignitron triggering 

system. The LTD is triggered at the maximum magnetic field value in the pulse, which 

occurs ~2 ms after the start of coil current. The coil current pulse is extremely long when 

compared to the LTD current pulse, which allows the axial magnetic field to fully diffuse 

through the load hardware (Section 3.3.2), and provides a constant-value axial magnetic 

field throughout the ~400 ns experimental window. Coil diagrams, operating procedures 

and magnetic probe calibration are presented in Appendix A.  

3.3.2 Hardware Design and Magnetic Field Diffusion 

The coil hardware consists of a coaxial transmission line (3.81 cm ID outer 

conductor and 2.54 cm OD inner conductor) that feeds the power to the load, as shown in 

Figure 3.4, above. Four return current posts at the liner load height enable a wide area for 

imaging of the plasma. The top plate that connects the liner to the return current posts has 

various holes machined in order to allow diagnostic access to the liner region and situate 

a fiducial screw for image alignment and scaling. The load hardware was designed to 

accommodate the Sandia Helmholtz coils, which slide directly around the outer coaxial 

region of the transmission line. Two stainless steel plates comprise the coil housing and 

are required to counteract the extreme     forces that are generated during coil 

operation. The coils are separated by a 2.54 cm plastic spacer, as seen in Figure 3.4, 

which enables laser imaging access to the load region. The coil housing is bolted directly 

to pre-existing holes in the radial transmission line anode plate.  
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The axial magnetic field diffusion into the load region was investigated using the 

transient field solver in ANSYS Maxwell. The simulation geometry shown in Figure 3.10 

included the triplate, aluminum triplate-coaxial adaptors, coaxial transmission line, liner 

load, top disc, return current posts, coil housing, and a portion of the radial transmission 

line. The circuit code PSpice was used to calculate the expected current trace (details are 

presented in Appendix A), which was used to drive the two 80-turn Helmholtz coils in 

Maxwell. For these simulations, the material of the coaxial transmission line, top disc, 

and return current posts (shown in blue in Figure 3.10) was varied. The two materials 

investigated were aluminum and stainless steel, which were chosen because of their 

common use in parts manufacturing. For these simulations, the default conductivities of 

3.8∙10
7
 S/m and 1.1∙10

6
 S/m were used for aluminum and stainless steel, respectively. 

The results of the simulation are shown in Figure 3.11, which shows a snapshot of the 

magnetic field profile at peak current (1.6 ms). As shown in the figure, the magnetic field 

value is significantly reduced when using aluminum hardware. The magnetic field in the 

load region was 2.7 T, compared to 5.0 T for the stainless hardware. The fundamental 

reason for this discrepancy is the lower conductivity for stainless steel, which permits a 

faster magnetic field diffusion time. These simulations motivated the manufacture of 

stainless steel hardware for the coaxial region. The material of the triplate-to-coaxial 

adaptors was also varied from aluminum to stainless; however, no differences were found 

in the magnetic field value at the load region. This permitted the adaptors to be 

manufactured from aluminum, which is easier to machine. 
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Figure 3.10. ANSYS Maxwell simulation geometry for investigating the diffusion of the 

axial magnetic field from the coils to the load region.  

 

 

Figure 3.11. ANSYS Maxwell simulations for investigating the diffusion of the axial 

magnetic field from the coils to the load region. Magnetic field profiles are shown for (a) 

stainless steel hardware and (b) aluminum hardware. The magnetic field in the load 

region is significantly larger for stainless steel hardware when compared to aluminum.  
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CHAPTER 4 

EXPERIMENTAL RESULTS FOR NON-IMPLODING LINERS 

 

This chapter presents the results of an investigation of the effects of axial 

magnetic fields on current-driven instabilities, namely the sausage (m = 0), kink (m = 1), 

and helical (m > 1) instabilities, in the absence of interface acceleration in order to 

minimize the effects of the acceleration-driven Rayleigh-Taylor instability. To minimize 

the liner-plasma interface acceleration, the 400 nm aluminum liner was directly placed 

around a non-conducting support structure. When the LTD is discharged, the current runs 

primarily through the highly conductive aluminum, ionizing it and forming a dense 

plasma (n > 10
19

/cm
3
) sufficiently hot to emit light in the visible spectrum. The current 

generates an azimuthal magnetic field and thus a magnetic pressure which exerts a 

radially inward force on the liner-plasma.  However, due to the dielectric support 

structure, the plasma cannot implode; rather, it expands with a nearly constant velocity as 

more energy is deposited in the plasma from the LTD generator. It is important to 

mention that if the radius of the dielectric support structure were reduced (while 

maintaining the liner radius fixed), the magnetic pressure would be sufficient to implode 

the liner-plasma. In this scenario, the current-driven MHD instabilities may couple to the 

magneto Rayleigh-Taylor instability. This geometry and its important consequences are 

explored in Chapter 5. 

 In addition to preventing the liner-plasma from imploding, the internal support 

structure presents the interesting possibility of setting an internal spatial boundary 

condition, which may be used to seed instabilities in the plasma at a given axial 

wavelength and azimuthal mode number.  In Section 4.1, the support structure was a 

straight-cylindrical plastic rod and used to analyze the natural instability modes that arise 

with and without an externally applied axial magnetic field. With no axial magnetic field, 
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the m = 0 sausage instability developed. Adding a relatively small axial magnetic field of 

1.1 T resulted in an m = +2 helical mode, where the plasma helices spiral in the same 

sense of direction as the external, global magnetic field (see Section 2.1 for the 

definitions of the + m modes). In Section 4.2, the internal support structure was modified 

to seed the kink (m = 1) instability by using a threaded-cylindrical plastic rod. By seeding 

the kink instability, we were able to fix the axial wavelength and azimuthal mode number 

in order to isolate the effects of the axial magnetic field. It was found that the seeded 

mode persisted despite the orientation of the applied axial field, and that the negative 

mode, where the plasma helices spiral against the global magnetic field, was the more 

stable configuration. 

To improve our understanding of these non-imploding systems, the arbitrary 

Lagrangian-Eulerian (ALE) code HYDRA [MAR01, KON09] was used. It was found 

that the liner does not ablate into a uniform density plasma, but rather distributes itself 

into a Gaussian-like density profile whose thickness increases from 400 nm to ~200 μm 

over the course of 200 ns. Profiles for density, temperature, magnetic field, and current 

density were simulated. In order to corroborate the experimental results with analytic 

theory, we used the Weis-Zhang-Lau three-region ideal MHD model to calculate analytic 

growth rates to show that these current-driven MHD modes may indeed grow in the 

absence of MRT for the experimental parameters. These calculations indicate there is a 

window in time when all MHD modes are completely stabilized, with higher order m 

modes becoming the first to de-stabilize. 
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4.1 Experimental Results for Unseeded, Non-imploding Liners 

We performed twelve shots using the straight-cylindrical, unseeded configuration, 

using three values for the axial magnetic field (Bz = 0, +1.1, -1.1 T) and two imaging 

techniques: (1) combination of self-emission and 532 nm laser shadowgraphy at 10 ns 

intervals, and (2) only self-emission at variable timing intervals. A summary of the 

experimental shots is presented in Table 4.1. The primary advantage of the first technique 

is that the shadowgraphy boundary may be determined in addition to the self-emission 

features, which give information about structures on the face of the plasma. The 

shadowgraphy boundary is typically observed as a thin, dark band located between the 

self-emitting region and the laser backlighting region (see Figure 4.1 in Section 4.1.1) 

and is thus useful for defining the plasma boundary, which may subsequently be used to 

measure the plasma radius and instability amplitude. The self-emission features may then 

be used to trace bright and dark bands horizontally across the face of the plasma in order 

to connect instability bumps and necks. However, the disadvantages are that the timing 

interval is limited to 10 ns (corresponding to the laser pulse interval timing) and that the 

laser backlighter intensity for subsequent images is reduced as the trapped beam loses 

energy in the resonating cavity. This latter effect can be seen in the images in Figure 

4.1(a-c), which have a bright laser backlight in the early images, followed by a much 

darker backlight in the later images. A final disadvantage to consider is that the 

resonating cavity must be aligned and synchronized to the framing camera intervals; a 

nontrivial task in itself. 

Using only the plasma self-emission offers a great advantage by providing 

flexibility in timing, which enables observation of the liner-plasma any time there is 

sufficient self-emission light to be recorded by the ICCD fast framing camera. In 

addition, because there is no laser backlight, a computerized algorithm can quickly and 

effectively trace the plasma self-emission boundary.  

In order to directly compare instability amplitude and plasma dynamics from 

shot-to-shot, it is important that the current traces be nearly identical. This means that the 

overall magnetic field, and thus the driving term for the sausage and helical modes, must 
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be approximately equal (see Equation (2.1) in Chapter 2) to enable the effects of the axial 

magnetic field to be directly compared. Figure 4.2 shows the current traces and timings 

for the unseeded liner experiments, which are nearly identical for the shadowgraphy/self-

emission shots in Figure 4.2(a) and slightly more varied in peak current and risetime for 

the self-emission only shots in Figure 4.2(b). Note the dip in the current traces, which 

occurs at 340 to 380 ns, marks the end of the useful current signal. The origin of this dip 

is not completely understood. 

 

 

Table 4.1. Summary of experimental data for unseeded, non-imploding liners. (a) 

Shadowgraphy and self-emission combination diagnostic. (b) Self-emission only 

diagnostic. The growth rate is the measured using an exponential fit to the instability 

amplitude,              where   is the growth rate and    is the amplitude at the start 

of the current (     and characterizes the amplitude of the early-time structures that 

seeded the sausage and helical modes (see Section 4.1.2.A, below). The expansion 

velocity, Vexp, is fit using the mean plasma radius. Uncertainties are estimated from the 

standard error of fits. 
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4.1.1 Self-emission and Shadowgraphy Images 

Figure 4.1 shows a series of six shots using three magnetic field configurations,      

Bz = 0 T, +1.1 T, and -1.1 T, for the combination shadowgraphy-self emission diagnostic 

(Figure 4.1(a-c)) and the self-emission only diagnostic (Figure 4.1(d-f)). For each 

diagnostic, the series shows three images taken at approximately the same time in order 

to directly compare features. Early in time (< 200 ns), the self-emission structures 

showed very large scale non-uniformities in the axial direction. This is particularly 

evident in the first row of Figure 4.1(d-f)). The sharp vertical line near the center of 

Figure 4.1(d) at t = 197 ns is due to the aluminum foil overlap. In the next image (t = 297 

ns), this line completely disappeared, suggesting that the overlapping region of the liner 

merged. These early time images reveal additional large scale, vertical non-uniformities 

in self-emission (see the right side of Figure 4.1(d, t = 197 ns) and Figure 4.1(f, t = 191 

ns) which show bright and dark bands in the axial direction. The likely origin is due to 

non-uniformities in current flow, perhaps exacerbated by the filamentation form of the 

electrothermal instability [PET12, PET13, PET14, ORE08, ROU08, STE16]. The non-

uniformities in current flow are likely due to two imperfect contact regions: (1) between 

the 400 nm liner and the 25 μm aluminum tape, and (2) between the 25 μm tape and the 

anode and cathode sliding contact structures. These axially directed non-uniformities 

decreased over time, indicating that current flow became more uniform.  

After the large scale vertical non-uniformities disappeared, the plasma self-

emission revealed dark and bright striations that connected instability bumps and necks, 

respectively. These structures formed around 300 ns, and became clearer as time 

progressed and the instability structures grew to large amplitudes. Hereafter, the self-

emission structures refer to these later time structures, and not the early time axially 

directed non-uniformities. While it is clear the self-emission structures are related to the 

instability peaks and valleys, the exact mechanism of their formation is not completely 

understood. One possible mechanism is that the bright striations form at the neck of the 

plasma where the plasma radius is smaller than the adjacent regions, resulting in a larger 

current density, localized heating, and increased light emission. In this scenario, the dark 
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bands form at the plasma bumps where there is more volume and less current density, 

resulting in less self-emission. A second mechanism may be due to the plasma opacity. 

Consider a hot, inner cylindrical shell of the liner-plasma that is self-emitting uniformly. 

The light from this region will be absorbed less in the plasma necks, where there is less 

mass, and more in the plasma bumps, where there is more mass. In this fashion, less light 

is transmitted through the liner-plasma in the thicker bumps, and more light is transmitted 

in the thinner necks.  

The dark and bright striations were found to be azimuthally correlated for the 

unseeded, unmagnetized liner images shown in Figure 4.1(a,d). As the interface 

acceleration was minimal (see Section  4.1.2.C) and the instability amplitude tended to 

grow exponentially, these structures are attributed to the current-driven, axisymmetric    

m = 0 sausage instability. As time evolved, the smaller instability structures (λ ~ 0.9 mm) 

merged to form larger wavelength instability structures (λ ~ 1.4-1.6 mm), retaining their 

axisymmetric nature throughout the merging process. Adding a relatively small axial 

magnetic field of 1.1 T (compared to the peak azimuthal field of ~30 T) in the positive or 

negative z direction destroyed the azimuthal symmetry and resulted in both smaller 

amplitude instability bumps and helically oriented self-emission striations (Figure 

4.1(b,c,e,f)) with similar wavelengths (λ ~ 0.8 mm) to the smaller structures of the 

unmagnetized liner that appeared at earlier times (for example, compare t = 256 ns in 

Figure 4.1(a) with t = 334 ns and t = 309 ns in Figure 4.1(b) and Figure 4.1(c)). 

Comparing the self-emission features of the unmagnetized case to the magnetized case 

shows that the contrast of the dark and bright striations was reduced when the axial field 

was applied; a result which may be attributed to the smaller amplitude of the instability 

structures. The amplitude of the instability structures for the magnetized liners also 

tended to grow exponentially, indicating these were helical instability modes (i.e. modes 

with azimuthal mode number |m| > 1). See Chapter 2 for a discussion on the sign of the 

azimuthal mode number and its implications. For both axial field configurations, the 

helices spiraled in the direction of the global magnetic field (i.e. m > 0). This was indeed 

expected as positive mode numbers have larger growth rates than negative mode numbers 
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because the plasma helices experience a smaller, stabilizing magnetic tension. In Section 

4.1.2.D, these self-emission striations are analyzed, and show two intertwined helices 

form to generate the m = +2 helical mode. 

 

Figure 4.1. (a-c) Combination shadowgraphy and self-emission (filtered at 532 nm) and 

(d-f) self-emission only images for unseeded liners using axial magnetic field values of  

Bz = 0 T, +1.1 T, and -1.1 T. The dashed lines indicate the approximate position of the 

dielectric support structure, and the solid lines mark dark striation patterns, which 

connect bump-to-bump instability structures. The direction of the current density J and 

azimuthal magnetic field Bθ are indicated in (a) and (d). 
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Figure 4.2. Current traces and image timings for: (a) combination shadowgraphy and 

self-emission, and (b) self-emission only. Symbols mark start and stop time of imaging 

window. 

 

4.1.2 Instability Experimental Analysis 

In this section we analyze the experimental amplitude of the instability structures 

that developed in the liner-plasma in order to measure and compare the exponential 

growth rates for the three magnetic fields tested (Bz = 0 T, +1.1 T, and -1.1 T). A 

summary of these results is presented in Table 4.1. In general, it was found that an axial 

magnetic field slightly reduced the growth rate early in time (before ~250 ns), but had 

little effect later in time (after ~250 ns). However, for all cases and for all times, the 

amplitude of the non-magnetized structures was larger than the magnetized structures. 
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This may be attributed to a combination of two factors: (1) a smaller growth rates for 

magnetized helical modes, when compared to the unmagnetized sausage mode 

(particularly early in time, when Bz is comparable to Bθ), and (2) an overall delayed onset 

of instability modes.  

Appendix B describes the two algorithms used to trace the plasma boundary. 

They are briefly summarized here. The shadowgraphy images first require manual 

tracing, which is performed by modifying the image by marking a white line on the outer 

shadowgraphy boundary as shown in the sample image in Figure 4.3(a). The modified 

images are subsequently computer-read using the algorithm in Appendix B, which tracks 

the inner boundary of the marked white line, in order to obtain the plasma boundary 

(Figure 4.3(b), red line). The self-emission only images are directly computer-read using 

a separate algorithm that determines a characteristic brightness threshold for each image 

to trace the plasma boundary (Figure 4.3(c), white line).   

 The result of these algorithms is the plasma boundary as a function of vertical 

position, obtained for the left and right boundaries, one of which is shown in Figure 

4.3(d).  These boundaries are centered about the z-axis, which is determined using a pre-

shot image. For each image, the mean of the left (right) plasma boundary gives the left 

(right) plasma radius, and the left (right) instability amplitude is obtained using the 

amplitude relationship for a sine wave,   √  , where   is the standard deviation in the 

radial position of the boundary. For the sample boundary in Figure 4.3(d), the black line 

represents the plasma radius as a function of axial position, the blue line represents the 

mean value, and the red lines mark the peak and trough of the instability measurement 

(note the distance between the red-lines is equal to twice the instability amplitude 

measurement). The final measurement is taken as the mean of the left and right radii and 

instability amplitudes; these are plotted in Figure 4.4 for the 12 shots reported here. The 

uncertainty is estimated by the difference in the left and right values; these are the error 

bars shown in the figures. 
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A. Instability Amplitude and Exponential Growth Rates 

 

Figure 4.4(a) and (b) show plots of the instability amplitude as a function of time, 

measured using (a) shadowgraphy, and (b) self-emission only. The shadowgraphy data 

had larger amplitudes when compared to the self-emission only, which is simply because 

the shadowgraphy boundary is at a larger radius than the self-emission boundary. This 

explains the larger initial amplitudes, A0, for the shadowgraphy data when compared to 

the self-emission only data in Table 4.1. Despite this, the two methods resulted in very 

similar growth rates (see Figure 4.5 and Table 4.1), which indicates that the self-emission 

only method may be more useful for quantitative instability analysis due to its flexibility 

in timing. On the other hand, the shadowgraphy images present a more detailed image of 

the plasma boundary (particularly early in time, when self-emission is low), which aids in 

identifying instability structures which, along with the self-emission striations, may be 

used to determine the azimuthal mode number. 

 

 
 

Figure 4.3. (a) Identification of shadowgraphy boundary. The white line is manually 

determined by tracing the outer shadowgraphy line. (b) The result of the computerized 

algorithm (red line) used to read-in the boundary in (a).  (c) The result of the 

computerized algorithm (white line) for the self-emission only boundary, tracking the line 

corresponding to 40% of the characteristic maximum brightness. (d) A sample boundary 

showing the radial position of the plasma as a function of the axial position (black), the 

mean plasma radius Rmean (blue), and the peak and valley instability amplitude lines (red), 

corresponding to Amax,min = Rmean + √ σ, where σ is the standard deviation of the plasma 

boundary.  
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The experimental data show that an axial magnetic field reduces the overall 

instability growth. In all cases, the unmagnetized data had larger amplitude instability 

structures (see the black data points in Figure 4.4(a,b)). An important factor to consider 

here is the apparent amplitude reduction for a helically oriented structure when imaged 

from a line of sight that is perpendicular to the helical z-axis (as in this experiment). 

However, for the small helical pitch angles (~4 degrees with respect to the horizontal), 

this reduction is likely to be small. To measure the instability growth rate, we fit only the 

exponentially growing regions (identified on a semi-log plot) using the equation   

          , where   is the instability amplitude at time  ,    is the fitted amplitude at 

    (corresponding to the start time of the current), and   is the instability growth rate. 

The amplitude    is not the true instability seed amplitude at    , but rather a 

parameter that characterizes the amplitude of the structures that seeded the observed 

instability, as discussed in the end of this section. The fitted curves excluded data points 

that occurred during instability amplitude saturation in addition to data early in time that 

showed little change in image-to-image amplitude. For this discussion, we define 

saturation as any non-linear growth, which may be algebraic, constant, or decreasing in 

amplitude as a function of time. The non-linear growth typically begins when the ratio of 

instability amplitude to wavelength is no longer small [WEI15]. These growth rate data 

are summarized in Figure 4.5 and Table 4.1. From these fits, we see that the axial 

magnetic field reduced the instability growth rate when compared to the unmagnetized 

case (with the exception of the unmagnetized shot 1189, discussed below). 

Shots with data after 300 ns showed saturation in the instability development. For 

the shadowgraphy case, amplitude data for both magnetized cases was reduced as shown 

in Figure 4.4(a), while for the self-emission only data, the saturation was characterized by 

an algebraically increasing instability growth (i.e. the amplitude growth is linearly 

proportional to time), as shown in Figure 4.4(b). This saturation occurs later in time for 

the magnetized liners (between 350 and 400 ns) than for the unmagnetized liners (~325 

ns), which may be attributed to the smaller ratio of instability amplitude to axial 

wavelength for the magnetized liners. Note that this saturation likely explains the slightly 



50 

smaller growth rate for the Bz = 0, m = 0, shot 1189 data, which was captured later in 

time (t = 245-345 ns) when the saturation process has already begun.  

 

 
 

Figure 4.4. Instability amplitudes for: (a) shadowgraphy/self-emission diagnostic and (b) 

self-emission only diagnostic. The plots show exponential curves, fit only to the 

exponentially increasing time periods (identified on a semi-log plot), which are used to 

identify the instability growth rate   and initial instability amplitude   . In (c) and (d), 

the mean plasma radius is shown for (c) shadowgraphy/self-emission diagnostic and (d) 

self-emission only. The initial liner radius is shown at t = 0. The data are fit using a linear 

regression in order to quantify the expansion velocity. Initial amplitude, growth rate, and 

expansion velocity are summarized in Table 4.1. 
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Figure 4.5. Summary of experimental growth rates, measured using an exponential fit to 

the data in Figure 4.1. Symbols show start and stop times of measurement window. 

Standard error of fit (68%) is given by size of symbol. The solid fill and solid lines 

indicate shadowgraphy/self-emission diagnostic, and the white fill and dashed lines 

indicate self-emission only. 

 

Changing the direction of the axial magnetic field from -1.1 T (parallel to current) 

to +1.1 T (anti-parallel to current) did not have a significant effect on the instability 

amplitude or the instability growth. Despite small differences in instability amplitude and 

growth rate (which may be due to differences in the current pulse and therefore the 

magnetic field which ultimately drives the instabilities), the effect of the sign of the axial 

magnetic field (when no instability seeding is present) is not completely resolved. Using 

an ideal MHD model, there should be no difference in growth between an axial field that 

is parallel or anti-parallel to the direction of current flow. However, more complicated 

MHD models may include a Hall term (pp. 47 of [BEL06]), which incorporates a     

term in the generalized Ohm’s law that is dependent on the direction of current. To 

completely resolve this issue, larger axial magnetic fields could be used to enhance the 

Hall term and a smaller radius support structure could be implemented to enhance the 

instability growth rate. Also, a direct measurement of the current flowing in the liner 

would be required in addition to the present measurements which utilize B-dots in the 

transmission line at a 44 cm radius (from the center of the load). This could be 
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accomplished using micro B-dots positioned inside the return can, near the liner, or with 

a Rogowski coil The currently used method does not measure arcs or current losses in the 

transmission line that may occur within the 44 cm  B-dot radius. Finally, a Hall-effect 

MHD code (such as the Perseus code at Cornell University [SEY11]) could be used to 

predict any differences in instability growth due to the parallel or anti-parallel orientation 

of the axial magnetic field compared to the current flow.  

The initial amplitude data for the fitted growth rates, summarized in Table 4.1, 

were very similar despite the applied axial magnetic field. This was an unexpected result, 

as the theory (see Section 4.1.4) shows that adding an axial magnetic field delays the 

onset time of all instability modes. This delayed onset would have manifested itself as a 

reduced initial amplitude    in the exponential fit             . For example, suppose 

the instabilities start growing at        with an amplitude of    . Setting the relationship 

for this delayed onset                   equal to the fit relationship, we see that 

 

                                   (4.1) 

                  (4.2) 

 

Therefore, the measured amplitude should give us some indication of when the 

instabilities started growing (assuming the instabilities start growing from perturbations 

with a similar amplitude,    ); however, the measured    were all very similar, which 

indicates the instabilities started growing at around the same point in time. Looking at 

Figure 4.4(a) and (b), the instability growth begins around 125 ns (for shadowgraphy, 

which captures low density, non-self-emitting bumps) and around 175 ns for self-

emission only. The approximately identical start time for each measurement (despite the 

applied axial field value) indicates that there was not a measurable delayed instability 

onset time. Note that the theoretical growth rate curves for magnetized liners, which are 

calculated in Section 4.1.4 below, exhibit a delayed instability onset time—this may 

indicate that the instability was seeded by an additional mechanism which governs the 

early time instability development. The leading theory for this mechanism is the 
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electrothermal instability, which develops striations that grow perpendicular to the 

current flow [PET12, PET13, PET14, ORE08, ROU08, STE16].  

B. Persistence of Exponential Growth 

A particularly interesting feature of Figure 4.4 is the persistence of an exponential 

instability amplitude growth for over 300 ns despite: (1) the linear theory being 

applicable only for ―small amplitude perturbations‖, (2) the (temporary) saturation in 

growth of instability features (saturation causes the growth rate to depart from an 

exponential dependence), and (3) the merging of instability bumps (see Figure 4.1(a-c), 

for example, in addition to the analysis below), which results in a time-changing 

wavelength. To study this process, the instability wavelength was determined using a 

method similar to a ―zero crossing‖ method. For this method, the N axial positions where 

the plasma boundary is equal to the mean plasma boundary are identified. Then, a 

periodic structure is assumed in order to obtain N-2 wavelength measurements, as 

outlined in Figure 4.6. The final measurement is taken as the mean of these values. For 

this analysis, the ―zero crossing‖ method was chosen because of its simplicity for 

extracting a single measurement of wavelength and its greater fidelity at large wavelength 

values, when compared to a Fourier analysis.  

For this analysis, we focus on shot 1189 (Bz = 0 T, Figure 4.1(a)), where the 

instability bumps on the left side of the liner merged with an adjacent bump at 

approximately the same time, giving an approximately constant λ(z). The values of 

instability wavelength (for the left side only) are plotted as a function of time in Figure 

4.7(a), and show a discrete jump between 266 ns and 286 ns, where the wavelength 

increased from λ = 0.9 mm to λ = 1.4 mm after synchronous merger events. Figure 4.7(b) 

shows enlarged images for the four frames indicated in Figure 4.7(a). The images show a 

detailed process of the merging of two, smaller wavelength instability structures into a 

single, larger instability structure.  
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Figure 4.6.  Method to measure wavelength. The final measurement is the average of all 

wavelengths determined using the ―mean-crossing‖ of the plasma boundary.  

 

 

Figure 4.7.  (a) Characteristic wavelength and ratio of amplitude to wavelength for the   

m = 0 sausage mode in shot 1189 (Bz = 0 T, Figure 4.1(a), left boundary only). (b) 

Detailed process of instability bumps merging. Data points marked in red in (a) 

correspond to frames in (b). The data show that during the merging process, a rapid 

increase in wavelength is accompanied by a rapid decrease in the ratio of amplitude to 

wavelength, which allows the subsequent instability growth to remain closer to the 

―linear theory‖, albeit with a smaller growth rate when compared to the linear growth rate 

of the smaller wavelength (e.g., see Equation (2.1)). 
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Using these data, the mechanism for the persistence of exponential growth may 

be understood as follows. The linear perturbation theory is characterized by exponential 

growth in perturbations where the ratio of instability amplitude to wavelength is small. 

This is because upon linearization, higher order terms may be neglected in order to solve 

for the dispersion relation. When the amplitude is no longer small, these terms cannot be 

ignored and a non-linear solution must be obtained. In Figure 4.7(a), we plot the ratio of 

instability amplitude to wavelength as a function of time (using values for the left side of 

the liner only). Before the merging process (t < 266 ns), this ratio increases to ~35%. At 

this point, the growth of these modes has saturated (i.e., initiated non-linear growth); 

however, this saturation does not last long due to the merging of instability structures. 

During this process, the amplitude remains nearly unchanged, but because the 

wavelength rapidly increases, the ratio of amplitude to wavelength rapidly decreases, so 

that the linear theory becomes applicable again. After this point (t > 286 ns), the 

wavelength remains constant, but the amplitude continues to grow exponentially until it 

reaches the saturation value (A/λ ~ 35%, where A is the instability amplitude). After this 

time, we predict that: (1) non-linear growth would ensue and/or (2) an additional merging 

would occur, subsequently re-enabling linear growth. 

We envision the following mechanism for the process of mode merging. As 

smaller features of wavelength  λ1 = 0.8 mm saturate in instability growth, they provide a 

seed for the larger wavelength instability mode with  λ2 = 1.5 mm ~ 2λ1. This can be seen 

by examining the power spectrum before and after merging, as shown in Figure 4.8 

(determined from the fast-Fourier transform). Both spectra show strong values at  λ1 and 

λ2, however, the largest component for the t = 266 ns spectrum is at the smaller 

wavelength, while the largest component for the t = 296 ns spectrum is at the larger 

wavelength. This indicates that the smaller wavelength  λ1 mode is cannibalized by the 

larger wavelength  λ2, which subsequently develops. 
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Figure 4.8. Power spectrum of wavelengths determined using an FFT algorithm for shot 

1189 (Bz = 0 T, left boundary only) for t = 266 ns (blue, data point #1 in Figure 4.7) and 

for t = 296 ns (black, data point #4 in Figure 4.7). Both spectra show peaks at λ = 0.8 mm 

and λ = 1.5 mm, with the dominant peak shifting from λ = 0.8 mm at t = 266 ns to  

λ = 1.5 mm at t = 296 ns. 

 

C. Plasma Expansion 

 

During the imaging time period, the plasma expanded throughout the discharge 

with an approximately constant velocity, as indicated by the plot of mean radius versus 

time, shown in Figure 4.4(c-d). For each shot, the entire dataset was fit using a linear 

regression with uncertainties estimated by the standard error. These results are 

summarized in Table 4.1 and indicate that the plasma-vacuum interface acceleration, and 

therefore MRT growth (defined in this thesis as acceleration-driven) was likely to be 

small. Using the self-emission-only diagnostic enabled analysis of the plasma radius over 

a much longer window in time (~100 ns to ~500 ns), when compared to the 

shadowgraphy diagnostic. The data in Figure 4.4(d) show that early in time (t  < 125-150 

ns) the radius has a small parabolic expansion, corresponding to a positive radial 

acceleration and thus an MRT-stable interface, which could potentially be responsible for 

the observed reduction in instability growth: for t = 100-175 ns, the instability amplitude 

did not grow significantly. On the other hand, if these early-time structures are the result 

of an additional instability mechanism (such as the electrothermal instability), this 
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apparent zero-growth region could be due to the inclusion of the exponentially decaying 

term, which changes the instability amplitude relation from exp[γt] to cosh[γt] (see Ref. 

[SIN11]). 

 Shot 1215 showed the strongest deviation from the constant-velocity expansion, 

starting later in time around 325 ns (Figure 4.4(d)). This was accompanied by a reduction 

in the instability growth rate, as seen in Figure 4.4(b). A possible explanation is that, after 

a short period of deceleration from t = 325 ns to 350 ns (corresponding to an MRT-

unstable interface), the interface obtained an outward acceleration for t > 350 ns 

(corresponding to an MRT-stable interface) which results in a reduction, and possibly 

complete stabilization, of the MRT-sausage coupled growth rate. The reason for this 

interface acceleration is not completely understood, but may be due to arcing in the 

transmission line, which could cause changes the plasma-magnetic field pressure balance. 

The situation is further complicated by an apparent failure in the B-dots around 375 ns, 

where the current departs from its sinusoidal shape (Figure 4.2). This corresponds to a 

shorting of the B-dot signal (the B-dots measure the time derivative of the current; if the 

B-dot signal is zero then a constant-value current trace will result). The current 

measurements could be improved by using magnetic field probes situated near the plasma 

(e.g. a Rogowski coil inside the return current can, or micro B-dots positioned near the 

liner) to measure the liner current, as opposed to current in the transmission line at a 

radius of 44 cm from the load center.  Perhaps the best solutions to these problems are to: 

(1) limit the plasma analysis to early times, or (2) use a smaller radius support structure, 

which would increase instability growth rate because of the smaller plasma radius and 

larger azimuthal magnetic field. 

Previously, we proposed that the axial magnetic field may be delaying or reducing 

the plasma expansion early in the current pulse, when the axial magnetic field is 

appreciable compared to the azimuthal magnetic field [YAG16a]. This was because the 

data (shot 1189 and shot 1190 in Figure 4.4(c)) showed that the plasma radius was 

slightly smaller when adding an axial magnetic field, while having little effect on the 

expansion rate. However, this effect was not reproducible; in fact, in subsequent 
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experiments the plasma seemed to expand at approximately the same rate and with the 

same radius, independent of the axial magnetic field value used. A more likely 

explanation is jitter in the shot timings (the framing camera has an inherent ~5 ns jitter) 

and in identifying the start time of the current pulse. These combined effects could 

potentially shift the entire shot 1189 dataset to a later time, moving it closer to the other 

datasets. This timing uncertainty could also explain why the shot 1214 data appeared to 

have a larger radius than all other shots in Figure 4.4(d).  

D. Azimuthal Mode Numbers 

The azimuthal mode number was studied by analyzing the self-emission striations 

and their relationship to the instability bumps, as shown in Figure 4.9 and Figure 4.10. 

For these images, the central region was contrast-enhanced and overlaid on the original 

image. The locations of the dark striations (which connect instability bumps) were then 

determined using an algorithm that tracked self-emission minima across the face of the 

plasma. Pixel values in the image were locally averaged over 10-20 pixels to avoid 

tracking small feature noise. The positions of these minima are tracked horizontally 

across the plasma, moving pixel-by-pixel, and are marked in white in Figure 4.9 and 

Figure 4.10. Due to the weak signal, not all of the striations could be tracked completely 

across the plasma; the top striation in Figure 4.10(a,b), for example, could only be 

tracked across one fourth of the liner circumference.  

Once the measured self-emission minima are determined, their signal may be 

compared to the signal expected from an |m| = 0, 1, or 2 mode. In order for a signal to 

agree with the projection of a helical mode, the bump-to-bump projection requires that 

the pitch angle with respect to the horizontal is the same for the front and back sides of 

the plasma, where the front side represents the side of the plasma facing the ICCD 

framing camera. For these projections, solid lines indicate the required projections on the 

front side of the plasma, and dashed lines (for helical modes) show the required 

connection on the back side to generate the projected mode. 
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In Figure 4.9, the Bz = 0 T self-emission minima are compared to the projection 

from the m = 0 mode, showing overall agreement, indicating the observed mode is the    

m = 0 sausage mode. In Figure 4.10(a), the self-emission minima are first compared to 

the m = +1 mode, marked in red in the image. This mode corresponds to a single plasma 

helix. On the front side of the plasma, we see that the projections (solid red lines) agree 

with the measured self-emission minima. To complete the single helix on the back side of 

the plasma, bump #2 must connect to bump #3, bump #4 must connect to bump #5, and 

so forth. However, these connections violate the requirement that the pitch angle on the 

front and back sides of the plasma is conserved; the striations on the back side have a 

helical pitch angle of nearly zero degrees, which do not agree with the tilted striations on 

the front side. Therefore, this mode is rejected. The self-emission minima are then 

compared to the m = +2 mode, as shown in Figure 4.10(b), which corresponds to two 

intertwined helical structures; these are marked in green and black in the image. Here 

again, the striations on the front side of the plasma agree with the projections. On the 

back side, we see that the conservation requirement has been satisfied; the dashed lines 

have nearly identical helical pitch angles to the pitch angles on the front side. Therefore, 

we interpret this structure as the m = +2 helical mode. Once more, we emphasize that for 

these data we do not have a simultaneous measurement of self-emission on the back face 

of the plasma, this identification of the m = +2 mode comes from careful consideration 

that: (1) striations connect bump-to-bump features on the back face of the plasma, and (2) 

the angles of the measured striations on the front side of the plasma are similar to those 

on the back side. 
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Figure 4.9. Contrast enhanced, false color image of shot 1189 (Bz = 0 T, t = 336 ns) 

showing the agreement between the projection of the m = 0 mode and the self-emission 

minima (white lines).  

 

 
 

Figure 4.10.  Contrast enhanced, false color image of shot 1190 (Bz = 1.1 T, t = 314 ns) 

showing (a) the disagreement between the projection of the m = +1 mode (red lines) and 

the self-emission minima (white lines) and (b) the agreement between the projection of 

the m = +2 mode (green and black lines) and the self-emission minima. For (a), the         

m = + 1 projection does not satisfy the requirement that the striation angles be conserved 

on the front and back sides of the plasma (the pitch angle on the back side of the plasma 

is nearly zero). 
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To conclude this section, we discuss the implications of the merging of instability 

structures for helical modes. Previously, we have seen that mode merging enables the     

m = 0 sausage mode to continue growing in an exponential regime. For helical modes, the 

merging of instability structures has an additional subtle, yet very important consequence. 

Consider a plasma that has developed an instability with azimuthal mode number m = 6 

and axial wavelength λ = 0.2 mm. This corresponds to 6 intertwined helices where the 

spacing of adjacent bumps is 0.2 mm. Suppose this mode saturates, and adjacent helices 

merge in pairs to generate a longer wavelength structure of λ = 0.4 mm. Since each of the 

six helices has merged with an adjacent helix, the new structure consists of three 

intertwined helices, e.g. the m = 3 mode. Note that the pitch angle of the helix, m/kR, 

remains the same after the merging, as both m and k are reduced by a factor of two. 

Furthermore, we conjecture that this process does not require an even mode number; for 

example, the m = 3 mode above may further evolve so that two of the helices merge and 

one helix does not, or all three helices merge to form a single helix. Note that this type of 

argument may be applied to any helical mode with  m > 1; however, a single helix cannot 

merge into a sausage instability structure without extreme deformation of the global 

plasma. 

In Figure 4.10(b), we have seen that once the helical striations are detectable, the 

m = +2 mode was identified. By enlarging a small region of the image, we may compare 

the structure at t = 254 ns that generated the m = +2 structure at t = 314 ns. This was done 

in Figure 4.11, which shows four bumps merging into two bumps; since the latter was 

identified as the m = +2 mode, this gives evidence that the early time structures (t < 254 

ns) were the m = +4 mode. As we shall see below in Section 4.1.4, the m = +4 mode has 

the largest growth rate at t = 125 ns, when the instability structures first begin to grow.  

A possible caveat to this interpretation is that the m = +4 mode is not clearly 

identified by 254 ns (Figure 4.1(b) and Figure 4.11(a)). Due to the lack of self-emission 

striations, the small wavelength instability features cannot be connected across the face of 

the plasma. An alternative interpretation is that by 254 ns, the general form of the m = +4 

mode has developed: the instability bumps have developed in a tilted pattern, but have 
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not linked completely in the azimuthal direction. By 314 ns, the dominant m = +2 mode 

links these incomplete helix-like structures to generate two intertwined helices.  

 

 

 

Figure 4.11. Evidence of helical mode merging for shot 1190. The boxed regions show 4 

bumps at 254 ns (a) that merge to form 2 bumps at 314 ns (b). This may be interpreted as 

the m = +4 mode merging to generate the m = +2 mode.  However, while the m = +2 

mode may be identified using self-emission structures, the m = +4 mode cannot due to a 

low signal-to-noise ratio.  

 

4.1.3 HYDRA Simulations 

A. Problem Setup 

The arbitrary Lagrangian-Eulerian fluid code HYDRA [MAR01, KON09] was 

used to model non-imploding liners via the resistive magneto-hydrodynamics package. 

The simulation was performed in cylindrical geometry, using 1-D in order to solve for the 

equilibrium profiles. The 400 nm-thick aluminum liner and inner rod were discretized 

into 200 and 50 zones, respectively. In attempt to realistically model the phase transitions 

of the materials, the equation of state, electrical conductivity, and thermal conductivity 

were incorporated using the SESAME tables [SES17]. To maintain reasonable simulation 

times (~3 hours), the inner rod material was set to aluminum with high resistivity, η = 

10
13

 ohm-cm (the EOS and thermal conductivity were still allowed to vary using the 

SESAME tables). This prevented the rod from carrying current, but enabled kinetic and 

magnetic pressure to develop between the foil and the inner rod, preventing an implosion 
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and resulting in a net outward motion of the foil. The foil was offset from the rod using 

three distances that covered the range of experimental values: 1 μm, 50 μm, and 100 μm. 

The offset is due to the conducting aluminum tape on the support structure end caps, 

which in the experiments is wrapped directly around the plastic rod and results in a 

maximum offset of 100 μm (equal to the thickness of the aluminum tape). 

The current was driven by varying the magnetic field at the outer radius of the 

simulation boundary, using the LTD current pulse shape (base-to-peak risetime of 220 

ns). The peak current was varied from 480 kA to 570 kA in order to capture possible 

current losses in the transmission line. As the magnetic field varies in time at the edge of 

the simulation, it must diffuse through the resistive aluminum, generating current in the 

axial direction. This induced current ultimately results in heating and ablation of the foil 

material.  

Future simulations could be improved by incorporating the plastic EOS and 

conductivities for the inner material. An attempt was made; however, the simulation ran 

for 42 hours and reached 60 ns simulation time. Future simulations could identify the 

troublesome zones that caused this. During the 60 ns, it appeared that shocks and 

rarefactions were generated in the plastic rod and that the foil did not ablate (it remained 

at a thickness of roughly 400 nm). 

B. Simulation Results 

Figure 4.12 shows a plot of the plasma radius at a density of nsim = 10
19

/cm
3
 for a 

variety of currents and offsets, identified in the figure. This value was found using an 

algorithm that searched for the condition n > nsim, moving zone-by-zone from the outer 

boundary. This density was chosen in order to match the interferometry measurement of 

electron density at the edge of the liner, so that nexp = nsim. These plots were smoothed in 

order to reduce the abrupt changes in the plasma radius due to shocks, rarefactions, and 

ablated material in order to capture the overall expansion of the liner-plasma. 
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Figure 4.12. Simulated plasma radius (HYDRA) determined using the outer plasma 

radius that corresponds to a density of 10
19

/cm
3
, for various initial foil radii and peak 

currents. The simulated radii are compared to the experimental data. Uncertainties in 

experimental data are calculated using the standard deviation of the plasma boundary. 

 

The largest offset (100 μm, blue) tended to show the largest expansion. Early in 

time, the expansion showed a roughly constant velocity. Later in time, however, the 

radius showed a deceleration as the magnetic pressure became large. This deceleration 

was not readily observed in the experiment (black data), although the experiment does 

demonstrate small variations from a constant velocity expansion. Decreasing the offset to 

50 μm resulted in a smaller radius plasma, with the larger current (570 kA) showing a 

smaller radius than the 500 kA simulation. Offsetting the foil 1 μm showed the plasma 

was not able to expand; it remained near the rod for the full simulation. This may be 

attributed to limitations in the simulation, where insufficient pressure builds between the 

foil and the rod, so that the total pressure at a larger radius than that of the bulk liner 

predominantly exceeds the total pressure at a smaller radius than that of the bulk liner. In 

addition, the rod material may play a role—if this were modeled using plastic, the rod 

may be able to expand, ablate, and develop pressure that lifts the liner from the surface. 
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Unfortunately, dielectric materials are difficult to model due to their complicated 

breakdown process. 

 Figure 4.13 shows profiles for the density, temperature, magnetic field, and 

current density for t = 50 ns, 100 ns, 150 ns, and 200 ns. To reduce figure clutter, only the 

50 ns and 150 ns profiles are shown for Figure 4.13(d). The density profiles show that the 

majority of the liner remains roughly intact, expanding from 400 nm to to ~200 μm over 

~200 ns. This region of the liner, which consists of a Gaussian-like density distribution 

with a dense core, is referred to as the ―bulk‖ liner, and suggests the thin shell model of 

the Weis-Zhang-Lau analytic theory presented in Chapter 2 and utilized in Section 4.1.4, 

below, is applicable. This is in contrast to our initial expectation that the liner ablates and 

uniformly expands to form a rectangular-like density distribution to fill the gap between 

the observed outer radius and the inner rod. At the center of the bulk liner is a cold,       

~1 eV plasma, with increased temperature (~10 eV) on the lower density edges. Figure 

4.13(c) shows the azimuthal magnetic field has nearly fully diffused in the liner, with a 

large portion of the current flowing at a smaller radius than the bulk of the liner (Figure 

4.13(d)). This was not expected when considering the skin effect, which tends to limit 

current to the outer radius, but may be understood by considering the vastly different 

electrical conductivities due to the large temperature and density variations.  

Throughout the simulation, shocks and rarefaction are continuously observed as 

material is ablated. This is particularly evident in the Figure 4.13(d, t = 50 ns), which 

shows some of this very low density material (n < 10
18

/cm
3
) carrying current at radii 

larger than that of the bulk liner. The origin of the current spike at a radius of 3.9 mm is 

the curl of the magnetic field (Figure 4.13(c, t = 50 ns)), which arises as the magnetic 

field diffuses through the ablated low density mass. Typically, the ablated mass is ejected 

radially outward. For example, the spike at a radius 3.9 mm in Figure 4.13(d, t = 50 ns) is 

eventually lost to the outer simulation boundary. 
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Figure 4.13. HYDRA profiles for (a) density, (b) temperature, (c) magnetic field, and (d) 

current density.  

 

 

Figure 4.14 shows a snapshot of the total pressure (black curve), consisting of 

magnetic (blue curve) and kinetic (red curve) components. Inside of the bulk liner, total 

pressure is slightly larger than the total pressure on the outside of the liner. This pressure 

difference is ultimately responsible for driving the liner outward. Interestingly, the 

pressure in the bulk liner is lower than the pressure inside and outside, despite the bulk 

liner increasing in thickness. For this pressure profile, one would expect an overall 

compression of the liner. A possible explanation is that, for this snapshot, the fluid zones 

in the liner have obtained large velocity components from the ablation that occurred 
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earlier in time. These velocity components would be directed radially away from the 

center of the bulk liner.  

 

 

Figure 4.14. Total (black), kinetic (red), and magnetic (blue), pressure profiles for 

HYDRA simulation at t = 100 ns.  

 

4.1.4 Application of Weis-Zhang-Lau Instability Theory 

In order to study the development of helical modes, we used the Weis-Zhang-Lau 

(WZL) theory [WZL15, WEI15] to calculate the instantaneous theoretical sausage and 

helical growth rates using parameters measured or estimated from the experiment. While 

the instabilities appear to have developed beyond the direct applicability of the linear 

perturbation theory, we may still use the WZL theory to: (1) gain insight into the 

instability development early in the current pulse, and, (2) isolate the effects of axial 

magnetic fields for various azimuthal mode numbers.  

Contour plots of the instantaneous growth rate as a function of time are presented 

in Figure 4.15 for azimuthal mode numbers ranging from m = -12 to m = +12. These 

calculations require values for the plasma radius, instability wavelength, plasma density, 

liner thickness, and instantaneous magnetic field. These values were either measured 

from the experiment or estimated using reasonable parameters. Despite the observation 

that the instability wavelength changes over time, its value was fixed at λ = 0.3 mm to 
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characterize the wavelength of instability structures that first appear. While this value 

could incorporate the time-changing effects observed in Section 4.1.2.B, this would 

primarily change the numerical values for growth rate and complicate the interpretation 

of the growth rate plots in Figure 4.15. Measured values include radius (fixed at 3.5 mm 

for ease of calculation) and magnetic field (determined from plasma radius and 

experimental current pulse, approximated by a sinusoidal function with 580 kA peak 

current and 250 ns base-to-peak risetime). The two parameters that were estimated and 

not directly measured were the liner thickness and plasma density; however, these 

parameters primarily affect the numerical scaling of the growth rate curve, shown in 

Figure 4.16. Figure 4.16(a-b) shows the effects of varying the plasma density over a 

range of 10
18

/cm
3
 to 10

21
/cm

3
, and Figure 4.16(c-d) shows the effects of varying the 

plasma thickness from 1 μm to 1 mm. The importance of these plots (beyond 

demonstrating the scaling of growth rate on density and thickness) is to show that using 

the true experimental density and thickness would only change the numerical value of the 

growth rates in Figure 4.15, and not their relative values for a given time. This important 

conclusion enables the various instability modes to be roughly compared when highly 

resolved measurements of the plasma density and liner thickness are unavailable.  

Reasonable values for the plasma density and liner thickness were chosen as 

follows. The plasma thickness may be estimated from the difference between the plasma 

and support structure radius, which ranges from 0.6 – 1.3 mm. An additional estimate 

may be obtained from HYDRA (Figure 4.13(a)) which shows the liner thickness (∆) 

expanding to ~200 μm over 200 ns.  As the growth rates are extremely insensitive to liner 

thicknesses exceeding 0.1 mm (Figure 4.16 shows the ∆ = 0.1 mm and ∆ = 1 mm curves 

overlap), we set the thickness to 0.2 mm to characterize this range of thickness. For the 

plasma density, experiments on MAIZE using the same foils (in an imploding geometry, 

see Chapter 5) measured an electron density of ne ~ 10
19

/cm
3
 at the edge of the plasma 

using interferometry. A second estimate for the plasma density may be determined by 

assuming the dark shadowgraph band is due to laser cutoff at the critical density,    

~4∙10
21

/ cm
3
. Finally, HYDRA (Figure 4.13(a)) shows peak densities at the liner core 
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ranging from 10
20

/cm
3
to 10

21
/cm

3
, with densities at the edge of the bulk liner dropping to 

~10
18

/cm
3
. Therefore, a reasonable density characterizing this range is n ~ 10

20
/cm

3
, 

corresponding to a mass density of ρ = 4.5 kg/m
3
.  

Figure 4.15 shows a plot of the analytic growth rate as a function of time for 

mode numbers of m = -12 to m = +12 for (a) Bz = 0 T and (b) Bz = 1.1 T. When there is no 

axial magnetic field, the dominant mode is the m = 0 sausage mode for all times, and the 

negative m modes have the same growth rate as the positive m modes. For these plots, 

recall that a positive m mode indicates a helix with spiral direction in the same sense as 

the global magnetic field spiral. These results are intuitively expected because the m = 0 

mode requires no bending of the azimuthal magnetic field (even the m = 1 mode must 

bend the azimuthal field to develop), and because, in the absence of an axial magnetic 

field, a plasma helix spiraling up or down experiences the same magnetic tension. From 

this plot, we would expect the m = 0 mode to dominate, which was indeed the mode 

observed in the experimental images in Figure 4.1(a, d). 

Figure 4.15(b) shows the dramatic effect of adding a relatively small axial 

magnetic field of 1.1 T (the peak azimuthal field for these calculations was 33 T). First, 

the regions of high growth rate shift to positive m modes; an intuitive consequence as 

these modes have a smaller magnetic tension when compared to their negative 

counterparts. We also see that there is a region of complete stability, where all azimuthal 

modes are stable for  t < 45 ns. At t = 46 ns, the m = +8 and +9 modes are the first to 

destabilize. Interestingly, these modes destabilize before even higher order modes with m 

> +9. As determined in the experiment, the first detectable instability bumps are observed 

around ~120 ns. Using Figure 4.15(b), we see that at t = 120 ns, the m = +4 mode has the 

largest growth rate. Assuming that at t = 120 ns the MHD modes may develop, we would 

expect the m = +4 mode to dominate. 
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Figure 4.15.  (a-b) Weis-Zhang-Lau analytic instability growth rate calculations for small 

wavelength perturbations (λ = 0.3 mm) for (a) Bz = 0 T and (b) Bz = 1.1 T. These 

calculations used a typical current pulse (580 kA peak current, 250 ns base-to-peak 

risetime), liner thickness of ∆ = 200 μm and plasma density of n = 10
20

/cm
3
. The plot in 

(b) shows a region in time where all modes are stable. As time progresses, higher order 

modes de-stabilize. In (c-d), lineouts for various mode numbers are given for the early 

part of pulse (t < 150 ns) for (c) Bz = 0 T and (d) Bz = 1.1 T. The blue region shows the 

approximate time when instability bumps are first detected and begin to grow. In (c) the 

m = 0 sausage mode is always the most unstable. In (d), while the m = +8 is the first 

mode to destabilize, the m = +4 mode has the highest growth rate at t = 120 ns (when 

instability bumps are first resolvable), indicating this mode should develop first. To 

exclude coupling effects to MRT, these calculations did not include liner acceleration. 
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As we have seen in the experiments, the early-time instability bumps for the 

magnetized liners merge into a longer wavelength structure (see Figure 4.11). This 

merging of bumps (assuming well-defined helical modes) is necessarily accompanied by 

a reduction in azimuthal mode number. For example; the m = +4 mode consists of four 

intertwined helices; two adjacent bumps merging corresponds to two adjacent helices 

merging. Thus, if each bump merges with an adjacent bump, we would expect an m = +4 

mode to convert to an m = +2 mode. Using the analysis in Section 4.1.2.D, the existence 

of the m = +2 mode was indeed confirmed. Looking even earlier in time and using Figure 

4.15(b), it is possible that the m = +8 mode first arises at t = 46 ns and has already 

merged into the m = +4 mode by t = 120 ns, when instability bumps are first detectable. 

Looking much later in time (after the imaging window), if the m = +2 mode instability 

bumps saturate and merge, then the m = +1 mode would arise. In this scenario, the 

traditional kink mode (m = 1) will represent the final state of the non-axisymmetric 

modes. This predicted effect of an azimuthal mode number cascade is a direct result of 

instability saturation and merging. Note that this analysis neglects the contribution of the 

early time electrothermal instability (ETI) [PET12, PET13, PET14, ORE08, ROU08, 

STE16], which may set an initial value for the axial wavelength of the MHD modes. The 

effects of an applied axial magnetic field on the electrothermal instability are not 

completely understood; whether the incorporation of a pre-imposed axial magnetic field 

results in angled ETI striations (thus providing a seed to helical modes) remains an 

outstanding question. 

Figure 4.15(c) and (d) show lineouts taken from specific modes in Figure 4.15(a) 

and (b). The purpose of these plots is to illuminate more subtle features not readily 

observed in the contour plots in Figure 4.15(a) and (b). For example, Figure 4.15(c) 

shows the relative strength of the growth rates for the m = 0, +4, +8, and +12 modes for 

Bz = 0 T. In Figure 4.15(d), the growth rate for these modes are computed for Bz = 1.1 T 

and compared to the Bz = 0 T, m = 0 mode. This comparison shows that even the mode 

with the highest growth rate for the magnetized liner has a smaller growth rate than the 
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unmagnetized liner; this was experimentally verified for early times in Figure 4.5 and 

Table 4.1.  

Making a numerical comparison of the theoretical growth rate to the 

experimentally measured values is difficult because we do not have a measurement of the 

plasma density (thickness is rather insensitive, therefore the limiting factor is density). 

Despite this, we do see that early in time (t = 120 - 225) the ratio of experimental growth 

rates for Bz = 0 T to Bz = 1.1 T is (10.8+0.5)/(9.9+0.7) = 1.1+0.1. The theoretical ratio of 

growth rates for Bz = 0 T (m = 0) and Bz = 1.1 T (m = +4) at t = 150 ns was 

27.3/25.3=1.08. Note that this small predicted decrease in growth rate was on the 

threshold of being experimentally detectable. 

 

 

Figure 4.16. Scaling of WZL instability growth rate with (a,b) plasma density and (c,d) 

liner thickness for Bz = 0 T, m = 0, and Bz = 1.1 T, m = +4. For these calculations, R = 3.5 

mm, Imax = 580 kA, base-peak risetime = 250 ns, λ = 0.3 mm, (a-b) thickness = 200 μm, 

and (c-d) n = 10
20

/cm
3
. 
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Perhaps the most useful aspect of the analytic growth rates is to reveal the 

possible dominant modes expected for a given axial magnetic field at a fixed set of 

parameters. As discerned from Figure 4.16, changing the density or thickness in these 

calculations will not change which modes are stabilized early in time, nor the relative 

scaling of modes for a given axial magnetic field. Therefore, the analytic growth rates 

may be used as a tool to examine the dominant mode as a function of time. This powerful 

tool was corroborated with the experimental results presented in this chapter.  
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4.2 Experimental Results for Kink-seeded, Non-imploding Liners 

In Section 4.1 we saw that the addition of an axial magnetic field resulted in an   

m = +2 helical mode for the unseeded liners. This made it difficult to isolate the 

stabilizing effects of an axial magnetic field for a given mode, as larger axial fields could 

induce higher m modes. This motivated the design of the |m| = 1 kink-seeded support 

structure; in this manner, the same azimuthal mode and axial wavelength could be 

generated in order to directly compare the effects of axial magnetic fields. We performed 

a series of three shots using the screw-seeded support structure (5.65 mm mean diameter, 

0.8 mm peak-to-valley amplitude, 1.27 mm axial wavelength; see Figure 3.5 in     

Chapter 3) using three values for the axial magnetic field (Bz = 0, +1.6 T, -1.6 T). These 

magnetic fields were chosen to compare the effects of seeding to the intrinsic instability 

modes, and to generate the neutral (m = 1), positive (m = +1) and negative (m = -1) 

modes in order to isolate the stabilizing effects of axial magnetic fields. It was found that 

the plasma seeding is much more important than the intrinsic growth rate when 

determining the dominant instability mode that arises. In addition, we observed that the 

negative mode, which must inherently bend the external magnetic field the most in order 

to develop, was the most stable of the three seeded modes. The positive mode, which 

includes an axial magnetic field but requires less field bending than the negative mode, 

initially had a smaller instability amplitude but higher growth rate when compared to the 

neutral mode (which has no axial field). A summary of the experimental shots is 

presented in Table 4.2. To directly compare the instability amplitude, it is important that 

the current traces be nearly equal. Figure 4.17 shows that the current traces agreed within 

1% at peak current and within 6% at 350 ns, indicating that the instability development 

may be directly compared.  
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Table 4.2. Summary of experimental data for non-imploding, kink-seeded liners. The 

growth rate and expansion velocity (Vexp) are measured using a linear fit. Uncertainties 

are estimated from standard error of fits. 

 

 

 

 
Figure 4.17. Current traces and shadowgraphy image timings for kink-seeded liners. 

Symbols mark start and stop time of imaging window. 

 

4.2.1 Shadowgraphy Images 

The twelve-frame shadowgraphy diagnostic enabled imaging of the kink-seeded 

liner plasmas over a 100 ns window. A series of images is shown in Figure 4.18, which 

shows the kink-seeded liners developed a helical instability structure at the seeded axial 

wavelength of λ = 1.27 mm, regardless of the magnetic field orientation. This indicates 

that the helical shape of the support structure was the dominant factor for determining the 

physical structure of instability, superseding the natural instability mode the plasma 

would develop in the absence of the seeded support (e.g. m = 0 when Bz = 0 T, m = +2 

when Bz = 1.1 T). By fixing the plasma structure and varying the axial magnetic field, the 
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neutral, positive, and negative modes could be investigated. The shadowgraphy images in 

Figure 4.18 show that the axial magnetic field orientation (and therefore the sign of the 

mode) had an effect on the amplitude of the instabilities; an axial field of 1.6 T in the –z 

direction did not significantly change the amplitude of the structures when compared to 

the unmagnetized case, whereas reversing the direction of the field had a significant 

effect, resulting in a peak instability amplitude of nearly half the value. The helix in 

Figure 4.18(c), being a negative azimuthal mode, invokes more magnetic field bending 

and therefore reduces growth in amplitude. In general, the bright and dark self-emission 

striations demonstrated a higher contrast when compared to the unseeded liners; the 

striations for the Bz = 0 and Bz = -1.6 T liners were particularly clear, which may be 

attributed to their larger instability amplitudes when compared to the Bz = +1.6 T liner.  

 

Figure 4.18. Combination shadowgraphy and self-emission (filtered at 532 nm) images 

for kink-seeded liners using axial magnetic field values of (a) Bz = 0 T, (b) -1.6 T, and (c) 

+1.6 T. The neutral (m = 1), positive (m = +1), and negative (m = -1) modes are seeded in 

(a), (b), and (c), respectively, where the orientation of the global magnetic field and 

plasma structure determine the sign of the mode. The dashed black lines indicate the 

approximate position of the dielectric support structure, and the solid white lines mark a 

sample dark striation, which connects bump-to-bump instability structures. The direction 

of the current density J and azimuthal magnetic field Bθ are indicated in (a). 
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4.2.2 Instability Experimental Analysis 

The algorithm described in Section 4.1.2 and Appendix A was used to track the 

plasma boundary. As previously discussed, the instability amplitude   was characterized 

by the standard deviation   in the radial position of the tracings using the amplitude 

relation for a perfect sine wave,   √  . The radius and instability amplitude were then 

determined as a function of time by taking the mean of the left and right values, with 

uncertainties estimated using the difference between the left and right measurements. 

These results are presented in Figure 4.19. 

The experimental data show that an axial magnetic field reduces overall 

instability growth early in time before peak current. For all cases, the amplitude tended to 

grow algebraically (as opposed to exponentially), which indicates that the observed 

growth had reached the nonlinear regime. The algebraic growth rate was quantified by 

fitting a linear regression to the linearly increasing regions of the amplitude in Figure 

4.19(a). The measured growth rates are summarized in Table 4.2, where uncertainties are 

estimated using the standard error of the linear regression. For the data in Figure 4.19(a), 

the Bz = 0 and Bz = -1.6 T kink-seeded liners had instability structures that grew to nearly 

equal amplitudes at 270 ns. Before this time, however, the Bz = -1.6 T liner showed a 

reduction in instability amplitude. This demonstrates the stabilizing effects of axial 

magnetic fields early in time, when the ratio of the axial to azimuthal magnetic field was 

larger. Later in time, as this ratio decreases, the stabilizing effects on the positive mode 

are reduced. The negative mode (Bz = +1.6 T) showed the smallest instability structures 

overall and for all times, along with a saturation in growth beginning at 260 ns.   
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Figure 4.19. Experimental data for (a) kink-seeded instability amplitude and (b) mean 

plasma radius. The linear fits to the amplitude and radius are summarized in Table 4.2. 

To best characterize the growth rate, only the linear regions of amplitude were fit. The 

neutral, positive, and negative modes are represented by the green, blue, and red data, 

respectively. 

 

Interestingly, it appears all modes reach a complete saturation, where the 

instability amplitude no longer grows (and even decreases), at approximately the same 

time (t = 260-270 ns). This is significant, because while the amplitude of the instability 

structures is different, the wavelength is the same, indicating that the ratio of amplitude to 

wavelength is different when comparing the neutral and positive modes to the negative 

mode. One would expect the negative mode to continue growing to the amplitude of the 

neutral and positive modes, but this was not the case. One possible scenario is that, in this 

highly non-linear stage, Alfven-like waves are being generated. In other words, the 

instability growth changes from               to               , where   and   are 

real-valued. This corresponds to an oscillation in amplitude (at a given spatial location) 

and a shift in phase in the z direction. The experimental images in Figure 4.18(c) support 

this notion, as the instability peaks are displaced from their original value while 

maintaining the same amplitude, with a net wave-like motion in the –z direction (this is 

particularly evident for the right side of the liner in Figure 4.18(c), though less apparent 

on the left side). Even the linear theory predicts Alfven waves for sufficiently strong axial 
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magnetic fields, therefore, another possibility is that the axial magnetic field has 

somehow been enhanced (e.g. from a low density plasma surrounding the plasma that has 

been compressed or ―pinched‖ about the liner during the early current rise). 

The results of these experiments highlight the importance of the seeding in the 

excited kink mode. When the helix spiraled in the direction of the global magnetic field 

spiral (m = +1, Figure 4.18(b)) the instability amplitude was reduced early in time but 

reached the same amplitude as the unmagnetized liner by 270 ns, indicating the 

importance of the axial field early in time.  Despite this, the growth rate was larger 

relative to the unmagnetized case, which may be understood by the following two effects: 

first, the axial magnetic field effects were reduced later in time as the azimuthal field 

peaked, and second, the growth rate was larger because the ratio of the amplitude to the 

wavelength was initially smaller than that of the unmagnetized case, indicating that the 

growth rate was perhaps closer to the linear perturbation regime (which is characterized 

by exponential growth in time). Inverting the direction of the axial magnetic field while 

maintaining the same direction of the seeded helix produced an m = -1 mode and 

demonstrated an overall mitigation of instability development. This dramatic difference is 

expected, as the helical structure was seeded with m = -1. This result demonstrates the 

importance of the sign of the helical mode; negative m modes are more stable because 

they require more energy to bend magnetic field lines. We emphasize that, despite the 

fact that the m = -1 mode is more stable, it still appears due to the seeding. 

4.2.3 Plasma Expansion 

During the imaging window, the plasma expanded throughout the discharge with 

an approximately constant velocity, as indicated by the plot of mean radius versus time, 

given in Figure 4.19(b). For each shot, the entire dataset was fit using a linear regression 

with uncertainties estimated by the standard error; these results are summarized in Table 

4.2 and indicate that the plasma-vacuum interface acceleration, and therefore MRT 

growth, was likely to be small. The constant-velocity expansion assumption may be 

limited when considering the Bz = -1.6 T seeded liner, which underwent the most 

complex radial expansion. During the majority of the imaging period, the mean radius 
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appeared to show a small outward acceleration. This scenario is equivalent to a heavy 

fluid (plasma) accelerating a light fluid (magnetic field), and corresponds to an MRT-

stable interface. This mildly stabilizing effect cannot overcome the intrinsic helical 

instability that resides in the non-imploding current carrying liner (which arose in Section 

4.1). 

For the seeded support structure, the initial spiral impression on the foil was 

negligible as the foil made minimal contact with the edges of the screw threads. During 

the discharge, the foil ablates and plasma fills the gaps, taking the shape of the screw 

pattern and therefore seeding the kink instability. In this scenario, it may be possible for 

regions of the foil to implode into the gaps of the support structure and develop MRT in 

the process. Any MRT growth would complicate the assertion that MRT is decoupled 

from the kink instability. However, the resulting MRT development is found to be much 

less important when compared to the deformation of the foil into the seeded structure. 

The maximum distance the mean foil interface can travel is s = 0.4 mm, equal to one half 

of the seeded support structure amplitude (the maximum distance a point on the foil can 

travel is 0.8 mm, but the mean interface of the resulting sinusoidal-like ripple would be 

displaced by 0.4 mm). For a constant acceleration, the MRT gain for a displacement s at 

the seeded wavelength (λ = 1.27 mm) is given by        √      , where        

is the instability wavenumber (see Appendix A in reference [WEI15]). For the foil to 

have obtained the maximum displacement, it must have completely deformed about the 

support structure, and therefore obtained a peak-to-valley amplitude of 0.8 mm in the 

process (equal to the support structure amplitude). For this amplitude to have been 

generated by MRT alone would require an initial perturbation of A0 = 0.2 mm, which is 

unreasonable for two reasons: (1) we do not see such a perturbation on the pre-shot 

images, which can clearly resolve features exceeding 0.1 mm, and, (2) when the 

experimental images were taken (t > 200 ns, see Figure 4.19) we do not see an instability 

amplitude of 0.8 mm, but rather of A1 ~ 0.2 mm. On the other hand, let us suppose that 

the amplitude A1 at t ~ 200 ns was generated by MRT alone. This requires an initial 
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perturbation of A0 = 0.05 mm (for G = 4); but again, in order for a displacement of s = 0.4 

mm have occurred, the foil must have taken the shape of the seeded support structure, 

and in the process gained an amplitude of 0.8 mm, which is large compared to A1. We 

therefore conclude that MRT plays little role during any initial implosion of the foil 

towards the support structure, and that the dominant instability development throughout 

the discharge is due to the kink instability.  

4.2.4 Application of Weis-Zhang-Lau Instability Theory 

In order to study the development of helical modes, we used the Weis-Zhang-Lau 

theory [WZL15] to calculate the instantaneous theoretical helical growth rates using 

parameters determined from the experiment (see Section 4.1.4). The result of these 

calculations are shown in Figure 4.20, where we compare the growth rate of the m = +1 

kink instability for axial fields of Bz = 0 T and Bz = 1.6 T using the seeded wavelength of 

1.27 mm. This plot shows that the m = -1 mode is completely stabilized for 70 ns, and 

after this point has a reduced growth rate for the remainder of the pulse. The m = +1 

mode is stabilized for a shorter period of time (50 ns), after which its growth quickly 

approaches the unmagnetized case. These calculations are consistent with the 

experimental observations that demonstrated that: (1) the m = -1 seeded liner had most 

stable structures, while the m = +1 seeded liner showed initially smaller structures that 

grew to amplitudes comparable to those in the m = 1 unmagnetized liner, and (2) the 

seeding is more important than the intrinsic instability for the appearance of the mode. 

Similar to the discussion in Section 4.1.4, we note that the theoretical growth rate 

values should not be directly compared to the experimental values. However, we may 

still use the Weis-Zhang-Lau theory to study the overall trends and qualitative behavior 

of the stabilizing effects of axial magnetic fields. We can do this for the neutral, positive, 

and negative modes while holding all other parameters constant. These curves show the 

importance of the time varying ratio of axial to azimuthal field; initially it is large but 

later in time it is drastically reduced. Despite this reduction, the negative mode still has 

the smallest growth rate, indicating that the plasma structure and its relationship to the 
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external magnetic field must be accounted for when determining the growth of a 

particular mode. 

Future work could investigate the development of seeded modes by looking 

earlier in time, in order to compare the ratios of exponential instability growth rates for 

the neutral, positive, and negative modes. These experiments could use 3-D printed 

support structures with higher order modes (such as m = 2, 3…) while keeping the 

wavelength constant. This would enable an investigation of the differences between the 

various instability modes and further corroborate the analytic theory.  

 

 

Figure 4.20. Weis-Zhang-Lau analytic instability growth rate calculations for seeded 

wavelength (λ = 1.27 mm) and neutral (m = 1), positive (m = +1), and negative (m = -1) 

azimuthal modes. Exponential growth rates are limited to linear perturbation theory and 

were calculated using known time-dependent experimental parameters (magnetic fields) 

and estimated parameters (liner thickness and density, estimated to be 500 μm and 4.5 

kg/m
3
). The growth rate is insensitive to thickness and scales with density as ~ρ

1/2
 so that 

a variation in these parameters will not change the relative amplitude of these curves for a 

given time. To exclude coupling effects to MRT, these calculations did not include liner 

acceleration. 
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CHAPTER 5 

EXPERIMENTAL RESULTS FOR IMPLODING LINERS 

 

In the previous chapter, the current-driven sausage and helical modes were 

investigated in the absence of the magneto Rayleigh-Taylor (MRT) instability by 

utilizing a non-imploding geometry. In this chapter, an imploding geometry is used to 

investigate the coupling of the MRT instability to the sausage and kink instabilities. This 

is accomplished by reducing the diameter of the central portion of the dielectric support 

structure, which enables the plasma to implode across the resulting gap. As plasma 

stagnates on the reduced-diameter portion of the rod, the acceleration vector switches 

direction and eventually plasma is exploded radially outward. Therefore, the plasma 

structures that develop may be investigated under a variety of dynamics: non-imploding 

phase (a ~ 0, v ~ 0), implosion (v < 0), stagnation (a > 0, v < 0), and explosion (v > 0), 

where a and v are the acceleration and velocity vectors of the plasma-vacuum interface in 

the radial direction. 

A particularly important question which is until now unexplored is whether, once a 

helical structure has developed during the non-imploding phase, it will persist during the 

vastly differing dynamics that occur during implosion, stagnation, and explosion stages. 

For the non-imploding liners of Chapter 4, it was found that both the seeded and 

unseeded helical structures persisted despite the orientation and magnitude of the applied 

axial magnetic field. In this chapter, we find that the helical structures generated early in 

time, when the liner acceleration and velocity are small (similar to the early-time non-

imploding dynamics of the liners in Chapter 4), do in fact persist during the implosion, 

stagnation, and explosion stages, irrespective of the dynamics of the global magnetic 

field. An important consequence is that the helical pitch angle follows the simple 

geometric equation  = m/kR for all stages of the discharge, where m, k, and R are the 
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azimuthal mode number, axial wavenumber, and radius of the helical instability. That is, 

the helical structure is a manifestation of discrete eigenmodes. 

 The observation that the helical modes persisted motivated the systematic 

investigation of the effects of the applied axial magnetic field on the azimuthal mode 

number, which may be found by re-arranging the above equation so that m = ∙ kR. With 

no axial magnetic field, the m = 0 mode dominated. By applying an axial field, two 

important effects were discovered: (1) two dominant modes may co-exist (e.g., the m = 0 

and m = 1 modes may develop and persist in different axial portions of the liner) and, (2) 

the azimuthal mode number progressively increases with the value of the applied axial 

magnetic field.  

This chapter is divided into three sections. Section 5.1 discusses the implosion 

dynamics of the liner-plasma, using the original (non-magnetized) experimental hardware 

discussed in Chapter 3. This set of experiments demonstrated it is possible to implode an 

initially solid liner in cylindrical geometry with a sub-megaampere current by using a 

dumbbell shaped support structure. In Section 5.2, the effects of axial magnetic fields 

were investigated by modifying the experimental hardware to enable the use of 

Helmholtz coils. For these experiments, the fast framing camera was employed (in 

addition to the laser backlighter) to observe self-emission features on the surface of the 

liner-plasma. This enabled the azimuthal mode number to be identified. In Section 5.3, 

the Weis-Zhang-Lau analytic theory for calculating instantaneous instability growth rates 

in a conducting liner-plasma is used to corroborate the results of Section 5.2. To 

accomplish this, the effects of the liner-plasma acceleration were included.  
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5.1 Implosion Dynamics 

In this section we analyze the dynamics of the cylindrical liner-plasmas in an 

imploding geometry.  Three shots were performed in order to demonstrate that it is 

possible to implode an initially solid liner using a sub-megaampere current pulse. The 

main diagnostic was the 532 nm laser beam, split temporally (20 ns) and spatially into 

four beam paths that intersected the load on the same horizontal plane at 1.3° + 0.2° 

intervals, as shown in Chapter 3 (Figure 3.6). This set of experiments was the first to be 

performed for the work of this thesis, and therefore did not utilize the fast-framing 

camera to obtain 12 images per shot. It did, however, include a shearing interferometer 

on one of the beam paths, which enabled simultaneous shadowgraphy and interferometry 

of the liner-plasma. 

The surface of the foil was characterized using an atomic force microscope 

(AFM) and showed ~300 nm tall bumps (comparable to the foil thickness) and pits 

extending over ~30 µm (Figure 5.1); these persisted even when applying tension to the 

foil and are therefore inherent to the liner surface. These features are a likely seed for 

early time instability growth (such as the electrothermal instability), which once 

developed, may seed the MRT and MHD modes [PET12, PET13, PET14].  

 

 

Figure 5.1. (a) AFM surface plot of 400 nm foil. (b) 2-D lineout highlighting changes in 

the surface topology.  

 

 The current traces for the three shots of this series are shown in Figure 5.2, which 

also compares the measured current to the PSpice circuit simulation for the LTD 
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generator [KIM09], shown in Figure 5.3. The traces are in overall agreement until nearly 

peak current, indicating that the constant value load-inductance estimate of 15 nH is valid 

until this time. After this time, the current traces fall below the predicted value, which 

may be understood by the inductance increase due to the imploding liner. In Steiner et al., 

[SYP16], this small difference was used to calculate the effective current carrying radius 

of an imploding cylindrical liner. For our analysis, however, the plot in Figure 5.2 is 

sufficient to demonstrate that the measured current traces are primarily governed by an 

RLC circuit, where the load resistance and any contact resistance due to the sliding 

support structure are minimal. 

Shadowgraphs from the three unmagnetized shots are depicted in Figure 5.4 and 

include the outline of the initial position of the liner (dashed line) determined using a pre-

shot image. The shadowgraphs are contrast enhanced and the plasma boundary is traced 

(solid line) using a boundary tracing algorithm, similar to that described in Chapter 4. In 

order to use the boundary tracing algorithm, dark areas due to beam non-uniformities, 

diffraction patterns, and interference fringes are manually voided as needed, and a local 

spatial averaging algorithm is applied to smooth out the plasma-vacuum boundary. This 

allows bulk plasma features to be traced while avoiding tracing spurious features such as 

interference fringes or beam non-uniformities. The interference fringes on the left side of 

Figure 5.4(d) are due to the shearing interferometer set up for this shot on this beam path.  
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Figure 5.2. LTD current traces and shadowgraph timings for shots 812, 817, and 816. 

The PSpice simulated current trace is also plotted (dashed line). 

 

 

 

 

 

 

Figure 5.3. PSpice model used to simulate LTD current pulse. The impedance of the 

cores is approximated by a constant resistance, R_cores. The high value resistor 

R_ForPspice is required to avoid floating voltages in the PSpice simulation.  
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Figure 5.4. Boundary-traced shadowgraphs (aspect ratio 1:1) for unmagnetized shots 812 

(a), 817 (b)-(e), and 816 (f-i), showing the four stages of plasma dynamics that occur 

during the discharge: expansion (a), implosion (b-d), stagnation (e) and (f), and re-

expansion (g-i). The direction of the current density J and azimuthal magnetic field Bθ 

are indicated in (a). 

 

The radius of the observable plasma is determined using the boundary tracing 

algorithm of Chapter 4 and is shown in Figure 5.5(a) for 13 shadowgraphs obtained from 

shots 812, 816, and 817. The average plasma radius Ravg is determined by averaging the 

radial extent of the plasma as a function of axial position over the region shown in Figure 

5.5(b). The maximum plasma radius is determined for the left and right sides of the 

plasma and averaged to obtain the characteristic maximum radius Rmax. A similar method 

is used to determine the characteristic minimum radius Rmin. These results are compared 

to a 0-D implosion model which assumes the mass of the liner is located at a single radius 
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and calculates the trajectory from the     force for a current pulse     , according to 

the equation 

 

 
 ̂

       
 ̈     

     

  
  

      

         
  (5.1) 

 

where  ̂ is the liner mass per unit length,   and  ̈ are the radius and second time-

derivative of the radius,   is the magnetic permeability, and      is the magnetic field 

generated by the current flowing in the liner. 

 

 

 

Figure 5.5. (a) Comparison of radii to 0-D implosion model using typical current trace. 

All radii are normalized to the initial liner radius. (b) Definition of radii obtained from 

shadowgraphs plotted in part (a), where Ravg is plasma radius averaged over liner length, 

and Rmax and Rmin are the average of the left and right maximum and minimum radii, 

respectively.  

 

The plasma dynamics may be interpreted in four stages: expansion (Figure 

5.4(a)), implosion (Figure 5.4(b-d)), stagnation (Figure 5.4(e-f)), and explosion (Figure 

5.4(g-i)). During the first stage, the solid-state aluminum is unstable to the striation form 

of the electrothermal instability, which causes regions of the liner to heat faster than the 

bulk material. These regions are the first to ablate and couple into longer wavelength 

structures that seed the subsequent MHD and MRT instabilities, an effect which has been 
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observed in both HYDRA simulations of liners and experiments conducted at Sandia 

National Laboratories [PET12, PET13]. The shadowgraph at 100 ns (Figure 5.4(a)) 

shows small structures of wavelength 0.3-0.6 mm, characteristic of early time instabilities 

which were also observed on the same 400 nm foils in planar geometry [ZIE12]. In the 

second stage (Figure 5.4(b-d)), the magnetic pressure becomes large enough to drive the 

implosion so that the liner-plasma accelerates inward and is unstable to MRT in addition 

to the m = 0 sausage instability. Longer wavelength structures develop in the range of 

0.5-1.5 mm, comparable to wavelengths observed in MRT experiments using 400 nm 

foils in planar geometry [ZIE12]. In the third stage (Figure 5.4(e-f)), the plasma has 

stagnated on the rod and is no longer accelerating inward. At this time the plasma is MRT 

stable but remains unstable to sausage modes. Longer, azimuthally correlated instability 

structures form with wavelengths ranging from 1.7-3.0 mm. At around 300 ns (Figure 

5.4(g)), the final explosion stage begins as the magnetic pressure drops due to the 

decreasing current. 

Comparison to the 0-D implosion model shows that the maximum and average 

plasma radii (Rmax and Ravg) implode slower than the model predicts, while the minimum 

plasma boundary (Rmin) shows better agreement. To interpret these results, one must keep 

in mind the limitations of the 532 nm laser backlighter, which is sensitive to mass trailing 

the implosion. For example, the shadowgraph in Figure 5.4(d) was taken around the 0-D 

predicted stagnation time (220 ns) and shows a striking resemblance to a fully imploded 

Al wire array reported in Lebedev et al. [LEB01], which shows necks where the plasma 

approaches the axis as well as plasma that remains at the initial radii.  The complete 

implosion dynamics may be better understood using x-ray radiography to fully probe the 

plasma. This capability is currently being developed by employing x-pinches on the 

return current path. 

While the outline of the initial positions of the liners in Figure 5.4(a-i) lacks up-

down symmetry and is not perfectly cylindrical, these latter irregularities are of a large 

enough spatial scale (millimeter-scale) that they are unimportant to the development of 

the small scale perturbations that were observed early in time (Figure 5.4(a)). Likewise, 
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the inherent foil overlap (~7% of the total liner circumference) provides a seed to the very 

long wavelength m = 1 mode, which is similarly unimportant to the short wavelength 

perturbations observed during the implosion process. These statements stem from the fact 

that there is only one variation for the entire circumference and that the corresponding 

wavenumber m/R = 1/R represents a very long wavelength perturbation. Nevertheless, all 

of these factors affect the azimuthal correlation for the longer wavelength structures, 

despite the overall cylindrical symmetry. For example, the bottom of the shadowgraphs in 

Figure 5.4(c-d) show a longer wavelength, azimuthally correlated structure whereas the 

top does not—this may be due to a random lack of correlation in the initial seed. As noted 

in Chapter 4 Section 4.1.4, the m = 0 and m = 1 modes have similar growth rates; 

therefore, if the initial seed favors the m = 1 mode, it will develop even in the absence of 

an axial magnetic field (see Figure 4.18).  

5.1.1 Interferometry Analysis 

The shearing interferometry data may be analyzed to measure the electron density 

as a function of radius. In order to accomplish this, the fractional fringe shift must first be 

determined by comparing the fringes formed in the presence of plasma to the fringes 

formed when no plasma is present. As discussed in Chapter 3, these two images are 

obtained by interfering the laser beam with a beam-split duplicate of itself during and 

post-shot (see Figure 3.9). The latter must be obtained post-shot (while the chamber is at 

vacuum pressure) and not pre-shot because the pre-shot liner blocks the portion of the 

laser beam incident upon this region. For the post-shot image, the liner and majority of 

the support structure have been completely disassembled, and are no longer in the beam 

path. 

The fractional fringe shift at the edge of an instability bump for shot 817 was 

calculated using IDEA (Interferometric Data Evaluation Algorithms) [HIP04]. The 

procedure for this analysis is given in Appendix C. By mapping the positions in the IDEA 

lineout to the radii in the interferogram, the electron density may be estimated as a 

function of position. These data are plotted in Figure 5.6(c), which shows electron 

densities as high as 10
19

/cm
3
 at the edge of the liner-plasma. This value is used to set a 
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lower-bound on the plasma density in the instability growth rate calculations in Section 

5.3. 

 

 

Figure 5.6. Shearing interferometry data for shot 817 (Bz = 0 T) using a simple air-wedge 

gap interferometer showing: (a) interferogram and, (b) shadowgraph. The boxed regions 

in (a) and (b) mark the same region of the plasma. (c) The electron density plotted as a 

function of radius for a sample lineout taken from the boxed region in (a). In (c), the 

boxed region is enlarged and the fringe shifts are superimposed on the interferogram. 
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5.2 Instability Mode Analysis 

In this section, we investigate the effects of applied axial magnetic fields on the 

instability structures that develop in imploding liners. The main diagnostic for this set of 

experiments was the 12-frame shadowgraphy and self-emission imaging system, which 

enabled measurements of the self-emission striations as the plasma underwent implosion, 

stagnation, and explosion stages of the discharge. The axial magnetic fields applied were 

relatively small compared to the self-generated azimuthal magnetic field of the liner-

plasma, which exceeded 40 T near peak current and liner compression. The axial 

magnetic field was systematically varied from Bz = 0.2-2.0 T in order to determine its 

effects on the azimuthal mode number. These details are outlined in Table 5.1. 

 

Table 5.1. Summary of experimental data for imploding liners. 

 

 

A series of shadowgraphy images for liners with Bz = 0, 0.2, and 0.8 T is shown in 

Figure 5.7. The addition of an axial magnetic field resulted in strikingly different 

instability structures. The Bz = 0 T implosion developed azimuthally correlated self-

emission structures that connected the instability bumps and necks on the left and right 

sides of the plasma (Figure 5.7(a)). Even a small axial magnetic field of Bz = 0.2 T 

destroyed this symmetry (Figure 5.7(b)). The larger field of Bz = 0.8 T appeared to have 
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the smallest amplitude structures, while the Bz = 0.2 T magnetized liner showed larger 

structures than the non-magnetized case. Intuitively, we would expect the progressively 

smaller instability structures with increasing applied axial magnetic field (see Equations 

(2.1) and (2.4)). This counterintuitive effect was due to the inner support structure 

diameter D, which varied for these shots (Bz = 0.8 T [s.1168] had the largest D = 1.5 mm, 

while Bz = 0.2 T [s.1188] had the smallest D = 1.2 mm), and due to different peak 

currents (see Table 5.1). Smaller inner support structure diameters allow the plasma to 

accelerate and develop instabilities over a longer distance, and larger peak currents result 

in a larger acceleration and higher MRT growth rate.  

 

 

Figure 5.7. Series of shadowgraphy/self-emission images showing for: (a) Bz = 0 T, (b) 

Bz = 0.2 T, and (c) Bz = 0.8 T. For (a) and (b), the top two frames are during implosion 

and the bottom frame is during explosion.  For (c), all frames show implosion. The 

direction of the current density J and azimuthal magnetic field Bθ are indicated in (a). The 

axial B field is in the +z direction.  
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5.2.1 Measurement Methodology 

For each image, the wavelength (λmean) was determined by averaging the distances 

λi between the centers of all adjacent bumps, and the mean radius (Rmean) was determined 

by averaging the radii Ri for all distinguishable instability bumps, where Ri is the distance 

from the center of an instability bump (both vertically and radially, identified manually) 

to the z-axis, as shown in Figure 5.8. The uncertainties in the final measurements are 

estimated using the standard deviation. Note that the mean values λmean and Rmean  are 

insensitive to the uncertainties in the individual measurements λi and Ri. In other words, 

the errors made in choosing an individual λi and Ri have little impact on the mean value. 

The mean plasma radius is plotted in Figure 5.9 for all shots, excluding shot 1158 (which 

had the largest support structure) in order to show the distinction between implosion 

(negative velocity) and explosion (defined here by positive velocity). Figure 5.9 also 

defines the stagnation phase, which begins when the acceleration changes sign and ends 

when explosion begins. Note that the implosion and explosion labels in Figure 5.9 were 

individually determined based on the plasma trajectory for the given shot. 

 

 

Figure 5.8. Methodology to determine plasma wavelength and radii. The final values are 

the mean of all wavelengths and radii, with uncertainties determined by the standard 

deviation.  

 

To measure the striation angles, a region of interest was chosen near the center of 

the plasma to minimize curvature effects. For each column of pixels across this region, a 

vertical lineout was taken, where maxima and minima corresponded to bright and dark 

self-emission striations. The vertical position of each peak and valley was identified 
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horizontally across the region of interest using the tracking algorithm described in 

Chapter 4, Section 4.1.2. The self-emission peak and valley position data points were 

then fit using a linear regression, which gives the 2-D striation angle (note the 2-D 

striation is the planar projection of the 3-D helical structure). The 3-D striation angle was 

multiplied by 2/π to account for cylindrical geometry (see Equation (2.6)) [ATO16]. 

Pixels in the images were locally averaged over 10 to 20 pixels to facilitate tracking of 

bulk features (the value of each pixel was taken as the average of all pixel-values within a 

10-20 pixel radius). The images in Figure 5.10(a) show the results of this procedure. The 

two main sources of uncertainty in each measurement were uncertainty in the liner z-axis 

(estimated at +1 degree, not included in Figure 5.12(a) below) and uncertainty in fitting 

the linear regression, which was small. A third source of uncertainty was the standard 

error for the distribution of the measured striation angles.  

 

 

 

Figure 5.9. Measured current (s.1172), mean plasma radius, and polynomial fits to radius 

and acceleration. The mean radius is the average of the distances between all instability 

bump centers and the z-axis, and characterizes the plasma-vacuum interface. 
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5.2.2 Results and Discussion 

As shown in Figure 5.10, negatively-angled striations formed for all axial 

magnetic fields tested from Bz = 0.2 to 2.0 T. According to the definitions in Chapter 2, 

these correspond to positive m modes, e.g. the striations point in the same general 

direction as the global magnetic field outside of the plasma structure. In Figure 5.11, the 

same striation features are tracked during the implosion stage (Figure 5.11(a)) and during 

the explosion stage (Figure 5.11(b)). The striation angles of these features were found to 

increase during the implosion stage, when the plasma radius was decreasing, and to 

decrease during the explosion stage, when the plasma radius was increasing. This 

observation supported the hypothesis that these structures were each due to a discrete 

helical mode that persisted throughout the discharge. 

 

 

 

Figure 5.10. Self-emission images at 532 nm and measured striation lines. A tracking 

algorithm, together with a linear fit, are used to identify bright and dark self-emission 

peaks and valleys, denoted by the black and white lines, respectively. The direction of the 

current density J and azimuthal magnetic field Bθ are indicated in (a). The axial B field is 

in the +z direction. 
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Figure 5.11. Self-emission striations for: (a) implosion and, (b) explosion data. The same 

bright and dark striations are tracked from image-to-image, and show an increase in 

striation angle during the implosion stage and decrease in striation angle during the 

explosion stage. The direction of the current density J and azimuthal magnetic field Bθ 

are indicated in (a). The axial B field is in the +z direction. 

 

To further test this hypothesis, we plotted the average measured striation angle 

against the helical pitch angle m/kR for axial fields of Bz = 1.1, 1.6, and 2.0 T (shots 1172, 

1169, and 1158, see Table 5.1) assuming a single helical structure of mode m = 2 that is 

allowed to vary in radius and wavelength (Figure 5.12(a)). Setting m = 2 was valid 

because we analyzed only the earliest and subsequent image frames that had two clearly 

established intertwined helices (see Figure 5.13, which follows the procedure outlined in 

Chapter 4, Section 4.1.2). Once the azimuthal mode number was fixed, it was assumed to 

remain constant throughout the analysis. Figure 5.12(a) shows that the mean striation 

angle was equal to m/kR within uncertainty during the evolution of the same shot and for 

all shots, including both implosion and explosion data. Note that the striation angle 

increased with decreasing radius during implosion, and decreased with increasing radius 

during explosion, as shown in Figure 5.11.  However, the striation angle could only be 

correctly predicted when taking into account variation in axial wavelength (which tended 

to increase in time) and by assigning an azimuthal mode of m = 2, which is consistent 

with the physical interpretation of two intertwined helices (see Figure 5.13). 
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The evolution of the striations could not be explained by the two intuitive notions 

that: (a) helical features are frozen into magnetic field lines, and (b) helical structures 

dynamically evolve to maximize MRT growth, i.e., to minimize magnetic field line 

bending. Both notions lead to the condition      , i.e., the helix striation angle is 

given by B = Bz / B  just outside the plasma at the time of measurement. The data 

showed no such trend, with the maximum angle predicted by Bz / B in Figure 5.12(a) 

being less than 4 degrees while the measured angles ranged from 4-14 degrees. Such a 

deviation is even more evident in Awe et al. [AWE13, AWE14], where the angle 

predicted by Bz / B  is effectively zero, but the observed helix angle is 16-26 degrees. It 

is important to note that these calculations assume that: (1) the azimuthal magnetic field 

just outside the shadowgraphy boundary is given by a current-carrying column of radius 

Rmean, with no current losses within a smaller radius of the B-dot location in the 

transmission line (e.g., the measured B-dot current is equal to the current in the liner), 

and (2) the axial magnetic field is unchanged from its original applied value. Both of 

these assumptions could be tested experimentally, using diagnostics such as micro B-

dots, Zeeman splitting, or Faraday rotation.  

The fact that the observed helical structures agreed with the predicted pitch angle 

h = m/kR, despite a dynamically changing radius and axial wavenumber, indicated that 

there was a dominant helical mode that persisted throughout the discharge. This 

motivated our next systematic study of the dependency of azimuthal mode number on the 

axial magnetic field. For the unseeded liners used in this experiment, various azimuthal 

modes (m = 0, +1, +2) may co-exist and even merge as the system evolves. For these 

reasons, we may define a characteristic azimuthal mode number 〈m〉 as the average of all 

modes in the plasma for a given shot (and therefore Bz), determined using the following 

procedure. First, the mean of all modes observed in a single image is found by 

normalizing the mean striation angle by 1/kR. These are the black data in Figure 5.12(b). 

For a given shot, the mean mode per image is averaged for all images of that shot to 

obtain 〈m〉: these are the red data in Figure 5.12(b). These values are summarized in 

Table 5.1 as a function of the external axial magnetic field, and are interpreted as follows.  
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Figure 5.12. (a) Plot of measured striation angle against the angle predicted assuming a 

discrete helical mode with azimuthal mode m = 2 (h = m/kR, black), and with the 

predicted angle from the ratio of magnetic fields at time of measurement (B = Bz/Bθ, 

red). The dashed line shows a perfect fit. (b) The azimuthal mode number, determined by 

dividing the measured striation angle by 1/kR, plotted against the initial axial magnetic 

field. In (b), the tips of each vertical error bar represent the maximum and minimum 

values in the corresponding shot.  

 

 
Figure 5.13. Identification of the m = +2 structure for the data in Figure 5.12(a), 

determined by comparing the projection of the m = +2 mode (blue and white lines) to the 

self-emission minima (black lines). Ovals indicate the location of instability bumps.  
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 First, Figure 5.12(b) shows that the standard deviation in the data about 〈m〉 is 

small, meaning that: (1) the characteristic mode persisted throughout the discharge, 

despite the dynamically changing environment, and (2) there is a dominant m mode, or at 

most two co-existing m modes. Second, even a small axial magnetic field was able to 

excite helical modes that are not apparent in the unmagnetized data. The smallest value of 

Bz = 0.2 T was on the threshold for the appearance of helical modes, with both m = 0 and 

m = +1 modes co-existing in different axial regions of the liner (Figure 5.14(b) 

demonstrates how this co-existence is possible; however, the exact mode identification 

would require the location of the dark striations on the back side of the plasma). Our data 

strongly suggest that gradually increasing the axial magnetic field from zero to 0.5 T 

would simply change the relative importance between the m = 0 and m = +1 modes. 

When the axial magnetic field was increased to Bz = 0.5 and 0.8 T, only the m = +1 mode 

was dominant (Figure 5.12(b)). Further increasing the axial field to Bz = 1.1, 1.6, and 2.0 

T, generated an m = +2 mode that overwhelmed the m = +1 mode. Note the two 

intertwined helices for the m = +2 mode, as shown in Figure 5.13, which was constructed 

after careful consideration. Finally, physical interpretations of the measured characteristic 

modes for various magnetic fields are shown in Figure 5.14.  

 

Figure 5.14. Shadowgraph images overlaid with the projection of the characteristic 

modes from Figure 5.12(b). Dark self-emission bands are used to connect the instability 

bumps on the front (solid lines). Dashed lines connect instability bumps on the back side, 

and are determined by assuming a similar angle is conserved from the front side. The 

white lines indicate azimuthally symmetric modes and the black lines indicate helically 

oriented modes.  
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5.2.3 Application of Weis-Zhang-Lau Instability Theory 

To explore the dominance and persistence of helical modes, we once more used 

the Weis-Zhang-Lau theory [WZL15] to study the instantaneous sausage-MRT and 

helical-MRT growth rates via an ideal MHD, sharp boundary model. The instantaneous 

radius (and therefore acceleration) was determined by fitting a sixth order polynomial to 

the mean plasma radii in Figure 5.9 starting from 140 ns (160 ns for the start of 

acceleration). Prior to this start time, the bulk liner motion was small, so that the 

acceleration was assumed to be zero. 

Figure 5.15 shows theoretical growth rates for Bz = 0, 0.2 and 2.0 T using a time-

dependent axial wavelength model that approximately matches experimental parameters, 

λmm=0.2*(cosh[0.01*tns]). This model captures the wavelength of the structures that first 

appear at ~80 ns (~0.3 mm) and at ~200 ns (~0.8 mm). The hyperbolic cosine 

dependence was chosen because of the slow variation early in time (<150 ns) and rapid 

increase later in time as structures merge and wavelengths begin to double.  

Interestingly, for Bz = 0 and 0.2 T, the m = 0 and m = 1 modes have nearly 

identical growth rates (the small differences are not resolvable in Figure 5.15, which 

shows the curves as being superimposed), despite the experiment showing azimuthal 

symmetry for Bz = 0 T and a departure from symmetry for Bz = 0.2 T. Increasing the field 

to Bz = 2.0 T showed a dramatic effect on the shape of these growth predictions: the        

m = 0, 1, and 2 modes are completely stabilized for nearly 100 ns. Among these modes, 

the m = 2 mode becomes the first to destabilize, followed by the m = 1 mode, and finally 

the m = 0 mode. This means that there is a window in time when the higher m modes are 

unstable and can freely grow while smaller m modes cannot (see also Figure 4.15(b,d)). 

This window exists for any nonzero axial field (with stronger effects for increasing Bz); 

during this time, the general helical shape of the higher m modes may be locked-in 

(perhaps even modes with m   2). However, if smaller axial wavelength structures 

merge into larger axial wavelength structures, a common occurrence in RT or MRT, a 

high m mode may convert into a lower m mode. This mechanism was discussed in 

Chapter 4, Section 4.1.2 for helical mode merging in non-imploding liners. Figure 5.15 
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also shows the significant coupling of the classical sausage and helical modes (when 

there is no radial acceleration) to MRT (when there is radial acceleration [WZL15]). 

First, there is a dramatic increase in growth rate, and second, there is a reduction in the 

disparity between m = 0, 1, and 2 modes after t = 160 ns. This indicates that whatever 

structure has been seeded before this point will persist during the implosion phase; a 

conclusion consistent with our experimental results and those of Awe et al. [AWE13, 

AWE14]. 

 

 

Figure 5.15. Growth rate calculations using Weis-Zhang-Lau theory for time-dependent 

experimental parameters (magnetic fields and radius). Estimated parameters were ablated 

liner-plasma thickness (500 μm) and mass density (4.5 kg/m
3
). The wavelength varies 

according to λmm=0.2∙(cosh[0.01∙tns]). Liner acceleration begins at 160 ns. 
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5.3 Summary 

 In this Chapter we have demonstrated that it is possible to implode an initially 

solid cylindrical liner with sub-megaampere current pulses using a simple dumbbell-

shaped support structure. This enabled the plasma to implode over a distance of 1-2 mm, 

and permitted the coupling of MRT to the MHD modes. By tracking the self-emission 

structures throughout the implosion, stagnation, and subsequent explosion, we found that: 

(1) there is only 1, or at most 2, dominant azimuthal modes for each seeded axial 

magnetic field, (2) there is no sharp threshold in the axial magnetic field for the 

appearance of the helical modes, and (3) higher applied axial magnetic fields favor the 

development of higher order azimuthal (m) modes. The seeding of these azimuthal modes 

(including m = 0) by mechanisms such as electrothermal instability remains an 

outstanding issue. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

This thesis presented an experimental investigation of helical features on 

magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at the 

University of Michigan. Three types of cylindrical liner loads were designed to 

investigate different aspects of helical instabilities, including: (1) pure MHD modes 

(defined as devoid of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) 

using a non-imploding geometry, (2) pure kink modes using a non-imploding, kink-

seeded geometry, and (3) MRT-MHD coupled modes in an unseeded, imploding 

geometry. For each configuration, we applied relatively small axial magnetic fields of    

Bz = 0.2 - 2.0 T (compared to peak azimuthal fields of 30 - 40 T). The resulting liner-

plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible 

self-emission on a fast framing camera, and the azimuthal mode number was carefully 

identified with a tracking algorithm of self-emission minima. 

The development of sausage and helical instabilities was first investigated in non-

imploding liners in order to minimize the effects of radial acceleration, and therefore 

minimize the effects of the magneto Rayleigh-Taylor instability. Both unseeded and kink-

seeded liners were investigated in this non-imploding geometry. For the unseeded liners, 

when no axial magnetic field was applied, an m = 0 sausage instability developed. When 

a relatively small, pre-imposed axial field of 1.1 T was applied (compared to the peak 

azimuthal field of ~30 T), a smaller amplitude, m = +2 helical mode developed, 

consisting of two intertwined helical structures spiraling in the same sense of rotation as 

the global magnetic field. Despite the smaller amplitude, the experimental growth rates 

were surprisingly similar, with the unmagnetized liners exhibiting a slightly larger growth 

rate. These results were corroborated with analytic theory, which showed for an applied 
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axial magnetic field there is a window in time when helical modes are unstable but the 

sausage mode is completely stabilized, indicating that helical modes should develop.  

Using a kink-seeded support structure for the non-imploding geometry, we 

explored the importance of the intrinsic modes relative to the seeded modes. We found 

that the plasma seeding dominates the natural instability modes of the plasma. Despite the 

magnitude and orientation of the applied axial magnetic field (Bz = -1.6 T, 0 T, +1.6 T), 

the same seeded plasma structure arose and not the intrinsic modes of the corresponding 

unseeded configuration. This enabled an investigation of the stability of the neutral, 

positive, and negative helical modes, where the sign of the mode is defined in Chapter 2 

and determined by the sense of rotation of the plasma helix when compared to the global 

magnetic field. It was found that the applied axial field impacted the overall stability, 

with the negative m mode invoking the largest magnetic tension and thus being the more 

stable mode. The positive m mode was initially more stable than the neutral mode due to 

the addition of the axial magnetic field, but later in time developed a comparable 

instability amplitude.  

An experimental platform was next developed to investigate liner implosions on 

the University of Michigan Linear Transformer Driver facility, enabling new physics to 

be explored where the liner-plasma implodes, stagnates, and subsequently explodes. The 

radial acceleration during the implosion stage enabled the magneto Rayleigh-Taylor 

instability to couple to the sausage and kink instabilities. The important question of 

whether the instability structures were due to a discrete helical mode or were tied to the 

global magnetic field was addressed by measuring the self-emission striation angles 

during the implosion, stagnation, and explosion stages of the discharge. Our experiments 

showed that the helical structures are manifestations of discrete eigenmodes, and that the 

pitch angle,  of the helix follows the simple geometric equation   = m/kR, from 

implosion to explosion, where m, k, and R are the azimuthal mode number, axial 

wavenumber, and radius of the helical instability. Thus, the pitch angle increases 

(decreases) during implosion (explosion) as R becomes smaller (larger). We found that 

one (or at most two) discrete helical mode(s) developed for magnetized liners, with no 
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apparent threshold on the applied axial magnetic field for the appearance of helical 

modes. Gradually increasing the applied axial magnetic field from zero changes the 

relative weight between the m = 0 and m = 1 modes. Once the discrete helical modes 

were identified, the azimuthal mode number m = ∙ kR was investigated by 

systematically varying the applied axial magnetic field. The results of this investigation 

demonstrated that higher applied axial magnetic fields yield higher order azimuthal mode 

numbers.  

While important questions were answered concerning the development and 

persistence of helical instability modes, much work remains to fully understand their 

nature. Future investigations could include the effects of higher applied axial magnetic 

fields, driving the Helmholtz coils up to the maximum value for our capacitor bank,     

5.5 T. Higher order modes may develop, which could be identified using the 

methodology presented in Chapter 4 and 5. Another important question is whether the 

axial magnetic field is delaying the formation of instability bumps. The analytic theory 

predicts that axial magnetic fields should delay the onset of helical modes, and that larger 

values of applied axial fields would additionally delay this onset time.  

One of the reasons that pre-imposing the axial magnetic field enabled interesting 

physics was because the ratio of Bz/Bθ was initially large. New physics could be explored 

using helical return current paths so that the ratio Bz/Bθ is constant (until the liner 

implodes, which would cause Bθ to increase). This can potentially result in a larger axial 

magnetic field than the fields available using the Helmholtz coils, with the caveat that the 

value of the axial magnetic field early in time would be small. This type of system can be 

investigated for the non-imploding liners, kink-seeded liners, and imploding liners. The 

latter system is known as a dynamic screw pinch and its stability was analytically 

investigated by Schmit et al. [SCH16]. For this system, the external magnetic field lines 

rotate in time as the liner implodes, so that the magnetic field lines provide a stabilizing 

magnetic tension throughout the discharge. The results of these experiments could be 

directly compared to data of this thesis. Note that the screw pinch could provide an initial 
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seed to a helical instability by perturbing the magnetic field on the surface of the liner due 

to the helical return current path. 

In Chapter 4, the concept of helical mode merging was introduced. This could be 

further investigated by seeding an |m| = 2 mode using a 3-D printed support structure, and 

then observing the saturation and merging to the larger wavelength |m| = 1 mode. This 

would enable an investigation of the cascade process that might have occurred in MagLIF 

liners, where an m = +6 helix observed by Awe et al. [AWE13, AWE14] may cascade 

into an m = +1 or +2 helix observed by Gomez et al. [GOM15] in the fuel during 

stagnation. 

New diagnostics could be implemented. First, a front/back self-emission imaging 

system has already been developed in order to observe the full surface of the liner. This 

diagnostic has not yet been implemented for magnetized liner implosions, and would 

enable instability bumps to be connected completely around the liner using self-emission 

features. Second, direct measurements of the axial magnetic field near the liner are 

essential. This would enable an investigation of possible flux compression of the axial 

magnetic field. These measurements could be accomplished using diagnostics such as 

Faraday rotation, optical Zeeman splitting, and/or micro B-dots. Third, the imaging 

systems could be improved by implementing a 12-frame interferometry/shadowgraphy 

system, incorporating the air-wedge system described in Chapter 3, so that density 

measurements could be obtained throughout the entire discharge. Fourth, x-ray 

backlighting could be accomplished by using x-pinches on the return current path; this 

would enable probing of the dense liner-plasma and perhaps enable the observation of 

density perturbations due to helical instabilities, such as those observed by Awe et al. 

[AWE13, AWE14]. Fifth, a 4-frame XUV camera is currently being implemented on the 

MAIZE LTD; this system could perhaps enhance the visibility of self-emission striations. 

Finally, the 355 nm ultraviolet beam of the Nd:YAG laser could be implemented to probe 

structures deeper into the plasma.  
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APPENDIX A 

APPLIED AXIAL MAGNETIC FIELD SYSTEM 

 

A.1  Operating Procedure 

The Helmholtz coils are driven by the same capacitor bank and triggering system 

used to drive the applied axial magnetic field for the Michigan Electron Long Beam 

Accelerator (MELBA). The two differences are: (1) the BNC box in the LTD control 

room is used to trigger the ignitron, and (2) the output of the ignitron is connected to the 

coil cables (see Figure A.1). To operate the coils, the MELBA interlocks must be set, and 

an operator must initiate the capacitor bank charging system in the MELBA control 

room. Simultaneously, an operator initiates the LTD triggering sequence. This is typically 

done as follows: 

 

Preshot Procedure 

1. The LTD oscilloscopes are set using Labview, but the LTD charge sequence is 

not initiated 

2. The coil capacitor bank is set to 0.2 kV in the MELBA control room and charging 

is initiated. 

3. Once charge is complete, a message is passed (through an instant messaging 

program) from the operator in the MELBA control room to the operator in the 

LTD control room.  

4. The operator in the LTD control room triggers the LTD sequence, which triggers 

only the ignitron and not the LTD switches. 

5. The oscilloscope B-dot trace is observed to determine whether the preshot was 

successful. 
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Shot Procedure 

1. The LTD oscilloscopes are set using Labview. The LTD operator waits until a 

message from the MELBA operator is sent before charging the LTD capacitors. 

2. The coil capacitor bank is set to the desired charging voltage (0.2 – 5 kV = 0.2 – 

5.5 T) in the MELBA control room and charging is initiated. 

3. Once charge is complete, a message is passed (through an instant messaging 

program) from the operator in the MELBA control room to the operator in the 

LTD control room.  

4. The operator in the LTD control room initiates the LTD charge sequence. 

5. The operator in the LTD control room triggers both the ignitron and the LTD 

switches. 

 

A.2  Coil Configuration 

 The coil configuration is shown in Figure A.1. Figure A.1(a) shows the ignitron-

to-coil connection. The 30 Ohm resistor was used for initial tests to reduce the strain on 

the coils and has since been shorted using a high voltage cable. The cable coils consist of 

two coaxial cables connected in parallel in order to reduce the coil resistance. For the 

initial coil tests, the current was measured using a Pearson coil on the return current braid 

that is connected to ground. The Pearson coil was removed for the higher voltage shots 

because its core saturated during the current rise, rendering the diagnostic unusable. In 

Figure A.1(b), the vacuum feedthrough system is shown, where the two coaxial cables A 

and B are the same cables in Figure A.1(a). The feedthrough is formed using quick-

connect couplings on the LTD flange. Inside the chamber, cables A and B connect to the 

parallel-to-series hermetically sealed cable adaptor, which wires the parallel cables A and 

B to the series coaxial cables 1 and 2, shown in Figure A.1(c). A diagram of the coil 

setup is shown in Figure A.2, which shows a simplified parallel-to-series connection for 

the hermetically sealed adaptor. The coils are wired in series to ensure the same current is 

driven through the two coils.  
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 The coil magnetic field was measured using a ~5 cm diameter B-dot. The B-dot 

was calibrated using a fast hall-effect probe. The calibration setup is shown in Figure 

A.3. The curves in Figure A.4 show the magnetic field signal from the calibrated, 

integrated B-dot signal along with the signal from the hall-effect probe. The B-dot signal 

is shown in red.  

 

 

Figure A.1. (a) Coil cable configuration in capacitor bank room. (b) Vacuum 

feedthrough system for coil cables. (c) Coil system in chamber. Coaxial cables A and B 

are wired in parallel and are the same cables for all figures. Coaxial cables 1 and 2 are 

wired in series. 
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Figure A.2. Schematic for applied axial magnetic field coil system. The capacitor bank is 

charged from 0.2-5 kV, and is switched to the parallel coaxial cables using an ignitron. 

Inside the vacuum chamber, the vacuum-potted adaptor wires the parallel cables to two 

series cables, so that the coils are wound in series. 

 

 

 

 

 

 

Figure A.3. (a) Coil testing configuration using fast hall-effect probe. (b) B-dot 

calibration configuration. 
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Figure A.4. Plot of the magnetic field measured using a fast hall-effect probe (blue) and 

the calibrated, integrated B-dot signal (black). The raw B-dot signal is shown in red. 

 

A.3  Helmholtz Coil PSpice Circuit Model 

 The coil circuit model, shown in Figure A.5, was devised for our pulsed power 

bank and coil specifications from Rovang et al. [ROV14]. The specifications are slightly 

different than the coils we received from Sandia; however, they are sufficiently close to 

generate a suitable current trace to investigate the magnetic field diffusion in stainless 

and aluminum (the diffusion simulation results are presented in Chapter 3). The coil 

current is shown in Figure A.6. This is the current through a single winding (i.e. a single 

turn of the coil), which is used to drive the current through the two 80-turn coils in the 

Maxwell simulation presented in Chapter 3, Section 3.3.2.  
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Figure A.5. PSpice circuit diagram for calculating current through Helmholtz Coil. 

Circuit parameters are obtained from Rovang et al. [ROV14]. 

 

 

 

 

 

 
 
Figure A.6. Simulated PSpice current through a single coil turn. This current was used in 

ANSYS Maxwell to drive the two 80-turn Helmholtz coils in order to investigate the 

axial magnetic field diffusion. 
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APPENDIX B 

PLASMA BOUNDARY TRACING ALGORITHMS 

 

The measurements for instability amplitude and mean plasma radius in Chapter 4 

and Chapter 5 were obtained by tracing the vacuum-plasma boundary. While this 

boundary may be somewhat subjective, a unique, consistent methodology was 

implemented for both diagnostics (shadowgraphy/self-emission and self-emission only). 

For each diagnostic, an algorithm was implemented in MatLab. An overview of these 

algorithms is presented below. 

 

B.1 Shadowgraphy & Self-Emission Images 

1) The images are rotated so that the liner is in the vertical direction using the 

preshot image as a guide. 

2) The shadowgraphy boundary is manually traced in MS Paint using a thick white 

line so that edge of white line is adjacent to the outer black region (while a more 

rigorous method could be used to measure this boundary, the clarity of the black 

line indicates that these tracings are not unduly subjective). 

3) The boundary is read using a MatLab script that finds position of the white line. 

This boundary is taken as the inside pixel of the white line (which corresponds to 

the outside of the dark shadowgraphy region). 

The result of this procedure is shown in Figure 4.3, where the image in (a) shows the 

manually traced white line and the image in (b) shows the computer-read position in red.  
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B.2 Self-Emission Only 

1) The images are rotated so that the liner is in the vertical direction using the 

preshot image (with laser backlighter) as a guide. 

2) A blurring algorithm is applied in MatLab by averaging pixel values over ~5 

pixels. This is done to smooth out irregularities in brightness.  

3) A brightness boundary threshold is determined for each image 

a. For an image of size (n, m), m vertical lineouts are taken. The mean of 

these lineouts (i.e. the mean of all pixel values in a vertical line) results in 

an array called jmean of length m, which is a function of the horizontal 

position. 

b. A smoothing algorithm is applied over 100 pixels to jmean. The value of 

100 was chosen to smooth out large-scale irregularities, but not so much to 

completely mix the black background and white/gray self-emission 

regions. The result is an array called jsmooth of length m. 

c. The brightness threshold is then set to 40% of maximum brightness value 

of jsmooth. This characterizes the maximum brightness of the overall self-

emission image by excluding small and large scale irregularities. 

4) For each vertical position (n values), the algorithm starts searching for the 

left/right boundary from the center of the image, moving outward and using the 

blurred image from Step 2. Once the pixel value drops below brightness level 

from Step 3(c), this horizontal position becomes left/right plasma boundary. The 

result is two arrays of n values (corresponding to left and right boundaries) which 

give the horizontal pixel position that corresponds to the 40% threshold.  

The result of this procedure is shown in Figure 4.3(c). 
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APPENDIX C 

INTEFEROMETRY DATA ANALYSIS 

 

In this section we analyze the interferometry data of Chapter 5, Figure 5.6, 

reproduced below. Note that not all portions of the interferogram are suitable for analysis. 

Regions of the beam that are refracted outside of the system, absorbed, or attenuated, 

leave behind a ―shadow,‖ which may be seen in Figure 5.6(b). These regions tend to be at 

a smaller radius of the plasma, where the density and density gradients are sufficiently 

large to attenuate or refract laser light out of the imaging system. The regions which are 

useful for interferometry are located near the edges of the liner-plasma, where fringe 

shifts as high as 3.1 may be observed. A window was chosen (see the white box in Figure 

5.6(a)) at the edge of one of the MRT-sausage bubbles to perform the following analysis.  

  Details on the method outlined here may be found in the IDEA user manual 

[HIP04]; they are summarized here. To perform the analysis, the following procedures 

must be applied separately to the reference (post-shot) and plasma (shot) images before 

performing the final fringe-shift count. First, unusable portions of the images must be 

masked; these portions are excluded in the analysis. Second, zero-padding must be added, 

which expands the image size to a power of two (this is required for performing the 2-D 

FFT). Then, the image is Fourier transformed using the 2-D FFT algorithm. This data 

must be filtered by selecting a window which contains the frequency bandwidth of the 

fringes. The image is then back-transformed using the Filtered Back-FFT to 2D Mod 2Pi 

algorithm to obtain a filtered interferogram. The frequency space filtering and back-

transforming are likely the most cumbersome steps, as they may require multiple 

attempts at masking the appropriate windows in FFT space in order to generate an 

acceptable filtered interferogram. The filtered interferogram may be compared to the 

original in order to determine whether the filtering was sufficient or excessive. The 2-D 
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phase-shift distribution is then obtained using the 2DScan Method followed by Unwrap 

with Step Function. Once the phase-shift distributions are obtained for the reference and 

plasma images, the final 2-D fringe shift is obtained by subtracting the reference phase-

shift from the plasma phase-shift using the Subtract Image/2D-Data function. The result 

of this procedure is shown in the insert in Figure 5.6(c), which shows fringe shifts with 

values up to 3.1.  

 A lineout of this data may be obtained and exported from IDEA. This data 

contains the path integral of the index of refraction of light of the light ray that has 

travelled through the plasma bubble [VES79],  

 

   ∫    , (C.1)  

 

where   is the optical pathlength of the ray in the plasma, n is the index of refraction, and 

ds is the infinitesimal displacement along the light ray. To continue the analysis, the 

assumption must be made that the rays of light that travel through the plasma and are 

recorded by the imaging system are refractionless. While this may seem counterintuitive 

(we have previously discussed rays of light that are fully refracted out of the optical 

system due to gradients in the plasma), this refractionless limit makes the mathematics of 

the inversion analysis tractable. To reconcile this, let us separate the plasma into both 

refracted and refractionless regions, as shown in Figure C.1. We may then describe the 

optical pathlength in the refractionless region using the equation 

 

        ∫           , (C.2)  
 

where the ray of light is assumed to travel in the z-axis only, and the plasma column axis 

is in the y-direction, (see Figure C.1). Subtracting the reference pathlength from the  

plasma pathlength (this was done in IDEA using the Subtract Image function) gives the 

optical pathlength difference 

 

         ∫                  , (C.3) 
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where n0 is the index of refraction of vacuum (equal to unity), N is the fringe shift, and   

is the wavelength of the laser light. This equation describes the position of the bright 

fringes in the interferogram, and must be inverted to obtain         , which in-turn gives 

information about the electron density in the plasma. To invert this equation, we must 

assume that the plasma is radially symmetric so that n = n(r), and that the index of 

refraction in the plasma image is unity at large radii. Equation (C.3) may then be 

expressed as 

 

         ∫
        

           

 

 
, (C.4) 

 

where the factor of two arises from the conversion to polar coordinates. This equation 

may be Abel inverted to obtain the function         , 

 

    
 

 
∫

         

          

 

 
. (C.5) 

 

Using the i = (1, L) discrete points from the fringe shift N data obtained from the IDEA 

lineout, this the function f may be expressed as 

 

       
  

    
 ∑          

[         ]
   

 (     )
   

    

   
   ,  (C.6) 

 

where    is the physical distance between the L discrete points on the IDEA lineout data 

(typically equal to the size between pixels on the interferogram). Each fi corresponds to 

the index of refraction at a given radius, which may be used to estimate the electron 

density at that radius using the index of refraction of plasma, 

 

                     ⁄ , (C.7) 

 

where   is expressed in centimeters (λ = 5.32e-5 cm). By mapping the positions in the 

IDEA lineout to the radii in the interferogram, the electron density may be estimated as a 

function of position. This is shown in Figure 5.6(c), which shows electron densities as 

high as 10
19

/cm
3
, which may be measured at the edge of the plasma.  
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Figure 5.6 (reproduced). Shearing interferometry data for shot 817 (Bz = 0 T) using a 

simple air-wedge gap interferometer showing: (a) interferogram and, (b) shadowgraph. 

The boxed regions in (a) and (b) mark the same region of the plasma. (c) The electron 

density plotted as a function of radius for a sample lineout taken from the boxed region in 

(a). In (c), the boxed region is enlarged and the fringe shifts are superimposed on the 

interferogram. 

 

Figure C.1. Overview of interferometric analysis model. The plasma is separated into 

two distinct regions, (1) the fully refracted region, where laser light is fully refracted out 

of the imaging system (it may also be fully attenuated) and (2) the ―refractionless‖ 

region, where laser light rays are assumed to undergo no refraction. The ―refractionless‖ 

assumption enables the index of refraction inversion from interference fringes 

mathematically tractable. 
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