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ABSTRACT

Optimal control for the canonical model of systems with linear dynamics and quadratic

operating costs (known as LQ systems) is a well-studied problem in the stochastic control

literature. When the true system dynamics are unknown, an adaptive policy is required for

learning the model parameters and planning a control policy simultaneously. Addressing

this trade-off between accurate estimation and good control represents the main challenge

in area of adaptive control. Another important issue is to prevent the system becoming

destabilized (in the sense that its state grows in an uncontrolled fashion) due to lack of

knowledge of the system dynamics. Asymptotically optimal approaches have been thor-

oughly investigated in the literature, but non-asymptotic results are few and rather incom-

plete. To derive such results, new concepts and technical tools need to be developed for the

estimation during the stabilization period of the system.

In adaptive control, the system performance is measured by the regret, which is the

difference between the cost of the adaptive policy and that of the optimal control designed

according to the known dynamics. In this work, we establish non-asymptotic high probabil-

ity regret bounds, which are modulo a logarithmic factor, optimal, for different LQ systems

with and without identifiability assumptions. We also provide high probability guarantees

for a stabilization algorithm based on random linear feedbacks. The results obtained are

fairly general, since the assumptions needed are those of: (i) stabilizability of the matrices

encoding the system’s dynamical, and (ii) on the heaviness of the distribution for the noise

vectors.

The study provides also novel results regarding the estimation of the parameters for

v



presumably unstable Vector Autoregressive (VAR) models. In the classical literature, there

are hardly any results for the unstable case, especially regarding finite sample bounds, that

is the subject of this work. Our results relate the sample size required as a function of the

problem dimension and key characteristics of the true underlying transition matrix and the

innovation distribution. To obtain them, appropriate concentration inequalities for random

matrices and for sequences of martingale differences are leveraged.

vi



CHAPTER 1

Introduction

In this work, we consider adaptive control of the following LQ system. Given the initial

state x(0) ∈ Rp, for t = 0, 1, · · · we have

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1), (1.1)

ct = x(t)′Qx(t) + u(t)′Ru(t). (1.2)

Above, at time t, the vector x(t) ∈ Rp is the state (and output) of the system, u(t) ∈ Rr

is the control action, and {w(t)}∞t=1 is the sequence of noise (disturbance) vectors. Further,

ct is the quadratic instantaneous cost function (the transpose of the vector v is denoted by

v′). The dynamics of the system, i.e. both the transition matrix A0 ∈ Rp×p, as well as the

input matrix B0 ∈ Rp×r, are fixed and unknown. The positive definite matrices of the cost,

Q ∈ Rp×p, R ∈ Rr×r, are however known.

The goal is, roughly speaking, designing a control policy {u(t)}∞t=0 in order to minimize

the expected average cost. Conceptually, in order to preserve causality, the design of the

control action at every time needs to be according to the observations so far. This objective

will be formally expressed later in Section 2.1. Designing an efficient adaptive policy is

challenging, since it requires to both estimate the unknown true matrices A0, B0, as well

as design a control policy accordingly. In fact, the exact knowledge of the true parameters

A0, B0 is required in order to design an optimal control policy, while on the other hand,
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the user needs to deal with the system by applying some control action, to collect the

observations for the estimation of the unknown parameters.

1.1 Asymptotic Literature

The asymptotic analysis of adaptive control for systems evolving according to linear

dynamics is a canonical problem in the classical literature. Since the dynamics of the

system is unknown, a natural way to design the control action is the certainty equivalence

(CE) approach [1]. Intuitively, its prescription is to apply a control policy as if the estimated

parameter is the true one the system is evolving according to. It was soon realized that

the least-squares estimation does not need to be generally consistent, even if the open-

loop system is stable [2]. Later, it was shown for stochastic approximation algorithm, that

convergence to incorrect parameter occurs with positive probability [3].

Bypassing the consistency, an extensive amount of the classical literature is devoted

to address the problem of adaptive tracking where the objective is to adaptively steer the

system to track a reference trajectory. For open-loop stable systems, assuming the reference

signal is bounded, a sharp regret bound is provided under the uniform boundedness of the

noise terms [4]. Namely, a conservatively defined regret is shown to be of logarithmic

order, which is optimal [5]. Later, convergence rates were established for the more general

case that the noise is not necessarily bounded [6]. Ensuing works addressed the problem

for tracking both a reference trajectory as well as a reference model [7]. The stability

assumption of open-loop system can be removed by using a stochastic gradient algorithm

parallel to the least-squares, in order to slow down the possible explosion of the system [7],

[8].

The asymptotic results for optimality of tracking performance are general, although,

the results with regards the consistency issue are fairly restrictive. More precisely, in order

to ensure the consistency,

(i) either an additional identifiability assumption [4], [7],
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(ii) or a minor deviation from the straightforward CE approach,

is required. The latter case consists of adding a random (independent diminishing) per-

turbation to the control signal [2], [9]. Even if the noise is assumed to be a white normal

process, consistency is still a persistent issue, as the convergence is not necessarily to the

true parameter [10]. Thus, despite the non-adaptive version of the problem in stochas-

tic control where output-observation and control-design completely decouple in Linear-

Quadratic-Gaussian (LQG) systems [11], it is not the case for consistency the adaptive

version. Importantly, what really prevents the guarantee of consistency, is the reduction of

open-loop identification to “closed-loop identification” [10].

In adaptive tracker type of approaches discussed above, the operating cost is not directly

a function of the control signal. Unlikely, when it is the case, the cost of an adaptive policy

designed based on certainty equivalence can be strictly non-optimal [12]. The intuition be-

hind both this non-optimaliy, as well as the reduction mentioned above, is intrinsically of

the type of the usual exploration-exploitation dilemma. The aforementioned methods (i),

(ii) are basically examples of the attempts to address this dilemma. Technically, applying

any control policy, the observations lead to accurate information about the unknown pa-

rameters of the dynamics, only in some specific directions [12]. Hence, to gather compre-

hensive information about the open-loop parameter, different control actions are required

to be applied. On the other hand, to avoid major deviations from the optimal value in the

cost, control actions need to be in some sense similar.

Therefore in general, neither cost optimality, nor consistency will automatically be pro-

vided by certainty equivalence. Still, asymptotic cost optimality results in the literature

hold, mainly because sufficient assumptions are imposed to enable the planning of an op-

timal adaptive policy regardless of a consistent learning of the parameter. In addition to

control-free costs, these assumptions are for instance non-singularity of the true input ma-

trix [9], and lack of common factors [7]. For example, there exist situations where the

estimation is almost surely inconsistent, while because it is asymptotically in-line with the

3



true parameter [3], optimality is automatically gifted, needless to consistency. Further,

if the instantaneous cost is control-free, closed-loop identification suffices for asymptotic

optimality of the average cost [10]. But, for general quadratic costs, availability of an ap-

proximation which is in-line with the true parameter, as well as full identification of the

closed-loop, are insufficient to design an optimal policy.

While direct application of the least-squares estimation fails to provide an optimal adap-

tive policy, a modification resolves the issue [12]. In fact, it suffices to use the following

idea of Optimism in the Face of Uncertainty (OFU), which was originally invented for ef-

ficient allocation rules [13]. After constructing a confidence set, the prescription is to “Bet

On the Best (BOB)” [14], i.e. to design a control action as if the most optimistic parameter

in the confidence set is the true one.

1.2 Non-Asymptotic Literature

Recently, the non-asymptotic approach to adaptive control of LQ systems has been

taken first in the work of Abbasi-Yadkori and Szepesvári [15]. The authors provide an

adaptive control algorithm, for which the regret is shown to be optimal, apart from a log-

arithmic factor. In the regret bounds presented in the above paper, there exist constants

scaling exponentially with respect to the dimension. This, motivated the second paper due

to Ibrahimi et al. [16], which attacks the problem in the high dimensional regime, assuming

the true dynamics matrices are sparse. The latter paper also shows that the presented re-

inforcement learning algorithm leads to an optimal regret bound, apart from a logarithmic

factor.

The aforestated works consider a fairly restricted setting, which requires strong as-

sumptions. A concrete example to demonstrate these restrictions will be discussed in the

next chapter. There are two assumptions both recent papers share, and the analysis of the

presented algorithms fails without. First, controllability and observability are assumed for

the true dynamics matrices of the system. Second, the closed-loop transition matrix when
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the optimal linear feedback is applied to the system (see Proposition 2.1), is assumed to

have the operator norm (denoted here by |||·|||2) less than one. Note that the first assumption

does not imply the second one because the closed-loop dynamics matrix is only known to

be stable, assuming the system is controllable and observable [17].

We relax both of these assumptions to stabilizability (see Definition 2.1), which is min-

imal. More precisely, the problem becomes trivial if one does not assume stabilizability of

the system. There are straightforward situations where one can simply see that the strong

assumptions of the above papers fail. For example, the first restriction above will be vi-

olated when the true dynamics matrices are too sparse that controllability fails, while the

system is still stabilizable. The sparsity of the true dynamics matrices is specially com-

mon in large systems. Note that, it is exactly the case where the high dimensional setting

of the second paper makes sense. The other restriction is even more serious, since a ran-

domly chosen stable matrix does not need to satisfy the operator norm condition mentioned

above. As a matter of fact, the class of systems for which the closed-loop transition ma-

trix has operator norm less than one is significantly smaller than the family of stabilizable

systems.

Furthermore, the important issue of stabilization is fully overlooked in the second paper.

Technically, the constants scaling exponentially with the dimension appear in the regret

bounds of the first paper, mainly because of the transient period the system needs to spend,

in order to gradually stabilize itself. The second paper bypasses the stabilization period by

assuming that a linear feedback which stabilizes the system is automatically provided to

the user at the beginning of the interaction with the system. Of course, the way the first

paper is addressing the self stabilization of the system, is mainly based on the operator

norm restriction we discussed before.
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1.3 Contributions

In addition to resolving all aforementioned issues, we generalize the high probabil-

ity regret bounds to an extensively larger class of noise distributions. Technically, in the

papers discussed above, the noise vectors are assumed to be sub-Gaussian or Gaussian, re-

spectively, and the coordinates of the noise vectors are assumed to be uncorrelated. In this

work, we assume a sub-Weibull distribution for the noise vectors, and that coordinates can

be correlated.

Based on OFU, we provide non-asymptotic regret bounds for a class of adaptive control

policies, for a remarkably extensive family of Linear-Quadratic systems. Namely, we prove

that the reinforcement learning algorithms presented in Chapter 3 are with high probability

near optimal, under the minimal assumption of stabilizability, and heavy-tailed distribution

for the noise process. Note that unlike a rich literature providing asymptotic results for the

problem at hand, non-asymptotic analysis is sparse with few results. In order to study the

finite time behavior of adaptive policies, new conceptual and technical approaches need to

be developed.

First, from an exploitation (i.e. cost optimality) viewpoint, whenever non-asymptotically

studying a policy, all involved quantities need to be carefully examined. More precisely,

one needs to provide a scalable specification of the decay-rate, for the terms (such as the

gap between the average and the expected value of a sequence of ransom variables) which

vanish in asymptotic. In asymptotic regime however, it is only required to verify that the

expressions vanish, if normalized by the leading term. For example, the objective in the

aforementioned asymptotic literature is to show that the average cost of the adaptive policy

under study converges to the optimal expected average cost of the system. These type of

results, lead to sub-linearity (with respect to the time horizon) for the accumulative devia-

tion of the adaptive cost from the optimal value. In the finite time analyses presented in this

work, we establish fairly stronger statements, and show that this accumulative deviation

approximately scales as the square-root of the time horizon.
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Second, from the exploration (i.e. consistency) viewpoint, it is well known that com-

pared to an infinite sample setting, estimation results are essentially harder to achieve when

the sample size is finite. For instance, one can immediately apply the Law of Large Num-

bers to ensure the asymptotic convergence of random matrices. In spite of that, to ensure

the high probability convergence of finitely many random matrices, more advanced tools

such as concentration inequalities are required. Besides, the theory of concentration in-

equalities is mainly based on (moment) generating functions which do not necessarily exist

for heavy-tailed noise process of this work. So, an extra layer of technicality is necessary to

achieve the useful estimation results. Finally, it is needless to mention that from practical

viewpoint, the actual horizon is always finite in real world problems.

We also address the important issue of stabilizing a system with unknown dynamics, es-

tablishing high probability guarantees for the presented finite time stabilization algorithm.

Key estimation results concerning the finite sample learning of the unknown dynamics in

both stable and unstable dynamical systems are being leveraged to analyze the stabilization

algorithm, as well as the adaptive control algorithms. Finite sample analysis of estimation

in a more general setting is comprehensively discussed in Chapter 4.

This work is structured as follows. First, in Section 2.1 we rigorously formulate the

adaptive control problem for LQ systems. As mentioned before, planning issues, as well

as those of learning, need to be addressed. Therefore, the problem from a pure control

viewpoint is discussed in Section 2.2, where we investigate the properties of the optimal

policies. The estimation approach is the content of Section 2.3, where we establish the key

estimation results for vector autoregressive processes as the cornerstone of the algorithms

presented in this work. On one hand, in order to stabilize the system, a stabilization al-

gorithm is proposed and analyzed in Section 2.4. On the other hand, once the system is

stabilized, an adaptive policy is required to minimize the expected average cost. For this

purpose, we present different reinforcement learning algorithms in Chapter 3.

Subsequently, we provide the detailed structures of the contributed results. In order to
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TM
Theorem 2.1

Empirical Covariance

TM
Theorem 2.2

Stable EstimationTM
Lemma 2.3

Prediction Bound

TM
Algorithm 3

Weakly Identifiable

TM
Theorem 3.2
Regret Bound

TM
Algorithm 2

General

TM
Theorem 3.1
Regret Bound

TM
Lemma 2.4

Closed-loop RegularityTM
Lemma 2.5

Closed-loop Eigenvalues

TM
Theorem 4.3

Unstable EstimationTM
Lemma 2.1

Stabilizing Neighborhood

TM
Algorithm 1

Random Feedbacks

TM
Theorem 2.4

Stabilizing Set

TM
Lemma 2.2

Lipschitz Continuity

TM
Algorithm 4

Strongly Identifiable

TM
Theorem 3.3
Regret Bound

Figure 1.1: Diagram of the contributed results. Sections 2.2, 2.3, and 2.4, are shown re-
spectively by green, red, and blue. Chapters 3 and 4 are shown by violet and brown,
respectively.

stabilize the system in finite time, Lemma 2.1 states that the system can be stabilized if one

can find a stabilizing neighborhood of the unknown parameters A0, B0. Then, according to

the estimation results of Section 2.3, the high probability accurate estimation of the closed-

loop transition matrix is possible. In fact, by Theorem 4.3, it suffices for the unstable

closed-loop transition matrix

(i) to be regular, and

(ii) having no eigenvalue of unit size.

Regularity basically is related to the explosive eigenvalues of the closed-loop transition

matrix (i.e. eigenvalues of magnitude larger than one). In fact, as formally defined in

Definition 2.3, the geometric multiplicity of every explosive eigenvalue of a regular matrix

is one.

Then, applying a random linear feedback, Lemma 2.4 shows that condition (i) is satis-

fied, while condition (ii) is implied by Lemma 2.5. Putting all together, Section 2.4 provides

Theorem 2.4, which states that Algorithm 1 returns a high probability stabilization set. The

diagram of this logical structure is illustrated on the left-side of Figure 1.1.
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The next objective, namely design of an adaptive policy to minimize the regret (formally

defined in (2.1)), is addressed in Chapter 3. For this purpose, once the system is stabilized

(e.g. using Algorithm 1), different reinforcement learning algorithms can be applied. These

algorithms, are designed according to the useful estimation and prediction results regarding

the stable Vector Autoregressive (VAR) process developed in Section 2.3. More precisely,

using the analysis of the empirical covariance matrix of the VAR processes provided by

Theorem 2.1, we prove Lemma 2.3. The former, presents a high probability prediction

bound, and is used to design Algorithm 2. Theorem 3.1 states that the adaptive policy

designed by the reinforcement learning scheme of Algorithm 2 leads to a high probability

bound for the regret, which is optimal, apart from a logarithmic factor.

The other estimation result, Theorem 2.2, shows that the transition matrix of a stable

VAR process can be accurately estimated with high probability. This is what Algorithm 3

for weakly identifiable systems is leaning on. The weak identifiability condition, formally

defined in Definition 3.1, holds, when for an approximation of A0, B0, different linear

feedbacks yield closed-loop matrices of comparable precision. Theorem 3.2 states the

high probability near optimal regret bound of Algorithm 3 under the weak identifiability

condition. Both Algorithm 2 and Algorithm 3, are designed using the idea of Optimism

in the Face of Uncertainty (OFU) principle, aka Bet On the Best (BOB) [14]. Essentially,

BOB prescribes an adaptive control action which is designed according to an optimistic

approximation of the true parameters.

Finally, when side information about the true parameter leads to strong identifiability,

one can apply Algorithm 4. When a system is strongly identifiable, as rigorously presented

in Definition 3.2, an accurate approximation of the closed-loop matrix leads to that of the

open-loop parameters. In this case, the step based on the OFU principle can be removed

from the reinforcement learning algorithm, and the regret is again near optimal, as pre-

sented in Theorem 3.3. The analysis is using Theorem 2.2, as well as Lemma 2.2 which is

regarding the Lipschitz continuity of the optimal expected average cost with respect to the
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dynamics parameters. Figure 1.1 describes the structure of the pieces of this work.

1.4 Notations

The following notations will be used throughout this thesis. For matrix A ∈ Cp×q, A′

is the transpose of A. When p = q, the smallest (respectively largest) eigenvalue of A (in

magnitude) is shown by λmin(A) (respectively λmax(A)) and the trace of A is shown by

tr (A). For

γ ∈ R, γ > 0, x ∈ Cq,

γ-norm of vector x is

‖x‖γ =

(
q∑
i=1

|xi|γ
)1/γ

.

Further, when γ =∞, the norm is defined according to ‖x‖∞ = max
1≤i≤q

|xi|.

We also use the following notation for operator norm of matrices. For β, γ ∈ (0,∞],

and A ∈ Cp×q, define

|||A|||γ→β = sup
v∈Cq\{0}

||Av||β
||v||γ

.

Whenever γ = β, we simply write |||A|||β . To show the dimension of manifold M over

the field F , we use dimF (M). Finally, the sigma-field generated by random vectors

X1, · · · , Xn is denoted by σ (X1, · · · , Xn).
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CHAPTER 2

Optimality, Estimation, and Stabilization

2.1 Introduction

Now, we formally discuss the adaptive control problem this work is addressing. The

evolution of the system is governed by the linear dynamics (1.1), and the instantaneous

quadratic cost ct is defined according to (1.2). The true dynamics is assumed to be stabiliz-

able, as defined below.

Definition 2.1 (Stabilizability). [A0, B0] is called stabilizable if there is L ∈ Rr×p such that

|λmax (A0 +B0L)| < 1.

The linear feedback matrix L is called a stabilizer.

Remark 2.1. For convenience, henceforth for A ∈ Rp×p, B ∈ Rp×r, we use [A,B] and

Θ ∈ Rp×q interchangeably, where q = p+ r.

Next, the following example provides a situation where the system is not controllable,

and the operator norm of the closed-loop dynamics can not be less than one, while the

stabilizability assumption still holds.
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Example 2.1. Let the dynamics matrices be

A0 =


0.5 2 0

0 0.5 0

0 0 3

 , B0 =


0 0

0 0

1 −1

 .

Computing Kalman’s controllability matrix, we get

[
B0, A0B0, A

2
0B0

]
=


0 0 0 0 0 0

0 0 0 0 0 0

1 −1 3 −3 9 −9

 ,

which clearly is not full rank, i.e. the system is not controllable [17].

In addition, for an arbitrary linear feedback L = [Lij] ∈ R2×3, the closed-loop transi-

tion matrix is

A0 +B0L =


0.5 2 0

0 0.5 0

L11 − L12 L12 − L22 3 + L13 − L23

 ,

which is stable if and only if |3 + L13 − L23| < 1, while the operator norm condition cannot

be satisfied because

|||A0 +B0L|||2 ≥ 2,

for all L.

In the stochastic dynamics of the system presented in (1.1), {w(t)}∞t=1 are independent

mean-zero homoscedastic noise vectors with full rank covariance matrix C:

E [w(t)] = 0, E [w(t)w(t)′] = C, |λmin (C)| > 0.

The tail behavior of every coordinate of the noise vector satisfies the condition below.
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Assumption 2.1 (Sub-Weibull noise distribution). There exist positive constants b1, b2, and

α, such that

P (|wi(t)| > y) ≤ b1 exp

(
−y

α

b2

)
,

for all t = 1, 2, · · · ; i = 1, · · · , p; y > 0.

Note that assuming a sub-Weibull distribution for the noise coordinates is more general

than the sub-Gaussian assumption routinely made in the literature, where α ≥ 2, as well

as sub-Exponential, where α ≥ 1. In fact, when α < 1, the noise coordinates wi(t) do not

need to have a moment generating function. Therefore, as mentioned before, concentra-

tion inequalities of random matrices, which are the foundation of non-asymptotic statistical

analyses, cannot be applied directly. Furthermore, the noise coordinates can be either dis-

crete or continuous random variables, and are not assumed to have a probability density

function (pdf). Henceforth, the special case of bounded noise can be obtained from the

presented results, by simply letting α→∞.

Remark 2.2. The results established also hold if the noise vectors are martingale difference

sequences.

The rigorous formulation of the objective is as follows. For an arbitrary control policy

{u(t)}∞t=0, let J A0,B0 ({u(t)}∞t=0) be the expected average cost of the system:

J A0,B0 ({u(t)}∞t=0) = lim sup
T→∞

1

T

T∑
t=1

Ect,

where ct is the resulting instantaneous cost, when the policy {u(t)}∞t=0 is applied. Above,

the dependence of J Θ0 (·) to the known cost matrices Q,R is suppressed. Moreover, sta-

bilizability of Θ0 is a minimal assumption, since otherwise, the instantaneous cost ct will

explode, leading to the trivial situation J Θ0 (·) = ∞. Then, among all control policies,

an optimal policy is one which minimizes the expected average cost. Note that due to the

independence of the noise vectors, an optimal policy can be assumed to be causal (i.e. the
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control action can not depend on the future observations). Besides, due to Markovity of the

state process {x(t)}∞t=0, the control can assumed to be memoryless (i.e. for all t = 0, 1, · · · ,

u(t) is a function of only the current state x(t)).

The optimal expected average cost is defined by

J ? (A0, B0) = min
{u(t)}∞t=0

J A0,B0 ({u(t)}∞t=0) ,

where the minimum is taken over all control policies {u(t)}∞t=0, including non-adaptive

policies which are based on the known parameter Θ0. Since the evolution of the system is

stochastic, an open-loop control policy can not achieve the optimal average cost. A linear

feedback however, can provide the optimal policy (see Proposition 2.1). As one can expect,

the dynamics matrices A0, B0 need to be exactly known, in order to find the optimal linear

feedback.

For an adaptive control policy though, dynamics matrices A0, B0 are unknown. There-

fore, the user requires to simultaneously learn the dynamics, and plan a control policy. Here

we assume perfect observation, i.e. the output of the system provides the state vector ac-

curately. In other words, the sequence of the states {x(t)}nt=0 is fully observed during the

period the user is dealing with the system. So, in a period of length n, the user applies

an adaptive policy {u(t)}n−1
t=0 to the system, and observes the sample {x(t)}nt=0 to estimate

A0, B0 accordingly.

In order to measure the quality of an adaptive policy, the resulting cost will be compared

by the optimal expected average cost defined above. More precisely, for adaptive policy

{u(t)}∞t=0, letting ct be as (1.2), the comparison between adaptive control policies is made

by regret, which at time T is defined formally as

R (T ) =
T∑
t=1

[ct − J ? (A0, B0)] . (2.1)

The regret is basically nothing but the accumulative deviation of the instantaneous cost of
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the corresponding adaptive policy from the optimal expected average cost (which is based

on a non-adaptive policy).

2.2 Optimal Policies

In this section, we investigate the properties of optimal policies. For general Θ ∈ Rp×q,

it is well known from classical literature that to achieve J ? (Θ), one has to solve Riccati

equation,

K (Θ) = Q+ A′K (Θ)A− A′K (Θ)B (B′K (Θ)B +R)
−1
B′K (Θ)A, (2.2)

L (Θ) = − (B′K (Θ)B +R)
−1
B′K (Θ)A. (2.3)

A solution, is a positive semidefinite matrix K (Θ) satisfying (2.2).

For the sake of completeness, we present and prove the following proposition, which

provides an optimal linear feedback to minimize the expected average cost. Moreover,

it establishes the existence and uniqueness of the solution of Riccati equation supposing

stabilizability.

Proposition 2.1 (Optimal policy). If [A0, B0] is stabilizable, (2.2) has a unique solution

and u(t) = L (Θ0)x(t) is an optimal control policy leading to

J ? (Θ0) = tr (CK (Θ0)) .

Conversely, if K (Θ0) is a solution of (2.2), L (Θ0) defined by (2.3) is a stabilizer.

Note that in the latter case of Proposition 2.1, the solution K (Θ0) is unique and u(t) =

L (Θ0)x(t) is an optimal policy which yields J ? (Θ0) = tr (CK (Θ0)).

The next result describes the asymptotic distribution of the regret. In general, since

the state of the system x(t), and so the instantaneous cost ct, are random, R (T ) can not

be bounded as T grows. Proposition 2.2, which is basically a Central Limit Theorem
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for R (T ), states that even if the control action {u(t)}∞t=0 is the optimal policy u(t) =

L (Θ0)x(t) described above according to the known dynamics matrices A0, B0, the regret

R (T ) scales as O
(
T 1/2

)
.

Proposition 2.2 (Regret lower-bound). Applying optimal control action u(t) = L (Θ0)x(t),

the distribution of lim
T→∞

R(T )

T 1/2 is a mean-zero normal.

An immediate consequence is that the followings hold when applying the optimal linear

feedback u(t) = L (Θ0)x(t):

lim
T→∞

1

T

T∑
t=1

E [ct] = lim
T→∞

1

T

T∑
t=1

ct = J ? (Θ0) .

Moreover, Proposition 2.2 provides a lower bound for the regret of the adaptive policies.

Namely, a high probability regret bound to hold with probability at least 1 − δ, needs to

satisfy

R (T ) ≥ O
(
T 1/2 (− log δ)1/2

)
.

Note that the definition of regret in (2.1) covers the accumulative deviation from the

optimal expected average cost due to both the stochastic evolution of the system (random-

ness of {w(t)}∞t=1), as well as the uncertainty about the dynamics (unknownness of Θ0).

For example, if one defines the regret as the difference between the instantaneous cost (ct)

of the adaptive policy and that of the non-adaptive optimal one u(t) = L (Θ0)x(t), then

the regret vanishes by applying the optimal linear feedback L (Θ0). The latter definition

for regret, takes into account only the fraction due to lack of full knowledge about the dy-

namics. But, the take home message of Proposition 2.2 is that from pure control point of

view, the convergence of accumulative cost is with the rate O
(
T 1/2

)
. So, trying to push the

second fraction of the regret (which is due to learning of the unknown dynamics) to have a

rate less than O
(
T 1/2

)
is actually unnecessary.

To proceed, we define a notations, helpful to simplify the expressions throughout this
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chapter. For arbitrary stabilizable Θ1,Θ2 ∈ Rp×q, let

L̃ (Θ1) =

 Ip

L (Θ1)

 ∈ Rq×p.

Therefore,

Θ2L̃ (Θ1) = A2 +B2L (Θ1) .

The adaptive control policy {u(t)}∞t=0 is to be defined without knowing Θ0. Because

according to Proposition 2.1 an optimal policy is to apply the linear feedback L (Θ0), a

candidate adaptive policy is a linear feedback of the form L
(

Θ̃(1)
)

, where Θ̃(1) is an

approximation of the true parameter Θ0, which is learned when the system evolves.

In the reminder of this section, results concerning properties of these type of policies

will be provided, which will be helpful later to analyze the performance of the algorithms

of Chapter 3. The first issue is stability of the system (which evolves according to Θ0),

when a linear feedback of the form L
(

Θ̃(1)
)

is applied. To address that, existence of a

stabilizing neighborhood is established in the following lemma.

Lemma 2.1 (Stabilizing neighborhood). There is ε0 > 0, such that for every stabilizable

Θ, if

|||Θ−Θ0|||2 < ε0,

then Θ0L̃ (Θ) is stable.

Next, the following lemma shows the Lipschitz continuity of matrix K (Θ) defined

in (2.2), with respect to Θ. Note that a direct consequence of Lemma 2.2 is Lipschitz

continuity of L (Θ) and J ? (Θ), respectively using (2.3) and Proposition 2.1.

Lemma 2.2 (Lipschitz continuity). Assume Θ1,Θ2 ∈ Rp×q are stabilizable. There is a

constant ΓK <∞, such that

|||K (Θ1)−K (Θ2)|||2 ≤ ΓK |||Θ1 −Θ2|||2.
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Furthermore, there are ΓL,ΓJ <∞, such that

|||L (Θ2)− L (Θ1)|||2 ≤ ΓL|||Θ2 −Θ1|||2,

|J ? (Θ2)− J ? (Θ1)| ≤ ΓJ |||Θ2 −Θ1|||2.

2.3 Estimation

When applying a linear feedback, denoted by L ∈ Rr×p, to the system, the closed-loop

dynamics will be a Vector Autoregressive (VAR) process of the form

x(t+ 1) = Dx(t) + w(t+ 1),

where D = A0 + B0L. Moreover, since designing a stabilizer L may be impossible with-

out knowing a neighborhood of Θ0 (Lemma 2.2), matrix D does not need to be stable.

Therefore, studying the performance of estimation for such a process is of interest. The

non-asymptotic analysis of unstable VARs under a more general setting, is the subject of

Chapter 4.

We present bounds on the number of observations to have arbitrarily small estimation

error, with high probability. Results of this section will be used later in Section 2.4, and

Chapter 3, to construct a stabilizing neighborhood, as well as design of adaptive control

algorithms. First, we define row-wise least-squares estimation, for matrix D, as follows.

Observing samples {x(t)}nt=0, define the sum-of-squares loss function

L(i)
n (θ) =

n−1∑
t=0

(xi(t+ 1)− θ′x(t))
2
.

Then, the true transition matrix D is estimated by

D̂n =
[
d̂1, · · · , d̂p

]′
,
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where for i = 1, · · · , p, the vector d̂i is a minimizer of the above sum-of-squares, i.e.

L(i)
n

(
d̂i

)
= min

θ∈Rp
L(i)
n (θ) .

In the sequel, after introducing some notations, we study performance of the estimation

D̂n, first when the true transition matrix D is stable, and then, when it is unstable.

Next, for λ ∈ C, the following matrix is called the size m Jordan matrix of λ.



λ 1 0 · · · 0 0

0 λ 1 0 · · · 0

...
...

...
...

...
...

0 0 · · · 0 λ 1

0 0 0 · · · 0 λ


∈ Cm×m.

Then, for matrix D ∈ Rp×p, we define η (D) as follows.

Definition 2.2 (Constant η (D)). Let the Jordan decomposition of D be D = P−1ΛP , i.e.

Λ is block diagonal,

Λ = diag (Λ1, · · · ,Λk) ,

where for i = 1, · · · , k, Λi ∈ Cmi×mi is a Jordan matrix of λi. For t = 1, 2, · · · , letting

ηt (Λi) = inf
ρ≥|λi|

tmi−1ρt
mi−1∑
j=0

ρ−j

j!
,

define ηt (Λ) = max
1≤i≤k

ηt (Λi). Then, let

η (D) =
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞

∞∑
t=0

ηt (Λ) ,

where η0 (Λ) = 1.
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Clearly, η (D) <∞ if and only if |λmax (D)| < 1. Also note that

ηt (Λ) ≤ tµ(D)−1 |λmax (D)|t
µ(D)−1∑
j=0

|λmax (D)|−j

j!
,

where µ (D) = max
1≤i≤k

mi. For example, if the stable matrix D is diagonalizable, we have

µ (D) = 1, i.e.

η (D) ≤ |||P
−1|||∞→2|||P |||∞

1− |λmax (D)|
.

2.3.1 Stable Case

Define the following notations which will be used throughout this subsection to estab-

lish high probability estimation results.

νn (δ) = b
1/α
2 log1/α

(
b1np

δ

)
,

πn (δ) = η (D) (||x(0)||∞ + νn (δ)) .

As the proofs reveal, one can see that νn (δ) , πn (δ) are respectively the high probability

uniform bounds for the size of the noise vectors {||w(t)||∞}
n
t=1, and state vectors {||x(t)||2}

n
t=0.

As a matter of fact, if the noise process is uniformly bounded, νn (δ), and so πn (δ), are fixed

constants, not depending on n, δ.

Then, letN2.1 (ε, δ) be large enough, such that the followings hold for all n ≥ N2.1 (ε, δ):

n

νn (δ)2 ≥ 18 |λmax (C)|+ 2ε

ε2
p log

(
4p

δ

)
, (2.4)

n

πn (δ)2 νn (δ)2 ≥ 288

ε2
p|||D|||22 log

(
4p

δ

)
, (2.5)

n

πn (δ)2 ≥ 6

ε

(
|||D|||22 + 1

)
. (2.6)
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Defining the empirical covariance matrix

Vn =
n−1∑
t=0

x(t)x(t)′, (2.7)

the following theorem provides a high probability lower bound for the smallest eigenvalue

of Vn+1.

Theorem 2.1 (empirical covariance matrix). Suppose that D is stable. If n ≥ N2.1 (ε, δ),

then

P (|λmin (Vn+1)| < n (|λmin (C)| − ε)) < 2δ.

Moreover, lim
n→∞

1
n
Vn =

∞∑
i=0

DiCD′i.

Using Theorem 2.1, we present the following bound on the prediction error of the least-

squares estimator.

Lemma 2.3 (Prediction bound). When D is stable, if n− 1 ≥ N2.1

(
|λmin(C)|

2
, δ
)

, then the

following holds, with probability at least 1− 3δ:

∣∣∣∣∣∣∣∣∣∣∣∣(D̂n −D
)
Vn

(
D̂n −D

)′∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ βn (δ) ,

where

βn (δ) =
16np

(n− 1) |λmin (C)|
πn (δ)2 νn (δ)2 log

(
2p

δ

)
.

We also present bounds for the number of observations sufficient to guarantee high

probability accurate estimation of closed-loop transition matrixD. Indeed, there isN2.2 (ε, δ)

as the least number of observations, to estimate D with error at most ε, with probability at

least 1− 2δ. For this purpose, assume the followings hold for all n ≥ N2.2 (ε, δ):

n ≥ N2.1

(
|λmin (C)|

2
,
δ

2

)
+ 1, (2.8)

n− 2

πn (δ)2 νn (δ)2 ≥ 32p

|λmin (C)|2 ε2
log

(
4p

δ

)
. (2.9)
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Theorem 2.2 (Stable estimation). Assume D is stable. If n ≥ N2.2 (ε, δ), then

P
(∣∣∣∣∣∣∣∣∣D̂n −D

∣∣∣∣∣∣∣∣∣
2
> ε
)
< 2δ.

2.3.2 Unstable Case

Results of the previous subsection concern about the estimation when the closed-loop

transition matrixD is stable. But, for stabilization of the system, one needs to have accurate

estimation of not necessarily stable matrix D. In the sequel, we provide results when D

is unstable. As expected, D still needs to meet some requirements, which we will prove

later can be satisfied, if a random linear feedback will be applied to the system. In fact, the

transition matrix D needs to be regular, according to the following definition, in order to

have an accurate estimation.

Definition 2.3 (Regularity). D ∈ Rp×p is called regular if for any explosive eigenvalue of

D, denoted by λ, the geometric multiplicity of λ is one.

Regularity implies that the eigenspace corresponding to λ is one dimensional, and vice

versa. There are other equivalent formulations for regularity. Indeed, D is regular if and

only if for any explosive eigenvalue λ, in the Jordan decomposition of D there is only one

block corresponding to λ. In other words, no matter how large the algebraic multiplicity

of λ is, the geometric multiplicity is one. Another equivalent formulation is the following

one. D is regular if and only if

rank (D − λIp) ≥ p− 1,

for all λ ∈ C such that |λ| > 1. For example, let P1, P2 ∈ C2×2 be arbitrary invertible
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matrices, and assume

D1 = P−1
1

ρ 1

0 ρ

P1, D2 = P−1
2

ρ 0

0 ρ

P2,

are real 2× 2 matrices, where ρ ∈ C satisfies |ρ| > 1. Then, D1 is regular, but D2 is not.

To sum up this section, we present the accuracy of the least-squares estimation, in

general (i.e. unstable) VAR processes. The following theorem states the accuracy of the

estimation, when the matrix D is regular, and has no eigenvalue exactly on the unit circle

of the complex plane. As we will see in Section 2.4, these assumptions are not restrictive

when a random linear feedback is applied to a stabilizable system with unknown dynamics.

The sample size for unstable case is based on the constant ∆unstable, as well as the func-

tion ψ (D0, δ). Technically, ∆unstable is a constant depending on the matrices C,D, as well

as the parameters b1, b2, α specified in Assumption 2.1. Further, the function ψ (D0, δ)

depends on both D and the distribution of the noise sequence {w(t)}∞t=1, and we have

ψ (D0, δ) > 0, for all δ > 0. If in addition there exists t0 ≥ 1 such that the noise w(t0) is a

continuous random vector with a bounded probability density function on Rp, then, for all

δ > 0 we have

ψ (D0, δ) ≥ ψ0δ,

where ψ0 is a positive constant, and does not depend on δ. More details are provided in

Section 4.4.

Let N2.3 (ε, δ) be large enough, such that for all n ≥ N2.3 (ε, δ),

n

(log n)4/α
≥ ∆unstable

ε2

(
(− log δ)1+4/α − logψ (D0, δ)

)
.

Theorem 2.3 (Unstable estimation). Suppose that D is regular, and has no eigenvalue of
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the unit size. As long as n ≥ N2.3 (ε, δ), we have

P
(∣∣∣∣∣∣∣∣∣D̂n −D

∣∣∣∣∣∣∣∣∣
2
≤ ε
)
≥ 1− δ.

2.4 Stabilizing the System

In this section, we show how the system can be stabilized. Even though the true param-

eter Θ0 is unknown, according to Lemma 2.1, a stabilizing linear feedback L (Θ) can be

designed, if one can find a stabilizing neighborhood Ω(0), such that

Ω(0) ⊂
{

Θ ∈ Rp×q : |||Θ−Θ0|||2 ≤ ε0
}
. (2.10)

Algorithm 1 : Stabilization
Input: Stabilization Radius ε0, Failure Probability δ
Output: Stabilizing Set Ω(0)

Let k = 1 + d r
p
e, τ0 = 0

for i = 1, · · · , k do
for j = 1, · · · , p do

Draw column j of Li from N (0, Ir), independently
end for

end for
Define M, ε̃ according to (2.11), (2.12), respectively
for i = 1, · · · , k do

Define τi by (2.13)
while t < τi do

Apply control action u(t) = Lix(t)
end while
Estimate D̂(i) by (2.14), (2.15)
Construct Ω(i) by (2.16)

end for
Let Ω(0) =

k⋂
i=1

Ω(i)

return Ω(0)

Once a random linear feedback is applied to the system, using Theorem 2.3 we show

that with high probability, Ω(0) can be learned, if one observes the state vectors {x(t)}nt=0.
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Since in Theorem 2.3 the closed-loop transition matrix needs to be regular with no eigen-

value of the unit size, first we need to show that these conditions can be satisfied.

Lemma 2.4, and Lemma 2.5 do this, with no knowledge beyond stabilizability of

[A0, B0]. Based on the properties of the distribution of a random linear feedback matrix L,

the above lemmas provide general statements, which hold almost surely. Then, we present

an applicable stabilizing algorithm, and prove that it will provide us the desired stabilizing

neighborhood. To proceed, we define the following classes of probability distributions over

real valued vectors and matrices.

Definition 2.4 (Full rank distributions). Let X be a random vector in Rm. We say X has a

linearly full rank distribution if for any arbitrary hyperplane in Rm such as P , it holds that

P (X ∈ P) = 0.

Further, X has a general full rank distribution, if for every manifoldM ⊂ Rm such that

dimR (M) ≤ m− 1, it holds that

P (X ∈M) = 0.

Example 2.2. Let Z ∈ Rp be normally distributed, Z ∼ N (µ,Σ), with arbitrary mean

µ ∈ Rp, and positive definite covariance matrix Σ ∈ Rp×p. Then, Z has a general full rank

distribution. Letting

Y =
Z

||Z||2
1{Z 6=0},

the random vector Y has a linearly full rank distribution, but since Y lives on the unit

sphere, Y does not have a general full rank distribution.

Random linear feedbacks with full rank distributions, induce the desired properties to

the closed-loop transition matrix A0 +B0L. In the next lemmas, we rigorously present that

the desired properties hold almost surely.
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Lemma 2.4 (Closed-loop regularity). Assume [A0, B0] is stabilizable. Let the columns of

L ∈ Rr×p be independent (but not necessarily identically distributed), with linearly full

rank distributions. The matrix A0 +B0L is regular, with probability one.

In addition to regularity, A0 + B0L is unit-root free, if the distribution of the linear

feedback L is not only linearly full rank, but also generally full rank.

Lemma 2.5 (Eigenvalues of closed-loop). Assume [A0, B0] is stabilizable. Let L ∈ Rr×p

have a general full rank distribution over Rr×p. With probability one, A0 + B0L has no

eigenvalue of the unit size.

Subsequently, an algorithmic procedure to find a stabilizing neighborhood will be pre-

sented based on random linear feedbacks discussed above. Let the columns of random lin-

ear feedbacks L1, · · · , Lk ∈ Rr×p be drawn from arbitrary general full rank distributions

independently, where k = 1+d r
p
e. Note that because of independence, for all i = 1, · · · , k,

the random feedback Li has a general full rank distribution, and so, according to Lemma

2.4 and Lemma 2.5, Theorem 2.3 can be applied.

According to Theorem 2.3, every closed-loop transition matrix D(i) = A0 + B0Li can

be estimated with high probability arbitrarily accurate, if the number of observations is

large enough. We show how to find a high probability confidence set for Θ0, using those

for D(1), · · · , D(k). More precisely, letting τ0 = 0,

M =

Ip · · · Ip

L1 · · · Lk

 ∈ Rq×kp, (2.11)

ε̃ =
ε0
2k

inf

{
|||ΘM |||2
|||Θ|||2

: Θ ∈ Rp×q
}
, (2.12)

note that since L1, · · · , Lk are independent, we have rank (M) = q, almost surely, i.e.

P (ε̃ > 0) = 1. Even if ε̃ became too small, one can repeat the drawing of the columns of

the linear feedbacks, in order to avoid pathologically small values of ε̃.
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Using the sample size N2.3 (·, ·) used in Theorem 2.3, for i = 1, · · · , k define

τi = τi−1 +N2.3

(
ε̃,
δ

k

)
, (2.13)

d̂
(i)
j = arg min

θ∈Rp

τi−1∑
t=τi−1

(xj(t+ 1)− θ′x(t))
2
, (2.14)

D̂(i) =
[
d̂

(i)
1 , · · · , d̂(i)

p

]
, (2.15)

Ω(i) =

Θ ∈ Rp×q :

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Θ
Ip
Li

− D̂(i)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ ε̃

 . (2.16)

In fact, τi shows the time points where the control action (i.e. the linear feedback) changes,

D̂(i) is nothing but the least-squares estimate of D(i), and Ω(i) is a high probability confi-

dence set for Θ0, based on Li. Design of τi implies by Theorem 2.3 that with probability at

least 1− δ
k
, we have

∣∣∣∣∣∣∣∣∣D̂(i) −D(i)
∣∣∣∣∣∣∣∣∣

2
≤ ε̃. Since D(i) = Θ0

Ip
Li

, letting

Ω(0) =
k⋂
i=1

Ω(i),

clearly

P
(
Θ0 /∈ Ω(0)

)
≤

k∑
i=1

P
(
Θ0 /∈ Ω(i)

)
≤ δ.

Further, for arbitrary Θ1 ∈ Ω(0), as long as Θ0 ∈ Ω(0), we have

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣(Θ1 −Θ0)

Ip
Li


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Θ1

Ip
Li

− D̂(i)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Θ0

Ip
Li

− D̂(i)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ 2ε̃,

27



for all i = 1, · · · , k. Thus, |||(Θ1 −Θ0)M |||2 ≤ 2kε̃, which according to (2.12) implies

2kε̃

|||Θ1 −Θ0|||2
≥ |||(Θ1 −Θ0)M |||2

|||Θ1 −Θ0|||2
≥ 2kε̃

ε0
,

or equivalently

|||Θ1 −Θ0|||2 ≤ ε0,

i.e. (2.10) holds, with probability at least 1 − δ. Algorithm 1 returns Ω(0), taking stabi-

lization radius ε0 and failure probability δ as inputs. Obviously, the normal distribution

N (0, Ir) used in Algorithm 1 is not unique, and can be substituted by any general full rank

distribution over Rr. Putting all together, we get the following theorem.

Theorem 2.4 (High probability stabilization). Let Ω(0) be the stabilizing set provided by

Algorithm 1. For arbitrary Θ ∈ Ω(0), we have

P
(∣∣∣λmax

(
Θ0L̃ (Θ)

)∣∣∣ < 1
)
≥ 1− δ.
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2.5 Technical Proofs

2.5.1 Proofs of Section 2.2

Proof of Proposition 2.1. For convenience, let K0 = K (Θ0) , and L0 = L (Θ0). First,

assume [A0, B0] is stabilizable, L is a stabilizer, D = A0 + B0L, and |λmax (D)| < 1. For

arbitrary fixed PSD matrix P0, define Pt (P0) , t = 1, · · · , T recursively,

Pt (P0) = Q+A′0Pt−1 (P0)A0−A′0Pt−1 (P0)B0 (B′0Pt−1 (P0)B0 +R)
−1
B′0Pt−1 (P0)A0.

(2.17)

Letting ct be as defined in (1.2), according to classical literature [17], the optimal control

policy for minimizing the finite horizon accumulative cost

JT =
T−1∑
t=0

E [ct] + E [x(T )′P0x(T )] ,

is u(t) = Ltx(t), t = 0, · · · , T − 1, where

Lt = − (B′0PT−t−1 (P0)B0 +R)
−1
B′0PT−t−1 (P0)A0. (2.18)

Moreover, this optimal policy yields the optimal cost

minJT = x(0)′PT (P0)x(0) +
T−1∑
t=0

tr (CPt (P0)) . (2.19)

On the other hand, applying the control policy u(t) = Lx(t), for t = 0, · · · , T − 2 we have

E [ct+1|x(t)] = E [x(t+ 1)′ (Q+ L′RL)x(t+ 1)|x(t)]

= E
[
(Dx(t) + w(t+ 1))′ (Q+ L′RL) (Dx(t) + w(t+ 1)) |x(t)

]
= x(t)′D′ (Q+ L′RL)Dx(t) + tr (C (Q+ L′RL)) ,
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and

E [x(T )′P0x(T )|x(T − 1)] = x(T − 1)′D′P0Dx(T − 1) + tr (CP0) .

Hence, the finite horizon cost becomes

JT = x(0)′P̃T (P0)x(0) +
T−1∑
t=0

tr
(
CP̃t (P0)

)
, (2.20)

where P̃t (P0) , t = 1, · · · , T are defined recursively as

P̃0 (P0) = P0, (2.21)

P̃t (P0) = Q+ L′RL+D′P̃t−1 (P0)D. (2.22)

Since |λmax (D)| < 1, lim
T→∞

P̃T (P0) = P∞ for a PSD matrix P∞. Letting C → 0, by

(2.19), (2.20) we have

x(0)′PT (P0)x(0) ≤ x(0)′P̃T (P0)x(0),

i.e. x(0)′PT (P0)x(0), T = 1, 2, · · · is bounded. If P0 = 0, this sequence is nondecreasing,

because minimizing both sides of

T−1∑
t=0

ct ≤
T∑
t=0

ct

subject to

x(t+ 1) = A0x(t) +B0u(t),

we get

x(0)′PT (0)x(0) ≤ x(0)′PT+1 (0)x(0).
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Therefore, the nondecreasing bounded sequence x(0)′PT (0)x(0), T = 1, 2, · · · converges.

Since x(0) is arbitrary, PT (0), T = 1, 2, · · · itself converges:

lim
T→∞

PT (0) = P∞(0).

According to the recursive definition of Pt(0) in (2.17), P∞(0) is a solution of (2.2). This

shows the existence of solution, and uniqueness will be shown later.

Next, since lim
T→∞

PT (0) = P∞(0), (2.19) implies lim
t→∞

tr (CPt(0)) = tr (CP∞(0)). So,

the Cesaro mean also converges to this limit, i.e.

J ? (Θ0) = tr (CP∞(0)) .

Optimality of the linear feedback u(t) = L0x(t), is concluded by (2.18). Now, we are

ready to show that L0 is a stabilizer. Letting

D = A0 +B0L0, C → 0, K0 = P∞(0),

we show that for arbitrary x(0), x(t) = Dtx(0) vanishes as t grows. First, note that by

(2.2), (2.3),

(B′0K0B0 +R)L0 = −B′0K0A,

L′0 (B′0K0B0 +R)L0 = A′0K0B0 (B′0K0B0 +R)
−1
B′0K0A0.
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Therefore, doing some algebra we get

Q+ L′0RL0 +D′K0D

= Q+ A′0K0A0 + L′0 (B′0K0A0 +R)L0 + A′0K0B0L0 + L′0B
′
0K0A0

= Q+ A′0K0A0 − A′0K0B0 (B′0K0B0 +R)
−1
B′0K0A0

+ [L′0 (B′0K0B0 +R) + A′0K0B0]L0 + L′0 [(B′0K0B0 +R)L0 +B′0K0A0]

= K0,

i.e.

K0 −D′K0D = Q+ L′0RL0. (2.23)

So,

x(t+1)′K0x(t+1)−x(t)′K0x(t) = x(t)′ (D′K0D −K0)x(t) = −x(t)′ (Q+ L′0RL0)x(t).

(2.24)

Adding up both sides of (2.24), because K0 is PSD we have

−x(0)′K0x(0) ≤ x(t+ 1)′K0x(t+ 1)− x(0)′K0x(0) = −
t∑
i=0

x(i)′ (Q+ L′0RL0)x(i),

(2.25)

in other words,

lim
t→∞

x(t)′ (Q+ L′0RL0)x(t) = 0.

Thus, since Q is positive definite, lim
t→∞

x(t) = 0, i.e. L0 is a stabilizer. Back to the

proof of the existence of a solution K0, we show that for arbitrary PSD P0, it holds that

lim
T→∞

PT (P0) = P∞(0). To do so, minimize both sides of

T−1∑
t=0

ct ≤
T−1∑
t=0

ct + x(T )′P0x(T ),
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subject to

x(t+ 1) = A0x(t) +B0u(t),

to get

x(0)′PT (0)x(0) ≤ x(0)′PT (P0)x(0). (2.26)

On the other hand, applying controller u(t) = L0x(t), the cost
T−1∑
t=0

ct + x(T )′P0x(T )

becomes
T−1∑
t=0

x(0)′D′
t
(Q+ L′0RL0)Dtx(0) + x(0)′D′

T
P0D

Tx(0). (2.27)

Note that because of stability |λmax (D)| < 1, we have

lim
T→∞

x(0)′D′
T
P0D

Tx(0) = 0.

Therefore, by (2.26), (2.27), and (2.23),

x(0)′P∞ (0)x(0) = lim
T→∞

x(0)′PT (0)x(0) ≤ lim
T→∞

x(0)′PT (P0)x(0)

≤ lim
T→∞

T−1∑
t=0

x(0)′D′
t
(Q+ L′0RL0)Dtx(0) + x(0)′D′

T
P0D

Tx(T )

= lim
T→∞

T−1∑
t=0

x(0)′D′
t
(K0 −D′K0D)Dtx(0)

= x(0)′K0x(0),

i.e. for arbitrary P0,

lim
T→∞

PT (P0) = P∞(0).

Using this, we show that K0 is the unique solution of (2.2). If P∗ is another solution,

let P0 = P∗, which plugging in (2.17) implies Pt (P∗) = P∗, for t = 1, 2, · · · . Hence

P∗ = lim
T→∞

PT (P∗) = P∞(0), i.e. the solution K0 of (2.2) exists, and is unique.

Conversely, ifK0 is a solution of (2.2), defineL0 as (2.3) andD = A0+B0L0. Note that

K0 is positive semidefinite, and let P0 = K0. Define Pt by (2.17), which yield Pt = K0,
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for t = 0, 1, · · · . As before, (2.2), (2.3) imply (2.23). Similarly, (2.24), (2.25) hold, i.e.

lim
t→∞

Dtx(0) = 0 for arbitrary x(0), which means L0 defined in (2.3) is a stabilizer.

Proof of Proposition 2.2. When applying the linear feedbackL (Θ0), the closed-loop tran-

sition matrix will be D = Θ0L̃ (Θ0) = A0 +B0L (Θ0). Letting P = Q+L (Θ0)′RL (Θ0),

we have the followings. First,

R (T − 1)+x(0)′Px(0)−J ? (Θ0) =
T−1∑
t=0

x(t)′Px(t)−TJ ? (Θ0) = tr (PVT )−TJ ? (Θ0) ,

where VT is defined in (2.7).

Second, x(t+ 1) = Dx(t) + w(t+ 1) implies VT = DVTD
′ + ET , where

ET = UT + CT +D (x(0)x(0)′ − x(T − 1)x(T − 1)′)D′ + x(0)x(0)′,

UT =
T−2∑
t=0

[Dx(t)w(t+ 1)′ + w(t+ 1)x(t)′D′] ,

CT =
T−1∑
t=1

w(t)w(t)′.

Third, by Proposition 2.1, J ? (Θ0) = tr (K (Θ0)C). Finally, stability of the system yields

lim
T→∞

1
T 1/2 ||x(T − 1)||22 = 0, almost surely. Putting all above together, and using (2.23), we

get

lim
T→∞

1

T 1/2
R (T ) = lim

T→∞

1

T 1/2
tr

(
P

∞∑
n=0

DnETD
′n − TC

∞∑
n=0

D′
n
PDn

)

=
∞∑
n=0

tr

(
D′

n
PDn lim

T→∞

UT + CT − TC
T 1/2

)
.

According to Lindeberg’s Central Limit Theorem [18], the asymptotic distribution of all

2p2 entries of the matrices CT−TC
T 1/2 , UT

T 1/2 is a multivariate mean-zero normal. By |λmax (D)| <

1, the matrix
∞∑
n=0

D′nPDn is bounded. So, the desired result holds, since a linear combina-

tion (tr (·)) of jointly normal random variables is normal as well.
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Proof of Lemma 2.1. Since Θ is stabilizable, according to Proposition 2.1, ΘL̃ (Θ) is sta-

ble, ∣∣∣λmax

(
ΘL̃ (Θ)

)∣∣∣ ≤ 1− 2ρ,

for some ρ > 0. For arbitrary 1 ≤ i ≤ p, 1 ≤ j ≤ q, let all entries of matrix Xij ∈ Rp×q be

zero, except the ij-th entry, which is one. Then, for θ ∈ R, consider the polynomial

fθ (λ) = det
(

(Θ + θXij) L̃ (Θ)− λIp
)
.

All coefficients of fθ (λ) are linear functions of θ. Further, the magnitudes of the roots

of fθ (λ) are continuous with respect to the coefficients, and so, are also continuous with

respect to θ. Since all roots of f0 (λ) are in magnitude at most 1− 2ρ, there exists εij > 0,

such that |θ| < εij implies that all roots of fθ (λ) are in magnitude at most

1−
(

2− 1

pq

)
ρ.

Taking ε0 = min
i,j

εij , by |||Θ−Θ0|||2 < ε0, Θ0 can be written in the form of Θ0 = Θ +

p∑
i=1

q∑
j=1

θijXij , where |θij| < εij , for all i, j. Therefore, all roots of

f (λ) = det
(

Θ0L̃ (Θ)− λIp
)

are in magnitude at most 1− ρ, which is the desired result.

Proof of Lemma 2.2. First, Let D1, D2 ∈ Rp×p be stable, and P ∈ Rp×p be a positive

semidefinite matrix. For i = 1, 2, define Fi =
∞∑
n=0

D′ni PD
n
i . We show that

|||F1 − F2|||2 ≤ ΓF |||D1 −D2|||2, (2.28)
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for some ΓF <∞. For n = 1, 2, · · · , we have

|||Dn
2 −Dn

1 |||2 = |||(D1 +D2 −D1)n −Dn
1 |||2

≤
∑

a0+
m∑
j=1

(aj+bi)=n,
m∑
j=0

aj<n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Da0

1

m∏
j=1

(D2 −D1)bj D
aj
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
∑

a0+
m∑
j=1

(aj+bi)=n,
m∑
j=0

aj<n

|||D1|||

m∑
j=0

aj

2 |||D2 −D1|||

m∑
j=1

bj

2

=
n∑
`=1

(
n

`

)
|||D1|||n−`2 |||D1 −D2|||`2

≤ (|||D1|||2 + |||D1 −D2|||2)n

|||D1|||2
n|||D1 −D2|||2.

Then, there is k <∞, such that

max
{∣∣∣∣∣∣D′k1 ∣∣∣∣∣∣2, ∣∣∣∣∣∣Dk

1

∣∣∣∣∣∣
2
,
∣∣∣∣∣∣D′k2 ∣∣∣∣∣∣2, ∣∣∣∣∣∣Dk

2

∣∣∣∣∣∣
2

}
≤ 1− 2ρ,

for some ρ > 0. Define

Ei = Dk
i , Pi =

k−1∑
n=0

D′ni PD
n
i .

Noting that

|||D′2 −D′1|||2 ≤ Γ0|||D2 −D1|||2,
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we have

|||E2 − E1|||2 ≤
(|||D1|||2 + |||D2 −D1|||2)k

|||D1|||2
k|||D2 −D1|||2 = ΓE|||D2 −D1|||2,

|||E ′2 − E ′1|||2 ≤
(|||D′1|||2 + |||D′2 −D′1|||2)k

|||D′1|||2
k|||D′2 −D′1|||2 = ΓE′ |||D2 −D1|||2,

|||P2 − P1|||2 ≤
k−1∑
n=1

[|||D′n2 P (Dn
2 −Dn

1 )|||2 + |||(D′n2 −D′n1 )PDn
1 |||2]

≤
k−1∑
n=1

[|||D′n2 |||2|||D
n
2 −Dn

1 |||2 + |||Dn
1 |||2|||D

′n
2 −D′n1 |||2] |||P |||2n

≤ ΓP |||D2 −D1|||2.

Suppose that |||D2 −D1|||2 is small enough to satisfy

max {|||E2 − E1|||2, |||E
′
2 − E ′1|||2} ≤ ρ.

Since |||E1|||2+|||E1 − E2|||2 ≤ 1−ρ, |||E ′1|||2+|||E ′1 − E ′2|||2 ≤ 1−ρ, and Fi =
∞∑
n=0

E ′ni PiE
n
i ,

similar to the upper bound above for |||Dn
2 −Dn

1 |||2 we have

|||En
2 − En

1 |||2 ≤
(|||E1|||2 + |||E2 − E1|||2)n

|||E1|||2
n|||E2 − E1|||2

≤ ΓE
|||E1|||2

|||D2 −D1|||2n (1− ρ)n ,

|||E ′n2 − E ′n1 |||2 ≤
(|||E ′1|||2 + |||E ′2 − E ′1|||2)n

|||E ′1|||2
n|||E ′2 − E ′1|||2

≤ ΓE′

|||E ′1|||2
|||D2 −D1|||2n (1− ρ)n .

So,

|||F2 − F1|||2 ≤
∞∑
n=0

[|||E ′n2 P2 (En
2 − En

1 )|||2 + |||(E ′n2 − E ′n1 )P2E
n
1 |||2 + |||E ′n1 (P2 − P1)En

1 |||2]

≤
∞∑
n=0

[
|||P2|||2ΓE
|||E1|||2

n+
|||P2|||2ΓE′

|||E ′1|||2
n+ ΓP

]
(1− ρ)2n |||D2 −D1|||2

= ΓF |||D2 −D1|||2,
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i.e. (2.28) holds. Now, we prove the desired inequality. Consider two systems (1), (2),

with accumulative costs J =
∞∑
t=0

ct, where for i = 1, 2, System (i) evolves according

to x(t + 1) = Aix(t) + Biu(t), and both systems share the initial state x(0) = x0, for

||x0||2 = 1. Denoting the optimal accumulative cost of System (i) by J (i), according to the

proof of Proposition 2.1, we have J (i) = x′0K (Θi)x0. Without loss of generality, assume

J (1) ≥ J (2).

Using Lemma 2.1, assume |||Θ1 −Θ2|||2 is sufficiently small, such that both matrices

Θ1L̃ (Θ2) ,Θ2L̃ (Θ1) are stable. Then, apply control policy u(t) = L (Θ2)x(t) to both

systems. The closed-loop matrices Di = ΘiL̃ (Θ2) are stable, and

|||D1 −D2|||2 ≤
∣∣∣∣∣∣∣∣∣L̃ (Θ2)

∣∣∣∣∣∣∣∣∣
2
|||Θ1 −Θ2|||2. (2.29)

Letting P = Q+ L (Θ2)′RL (Θ2), as we saw in the proof of Proposition 2.1, the accumu-

lative cost of System (i) is x′0Fix0, where Fi =
∞∑
n=0

D′ni PD
n
i . The linear feedback L (Θ2)

is an optimal policy for System (2), i.e. x′0K (Θ2)x0 = x′0F2x0, and J (1) is the minimum

accumulative cost for System (1), i.e. x′0K (Θ1)x0 ≤ x′0F1x0. Therefore,

0 ≤ J (1) − J (2) = x′0K (Θ1)x0 − x′0K (Θ2)x0 ≤ x′0 (F1 − F2)x0 ≤ |||F1 − F2|||2.

Since x0 is an arbitrary unit vector, by (2.28), (2.29) we have

|||K (Θ1)−K (Θ2)|||2 ≤ ΓF |||D1 −D2|||2 ≤ ΓK |||Θ1 −Θ2|||2,

which is the desired result.

38



2.5.2 Proofs of Section 2.3

Lemma 2.6 (Noise upper bound). For n = 1, 2, · · · , and 0 < δ < 1, define the following

event.

W =

{
max
1≤t≤n

||w(t)||∞ ≤ νn (δ)

}
.

We have

P (W) ≥ 1− δ.

Proof of Lemma 2.6. First, note that for all y > 0; i = 1, · · · , p; t = 1, · · · , n, by As-

sumption 2.1 we have

P (|wi(t)| > νn (δ)) ≤ b1exp

(
−νn (δ)α

b2

)
= b1exp

(
−
b2 log b1np

δ

b2

)
=

δ

np
.

So, using union bound we get

P (Wc) ≤
n∑
t=1

p∑
i=1

P (|wi(t)| > νn (δ)) ≤ δ.

Lemma 2.7 (State upper bound). Letting D = P−1ΛP be the Jordan decomposition of

stable matrix D, on the eventW we have

||x(t)||2 ≤ πn (δ) ,

for all t = 1, 2, · · · , n.

Proof of Lemma 2.7. First, the behavior of |||Λ|||∞ is determined by the blocks of Λ. In
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fact, letting Λ = diag (Λ1, · · · ,Λk), simply the definition of operator norm |||·|||∞ implies

|||Λ|||∞ ≤ max
1≤i≤k

|||Λi|||∞.

Then, to find an upper bound for the operator norm of an exponent of an arbitrary block,

such as

Λi =



λ 1 0 · · · 0

0 λ 1 · · · 0

...
...

...
...

...

0 · · · 0 0 λ


∈ Cm×m,

we show that ∣∣∣∣∣∣Λt
i

∣∣∣∣∣∣
∞ ≤ tm−1 |λ|t

m−1∑
j=0

|λ|−j

j!
. (2.30)

For this purpose, noting that for k = 0, 1, · · · ,

Λk
i =



λk
(
k
1

)
λk−1 · · ·

(
k

m−1

)
λk−m+1

0 λk · · ·
(

k
m−2

)
λk−m+2

...
...

...
...

0 · · · 0 λk


,

let v ∈ Cm be such that ||v||∞ = 1. For ` = 1, · · · ,m, the `-th coordinate of Λt
iv is

m−`∑
j=0

(
t
j

)
λt−jvj+`+1, which, because of

(
t
j

)
≤ tj

j!
, is at most the right hand side of (2.30).

Therefore, because of Λt = diag (Λt
1, · · · ,Λt

k), we have |||Λt|||∞ ≤ ηt (Λ). Now, by x(t) =

Dtx(0) +
t∑
i=1

Dt−iw(i), by Lemma 2.6, on the eventW we have

||x(t)||2 =

∣∣∣∣∣
∣∣∣∣∣P−1ΛtPx(0) +

t∑
i=1

P−1Λt−iPw(i)

∣∣∣∣∣
∣∣∣∣∣
2

≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2

(∣∣∣∣∣∣Λt
∣∣∣∣∣∣
∞||Px(0)||∞ +

t∑
i=1

∣∣∣∣Λt−iPw(i)
∣∣∣∣
∞

)
≤ πn (δ) .
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Lemma 2.8 (Noise empirical covariance). Define Cn = 1
n

n∑
i=1

w(i)w(i)′, and assume

n

νn (δ)2 ≥
6 |λmax (C)|+ 2ε

3ε2
p log

(
2p

δ

)
. (2.31)

On the eventW , we have

P (|λmax (Cn − C)| > ε) ≤ δ.

Proof of Lemma 2.8. In this proof, we use the following Matrix Bernstein inequality [30]:

Lemma 2.9 (Matrix Bernstein). Let Xi ∈ Rp×p, i = 1, · · · , n be a sequence of indepen-

dent symmetric random matrices. Assume for all i = 1, · · · , n, we have E [Xi] = 0 and

|λmax (Xi)| ≤ ∆. Then, for all y ≥ 0 we have

P

(∣∣∣∣∣λmax

(
n∑
i=1

Xi

)∣∣∣∣∣ ≥ y

)
≤ 2pexp

(
− 3y2

6σ2 + 2∆y

)
,

where σ2 =

∣∣∣∣λmax

(
n∑
i=1

E [X2
i ]

)∣∣∣∣.
Letting Xi = w(i)w(i)′ − C, and ∆ = max

1≤i≤n
||w(i)||22, clearly E [Xi] = 0, and

σ2 =

∣∣∣∣∣λmax

(
n∑
i=1

E
[
X2
i

])∣∣∣∣∣
≤

n∑
i=1

∣∣λmax

(
E
[
||w(i)||22w(i)w(i)′

]
− C2

)∣∣ ≤ n∆ |λmax (C)| .
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OnW , we have ∆ ≤ pνn (δ)2. Therefore, by (2.31) we have

P (|λmax (Cn − C)| > ε) = P

(∣∣∣∣∣λmax

(
n∑
i=1

Xi

)∣∣∣∣∣ > nε

)

≤ 2pexp

(
− 3nε2

6∆ |λmax (C)|+ 2∆ε

)
≤ δ.

Lemma 2.10 (Average cross product matrix). Assume |λmax (D)| < 1, and define

Un =
1

n

n−1∑
i=0

[Dx(i)w(i+ 1)′ + w(i+ 1)x(i)′D′] .

Assume in addition
n

|||D|||22νn (δ)2 πn (δ)2 ≥
32p

ε2
log

(
2p

δ

)
. (2.32)

On the eventW , we have

P (|λmax (Un)| > ε) ≤ δ.

Proof of Lemma 2.10. In this proof, we use the following Matrix Azuma inequality [30]:

Lemma 2.11 (Matrix Azuma). Let Xi ∈ Rp×p, i = 1, · · · , n be a martingale difference

sequence of symmetric matrices, i.e. for some filter {Fi}ni=0, Xi is Fi-measurable and

E [Xi+1|Fi] = 0. Assume for fixed symmetric matrices Mi, i = 1, · · · , n, all matrices

M2
i −X2

i are positive semidefinite. Then, for all y ≥ 0 we have

P

(∣∣∣∣∣λmax

(
n∑
i=1

Xi

)∣∣∣∣∣ ≥ y

)
≤ 2pexp

(
− y2

8σ2

)
,

where σ2 =

∣∣∣∣λmax

(
n∑
i=1

M2
i

)∣∣∣∣.
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Letting

Xi = Dx(i− 1)w(i)′ + w(i)x(i− 1)′D′,

Fi = σ (w(1), · · · , w(i)) ,

Mi = 2p1/2νn (δ) πn (δ) |||D|||2Ip,

clearly, E [Xi+1|Fi] = 0. Further, M2
i −X2

i is positive semidefinite, since by Lemma 2.6,

and Lemma 2.7, onW we have

max
1≤i≤n

||w(i)||2 ≤ p1/2νn (δ) ,

max
0≤i≤n−1

||x(i)||2 ≤ πn (δ) .

Therefore, σ2 = 4np|||D|||22νn (δ)2 πn (δ)2, and by (2.32) we have

P (|λmax (Un)| > ε) = P

(∣∣∣∣∣λmax

(
n∑
i=1

Xi

)∣∣∣∣∣ > nε

)

≤ 2pexp

(
− nε2

32p|||D|||22νn (δ)2 πn (δ)2

)
≤ δ.

Proof of Theorem 2.1. First, by the dynamics equation x(t+ 1) = Dx(t) +w(t+ 1), we

have

Vn+1 = x(0)x(0)′ +
n−1∑
i=0

(Dx(i) + w(i+ 1)) (Dx(i) + w(i+ 1))′

= x(0)x(0)′ +D

n−1∑
i=0

x(i)x(i)′D′

+
n−1∑
i=0

[Dx(i)w(i+ 1)′ + w(i+ 1)x(i)′D′] +
n∑
i=1

w(i)w(i)′

= DVn+1D
′ + nUn + nCn +D (x(0)x(0)′ − x(n)x(n)′)D′ + x(0)x(0)′,
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where Cn, Un are defined in Lemma 2.8, and Lemma 2.10, respectively. Letting

En = Un + Cn +
1

n
D (x(0)x(0)′ − x(n)x(n)′)D′ +

1

n
x(0)x(0)′,

since |λmax (D)| < 1, the Lyapunov equation Vn+1 = DVn+1D
′ + nEn has the solution

Vn+1 = n
∞∑
i=0

DiEnD
′i, (2.33)

i.e. |λmin (Vn+1)| ≥ n |λmin (En)|. Henceforth in the proof, we assume the eventW holds.

According to Lemma 2.8, (2.4) implies that

P
(
|λmax (Cn − C)| > ε

3

)
≤ δ

2
. (2.34)

In addition, by Lemma 2.10, (2.5) implies that

P
(
|λmax (Un)| > ε

3

)
≤ δ

2
. (2.35)

Finally, using Lemma 2.7, by (2.6) we get

1

n

(
|||D|||22 + 1

) (
||x(0)||22 + ||x(n)||22

)
≤ ε

3
. (2.36)

Putting (2.34), (2.35), and (2.36) together,

|λmax (En − C)| ≤ |λmax (Cn − C)|+ |λmax (Un)|

+
1

n

(
|||D|||22 + 1

) (
||x(0)||22 + ||x(n)||22

)
≤ ε,
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i.e. on the eventW , with probability at least 1− δ, it holds that

|λmin (En)| ≥ |λmin (C)| − ε.

Substituting in (2.33), we get the desired result. Moreover, since |λmax (En)| ≤ |λmax (C)|+

ε, we have

∣∣∣∣λmax

(
1

n
Vn+1

)∣∣∣∣ =

∣∣∣∣∣λmax

(
∞∑
i=0

DiEnD
′i

)∣∣∣∣∣
≤

∞∑
i=0

∣∣∣λmax

(
DiEnD

′i
)∣∣∣

≤ (|λmax (C)|+ ε)
∞∑
i=0

∣∣∣∣∣∣∣∣∣D′i∣∣∣∣∣∣∣∣∣2
2

≤ (|λmax (C)|+ ε) η (D′)
2
.

Thus, when 2ε = |λmin (C)|, with probability at least 1− 2δ we have

∣∣∣∣λmax

(
1

n
Vn+1

)∣∣∣∣ ≤ 3

2
|λmax (C)| η (D′)

2
. (2.37)

When n → ∞, the conditions hold for arbitrary ε, δ. So, |λmin (En)| → |λmin (C)|, which

implies the desired result.

Proof of Lemma 2.3. First, since n ≥ N2.1

(
|λmin(C)|

2
, δ
)

+ 1, by the proof of Theorem

2.1, on the eventW , with probability at least 1− δ, we have

|λmin (Vn)| ≥ |λmin (C)|
2

(n− 1) .

Then, as long as Vn is nonsingular, one can write

D̂n −D =

(
n−1∑
t=0

w(t+ 1)x(t)′

)
V −1
n ,
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which yields (
D̂n −D

)
Vn

(
D̂n −D

)′
= U ′nV

−1
n Un,

where Un =
n−1∑
t=0

x(t)w(t+ 1)′. Therefore,

∣∣∣∣∣∣∣∣∣∣∣∣(D̂n −D
)
Vn

(
D̂n −D

)′∣∣∣∣∣∣∣∣∣∣∣∣
2

≤ |||Un|||22
|λmin (Vn)|

. (2.38)

To proceed, for arbitrary matrix H ∈ Rk×`, define the linear transformation

Φ (H) =

0k×k H

H ′ 0`×`

 ∈ R(k+`)×(k+`).

As a well known fact, the equality |||H|||2 = |λmax (Φ (H))| holds [30]. Note that Φ (H)

is always symmetric. Next, letting Xt = x(t)w(t + 1)′, apply Lemma 2.11 to Φ (Xt) ∈

R2p×2p. Since

Φ (Xt)
2 =

||w(t+ 1)||22x(t)x(t)′ 0p×p

0p×p ||x(t)||22w(t+ 1)w(t+ 1)′

 ,
by Lemma 2.6, and Lemma 2.7, all matrices Φ (Mt)

2 − Φ (Xt)
2 are positive semidefinite

on the eventW , where

Mt = p1/2νn (δ) πn (δ) Ip.

By

σ2 =

∣∣∣∣∣λmax

(
n−1∑
t=0

Φ (Mt)
2

)∣∣∣∣∣ = npνn (δ)2 πn (δ)2 ,

letting y = 81/2σ log1/2
(

2p
δ

)
, Lemma 2.11 implies

P (|||Un|||2 > y) = P (|λmax (Φ (Un))| > y) ≤ 2p exp

(
− y2

8σ2

)
= δ.
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Plugging in (2.38), we get the desired result.

Proof of Theorem 2.2. Similar to the proof of Lemma 2.3, condition (2.8) implies that on

the eventW , |λmin (Vn)| ≥ |λmin(C)|
2

(n− 1), with probability at least 1 − δ/2. Further, by

D̂n −D = UnV
−1
n , we get

∣∣∣∣∣∣∣∣∣D̂n −D
∣∣∣∣∣∣∣∣∣

2
≤ |||Un|||2
|λmin (Vn)|

. (2.39)

Then, σ2 = npνn (δ)2 πn (δ)2, and letting y = |λmin(C)|
2

(n− 1) ε, according to Lemma 2.11,

condition (2.9) implies

P (|||Un|||2 > y) ≤ 2p exp

(
− y2

8σ2

)
≤ δ

2
.

Plugging in (2.39), we get the desired result.

2.5.3 Proofs of Section 2.4

Proof of Lemma 2.4. Let the event G be irregularity of D = A0 +B0L. The statement we

prove is slightly stronger than regularity. Indeed, we prove that for all λ ∈ C, |λ| ≥ 1, with

probability one,

rank (D − λIp) ≥ p− 1.

Note that the recent result implies that P (G) = 0.

First, let Yi ∈ Rm, i = 1, · · · ,m have linearly full rank distributions. Define Y =

[Y1, · · · , Ym], and letM (λ) be am×mmatrix, with all coordinates being real polynomials

of λ. Let f (λ) be a real polynomial of λ as well. We show that

P
(
∃λ ∈ C, f (λ) 6= 0 : rank

(
Y − 1

f (λ)
M (λ)

)
< m− 1

)
= 0. (2.40)
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If

rank

(
Y − 1

f (λ0)
M (λ0)

)
< m− 1,

letting 1
f(λ0)

M (λ0) = [M1, · · · ,Mm], two of the vectors Yi − Mi, i = 1, · · · ,m, such

as Ym−1 −Mm−1, Ym −Mm, can be written as linear combinations of the others. There

are finitely many values of λ0 for which Ym−1 − Mm−1 is a linear combination of Y1 −

M1, · · · , Ym−2 −Mm−2, since for every such a λ0, det
(
Ỹ
)

= 0, where Ỹ is the square

matrix whose columns are Y1 −M1, · · · , Ym−1 −Mm−1, removing an arbitrary row. Note

that det
(
Ỹ
)

is a polynomial of λ0, divided by f (λ0), and f (λ0) 6= 0.

Note that λ0 is a deterministic function of Y1, · · · , Ym. For every such a λ0, the dimen-

sion of the subspace P spanned by Y1 −M1, · · · , Ym−2 −Mm−2,Mm is at most m − 1.

Because Ym is independent of Y1, · · · , Ym−1, and Ym has a linearly full rank distribution,

P (Ym ∈ P) = 0, i.e. (2.40) holds.

Now, let m = rank (B0). If m = p, applying the above argument to

Y = D,M (λ) = λIp, f (λ) = 1,

we have P (G) = 0, since full rankness of B0 implies linearly full rank distributions for all

columns of B0L. If m < p, there is a p × p permutation matrix J , and K ∈ R(p−m)×m,

such that

JB0 =

 B̃

KB̃

 =

Im
K

 B̃,
where B̃ ∈ Rm×r is full rank. Let L0 be a stabilizer, D0 = A0 +B0L0, and

JD0 =

D1

D2

 , D1 ∈ Rm×p, D2 ∈ R(p−m)×p,
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to get

J (A0 +B0L) = JD0 + JB0 (L− L0) =

 D1 + B̃ (L− L0)

D2 +KB̃ (L− L0)

 .

Writing J =

J1

J2

 similarly, we have

rank (A0 +B0L− λIp) = rank (J (A0 +B0L)− λJ)

= rank


 Im 0m×(p−m)

−K Ip−m

 (J (A0 +B0L)− λJ)


= rank


D1 + B̃ (L− L0)− λJ1

[−K, Ip−m] J (D0 − λIp)


 .

Call the last matrix above X̃ . Since |λmax (D0)| < 1, for |λ| ≥ 1 the matrix D0 − λIp is

full rank. Therefore, because of

rank ([−K, Ip−m]) = p−m,

we have

rank ([−K, Ip−m] J (D0 − λIp)) = p−m.

Rearrange columns of matrix X̃ to get

X =

X11 X12

X21 X22

 , X11 ∈ Cm×m, X22 ∈ C(p−m)×(p−m), rank (X22) = p−m.

In other words, p−m linearly independent columns of [−K, Ip−m] J (D0 − λIp) have been
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put together to form X22. If D is not regular,

p− 2 ≥ rank
(
X̃
)

= rank (X)

= rank

X
 Im 0m×(p−m)

−X−1
22 X21 Ip−m




= rank


X11 −X12X

−1
22 X21 X12

0(p−m)×m X22


 .

Hence,

rank
(
X11 −X12X

−1
22 X21

)
≤ m− 2.

Remember that columns of [X11, X12] are exactly the same as D1 + B̃ (L− L0) − λJ1,

and all coordinates of det (X22)X12X
−1
22 X21 are polynomials of λ (since all coordinates of

det (X22)X−1
22 are polynomials of the coordinates of X22). Taking

f (λ) = det (X22) ,

by (2.40), since full rankness of B̃ implies linearly full rank distributions for all columns

of B̃ (L− L0), we have

P
(
rank

(
X11 −X12X

−1
22 X21

)
≤ m− 2

)
= 0,

which is the desired result since rank (X22) = p−m.

Proof of Lemma 2.5. Assume D = A0 + B0L has a unit-root eigenvalue, denoted by

λ ∈ C, |λ| = 1. Assuming m = rank (B0), let permutation matrix J and K ∈ R(p−m)×m
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be such that

JB0 =

 B̃

KB̃

 =

Im
K

 B̃,
where B̃ ∈ Rm×r is full rank. Letting L0 be a stabilizer, D0 = A0 + B0L0, and X =

B̃ (L− L0) ∈ Rm×p, note thatX has a general full rank distribution, thanks to full rankness

of B̃. Since D0 is stable, det (D0 − λIp) 6= 0, and

0 = det (A0 +B0L− λIp)

= det

JD0 +

Im
K

X − λJ


= det

(D0 − λIp)−1 J−1

Im
K

X + Ip


= det

X (D0 − λIp)−1 J−1

Im
K

+ Im

 ,

where the last equality above is implied by Sylvester’s determinant identity. Denote the

complex conjugate of λ by λ̄, and define the real matrix

M (λ) = M
(
λ̄
)

=
(
D0 − λ̄Ip

)−1
(D0 − λIp)−1 J−1

Im
K

 .
Further, define the space of eigenvectors in Cm as follows. First, consider the equivalence

relation ∼ on Cm, defined as

x ∼ y, if x = cy for some c ∈ C, c 6= 0.
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Letting S = Cm
∼ be the direction space in Cm, we have dimC (S) = m− 1, i.e.

dimR (S) = 2m− 2.

Note that for every matrix Y ∈ Cm×m and every vector v ∈ Cm, Y v = 0 if and only if

Y ṽ = 0 for every ṽ ∼ v. Thus,

det

X (D0 − λIp)−1 J−1

Im
K

+ Im

 = 0

implies that there is v ∈ S, v 6= 0, such that

(
X
(
D0 − λ̄Ip

)
M (λ) + Im

)
v = 0 (2.41)

Denote the set of all matrices X satisfying (2.41) by X (λ, v) ⊂ Rm×p. Separating real (<)

and imaginary (=) parts, we get

Xa(v) = < (v) ,

Xb(v) = = (v) ,

where for v ∈ S, vectors a(v), b(v) ∈ Rp are defined as

a(v) = M (λ)<
(
λ̄v
)
−D0M (λ)< (v) ,

b(v) = M (λ)=
(
λ̄v
)
−D0M (λ)= (v) .

Now, we partition S to

S = S1

⋃
S2, S1

⋂
S2 = ∅,
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where

S1 = {v ∈ S : a(v), b(v) are in-line },

S2 = {v ∈ S : a(v), b(v) are not in-line }.

Whenever v ∈ S2, for j = 1, · · · ,m, the j-th row of X needs to be in the intersection of

two nonparallel hyperplanes P1,P2 ⊂ Rp, where

P1 = {y ∈ Rp : y′a(v) = <(vj)} ,

P2 = {y ∈ Rp : y′b(v) = =(vj)} .

Since dimR (P1) ≤ p− 1, dimR (P2) ≤ p− 1, and v ∈ S2 we have

dimR (P1 ∩ P2) ≤ p− 2.

Therefore, for v ∈ S2, we have dimR (X (λ, v)) ≤ m(p − 2). Since dimR (|λ| = 1) = 1,

using dimR (S2) ≤ 2m− 2 we have

dimR

 ⋃
|λ|=1,v∈S2

X (λ, v)

 ≤ 1 + 2m− 2 +m(p− 2) = mp− 1. (2.42)

On the other hand, for v ∈ S1, there is a real number, say α(v), such that b(v) =

α(v)a(v). Then,

= (v) = Xb(v) = α(v)Xa(v) = α(v)< (v) , (2.43)

i.e. whenever v ∈ S1, the vectors <(v),=(v) are in-line. So, dimR (S1) = m − 1, and for

v ∈ S1, we have P1 = P2, i.e.

dimR (X (λ, v)) ≤ m(p− 1).
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Doing some algebra, we get

0 = α(v)a(v)− b(v)

= α(v) (< (λ) Ip + α(v)= (λ) Ip −D0)M (λ)< (v)

− (α(v)< (λ) Ip −= (λ) Ip − α(v)D0)M (λ)< (v)

=
(
1 + α(v)2

)
= (λ)M (λ)< (v) ,

i.e. either = (λ) = 0, or M (λ)< (v) = 0. According to the definition of M (λ), the latter

case implies < (v) = 0, which because of (2.43) leads to v = 0, and is impossible. So, by

dimR (|λ| = 1,=(λ) = 0) = 0, we have

dimR

 ⋃
|λ|=1,=(λ)=0

X (λ, v)

 ≤ m− 1 +m(p− 1) = mp− 1. (2.44)

Writing

X =
⋃

|λ|=1,v∈S

X (λ, v) ⊂

 ⋃
|λ|=1,v∈S2

X (λ, v)

 ∪
 ⋃
|λ|=1,=(λ)=0

X (λ, v)

 ,

according to (2.42), (2.44) we have dimR (X ) ≤ mp − 1, and by general full rankness of

the distribution of X , P (X ) = 0.
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CHAPTER 3

Reinforcement Learning Algorithms

3.1 Introduction

Once the system is stabilized, an adaptive policy is required to minimize the regret. In

this chapter, we present some reinforcement learning algorithms for adaptive control of the

LQ systems. Different situations, such as those with and without identifiability assump-

tions, will be considered. Note that in advance to apply any of the following algorithms,

we assume that there is a stabilizing set, provided as an input to the corresponding rein-

forcement learning algorithm. According Theorem 2.4, a stabilizing set with arbitrary high

probability guarantee can be constructed, although, it is not the unique way to stabilize the

system. In fact, depending on the application, stabilization can be provided to the user by

some additional side information.

If one uses Algorithm 1 in order to find a high probability stabilizing set, the state vector

can end up with a large value, since the closed-loop transition matrix is not necessarily

stable during Algorithm 1. This will not cause any problem, because the system is fully

stabilized now. Indeed, one can let the stabilized system proceed for a while, in order to

push down the state vector to a reasonable magnitude.

In the episodic algorithms below, the estimation will be reinforced at the end of every

episode. Indeed, the algorithms are based on construction of a sequence of confidence sets,

which are constructed according to the estimation results established in Section 2.3. This
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sequence, will be tightened at the end of every episode, i.e. the provided confidence sets

become more and more accurate. According to these sequences, the adaptive control policy

will be updated after every episode. We present and prove high probability regret bounds,

applying the corresponding algorithm.

First, we provide a high level explanation of the algorithms. Detailed expression of

every algorithm will come separately later. Starting with the stabilizing set Ω(0), we select

a parameter denoted by Θ̃(1) ∈ Ω(0). Depending on the identifiability assumptions, the

selection of Θ̃(1) can be either arbitrary (see (3.15)), or based on OFU principle, i.e. Θ̃(1)

is a minimizer of the optimal expected average cost over the corresponding confidence set

(see (3.1)).

Then, assuming Θ̃(1) is the true parameter the system evolves according to, the algo-

rithm applies the optimal linear feedback L
(

Θ̃(1)
)

, during the first episode. Once the

observations during the first episode are collected, they are used to improve the accuracy of

the high probability confidence set. Therefore, Ω(0) is tightened to get Ω(1), and the second

episode starts by iterating the above procedure, and so on. The lengths of the episodes will

be as an increasing fashion, to make every confidence set significantly more accurate than

all previous ones.

The intuition behind the proficiency of the OFU principle is as follows. As shown in

Section 2.3, applying a linear feedback L, observations of the state vectors will lead only

to the accurate estimation of the closed-loop matrix. Letting L̃ =

Ip
L

, the closed-loop

transition matrix is A0 +B0L = Θ0L̃. Note that in general, an accurate estimation of Θ0L̃

does not lead to that of Θ0. In fact, since for arbitrary Θ ∈ Rp×q, we have ΘL̃ ∈ Rp×p,

there is a linear subspace P ⊂ Rp×q, such that

(Θ0 + Θ1) L̃ = Θ0L̃,

for all Θ1 ∈ P (the subspaceP is not trivial because dimR (P) ≥ pq−p2 = pr). Therefore,
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without an additional side information, approximating Θ0 is impossible, regardless of the

accuracy in the approximation of Θ0L̃.

But, in order to design an adaptive policy to minimize the expected average cost, it is

an effective approximation of L (Θ0) which is required. More precisely, as long as Θ1 is

available satisfying L (Θ1) = L (Θ0), one can apply an optimal linear feedback L (Θ1), no

matter how large |||Θ1 −Θ0|||2 is. In general, estimation of such a Θ1 is not possible. Yet,

a confidence set in addition to an exact knowledge of the closed-loop dynamics lead to an

optimal linear feedback, thanks to the OFU principle.

Lemma 3.1. If J ? (Θ1) ≤ J ? (Θ0) and Θ1L̃ (Θ1) = Θ0L̃ (Θ1), then L (Θ1) is an optimal

linear feedback for the system evolving according to Θ0.

In other words, applying a linear feedback designed according to optimistically selected

parameter Θ1, as long as the closed-loop matrix is learned absolutely accurate, an optimal

control action is automatically provided. Remember that the lengths of the episodes are

growing, such that the estimation of the closed-loop matrix becomes more precise at the

end of every episode. Thus, the approximation Θ1L̃ (Θ1) ≈ Θ0L̃ (Θ1) is becoming more

and more accurate. Rigorous analysis of the discussion above, leads to the high probability

near optimal regret bounds.

3.2 General Systems

Now, we explain Algorithm 2, which is designed for general settings, where no identi-

fiability condition is assumed about the true parameter Θ0. The algorithm takes the inputs

Ω(0) ⊂ Rp×q, 6δ > 0, γ > 1,
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explained below. Ω(0) is a bounded stabilizing set: for every Θ ∈ Ω(0), the system will be

stable if the optimal linear feedback of Θ is applied, i.e.

∣∣∣λmax

(
Θ0L̃ (Θ)

)∣∣∣ < 1.

Further, 6δ > 0 is the highest probability that the near optimal regret bound fails (see

Theorem 3.1). The reinforcement rate γ determines the growth rate of the lengths of the

time intervals (episodes) an adaptive policy is applied until being updated (see (3.2)).

Algorithm 2 : Adaptive Control of General Systems
Input: Stabilizing Set Ω(0), Failure Probability 6δ, Reinforcement Rate γ > 1.

Let τ0 = 0
for i = 1, 2, · · · do

Define Θ̃(i) and τi according to (3.1) and (3.2), respectively
while t < τi do

Apply control action u(t) = L
(

Θ̃(i)
)
x(t)

end while
Estimate D̂(i) by (3.3), (3.4)
Defining V (i) by (3.5), Construct Ξ(i) according to (3.6)
Update Ω(i) by (3.7)

end for

The algorithm provides an adaptive policy as follows. For i = 1, 2, · · · , at the beginning

of the i-the episode, we apply linear feedback u(t) = L
(

Θ̃(i)
)
x(t), where

Θ̃(i) ∈ arg min
Θ∈Ω(i−1)

J ? (Θ) . (3.1)

Indeed, based on OFU principle, at the beginning of every episode, the best parameter

among the all we are uncertain about is being selected. Note that “the best” parameter is a

minimizer of the optimum average cost J ? (·).

The length of episode i, which is the time period we apply the adaptive control policy

u(t) = L
(

Θ̃(i)
)
x(t), is designed according to the following equation. Letting τ0 = 0, we

update the control policy at the end of episode i, i.e. at the time t = τi, defined according
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to

τi = τi−1 + γi/q
(
N2.1

(
|λmin (C)|

2
,
δ

i2

)
+ 1

)
, (3.2)

where N2.1 (·, ·) is defined in Section 2.3 by (2.4), (2.5), and (2.6). After the i-th episode,

we estimate the closed-loop transition matrix Θ0L̃
(

Θ̃(i)
)

by the following row-wise least-

squares estimator:

d̂
(i)
j = arg min

θ∈Rp

τi−1∑
t=τi−1

(xj(t+ 1)− θ′x(t))
2
, (3.3)

D̂(i) =
[
d̂

(i)
1 , · · · , d̂(i)

p

]′
. (3.4)

Letting

V (i) =

dτie−1∑
t=dτi−1e

x(t)x(t)′, (3.5)

be the empirical covariance matrix of episode i, define the high probability confidence set

Ξ(i) by

Ξ(i) =

{
Θ ∈ Rp×q :

∣∣∣∣∣∣∣∣∣∣∣∣V (i)
1
2

(
ΘL̃

(
Θ̃(i)

)
− D̂(i)

)′∣∣∣∣∣∣∣∣∣∣∣∣2
2

≤ βτi−τi−1

(
δ

i2

)}
, (3.6)

where βn (δ) is defined in Lemma 2.3. Note that according to Lemma 2.3,

P
(
Θ0 ∈ Ξ(i)

)
≥ 1− 3δ

i2
.

Then, at the end of episode i, the confidence set Ω(i−1) will be updated to

Ω(i) = Ω(i−1)
⋂

Ξ(i), (3.7)

and episode i+1 starts, finding Θ̃(i+1) by (3.1), and then iterating all steps described above.

Remark 3.1. The choice of Θ̃(i) does not need to be as extreme as (3.1). In fact, it suffices
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to satisfy

J ?
(

Θ̃(i)
)
≤ (τi − τi−1)−1/2 + inf

Θ∈Ω(i−1)
J ? (Θ) .

The following theorem states that performance of the above adaptive control algorithm

is optimal, apart from a logarithmic factor. Compared to O (·), the notation Õ (·) used

below, hides the logarithmic factor.

Theorem 3.1 (Regret bound for general systems). Assuming Ω(0) is bounded, the following

upper bound for the regret of Algorithm 2 holds with probability at least 1− 6δ:

R (T ) ≤ Õ
(
T 1/2

)
(− log δ)

1
2

+ 3
α .

A direct consequence of Theorem 3.1 is a generalization of the work of Abbasi-Yadkori

and Szepesvári [15], where the uncertainty about the true parameter Θ0 is limited to a

bounded subset of Rp×q, i.e. Ω(0) is bounded. Note that as mentioned before, Theorem 3.1

is fairly more general than the result of the above paper, because

(i) the controllability assumption is removed,

(ii) the operator norm assumption is relaxed to stabilizability,

(iii) the sub-Gaussian distribution of noise vectors is extended to the sub-Weibull one.

3.3 Weakly Identifiable Systems

In this section, we show that the above reinforcement learning algorithm can be im-

proved under a condition. First, in Theorem 3.1, the stabilizing set Ω(0) needs to be

bounded. Although Algorithm 1 provides a high probability bounded stabilizing set sat-

isfying (2.10), in general, boundedness of Ω(0) does not require to hold. For instance, con-

sidering the system of Example 2.1, sufficient and necessary condition for a linear feedback

to be a stabilizer is 2 < L23 − L13 < 4. So, in general the user can be provided with an

unbounded Ω(0).
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Technically, the situation where the provided stabilizing set can be unbounded is re-

markably extensive. Subsequently, we discuss the general case intuitively. First, the do-

main of function L (·) (which maps the stabilizable Θ to L (Θ)) is Rp×q, while its range is

Rr×p. Level sets of L (Θ) are manifolds of dimension pq − pr = p2. These level sets can

be unbounded, i.e. the stabilizing set

L−1 {L (Θ) : |||Θ−Θ0|||2 ≤ ε0} ⊂ Rp×q

can be unbounded.

The second issue is regarding the laziness of Algorithm 2. Technically, according to

(3.2), the length of every episode of Algorithm 2 is approximately γ1/q times larger than

the previous one. By Theorem 2.2, accuracy of the estimation scales with square root of the

episode length, apart from a logarithmic factor. So, at the end of every episode of Algorithm

2, accuracy of the estimation of the closed-loop matrix improves approximately with rate

γ1/2q. This improvement rate can be small, specifically if q, the number of columns of the

parameter matrix Θ0, is not small. If one substitutes the factor γi/q in (3.2) with γi, then a

constant of the form γq appears in the high probability regret bound of Theorem 3.1.

This slowness of the accuracy improvement, as well as possibly unbounded Ω(0) dis-

cussed above, motivate the modification of Algorithm 2. Particularly, when in the real

world adaptive control problem the emphasis is on the situations where the time period

0 ≤ t ≤ T during which the user is interacting with the system is not lengthy. For this

purpose, we present Algorithm 3, which provides an adaptive policy, near optimal under

weak identifiability condition stated below. Overall, Algorithm 3 outperforms Algorithm 2

in the following ways:

(i) the stabilizing set Ω(0) can be unbounded,

(ii) improvement rate of the estimation is faster, i.e. the high probability guarantee for re-

gret is better (specially for decent T ),
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(iii) the number of policy changes (which might affect the performance in real applications)

is approximately 2q times less.

To proceed, we define weak identifiability. Essentially, it is stating that if the approx-

imation Θ2 of Θ0 is accurate in terms of the closed-loop matrix when the linear feedback

L (Θ1) is applied, it is also accurate if one applies the linear feedback L (Θ2).

Definition 3.1 (Weak Identifiability). We say Θ0 is weakly identifiable, if there is Ξ(0) ⊂

Rp×q such that Θ0 ∈ Ξ(0), and for all stabilizable Θ1,Θ2 ∈ Ξ(0),

∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ2)
∣∣∣∣∣∣∣∣∣

2
≤ ΓΘ0

∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ1)
∣∣∣∣∣∣∣∣∣

2
, (3.8)

for some constant ΓΘ0 <∞.

Weak identifiability can be implied by some other conditions discussed subsequently.

First, consider linear transformations

L̃ (Θi) : Rp×q → Rp×p, i = 0, 1, 2

mapping Θ ∈ Rp×q to ΘL̃ (Θi) ∈ Rp×p. Theoretically, letting Pi be the null space of

L̃ (Θi), (3.8) holds if

(Θ0 + P1) ∩ Ξ(0) ⊂ (Θ0 + P2) ,

where Ξ(0) is the closure of Ξ(0). In the sequel, we discuss more intuitive conditions which

ensure weak identifiability. The following example illustrates the situations where weak

identifiability holds, if a neighborhood and a subspace are available as the side information.

Example 3.1. Suppose thatM1 is a subset, andM2 is a subspace of Rp×q, such that

sup
Θ∈M1

|||Θ−Θ0|||2 ≤ ε0, (3.9)

P0 ∩M2 = {0} . (3.10)
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There is ε0 > 0 such that Ξ(0) =M1 ∩M2 satisfies (3.8).

To see that, becauseM2 is a subspace, by (3.10), for arbitrary Θ2 ∈M2 we have

∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ0)
∣∣∣∣∣∣∣∣∣

2
≥ Γ0|||Θ2 −Θ0|||2,

for some constant Γ0 > 0. Then, using Lemma 2.2, by (3.9) we have

∣∣∣∣∣∣∣∣∣L̃ (Θi)− L̃ (Θ0)
∣∣∣∣∣∣∣∣∣

2
≤ ΓLε0,

for i = 1, 2. So,

∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ1)
∣∣∣∣∣∣∣∣∣

2
≥ (Γ0 − ΓLε0) |||Θ2 −Θ0|||2,∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ2)

∣∣∣∣∣∣∣∣∣
2
≤ (Γ0 + ΓLε0) |||Θ2 −Θ0|||2,

i.e. if ΓLε0 < Γ0, the condition (3.8) holds for ΓΘ0 = Γ0+ΓLε0
Γ0−ΓLε0

.

Therefore, as long as we know that the true parameter Θ0 is living in a subspaceM2

satisfying (3.10), weak identifiability holds. Note that if one uses Algorithm 1 to stabilize

the system, (3.9) can be satisfied.

An application of Example 3.1 is when the true parameter Θ0 is known to have at

most s nonzero entries, for some s ≤ p2. Entries of Θ0 are mostly zeros, for example

if the actual dynamics of the system is of smaller dimension with longer memory [9].

Furthermore, assuming sparsity for the dynamics matrices is realistic for example if the

system is describing the behavior of a network [19].

To study the case above, for arbitrary Θ ∈ Rp×q, let [Θ]min be the smallest magnitude

of the nonzero entries of Θ = [Θij], formally defined as

[Θ]min = min{|Θij| : 1 ≤ i ≤ p; 1 ≤ j ≤ q; Θij 6= 0}.
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First, the set of all p × q matrices with at most s nonzero entries is a finite union of s

dimensional subspaces of Rp×q. Let M2 be one of these subspaces, which contains Θ0.

If ε0 < [Θ0]min, (3.9) leads to exact identification of M2 among all subspaces. Namely,

any subspaceM2 which has a nonempty intersection with neighborhoodM1, contains Θ0.

Note that if the number of nonzero entries of Θ0 is exactly s, the subspaceM2 is unique.

Otherwise, one can search forM2 among the subspaces of lower dimensions.

Then, assuming (3.10) holds, Θ0 is weakly identifiable. The linear transformation

L̃ (Θ0) is surjective, i.e. dimR (P0) = pr. So, dimR (M2) ≤ p2 is required to satisfy

(3.10), i.e. s ≤ p2. In the work of Ibrahimi et al. [16] a much stronger identifiability

condition is defined and assumed, which implies that both a condition similar to (3.10), as

well as the sparsity of at most p, need to hold for every row of the p×q parameter matrices.

Algorithm 3 : Adaptive Control of Weakly Identifiable Systems
Input: Stabilizing Set Ω(0), Identifiability Set Ξ(0), Failure Probability 6δ, Precision ε, Re-
inforcement Rate γ > 1.

Let τ0 = 0
for i = 1, 2, · · · do

Define Θ̃(i) and τi according to (3.11) and (3.12), respectively
while t < τi do

Apply control action u(t) = L
(

Θ̃(i)
)
x(t)

end while
Estimate D̂(i) by (3.3), (3.4)
Update Ω(i) according to (3.13)

end for

When Θ0 is weakly identifiable, Algorithm 3 provides an adaptive policy of near opti-

mal regret. In addition to

Ω(0) ⊂ Rp×q, 6δ > 0, γ > 1,

explained before, the inputs include precision ε > 0, and identifiability set Ξ(0). Note that

despite Algorithm 2, here Ω(0) can be unbounded. Further, the precision ε > 0 is arbitrary

and determines the lengths of the episodes, while the growth rate of the episode size is
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determined by γ (see (3.12)).

Below, we explain Algorithm 3 for weakly identifiable systems, comparing with Algo-

rithm 2 for the general case.

• The linear feedback u(t) = L
(

Θ̃(i)
)
x(t), applied during the i-the episode, where

Θ̃(i) is defined by

Θ̃(i) ∈ arg min
Θ∈Ω(i−1)∩Ξ(0)

J ? (Θ) . (3.11)

Again, similar to Remark 3.1, the choice of Θ̃(i) can be relaxed. Note that the set of

parameters Ω(i−1) ∩ Ξ(0) over which the minimum is being taken, is different than

(3.1).

• The lengths of the episodes, is now determined by

τi = τi−1 +N2.2

(
ε

γi
,
δ

i2

)
, (3.12)

where the function N2.2 (·, ·) is defined in Section 2.3 according to (2.8), (2.9).

• Estimation of the closed-loop transition matrix remains the same as (3.3), (3.4).

• At the end of episode i, the confidence set Ω(i−1) will be updated to

Ω(i) =

{
Θ ∈ Rp×q :

∣∣∣∣∣∣∣∣∣ΘL̃(Θ̃(i)
)
− D̂(i)

∣∣∣∣∣∣∣∣∣
2
≤ ε

γi

}
. (3.13)

• Similarly, episode i+1 starts by finding Θ̃(i+1) according to (3.11), and then iterating

all steps described above.

According to Theorem 2.2, for confidence set Ω(i) defined above we have

P
(
Θ0 ∈ Ω(i)

)
≥ 1− 2δ

i2
.

The following theorem provides the regret bound of Algorithm 3.
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Theorem 3.2 (Regret bound under weak identifiability). If Θ0 is weakly identifiable, the

regret of Algorithm 3 is with probability at least 1− 6δ bounded by

R (T ) ≤ Õ
(
T 1/2

)
(− log δ)

3
α

+ 1
2 .

3.4 Strongly Identifiable Systems

Finally, supposing a stronger identifiability condition, certainty equivalence principle

holds, and we can remove some steps of the above two algorithms. Namely, the OFU

based computation of Θ̃(i) in (3.1) and (3.11), as well as the construction of the confidence

sets in (3.6), (3.7), and (3.13) can be omitted, if the system is strongly identifiable. This

condition, roughly speaking, holds, whenever the dynamics parameter Θ0 can be estimated,

with an accuracy comparable to that of the estimation of the closed-loop transition matrix

Θ0L̃
(

Θ̃(i)
)

.

Definition 3.2 (Strong Identifiability). Θ0 is called to be strongly identifiable, if there is

Ξ(0) ⊂ Rp×q such that Θ0 ∈ Ξ(0), and for all stabilizable Θ1,Θ2 ∈ Ξ(0),

|||Θ2 −Θ0|||2 ≤ ΓΘ0

∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ1)
∣∣∣∣∣∣∣∣∣

2
, (3.14)

for some constant ΓΘ0 <∞.

As we will see later, strongly identifiable systems can be adaptively controlled with near

optimal regret, if an arbitrary estimation of the dynamics parameter Θ0 is used to design

the adaptive linear feedback.

First, similar to the previous section, there are more intuitive conditions to ensure strong

identifiability. Consider linear transformations L̃ (Θi) and the null spaces Pi defined in the

previous section. Theoretically, (3.14) holds if

(Θ0 + P1) ∩ Ξ(0) = {Θ0} .

66



Obviously, the strong identifiability implies the weak one according to Lemma 2.2, but the

opposite is not true. For example, if

L (Θ1) = L (Θ2) ,

Θ2 −Θ0 ∈ P1,

then both sides of (3.8) are zero, while the left-hand side of (3.14) is nonzero if Θ2 6= Θ0.

Further, the situation of Example 3.1 where a neighborhood and a subspace are avail-

able as the side information, implies strong identifiability. To verify that, note that as we

saw before,

∣∣∣∣∣∣∣∣∣(Θ2 −Θ0) L̃ (Θ1)
∣∣∣∣∣∣∣∣∣

2
≥ (Γ0 − ΓLε0) |||Θ2 −Θ0|||2.

So, the condition (3.14) holds for ΓΘ0 = Γ0 − ΓLε0. Similarly, the situation where Θ0 has

at most s nonzero entries, implies strong identifiability as well.

Algorithm 4 : Adaptive Control of Strongly Identifiable Systems
Input: Stabilizing Set Ω(0), Identifiability Set Ξ(0), Failure Probability 6δ, Precision ε, Re-
inforcement Rate γ > 1.

Let τ0 = 0, and choose Θ̂(1) ∈ Ω(0)
⋂

Ξ(0) arbitrarily
for i = 1, 2, · · · do

Define τi by (3.12)
while t < τi do

Apply control action u(t) = L
(

Θ̂(i)
)
x(t)

end while
Estimating D̂(i) by (3.3), (3.4), update Θ̂(i+1) by (3.15)

end for

Algorithm 4 is a reinforcement learning one for strongly identifiable systems. Exclud-

ing the selection of Θ̃(i), other steps are similar to Algorithm 3. Here, during episode i, the

linear feedback u(t) = L
(

Θ̂(i)
)
x(t) is applied, where

Θ̂(i+1) ∈
{

Θ ∈ Ξ(0) : ΘL̃
(

Θ̂(i)
)

= D̂(i)
}

(3.15)
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is arbitrarily selected. The following theorem states the non-asymptotic optimality of the

CE principle for strongly identifiable systems.

Theorem 3.3 (Regret bound under strong identifiability). If Θ0 is strongly identifiable, the

regret of Algorithm 4 is bounded by

R (T ) ≤ Õ
(
T 1/2

)
(− log δ)

3
α

+ 1
2 ,

with probability at least 1− 6δ.

A consequence of Theorem 3.3 is that in the work Ibrahimi et al. [16], the step of

the proposed algorithm which is based on OFU principle can be removed. Indeed, as

mentioned before, in the above paper it is proven that in high-dimensional setting, under

some restrictive identifiability assumptions, the dynamics parameter Θ0 can be estimated

accurately, with high probability. This open-loop identification, which is similar to (3.14),

leads to optimality of CE principle.

We finish this chapter with a short explanation about the situation of uniformly bounded

noise vectors, as well as the asymptotic behavior of the presented reinforcement learning

algorithm.

Remark 3.2. The logarithmic factors becomes double logarithmic for bounded noise.

More precisely, in Theorem 3.2 and Theorem 3.3, if the noise sequence is uniformly

bounded, we get

R (T ) = O
(
T 1/2 log log T

)
(− log δ)

1
2 .

Moreover, asymptotic analysis of algorithms 2, 3, and 4 shows that

P
(

lim
T→∞

∣∣∣∣R (T )

T 1/2

∣∣∣∣ <∞) = 1,

which is according to Lemma 2.2, optimal.
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3.5 Technical Proofs

Proof of Lemma 3.1. Suppose that J ? (Θ1) ≤ J ? (Θ0) and D = Θ1L̃ (Θ1) = Θ0L̃ (Θ1).

Applying the linear feedback u(t) = L (Θ1)x(t) to a system evolving according to the

dynamics parameter Θ0, the closed-loop matrix will be x(t + 1) = Dx(t) + w(t + 1).

Letting P = Q+ L (Θ1)′RL (Θ1), we have

E [ct] = E [x(t)′Px(t)]

= E [x(t− 1)′D′PDx(t− 1)] + E [w(t)′Pw(t)]

= · · · = x(0)′D′
t
PDtx(0) +

t∑
i=1

E
[
w(i)′D′

t−i
PDt−iw(i)

]
.

Note that by stabilizability of Θ0, the inequality J ? (Θ1) ≤ J ? (Θ0) implies that Θ1 is

stabilizable, i.e. by Proposition 2.1, |λmax (D)| < 1. Thus,

lim
t→∞

x(0)′D′
t
PDtx(0) = 0. (3.16)

Furthermore, by E [w(i)w(i)′] = C, the second term is tr

(
C

t−1∑
i=0

D′iPDi

)
. Therefore,

using (3.16) we get

lim
t→∞

E [ct] = tr

(
C
∞∑
i=0

D′
i
PDi

)
.

The above convergence holds for the Cesaro mean of the sequence {E [ct]}∞t=1 as well, i.e.

the expected average cost is

J Θ0 ({u(t)}∞t=0) = tr

(
C

∞∑
i=0

D′
i
PDi

)
.
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Similarly, since u(t) = L (Θ1)x(t) is optimal for a system of open-loop parameter Θ1,

J ? (Θ0) ≥ J ? (Θ1) = tr

(
C
∞∑
i=0

D′
i
PDi

)
= J Θ0 ({u(t)}∞t=0) ≥ J ? (Θ0) ,

i.e. the linear feedback L (Θ1) is an optimal policy for a system of dynamics parameter Θ0,

which is the desired result.

Proof of Theorem 3.1. The stabilizing set Ω(0) is assumed to be bounded, so let

∆0 = sup
Θ∈Ω(0)

|||Θ′|||2 <∞. (3.17)

Suppose that for t = 1, 2, · · · , the parameter Θt is being used to design the adaptive linear

feedback u(t) = L (Θt)x(t). So, during every episode, Θt does not change, and for τi−1 ≤

t < τi we have Θt = Θ̃(i).

Letting Ft = σ (w(1), · · · , w(t)), the infinite horizon dynamic programming equations

[17] are

J ? (Θt) + x(t)′K (Θt)x(t) = x(t)′Qx(t)

+ u(t)′Ru(t) + E
[
y(t+ 1)′K (Θt) y(t+ 1)

∣∣∣Ft] ,
where u(t) = L (Θt)x(t), and

y(t+ 1) = Atx(t) +Btu(t) + w(t+ 1) = ΘtL̃ (Θt)x(t) + w(t+ 1) (3.18)

is the desired dynamics of the system. Note that since the true evolution of the system is

governed by Θ0, the next state is in fact

x(t+ 1) = A0x(t) +B0u(t) + w(t+ 1) = Θ0L̃ (Θt)x(t) + w(t+ 1). (3.19)
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Substituting (3.18), and (3.19) in the dynamic programming equation, and using (1.2) for

the instantaneous cost ct, we have

J ? (Θt) + x(t)′K (Θt)x(t)

= ct + E
[
y(t+ 1)′K (Θt) y(t+ 1)

∣∣∣Ft]
= ct + E

[
w(t+ 1)′K (Θt)w(t+ 1)

∣∣∣Ft]
+ x(t)L̃ (Θt)

′Θ′tK (Θt) ΘtL̃ (Θt)x(t)

= ct + E
[
w(t+ 1)′K (Θt)w(t+ 1)

∣∣∣Ft]
+ x(t)L̃ (Θt)

′Θ′0K (Θt) Θ0L̃ (Θt)x(t)

+ x(t)L̃ (Θt)
′Θ′tK (Θt) ΘtL̃ (Θt)x(t)

− x(t)L̃ (Θt)
′Θ′0K (Θt) Θ0L̃ (Θt)x(t)

= ct + E
[
x(t+ 1)′K (Θt)x(t+ 1)

∣∣∣Ft]
+ x(t)L̃ (Θt)

′ [Θ′tK (Θt) Θt −Θ′0K (Θt) Θ0] L̃ (Θt)x(t).

Adding up for t = 1, · · · , T , we get

R (T ) =
T∑
t=1

[ct − J ? (Θ0)] = T1 + T2 + T3 + T4, (3.20)

where

T1 =
T∑
t=1

[J ? (Θt)− J ? (Θ0)] ,

T2 =
T∑
t=1

(
x(t)′K (Θt)x(t)− E

[
x(t+ 1)′K (Θt+1)x(t+ 1)

∣∣∣Ft]) ,
T3 =

T∑
t=1

E
[
x(t+ 1)′ (K (Θt+1)−K (Θt))x(t+ 1)

∣∣∣Ft] ,
T4 =

T∑
t=1

x(t)′L̃ (Θt)
′ [Θ′0K (Θt) Θ0 −Θ′tK (Θt) Θt] L̃ (Θt)x(t).
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Let m (T ) be the number of episodes started until time T . So,

τm(T ) ≤ T < τm(T )+1.

Now, letting ni = bτi − τi−1c be the length of episode i, define the following events

G =
∞⋂
i=1

{
max

τi−1≤t<τi
||w(t)||∞ ≤ νni

(
δ

i2

)}
,

H =
∞⋂
i=1

{
Θ0 ∈ Ω(i)

}
.

Similar to the proof of Lemma 2.3, one can simply see that

P (G ∩ H) ≥ 1−
∞∑
i=1

3δ

i2
≥ 1− 5δ. (3.21)

Henceforth in the proof, we assume that G ∩ H holds.

Lemma 3.2 (Bounding T1). On G ∩ H, we have T1 ≤ 0.

Proof. For all i = 1, 2, · · · , as long as Θ0 ∈ Ω(i−1), according to (3.1) we haveJ ?
(

Θ̃(i)
)
≤

J ? (Θ0), i.e. J ? (Θt)− J ? (Θ0) ≤ 0, which implies the desired result.

Lemma 3.3 (Bounding T2). On G ∩ H, we have

P
(
T2 ≥ ∆2 + (8T )1/2∆3 (logm (T ))2/α (− log δ)1/2+2/α

)
≤ δ,

for some constants ∆2,∆3 <∞.
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Proof. First, write

T2 =
T∑
t=1

x(t)′K (Θt)x(t)−
T+1∑
t=2

E
[
x(t)′K (Θt)x(t)

∣∣∣Ft−1

]
= E [x(1)′K (Θ1)x(1)]− E

[
x(T + 1)′K (ΘT+1)x(T + 1)

∣∣∣FT]
+

T∑
t=1

(
x(t)′K (Θt)x(t)− E

[
x(t)′K (Θt)x(t)

∣∣∣Ft−1

])
.

Then, letting

∆1 = sup
1≤i≤∞

∣∣∣∣∣∣∣∣∣K (Θ̃(i)
)∣∣∣∣∣∣∣∣∣

2
, (3.22)

note that the above sequence we are taking supremum on, is bounded because for positive

definite matrix C, onH the OFU principle of (3.1) implies

J ? (Θ0) ≥ J ?
(

Θ̃(i)
)

= tr
(
K
(

Θ̃(i)
)
C
)
,

hence,

J ? (Θ0) ≥ tr
(
C1/2K

(
Θ̃(i)

)
C1/2

)
≥

∣∣∣λmax

(
C1/2K

(
Θ̃(i)

)
C1/2

)∣∣∣
= sup

v 6=0

v′K
(

Θ̃(i)
)
v

||v||22

||v||22
v′C−1v

≥ |λmin (C)|
∣∣∣λmax

(
K
(

Θ̃(i)
))∣∣∣ ,

i.e.

∆1 ≤
J ? (Θ0)

|λmin (C)|
<∞.

To proceed, using boundedness of Ω(0),

E [x(1)′K (Θ1)x(1)] = x(0)L̃ (Θ1)′Θ′1K (Θ1) Θ1L̃ (Θ1)x(0) + tr (K (Θ1)C) ≤ ∆2,

(3.23)
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for some ∆2 < ∞. Defining the stable closed-loop matrices Di = Θ0L̃
(

Θ̃(i)
)
, i =

1, · · · ,m (T ), similar to Lemma 2.7, one can simply show that on the event G, for constant

η
(
D1, · · · , Dm(T )

)
<∞, it holds that

max
1≤t≤T

||x(t)||2 ≤ η
(
D1, · · · , Dm(T )

)
νT

(
δ

m (T )2

)
, (3.24)

where the fact

max
1≤i≤m(T )

νni

(
δ

i2

)
≤ νT

(
δ

m (T )2

)
is used above. Therefore, for martingale difference sequence

{Xt}Tt=1 =
{
x(t)′K (Θt)x(t)− E

[
x(t)′K (Θt)x(t)

∣∣∣Ft−1

]}T
t=1

,

on G we have

|Xt| ≤ 2|||K (Θt)|||2||x(t)||22 ≤ ∆1η
(
D1, · · · , Dm(T )

)2
νT

(
δ

m (T )2

)2

≤ ∆3 (logm (T ))2/α (− log δ)2/α ,

for some ∆3 <∞. letting

σ2 = ∆2
3T (logm (T ))4/α (− log δ)4/α ≥

T∑
t=1

X2
t ,

y = (8T )1/2∆3 (logm (T ))2/α (− log δ)1/2+2/α ,

apply Lemma 2.11 to get

P

(
T∑
t=1

Xt > y

)
≤ exp

(
− y2

8σ2

)
≤ δ,
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which in addition to (3.23) implies the desired result, because of

E
[
x(T + 1)′K (ΘT+1)x(T + 1)

∣∣∣FT] ≥ 0.

Lemma 3.4 (Bounding T3). On G ∩ H, we have

T3 ≤ ∆3 (logm (T ))2/α (− log δ)2/αm (T ) ,

where ∆3 is the same as Lemma 3.3.

Proof. Note that as long as both of t, t+ 1 are in episode i, we have

Θt = Θt+1 = Θ̃(i).

So, using (3.22), and (3.24), on G ∩ H we have

T3 =

m(T )−1∑
i=1

E
[
x(dτie)′

(
K
(

Θ̃(i+1)
)
−K

(
Θ̃(i)

))
x(dτie)

∣∣∣Ft] ,
≤ m (T ) max

1≤i≤m(T )−1

∣∣∣∣∣∣∣∣∣K (Θ̃(i+1)
)∣∣∣∣∣∣∣∣∣

2
||x(dτie)||22

≤ ∆1m (T ) η
(
D1, · · · , Dm(T )

)2
νT

(
δ

m (T )2

)2

≤ ∆3 (logm (T ))2/α (− log δ)2/αm (T ) .

Lemma 3.5. Letting U0 = Iq, for i = 1, 2, · · · define the symmetric q × q matrix Ui as

Ui = L̃
(

Θ̃(i)
)
V (i)L̃

(
Θ̃(i)

)′
= L̃

(
Θ̃(i)

) τi∑
t=τi−1

x(t)x(t)′L̃
(

Θ̃(i)
)′
,
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and for arbitrary nonzero Θ ∈ Rp×q, let real-valued sequence {sj (Θ)}∞j=1 be

sj (Θ) =

∣∣∣∣∣∣∣∣∣∣∣∣Θ j∑
i=0

UiΘ
′
∣∣∣∣∣∣∣∣∣∣∣∣

2∣∣∣∣∣∣∣∣∣∣∣∣Θ j−1∑
i=0

UiΘ′
∣∣∣∣∣∣∣∣∣∣∣∣

2

.

Note that sj (Θ) does not depend on the magnitude of Θ. On the event G ∩ H, the Cesaro

mean of the sequence {sj (Θ)}∞j=1 is bounded, i.e. for some constant ∆4, on G∩H we have

sup
n≥1

1

n

n∑
j=1

sj (Θ) ≤ ∆4.

Proof. First, applying the second part of Theorem 2.1, we have

lim
i→∞

1

ni
V (i) = lim

i→∞

∞∑
`=0

Di
`CD′i

`
, (3.25)

where Di = Θ0L̃
(

Θ̃(i)
)

is the stable closed-loop transition matrix during episode i.

Then, the sequence
{
L
(

Θ̃(i)
)}∞

i=1
converges as follows. According to (3.17), it is

bounded. So, divergence of this bounded sequence implies convergence of two subse-

quences to distinct limits. Let L∞ be the limit point of a subsequence. According to (3.7),{
Ω(i)
}∞
i=0

is strictly decreasing: Ω(i+1) $ Ω(i). Further, by Theorem 2.2,

0 = lim
i→∞

(
Θ̃(i) −Θ0

)
L̃
(

Θ̃(i)
)

= lim
i→∞

(
Θ̃(i) −Θ0

) Ip

L∞.



So, L∞ is a stationary point in the sense that for some Θ∞ ∈
∞⋂
i=0

Ω(i), we have

A∞ +B∞L∞ = A0 +B0L∞. (3.26)

SinceH holds, and at the end of every episode we are using OFU to pick Θ̃(i), we have
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J ? (Θ∞) ≤ J ? (Θ0). Hence, by Lemma 3.1, (3.26) implies that L∞ is an optimal linear

feedback for the true system Θ0. But, according to Proposition 2.1, L (Θ0) is unique, i.e.

L∞ = L (Θ0). Therefore, the limit is unique, which contradicts the divergence. Moreover,

the convergence is to L (Θ0), i.e.

lim
i→∞

Di = Θ0L̃ (Θ0) = D0. (3.27)

Next, as shown in the proof of Lemma 2.2,
∞∑̀
=0

Di
`CD′i

` is a Lipschitz function ofDi. Thus,

plugging (3.27) in (3.25) we get

lim
i→∞

det

(
1

ni
V (i)

)
= det

(
∞∑
`=0

D0
`CD′0

`

)
,

which yields

lim
i→∞

det

(
1

ni
U (i)

)
= det

(
L̃ (Θ0)

∞∑
`=0

D0
`CD′0

`
L̃ (Θ0)′

)
.

Therefore, defining

s̃j =

det

(
j∑
i=0

Ui

)
det

(
j−1∑
i=0

Ui

) ,
we have

lim
j→∞

s̃j = lim
j→∞

(
nj
nj−1

)q det

(
1
nj

j∑
i=0

Ui

)
det

(
1

nj−1

j−1∑
i=0

Ui

) = lim
j→∞

(
nj
nj−1

)q
.

Note that according to (2.37), on G ∩ H the matrix 1
ni
Ui, and so the matrix 1

nj

j∑
i=0

Ui, are

bounded. Using the definition of episode size in (3.2), we get

lim
j→∞

s̃j = γ. (3.28)
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Finally, according to Lemma 11 in the work of Abbasi-Yadkori and Szepesvári [15],

sup
Θ 6=0

sj (Θ) ≤ s̃j.

So, (3.28) implies the desired result.

Lemma 3.6 (Bounding T4). On the event G ∩ H, it holds that

T4 ≤ ∆6m (T ) βT

(
δ

m (T )2

)1/2

(logm (T ))1/α (− log δ)1/α T 1/2,

for some constant ∆6 <∞.

Proof. Assuming G ∩ H holds, consider the following expression:

T5 =
T∑
t=1

∣∣∣∣∣∣(Θt −Θ0) L̃ (Θt)x(t)
∣∣∣∣∣∣2

2
.

Since Θt does not change during every episode, we can write

T5 ≤
m(T )∑
j=1

dτje−1∑
t=dτj−1e

∣∣∣∣∣∣(Θ̃(j) −Θ0

)
L̃
(

Θ̃(j)
)
x(t)

∣∣∣∣∣∣2
2
. (3.29)
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Letting {Ui}∞i=0 be as defined in Lemma 3.5,
j∑
i=0

Ui is invertible and

dτje−1∑
t=dτj−1e

∣∣∣∣∣∣
∣∣∣∣∣∣
(

j∑
i=0

Ui

)−1/2

L̃
(

Θ̃(i)
)
x(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

=

dτje−1∑
t=dτj−1e

x(t)′L̃
(

Θ̃(i)
)′( j∑

i=0

Ui

)−1

L̃
(

Θ̃(i)
)
x(t)

=

dτje−1∑
t=dτj−1e

tr

( j∑
i=0

Ui

)−1

L̃
(

Θ̃(i)
)
x(t)x(t)′L̃

(
Θ̃(i)

)′
= tr

( j∑
i=0

Ui

)−1

Uj

 ≤ tr (Iq) = q.

Further, using definition of {sj (Θ)}∞j=1 in Lemma 3.5 we have

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

Θ̃(j) −Θ0

)( j∑
i=0

Ui

)1/2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

j∑
i=0

Ui

)1/2 (
Θ̃(j) −Θ0

)′ (
Θ̃(j) −Θ0

)( j∑
i=0

Ui

)1/2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ tr

((
Θ̃(j) −Θ0

) j∑
i=0

Ui

(
Θ̃(j) −Θ0

)′)

≤ p

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(Θ̃(j) −Θ0

) j∑
i=0

Ui

(
Θ̃(j) −Θ0

)′∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ p

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(Θ̃(j) −Θ0

) j−1∑
i=0

Ui

(
Θ̃(j) −Θ0

)′∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

sj

(
Θ̃(j) −Θ0

)
,

but according to definition of Ω(j) in (3.7), both Θ̃(j), and Θ0 belong to
j−1⋂
i=1

Ξ(i), i.e. (3.6)
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implies

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(Θ̃(j) −Θ0

) j−1∑
i=0

Ui

(
Θ̃(j) −Θ0

)′∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
j−1∑
i=0

∣∣∣∣∣∣∣∣∣∣∣∣(Θ̃(j) −Θ0

)
Ui

(
Θ̃(j) −Θ0

)′∣∣∣∣∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣∣∣∣∣(Θ̃(j) −Θ0

)′∣∣∣∣∣∣∣∣∣∣∣∣2
2

+ 4

j−1∑
i=1

βni

(
δ

i2

)
≤ 4∆2

0 + 4m (T ) βT

(
δ

m (T )2

)
,

where in the last inequality above (3.17), ni ≤ T , and i ≤ m (T ) are used. Now, putting

together we have

dτje−1∑
t=dτj−1e

∣∣∣∣∣∣(Θ̃(j) −Θ0

)
L̃
(

Θ̃(j)
)
x(t)

∣∣∣∣∣∣2
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
(

Θ̃(j) −Θ0

)( j∑
i=0

Ui

)1/2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

dτje−1∑
t=dτj−1e

∣∣∣∣∣∣
∣∣∣∣∣∣
(

j∑
i=0

Ui

)−1/2

L̃
(

Θ̃(i)
)
x(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤ 4pqsj

(
Θ̃(j) −Θ0

)(
∆2

0 +m (T ) βT

(
δ

m (T )2

))

Plugging in (3.29), and using Lemma 3.5, leads to

T5 ≤ 4pq∆4m (T )

(
∆2

0 +m (T ) βT

(
δ

m (T )2

))
. (3.30)

Going back to T4, write it as

T4 =
T∑
t=1

x(t)′L̃ (Θt)
′ (Θ0 + Θt)

′K (Θt) (Θ0 −Θt) L̃ (Θt)x(t).
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Cauchy-Schwartz inequality leads to

T4 ≤
T∑
t=1

∣∣∣∣∣∣K (Θt) (Θ0 + Θt) L̃ (Θt)x(t)
∣∣∣∣∣∣

2

∣∣∣∣∣∣(Θ0 −Θt) L̃ (Θt)x(t)
∣∣∣∣∣∣

2

≤ T1/2
5

[
T∑
t=1

∣∣∣∣∣∣K (Θt) (Θ0 + Θt) L̃ (Θt)x(t)
∣∣∣∣∣∣2

2

]1/2

.

By (2.23), for all stabilizable Θ ∈ Rp×q, the equality

L̃ (Θ)′Θ′K (Θ) ΘL̃ (Θ) = K (Θ)−Q− L (Θ)′RL (Θ)

holds. So, since Q+ L (Θ)′RL (Θ) is PSD and R is PD, we respectively get

∣∣∣λmax

(
L̃ (Θ)′Θ′K (Θ) ΘL̃ (Θ)

)∣∣∣ ≤ |λmax (K (Θ))| ≤ ∆1, (3.31)∣∣∣∣∣∣∣∣∣L̃ (Θt)
∣∣∣∣∣∣∣∣∣

2
≤ ∆5 <∞. (3.32)

Now, (3.31) in addition to (3.22) and (3.24) lead to

∣∣∣∣∣∣K (Θt) ΘtL̃ (Θt)x(t)
∣∣∣∣∣∣

2
≤

∣∣∣∣∣∣∣∣∣K (Θt)
1/2
∣∣∣∣∣∣∣∣∣

2

∣∣∣∣∣∣∣∣∣K (Θt)
1/2 ΘtL̃ (Θt)

∣∣∣∣∣∣∣∣∣
2
||x(t)||2

≤ ∆1η
(
D1, · · · , Dm(T )

)
νT

(
δ

m (T )2

)
,

while (3.32) similarly implies

∣∣∣∣∣∣K (Θt) Θ0L̃ (Θt)x(t)
∣∣∣∣∣∣

2
≤ ∆1∆5|||Θ0|||2η

(
D1, · · · , Dm(T )

)
νT

(
δ

m (T )2

)
.

Putting all together and using (3.30), on G ∩ H we have

T4 ≤ T1/2
5 T 1/2∆1 (1 + ∆5|||Θ0|||2) η

(
D1, · · · , Dm(T )

)
νT

(
δ

m (T )2

)
≤ ∆6m (T ) βT

(
δ

m (T )2

)1/2

(logm (T ))1/α (− log δ)1/α T 1/2,
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for some ∆6 <∞, which is the desired result.

Lemma 3.7 (Bounding m (T )). On the event G ∩ H, it holds that

m (T ) ≤ q

log γ
log

(
T
(
γ1/q − 1

)
τ1

+ 1

)
.

Proof. According to definition of episode size in (3.2), we have

τi − τi−1 = γi/q
(
N2.1

(
|λmin (C)|

2
,
δ

i2

)
+ 1

)
≥ γi/q

(
N2.1

(
|λmin (C)|

2
, δ

)
+ 1

)
= γ

i−1
q τ1.

Since τm(T ) ≤ T , we have

T ≥
m(T )∑
i=1

(τi − τi−1) ≥ γ
m(T )
q − 1

γ
1
q − 1

τ1,

which yields

m (T ) ≤ q

log γ
log

(
T
(
γ1/q − 1

)
τ1

+ 1

)
.

Finally, note that definition of βn (δ) in Theorem 2.3 implies

βn (δ) = O
(

(log n)4/α (− log δ)1+4/α
)
.

Therefore, plugging Lemmas 3.2, 3.3, 3.4, 3.6, and 3.7 into (3.20), we get

R (T ) = O
(
T 1/2 (log T )1+2/α (log log T )1/2+3/α (− log δ)1/2+3/α

)
,

with probability at least 1− δ on G ∩H. Hence, according to (3.21), the failure probability
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is at most 6δ, which completes the proof of Theorem 3.1.

Proof of Theorem 3.2. Let

T1,T2,T3,T4,m (T ) ,G,H

be as defined in the proof of Theorem 3.1, and let ni = τi− τi−1 be the length of episode i.

Similarly, the regret can be written as

R (T ) =
T∑
t=1

[ct − J ? (Θ0)] = T1 + T2 + T3 + T4. (3.33)

Simply, Lemma 2.6 and Theorem 2.2 imply that

P (G ∩ H) ≥ 1−
∞∑
i=1

3δ

i2
≥ 1− 5δ. (3.34)

Henceforth in the proof, we assume that G ∩ H holds. Bounding of T1,T2,T3 is exactly

similar to Lemmas 3.2, 3.3, 3.4, respectively. We state and prove the following lemma,

which will be used in order to upper bound T4.

Lemma 3.8. Let
{
M (i)

}∞
i=1

be a sequence of p× p matrices. Whenever τi−1 ≤ t < τi, let

Mt = M (i). Define

T6 =
T∑
t=1

||Mtx(t)||22.

On G ∩ H, it holds that

T6 ≤ ∆7

m(T )∑
i=1

ni
∣∣∣∣∣∣M (i)

∣∣∣∣∣∣2
2
,

for some constant ∆7 <∞.

Proof. Letting Di = Θ0L̃
(

Θ̃(i)
)

be the stable closed-loop matrix during episode i, and

V (i) =

τi−1∑
t=τi−1

x(t)x(t)′,

83



be the empirical covariance matrix of episode i, according to (2.37), on G ∩ H we have∣∣λmax

(
V (i)

)∣∣ ≤ ∆7

p2
ni, where

∆7 =
3

2
p2 |λmax (C)| η (D′i)

2
<∞.

Therefore,

T6 =
T∑
t=1

x(t)′M ′
tMtx(t)

=

m(T )∑
i=1

tr
(
M (i)V (i)M (i)′

)
≤

m(T )∑
i=1

p
∣∣λmax

(
V (i)

)∣∣ ∣∣∣∣∣∣∣∣∣M (i)′
∣∣∣∣∣∣∣∣∣2

2

≤ ∆7

p

m(T )∑
i=1

ni

∣∣∣λmax

(
M (i)M (i)′

)∣∣∣
≤ ∆7

p

m(T )∑
i=1

nitr
(
M (i)′M (i)

)
≤ ∆7

m(T )∑
i=1

ni
∣∣∣∣∣∣M (i)

∣∣∣∣∣∣2
2
.

Lemma 3.9 (Bounding T4). On the event G ∩ H, it holds that

T4 ≤ ∆10 (log T )2/α (logm (T ))1/2+3/α (− log δ)1/2+3/α T 1/2,

for some constant ∆10 <∞.
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Proof. Defining Mt = (Θ0 −Θt) L̃ (Θt), Cauchy-Schwartz inequality leads to

T4 ≤
T∑
t=1

∣∣∣∣∣∣K (Θt) (Θ0 + Θt) L̃ (Θt)x(t)
∣∣∣∣∣∣

2

∣∣∣∣∣∣(Θ0 −Θt) L̃ (Θt)x(t)
∣∣∣∣∣∣

2

≤ T1/2
6

[
T∑
t=1

∣∣∣∣∣∣K (Θt) (Θ0 + Θt) L̃ (Θt)x(t)
∣∣∣∣∣∣2

2

]1/2

,

where T6 is the same as Lemma 3.8. Then, since Θ0, Θ̃
(i) ∈ Ω(i−1), (3.13) implies

∣∣∣∣∣∣∣∣∣(Θ̃(i) −Θ0

)
L̃
(

Θ̃(i−1)
)∣∣∣∣∣∣∣∣∣

2
≤ 2εγ−i+1,

which by weak identifiability condition of (3.8) leads to

∣∣∣∣∣∣∣∣∣(Θ̃(i) −Θ0

)
L̃
(

Θ̃(i)
)∣∣∣∣∣∣∣∣∣

2
≤ 2ΓΘ0εγ

−i+1.

Therefore, according to (3.31), (3.32),

∣∣∣∣∣∣M (i)
∣∣∣∣∣∣

2
≤ 2 (1 + ∆5|||Θ0|||2) ∆1ΓΘ0εγ

−i+1. (3.35)

On the other hand, by (2.8), (2.9), for some constant 0 < ∆8 <∞, we have

∆8γ
2i ≤ ni ≤ ∆8 (log ni)

4/α ε−2γ2i

(
− log

δ

i2

)1+4/α

. (3.36)

Thus, by ni ≤ T, i ≤ m (T ), putting (3.35), (3.36) together we get

T6 ≤ ∆7

m(T )∑
i=1

ni
∣∣∣∣∣∣M (i)

∣∣∣∣∣∣2
2
≤ ∆9

(
log

m (T )2

δ

)1+4/α

(log T )4/α .
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for some ∆9 <∞. The reminder of proof is similar to Lemma 3.6, i.e.

T4 ≤ T1/2
6 T 1/2∆1 (1 + ∆5|||Θ0|||2) η

(
D1, · · · , Dm(T )

)
νT

(
δ

m (T )2

)
≤ ∆10 (log T )2/α (logm (T ))1/2+3/α (− log δ)1/2+3/α T 1/2,

which is the desired result.

To bound m (T ), note that according to (3.36), we have ∆8γ
2m(T )−2 ≤ T , i.e.

m (T ) ≤ log T − log ∆8

2 log γ
+ 1. (3.37)

Finally, since T1,T2,T3 were bounded before exactly similar to the proof of Theorem

3.1, plugging Lemma 3.9, and (3.37) into (3.33), we get the following regret bound which

holds with probability at least 1− 6δ;

R (T ) = O
(
T 1/2 (log T )2/α (log log T )1/2+3/α (− log δ)1/2+3/α

)
.

Proof of Theorem 3.3. Letting

T1,T2,T3,T4,m (T ) ,G,H, ni

be as defined in the proof of Theorem 3.2, the regret can be written as

R (T ) =
T∑
t=1

[ct − J ? (Θ0)] = T1 + T2 + T3 + T4. (3.38)

Further, (3.34) holds similarly. Bounding of T2,T3,T4 is exactly similar to Theorem 3.2,
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with the following upper bound for ∆1:

∀i ≥ 2 : |λmin (C)|
∣∣∣λmax

(
K
(

Θ̂(i)
))∣∣∣ ≤ J ?

(
Θ̂(i)

)
≤ J ? (Θ0) + ΓJ

∣∣∣∣∣∣∣∣∣Θ̂(i) −Θ0

∣∣∣∣∣∣∣∣∣
2

≤ J ? (Θ0) + ΓJΓΘ0ε,

i.e.

∆1 ≤ max

{
J ? (Θ0) + ΓJΓΘ0ε

|λmin (C)|
,
∣∣∣∣∣∣∣∣∣K (Θ̂(1)

)∣∣∣∣∣∣∣∣∣
2

}
<∞.

But since Algorithm 4 is not using OFU, the term T1 is not necessarily non-positive.

Lemma 3.10 (Bounding T1). On the event G ∩ H, we have

T1 ≤ ∆13 (logm (T ))1+4/α (log T )4/α T 1/2 (− log δ)1/2+2/α ,

for some ∆13 <∞.

Proof. First, the design of episode size in (3.12) implies that

∣∣∣∣∣∣∣∣∣(Θ̂(i) −Θ0

)
L̃
(

Θ̂(i−1)
)∣∣∣∣∣∣∣∣∣

2
≤ εγ−i+1.

Therefore, by strong identifiability condition (3.14),

∣∣∣∣∣∣∣∣∣Θ̂(i) −Θ0

∣∣∣∣∣∣∣∣∣
2
≤ ΓΘ0εγ

−i+1,

which according to Lemma 2.2 implies that

∣∣∣J ?
(

Θ̂(i)
)
− J ? (Θ0)

∣∣∣ ≤ ΓJΓΘ0εγ
−i+1.
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So, using (3.36),

T1 ≤
m(T )∑
i=1

ni

∣∣∣J ?
(

Θ̂(i)
)
− J ? (Θ0)

∣∣∣
≤

m(T )∑
i=1

∆8 (log ni)
4/α ε−2γ2i

(
− log

δ

i2

)1+4/α

ΓJΓΘ0εγ
−i+1

≤ ∆11 (log T )4/α

(
− log

δ

m (T )2

)1+4/α

γm(T ),

for some constant ∆11 <∞. On the other hand,

T ≥ nm(T )−1 ≥ ∆12 (− log δ)1+4/α γ2m(T ),

for some ∆12 > 0. Thus, for some ∆13 <∞,

T1 ≤ ∆13 (logm (T ))1+4/α (log T )4/α T 1/2 (− log δ)1/2+2/α ,

which is the desired result

This finishes the proof, implying that with probability at least 1− 6δ;

R (T ) = O
(
T 1/2 (log T )4/α (log log T )1+4/α (− log δ)1/2+3/α

)
.
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CHAPTER 4

Estimation in General VAR models

4.1 Introduction

Estimation of the transition matrix in VAR models has been extensively studied in the

statistics and econometrics literature for the stable case [20]. Further, new work has also

addressed this topic under high-dimensional scaling and extra assumptions on sparsity im-

posed on it [21]. However, in settings where the underlying process is not stable, the topic

has not been adequately examined. A key issue that arises in this case is that the mag-

nitude of the vector process explodes exponentially over time, with high probability [22].

Nevertheless, in addition to adaptive control of the systems evolving according to linear

dynamics, estimation of the transition matrix in the non-stable case is of interest due to a

number of applications that give rise to such instances, such as asset bubbles and (Yugoslav)

hyperinflation [23], [24].

Some of the work on the topic provides asymptotic results [22]. Early work investigated

the asymptotic distribution of the VAR model under a set of restrictive assumptions on the

transition matrix [25]. Ensuing work dealt with asymptotic consistency of the estimates for

a class of structured transition matrices [26]. Further extensions to more general classes

were established by Nielsen [27], [28]. Finally, additional asymptotic results together with

the important concept of irregularity of the transition matrix (see Definition 2.3) which

leads to inconsistency, are presented in the literature [29]. However, finite sample results
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are not currently available.

In this chapter, we consider a VAR process x(t) ∈ Rp, t = 0, 1, · · · that evolves accord-

ing to

x(t+ 1) = D0x(t) + w(t+ 1), (4.1)

starting from an arbitrary initial state x(0). We examine the general case where the process

is not necessarily stable (as technically defined in the next section). The key contributions

of this chapter are:

(i) establishing finite sample bounds for the `2 error of the least-squares estimates of the

transition matrix D0,

(ii) under a fairly general heavy tailed noise process {w(t)}∞t=1. In addition, the results due

to the presence of a heavy-tailed noise term are of independent interest for the stable case as

well (see Corollary 4.1). The novel results provided identify how the sample size required

scales both with the dimension of the VAR model, as well as with the characteristics of the

transition matrix and the noise process.

In order to establish results for finite sample estimation of D0, one needs to overcome a

set of issues. First, as long as D0 has eigenvalues outside of the unit circle in the complex

plane, the behavior of the Gram matrix is governed by a random matrix. The second issue

arises when D0 has eigenvalues both inside and outside of the unit circle. In this case, the

smallest eigenvalue of the Gram matrix scales linearly with respect to sample size, while its

largest eigenvalue grows exponentially. This leads to the failure of the classical approaches

to establish consistency. The above issues are addressed in Section 4.4 and Section 4.5,

respectively. In the proofs, we leverage selected concentration inequalities for random

matrices [30], as well as an anti-concentration property of martingale difference sequences

(see Lemma 4.2) [31].

Recently, the problem of forecasting non-stationary mixing [32], [33], and non-mixing

[34] time series has received attention, assuming the loss function is bounded. Unstable

VAR models are a special, yet interesting, case of non-stationary time series. However, the
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problem of estimation is not still addressed in the existing literature. Moreover, the results

on forecasting are not applicable to estimation, since the sum-of-squares loss function em-

ployed in this study is not bounded. However, note that our results on estimation imply

those on forecasting.

4.2 Technical Details

The VAR process {x(t)}∞t=0 evolves according to (4.1), while the unknown transition

matrix D0 ∈ Rp×p is not assumed to be stable, i.e. the eigenvalues of D0 do not necessarily

lie inside the unit circle. Further, {w(t)}∞t=1 is the sequence of independent mean-zero

noise vectors with covariance matrix C, i.e.

E [w(t)] = 0, E [w(t)w(t)′] = C.

Remark 4.1. The results established also hold if the noise vectors are martingale differ-

ence sequences. Further, the generalization for heteroscedastic noise, where the covariance

matrix C is time varying, is rather straightforward.

The objective is to estimateD0, using the row-wise least-squares estimator. Technically,

observing samples {x(t)}nt=0, define the sum-of-squares loss function

L(i)
n (θ) =

n−1∑
t=0

(xi(t+ 1)− θ′x(t))
2
.

Then, the true transition matrix D0 is estimated by

D̂n =
[
d̂1, · · · , d̂p

]′
,
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where for i = 1, · · · , p, the vector d̂i is a minimizer of the above sum-of-squares, i.e.

L(i)
n

(
d̂i

)
= min

θ∈Rp
L(i)
n (θ) .

The main contribution of this chapter is showing that with high probability, accurate esti-

mation of the true transition matrix is achieved, excluding a pathological case. Formally,

D̂n is with probability at least 1 − δ within an ε-neighborhood of D0, where apart from a

logarithmic factor, the sample size n scales quadratically with 1
ε
, and logarithmically with

1
δ

(see Theorem 4.3).

To analyze the finite sample behavior of the above estimation procedure, Assumption

2.1 is assumed for the tail-behavior of every coordinate of the noise vector. To proceed, we

define a property of the population covariance matrix of a VAR process. It can be seen in

the proofs of the presented results, that the following property is necessary and sufficient for

accurate estimation of the VAR parameters. The motivation behind Definition 4.1 becomes

clear by the example presented later on.

Definition 4.1 (reachability). The pair [D0, C] is called reachable if

rank
([
C1/2, D0C

1/2, · · · , Dp−1
0 C1/2

])
= p.

Clearly, reachability is equivalent to |λmin (K(C))| > 0, where

K(C) =

p−1∑
i=0

Di
0CD

′
0
i
.

Specifically, if C is positive definite, then [D0, C] is reachable for all D0 ∈ Rp×p, and

|λmin (K(C))| > |λmin (C)| > 0.

Note that reachability is conceptually equivalent to the population covariance matrix of
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the process being positive definite. More precisely, the evolution of the process over time

implies

x(t) = Dt
0x(0) +

t∑
i=1

Dt−i
0 w(i).

Therefore, since the noise vectors are independent, the covariance matrix of x(t) is

given by
t−1∑
i=0

Di
0CD

′
0
i
;

i.e. reachability is in fact stating that for t ≥ p, every coordinate of x(t) has a non-

degenerate randomness. In the following example, we describe a situation to demonstrate

the usefulness of reachability.

Back to Definition 4.1, a natural question arising concerns the motivation behind con-

sidering reachable pairs rather than simply assuming positive definiteness of C. There is

an extensive family of settings, including the following example, where the latter stronger

condition does not essentially hold.

Example 4.1 (Time series with longer memory). Consider a VAR(k) model, where the

evolution of the process to the next time step is determined by the k previous lags, for some

k > 1. For t ≥ k, the process x̃(t) ∈ Rm evolves according to

x̃(t) =
k∑
j=1

Djx̃(t− j) + w̃(t),

for some initial vectors x̃(0), · · · , x̃(k − 1) ∈ Rm, and transition matrices D1, · · · , Dk ∈

Rm×m, assuming Dk 6= 0.

Suppose that the covariance matrix of w̃(t), C̃ ∈ Rm×m, is positive definite. Arranging

blocks of x̃(t) accordinlgly, the process can be written in the form of a VAR(1) model, as
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follows. Letting

x(t) =


x̃(t+ k − 1)

...

x̃(t)

 ∈ Rkm, w(t) =



w̃(t+ k − 1)

0

...

0


∈ Rkm,

we get x(t+ 1) = D0x(t) + w(t+ 1), where

D0 =

D1 · · ·Dk−1 Dk

I(k−1)m 0

 ∈ Rkm×km.

Obviously, the covariance matrix of w(t), denoted by C, is not full rank, although, one

can show that [D0, C] is reachable. Hence, for processes exhibiting longer range temporal

dependence, reachability constitutes a very natural and critical assumption.

Next, we establish results regarding the sample size needed so that with high probability

the least squares estimate of D0 is accurate within a certain degree. First, we study the

stable case where all eigenvalues of D0 are inside the unit circle, i.e. |λmax (D0)| < 1.

Subsequently, the explosive case where all eigenvalues lie outside of the unit circle, i.e.

|λmin (D0)| > 1, is examined. Finally, finite sample estimation results are presented for the

general case which is the combination of these two regimes.

Some straightforward algebra shows that the least-squares estimator of the transition

matrix can be written as

D̂n =
n−1∑
t=0

x(t+ 1)x(t)′V −1
n ,

where Vn =
n−1∑
t=0

x(t)x(t)′ denotes the empirical covariance matrix of the VAR process,

which is assumed to be non-singular.

The latter result implies that the behavior of Vn needs to be carefully studied and this

constitutes a major part of the following two subsections. The proofs of all the results
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established, as well as the required preliminaries, are provided in Section 4.6. Further, all

constants being referred to in this chapter, can be explicitly recovered from the detailed

restatements of the results in the corresponding proofs.

4.3 Stable Case

The stable case has been extensively studied before, customarily under the stronger

assumption of sub-Gaussian noise [35]. Next, we generalize the results to sub-Weibull

noise vectors previously defined in Assumption 2.1. Further, these results will be used for

the general case in Section 4.5, where we address the general non-stationary case.

In the stable regime, the process has a stationary limit distribution. In this case, the em-

pirical covariance matrix has an approximately deterministic behavior, which is described

by population covariance matrix of the asymptotic distribution. Specifically, if the sample

size is large enough, Vn, once normalized properly, can be approximated by κ (C), where

κ (C) =
∞∑
i=0

Di
0CD

′
0
i

is the asymptotic covariance matrix. The following lemma provides a finite sample bound

determined by the estimation error ε, the failure probability δ and the tail exponent α.

Henceforth, one can let α → ∞ in all inequalities presented for sample size, if the noise

vectors w(1), w(2), · · · are bounded.

Theorem 4.1 (Stable covariance). Assuming |λmax (D0)| < 1, there is a constant ∆1 <∞,

such that for arbitrary ε, δ > 0 if

n

(log n)4/α
≥ ∆1

ε2
(− log δ)1+4/α ,

Then

P
(∣∣∣∣λmax

(
1

n
Vn+1 − κ (C)

)∣∣∣∣ > ε

)
≤ δ.
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A direct consequence of Theorem 4.1 is the following corollary, which shows that high

probability accurate estimation can be ensured, if reachability, as defined in Definition 4.1,

is assumed. Note that reachability implies that κ (C) is positive definite.

Corollary 4.1 (Stable estimation). Suppose that |λmax (D0)| < 1, and [D0, C] is reachable.

Then, there is ∆2 <∞, such that

n

(log n)4/α
≥ ∆2

ε2
(− log δ)1+4/α ,

implies

P
(∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
> ε
)
< δ.

Remark 4.2. The scaling of the constants ∆1,∆2 used above, is polynomial with respect

to the dimension p. The degree of this polynomial depends on the size of the largest block

in the Jordan form of D0. For example, if D0 is diagonalizable, ∆1,∆2 scale linearly with

respect to p.

The explicit dependence of ∆1,∆2 on D0 (in fact through |λmax (D0)|), the noise co-

variance matrix C (namely, |λmax (C)| for ∆1 and |λmin (K(C))| for ∆2), as well as the

parameters b1, b2, α specified in Assumption 2.1, can be found in the corresponding proofs.

4.4 Explosive Case

In the explosive case, the empirical covariance matrix Vn grows exponentially with

respect to n. In addition, unlike the stable case, Vn, once normalized properly, can be

approximated by a random matrix. Therefore, the eigenvalues of the normalized empirical

covariance matrix are stochastic as well. In order to find deterministic bounds for the

eigenvalues of Vn, new quantities, denoted by φ (D0) , ψ (D0, δ), need to be defined.

Subsequently, after providing the formal definition of the above quantities, we present

in Theorem 4.2 bounds for the eigenvalues. Then, a sufficient and necessary property ofD0
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for the accurate estimation will be introduced, followed by Lemmma 4.1, and Lemma 4.2,

which establish the positiveness of φ (·) , ψ (·, ·). This section concludes with Corollary 4.2

that deals with estimation in the explosive case.

First, for explosive D0, we define the nonnegative functions φ (D0) , ψ (D0, δ) as fol-

lows. Assuming |λmin (D0)| > 1, let D0 = P−1ΛP be the Jordan decomposition (detailed

definition, as well as some properties, can be found in Section 4.6). Letting

z(∞) = x(0) +
∞∑
i=1

D−i0 w(i),

P = [P1, · · · , Pp]′ ,

for δ > 0 define

ψ (D0, δ) = sup

{
y ∈ R : P

(
min

1≤i≤p
|P ′iz(∞)| < y

)
≤ δ

}
.

Note that according to this definition, all coordinates of the vector Pz(∞) are in magnitude

at least ψ (D0, δ), with probability at least 1− δ. Next, define

φ (D0) = |||P |||−1
2→∞ inf

a∈Rp\{0}

1

||a||1

[
p−1∑
i=0

ai+1Λ−i

]
min

,

where for an arbitrary matrix M ∈ Cm×k, [M ]min is the smallest magnitude of the nonzero

entries of M :

[M ]min = min{|Mij| : 1 ≤ i ≤ m; 1 ≤ j ≤ k; Mij 6= 0}.

In fact, as the proofs show, φ (D0) represents the deterministic portion of the smallest

eigenvalue of the random matrix F∞ which approximates the normalized Vn. It only de-

pends on D0, while ψ (D0, δ) represents the stochastic portion which depends on both D0

and the distribution of the noise sequence {w(t)}∞t=1. Intuitively, φ (D0) denotes the mini-
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mum nontrivial distance between the polynomials of D−1
0 and the origin, and ψ (D0, δ) de-

notes the high probability minimum distance of the vector Pz(∞) from the origin. These

minimum distances show up, because for v ∈ Rp, v′F∞v is determined by the product of a

polynomial of D−1
0 (with coefficients determined by v), and Pz(∞). More details can be

found in the proof of Theorem 4.2.

Now, the behavior of the normalized empirical covariance matrix can be approximated

as follows:

Theorem 4.2 (Explosive covariance). Suppose that |λmin (D0)| > 1; then, there is a con-

stant ξ (D0) <∞ such that

P
(∣∣∣λmax

(
D−n0 Vn+1D

′
0
−n
)∣∣∣ > ξ (D0) (− log δ)2/α

)
≤ δ.

Further, there is ∆3 <∞, such that n ≥ ∆3 log
(− log δ

ε

)
implies

P
(∣∣∣λmin

(
D−n0 Vn+1D

′
0
−n
)∣∣∣ < φ (D0)2 ψ (D0, δ)

2 − ε
)
≤ δ. (4.2)

Remark 4.3. The sample size n ≥ ∆3 log
(− log δ

ε

)
in Theorem 4.2 is interesting in follow-

ing two ways. First, the accuracy ε decays exponentially fast when n grows. Second, the

failure probability δ decays double exponentially with respect to n.

This surprising strong behavior is intuitively caused by the exponential growth of x(t).

Roughly speaking, the growing signal (i.e. x(t)) to noise (i.e. w(t)) ratio leads to the super

fast decay of ε and δ.

If φ (D0)ψ (D0, δ) = 0, obviously (4.2) holds, and Theorem 4.2 becomes mute. Thus,

the main interest is in the case where φ (D0)ψ (D0, δ) 6= 0, which we will show that holds,

under certain conditions, and is necessary to ensure accurate estimation. In fact, the first

case is of no interest, since it can be shown that Vn will be singular, and thus accurate

estimation of D0 fails, even if the sample size becomes infinitely large [29]. For the second
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case, the transition matrix D0 needs to be regular, according to Definition 2.3. Regularity

(of course in addition to reachability), leads to accurate estimation, as will be established

in Corollary 4.2.

Lemma 4.1. Assuming |λmin (D0)| > 1, regularity of D0 is equivalent to φ (D0) > 0.

The next lemma shows that positiveness of ψ (D0, δ) is implied by reachability. Lemma

4.2 also reveals a linear scaling of ψ (D0, δ) with respect to δ, when the noise is a continuous

random vector.

Lemma 4.2. Assume |λmin (D0)| > 1, and [D0, C] is reachable. We then have

ψ (D0, δ) > 0.

Moreover, if there is i ≥ p, such that w(i−p+1), · · · , w(i) have bounded pdfs over certain

subspaces of Rp, then, ψ (D0, δ) ≥ ψ0δ, for some constant ψ0 > 0. If the bounded pdfs

mentioned above correspond to the normal distribution, then

ψ0 ≥

(
π |λmin (K(C))|

2
∣∣λmax

(
D0

iD′0
i
)∣∣
)1/2

p−1

(
min

1≤i≤p
||Pi||2

)
.

Now, we are ready to state the key result for the sample size required to achieve accurate

estimation for an explosive transition matrix.

Corollary 4.2 (Explosive estimation). Suppose that |λmin (D0)| > 1, D0 is regular, and

[D0, C] is reachable. There exists ∆4 <∞, such that

n ≥ ∆4 log

(
− log δ

εψ (D0, δ)

)
(4.3)

implies

P
(∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
> ε
)
< δ.
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Considering (4.3), while similar to Remark 4.3 the super fast decay of ε still holds, the

behavior of δ is of the common exponential order of n now (assuming the linear scaling of

ψ (D0, δ) with respect to δ).

Remark 4.4. Another interesting property of the explosive case is that ∆3,∆4 scale loga-

rithmically with respect to the dimension p.

Further, ∆3,∆4 depend on D0 (indeed through |λmin (D0)|), as well as b1, b2, α speci-

fied in Assumption 2.1. The constant ∆4 also depends on φ (D0). These dependencies, are

spelled out explicitly in the corresponding proofs.

4.5 General Case

The preliminary results previously stated set the stage for the main result of this chapter.

Theorem 4.3 establishes the accuracy of the estimation, when the regular matrix D0 has no

eigenvalue on the unit circle. As the following result shows, this assumption includes

almost all matrices, with respect to Lebesgue measure on set of all square matrices.

Lemma 4.3. The set of all p×p real matrices with at least one eigenvalue on the unit circle

has Lebesgue measure zero. Moreover, almost all matrices are regular.

Excluding two pathological cases of square matrices with at least one eigenvalue on

the unit circle, and irregular matrices, the estimation of the transition matrix for a general

VAR process is with high probability arbitrarily accurate, assuming that the sample size

is large enough, as given by the following theorem. Before stating this result, we extend

the domain of the non-negative function ψ (D0, δ) to arbitrary matrices. Technically, when

D0 is not explosive, (i.e. has some nonexplosive eigenvalues), let D be a real matrix (of

smaller size) formed by the explosive eigenvalues of D0, with exactly the same algebraic

and geometric multiplicities. We define ψ (D0, δ) = ψ (D, δ). The relationship between

D0, D is formally discussed in the proof of Theorem 4.3.
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Theorem 4.3 (General estimation). Suppose that D0 is regular, has no eigenvalue on the

unit circle, and [D0, C] is reachable. Then, there exists a constant ∆5 <∞, such that for

n

(log n)4/α
≥ ∆5

ε2

(
(− log δ)1+4/α − logψ (D0, δ)

)
, (4.4)

we have

P
(∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
> ε
)
< δ.

Remark 4.5. Note that Lemma 4.2 implies that − logψ (D0, δ) < ∞, and apart from a

constant, it is less than − log δ, if the noise vectors have bounded pdfs. In addition, the be-

havior of ∆5 is fully determined by that of the constants ∆2,∆4 (used in Corollary 4.1, and

Corollary 4.2). For example, if D0 is diagonalizable, ∆5 scales linearly with the number of

stable eigenvalues of D0, and logarithmically with the number of explosive eigenvalues of

D0. Other dependencies are also similar to those of ∆2,∆4, and are explicitly discussed in

the proof of Theorem 4.3.
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4.6 Technical Proofs

4.6.1 Proofs of Section 4.3

Proof of Theorem 4.1. Indeed, we prove the following. Let N4.1 (ε, δ) be large enough,

such that the followings hold for all n ≥ N4.1 (ε, δ).

n

νn (δ)2 ≥ 18 |λmax (C)|+ 2ε

ε2
pη (D′0)

4
log

(
4p

δ

)
, (4.5)

n

νn (δ)2 πn (δ)2 ≥ 288p

ε2
η (D′0)

4 |||D0|||22 log

(
4p

δ

)
, (4.6)

n

(||x(0)||∞ + νn (δ))2 ≥ 6

ε

(
|||D0|||22 + 1

)
η (D′0)

2
η (D0)2 . (4.7)

We prove that on the eventW defined in Lemma 2.6, for all n ≥ N4.1 (ε, δ) we have

P
(∣∣∣∣λmax

(
1

n
Vn+1 − κ (C)

)∣∣∣∣ > ε

)
< δ.

First, according to (2.33), letting

En = Un + Cn +
1

n
D0 (x(0)x(0)′ − x(n)x(n)′)D′0 +

1

n
x(0)x(0)′,

since |λmax (D0)| < 1, the Lyapunov equation Vn+1 = D0Vn+1D
′
0 + nEn has the solution

1

n
Vn+1 =

∞∑
i=0

Di
0EnD

′
0
i

= κ (En) .

Henceforth in the proof, we assume the event W holds. According to Lemma 2.8, (4.5)

implies that

P
(
|λmax (Cn − C)| > ε

3η (D′0)2

)
≤ δ

2
. (4.8)
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In addition, by Lemma 2.10, (4.6) implies that

P
(
|λmax (Un)| > ε

3η (D′0)2

)
≤ δ

2
. (4.9)

Finally, using Lemma 2.7, by (4.7) we get

1

n

(
|||D0|||22 + 1

) (
||x(0)||22 + ||x(n)||22

)
≤ ε

3η (D′0)2 . (4.10)

Now, since
∞∑
t=0

∣∣∣∣∣∣∣∣∣D′0t∣∣∣∣∣∣∣∣∣∞→2
≤ η (D′0) ,

and
∣∣∣∣∣∣D′0t∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣D′0t∣∣∣∣∣∣∞→2

, we have

∞∑
t=0

∣∣∣∣∣∣∣∣∣D′0t∣∣∣∣∣∣∣∣∣2
2
≤

(
∞∑
t=0

∣∣∣∣∣∣∣∣∣D′0t∣∣∣∣∣∣∣∣∣
2

)2

≤ η (D′0)
2
. (4.11)

Putting (4.8), (4.9), (4.10), and (4.11) together, on the eventW we have

|λmax (κ (En − C))| ≤
∞∑
t=0

∣∣∣λmax

(
Dt

0 (En − C)D′0
t
)∣∣∣ ≤ η (D′0)

2 |λmax (En − C)| ≤ ε,

with probability at least 1− δ, which is the desired result.

Proof of Corollary 4.1. We prove that if the followings hold, then, on the event W we

have
∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
≤ ε, with probability at least 1 − δ. Letting N4.1 (·, ·) be as defined in

the proof of Theorem 4.1, suppose that

n ≥ N4.1

(
|λmin (K(C))|

2
,
δ

2

)
+ 1, (4.12)

n− 2

νn (δ)2 πn (δ)2 ≥ 32p

|λmin (K(C))|2 ε2
log

(
4p

δ

)
. (4.13)
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First, by Theorem 4.1, (4.12) implies that on the eventW ,

1

n− 1
|λmin (Vn)| ≥ |λmin (κ (C))| −

∣∣∣∣λmax

(
1

n− 1
Vn − κ (C)

)∣∣∣∣ ≥ |λmin (K(C))|
2

,

(4.14)

with probability at least 1− δ/2. Since [D0, C] is reachable, |λmin (K(C))| > 0. Thus,

D̂n =
n−1∑
t=0

x(t+ 1)x(t)′V −1
n = D0 + UnV

−1
n ,

where Un =
n−1∑
t=0

w(t+ 1)x(t)′, which leads to

∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
≤ |||Un|||2
|λmin (Vn)|

. (4.15)

To proceed, for arbitrary matrix H ∈ Rk×`, define the linear transformation

Φ (H) =

0k×k H

H ′ 0`×`

 ∈ R(k+`)×(k+`).

As a well known fact, the equality |||H|||2 = |λmax (Φ (H))| holds [30]. Note that Φ (H)

is always symmetric. Next, letting Xt = w(t + 1)x(t)′, apply Lemma 2.11 to Φ (Xt) ∈

R2p×2p. Since

Φ (Xt)
2 =

||x(t)||22w(t+ 1)w(t+ 1)′ 0p×p

0p×p ||w(t+ 1)||22x(t)x(t)′

 ,
by Lemma 2.6, and Lemma 2.7, all matrices Φ (Mt)

2 − Φ (Xt)
2 are positive semidefinite

on the eventW , where

Mt = p1/2νn (δ) πn (δ) Ip.
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By

σ2 =

∣∣∣∣∣λmax

(
n−1∑
t=0

Φ (Mt)
2

)∣∣∣∣∣ = npνn (δ) πn (δ)2 ,

letting y = |λmin(K(C))|
2

(n− 1) ε, according to Lemma 2.11, (4.13) implies

P (|||Un|||2 > y) = P (|λmax (Φ (Un))| > y) ≤ 2p exp

(
− y2

8σ2

)
≤ δ

2
,

which in addition to (4.14) gives the desired result, once plugged in (4.15).

4.6.2 Proofs of Section 4.4

Lemma 4.4. Let z(n) = x(0) +
n∑
t=1

D−t0 w(t), where D0 is an explosive matrix with Jordan

decomposition D0 = P−1ΛP . Define the event

V =

{
sup

1≤n≤∞
||z(n)||2 ≤ ξ (D0, δ)

}
,

where

ξ (D0, δ) = ||x(0)||2 +
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞

∞∑
t=1

ηt
(
Λ−1

)(
b2 log

2b1pt
2

δ

)1/α

<∞.

We have P (V) ≥ 1 − δ. Note that apart from a constant, ξ (D0, δ) is less than or equal to

(− log δ)1/α.

Proof of Lemma 4.4. First, according to Lemma 2.6,

P
(
||w(t)||∞ ≤ ν1

(
δ

2t2

)
,∀t = 1, 2, · · ·

)
= 1− P

(
||w(t)||∞ > ν1

(
δ

2t2

)
,∃t = 1, 2, · · ·

)
≥ 1−

∞∑
t=1

P
(
||w(t)||∞ > ν1

(
δ

2t2

))
≥ 1−

∞∑
t=1

δ

2t2

> 1− δ.
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Then, similar to the proof of Lemma 2.7, we have

∣∣∣∣∣∣Λ−t∣∣∣∣∣∣∞ ≤ ηt
(
Λ−1

)
.

So, on the above event, for all n = 1, 2, · · · , we have

||z(n)||2 ≤
∞∑
t=1

∣∣∣∣∣∣D−t0

∣∣∣∣∣∣
∞→2
||w(t)||∞

≤ ||x(0)||2 +
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞

∞∑
t=1

ηt
(
Λ−1

)
ν1

(
δ

2t2

)
= ξ (D0, δ) ,

with probability at least 1− δ.

Proof of Theorem 4.2. Letting D0 = P−1ΛP be the Jordan decomposition of D0, and

z(0) = x(0), for n = 1, 2, · · · ,∞, define

z(n) = x(0) +
n∑
t=1

D−t0 w(t),

Un = D−n0 Vn+1D
′
0
−n
,

Fn =
n∑
t=0

D−t0 z(n)z(n)′D′0
−t
.

First, using x(t) = Dt
0z(t), since

Un =
n∑
t=0

D−n0 x(t)x(t)′D′0
−n

=
n∑
t=0

D−n+t
0 z(t)z(t)′D′0

−n+t
,

by Lemma 4.4 and (4.11), on the event V we have

|λmax (Un)| ≤
∞∑
t=0

∣∣∣∣D−t0 z(n− t)
∣∣∣∣2

2
≤

∞∑
t=0

∣∣∣∣∣∣D−t0

∣∣∣∣∣∣2
2
||z(n− t)||22 ≤ η

(
D−1

0

)2
ξ (D0, δ)

2 ,

which is the desired result, because the right hand side above is at most ξ (D0) (− log δ)2/α,

for some constant ξ (D0) <∞. In the sequel, we prove the desired result about the smallest
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eigenvalue. Letting

ρ1 = 2

(∣∣∣∣∣∣P−1
∣∣∣∣∣∣
∞→2
|||P |||∞η

(
D′−1

0

)2
+ η

(
D−1

0

)
|||P ′|||2∞→2

∣∣∣∣∣∣∣∣∣P ′−1
∣∣∣∣∣∣∣∣∣2
∞

)
e2|λmin(D0)|,

ρ2 = 2η
(
D′−1

0

)2 (
2 + η

(
D−1

0

)) ∣∣∣∣∣∣P−1
∣∣∣∣∣∣
∞→2
|||P |||∞e

|λmin(D0)|,

assume the followings hold for all n ≥ N4.2 (ε, δ):

νn (δ)n2µ(D0) |λmin (D0)|−2n/3 ≤ ε

ρ1ξ (D0, δ)
, (4.16)

nµ(D0)−1 |λmin (D0)|−n ≤ ε

ρ2ξ (D0, δ)
2 , (4.17)

where µ (D0) is the largest size of blocks in the Jordan decomposition, as defined in the

discussion after Definition 2.2. For all n ≥ N4.2 (ε, δ), we show that

P
(∣∣∣λmin

(
D−n0 Vn+1D

′
0
−n
)∣∣∣ < φ (D0)2 ψ (D0, δ)

2 − ε
)
≤ 4δ.

On the eventW , similar to the proof of Lemma 2.7, for all t = 1, · · · , n we have

||z(n)− z(n− t)||2 ≤
n∑

i=n−t+1

∣∣∣∣D−i0 w(i)
∣∣∣∣

2

≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞νn (δ)

n∑
i=n−t+1

ηi
(
Λ−1

)
.

Similarly, letting η0 (Λ−1) = 1, note that ηt (Λ′−1) = ηt (Λ−1), for t = 0, 1, 2, · · · . So,

∣∣∣∣∣∣D′−t0

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣D′−t0

∣∣∣∣∣∣
∞→2

≤ |||P ′|||∞→2

∣∣∣∣∣∣∣∣∣P ′−1
∣∣∣∣∣∣∣∣∣
∞
ηt
(
Λ−1

)
. (4.18)

According to the discussion after Definition 2.2, we have

ηt
(
Λ−1

)
≤ tµ(D)−1 |λmin (D)|−t e|λmin(D)|. (4.19)
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Thus,

n∑
t=0

||z(n− t)− z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2

≤
n/3∑
t=0

||z(n− t)− z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2
+

n∑
t=n/3

||z(n− t)− z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2

≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞νn (δ)

 n∑
i=2n/3

ηi
(
Λ−1

) n/3∑
t=0

∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2
2

+
n∑

t=n/3

||z(n− t)− z(n)||2
(
|||P ′|||∞→2

∣∣∣∣∣∣∣∣∣P ′−1
∣∣∣∣∣∣∣∣∣
∞
ηt
(
Λ−1

))2

≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞νn (δ)nµ(D0) |λmin (D0)|−2n/3 e|λmin(D0)|η

(
D′−1

0

)2

+ η
(
D−1

0

)
νn (δ) |||P ′|||2∞→2

∣∣∣∣∣∣∣∣∣P ′−1
∣∣∣∣∣∣∣∣∣2
∞
n2µ(D0) |λmin (D0)|−2n/3 e2|λmin(D0)|

≤ 1

2
ρ1νn (δ)n2µ(D0) |λmin (D0)|−2n/3 ,

which by (4.16) implies

n∑
t=0

||z(n− t)− z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2
≤ ε

2ξ (D0, δ)
. (4.20)
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By x(t) = Dt
0z(t), since

Un − Fn =
n∑
t=0

D−n0 x(t)x(t)′D′0
−n −D−t0 z(n)z(n)′D′0

−t

=
n∑
t=0

D−n+t
0 z(t)z(t)′D′0

−n+t −D−t0 z(n)z(n)′D′0
−t

=
n∑
t=0

D−t0 z(n− t)z(n− t)′D′0
−t −D−t0 z(n)z(n)′D′0

−t

=
n∑
t=0

D−t0 (z(n− t)z(n− t)′ − z(n)z(n)′)D′0
−t
,

|λmax (Un − Fn)| ≤
n∑
t=0

||z(n− t)− z(n)||2||z(n− t) + z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2

≤ 2

(
sup

1≤n≤∞
||z(n)||2

) n∑
t=0

||z(n− t)− z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2
,

using (4.20), and Lemma 4.4, on the eventW
⋂
V , we get

|λmax (Un − Fn)| ≤ ε

2
. (4.21)

On the other hand, one can use the same argument used in the proof of Lemma 4.4, to show

that the following holds with probability at least 1− δ.

||z(∞)− z(n)||2 ≤
∣∣∣∣∣∣D−n0

∣∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣
∞∑
t=1

D−t0 w(n+ t)

∣∣∣∣∣
∣∣∣∣∣
2

≤
∣∣∣∣∣∣D−n0

∣∣∣∣∣∣
2
ξ (D0, δ) .
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Therefore, using (4.18), on the event V , with probability at least 1− δ we have

|λmax (F∞ − Fn)| ≤
n∑
t=0

||z(∞)− z(n)||2||z(∞) + z(n)||2
∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2

2

+
∞∑

t=n+1

∣∣∣∣D−t0 z(∞)
∣∣∣∣2

2

≤ 2ξ (D0, δ) ||z(∞)− z(n)||2
n∑
t=0

∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2
2

+ ξ (D0, δ)
2
∣∣∣∣∣∣D−n0

∣∣∣∣∣∣2
2

∞∑
t=1

∣∣∣∣∣∣∣∣∣D′0−t∣∣∣∣∣∣∣∣∣2
2

≤ η
(
D′−1

0

)2
ξ (D0, δ)

2 (2 +
∣∣∣∣∣∣D−n0

∣∣∣∣∣∣
2

) ∣∣∣∣∣∣D−n0

∣∣∣∣∣∣
2

≤ η
(
D′−1

0

)2
ξ (D0, δ)

2 (2 + η
(
D−1

0

)) ∣∣∣∣∣∣P−1
∣∣∣∣∣∣
∞→2
|||P |||∞ηn

(
Λ−1

)
.

By (4.19), (4.17) implies that on V , with probability at least 1− δ,

|λmax (F∞ − Fn)| ≤ ε

2
. (4.22)

Next, we show that with probability at least 1− δ,

|λmin (F∞)| ≥ (φ (D0)ψ (P, δ))2 = λ0. (4.23)

For this purpose, we need the following lemmas.

Lemma 4.5. Letting f(x) =
p−1∑
i=0

ai+1x
i be a real polynomial, we have

P
(∣∣∣∣f (D−1

0

)
z(∞)

∣∣∣∣
2
< ||a||1φ (D0)ψ (D0, δ)

)
≤ δ.

Lemma 4.6. If φ (D0)ψ (D0, δ) 6= 0, then,

P
(
rank

([
z(∞), D0z(∞), · · · , D−p+1

0 z(∞)
])
< p
)

= 0.
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If λ0 = 0, (4.23) is trivial, because F∞ is always a PSD matrix. Otherwise, assume

|λmin (F∞)| < λ0, and let v ∈ Rp be such that ||v||2 = 1, and v′F∞v < λ0. Then,

λ0 >

p−1∑
t=0

v′D−t0 z(∞)z(∞)′D′0
−t
v

=

p−1∑
t=0

(
v′D−t0 z(∞)

)2

=
∣∣∣∣v′ [z(∞), · · · , D−p+1

0 z(∞)
]∣∣∣∣2

2

≥
∣∣∣∣v′ [z(∞), · · · , D−p+1

0 z(∞)
]∣∣∣∣2
∞

= max
0≤i≤p−1

∣∣v′D−i0 z(∞)
∣∣2 .

By Lemma 4.6, almost surely, there is a ∈ Rp, such that v =
p−1∑
i=0

ai+1D
−i
0 z(∞). So,

||v||2 =

∣∣∣∣∣v′
(
p−1∑
i=0

ai+1D
i
0

)
z(∞)

∣∣∣∣∣
≤

p−1∑
i=0

|ai+1|
∣∣v′Di

0z(∞)
∣∣

<

p−1∑
i=0

|ai+1|λ0
1/2

= λ0
1/2||a||1,

which, by Lemma 4.5, holds with probability at most δ, i.e. (4.23) holds. Putting (4.21),

(4.22), and (4.23) together, on the event W
⋂
V , we get the following, which holds with

probability at least 1− 2δ.

|λmin (Un)| ≥ |λmin (F∞)| − |λmax (F∞ − Fn)| − |λmax (Un − Fn)|

≥ λ0 − ε,

which is the desired result.
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Proof of Lemma 4.5. If φ (D0) = 0, obviously the statement holds. So, assume φ (D0) >

0. Letting D0 = P−1ΛP be the Jordan decomposition, we have

f
(
D−1

0

)
= P−1f

(
Λ−1

)
P.

The matrix Λ is block diagonal, thus, f (Λ−1) is block diagonal as well. Further, every

block of Λ−i, as well as every block of f (Λ−1), is upper triangular (see proof of Lemma

2.7). Therefore, since φ (D0) > 0, the matrix f (Λ−1) needs to have at least one nonzero

entry. So, there is at least one row of the block-wise upper triangular matrix f (Λ−1), which

has exactly one nonzero entry.

This nonzero entry, by definition of φ (D0), is in magnitude at least

||a||1|||P |||2→∞φ (D0) .

On the other hand, by definition of ψ (D0, δ), all coordinates of the vector Pz(∞) are in

magnitude at least ψ (D0, δ), with probability at least 1− δ.

So, with probability at least 1 − δ, the vector u = f (Λ−1)Pz(∞) has a coordinate,

which is in magnitude at least ||a||1|||P |||2→∞φ (D0)ψ (P, δ). This implies the desired in-

equality, because

||a||1|||P |||2→∞φ (D0)ψ (P, δ) ≤
∣∣∣∣f (Λ−1

)
Pz(∞)

∣∣∣∣
∞

=
∣∣∣∣Pf (D−1

0

)
z(∞)

∣∣∣∣
∞

≤ |||P |||2→∞
∣∣∣∣f (D−1

0

)
z(∞)

∣∣∣∣
2
.

Proof of Lemma 4.6. Let D0 = P−1ΛP be the Jordan decomposition of D0. Whenever

rank
([
z(∞), · · · , D−p+1

0 z(∞)
])
< p,
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there is a nontrivial real polynomial f of degree at most p− 1, such that

f
(
D−1

0

)
z(∞) = P−1f

(
Λ−1

)
Pz(∞) = 0.

Since φ (D0) > 0, similar to the proof of Lemma 4.5, there is at least one row of f (Λ−1),

say the i-th row, which has exactly one nonzero entry, say the ij-th entry.

Therefore, since the i-th coordinate of the vector f (Λ−1)Pz(∞) = 0, is zero, j-th

coordinate of Pz(∞) = 0 must be zero, i.e. P ′jz(∞) = 0, where P = [P1, · · · , Pp]′. So,

the desired result holds because

P
(
rank

([
z(∞), · · · , D−p+1z(∞)

])
< p
)

= P
(
∃j : P ′jz(∞) = 0

)
= 0.

To verify the last equality above, note that as we will see in the proof of Lemma 4.2, for all

j = 1, · · · , p,
∣∣P ′jz(∞)

∣∣ has a continuous distribution, which yields

P
(∣∣P ′jz(∞)

∣∣ = 0
)

= 0.

Proof of Lemma 4.1. Assume D0 is regular. Clearly, the infimum in the definition of

φ (D0), can be taken over ||a||1 = 1. We will show that there is no polynomial f of degree

at most p− 1, such that f
(
D−1

0

)
= 0. Note that this finishes the proof as follows. Let

Sp1 = {a ∈ Rp : ||a||1 = 1}.

The function G : Rp → R, defined as

G(a) =

[
p−1∑
i=0

ai+1Λ−i

]
min

,
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is continuous. Since Sp1 is a closed subset of Rp, G (Sp1) ⊂ R is closed as well. Therefore,

if for all a ∈ Sp1 , we have G(a) > 0, then

inf G (Sp1) > 0,

which means φ (D0) > 0.

If there is a polynomial f , such that f
(
D−1

0

)
= 0, let D−1

0 = P−1ΓP be the Jordan

decomposition of D−1
0 , where

Γ = diag (Γ1, · · · ,Γk) ,

and Γi is a sizemi Jordan matrix of γi, as defined before Definition 2.2. Now, f
(
D−1

0

)
= 0

implies f (Γ) = 0, which in turn yields f (Γi) = 0, for all i = 1, · · · , k. As shown in the

proof of Lemma 2.7, diagonal coordinates of f (Γi) are all f (γi), i.e. f (γi) = 0.

Let f(x) = g(x) (x− γ1)n1 · · · (x− γk)nk , where none of γ1, · · · , γk is a root of g(x).

We show that for all i, ni ≥ mi, so,

deg f ≥
k∑
i=1

ni ≥
k∑
i=1

mi = p,

which is a contradiction. Note that by regularity of D0, γ1, · · · , γk are distinct, i.e. for

i 6= j, Γi−γjImi is invertible (since it is a Jordan matrix of γi−γj 6= 0). Hence, f (Γi) = 0

implies (Γi − γiImi)
ni = 0. But, as shown in the proof of Lemma ??, an exponent of

size m Jordan matrix of 0 is zero matrix, only if the exponent is not smaller than m, i.e.

ni ≥ mi, which is the desired result.

Conversely, assume D0 is not regular, i.e. there are 1 ≤ i, j ≤ k, such that γi = γj , and

mi ≥ mj ≥ 1. Letting g(x) = det (D0 − xIp), define

f(x) =
1

x− γi
g(x),
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if γi is real, and

f(x) =
1

(x− γi) (x− γ̄i)
g(x),

otherwise, where γ̄i is the complex conjugate of γi.

Clearly, deg f ≤ p−1, but we will show that f
(
D−1

0

)
= 0, which leads to φ (D0) = 0.

Note that since D0 is regular, the polynomial f(x) can not be a trivial one. As seen in the

first part of the proof, it suffices to show that f (Γ`) = 0, for all ` = 1, · · · , k. If ` 6= i, j,

we have g (Γ`) = 0, so, f (Γ`) = 0. Since the multiplicity of the root γi in g(x) is mi +mj ,

its multiplicity in f(x) is at least mi + mj − 1 ≥ mi, which is greater than or equal to the

dimension of Γi and Γj . Therefore, f (Γ`) = 0, for ` = i, j, which finishes the proof.

Proof of Lemma 4.2. We use the following Lemma [31].

Lemma 4.7. Let {ζn}∞n=1 be a martingale difference sequence of random variables with

respect to the filter {Fn}∞n=1, such that

lim inf
n→∞

E
[
ζ2
n|Fn−1

]
> 0.

If the real sequence {an}∞n=1, satisfies

∞∑
n=1

a2
n ≤ ∞

an 6= 0, infinitely often,

then
∞∑
n=1

anζn has a continuous distribution.

For an arbitrary row P ′i of P , let v be one of the real vectors < (Pi) or = (Pi). Note that

since P is invertible, Pi 6= 0, and we can assume v 6= 0. Taking

an =
∣∣∣∣∣∣D′0−npv∣∣∣∣∣∣

2
,

ζn =
1

an

np∑
i=np−p+1

v′D−i0 w(i),
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we have an 6= 0 infinitely often, and by |λmin (D0)| > 1 we have
∞∑
n=1

a2
n <∞. Furthermore,

by reachability we have

E
[
ζ2
n

]
=

1

a2
n

np∑
i=np−p+1

v′D−i0 CD′0
−i
v

=
1∣∣∣∣D′0−npv∣∣∣∣22v′D−np0

(
p−1∑
i=0

Di
0CD

′
0
i

)
D′0
−np

v

≥ |λmin (K(C))| > 0.

So, v′z(∞) = v′x(0) +
∞∑
n=1

anζn has a continuous distribution. Letting Fi be the

Cumulative Distribution Function (CDF) of |P ′iz(∞)|, Fi is continuous, and because of

|P ′iz(∞)| ≥ |v′z(∞)|, one has F−1
i

(
δ
p

)
> 0. Since,

P
(
|P ′iz(∞)| < F−1

i

(
δ

p

))
=
δ

p
, (4.24)

we have

P
(

min
1≤i≤p

|P ′iz(∞)| < min
1≤i≤p

F−1
i

(
δ

p

))
≤

p∑
i=1

P
(
|P ′iz(∞)| < F−1

i

(
δ

p

))
= δ,

i.e.

ψ (D0, δ) ≥ min
1≤i≤p

F−1
i

(
δ

p

)
> 0,

which is the desired result.

To proceed, we use the following fact. For two independent random variables X, Y , if

X has bounded pdf fX , then X + Y has bounded pdf fX+Y , and

sup
y∈R

fX+Y (y) ≤ sup
y∈R

fX(y).
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To see that, note that for all y ∈ R,

fX+Y (y) =

∫
R

fX(y − τ)dPY (τ) ≤
(

sup
τ∈R

fX(τ)

)∫
R

dPY (τ) = sup
τ∈R

fX(τ).

Now, suppose that the supports of w(i − p + 1), · · · , w(i) are certain subspaces of

Rp, and they have bounded pdfs. Then, all of the random variables v′D−i+p−1
0 w(i − p +

1), · · · , v′D−i0 w(i) cannot be degenerate. Since otherwise,

Var
(
v′D−i+j0 w(i− j)

)
= 0,

for all j = 0, · · · , p− 1, i.e.

0 = Var

(
v′

p−1∑
j=0

D−i+j0 w(i− j)

)
= v′D−i0 K(C)D′0

−i
v

≥ |λmin (K(C))|
∣∣∣∣∣∣D′0−iv∣∣∣∣∣∣2

2
> 0,

which is a contradiction. Therefore, there exists j, such that D−i+j0 w(i − j) lives in a

subspace not orthogonal to v, i.e. v′D−i+j0 w(i− j) is a continuous random variable, with a

bounded pdf (since pdf of w(i− j) is bounded).

Using the fact mentioned above, pdf of v′z(∞), as well as pdf of |Piz(∞)|, denoted by

fi are bounded. Letting ψ−1
0 = p max

1≤i≤p
sup
y∈R

fi(y) <∞,

Fi (ψ0δ) =

ψ0δ∫
0

fi(y)dy ≤ ψ0δ sup
y∈R

fi(y) ≤ δ

p
,

i.e. F−1
i

(
δ
p

)
≥ ψ0δ, which is the desired result.
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For normal case, v′
p−1∑
j=0

D−i+jw(i− j) is normal with pdf f̃ , and

Var

(
v′

p−1∑
j=0

D−i+j0 w(i− j)

)
= v′D−i0 K(C)D′0

−i
v

≥ |λmin (K(C))|
∣∣∣∣∣∣D′0−iv∣∣∣∣∣∣2

2
> 0,

i.e.

sup
y∈R

f̃(y) ≤ (2π |λmin (K(C))|)−1/2
∣∣∣∣∣∣D′0−iv∣∣∣∣∣∣−1

2

≤

( ∣∣λmax

(
D0

iD′0
i
)∣∣

2π |λmin (K(C))|

)1/2

||v||−1
2 .

Denote the last expression above by 1
2bp

. By the fact above, v′z(∞) has a pdf such as f ,

bounded by 1
2bp

. Letting F be CDF of |v′z(∞)|, we have

F (bδ) =

bδ∫
−bδ

f(y)dy ≤ 2bδ sup
−bδ≤y≤bδ

f(y) ≤ 2bδ sup
y∈R

f1(y) ≤ δ

p
,

which by |P ′iz(∞)| ≥ |v′z(∞)|, implies F−1
i

(
δ
p

)
≥ bδ. Plugging in (4.24), we get the

desired result.

Proof of Corollary 4.2. Indeed, we prove that if the followings hold, then, we have

∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
≤ ε,

with probability at least 1− 4δ. Letting N4.2 (·, ·) be as defined by (4.16), and (4.17) in the
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proof of Theorem 4.2, suppose that

n ≥ N4.2 (λ0, δ) + 1, (4.25)

λ0ε ≥ ρνn (δ)nµ(D0)−1 |λmin (D0)|−n+1 , (4.26)

where

λ0 =
1

2
φ (D0)2 ψ (D0, δ)

2 ,

ρ = p1/2ξ (D0, δ) η
(
D−1

0

) ∣∣∣∣∣∣P−1
∣∣∣∣∣∣
∞→2
|||P |||∞e

|λmin(D0)|.

First, by Theorem 4.2, (4.25) implies that on the eventW
⋂
V ,

∣∣∣λmin

(
D−n+1

0 VnD
′
0
−n+1

)∣∣∣ ≥ λ0, (4.27)

with probability at least 1 − 2δ. According to Lemma 4.1 and Lemma 4.2, regularity, in

addition to reachability, imply λ0 > 0. Thus,

D̂n =
n−1∑
t=0

x(t+ 1)x(t)′V −1
n = D0 + UnD

′
0
n−1

V −1
n ,

where Un =
n−1∑
t=0

w(t+ 1)x(t)′D′0
−n+1, which leads to

∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
≤

|||Un|||2
∣∣∣∣∣∣D0

−n+1
∣∣∣∣∣∣

2∣∣λmin

(
D0
−n+1VnD0

−n+1
)∣∣ . (4.28)

Since x(t) = Dt
0z(t), Lemma 2.6 and Lemma 4.4 imply that on the eventW

⋂
V ,

|||Un|||2 ≤
n−1∑
t=0

||w(t+ 1)||2
∣∣∣∣D−n+t+1

0 z(t)
∣∣∣∣

2
≤ p1/2νn (δ) ξ (D0, δ) η

(
D−1

0

)
(4.29)
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Plugging (4.27) and (4.29) in (4.28), and using (4.19), we get

∣∣∣∣∣∣∣∣∣D̂n −D0

∣∣∣∣∣∣∣∣∣
2
≤ ρ

λ0

νn (δ)nµ(D0)−1 |λmin (D0)|n−1 ,

which by (4.26) is at most ε, holding with probability at least 1− 2δ onW
⋂
V .

4.6.3 Proofs of Section 4.5

Proof of Lemma 4.3. Assume X ∈ Rp×p has an eigenvalue of unit size, denoted by λ ∈

C, |λ| = 1. Further, define the space of eigenvectors in Cp as follows. First, consider the

equivalence relation ∼ on Cp, defined as

x ∼ y, if x = cy for some c ∈ C, c 6= 0.

Letting S = Cp
∼ be the direction space in Cp, we have dimC (S) = p− 1, i.e.

dimR (S) = 2p− 2.

Note that for every matrix Y ∈ Cp×p and every vector v ∈ Cp, Y v = 0 if and only if

Y ṽ = 0 for every ṽ ∼ v. Thus, det (X − λIp) = 0 implies that there is v ∈ S, v 6= 0, such

that

Xv = λv (4.30)

Denote the set of all matrices X satisfying (4.30) by X (λ, v) ⊂ Rp×p. Separating real and

imaginary parts, we get

X< (v) = < (λv) ,

X= (v) = = (λv) .
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Then, we partition S to

S = S1

⋃
S2, S1

⋂
S2 = ∅,

where

S1 = {v ∈ S : < (v) ,= (v) are in-line },

S2 = {v ∈ S : < (v) ,= (v) are not in-line }.

Whenever v ∈ S2, for j = 1, · · · , p, the j-th row of X needs to be in the intersection of

two nonparallel hyperplanes P1,P2 ⊂ Rp, where

P1 = {y ∈ Rp : y′<(v) = <(λv)j} ,

P2 = {y ∈ Rp : y′=(v) = =(λv)j} .

Since dimR (P1) ≤ p− 1, dimR (P2) ≤ p− 1, and v ∈ S2 we have

dimR (P1 ∩ P2) ≤ p− 2.

Therefore, for v ∈ S2, we have dimR (X (λ, v)) ≤ p(p− 2). Because of dimR (|λ| = 1) =

1, and dimR (S2) ≤ 2p− 2, we have

dimR

 ⋃
|λ|=1,v∈S2

X (λ, v)

 ≤ dimR (|λ| = 1) + dimR (S2) + dimR (X (λ, v)) ≤ p2 − 1.

(4.31)

On the other hand, for v ∈ S1, there is a real number, say α(v), such that = (v) =

α(v)< (v). So, dimR (S1) = p− 1, and for v ∈ S1, we have P1 = P2, i.e.

dimR (X (λ, v)) ≤ p(p− 1),
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and

0 = α(v)X< (v)−X= (v) = α(v)< (λv)−= (λv) =
(
1 + α(v)2

)
= (λ)< (v) ,

i.e. either= (λ) = 0, or< (v) = 0. Note that the latter case is impossible because it implies

v = 0. So, since {|λ| = 1,= (λ) = 0} = {1,−1} is of dimension zero,

dimR

( ⋃
λ=−1,1

X (λ, v)

)
≤ dimR (S1) + dimR (X (λ, v)) ≤ p2 − 1. (4.32)

Therefore, letting X =
⋃
λ,v

X (λ, v), (4.31) and (4.32) imply dimR (X ) ≤ p2 − 1, i.e. X is

of zero Lebesgue measure in Rp×p.

To prove that irregular matrices are of zero Lebesgue measure, for |λ| > 1 define

Y (λ) =
{
Y ∈ Rp×p : rank (Y − λIp) < p− 1

}
.

First we show that for a fixed matrix Y = [Y1, · · · , Yp], there are at most p − 1 values

of λ such that Y ∈ Y (λ). Let e1, · · · , ep be the standard basis of Rp. If Y ∈ Y (λ0),

two of Yi− λ0ei, i = 1, · · · , p, such as Yp−1− λ0ep−1, Yp− λ0ep, can be written as a linear

combinations of the others. There are at most p−1 values of λ0 for which Yp−1−λ0ep−1 is a

linear combination of Y1−λ0e1, · · · , Yp−2−λ0ep−2, since for every such a λ0, det
(
Ỹ
)

= 0,

where Ỹ is the square matrix whose columns are

Y1 − λ0e1, · · · , Yp−1 − λ0ep−1,

removing an arbitrary row. Note that det
(
Ỹ
)

is a polynomial of degree p− 1.

Now, denote those values of λ by λ1 (Y ) , · · · , λm (Y ), where m ≤ p − 1. For every
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i = 1, · · · ,m, the dimension of subspace Pi spanned by

Y1 − λi (Y ) e1, · · · , Yp−1 − λi (Y ) ep−1, ep

is at most p− 1, which leads to

dimR

(
m⋃
i=1

Pi

)
≤ p− 1.

Because λi (Y ) is uniquely determined by Y1, · · · , Yp−1, so is Pi. Therefore,

dimR

(⋃
λ

Y (λ)

)
≤ dimR ([Y1, · · · , Yp−1])+dimR

(
m⋃
i=1

Pi

)
≤ p(p−1)+p−1 = p2−1,

which is the desired result.

Proof of Theorem 4.3. As a well known fact, there is an invertible matrix M ∈ Rp×p,

such that

Ã = MD0M
−1 ∈ Rp×p

is a block diagonal matrix,

Ã =

D1 0

0 D2

 ,
where for i = 1, 2, we have Di ∈ Rpi×pi , p1 + p2 = p, and

|λmax (D1)| < 1 < |λmin (D2)| .

We split the original VAR process to two, which are evolving according to transition ma-

trices D1, and D2. First, let

C̃ = MCM ′ =

C11 C12

C21 C22

 ,
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where Cij ∈ Rpi×pj for i = 1, 2. Then, for t = 0, 1, · · · , defining

x̃(t) = Mx(t),

w̃(t+ 1) = Mw(t+ 1),

we have

x̃(t+ 1) = M (D0x(t) + w(t+ 1))

= ÃMx(t) +Mw(t+ 1)

= Ãx̃(t) + w̃(t+ 1).

Note that letting

νn+1 (δ) = max {|||M |||∞, 1}
(
b2 log

b1p (n+ 1)

δ

)1/α

,

similar to Lemma 2.6, we have P (W) ≥ 1− δ, for

W =

{
max

1≤t≤n+1
max {||w(t)||∞, ||w̃(t)||∞} ≤ νn+1 (δ)

}
.

Let

x̃(t) =
[
x(1)(t)′, x(2)(t)′

]′
,

w̃(t+ 1) =
[
w(1)(t+ 1)′, w(2)(t+ 1)′

]′
,

where for i = 1, 2,

x(i)(t), w(i)(t+ 1) ∈ Rpi .

124



Since Ã is block diagonal, the processes x(1)(t), x(2)(t) are separated:

x(i)(t+ 1) = Dix
(i)(t) + w(i)(t+ 1),

Cii = E
[
w(i)(t+ 1)w(i)(t+ 1)′

]
.

Both new processes inherit reachability from the original one.

Lemma 4.8. If [D0, C] is reachable, then for i = 1, 2, [Di, Cii] is reachable as well.

Now, we define the following parameters, which will be used in the proof. LettingD2 =

P−1Λ2P be the Jordan decomposition of the explosive matrixD2, andK1 =
∞∑
t=0

Dt
1C11D

′
1
t,

define

ρ0 =
1

2
− 1

2

(
1− |λmin (K1)|

9 |λmax (K1)|

)1/2

,

ρ1 =
21/2p |λmin (D2)| ξ (D2, δ) |||P ′|||∞→2

∣∣∣∣∣∣P ′−1
∣∣∣∣∣∣
∞e
|λmin(D2)|

φ (D2)ψ (D2, δ)
,

ρ2 =
8η
(
D′2
−1
)2
ξ (D2, δ) |||P−1|||∞→2|||P |||∞e|λmin(D2)|

φ (D2)2 ψ (D2, δ)
2 ,

ρ3 =
4
(
4 |λmin (K1)|−1 + 3

)1/2 |||M |||2
|λmin (K1)|1/2 ρ0

,

ρ4 =
2p1/2ξ (D2, δ) |||P−1|||∞→2|||P |||∞e|λmin(D2)|

φ (D2)ψ (D2, δ)
,

ρ5 =
2|||P−1|||∞→2|||P |||∞e|λmin(D2)|

φ (D2)ψ (D2, δ)
,

ρ6 =
|||P ′|||∞→2|||P ′−1|||∞e|λmin(D2)| |λmin (K1)|1/2

φ (D2)ψ (D2, δ)
.

Note that the constants ρ0, ρ3 do not depend on δ, and all other parameters depend on δ,

only through ξ (D0, δ) and ψ (D0, δ). Using N4.1 (·, ·), and N4.2 (·, ·) defined in Theorem
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4.1 and Theorem 4.2, respectively, suppose that the followings hold.

n ≥ N4.2

(
φ (D2)2 ψ (D2, δ)

2

2
, δ

)
, (4.33)

n ≥ 3N4.1

(
|λmin (K1)|

2
, δ

)
, (4.34)

ρ0

ρ1

≥ nµ(D2)−1/2 |λmin (D2)|−2n/3 , (4.35)

1

ρ2

≥ νn+1 (δ)nµ(D2) |λmin (D2)|−n/3 , (4.36)

ε

3ρ3ρ4

≥ νn+1 (δ)nµ(D2)−1/2 |λmin (D2)|−2n/3 , (4.37)

ε

3ρ3ρ5

≥ νn+1 (δ)2 nµ(D2)+1/2 |λmin (D2)|−n/3 , (4.38)

1

ρ6

≥ nµ(D2)−1/2 |λmin (D2)|−n . (4.39)

In addition, assume the followings.

n2(n+ 1)−1

(||x(1)(0)||∞ + νn+1 (δ))
2
νn+1 (δ)2

≥ 8pρ2
3η (D1)2

ε2
log

(
4 (p+ p1)

δ

)
, (4.40)

n

νn+1 (δ)2 ≥ 72p2ρ2
3

ε2
log

(
4 (p+ p2)

δ

)
, . (4.41)

We show that with probability at least 1− 6δ, it holds that

∣∣∣∣∣∣∣∣∣D̂n+1 −D0

∣∣∣∣∣∣∣∣∣
2
≤ ε.

First,

MVn+1M
′ =

n∑
t=0

x̃(t)x̃(t)′ =
n∑
t=0

x(1)(t)

x(2)(t)

 [x(1)(t)′, x(2)(t)′
]

=

V (1)
n+1 Y ′n+1

Yn+1 V
(2)
n+1

 ,
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where for i = 1, 2,

V (i)
n =

n−1∑
t=0

x(i)(t)x(i)(t)′,

Yn =
n−1∑
t=0

x(2)(t)x(1)(t)′.

Let the event E ⊂ W
⋂
V be the following:

∣∣∣∣λmin

(
1

n
V

(1)
n+1

)∣∣∣∣ ≥ 1

2
|λmin (K1)| ,∣∣∣λmin

(
D−n2 V

(2)
n+1D

′
2
−n
)∣∣∣ ≥ 1

2
φ (D2)2 ψ (D2, δ)

2 .

According to Theorem 4.1, and Theorem 4.2, (4.33), (4.34) imply P (E) > 1− 5δ. Hence-

forth in the proof, we assume the event E holds. Define the invertible symmetric matrix

Un =

 V (1)
n+1 0p1×p2

0p2×p1 V
(2)
n+1


−1/2

∈ Rp×p,

and let

En = UnMVn+1M
′Un =

 Ip1 V
(1)
n+1

−1/2
Y ′n+1V

(2)
n+1

−1/2

V
(2)
n+1

−1/2
Yn+1V

(1)
n+1

−1/2
Ip2

 .
We show that

|λmin (En)| ≥ ρ0. (4.42)

Let m =
⌈
n
3

⌉
, and vi ∈ Rpi for i = 1, 2, where

v =

v1

v2

 ∈ Rp, ||v||2 = 1.
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Then,

v′Env = 1 + 2v′2V
(2)
n+1

−1/2
Yn+1V

(1)
n+1

−1/2
v1 = 1 + 2T1 + 2T2,

where

T1 =
m∑
t=0

v′2V
(2)
n+1

−1/2
x(2)(t)v′1V

(1)
n+1

−1/2
x(1)(t),

T2 =
n∑

t=m+1

v′2V
(2)
n+1

−1/2
x(2)(t)v′1V

(1)
n+1

−1/2
x(1)(t).

By Cauchy-Schwarz inequality,

T2
1 ≤

(
v′1V

(1)
n+1

−1/2
V

(1)
m+1V

(1)
n+1

−1/2
v1

)(
v′2V

(2)
n+1

−1/2
V

(2)
m+1V

(2)
n+1

−1/2
v2

)
≤ ||v1||22||v2||22

∣∣∣λmax

(
V

(2)
n+1

−1/2
Dn

2D
−n
2 V

(2)
m+1D

′
2
−n
D′2

n
V

(2)
n+1

−1/2
)∣∣∣

≤ ||v1||22||v2||22
∣∣∣λmax

(
D−n2 V

(2)
m+1D

′
2
−n
)∣∣∣ ∣∣∣λmax

(
V

(2)
n+1

−1/2
Dn

2D
′
2
n
V

(2)
n+1

−1/2
)∣∣∣ .

Letting z(t) = D−t2 x(2)(t), by Lemma 4.4 we have

∣∣∣λmax

(
D−n2 V

(2)
m+1D

′
2
−n
)∣∣∣ ≤ m∑

t=0

||z(t)||22
∣∣∣∣∣∣∣∣∣D′2−n+t

∣∣∣∣∣∣∣∣∣2
2

≤ ξ (D2, δ)
2 |||P ′|||2∞→2

∣∣∣∣∣∣∣∣∣P ′−1
∣∣∣∣∣∣∣∣∣2
∞

m∑
t=0

ηn−t
(
Λ−1

2

)2
,∣∣∣λmax

(
V

(2)
n+1

−1/2
Dn

2D
′
2
n
V

(2)
n+1

−1/2
)∣∣∣ ≤ tr

(
V

(2)
n+1

−1/2
Dn

2D
′
2
n
V

(2)
n+1

−1/2
)

= tr
(
D′2

n
V

(2)
n+1

−1
Dn

2

)
≤ p

∣∣∣λmin

(
D2
−nV

(2)
n+1D

′
2
−n
)∣∣∣−1

≤ 2pφ (D2)−2 ψ (D2, δ)
−2 .

According to (4.19),

m∑
t=0

ηt
(
Λ−1

2

)2 ≤ e2|λmin(D2)|n2µ(D2)−1 |λmin (D2)|2m−2n .
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So, by (4.35), we have

T1 ≤ ||v1||2||v2||2ρ1n
µ(D2)−1/2 |λmin (D2)|−2n/3 ≤ ρ0||v1||2||v2||2. (4.43)

Similarly, Cauchy-Schwarz inequality implies

T2 ≤ ||v2||2

(
n∑

t=m+1

(
v′1V

(1)
n+1

−1/2
x(1)(t)

)2
)1/2

≤ ||v1||2||v2||2 (1− 2ρ0) , (4.44)

because according to Theorem 4.1, (4.34) implies

n∑
t=m+1

(
v′1V

(1)
n+1

−1/2
x(1)(t)

)2

= v′1V
(1)
n+1

−1/2
(
V

(1)
n+1 − V

(1)
m+1

)
V

(1)
n+1

−1/2
v1

≤ ||v1||22
(

1−
∣∣∣λmin

(
V

(1)
n+1

−1/2
V

(1)
m+1V

(1)
n+1

−1/2
)∣∣∣)

≤ ||v1||22

1−

∣∣∣λmin

(
V

(1)
m+1

)∣∣∣∣∣∣λmax

(
V

(1)
n+1

)∣∣∣


≤ ||v1||22
(

1− m |λmin (K1)|
3n |λmax (K1)|

)
≤ ||v1||22

(
1− |λmin (K1)|

9 |λmax (K1)|

)
= ||v1||22 (1− 2ρ0)2 .

Thus, by (4.43) and (4.44), for arbitrary unit vector v we have

v′Env ≥ ||v1||22 + ||v2||22 − 2||v1||2||v2||2 (ρ0 + 1− 2ρ0)

= ρ0

(
||v1||22 + ||v2||22

)
+ (1− ρ0) (||v1||2 − ||v2||2)2 ,

i.e. (4.42) holds.

Then, define

Σn = V
(2)
m+1(m) +

n∑
t=m+1

Dt−m
2 x(2)(m)x(2)(m)′D′2

t−m
.
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Since

V
(2)
n+1 − Σn =

n∑
t=m+1

Dt
2 (z(t)z(t)′ − z(m)z(m)′)D′2

t
,

and for m+ 1 ≤ t ≤ n, according to (4.19),

||z(t)− z(m)||2 ≤
t∑

i=m+1

∣∣∣∣D−i2 w(2)(i)
∣∣∣∣

2

≤
∣∣∣∣∣∣P−1

∣∣∣∣∣∣
∞→2
|||P |||∞νn+1 (δ)

t∑
i=m+1

ηi
(
Λ−1

2

)
≤

∣∣∣∣∣∣P−1
∣∣∣∣∣∣
∞→2
|||P |||∞νn+1 (δ) e|λmin(D2)|tµ(D2) |λmin (D2)|−m−1 ,

using Lemma 4.4, we have

∣∣∣λmax

(
D−n2

(
V

(2)
n+1 − Σn

)
D′2
−n
)∣∣∣ ≤ 2ξ (D2, δ)

n∑
t=m+1

||z(t)− z(m)||2
∣∣∣∣∣∣∣∣∣D′2−n+t

∣∣∣∣∣∣∣∣∣2
2

≤ 2ξ (D2, δ) η
(
D′2
−1
)2

max
m+1≤t≤n

||z(t)− z(m)||2

≤ 1

4
ρ2φ (D2)2 ψ (D2, δ)

2 νn+1 (δ)nµ(D2) |λmin (D2)|−n/3

≤ 1

2

∣∣∣λmin

(
D−n2 V

(2)
n+1D

′
2
−n
)∣∣∣ .

In the last inequality above, (4.36) is used. Hence,

∣∣∣λmax

(
V

(2)
n+1 − Σn

)∣∣∣ ≤ 1

2

∣∣∣λmin

(
V

(2)
n+1

)∣∣∣ ,
which implies

∣∣∣∣∣∣∣∣∣Σ1/2
n V

(2)
n+1

−1/2
∣∣∣∣∣∣∣∣∣2

2
=
∣∣∣λmax

(
Ip2 + V

(2)
n+1

−1/2
(

Σn − V (2)
n+1

)
V

(2)
n+1

−1/2
)∣∣∣ ≤ 3

2
.

Therefore, letting

Ũn =

n−1/2Ip1 0p1×p2

0p2×p1 Σ
−1/2
n

 ,
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we have

∣∣∣∣∣∣∣∣∣Ũ−1
n Un

∣∣∣∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣∣∣∣n1/2V

(1)
n+1

−1/2
∣∣∣∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣∣∣∣Σ1/2

n V
(2)
n+1

−1/2
∣∣∣∣∣∣∣∣∣2

2
≤ 2

|λmin (K1)|
+

3

2
. (4.45)

To proceed, define the following matrices:

Gn = n−1

n∑
t=0

w(t+ 1)x(1)(t)′,

Hn = n−1/2

n∑
t=0

w(t+ 1)x(2)(t)′Σ−1/2
n .

Further, for t = 0, · · · , n + 1, define the sigma-fields Ft = σ (w(1), · · · , w(t)). Letting

Φ (·) be as defined in the proof of Theorem 4.1, and

Xt = Φ
(
w(t+ 1)x(1)(t)′

)
be a martingale difference sequence of symmetric matrices with respect to {Ft}nt=0, all

matrices

p
(
η (D1)

(∣∣∣∣x(1)(0)
∣∣∣∣
∞ + νn+1 (δ)

)
νn+1 (δ)

)2
Ip+p1 −X2

t

are by Lemma 2.7 positive semidefinite. Letting

σ2 = pη (D1)2 (∣∣∣∣x(1)(0)
∣∣∣∣
∞ + νn+1 (δ)

)2
νn+1 (δ)2 (n+ 1) ,

according to Lemma 2.11, by (4.40) we have

P
(
|||Gn|||2 >

ε

ρ3

)
= P

(∣∣∣∣∣λmax

(
n∑
t=0

Xt

)∣∣∣∣∣ > n
ε

ρ3

)
≤ 2 (p+ p1) exp

(
− n2ε2

8σ2ρ2
3

)
≤ δ

2
.

(4.46)

On the other hand, |||Hn|||2 can be upper bounded as well. Indeed, using (4.19) and Lemma
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4.4, we have

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣n−1/2

m−1∑
t=0

w(t+ 1)x(2)(t)′Σ−1/2
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ n−1/2

m−1∑
t=0

||w(t+ 1)||2||z(t)||2
∣∣∣∣∣∣Σ−1/2

n Dt
2

∣∣∣∣∣∣
2

≤ p1/2n−1/2νn+1 (δ) ξ (D2, δ)
∣∣∣∣∣∣Σ−1/2

n Dn
2

∣∣∣∣∣∣
2

n∑
t=n−m+1

∣∣∣∣∣∣D−t2

∣∣∣∣∣∣
2

≤ ρ4νn+1 (δ)nµ(D2)−1/2 |λmin (D2)|−2n/3 .

Thus, by (4.37) we have

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣n−1/2

m−1∑
t=0

w(t+ 1)x(2)(t)′Σ−1/2
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ ε

3ρ3

. (4.47)

Moreover, for t = m, · · · , n, letting

X̃t = Φ
(
w(t+ 1)x(2)(m)′D′2

t−m
Σ−1/2
n

)

be a martingale difference sequence with respect to {Ft}nt=m (note that both Σn and x(2)(m)

are Fm measurable), all matrices

(
p1/2νn+1 (δ)

∣∣∣∣Σ−1/2
n Dt−m

2 x(2)(m)
∣∣∣∣

2

)2
Ip+p2 − X̃2

t

are positive semidefinite, so, according to Lemma 2.11, we have

P

(∣∣∣∣∣λmax

(
n∑

t=m

X̃t

)∣∣∣∣∣ > n1/2ε

3ρ3

∣∣∣∣∣Fm
)
≤ 2 (p+ p2) exp

(
− nε2

72σ2ρ2
3

)
,
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where

σ2 =
n∑

t=m

(
p1/2νn+1 (δ)

∣∣∣∣Σ−1/2
n Dt−m

2 x(2)(m)
∣∣∣∣

2

)2

= pνn+1 (δ)2
n∑

t=m

(
Dt−m

2 x(2)(m)
)′

Σ−1
n Dt−m

2 x(2)(m)

= pνn+1 (δ)2 tr

(
Σ−1
n

n∑
t=m

Dt−m
2 x(2)(m)x(2)(m)′D′2

t−m

)
≤ p2νn+1 (δ)2 .

The last inequality above is simply implied by the definition of Σn. Now, applying (4.41),

we get

P

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑

t=m

w(t+ 1)x(2)(m)′D′2
t−m

Σ−1/2
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

>
n1/2ε

3ρ3

)
≤ δ

2
. (4.48)

Since for t = m, · · · , n,

∣∣∣∣Σ−1/2
n x(2)(t)− Σ−1/2

n Dt−m
2 x(2)(m)

∣∣∣∣
2

=
∣∣∣∣Σ−1/2

n Dn
2D
−n+t
2 (z(t)− z(m))

∣∣∣∣
2

≤
∣∣∣λmin

(
D−n2 ΣnD

′
2
−n
)∣∣∣−1/2

∣∣∣∣∣
∣∣∣∣∣

t∑
i=m+1

D−n+t−i
2 w(2)(i)

∣∣∣∣∣
∣∣∣∣∣
2

≤ |||P−1|||∞→2|||P |||∞e|λmin(D2)|νn+1 (δ)nµ(D2) |λmin (D2)|−m−1∣∣λmin

(
D−n2 ΣnD′2

−n)∣∣1/2
≤ ρ5νn+1 (δ)nµ(D2) |λmin (D2)|−n/3 ,

by (4.38),

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑

t=m

w(t+ 1)
(
x(2)(t)′ − x(2)(m)′D′2

t−m
)

Σ−1/2
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ n1/2ε

3ρ3

.

So, (4.48) implies that the following holds, with probability at least 1− δ
2
.

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣n−1/2

n∑
t=m

w(t+ 1)x(2)(t)′Σ−1/2
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ 2ε

3ρ3

,
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which, in addition to (4.47), yields

P
(
|||Hn|||2 >

ε

ρ3

)
≤ δ

2
. (4.49)

Finally, since the event E holds, (4.39) implies

∣∣∣∣∣∣n1/2Un
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∣∣∣n1/2V

(1)
n+1

−1/2
∣∣∣∣∣∣∣∣∣

2
+
∣∣∣∣∣∣∣∣∣n1/2V

(2)
n+1

−1/2
∣∣∣∣∣∣∣∣∣

2
≤ 23/2 |λmin (K1)|−1/2 . (4.50)

This will finish the proof as follows. Writing

D̂n+1 −D0 =
n∑
t=0

w(t+ 1)x(t)′V −1
n+1

=

(
n−1/2

n−1∑
t=0

w(t+ 1)x(t)′M ′Ũn

)(
Ũ−1
n Un

)
(UnMVn+1M

′Un)
−1
n1/2UnM

= [Gn, Hn]
(
Ũ−1
n Un

)
E−1
n n1/2UnM,

according to inequalities (4.42), (4.45), (4.46), (4.49), and (4.50), on the event E , with

probability at least 1− δ,

∣∣∣∣∣∣∣∣∣D̂n+1 −D0

∣∣∣∣∣∣∣∣∣
2
≤ (|||Gn|||2 + |||Hn|||2)
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n Un

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣E−1
n

∣∣∣∣∣∣
2

∣∣∣∣∣∣n1/2Un
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2
|||M |||2

≤ 2ε

ρ3

(
2

|λmin (K1)|
+

3

2

)1/2

ρ−1
0 23/2 |λmin (K1)|−1/2 |||M |||2 = ε,

which is the desired result.

Proof of Lemma 4.8. Assume ṽ ∈ Rp1 , ṽ 6= 0. We show that [D1, C11] is reachable.

Defining v = [ṽ′, 01×p2 ]
′ ∈ Rp,

0 < ||M ′v||22 |λmin (K(C))| ≤ v′MK(C)M ′v = v′

(
p−1∑
j=0

ÃjC̃Ã′j

)
v = ṽ′

(
p−1∑
j=0

Dj
1C11D

′
1
j

)
ṽ,
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so, the matrix
p−1∑
j=0

Dj
1C11D

′
1
j is positive definite, or equivalently,

rank
([
C

1/2
11 , D1C

1/2
11 , · · · , D

p−1
1 C

1/2
11

])
= p1. (4.51)

But, by Cayley-Hamilton theorem, (4.51) is equivalent to

rank
([
C

1/2
11 , · · · , D

p1−1
1 C

1/2
11

])
= p1,

which is nothing but the reachability of [D1, C11]. The proof for [D2, C22] is similar.
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CHAPTER 5

Future Works

We studied the adaptive control schemes for linear dynamical systems with quadratic

costs. While the classical literatures mainly focus on the asymptotic analyses, the approach

in this work is non-asymptotic. Based on Optimism in the Face of Uncertainty, we estab-

lished non-asymptotic optimality results for a fairly general settings that certainty equiv-

alence fails to address. Different scenarios with and without identifiability assumptions

are considered, under the minimal assumption of stabilizability. Further, the probabilistic

properties of the noise process is assumed to be sufficiently general, as it covers a class of

heavy-tailed distributions.

Studying the non-asymptotic performance of the analogous reinforcement learning al-

gorithms in different regimes is of potential interests. From a planning viewpoint, exten-

sions to non-asymptotic analysis of optimality under imperfect observations can be a topic

of future investigation. Another interesting aspect to scrutinize is trying to formulate suffi-

cient and necessary conditions for the true dynamics, to ensure optimality of the traditional

certainty equivalence procedure. On the other hand, approaches leaning to learning chal-

lenges such as consistency toward the true dynamics parameter, as well as those considering

the problem in a high-dimensional settings (assuming sparsity), can be listed as interesting

subjects to be addressed in the future.

In the reminder of this thesis, we studied the problem of providing finite sample bounds
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for the least-squares estimates of general VAR processes where the transition matrix does

not need to be stable. The relationships between different parameters involved, such as

sample size, accuracy of the estimation, failure probability, transition matrix, noise covari-

ance matrix, and dimension are discussed. We prove that apart from a pathological case of

zero Lebesgue measure, the least-squares estimator is with high probability accurate, if the

sample size scales similar to standard results in learning theory, i.e. quadratic scaling with

the inverse estimation error and logarithmic scaling with failure probability.

Such finite sample results for such a widely used model can be helpful for analogous

results for more complicated models exhibiting temporal dependence, such as nonlinear

time series. Further, the techniques used in this work to analyze the estimation accuracy

when the transition matrix is not necessarily stable, provide insight for settings where more

knowledge about the structure of the transition matrix is available. In particular, potential

extensions to a high-dimensional setting (assuming that the transition matrix is sparse),

or other structured classes such as low-rank matrices, is a topic of interest and for future

investigation.
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