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ABSTRACT

Modern-day geodetic tools, such as global navigation satellite systems (GNSS), detect tec-

tonic ground deformation to within millimeter accuracy. In the past decade, our ability to

resolve ground deformation in the Western United States has greatly improved with the Plate

Boundary Observatory (PBO) project, which consists of about 1100 continuously operating

GNSS stations. With this unprecedented quality and quantity of data, we can observe the

subtle signal from transient tectonic processes. For example, we can detect ground deforma-

tion in the days to years following large earthquakes, which is caused by aseismic afterslip

and/or ductile deformation in the upper mantle. The PBO has also allowed us to resolve

transient deformation associated with slow slip events on the Cascadia subduction zone. In

this dissertation, I discuss techniques for detecting transient deformation in geodetic data,

and I analyze this transient deformation to better understand the mechanical behavior of

the crust and upper mantle.

Most studies of ground deformation throughout the earthquake cycle (i.e., interseismic

deformation) indicate that the lower crust is orders of magnitude stronger (more viscous)

than the upper mantle. In Chapter 2, I demonstrate that the methods used in these studies

are biased towards inferring a more viscous lower crust and less viscous upper mantle. I

conclude that these interseismic studies do not necessarily rule out the possibility that the

lower crust can deform ductilely on earthquake cycle timescales. In Chapters 3 and 4, I

introduce a method for discerning the physical mechanisms driving postseismic deformation,

where I consider candidate mechanisms to be afterslip and viscous relaxation in the crust

and upper mantle. I apply this method to postseismic deformation following the 2010 El

Mayor-Cucapah earthquake in Baja California. I find that a Burgers rheology upper mantle

is necessary to describe far-field deformation in the three years following the earthquake.

In general, upper mantle viscosities inferred from interseismic deformation are larger than

those estimated from postseismic deformation, which occurs over a much shorter timescale.

By describing the upper mantle with a Burgers rheology, which contains a transient and

steady-state phase of deformation, I am able to reconcile these conflicting studies. Chapters

5, 6, and 7 are on detecting transient geophysical signal in geodetic data. Before geophysical

signal can be identified, the noise in geodetic data must be quantified. In Chapter 5, I

x



point out a bias in the commonly used method for characterizing noise in geodetic data,

and I propose an alternative unbiased method. In Chapter 6, I demonstrate that transient

geophysical signal can be robustly detected by using a machine learning technique known

as Gaussian process regression. Finally, in Chapter 7 I assess the utility of borehole strain

meters (BSMs) for detecting transient deformation. I find that BSM data, which records

strains over an 8.7 centimeter baseline, are difficult to reconcile with regional strains derived

from GNSS data.
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CHAPTER 1

Introduction

Since the seminal report by Reid (1910), it has been recognized that earthquakes are caused

by the sudden release of elastic strain energy that has gradually accumulated over time

along faults. This is known as elastic rebound theory. Reid (1910) introduced elastic rebound

theory to explain ground deformation leading up to and as a result of the 1906 San Francisco

earthquake. In the report, triangulation surveys showed that the ground on either side of

the San Andreas fault and at far distances from the fault was steadily undergoing a shearing

motion at a rate of about 6 cm/year. During the 1906 earthquake, the San Andreas fault

slipped by about 6 meters, presumably releasing the elastic strain energy in the crust that has

accumulated over the past hundred years or so. Modern geodetic techniques have updated the

rate of deformation across the San Andreas fault to about 3 cm/year (Savage and Burford ,

1973a), but elastic rebound theory has remained generally accepted since its inception over

a century ago.

Elastic rebound theory forms the foundation of seismic hazard models such as the third

Unified California Earthquake Rupture Forecast (UCERF3) (Field et al., 2014). Geodetic

observations can tell us the rate that strain is accumulating between tectonic plates. Based

on elastic rebound theory, this built up strain will inevitably be relaxed through fault slip.

It is then possible to use geodetic data to estimate the long term fault slip rates that are

needed to accommodate tectonically accumulated strain (e.g., Savage and Burford , 1973a;

Meade and Hager , 2005). UCERF3 uses geodetically and geologically derived slip rates for

the San Andreas fault system in conjunction with various other assumptions to estimate

the likelihood that a major earthquake would occur over some window of time in California.

UCERF3 has clear societal implications; it is used by engineers for designing buildings, and it

is used by the California Earthquake Authority for determining earthquake insurance rates.

In constraining UCERF3, it is assumed that strain is building up on the San Andreas

fault system at a constant rate over time. However, time-dependent, or transient, defor-

mation around fault zones is a frequently observed phenomena that casts doubt into this

assumption (Thatcher , 1983). By better understanding transient deformation and the mech-
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anisms causing it, we can conceivably improve upon existing seismic hazard models. Some

of the earlier records of transient deformation came from repeated leveling or triangulation

surveys made after large earthquakes (e.g., Tsuboi , 1932; Smith and Wyss , 1968). These

studies found elevated rates of ground deformation following the earthquakes, which then

decayed over a timescale of months to years. This type of transient deformation is referred

to as postseismic deformation.

Over the past few decades, Global Navigation Satellite Systems (GNSS)∗ have become

a valuable geodetic tool for observing transient deformation. Throughout most of the 20th

century, geodetic techniques, such as triangulation and leveling surveys, required someone

to be physically present at the geodetic monuments in order to make an observation. Con-

sequently, the time interval between consecutive observations tended to be on the order of

months to years. Using a GNSS receiver that has been specialized for geodetic purposes,

observations of ground displacements can be made automatically with sampling frequencies

greater than 1Hz. The accuracy of GNSS measurements is also unprecedented, where the

uncertainties for daily displacement observations tend to be on the order of a couple mil-

limeters. The advent of GNSS geodesy has led to numerous geophysical discoveries. For

example, Dragert et al. (2001) discovered slow slip events on the Cascadia subduction zone

using daily GNSS observations in the Pacific Northwest. These slow slip events produce

several millimeters of ground deformation over the course of a couple weeks. As another

example, Freed (2007) discovered far reaching postseismic deformation following the 1999

Hector Mine earthquake using GNSS data. They were able to resolve several millimeters of

ground deformation over 200 km from the earthquake’s epicenter, which occurred during the

seven years following the earthquake.

The recently installed Plate Boundary Observatory (PBO) has substantially improved

our ability to resolve transient deformation in the Western United States, which is where

I am primarily focused in this dissertation. The PBO consists of about 1100 continuously

operating GNSS stations and about 80 borehole strainmeters (BSMs) that have been placed

along the boundary between the Pacific and North American plate. Construction of the

PBO began in 2003 and lasted until 2008. Today, the PBO instruments are being actively

maintained by UNAVCO. There is a wealth of geodetic data collected by the PBO, and

geophysicists have been using the data to refine our understanding of tectonic and volcanic

processes.

The quantity and quality of geodetic data available today has opened up a new scientific

frontier in the analysis of transient deformation. In this dissertation I study transient de-

∗The terms “GNSS” and “GPS” (Global Positioning System) will be used synonymously in this disser-
tation, although GPS is specifically operated by the United States and GNSS is a more generic term.
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formation associated with tectonic processes, such as postseismic deformation and slow slip

events. The immediate objective of this dissertation is to detect transient deformation and

better understand the mechanisms causing it. The broader motivation for my research is to

improve our understanding of earthquakes and seismic hazard.

1.1 Types of transient tectonic deformation

My focus is on transient ground deformation associated with tectonic processes. Specifically,

I will consider postseismic deformation, interseismic deformation, and slow slip events. Tran-

sient deformation resulting from volcanic, seasonal, or anthropogenic processes will either be

ignored or considered noise. The following sections further discuss the processes considered

in this dissertation.

1.1.1 Postseismic deformation

Postseismic deformation is the anomalously rapid ground deformation observed after large

earthquakes (M&6). Geodetic observations made after the 1966 Parkfield earthquake pro-

vided one of the first views of postseismic deformation and its time-dependence (Smith and

Wyss , 1968). The Parkfield segment of the San Andreas fault is the transition between the

creeping segment in central California and the locked segment in southern California, which

last ruptured in the 1857 Fort Tejon earthquake. The Parkfield segment has produced seven

M6 earthquakes since 1857 and has consequently received much attention from geophysicists.

In the months after the 1966 earthquake, Smith and Wyss (1968) observed 20 cm of ground

displacements across the San Andreas fault near the epicenter. The postseismic deformation

was most rapid (about 1 cm/day) immediately after the earthquake and decayed logarith-

mically over time. The observed deformation was localized to within tens of meters of the

San Andreas fault trace, which allowed Smith and Wyss (1968) to unambiguously conclude

that the postseismic deformation was primarily the result of aseismic fault slip, referred to as

afterslip (Figure 1.1). Furthermore, it was determined that most of the fault slip during the

earthquake was at depth and the ensuing afterslip filled in the slip deficit at shallower depths.

Afterslip has also been used to describe postseismic deformation following the subsequent

Parkfield earthquake in 2004 (Freed , 2007).

Postseismic deformation following larger California earthquakes has also been explained

with afterslip, such as the M7.3 Landers earthquake (Shen et al., 1994; Savage and Svarc,

1997), the M7.1 Hector Mine earthquake (Jacobs et al., 2002; Owen et al., 2002), and the

M7.2 El Mayor-Cucapah earthquake (Gonzalez-Ortega et al., 2014). The stress changes from

these earthquakes were potentially large enough to cause the asthenosphere to viscously de-
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Figure 1.1: Schematics of postseismic deformation mechanisms. The left schematic illustrates the viscous
relaxation model, where an earthquake produces fault slip in an elastic lithosphere that overlies a viscoelastic
asthenosphere. Stresses from the earthquake cause the asthenosphere to flow which will then cause postseis-
mic surface deformation. The right schematic illustrates the afterslip model, where aseismic fault slip (gray)
occurs around the region that slipped during the earthquake (black) to relieve coseismic stresses.

form. This viscous relaxation of coseismic stresses would then manifest as broad-scale post-

seismic deformation (Nur and Mavko, 1974) (Figure 1.1). Postseismic deformation resulting

from viscous relaxation can be practically indistinguishable from postseismic deformation

resulting from afterslip that is occurring below seismogenic depths (Savage, 1990). Indeed,

researchers have also been able to describe postseismic deformation following the Landers,

Hector Mine, and El Mayor-Cucapah earthquakes with viscous relaxation in the upper man-

tle (Pollitz et al., 2000, 2001; Freed and Bürgmann, 2004; Freed et al., 2007; Spinler et al.,

2015) or a combination of afterslip and viscous relaxation (Pollitz et al., 2012; Pollitz , 2015;

Rollins et al., 2015). It is important to discern which mechanisms is driving postseismic de-

formation because that information can shed light onto how stress is building up on faults.

Several researchers have suggested using the polarity of vertical postseismic deformation as

a discriminant for the deformation mechanism (e.g., Pollitz , 2003; Hetland and Zhang , 2014;

Rollins et al., 2015).

1.1.2 Interseismic deformation

For the aforementioned California earthquakes, transient postseismic deformation persisted

over timescales of months to years. Postseismic deformation subsides once the coseismic

stresses have been dissipated through viscous relaxation or afterslip. After that time, ground

deformation returns to a relatively steady rate. This relatively steady deformation is referred

to as interseismic deformation. I use the term “relatively steady” because interseismic defor-

mation can still exhibits transients. For example, Thatcher (1983) observed a decay in strain

rates across the San Andreas fault that occurred over the decades following the The 1906 San

Francisco and 1857 Fort Tejon earthquakes. Savage and Prescott (1978) introduced a model

to describe time-dependent interseismic deformation. In this model an elastic lithosphere
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overlies a viscoelastic asthenosphere. The model is driven by a constant far-field velocity,

representing tectonic plate motion, and periodic earthquakes are imposed on a fault embed-

ded in the lithosphere. In between earthquakes, strain on the fault does not accumulate at a

constant rate. Instead, it accumulates most rapidly after an earthquakes. This interseismic

model can have clear utility for assessing seismic hazard, but it requires an understanding

of the asthenosphere’s rheologic properties, which is unknown. Segall (2002) and Johnson

and Segall (2004) used contemporary observations of interseismic deformation in California

to constrain the rheologic properties of the asthenosphere. They required a strong astheno-

sphere (1019 to 1020 Pa s) to sustain the high interseismic strain rates observed across the

San Andreas fault. The viscosities inferred from interseismic deformation are higher than the

viscosities required to explain postseismic deformation, which are generally between 1018 and

1019 Pa s (Thatcher and Pollitz , 2008). This discrepancy could potentially be reconciled with

a nonlinear (Freed and Bürgmann, 2004) or Burgers (Pollitz , 2003) rheology asthenosphere.

1.1.3 Slow slip events

Similar to afterslip, slow slip events (SSEs) are also a type of aseismic fault slip; however,

SSEs initiate spontaneously without being triggered by an earthquake. SSEs tend to occur

deep on subduction zone interfaces, where the fault transitions from being interseismically

locked to creeping steadily. SSEs have been observed at several subduction zone settings

including Cascadia, Alaska, Central America, and Japan (Schwartz and Rokosky , 2007). In

this dissertation, I will focus on SSEs in Cascadia, which were first discovered by Dragert

et al. (2001) from GNSS data. Dragert et al. (2001) observed an SSE that produced about 2

cm of thrust slip over about 20 days beneath Washington state and Vancouver Island. This

area experiences an SSE roughly every 14 months. Further south in Oregon, SSEs occur

about every 20 months. Even further south in Northern California, SSEs are observed every

10 months (Brudzinski and Allen, 2007).

Cascadia SSEs were thought to be seismically silent until Rogers and Dragert (2003)

observed seismic tremor that was spatially and temporally correlated with the SSEs. The

Cascadia SSEs were then renamed episodic tremor and slip (ETS). Seismic tremor is distinct

from the seismic signal from small earthquakes because it does not have any characteristic

arrival time and lasts for minutes to hours. A robust methods for detecting seismic tremor

has been developed by Wech (2010), and it is actively being used by the Pacific Northwest

Seismic Network to detect ETS.
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1.2 Outline

The chapters of this dissertation can be separated into model-based and data-based analysis.

Chapters 2, 3, and 4 are model-based, where I discuss how physical models of tectonic

processes can be constrained by observable transient deformation. Chapters 5, 6, and 7 are

data-based, where I am mostly focused on assessing the noise in geodetic data and detecting

transient geophysical signal.

Chapter 2 presents a theoretical discussion on resolving the viscosity of the lower crust and

upper mantle from interseismic deformation. Several studies have inferred from interseismic

deformation that the lower crust must be stronger (more viscous) than the upper mantle

(Thatcher and Pollitz , 2008). In this chapter, I demonstrate that the methodology in these

studies is inherently biased towards overestimating and underestimating the strength of

the lower crust and upper mantle, respectively. The bias results from the commonly used

simplification that the viscosities are uniform, rather than depth-dependent, within the lower

crust and upper mantle.

In Chapters 3 and 4, my goal is to infer the crust and upper mantle viscosity and dis-

tribution of afterslip from observable postseismic deformation. Estimating these quantities

from postseismic deformation tends to be computationally intractable, because it is a non-

linear inverse problem that typically requires numerically expensive finite element modeling.

In Chapter 3, I present an approximation for the postseismic deformation forward problem

that can be used to make the inverse problem computationally tractable. I demonstrate that

my method is able to accurately identify the strength of the crust and upper mantle from

postseismic deformation even if afterslip is obscuring the signal from viscous relaxation. In

Chapter 4, I apply this method to five years of postseismic deformation following the 2010 El

Mayor-Cucapah earthquake in Baja California. I find that postseismic deformation can be

observed several hundred kilometers from the earthquake epicenter. While this far reaching

deformation is not immediately recognizable in the raw GNSS data, I am able to extract a

coherent signal after using a Kalman filter that I developed and describe in this chapter. My

analysis of this postseismic signal indicates that the far-field deformation is best described by

a Burgers rheology upper mantle with a transient viscosity of about 1018 Pa s. My preferred

mantle rheology is consistent with mantle viscosities determined in other types of geophysical

studies (e.g., Crittenden, 1967; Bills and May , 1987).

Chapter 5 is on quantifying noise in geodetic time series. Although this chapter does

not directly discuss transient deformation, it is necessary to accurately quantify the noise in

geodetic data before any transient signal can be identified. I discuss a bias in a commonly

used method for quantifying noise in geodetic data. This bias tends to underestimate the
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amplitude of noise, which can result in underestimated uncertainties for any geophysical

parameters derived from the data. I demonstrate that the Restricted Maximum Likelihood

(REML) technique, which was first introduced by Patterson and Thompson (1971), is a

better method for characterizing noise in geodetic data.

In Chapter 6, I discuss a non-parametric method for detecting transient deformation,

specifically transient strain, in GNSS data. Existing transient detection methods tend to

assume a parametric form for the underlying signal being detected (e.g., Ohtani et al., 2010),

and an improperly chosen parameterization can bias the results. My method for detecting

transient deformation uses Gaussian process regression, where I assume a stochastic prior

model for the underlying signal. As opposed to a subjectively chosen parametric model, the

stochastic prior model can be objectively chosen using maximum likelihood techniques, such

as the REML method discussed in Chapter 5. I apply my method to GNSS data from the

Pacific Northwest to detect transient strain from SSEs. I verify the accuracy of my detection

method by comparing the inferred geophysical signal to observations of seismic tremor, which

are known to coincide with SSEs.

Chapter 7 is a discussion on BSMs and their ability to record strain from SSEs. The PBO

contains about 80 BSMs; however, the data recorded by these instruments is seldom used.

This is perhaps because it is unclear whether BSM data, which describes strains over a 8.7

centimeter baseline, are representative of regional tectonic strains. Instead, BSMs may be

recording localized deformation that is not geophysically relevant. I address this question by

comparing GNSS derived strains, described in Chapter 6, to the strains recorded at BSMs.

I find that only two BSMs record data that is consistent with the regional strains derived

from GNSS data. A third station can be made consistent with the GNSS derived strains if

I assume that it is mis-oriented.

Finally, in Chapter 8 I discuss future research directions and provide concluding remarks.

1.3 Publications from this dissertation

This dissertation consists of three published manuscripts, two manuscripts that are cur-

rently in review, and one manuscript that is in preparation. The published and submitted

manuscripts are listed below.

• Hines, T. T., and Hetland, E. A. (2013). Bias in estimates of lithosphere viscosity from

interseismic deformation. Geophysical Research Letters, 40, 4260–4265, doi:10.1002/grl.50839.

Chapter 2
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• Hines, T. T., and Hetland, E. A. (2015). Rapid and simultaneous estimation of fault

slip and heterogeneous lithospheric viscosity from post-seismic deformation. Geophys-

ical Journal International, 204, 569582, doi:10.1093/gji/ggv477. Chapter 3

• Hines, T. T., and Hetland, E. A. (2016). Rheologic constraints on the upper mantle

from five years of postseismic deformation following the El Mayor-Cucapah earth-

quake. Journal of Geophysical Research: Solid Earth, 121, doi:10.1002/2016JB013114.

Chapter 4

• Hines, T. T., and Hetland, E. A. (2017). Unbiased characterization of noise in geodetic

data. submitted to Journal of Geodesy Chapter 5

• Hines, T. T., and Hetland, E. A. (2017). Revealing transient strain in geodetic data

with Gaussian process regression. submitted to Geophysical Journal International

Chapter 6
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CHAPTER 2

Bias in estimates of lithosphere viscosity from interseismic

deformation∗

2.1 Abstract

The estimation of uniform viscosities representing the lower crust and uppermost mantle

from post- or interseismic deformation (i.e., apparent viscosities) is inherently biased with

respect to a depth-dependence of the viscosities within each layer. Estimates are biased

toward a more viscous lower crust or a less viscous lithospheric mantle, depending on the

relative geometric mean viscosities of the two layers. When there is a low viscosity shear

zone beneath the fault, apparent viscosities are close to that of the shear zone immediately

after the earthquake, although the apparent viscosities increase significantly during the later

interseismic period. Inferences made from interseismic deformation that the lower crust

is more viscous than the upper mantle may be entirely consistent with depth-dependent

viscosity profiles that have a significant increase in viscosity from the lowermost crust to the

uppermost mantle.

2.2 Introduction

Numerous studies in tectonically active regions have sought estimates of the viscosities of

the ductile lithosphere, including the lower crust and uppermost mantle (e.g., Hetland , 2003;

Pollitz , 2003, 2005; Johnson et al., 2007; Hearn et al., 2009). Here we consider estimates of

the ductile lithosphere made by fitting predictions of surface deformation from mechanical

models to geodetic measurements of interseismic deformation. Most studies of interseismic

deformation concluded that the lower crust has a higher viscosity than the uppermost man-

tle (Bürgmann and Dresen, 2008; Thatcher and Pollitz , 2008). The majority of mechanical

∗This chapter has been published as: Hines, T. T., and Hetland, E. A. (2013). Bias in estimates
of lithosphere viscosity from interseismic deformation. Geophysical Research Letters, 40, 4260–4265,
doi:10.1002/grl.50839.
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models used in these studies approximated the ductile lithosphere using two homogeneous

viscoelastic layers representing the lower crust and uppermost mantle (e.g., Hetland , 2003;

Pollitz , 2003; Hearn et al., 2009). These simplistic layered models are commonly used be-

cause they are computationally cheap and because geodetic data are only capable of resolving

a limited number of independent rheologic parameters (e.g., Riva and Govers , 2009; Pollitz

and Thatcher , 2010). However, the simplifications made in the layered models may result

in inferred viscosities that are not directly applicable to the real viscosity structure of the

ductile lithosphere (Riva and Govers , 2009).

Temperatures in the lithosphere increase with depth and viscosity has a strong temper-

ature dependence (e.g., Kohlstedt et al., 1995). The viscosity of the ductile lithosphere also

has a stress-dependence (e.g., Kohlstedt et al., 1995), although the ductile lithosphere is often

approximated as Maxwell viscoelastic in these models (e.g., Hetland , 2003; Johnson et al.,

2007; Riva and Govers , 2009; Yamasaki and Houseman, 2012b). This may be a reasonable

approximation if stresses resulting from coseismic deformation are small compared to back-

ground stresses. The Newtonian viscosity inferred in postseismic deformation studies may

not be constant over time and could be interpretted as an effective viscosity of a power-law

creep (e.g., Freed et al., 2006a). Indeed, to describe geodetic observations, models of post-

seismic deformation in the months to years following an earthquake often require apparent

viscosities up to several orders of magnitude smaller than those required in models of de-

formation later in the interseismic period (e.g., Pollitz , 2005; Johnson et al., 2007; Meade

et al., 2013). It is important to note that estimates of viscosities from the first few months

following an earthquake may not be directly applicable to the steady viscosities of the litho-

sphere, as the immediate transient postseismic deformation is often considered to be due

to postseismic fault creep, poroelastic rebound, or a transient rheology (e.g., Pollitz , 2003;

Freed et al., 2006a; Hearn et al., 2009). We save the investigation of models with non-linear,

power-law creep and/or stress driven fault creep to a subsequent study, and here we only

consider stress-linear viscoelasticity, allowing for a robust depth-dependence of viscosities.

We address the question of how inferences of single viscosities representing the entire

lower crust and uppermost mantle are related to depth-dependent viscosities throughout

the ductile lithosphere. We consider inferred viscosities made from rheologically idealized

models of interseismic deformation to be apparent viscosities, and explore the biases incurred

through using simplified models. For brevity, we use the term “strength” to refer to viscosity,

or equivalently Maxwell relaxation time, τM (τM = η/µ, where η is viscosity and µ is shear

modulus), and thus we use “strong” or “weak” to refer to high or low viscosities, respectively.

We show that estimates of the lithosphere’s strength, based on simplified layered models,

are almost always biased towards a stronger lower crust or a weaker upper mantle.
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2.3 Interseismic models

We create synthetic surface deformation using 2D earthquake cycle models composed of an

infinite length, vertical strike-slip fault in an elastic layer of thickness D representing the

upper crust, overlying a Maxwell viscoelastic substrate representing the ductile lithosphere

(Figure 2.1). We impose uniform slip on the fault with repeat time T , until the surface

deformation reaches a cycle invariant state (i.e., the model is spun-up). The lower viscoelastic

substrate is composed of a layer of thickness D, representing the lower crust, and a layer

of thickness 8D, representing the lithospheric mantle. We choose the thickness of the latter

to be large enough such that the specific thickness does not affect the surface deformation.

Below 10D, in the asthenosphere, we assume a homogeneous viscosity of 1019 Pa·sec to

the base of the model domain. Models of infinite length, vertical strike-slip faults are anti-

symmetric, and we only model one side of the fault. We use the finite element program

GeoFEST (Lyzenga et al., 2000) and take the model domain to be 120D wide by 100D

deep. We impose an anti-symmetry boundary condition on the model edge containing the

fault, a far-field velocity, vT , on the opposite boundary, chosen so that there is no net strain

accumulation in each earthquake cycle, and the top and bottom of the model are stress free

(the bottom of the model domain is sufficiently deep that the bottom stress free boundary

condition does not affect the surface deformation). We consider only Maxwell viscoelasticity,

but include depth-dependent viscosities within the lower crust and uppermost mantle. We

assume that the shear modulus is uniform throughout the model and that viscosities vary

smoothly, except possibly at z = 2D (i.e., the Moho) and at z = 10D (i.e., base of the

lithosphere). We non-dimensionalize the spatial dimensions by the fault locking depth, D,

and time by T , and thus the non-dimensional Maxwell relaxation time is τ = τM/T .

2.3.1 Depth-dependence of τ

Motivated by the fact that effective viscosity decreases exponentially with increasing tem-

perature (e.g., Kohlstedt et al., 1995), we take τ to decrease exponentially with depth. For

generality, we do not assume any particular geotherm or composition of the ductile litho-

sphere, and instead specify that τ decreases in each layer as

τ(z) = α + βe−γz, (2.1)

where z is depth within the layer, and α, β, and γ are parameters that vary for each layer.

It is possible to express equation (2.1) in terms of the maximum, τmax
j , minimum, τmin

j , and

geometric mean, τ̄j, relaxation times within layer j, where j is “LC” or “UM” for the lower
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Figure 2.1: Schematic of the earthquake cycle model: springs indicate elasticity and dashpots indicate
Newtwonian viscosity. Example depth-dependent τ profiles are shown in the upper mantle, for the case
when τmin

UM = 10−2, τmax
UM = 102, and τ̄UM indicated by vertical dotted lines.

crust or mantle lithosphere, respectively. We consider a wide range of viscosity profiles such

that 10−1 ≤ τmax
j ≤ 102, 10−2 ≤ τmin

j ≤ 101, and 10−1 ≤ τ̄j ≤ 101, in increments of 100.5.

With these ranges, we consider 5,625 depth-dependent lithosphere viscosity structures. The

relaxation times are non-dimensionalized by T , so for a 100 year recurrence time, the shortest

and longest Maxwell relaxation times we consider are 1 year and 104 years, respectively

(corresponding to viscosities of about 1018 Pa·s and 1022 Pa·s for µ ≈ 30 GPa). Note that

we consider profiles where the largest decrease of τ can either be in the top or bottom of the

layer (Figure 2.1), and we remark on the impact of this on our results below.

2.4 Determination of apparent strength

We define the apparent relaxation times (or equivalently the apparent viscosities) of the

lower crust, τ̂LC , and mantle lithosphere, τ̂UM , as the relaxation times inferred from surface

interseismic deformation using a model composed of constant viscosities in the two layers

(i.e., a layered model). In general, τ̂LC and τ̂UM have a temporal (Riva and Govers , 2009) and

spatial (Yamasaki and Houseman, 2012a) dependence. Both of which can be thought of as

variables of interseismic surface deformation, given a particular mechanical representation of

the ductile lithosphere, but here we only consider the time dependence of inferred viscosities.

We denote the interseismic surface velocities in the models with depth-dependent τ as vDD,

and the velocities in a layered model as vL. We use a grid search to determine the τ̂j in a
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Figure 2.2: A) Velocities for a depth-dependent model, vDD, (black solid lines) and the best fitting velocities
predicted by a layered model, vL (colored solid lines). The black dashed line shows the velocities predicted
by an elastic earthquake model with the same D and vT . B) τ profiles corresponding to vDD in (A) and τ̂j
associated with the best fitting vL in (A). C) τ̄j for the τ profile in (B) with τ̂j for each of the cases in (B).
Solid lines indicate misfit contours in the grid-search estimation of vL in (A); contours shown are RMSE =
0.02 (dark lines) and 0.04 (faded lines), and color indicates the time.

layered model that produces surface velocities that closest match the surface velocities in

each of the depth-dependent models. We determine τ̂j at 100 evenly spaced times throughout

the interseismic period. In the grid search, we search over 10−2 ≤ τ̂j ≤ 102, minimizing the

root mean square error (RMSE) between vDD and vL at 0.5D increments of distance from the

fault from 0.5D to 12D. We note that the upper limit of τ̂j searched over is a bit excessive

because, for practical purposes, vL is insensitive to changes in relaxation time for τ & 101, as

the layer is effectively elastic over interseismic periods (Savage and Prescott , 1978) (Figure

2.5). Finally, we assume that the fault slip-rate and thickness of the lower crust and upper

mantle are known.

About halfway through the interseismic period, surface deformation for almost all models

we consider, both layered and depth-dependent, is indistinguishable from the deformation

predicted by an elastic model with slip rate vT and locking depth D (Savage and Burford ,

1973b) (Figure 2.2A). Because all models simultaneously predict surface interseismic veloc-

ities similar to the elastic model, τ̂j cannot be definitively resolved for a period during the

middle of the earthquake cycle (Figure 2.3C). The exact times within the earthquake cycle

in which the elastic model describes vDD as well as a layered model, depends on the specific

τ profiles, but it is during the time period about .4T–.5T for most of the models.

In general, the misfit between vDD and vL is largest early in the earthquake cycle for

models with low τ̄LC and/or τ̄UM (Figure 2.6). The heightened misfit reflects the fact that

there is more postseismic creep in the mid-crust and/or beneath the Moho in the layered

models, resulting in differences in the wavelength of surface deformation compared to the
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depth-dependent models in which τ is larger in the mid-crust and/or beneath the Moho.

Misfit decreases to a minimum halfway into the earthquake cycle when deformation appears

elastic. The misfit increases again late in the earthquake cycle, although vL is a significantly

better match to vDD compared to immediately after the earthquake.

We illustrate the determination of τ̂j using a model with a depth-dependent τ profile

such that τ̄LC = τ̄UM = 10−0.5, τmax
LC = τmax

UM = 100.5, and τmin
LC = τmin

UM = 10−1 (Figure 2.2).

For this particular case, the misfit surfaces in the grid search shows clear minima and τ̂j

is a fair approximation for τ̄j early and late in the interseismic period, although the lower

crust relaxation time is slightly overestimated (Figure 2.2C). About halfway into the cycle,

the layered model that best fits vDD dramatically overestimates the lower crust relaxation

time (Figure 2.2B); however, there is a large range of τ̂j that would sufficiently match vDD

(Figure 2.2C), since during this period the surface velocities for all models are very close to

the velocities for the elastic model with identical fault slip rate and locking depth (Figure

2.2A). In this particular depth-dependent model, the velocities throughout the interseismic

period are quite similar to those from elastic models, albeit with different slip rates and
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locking depths.

2.5 Biases in apparent strength

One might assume that the apparent τ estimated using a simple layered model, τ̂j, reflects

the geometric mean τ in those layers, τ̄j. In general, τ̂j estimated from vDD at any time in

one of the depth-dependent models may be significantly different than τ̄j. We consider the

difference between the two values to be an error in the estimation of τ̄j and approximate the

bias in the estimation throughout the interseismic period as

Bias(τ̂j; τ̄j) = E[τ̂j]− τ̄j, (2.2)

where E[τ̂j] is the geometric mean of τ̂j estimated from the collection of the depth-dependent

models that all have the same τ̄j.

Bias(τ̂j; τ̄j) represents the bias in the estimated relaxation times for the lower crust and

uppermost mantle with respect to the geometric mean relaxation time of the two layers.

In the wide range of models we considered, the bias depends on the contrast between the

geometric mean relaxation times in the lower crust and upper mantle, τ̄LC/τ̄UM . Early

and late in the earthquake cycle there is a distinct bias towards an apparently weak upper

mantle when τ̄LC/τ̄UM < 1 and a bias exaggerating the strength of the lower crust by up

to a few orders of magnitude when τ̄LC/τ̄UM > 1 (Figure 2.3A,C). About halfway through

the interseismic period, the biases we calculate are not well constrained, but are generally

towards a stronger lower crust and uppermost mantle (Figure 2.3B). These biases hold when

we only consider τ profiles in which τ decays with depth faster than log-linearly (Figure

2.8), which indicates the biases are not sensitive to the specific decay of viscosity with depth

provided that there is still some depth-dependence within both layers.

When we consider models in which the lower crust is homogeneous, and include a depth-

dependent τ only in the uppermost mantle, there is no clear bias when τ̄LC/τ̄UM < 1.

However, when τ̄LC/τ̄UM > 1, there is a bias to a stronger lower crust and only a slight bias

in the upper mantle strength (Figure 2.7A,C). Conversely, when the uppermost mantle has

a uniform relaxation time and τ is depth-dependent only in the lower crust, there is no bias

when τ̄LC/τ̄UM > 1, but when τ̄LC/τ̄UM < 1 there is a bias towards a weaker upper mantle,

while the lower crust relaxation time is accurately represented (Figure 2.7D,F). This may be

counterintuitive, as one might think that if the lower crust or mantle was truly homogenous

with respect to its relaxation time, then a simplified layered model should accurately capture

that uniform relaxation time. In the case of both the lower crust and uppermost mantle being
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homogeneous, this would be true. However, if only one layer has a homogeneous relaxation

time which is longer than the mean relaxation time in the depth-dependent layer, then

strength estimates for that layer are biased. This leads us to conclude that the biases are

created by the depth-dependence of τ in the weaker of the two ductile lithospheric layers.

2.6 Lower crustal shear zones

It is likely that highly sheared rocks directly beneath a fault are considerably weaker than

the surrounding lower crust (e.g., Montési and Hirth, 2003), and lower crustal shear zones

are well documented (e.g., Vauchez and Tommasi , 2003). In all of the models that we present

above, the largest τ in the lower crust is immediately beneath the fault. These long relaxation

times may suppress the relaxation of coseismic stresses in the lowermost crust, where the

relaxation times are shorter, and thus may significantly influence our above conclusion that

estimates of lower crustal strength are biased to stronger values than its geometric mean

strength. To investigate the potential effect of a lower crustal shear zone on the biases in τ̂j,

we include a D wide vertical shear zone extending through the lower crust beneath the fault.

We assume that the shear zone is Maxwell viscoelastic with a constant relaxation time of

τSZ = 10−2, which is at least an order of magnitude faster than the surrounding lower crust.

With a weak shear-zone, immediately following an earthquake the velocities are quite

large, and as a result both the lower crust and uppermost mantle appear uniformly weaker

than their geometric mean strength, with τ̂LC close to τSZ (Figure 2.4). These heightened

postseismic velocities decay rapidly, although how τ̂LC or τ̂UM increases over time depends

on τ̄LC/τ̄UM . If τ̄LC/τ̄UM ≥ 1 then τ̂LC increases by orders of magnitude, exceeding τ̄LC

(Figure 2.4B). Otherwise, τ̂UM rapidly increases early in the cycle. For all models, τ̂j evolves

towards a more reasonable approximation of τ̄j late in the cycle (Figure 2.4B). Additionally,

the velocities are relatively steady throughout the later interseismic period compared to a

model without a shear zone but with similar heightened postseismic velocities (Figure 2.4A).

2.7 Discussion

In the wide range of cases we consider, the biases in τ̂j inferred throughout the interseismic

period almost always are such that τ̂LC/τ̂UM is larger than τ̄LC/τ̄UM , except for midway

through the interseismic period when all velocities are close to the elastic limit (Figure

2.3B). Additionally, τ̂LC is often larger than τmax
LC and τ̂UM is often lower that τmin

UM . In

models where τ̄LC 6= τ̄UM , inferences of τ̂LC/τ̂UM > 1 (< 1) correspond to models in which

τ̄LC/τ̄UM > 1 (< 1). In other words, a lower crust that appears stronger than the mantle
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Figure 2.4: A) Interseismic velocities, vSZ , in a model with both a lower crustal shear zone and depth-
dependent τ in the surrounding lithosphere (black lines) along with the best fit vL (colored lines). Shown
as light blue lines are the velocities in a layered model with the dark blue viscosity profile shown in (b),
which are the apparent viscosities estimated from vSZ at t/T = 0.01. B) τ profile outside of the shear
zone corresponding to vSZ (black line; τ = 10−2 within the shear zone), τ̄ outside the shear zone, and τ̂j
associated with the best fitting vL in (A) (colored lines, color corresponds to time in cycle). Inset in (B)
shows τ̄j and τ̂j (dot color corresponds to line colors in (A) and (B)).

when approximated by uniform strength layers corresponds to models in which the geometric

mean strength of the lower crust is also stronger than that in the mantle, and vice versa. We

note that several of the τ profiles with τ̄LC > τ̄UM are characterized by significant portions

of the lowermost crust having much lower viscosities than the uppermost mantle.

The biases we present in this paper can be viewed as relating τ̂j to τ̄j. However, the

specific relationship between τ̂j and τ̄j depends not only on the details of how τ varies in the

ductile lithosphere, but also on the time in the interseismic period. In the latter regard, it

is also important to note that we have assumed periodic offsets on an infinite length fault,

whereas real earthquakes are non-periodic and finite. It is also important to note that we

grouped all τ profiles according to the τ̄j in each layer irrespective of τmax
j and τmin

j , and only

considered how profiles with the same τ̄j relate to τ̂j. For these reasons, these biases cannot

be used to back-out specific depth-dependent τ profiles, or even unique τ̄j, consistent with

τ̂j estimated from geodetic data using a simplified model of the lithosphere. The coherency

of the bias estimates suggest that it may be possible to develop probabilistic relationships

between τ̂j and τ̄j, assuming that the general time within the earthquake cycle the geodetic

data are sampling is known. For example, if τ̂LC ≈ 101 and τ̂UM ≈ 10−1 were inferred from

geodetic data late in a seismic cycle, then those estimates would be equivalent to depth-
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dependent τ profiles with τ̄LC around 10−0.5 to 101 and τ̄UM on order of 10−1 (Figure 2.3C).

Further exploration of the relationships between specific τ profiles and τ̂j would be required

in order to establish whether inferences of apparent strength could be used to constrain the

range of permissible τ profiles that are consistent with surface deformation at any one time.

It may also be possible to constrain depth-dependent τ profiles by considering how inferred

viscosities vary as a function of distance from the fault (Yamasaki and Houseman, 2012a).

In the depth-dependent τ models we consider, the postseismic velocities are either only

slightly above the elastic velocities or are large but decay over a relatively long portion of the

interseismic period. Both of these cases are in contrast with many observations of heightened

postseismic velocities decaying over on order of a decade following earthquakes (e.g., Ergintav

et al., 2009). Models including transient rheologies or power-law creep have been proposed to

explain transient postseismic velocities (e.g., Pollitz , 2003; Freed et al., 2006a; Ryder et al.,

2007). Adding a weak shear zone to a model with depth-dependent τ and only Maxwell

viscoelasticity can also result in heightened postseismic velocities that rapidly decay over

the postseismic period, while the surface velocities throughout the majority of the latter

interseismic period are only slightly depressed compared to those in an elastic model with

identical slip-rate and locking depth (Figure 2.4A).

2.8 Conclusions

Assuming a uniform viscosity for the lower crust and uppermost mantle results in biased

estimates of viscosity for those two layers if the viscosity is highly depth-dependent. Esti-

mates of viscosity tend to be biased either towards a weaker upper mantle or a stronger lower

crust, depending on the relative viscosity of the two layers. When there is a low viscosity

lower crustal shear zone present, immediately after the earthquake the lower crust and up-

permost mantle both appear weak, with apparent viscosities close to that of the shear zone,

and then the apparent strength of the lower crust or upper mantle increases dramatically

over the early interseismic period. Using simplified models, inferences made from interseis-

mic deformation that the lower crust is orders of magnitude more viscous than the upper

mantle may be entirely consistent with depth-dependent viscosity profiles that have smaller

contrasts between the geometric mean viscosities of lower crust and upper mantle and may

be associated with a significant increase in viscosity across the Moho.
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2.10 Supporting information

The following figures provide additional information supporting our conclusions regarding

the biases in apparent viscosities estimated for the lower crust and upper mantle. The

sensitivity of surface deformation to viscosities in the lower crust or upper mantle is shown

in Figure 2.5. Figure 2.6 is the same as Figure 2.3, except Figure 2.6 shows all of the τ̂ for

the lower crust and uppermost mantle estimated from vDD and indicates the misfit for the

inferences. Figure 2.7 shows the bias for end-member scenarios when only the lower crust or

upper mantle has a depth dependent τ . Figure 2.8 shows the bias when τ in the lower crust

and upper mantle has a high decay rate (i.e., a decay rate larger than a log-linear decrease

in τ).
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CHAPTER 3

Rapid and simultaneous estimation of fault slip and heterogeneous

lithospheric viscosity from postseismic deformation∗

3.1 Summary

Postseismic deformation is commonly attributed to viscoelastic relaxation and/or afterslip,

although discerning between the two driving mechanisms can be difficult. A major compli-

cation in modeling postseismic deformation is that forward models can be computationally

expensive, making it difficult to adequately search model space to find the optimal fault

slip distribution and lithospheric viscosity structure that can explain observable postseismic

deformation. We propose an inverse method which uses coseismic and early postseismic

deformation to rapidly and simultaneously estimate a fault slip history and an arbitrarily

discretized viscosity structure of the lithosphere. Our method is based on an approximation

which is applicable to the early postseismic period and expresses surface deformation result-

ing from viscoelastic relaxation as a linearized function with respect to lithospheric fluidity.

We demonstrate this approximation using two-dimensional earthquake models. We validate

the approximation and our inverse method using two three-dimensional synthetic tests. The

success of our synthetic tests suggests that our method is capable of distinguishing the mech-

anisms driving early postseismic deformation and recovering an effective viscosity structure

of the lithosphere.

3.2 Introduction

Geodetic observations of surface deformation in the months to years following an earthquake

are often attributed to afterslip (e.g., Marone et al., 1991), viscoelastic relaxation in the

lithosphere (e.g., Nur and Mavko, 1974), and/or poroelastic relaxation (e.g., Peltzer et al.,

∗This chapter has been published as: Hines, T. T., and Hetland, E. A. (2015). Rapid and simultaneous
estimation of fault slip and heterogeneous lithospheric viscosity from post-seismic deformation. Geophysical
Journal International, 204, 569582, doi:10.1093/gji/ggv477.
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1998). If postseismic deformation can be entirely described by afterslip, then one could easily

constrain the spatial distribution of slip on prescribed fault geometries with a linear least

squares inversion (e.g., Harris and Segall , 1987; Bürgmann et al., 2002; Freed , 2007), which

could then provide insight into the frictional properties of faults (e.g., Hsu et al., 2006; Barbot

et al., 2009). However, postseismic deformation following large (Mw ≥ 7) earthquakes is of-

ten attributed to viscoelastic relaxation in the lithosphere (e.g., Hetland , 2003; Pollitz , 2003,

2005) or a combination of both afterslip and viscoelastic relaxation (e.g., Freed et al., 2006b;

Hearn et al., 2009; Johnson et al., 2009; Rollins et al., 2015). In such cases, postseismic

deformation can be used to also constrain the viscous properties of the lithosphere, although

this is a more difficult task than constraining just a slip distribution. Not only do the com-

peting deformation mechanism need to be discerned, finding the viscosity distribution of the

lithosphere from postseismic deformation is a computationally expensive nonlinear inverse

problem. Typically, the estimation of viscosities is approached with a forward modeling, grid

search or Monte Carlo method. These forward modeling techniques require the number of

unknown parameters being estimated to be small, meaning that significant and potentially

inappropriate modeling assumptions must be made. Namely, studies seeking to estimate the

viscosity structure of the lithosphere often assume for computational tractability that the

lithosphere is composed of two or three homogeneously viscoelastic layers, which may not

be appropriate for describing a more realistic depth dependent viscosity structure (Riva and

Govers , 2009; Hines and Hetland , 2013).

In this paper we propose a relatively fast method to invert coseismic and postseismic

deformation to simultaneously estimate a time-dependent distribution of fault slip and an

arbitrarily discretized viscosity structure of the lithosphere. Our method is based on an

approximation which linearizes the rate of early postseismic deformation with respect to the

viscosity of the lithosphere. We demonstrate the effectiveness and limitations of our method

through two synthetic tests.

3.3 Approximation for postseismic deformation

We assume that the lithosphere can be approximated as a Maxwell viscoelastic material on

the timescales of postseismic deformation, where shear stress, σ, and strain, ε, are related

by
∂ε

∂t
=

σ

2η
+

1

2µ

∂σ

∂t
. (3.1)

We use η and µ to represent viscosity and shear modulus, respectively. This constitutive

relationship implies that a sudden strain from an earthquake will instantaneously stress
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the lithosphere elastically (assuming the lithosphere is undergoing quasi-static deformation).

Viscoelastic creep will initiate immediately after the earthquake, where the initial viscous

strain rate in each parcel of the lithosphere will be proportional to the fluidity (1/η) in

that parcel, and independent of the fluidity elsewhere because the initial stresses are only

controlled by the elastic properties of the lithosphere. Stresses from the earthquake will dis-

sipate over time through viscoelastic relaxation. During the period in which stress changes

from viscoelastic relaxation are small compared to the initial elastic stresses, each parcel will

continue to creep at a rate that is approximately proportional to its fluidity. In this early

postseismic period, the surface deformation from creep in each parcel will have an amplitude

that is also proportional to the fluidity in that parcel and independent of the fluidity else-

where. The early surface expression of creep throughout the lithosphere is therefore a sum

of the surface deformation from each parcel and is linear with respect to lithospheric fluidity.

We demonstrate this property of early postseismic surface deformation in this section using

simple infinite length, strike-slip earthquake models, where the lithosphere is approximated

as a layered half-space. In Section 3.5 we consider two finite fault models with an arbitrarily

discretized lithospheric viscosity structure, the first with only Maxwell viscoelasticity and

the second with Burgers viscoelasticity.

3.3.1 Two-dimensional earthquake models

The easiest way to demonstrate how postseismic deformation can be linearized with respect

to lithospheric viscosity is with a two-dimensional earthquake model consisting of a long,

vertical, surface rupturing, strike-slip fault that is embedded in a viscoelastic horizontal

layer overlying a viscoelastic half-space. We make use of the Correspondence Principle of

Viscoelasticity (e.g., Flügge, 1975), which states that the Laplace transform of deformation

in a viscoelastic body has the same form as the Laplace transform of deformation in a elastic

body with the same geometry and subjected to the same boundary conditions. The solution

for displacements following an earthquake in a viscoelastic lithosphere can then be readily

found provided that the corresponding elastic solution is known (e.g., Nur and Mavko, 1974;

Savage and Prescott , 1978; Hetland and Hager , 2005). One only needs to replace the shear

modulus in the Laplace transform of the elastic solution with the effective viscoelastic shear

modulus and then compute the inverse Laplace transform.
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Two layered model

From the solution of Rybicki (1971), surface displacements, ue(x, t), resulting from slip on a

fault in an elastic surface layer overlying a semi-infinite elastic substrate are

ue(x, t) = b(t)

(
1

2
W (0) +

∞∑
n=1

ΓnW (n)

)
, (3.2)

where

W (n) =
1

π

(
tan−1

(
2nH +D

x

)
− tan−1

(
2nH −D

x

))
(3.3)

and

Γ =
µ1 − µ2

µ1 + µ2

. (3.4)

In the above equation, b(t) describes cumulative slip on the fault through time and can

describe coseismic slip and/or afterslip. D is the locking depth of the fault, H is the thickness

of the upper layer, and µ1 and µ2 are the shear moduli in the upper layer and lower substrate,

respectively. The Laplace transform of eq. (3.2) is

ûe(x, s) = b̂(s)

(
1

2
W (0) +

∞∑
n=1

ΓnW (n)

)
. (3.5)

We replace µ1 and µ2 in eq. (3.5) with the equivalent shear moduli for Maxwell materials

in the Laplace domain, µ̂1 and µ̂2, to get the Laplace transform of surface displacements in

the two-layered, viscoelastic half-space,

ûv(x, s) = b̂(s)

(
1

2
W (0) +

∞∑
n=1

Γ̂nW (n)

)
, (3.6)

where

Γ̂ =
µ̂1 − µ̂2

µ̂1 + µ̂2

(3.7)

and

µ̂i =
s

s
µi

+ 1
ηi

. (3.8)

To find the surface displacements in the time domain one must find the inverse Laplace

transform of eq. (3.6), which is typically done using the method of residues. However, we

are interested in characterizing the behavior of only the early postseismic deformation and

it serves us better to instead perform the inverse Laplace transform with an extension of the

initial value theorem (Appendix A). We assume for simplicity that the shear modulus for the
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viscoelastic lithosphere is homogeneous (i.e. µ1 = µ2) and demonstrate in a supplementary

IPython notebook that our conclusions still hold when µ1 6= µ2. The surface displacements

in the time domain are

uv(x, t) = b(t)
1

2
W (0) + b(t) ∗ L−1

[
∞∑
n=1

Γ̂nW (n)

]
, (3.9)

where we use ∗ to denote a convolution with respect to time. Evaluating the above inverse

Laplace transform using the method described in Appendix A, we find

uv(x, t) =b(t)
1

2
W (0)+

b(t) ∗
(
µ

2η2

W (1)− µ

2η1

W (1)

)
+

b(t) ∗
((

µ2t

4η2
2

− µ2t

4η1η2

)
(W (1)−W (2)) +

(
µ2t

4η1η2

− µ2t

4η2
1

)
(W (1) +W (2))

)
+

. . . . (3.10)

The first term in eq. (3.10) is the elastic response to slip on the fault. The remaining

terms describe the surface displacement due to viscoelastic relaxation. We refer to the

first of these remaining terms as the initial viscoelastic response, which describes surface

deformation resulting from viscoelastic creep during the period in which the stresses from

fault slip are unaltered by viscoelastic relaxation. The initial viscoelastic response is linear

with respect to the fluidity in each of the two layers.

If the time since the rupture is sufficiently small compared to the relaxation times of each

layer, τi = ηi/µ, (i.e. the third and following terms in eq. (3.10) are small) and the timescale

of slip described by b(t) is also short compared to the relaxation times in the half-space, then

we can truncate the series and approximate early surface deformation using only the elastic

response and the initial viscoelastic response,

uv(x, t) ≈ b(t)
1

2
W (0) +

∫ t

0

b(θ)

(
µ

2η2

W (1)− µ

2η1

W (1)

)
dθ. (3.11)

An approximation similar to eq. (3.11) was demonstrated by Segall (2010) for an elastic

layer over a Maxwell viscoelastic substrate.

Figure 3.1 shows the series solution from eq. (3.10) truncated after sufficiently many

terms along with the approximation given by eq. (3.11). In this comparison, we use H = 15

km, D = 10 km and a shear modulus of 32 GPa throughout the lithosphere. The upper layer

is given a viscosity of 1020 Pa s (τ ≈ 100 years) and the substrate is given a viscosity of 1019
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Figure 3.1: Surface displacements predicted by eq. (3.10) truncated after ten terms (green) and the ap-
proximation given by eq. (3.11) (dotted black). Times are normalized by the lowest relaxation time in the
lithosphere, τ2, and distances are normalized by the fault locking depth, D. Displacements are shown as a
function of distance from the fault at times t/τ2 = 0.0, 0.5, 1.0 and 1.5. The inset figure shows displacement
time series at locations x/D = 1, 2, 4 and 8.

Pa s (τ ≈ 10 years). We let b(t) describe a unit of instantaneous slip at t = 0. In the series

solution, the rate of surface deformation decreases over time as stresses in the half-space

decay through viscoelastic relaxation. Because b(t) is a constant after t = 0, the initial

viscoelastic response in eq. (3.11) describes a constant rate of surface deformation and so eq.

(3.11) is a good approximation for as long as the rate of deformation predicted by eq. (3.10)

is also approximately constant. We find the that the approximation is indistinguishable

from the series solution for at least as long as half the lowest of the two relaxation times,

regardless of our choice of model parameters. The approximation breaks down faster than

what is show in Figure 3.1 when the upper layer is more fluid than the substrate or when

we decrease the depth of the material interface (i.e. when the more fluid material is closer

to the fault). We also note that the approximation has more longevity for locations further

away from the fault, where it starts to break down at about the minimum relaxation time

in the lithosphere.
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Three layered and continuous depth dependent models

We follow the same procedure as above to find the surface deformation resulting from slip on

a strike-slip fault in a three layered viscoelastic half-space. Starting from the layered elastic

solution from Chinnery and Jovanovich (1972), we evaluate the solution for the viscoelastic

problem in our supplementary IPython notebook. We find the initial viscoelastic response

to a unit of slip to be

∂

∂t
u(x, t)

∣∣
t=0

=
µ

2η3

W (1, 1) +
µ

2η2

(W (0, 1)−W (1, 1))− µ

2η1

W (0, 1), (3.12)

where

W (n,m) =
1

π

(
tan−1

(
2nH2 + 2mH1 +D

x

)
− tan−1

(
2nH2 + 2mH1 −D

x

))
, (3.13)

η1, η2, and η3 are the viscosities of the top, middle, and bottom layers, respectively, and

H1 and H2 are the thicknesses of the top and middle layers, respectively. We see that eq.

(3.12) is once again linear with respect to the fluidity in each of the three layers. We can

approximate early postseismic deformation resulting from slip described by b(t) as

u(x, t) ≈ b(t)
1

2
W (0, 0) +

∫ t

0

b(θ)

(
µ

2η3

W (1, 1) +
µ

2η2

(W (0, 1)−W (1, 1))− µ

2η1

W (0, 1)

)
dθ.

(3.14)

We can see that eq. (3.14) reduces to eq. (3.11) when η3 = η2.

At this point we posit that a similar approximation can be made for an arbitrarily layered

lithosphere. In Appendix B we use eq. (3.12) to find an initial viscoelastic response kernel.

We then integrate that kernel over the depth of the lithosphere to find the initial viscoelastic

response for an arbitrary depth dependent viscosity structure. If the lithosphere is elastic

above the fault depth, D, and described by η(z) below D then early postseismic deformation

can be approximated as

u(x, t) ≈ b(t)

π
tan−1(

D

x
) +

∫ t

o

∫ ∞
D

µb(θ)

2πη(z)

(
2x

x2 + (D + 2z)2 −
2x

x2 + (2z −D)2

)
dzdθ.

(3.15)

Although the above equation is capable of describing surface deformation for an arbitrary

depth dependent viscosity structure, it falls short of being useful as the forward solution in an

inverse problem aimed at estimating lithospheric viscosity. This shortcoming is because the

above equation makes the nonphysical assumption that the fault is infinitely long, in addition

to the restriction of only being applicable to a vertical strike-slip fault. The assumption of
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infinite length would introduce first order errors, which would likely wash out the second

order effect of viscosity. However, eq. (3.15) is useful for making estimates of the depth

sensitivity of postseismic deformation.

3.3.2 Three-dimensional earthquake models

Motivated by our above results, we make the assertion that the initial viscoelastic response

to an instantaneous unit dislocation in a three-dimensional Maxwell viscoelastic medium,

which has been arbitrarily discretized into N regions, will have the form

∂

∂t
~u(~x, t)

∣∣
t=0

=
N∑
j

1

ηj
Gj(~x). (3.16)

We denote ~u and ~x as vectors to emphasize that eq. (3.16) is generalized to three-dimensional

problems. We use Gj(~x) to represent the initial rate of surface deformation at position ~x

resulting from viscoelastic creep in region j with unit fluidity, where fluidity is zero (i.e.

elastic) in all other regions. In this sense, Gj(~x) can be thought of as a Green’s function for

the initial viscoelastic response, and thus we refer to Gj(~x) as the initial viscoelastic Green’s

functions. We verify eq. (3.16) numerically in Section 3.5.2.

Using eq. (3.16), we can approximate early surface deformation in a form that is consis-

tent with eqs. (3.11) and (3.14):

~u(~x, t) ≈ b(t)F (~x) +
N∑
j

∫ t

0

b(θ)

ηj
Gj(~x)dθ, (3.17)

where F (~x) is the elastic Green’s function, which describes the elastic deformation resulting

from a dislocation. We further generalize the approximation of surface deformation in eq.

(3.17) to allow for an arbitrary spatial distribution of slip by using linear superposition. If

the elastic deformation in a viscoelastic lithosphere can be described in terms of M elastic

dislocation sources, then early surface deformation resulting from both elastic dislocations

and viscous creep can be approximated as

~u(~x, t) ≈
M∑
i

bi(t)Fi(~x) +
M∑
i

N∑
j

∫ t

0

bi(θ)

ηj
Gij(~x)dθ. (3.18)

The initial viscoelastic Green’s function is dependent upon both the region it represents as

well as the dislocation source inducing the viscoelastic creep in that region, hence the two in-

dices on Gij(~x). It is worth restating that the approximation given above does not account for
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the viscoelastic coupling between the regions, since in eq. (3.18) each region’s contribution to

surface deformation is independent of the viscosity elsewhere. This approximation is there-

fore appropriate for as long as the regions do not significantly transfer stresses between each

other through viscoelastic deformation. Alternatively, since our initial viscoelastic Green’s

functions do not have time dependence, one could view eq. (3.18) as being appropriate up

until surface velocities resulting from viscoelastic creep have decayed appreciably.

3.4 Inversion method

The approximation of postseismic deformation given by eq. (3.18) can be cast as an inverse

problem aimed at finding the distribution of slip on a fault and an arbitrarily complicated

lithosphere viscosity structure from postseismic deformation. We assume that the slip history

in any one direction on each fault patch, bi(t), can be expressed as P linear terms such that

bi(t) =
P∑
k

αikAk(t), (3.19)

where Ak(t) can be any parameterized slip function. For this paper Ak(t) consists of either

unit step functions describing coseismic slip on a fault patch, or ramp functions, which

increase from 0 to 1 over some time interval, that are intended to represent afterslip. The

coefficient αik then represents either the amount of coseismic slip or the cumulative slip over

a time interval. The approximation given by eq. (3.18) now becomes

~u(~x, t) ≈
M∑
i

P∑
k

αikFi(~x)Ak(t) +
M∑
i

N∑
j

P∑
k

∫ t

0

αik
ηj
Gij(~x)Ak(θ)dθ. (3.20)

If we assume a fault geometry and the elastic properties of the lithosphere, Fi(~x) can be

computed with finite element software or with an analytic solution, for instance using Okada

(1992) or Meade (2007). Likewise, Gij(~x) can be computed using finite element software. If

the assumed geometry of the viscoelastic regions is sufficiently simple, Gij(~x) may also be

computed with semi-analytic techniques (e.g., Pollitz , 1997; Fukahata and Matsu’ura, 2006;

Barbot and Fialko, 2010).

We estimate the unknown slip parameters, αik, and unknown viscosities in each region

of the lithosphere, ηj, from observations of surface deformation in a least squares sense.

Let uobs be a vector of observed coseismic and postseismic surface displacements at various

locations and points in time. Let m be a vector of all the unknown parameters αik and ηj,

and let u(m) be a vector of postseismic surface displacements predicted by eq. (3.20). We
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seek to solve

min
∣∣∣∣f(m)

∣∣∣∣2
2

(3.21)

subject to the constraint that

m ≥ 0, (3.22)

where

f(m) =

 W (u(m)− uobs)

λsLsm

λvLvm

 . (3.23)

In the above equation, W is a diagonal matrix containing the reciprocal of the data uncer-

tainties (i.e. WTW = C−1
d where Cd is the data covariance matrix), and Ls and Lv are

regularization matrices.

We impose a non-negativity constraint on m which ensures that inferred slip is in one

predominant direction and that viscosities are positive. Specifically, the rake of the inferred

slip on each fault patch is constrained to be within a 90◦ window defined by the rakes of

chosen orthogonal basis slip directions. For instance, the basis slip directions could be chosen

such that only slip rakes within 45◦ of pure strike-slip, normal, or thrust are permissible.

Because this inverse problem inevitably has non-unique solutions for m, we put addi-

tional constraints on the inferred slip and inferred viscosity with the matrices Ls and Lv,

respectively. In our following synthetic test, we constrain the solution by minimizing the

Laplacian of the spatial distribution of fault slip and lithospheric viscosity by letting Ls and

Lv be umbrella operators (Desbrun et al., 1999). The parameters λv and λs in eq. (23)

control how much we enforce the smoothness constraint. In our synthetic test, we choose

these parameters using L-curves, which describe the trade off between the model smoothness

and data misfit. We first set λv = 0 and then use an L-curve to pick λs. We then fix λs

at our chosen value and use another L-curve to pick λv. We explored using cross-validation

to choose our model parameters, but we found that the optimal pair of penalty parameters

picked through cross-validation tended to significantly degrade our fit to near-field sites.

We find m that satisfies the above conditions using the Gauss-Newton method (e.g.,

Aster et al., 2011). The best fit model parameters are found by making an initial guess for

the solution and then iteratively solving

J(mk)mk+1 = J(mk)mk − f(mk) (3.24)

for mk+1, where J(mk) is the Jacobian of f(m) with respect to m evaluated at mk. We

impose the non-negativity constraint on m by solving eq. (3.24) with a non-negative least
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Figure 3.2: L-curves used to select the penalty parameters. Panel (a) shows the trade-off between slip
smoothness and data misfit while varying λs and keeping λv fixed at zero. Panel (b) shows the trade off
between smoothness of inferred viscosity and misfit while varying λv and keeping λs fixed at the value chosen
from Panel (a). Stars indicate our chosen penalty parameters.

squares algorithm (Lawson and Hanson, 1995). In a nonlinear least squares algorithm, com-

puting the Jacobian can often be the largest computational burden when an analytic solution

for the Jacobian is not available. By linearizing the viscoelastic response in early postseismic

deformation with respect to 1/ηj, we have made our forward problem, eq. (3.20), sufficiently

simple that evaluating its Jacobian for a given m only requires a few computationally in-

expensive matrix operations. Consequently, our nonlinear least squares algorithm converges

to a solution for m in a matter of seconds on a desktop computer. The main computational

burden is in computing Fi(x) and Gij(x) which only needs to be done once for a given fault

and lithosphere geometry.

3.5 Synthetic test

We demonstrate with two synthetic tests that our inverse method is capable of recovering

fault slip and an effective lithospheric viscosity from postseismic deformation. We use the

finite element software, PyLith (Aagaard et al., 2013), to compute the surface deformation

resulting from a specified amount of slip on a fault in a lithosphere with either Maxwell

or Burgers viscoelasticity. We invert this synthetic surface deformation using the method

described above to recover the imposed model parameters. The synthetic tests also serve to

demonstrate that eqs. (3.16) and (3.18) are indeed valid for three dimensional earthquake

models.

Our synthetic models consist of a 50 km long by 20 km wide strike-slip fault, striking to

the north and dipping 60◦ to the east (Figure 3.5). At t = 0 we impose 6.5 × 1019 N m of
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surface rupturing, right-lateral coseismic slip with a distribution shown in Figure 3.3. After

the coseismic slip, we impose 2 years of afterslip just below the coseismic rupture zone. The

spatial distribution of afterslip on the fault remains constant throughout the 2 years but

the rate of afterslip decreases by a factor of 2 every 0.5 years. The cumulative moment of

afterslip over the first year is about 1.6×1019 N m, while the cumulative moment of afterslip

over the second year is 4.0× 1018 N m. We do not impose any fault slip beyond t = 2 years.

We compute surface displacements at 50 randomly chosen observation points within a

400 km square centered about the fault (Figure 3.5), which is intended to roughly correspond

with the density of GPS station at a well instrumented plate boundary. Displacements are

computed at 0.05 year intervals up until t = 10 years. We add temporally correlated noise to

the computed displacements through time, consistent with what one would expect from GPS

observations. The standard deviation of northing and easting displacements is 1 mm, and

the standard deviation of the vertical displacements is 2.5 mm. We add temporal covariance

with an exponential noise model that has a characteristic timescale of 0.25 years, which is

intended to simulate seasonal processes that are typically present in GPS time series.

3.5.1 Green’s functions

We invert the synthetic surface displacements for fault slip on a 4 km by 4 km discretization

of the planar fault. We estimate a constant viscosity in 10 km thick horizontal layers from

the surface down to 70 km depth and for a lower substrate. We compute the elastic Green’s

functions, Fi(~x), and initial viscoelastic Green’s functions, Gij(~x), numerically using PyLith.

The elastic Green’s functions are the initial surface displacements resulting from 1 m of

imposed slip on fault patch i. For each fault patch, we use basis slip directions with rake

45◦ up-dip and 45◦ down-dip of pure right-lateral slip. These slip basis directions restrict all

inferred slip to have rakes within 45◦ of right-lateral. We find the initial viscoelastic Green’s

functions, Gij(~x), by computing the initial rate of surface deformation due to 1 m of slip on

fault patch i in a model that is elastic everywhere except in region j, which is assigned a unit

fluidity. In the interests of numerical stability we used 10−18 Pa−1 s−1 as our unit of fluidity.

We emphasize that the amount we perturb the fluidity in region j will have no influence on

our computation of Gij(x) because the initial rate of deformation computed with Pylith will

be proportional to Gij(x) times our fluidity perturbation.

We define the basis slip functions, Ak(t), as a Heaviside function centered at t = 0

and twenty ramp functions which describe 1 m of cumulative slip over the time intervals

t = (0, 0.5), (0.5, 1.0), . . . , and (9.5, 10.0) years. We note that the synthetic model does not

have any fault slip from t = 2 to 10 years and the postseismic deformation over that interval

is resulting purely from viscoelastic creep.
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3.5.2 Synthetic model with Maxwell viscoelasticity

The lithosphere in our first synthetic model is Maxwell viscoelastic with homogeneous Lamé

parameters λ = 32 GPa and µ = 32 GPa. The viscosity in the lithosphere decays from 1021

Pa s (τ ≈ 1, 000 years) at the surface to 1019 Pa s (τ ≈ 10 years) at 75 km depth (Figure

3.4). For the timescales of this synthetic test, the uppermost lithosphere is effectively elastic.

We use the penalty parameters chosen in Figure 3.2 and our recovered model of slip on the

fault is shown in Figure 3.3. We use 100 iterations of bootstrapping to assess how sensitive

our recovered model is to the imposed data noise. The standard deviation of coseismic slip

and cumulative afterslip over the indicated interval is shown in the right column of Figure

3.3. The spatial distribution and direction of inferred coseismic slip are a good match to the

synthetic coseismic slip. The distribution of afterslip was decently recovered but not as well

as the coseismic slip was recovered. Inferred afterslip over the first year is smoother than

the true slip due to the regularization, although there is a high concentration of slip on the

northern portion of the fault which is consistent with the synthetic model. We attribute the

better resolved northern portion of the fault to a proximal surface observation point. There

are a few artifacts in the distribution of inferred afterslip from t = 1 to 2 years which are not

present in the synthetic model, such as slip on the deepest portion of the fault. Our inability

to recover the details of the imposed afterslip as well as the coseismic slip could be because

the data noise is obscuring some of the postseismic signal (Figure 3.5b and 3.5c compared to

Figure 3.5a) and causing higher variability in inferred slip models. Nevertheless, the inferred

moment of both coseismic slip and afterslip, which is proportional to slip integrated over

the fault plane, is within 10% of the moment in the synthetic model. Although the spatial

distribution of inferred slip may be more difficult to recover, the slip moment seems to be

consistently recovered.

The inferred slip over the last time interval, t = 2 to 10 years, is also consistent with the

synthetic model. The moment of slip over this interval is 8.1×1017 N m, which is two orders

of magnitude smaller than the moment for the coseismic slip in the synthetic model and is

accounting for, at most, a few mm’s of surface displacement from t = 2 to 10 years, which

is on order of the data uncertainty. We can further dismiss inferred afterslip during this

period as being negligibly small because the magnitude of inferred slip is on order of the the

uncertainty inferred from bootstrapping (Figure 3.3). The majority of surface deformation

during this time interval (Figure 3.5d) is therefore being properly attributed to viscoelastic

relaxation in the inversion results.

The inferred viscosities in each of the eight layers are shown in Figure 3.4a. The recov-

ered viscosities correspond well with the synthetic model. The uncertainties of the recovered

viscosities are inferred using bootstrapping and we find that the strongest layers near the sur-
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Figure 3.3: Slip distribution imposed in both synthetic models (left), slip recovered for the synthetic model
with Maxwell viscoelasticity (middle), and uncertainty in the recovered slip magnitude (right). Colors
indicate magnitude of slip and arrows indicate direction of slip (arrows pointing right indicate left-lateral
and up is thrust). The panels showing afterslip display cumulative slip over the specified time interval. The
slip uncertainties are the standard deviation of inferred slip magnitude during the specified period, which
were derived from 100 iterations of bootstrapping.
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Figure 3.4: Synthetic and recovered lithospheric viscosities (left) and associated fluidities (right). Semi-
transparent lines are recovered models found through bootstrapping and indicate the degree of uncertainty
on the inferred viscosity structure.

face, despite being close to the earthquake source, have the highest uncertainties. However,

viscosities greater than 1020 Pa s are effectively elastic on the timescales of this synthetic

test and so a wide range of high viscosities for the upper layers would just as adequately

be able to describe the synthetic surface displacements. When looking at inferred values of

fluidity (Figure 3.4b), we see that the uncertainties are lowest at the surface and increase

with depth, as is perhaps more intuitive.

Viscoelastic relaxation immediately below the fault and afterslip on the fault would have

similar surface manifestations, and thus it is reasonable to explore the trade-off between these

processes. We use the collection of models obtained through bootstrapping and compute the

correlation coefficient between the estimates of cumulative afterslip moment over 10 years

and the inferred fluidity for select layers. Not surprisingly, the correlation coefficient is -0.16,

and -0.25 in the layer from 10 to 20 km depth and 20 to 30 km depth, respectively, which

means that higher estimates of fluidities in those layers tend to be compensated by lower

estimates of slip on the fault. Interestingly, there is a positive correlation of 0.38 between

cumulative afterslip moment and the fluidity in the uppermost layer containing the fault.

The positive correlation is because deformation resulting from viscoelastic relaxation in the

uppermost layer containing the fault tends to be in the opposite direction as deformation

resulting from fault slip. This means that a high fluidity in the uppermost layer will tend to

produce deformation that is balanced out by higher amounts of slip. It is conceivable that
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Figure 3.5: Synthetic surface displacements (black) and best fitting surface displacements using eq. (3.20)
(green). Vertical displacements are used in the inversion but are not shown here. Panel (a) shows coseismic
displacements and the remaining panels show the cumulative displacements over the indicated time intervals.
Ellipses indicate 1 standard deviation uncertainty in the synthetic data. Red dot indicates the position of
the time series shown in Figure 3.6 and Figure 3.9. The surface projection of the discretized synthetic fault
is depicted in red.
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Figure 3.6: Displacement time series for the position shown in Figure 3.5 (black), best fitting surface displace-
ments using the approximation from eq. (3.20) (green) and surface displacements computed with PyLith
using the inferred slip distribution and viscosity structure (red). Coseismic displacements at t = 0 are not
shown.

such a correlation could lead to unrealistic inferences of viscosity in the near surface and it

may be necessary to assume that viscous regions containing a fault are elastic. There is no

significant correlation between afterslip and fluidity in layers below 30 km depth.

Validation

The fact that our recovered fault slip and lithospheric viscosity are in good agreement with

the synthetic model suggests that the approximation given by eq. (3.20) is accurate over

the 10 years of synthetic data. We further assess the accuracy of eq. (3.20) by running a

forward model with PyLith where the imposed fault slip and lithospheric viscosity are those

estimated from the synthetic data. We then compare the displacements from the numerically

computed forward model with the displacements predicted by eq. (3.20). We refer to the

numerically computed displacements as ~utrue(~x, t) and the displacements predicted by the

approximation as ~u(~x, t) (Figure 3.6). We refer to the difference between ~utrue(~x, t) and

~u(~x, t) as the approximation error (Figure 3.7). At t = 10 years the approximation error is
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Figure 3.7: Approximation error at t = 10 years and t = 20 years. Circles with 1 mm radius are centered at
each station to compare the accuracy of ~u(~x, t) to the noise in the synthetic data.

on order of a few mm’s for each location, which is the magnitude of the data uncertainty.

Additionally, the approximation error is small compared to the cm’s of deformation resulting

from viscoelastic relaxation, indicating that eq. (3.20) is indeed a fair approximation up to

t = 10 years. At t = 20 years the approximation error is about one cm in magnitude for near

field sites, indicating that the approximation has broken down in the near field by this time,

while the error is still on order of a few mm’s for the far field sites. The faster divergence

for the near field sites is consistent with the comparison we made between the approximate

and true displacements for a two-dimensional, two layered earthquake model in Section 3.3.1

(Figure 3.1).

The accuracy of eq. (3.20) is also demonstrated in Figure 3.6, which shows ~u(~x, t) and

~utrue(~x, t) at a sample site near the fault. The numerical solution asymptotically approaches

the rate of deformation predicted by eq. (3.20) as time goes to zero, demonstrating that eq.

(3.16) accurately describes the initial viscoelastic response. Additionally, the magnitude of

the difference between ~u(~x, t) and ~utrue(~x, t) is smaller than the uncertainty of our synthetic

data throughout the time series, indicating that eq. (3.20) is appropriate for this synthetic

test. For this site and other near field sites, the approximation starts to break down at about

t = 10 years. The lowest relaxation time in our synthetic lithosphere is also about 10 years

and so the duration over which eq. (3.20) is accurate is longer than what we found in our
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analysis for a two-dimensional, two layered earthquake model in Section 3.3.1.

3.5.3 Synthetic model with Burgers viscoelasticity

In the above synthetic example, we conveniently picked the length of our displacement time

series to correspond with the shortest relaxation time in the lithosphere. If the length of

the time series is significantly shorter than the relaxation time of the lithosphere, then eq.

(3.20) would be an appropriate approximation and fault slip would be accurately recovered,

although there would not be a significant amount of deformation resulting from viscoelastic

relaxation and so inferences of viscosity would have high uncertainty. When the length of

the time series is significantly longer than the shortest relaxation time of the lithosphere

then the approximation would not be accurate and we would see a notable misfit in our

best fitting prediction of the data. Here we use another synthetic test to demonstrate an

iterative approach to finding the optimal time series duration. We also use this synthetic

test to demonstrate how fluidities inferred using our inverse method can be used to constrain

the viscous properties of a non-Maxwell viscoelastic lithosphere.

We consider a synthetic model with the same fault geometry and prescribed slip as the

synthetic model described in Section 3.5.2, but the lithosphere now has a Burgers rheology.

A Burgers rheology can be modeled schematically as a Maxwell spring-dashpot system con-

nected in series with a Kelvin spring-dashpot system. There are five rheologic parameters

needed to describe a Burgers rheology, the first Lamé parameter, λ, shear moduli of the

Maxwell and Kelvin elements, µm and µk, and the viscosities of the Maxwell and Kelvin

elements, ηm and ηk. In this synthetic test, we set µm = λ = 32 GPa and ηm equal to

the viscosity structure from the synthetic model in Section 3.5.2. We also set µk = µm and

ηk = 0.1ηm so the lowest kelvin relaxation time (ηk/µk) in our synthetic model is 1 year

(Figure 3.8).

We use the same Fi(~x), Gij(~x), and Ak(t), described in Section 3.5.1 and estimate an

effective Maxwell viscosity by using 0.5, 2.0 and 5.0 years of synthetic data. Our inverse

method allows us to estimate a single value of viscosity for each discretized region of the

lithosphere and so we are unable to recover both ηk and ηm. Instead, our method allows

us to estimate an effective viscosity for a Burgers viscoelastic lithosphere during the early

postseismic period. We demonstrate in our supplementary IPython notebook that when

assuming µm is equal to the shear modulus used to construct Fi(~x) and Gij(~x) then the

effective fluidity inferred using our method, 1/η, is equivalent to

1

η
=

(
1

ηk
+

1

ηm

)
. (3.25)
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The recovered viscosities for each time series duration are shown in Figure 3.8 and we

show the moment of inferred afterslip as a function of time in Figure 3.9. The synthetic and

predicted displacement time series at the observation point indicated in Figure 3.5 are shown

in Figure 3.10. We are able to accurately predict the synthetic displacements (red line in

Figure 3.10) and recover the fluidities expected following eq. (3.25) when using a 0.5 year

time series. The relatively few number of observations constraining the fluidity inferences

leads to large uncertainties as indicated by the distribution of bootstrapped models. When

we use 2 years of displacements, exceeding the minimum Kelvin relaxation time in the

synthetic model, the best fitting predicted displacements are still a good fit to the synthetic

data (green line), but it is difficult to discern whether some of the systematic misfit is due to

the inability of eq. (3.20) to describe the transient displacement or because of the temporal

correlation of our added noise. The inferences of fluidity when using 2 years of displacement

are consistently off by a factor of 0.5. The underestimation of fluidity is then compensated

by a slight overestimation of cumulative fault slip (Figure 3.9). Although the estimated

fluidities are incorrect, the relative strength of the different layers is well recovered. When

using 5 years of synthetic deformation, the depth dependence of fluidity no longer resembles

the true depth dependence and the inferred moment of afterslip is appreciably higher than

what was imposed in the synthetic model. Even though additional afterslip is describing

some of the transient viscoelastic deformation, there is still a systematic misfit in the best

fitting prediction to the 5 year time series (Figure 3.10) indicating that eq. (3.20) is not

valid for that duration of time. The length of the time series used for our inverse method

should be just long enough so that the best fitting predictions to the data do not have any

systematic misfit. It is difficult to distinguish by the fit to the data whether the model

recovered using a 0.5 year time series or a 2 year time series is a better estimate of the true

model, although one can easily run a forward calculation for each of the recovered models

to see how well they predict the later deformation.

3.6 Discussion

A fundamental assumption in our method for estimating slip and viscosity from postseismic

deformation is that the timescale of relaxation in the weakest part of the lithosphere is at least

as long as the timescales over which postseismic deformation is observed. This assumption

allows us to approximate the surface expression of viscous creep as a linear system with

respect to lithospheric fluidity, which greatly facilitates and expedites the inverse problem.

Since the relaxation times in a given region are generally not well known a priori, one must

use an iterative approach as described in Section 3.5.3 to determine the appropriate length
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of the time series used in the inversion.

We can look at previous studies to gauge the duration over which our approximation

would be accurate. Surface deformation following large (≥ Mw = 7) earthquakes often

is characterized by transient and rapid postseismic deformation in the first year after and

earthquake followed by steady deformation in later years (e.g., Savage and Svarc, 1997;

Savage et al., 2005a; Ergintav et al., 2009). Several studies have attributed rapid early

transient deformation following an earthquake to afterslip, while describing the later steady

deformation with viscous relaxation in a Maxwell viscoelastic lower crust or upper mantle

(e.g., Perfettini et al., 2005; Johnson et al., 2009; Hearn et al., 2009; Freed et al., 2006b;

Rollins et al., 2015). These studies have found that lithospheric relaxation times no shorter

than years or decades are needed to describe postseismic deformation. Indeed, Perfettini

et al. (2005) describes the trend in two years of postseismic deformation following the 2001

Mw = 8.4 Peru earthquake by assuming that the lithospheric viscosity was sufficiently high

that the rate of deformation from viscoelastic creep could be considered constant, which is

the assumption that we make in formulating eq. (3.18). If transient postseismic deformation
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can be attributed to fault slip followed by steady viscoelastic creep, then eq. (3.18) should

be able to describe displacements on the timescale of years or decades after an earthquake.

Several studies have used rheologies containing a transient phase of deformation to ex-

plain the early postseismic deformation. For example, Pollitz (2003, 2005) invoked a Burgers

rheology upper mantle to explain surface displacements following the 2002 Mw = 7.9 Denali

earthquake and the 1999 Mw = 7.1 Hector Mine earthquake. In both cases the best fit-

ting transient relaxation time was on the order of a month and the best fitting steady-state

relaxation time was on the order of years. Postseismic deformation following the Denali

earthquake was also successfully modeled by Freed et al. (2006a) with a power-law rheol-

ogy in the upper mantle, consistent with laboratory studies (e.g., Kirby and Kronenberg ,

1987). The power-law rheology was able to reproduce the observed transient surface defor-

mation because the high stresses in the earthquake decreased the effective viscosity of the

upper mantle to ∼ 1017 Pa s resulting in fast surface deformation. As stresses from the

earthquake relaxed, the effective viscosity increased and the predicted surface deformation

became steadier. Based on the success of Pollitz (2003, 2005) and Freed et al. (2006a),

one may dismiss our method as being unrealistic because we assume that the lithosphere is

Maxwell viscoelastic. However, our method does not necessarily preclude the possibility of

a Burgers rheology, as demonstrated in Section 3.5.3, or a stress-nonlinear viscosity. As long

as stresses in the lithosphere remain roughly equal to the the stresses transferred elastically

through fault slip, then a viscosity structure inferred using our method could be interpreted

as the effective viscosity in a transient viscoelastic or power-law rheology. One could also

use eq. (3.25) to constrain the rheologic properties for a Burgers rheology. If the commonly

observed early transient postseismic deformation truly is the result of viscous relaxation in

the lithosphere rather than afterslip, then the results from Pollitz (2003, 2005) and Freed

et al. (2006a) suggest that the time interval over which eq. (3.18) is appropriate is on order

of a month after an earthquake. In such case, our method can be used to get an initial

estimate of lithospheric viscosity, while unused portion of the displacement time series could

be incorporated in a gradient based nonlinear inverse method where the forward problem is

computed numerically rather than with eq. (3.18).

Postseismic transient deformation could also be the result of creep in a weak ductile shear

zone which is embedded in a stronger viscoelastic lithosphere (e.g., Hetland and Zhang , 2014).

Sufficiently localized creep in a shear zone can be modeled as slip on a down-dip extension

of the ruptured fault (e.g., Hearn et al., 2002; Kenner and Segall , 2003; Johnson and Segall ,

2004) because the two processes are kinematically indistinguishable. Likewise, Freed et al.

(2006a) noted that deep fault slip could serve as a proxy for distributed viscous relaxation

in a weak lower crust when only considering horizontal displacements. The applicability
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of our method should therefore be unaffected by localized viscous deformation with the

understanding that inferences of fault slip could be absorbing that deformation.

3.7 Conclusion

We present a method to invert coseismic and postseismic deformation to simultaneously

estimate a time dependent distribution of fault slip and an arbitrarily discretized viscosity

structure of the lithosphere. We take advantage of an approximation for early postseismic

deformation resulting from fault slip and viscoelastic relaxation. This approximation is

computationally efficient which allows us to rapidly search a high dimensional model space

and make higher resolution estimates of effective lithospheric viscosity than what can feasibly

be done with the commonly used grid search methods. Our method is applicable for as long as

this approximation is appropriate, that is, for as long as stresses resulting from coseismic slip

and afterslip have not significantly decayed due to viscoelastic relaxation. Based on inferences

of lithospheric viscosity from other studies, we estimate that our method could be used for

postseismic deformation ranging from months to years after an earthquake. Despite our

methods application to a limited portion of the postseismic period, we demonstrate that our

method is capable of robustly recovering the mechanisms driving postseismic deformation.

Appendix 2A: Inverse Laplace transform through series expansion

Let f(t) be analytic at t = 0 and let there be a real valued M , and C such that

∣∣f (n)(t)
∣∣ < CeMt ∀t ≥ 0 and ∀n ∈ {0, 1, 2, . . . }, (3.26)

where f (n)(t) denotes the nth derivative of f(t). We define the Laplace transform of f(t) as

L[f(t)] := f̂(s) :=

∫ ∞
0

f(t)e−stdt (3.27)

and we restrict our attention to s ∈ R. The constraints on f (n)(t) from eq. (3.26) ensure

that

lim
s→∞
L[f (n)(t)] = 0. (3.28)

It can be shown using integration by parts that

L[f (n)(t)] = snf̂(s)−
n∑

m=1

sm−1f (n−m)(0) ∀s > M. (3.29)
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Substituting eq. (3.29) into eq. (3.28) and then rearranging the terms gives us a recursive

formula for f (n)(0) in terms of f̂(s):

f (n)(0) = lim
s→∞

sn+1f̂(s)−
n∑

m=1

smf (n−m)(0), (3.30)

where the base case, n = 0, is the initial value theorem:

f(0) = lim
s→∞

sf̂(s). (3.31)

Since we request f(t) to be analytic at t = 0, we can construct a Taylor series expansion of

f(t) such that

f(t) =
∞∑
n=0

f (n)(0)

n!
tn (3.32)

for all values of t within some neighborhood of t = 0. We find the inverse Laplace transform

of f̂(s) by combining eq. (3.32) with eqs. (3.30) and (3.31) so that f(t) is expressed in terms

of f̂(s).

Appendix 2B: Postseismic approximation for a two-dimensional

earthquake model with a depth dependent viscosity

We seek to find an approximation for early postseismic deformation in a two-dimensional,

strike-slip earthquake model with an arbitrary depth-dependent viscosity below the fault

locking depth, D. We first find the initial rate of surface deformation following a unit of

slip in a lithosphere that is elastic except for a viscoelastic layer which is at depth z and

with thickness ∆z. This is found by making the substitutions H1 → z, H2 → ∆z, η1 →∞,

η3 →∞, and η2 → η in eq. (3.12), which gives us

∂

∂t
u1(x, t)

∣∣
t=0

=
1

η
(W (z + ∆z)−W (z)), (3.33)

where

W (z) =
µ

2π

(
tan−1

(
2z −D
x

)
− tan−1

(
2z +D

x

))
. (3.34)

From eq. (3.16) we know that the initial rate of surface deformation for a lithosphere

composed of N discrete layers, each with viscosity ηi, at depth zi, and having thickness ∆z,
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is then
∂

∂t
uN(x, t)

∣∣
t=0

=
N∑
i

1

ηi
(W (zi + ∆z)−W (zi)). (3.35)

The initial rate of surface deformation for a viscosity structure given by η(z) is found by

taking the limit as ∆z → 0 and N →∞:

∂

∂t
u(x, t)

∣∣
t=0

=

∫ ∞
D

1

η(z)

∂

∂z
W (z)dz (3.36)

=

∫ ∞
D

µ

2πη(z)

(
2x

x2 + (D + 2z)2 −
2x

x2 + (2z −D)2

)
dz. (3.37)

Finally, we add the elastic component of deformation and integrate eq. (3.36) with the fault

slip history to obtain an approximation for early postseismic deformation:

u(x, t) ≈ b(t)

π
tan−1(

D

x
) +

∫ t

o

∫ ∞
D

µb(θ)

2πη(z)

(
2x

x2 + (D + 2z)2 −
2x

x2 + (2z −D)2

)
dzdθ.

(3.38)
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CHAPTER 4

Rheologic constraints on the upper mantle from five years of

postseismic deformation following the El Mayor-Cucapah

earthquake∗

4.1 Abstract

We analyze five years of Southern California GPS data following the Mw=7.2 El Mayor-

Cucapah earthquake. We observed transient postseismic deformation which persists for

three years at epicentral distances greater than ∼200 km. In the near-field, rapid postseis-

mic transience decays to a sustained rate which exceeds its preseismic trend. We attempt to

determine the mechanisms driving this deformation, where we consider afterslip at seismo-

genic depths and viscoelastic relaxation in the lower crust and upper mantle as candidate

mechanisms. We find that early, rapid, near-field deformation can be explained with afterslip

on the fault that ruptured coseismically. The later, sustained, near-field deformation can

be explained with viscoelastic relaxation in the lower crust with a steady-state viscosity of

∼1019 Pa s and possibly continued afterslip. The postseismic deformation in the far-field is

best explained with a transient viscosity of ∼1018 Pa s in the upper mantle. We argue that

a transient rheology in the mantle is preferable over a Maxwell rheology because it better

predicts the decay in postseismic deformation, and also because it does not conflict with

the generally higher, steady-state viscosities inferred from studies of geophysical processes

occurring over longer time scales.

4.2 Introduction

Ground deformation in the years following a large (Mw&7) earthquake can be used to gain

insight into the mechanical behavior of the crust and upper mantle. The interpretations of

∗This chapter has been published as: Hines, T. T., and Hetland, E. A. (2016). Rheologic constraints on
the upper mantle from five years of postseismic deformation following the El Mayor-Cucapah earthquake.
Journal of Geophysical Research: Solid Earth, 121, doi:10.1002/2016JB013114.
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postseismic deformation are not always conclusive because multiple postseismic deformation

mechanisms, such as afterslip or viscoelastic relaxation in the lower crust and upper mantle,

can have qualitatively similar surface expressions (e.g., Savage, 1990). This non-uniqueness

complication can potentially be remedied if the postseismic deformation occurs in an area

that is sufficiently well instrumented with GPS stations (Hearn, 2003). Owing to the dense

geodetic network deployed throughout the 2000s as part of the Plate Boundary Observa-

tory, the postseismic deformation following the April 4, 2010, Mw=7.2 El Mayor-Cucapah

earthquake in Baja California was observed at more GPS stations than any other earthquake

in California to date (see Hauksson et al. (2011) and Fletcher et al. (2014) for a detailed

description of this earthquake and its seismotectonic context). With such a large collection

of data, we attempt to discern the mechanisms driving the postseismic deformation. Pre-

vious studies which have modeled postseismic deformation following the El Mayor-Cucapah

earthquake include Pollitz et al. (2012), Gonzalez-Ortega et al. (2014), Spinler et al. (2015),

and Rollins et al. (2015). Of these studies, Gonzalez-Ortega et al. (2014) and Rollins et al.

(2015) have attempted to describe the postseismic deformation with afterslip in an elastic

half-space. Gonzalez-Ortega et al. (2014) described five months of postseismic deformation,

observed by InSAR and GPS stations within ∼50 km of the rupture, with afterslip and

contraction on the coseismically ruptured fault. Gonzalez-Ortega et al. (2014) noted that

their preferred model underestimated the GPS displacements for stations & 25 km from

the rupture and suggested that it could be the result of unmodeled viscoelastic relaxation.

Using only continuous GPS stations, which are mostly north of the rupture zone, Rollins

et al. (2015) found that three years of postseismic deformation can be adequately explained

by afterslip, albeit with an implausibly large amount of slip inferred on the least constrained,

southern-most fault segment. Here, we suggest the afterslip inferred by Rollins et al. (2015)

may have been acting as a proxy for distributed relaxation in the upper mantle.

Pollitz et al. (2012), Rollins et al. (2015) and Spinler et al. (2015) explored viscoelastic

relaxation in the lower crust and upper mantle as a potential postseismic deformation mech-

anism. The rheology of the crust and mantle is largely unknown and so modeling postseismic

deformation with viscoelastic relaxation requires one to assume a rheologic model and then

find the best fitting rheologic parameters. The inference of these rheologic parameters is a

computationally expensive non-linear inverse problem which is typically approached with a

forward modeling grid search method. Consequently, a simplified structure for the Earth

must be assumed in order to minimize the number of rheologic parameters that need to be

estimated. For example, it is commonly assumed that the lower crust and upper mantle

are homogeneous, Maxwell viscoelastic layers, which may be too simplistic for postseismic

studies (Riva and Govers , 2009; Hines and Hetland , 2013). To further reduce the dimensions
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of the model space, it is also necessary to make simplifying assumptions about the behavior

of afterslip. For example, one can assume a frictional model for afterslip and parametrize

afterslip in terms of the unknown rheologic properties of the fault (e.g., Johnson et al., 2009;

Johnson and Segall , 2004). One can also assume that afterslip does not persist for more than

a few months and then model the later postseismic deformation assuming it to be the result

of only viscoelastic relaxation (e.g., Pollitz et al., 2012; Spinler et al., 2015). However, after-

slip in similar tectonic settings has been observed to persist for decades following earthquakes

(Çakir et al., 2012; Cetin et al., 2014). Indeed, the preferred viscoelastic model from Pollitz

et al. (2012) significantly underestimates deformation in the Imperial Valley, which could be

indicative of unmodeled continued afterslip. Neglecting to allow for sustained afterslip as a

postseismic mechanism could then lead to biased inferences of viscosities.

In this study, we perform a kinematic inversion for fault slip, allowing it to persist

throughout the postseismic period, while simultaneously estimating the viscosity of the lower

crust and upper mantle. We create an initial model of the fault slip and effective viscosity

necessary to describe early postseismic deformation using the method described in Hines

and Hetland (2015). This method uses a first-order approximation of surface deformation

resulting from viscoelastic relaxation which is only applicable to the early postseismic pe-

riod. In this case, our initial model describes the first 0.8 years of postseismic deformation

following the El Mayor-Cucapah earthquake. We then use the inferred effective viscosity

structure from the initial model to create a suite of postseismic models which we test against

the five years of postseismic data available to date. Of the suite of models tested, we find

that postseismic deformation following the El Mayor-Cucapah earthquake can be explained

with a combination of afterslip on a fault segment running through the Sierra Cucapah and

viscoelastic relaxation in a Zener rheology upper mantle with a transient viscosity on the

order of 1018 Pa s.

4.3 Data processing

We use continuous GPS position time series provided by University Navstar Consortium

(UNAVCO) for stations within a 400 km radius about the El Mayor-Cucapah epicenter.

We collectively describe the coseismic and postseismic displacements resulting from the El

Mayor-Cucapah earthquake as upost(t). We consider the GPS position time series, uobs(t),

to be the combination of upost(t), secular tectonic deformation, annual and semi-annual

oscillations, and coseismic offsets from significant earthquakes over the time span of this

study. The June 14, 2010, Mw=5.8 Ocotillo earthquake and the Brawley swarm, which

included an Mw=5.5 and an Mw=5.4 event on August 26, 2012 (Figure 4.1), are the only
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Figure 4.1: Map of the region considered in this study. The large focal mechanism is the GCMT solution
for the El Mayor-Cucapah earthquake, and the three small focal mechanisms are for the Ocotillo earthquake
and the two main shocks during the Brawley swarm. The black dots indicate the locations of GPS stations
used in this study. The fault geometry used in this study is shown in magenta where dashed lines indicate
buried edges of the fault segments. The green and red boxes demarcate the extent of the near-field and
far-field maps (Figures 4.4 and 4.5). Stations inside the blue sector, which highlights the area within 10◦ of
the El Mayor-Cucapah P-axis, are used in Figures 4.7 and 4.10.

earthquakes that produced noticeable displacements in any of the time series. We treat the

displacements resulting from the Brawley swarm as a single event because the daily solutions

provided by UNAVCO cannot resolve the separate events. Although the Ocotillo earthquake

had its own series of aftershocks (Hauksson et al., 2011), neither the Ocotillo earthquake nor

the Brawley swarm produced detectable postseismic deformation. We model displacements

resulting from these events with only a Heaviside function, H(t), describing the coseismic

offsets. We then model uobs(t) as

uobs(t) = upred(t) + ε, (4.1)

where

upred(t) =upost(t)H(t− temc) + c0 + c1t+

c2 sin(2πt) + c3 cos(2πt) + c4 sin(4πt) + c5 cos(4πt)+

c6H(t− toc) + c7H(t− tbs).

(4.2)
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In the above equations, temc, toc and tbs are the times of the El Mayor-Cucapah earthquake,

Ocotillo earthquake, and the Brawley swarm, respectively, c0 through c7 are unknown coeffi-

cients, and ε is the observation noise. We are using years as our unit of time which makes c2

through c5 the coefficients for annual and semi-annual oscillations. We only estimate jumps

associated with the Ocotillo earthquake and Brawley swarm for stations within 40 km of

their epicenters.

Stations which recorded displacements that clearly cannot be described by the aforemen-

tioned processes are not included in our analysis. This includes stations in the Los Angeles

basin, where anthropogenic deformation can be larger than the postseismic signal that we

are trying to estimate (Bawden et al., 2001; Argus et al., 2005). In order to ensure an accu-

rate estimation of the secular deformation, we only use stations that were installed at least

six months prior to El Mayor-Cucapah earthquake even though several GPS stations were

installed after the earthquake to get better coverage of the postseismic deformation field

(Spinler et al., 2015). It would be possible to subtract secular velocities derived from elastic

block models (e.g., Meade and Hager , 2005) from velocities recorded at the newly installed

stations to get an estimate of postseismic velocities at those stations. However, estimating

velocities from an already noisy displacement time series can introduce significant uncer-

tainties depending on exactly how the estimation is done. We therefore use coseismic and

postseismic displacements, rather than velocities, in our inverse method described in Section

4.4. This choice prevents us from using the newly installed stations for our analysis.

The October 16, 1999, Mw=7.1 Hector Mine earthquake, which occurred ∼270 km north

of the El Mayor-Cucapah epicenter, produced transient postseismic deformation which we

do not wish to model, either mechanically or through empirical line fitting. We thus restrict

our analysis to deformation observed six years after the Hector Mine earthquake, which

is when postseismic velocities at sites near the Hector Mine epicenter are approximately

constant (Savage and Svarc, 2009). When appraising our model fit in Section 4.4, we see

some systematic residuals in the vicinity of the Hector Mine epicenter, which may be the

result of errors in the assumption that the trend in Hector Mine postseismic deformation is

linear after six years.

Studies of postseismic deformation typically assume a parametric form for upost(t), such as

one with a logarithmic or exponential time dependence (e.g., Savage et al., 2005b). However,

by assuming a logarithmic or exponential form of upost(t) we run the risk of over fitting the

GPS time series and inferring a non-existent postseismic signal. We therefore do not assume

any parametric form for upost(t) and rather treat it as integrated Brownian motion, so that

u̇post(t) = σ2

∫ t

0

w(s)ds, (4.3)
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where w(t) is white noise and the variance of u̇post(t) increases linearly with time by a factor

of σ2. We use a Kalman filtering approach to estimate upost(t) and the unknown parameters

in eq. (4.2). In the context of Kalman filtering, our time varying state vector is

X(t) = [upost(t), u̇post(t), c0, ..., c7] (4.4)

and eq. (4.2) is the observation function which maps the state vector to the GPS observa-

tions. We initiate the Kalman filter by assuming a prior estimate of X(t) at the first time

epoch, denoted X1|0, which has a sufficiently large covariance, denoted Σ1|0, to effectively

make our prior uninformed. For each time epoch, ti, Bayesian linear regression is used to in-

corporate GPS derived estimates of displacement with our prior estimate of the state, Xi|i−1,

to form a posterior estimate of the state, Xi|i, which has covariance Σi|i. We then use the

posterior estimate of the state at time ti to form a prior estimate of the state at time ti+1

through the transition function

Xi+1|i = Fi+1Xi|i + δi+1, (4.5)

where

Fi+1 =

 1 (ti+1 − ti) 0

0 1 0

0 0 I

 (4.6)

and δi+1 is the process noise, which has zero mean and covariance described by

Qi+1 = σ2


(ti+1−ti)3

3
(ti+1−ti)2

2
0

(ti+1−ti)2

2
(ti+1 − ti) 0

0 0 0

 . (4.7)

The covariance of the new prior state, Xi+1|i, is then described by

Σi+1|i = Fi+1Σi|iF
T
i+1 + Qi+1. (4.8)

This process is repeated for each of the N time epochs. We then use Rauch-Tung-Striebel

smoothing (Rauch et al., 1965) to find Xi|N , which is an estimate of the state at time ti that

incorporates GPS observation for all N time epochs. Our final estimates of upost(t) are used

in subsequent analysis, while the remaining components of the state vector are considered

nuisance parameters. In the interests of computational tractability, we down sample our

smoothed time series from daily solutions down to weekly solutions.

The smoothness of upost(t) is controlled by the chosen value of σ, which describes how
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Figure 4.2: Left panels show GPS time series from UNAVCO (black) and the predicted displacement (blue)
from eq. (4.2) for a near-field station. Red lines indicate the times of the El Mayor-Cucapah and Ocotillo
earthquake. The right panels show estimated coseismic and postseismic displacements, upost, which are
extracted from the predicted displacements. The 68% confidence interval is shown in light blue.

rapidly we expect postseismic displacements to vary over time. Setting σ equal to zero will

effectively result in modeling upost(t) as a straight line which is insufficient to describe the

expected transient behavior in postseismic deformation. The other end member, where σ is

infinitely large, will result in upred(t) overfitting the data. While one can use a maximum

likelihood based approach for picking σ (e.g., Segall and Mathews , 1997), we instead take a

subjective approach and choose a value for σ that is just large enough to faithfully describe

the observed deformation at the most near-field station in our study, P496, which exhibits

the most rapid changes in velocity. This ensures that σ will be sufficiently large so that

our estimate of upost(t) does not smooth out potentially valuable postseismic signal at the

remaining stations. We find that using σ = 50 mm/yr1.5 adequately describe all but the

first week of postseismic deformation at station P496, which slightly increases our estimate

of coseismic displacements (Figure 4.2). We include an example of estimating upost(t) for

a far-field station, P619, which is about 359 km north of the El Mayor-Cucapah epicenter

(Figure 4.3). At station P619, along with all the other stations in the Mojave region, there

is a south-trending postseismic transience that persists for the first three years after the

El Mayor-Cucapah earthquake. Postseismic deformation that extends to these epicentral

distances has also been observed after the Hector Mine earthquake (Freed et al., 2007).

It is important to note that the shown uncertainties in upost(t) do not account for the

non-negligible epistemic uncertainty in eq. (4.2). For example, we assume a constant rate of

secular deformation, which appears to be an appropriate approximation for all but perhaps

the stations closest to the Hector Mine epicenter, as noted above. Also, our model for
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Figure 4.3: same as Figure 4.2 but for a far-field station.

seasonal deformation in eq. (4.2) assumes a constant amplitude over time, which means that

any yearly variability in the climatic conditions could introduce systematic residuals (Davis

et al., 2012). Indeed, it would be more appropriate to consider the seasonal amplitudes c2−c5

in eq. (4.2) as stochastic variables (Murray and Segall , 2005). By using constant seasonal

amplitudes, our estimate of upost(t) seems to describe some of the unmodeled annual and

semi-annual oscillations (e.g. Figure 4.3).

We show in Figures 4.4 and 4.5 the near and far-field coseismic displacements and the

postseismic displacements accumulated over the time intervals 0-1 years, 1-3 years, and 3-5

years. Stations at epicentral distances beyond ∼200 km have an elevated rate of deformation

for the first three years following the earthquake. This far-field deformation is trending

southward at a rate of a few millimeters per year along the direction of the El Mayor-Cucapah

P-axis. A similar eastward trend can be seen in the few far-field stations in Arizona, located

along the T-axis. After three years, the trend in far-field postseismic deformation is barely

perceptible. Most far-field stations display an initial subsidence for the first year after the El

Mayor-Cucapah earthquake followed by continued uplift. This trend in vertical deformation

can be observed in all three of the quadrants where postseismic data is available, which

means that the vertical deformation does not exhibit an anti-symmetric quadrant pattern,

as would be expected for postseismic processes. Although we use vertical deformation in

our analysis in Section 4.4, we do not put an emphasis on trying to describe the vertical

deformation because it likely does not have postseismic origins.

The near-field postseismic deformation is notably sustained when compared to the far-

field deformation. Namely, the station in this study which is closest to the El Mayor-Cucapah

epicenter, P496, has a steady postseismic trend of ∼1.5 cm/yr to the south after about one
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Figure 4.4: Near-field coseismic and cumulative postseismic displacements over the indicated time periods
(black) and predicted displacements for our preferred model from Section 4.4.3 (green). The black error
ellipses show the 68% confidence interval for the observed horizontal displacements. Observed vertical
displacements are shown as an interpolated field and predicted vertical displacements are shown within the
green circles. Note that the interpolant is not well constrained in Mexico where there is no data available.
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Figure 4.5: Same as Figure 4.4 but for far-field stations.
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depth (km) λ (GPa) µ (GPa) ηeff (1018 Pa s) µk/µ
0-5 24.0 24.0 - -
5-15 35.0 35.0 - -
15-30 42.0 42.0 44.3 0.0
30-60 61.0 61.0 5.91 0.375
60-90 61.0 61.0 1.99 0.375
90-120 61.0 61.0 1.31 0.375
120-150 61.0 61.0 1.10 0.375
150-∞ 61.0 61.0 1.07 0.375

Table 4.1: Assumed and estimated material properties. λ and µ are assumed known a priori and are based
on the values used for the coseismic model by Wei et al. (2011b). The values for ηeff are estimated in Section
4.4.2, and µk

µ are the optimal shear moduli ratios found in Section 4.4.3 for a Zener rheology upper mantle.

year. Vertical postseismic deformation in the near-field does display a quadrant pattern

which is consistent with the coseismic vertical deformation, suggesting that it is resulting

from postseismic processes. However, the vertical postseismic signal is only apparent for the

first year after the earthquake (Figure 4.4). As with the far-field deformation, there is a

general trend of uplift in the near-field after about one year.

4.4 Postseismic modeling

We seek to find the mechanisms driving five years of postseismic deformation following the El

Mayor-Cucapah earthquake and we consider afterslip and viscoelastic relaxation as candidate

mechanisms. Poroelastic rebound has also been used to model postseismic deformation (e.g.,

Jónsson et al., 2003); however, Gonzalez-Ortega et al. (2014) found that poroelastic rebound

is unlikely to be a significant contributor to postseismic deformation following the El Mayor-

Cucapah earthquake. Furthermore, we consider stations which are sufficiently far away from

the rupture that poroelastic rebound should be insignificant.

We estimate coseismic and time-dependent postseismic fault slip, both of which are as-

sumed to occur on a fault geometry modified from Wei et al. (2011b). Field studies (Fletcher

et al., 2014) and LIDAR observations (Oskin et al., 2012) have revealed a significantly more

complicated fault geometry than what was inferred by Wei et al. (2011b), especially within

the Sierra Cucapah. However, we find that a relatively simple coseismic fault geometry

based on (Wei et al., 2011b) is adequate because most of the stations used in this study are

sufficiently far from the El Mayor-Cucapah rupture that they are insensitive to the details

in the fault geometry found by Fletcher et al. (2014) and Oskin et al. (2012). The fault

geometry used in this study (Figure 4.1) consists of the two main fault segments inferred

by Wei et al. (2011b), where the northern segment runs through the Sierra Cucapah up to
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the US-Mexico border and the southern segment is the Indiviso fault which extends down to

the Gulf of California. Both segments extend from the surface to 15 km depth. We extend

the northern segment by 40 km to the northwest, which is motivated by the clustering of

aftershocks on the northern tip of the coseismic rupture zone (Hauksson et al., 2011; Kroll

et al., 2013). This extended fault segment was also found to be necessary by Rollins et al.

(2015) and Pollitz et al. (2012) in order to describe the postseismic deformation.

4.4.1 Elastic postseismic inversion

We consider a variety of rheologic models for the lower crust and upper mantle. The simplest

rheologic model is to consider them to be effectively elastic and isotropic. In such case,

the rheologic parameters consist of the reasonably well known Lamé parameters, λ and

µ, and we use the same values used by Wei et al. (2011b) throughout this paper (Table

4.1). The only unknown is the distribution of fault slip, which can be estimated from

postseismic deformation through linear least squares. Rollins et al. (2015) used a subset

of the GPS stations considered in this study and found that three years of postseismic

deformation following the El Mayor-Cucapah earthquake can be explained with afterslip on

the coseismic fault plane without requiring any viscoelastic relaxation. We also perform an

elastic slip inversion, but we use GPS stations within a larger radius about the El Mayor-

Cucapah epicenter (400 km instead of ∼200 km). Our forward problem describing predicted

postseismic deformation, upred, in terms of time dependent fault slip, s, is

upred(x, t) =

∫
F

s(ξ, t)g(x, ξ)dξ, (4.9)

where F denotes the fault and g(x, ξ) is the elastic Green’s function describing displacement

at surface position x resulting from slip at ξ on the fault. We estimate coseismic slip and the

rate of afterslip over the postseismic time intervals 0.0-0.125, 0.125-0.25, 0.25-0.5, 0.5-1.0,

1.0-2.0, 2.0-3.0, 3.0-4.0, and 4.0-5.0 years. Each fault segment is discretized into roughly 4

km by 4 km patches an we impose that the direction of slip and slip rate are within 45◦ of

right-lateral. We also add zeroth-order Tikhonov regularization so that our solution for s

satisfies

min
s

(∣∣∣∣∣∣∣∣upred(s)− upost

σpost

∣∣∣∣∣∣∣∣2
2

+ λs||s||22

)
, (4.10)

where σpost is the uncertainty on postseismic displacements and λs is a penalty parameter

which is chosen with a trade-off curve. We use Pylith (Aagaard et al., 2013) to compute the

Green’s functions for this inversion as well as for the remaining inversions in this paper.

Our coseismic slip and afterslip solutions are shown in Figure 4.6. Similar to Rollins et al.
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Figure 4.6: Coseismic slip and cumulative afterslip over the indicated time intervals when assuming the crust
and mantle are elastic. Color indicates the magnitude of slip and arrows indicate the motion of the hanging
wall.

(2015), we find that a large amount of afterslip on the Indiviso fault segment is required

to explain the observations. The potency of our inferred coseismic slip is 3.2 × 109 m3,

equivalent to a Mw=7.28 earthquake when assuming a shear modulus of 32 GPa. The

potency of our inferred cumulative five years of afterslip is 6.1 × 109 m3, equivalent to a

Mw=7.46 earthquake, which is unrealistically large if we consider afterslip to be driven by

coseismically induced stresses. Figure 4.7 shows the time series for the observed and predicted

postseismic displacements at stations along the El Mayor-Cucapah P-axis. We show the

radial component of displacements with respect to the El Mayor-Cucapah epicenter and we

also rescale the displacements so that the difference between the minimum and maximum

observed displacements are the same for each station. Our elastic slip model accurately

describes near-field postseismic deformation and systematically underestimates postseismic

deformation at epicentral distances &150 km. When the fault segments used in the inversion

are extended down to 30 km depth, rather than 15 km, the systematic far-field residuals are

smaller but remain apparent. Because an elastic model requires an unrealistic amount of

afterslip and is unable to predict far-field deformation, we move on to consider viscoelastic

models in the next section.
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Figure 4.7: Scaled radial component of postseismic displacements. Downward motion indicates that the
station is moving toward the El Mayor-Cucapah epicenter. Displacement time series are scaled so that the
minimum and maximum observed values lie on the grid lines. The observed postseismic displacements, upost

are shown in black with gray indicating the 68% confidence interval. The displacements predicted by the best
fitting elastic model are shown in red. The blue and green lines are the predicted postseismic displacements
for the models discussed in Section 4.4.3. The blue lines show the predicted displacements for the model
with a Maxwell viscoelastic lower crust and upper mantle. The green line shows the predicted displacements
for our preferred model, which has a Maxwell viscoelastic lower crust and a Zener viscoelastic upper mantle.
The effective viscosities are the same for both models and are shown in Figure 4.12.
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Figure 4.8: Schematic illustration of the rheologic models considered in this paper as well as their effective
viscosities.

4.4.2 Early postseismic inversion

For any linear viscoelastic rheology of the crust and mantle, postseismic displacements re-

sulting from time dependent fault slip can be described as

upred(x, t) =

∫
F

s(ξ, t)g(x, ξ)dξ +

∫ t

0

∫
F

s(ξ, τ)f(t− τ, x, ξ)dξdτ, (4.11)

where f(t, x, ξ) describes the time-dependent velocity at x resulting from viscoelastic relax-

ation of stresses induced by slip at ξ. f is a function of λ, µ, and any additional rheo-

logic parameters controlling the viscoelastic response, which are generally not well known.

Schematic representations of the viscoelastic rheologic models considered in this study are

shown in Figure 4.8. We discuss these rheologic models and their use in geophysical studies

in Section 4.5.

In order to greatly simplify the inverse problem, we use the method described in Hines and

Hetland (2015) to constrain an initial effective viscosity structure from the early postseismic

deformation. Our method uses the fact that coseismic stresses throughout the crust and

upper mantle depend on the instantaneous elastic parameters and are independent of the

viscoelastic parameters which we wish to estimate. Immediately following an earthquake,

each parcel will have a strain rate that is proportional to the coseismic stress and inversely

proportional to the parcel’s effective viscosity, ηeff . Using one-dimensional rheologic models,

we define the effective viscosity as

ηeff =
σ

ε̇

∣∣∣
t=0

, (4.12)

where σ is an applied stress at t = 0 and ε̇ is the resulting strain rate. Figure 4.8 shows how
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ηeff relates to the parameters for various linear viscoelastic rheologies. We can deduce that

the initial rate of surface deformation resulting from viscoelastic relaxation is a summation

of the surface deformation resulting from relaxation in each parcel, scaled by the reciprocal

of the parcel’s effective viscosity. That is to say

f(0, x, ξ) =

∫
L

h(x, ξ, ζ)

ηeff(ζ)
dζ, (4.13)

where L denotes the crust and mantle and h(x, ξ, ζ) describes the initial rate of deformation

resulting from viscoelastic relaxation at ζ induced by slip at ξ. We can combine eq. (4.13)

with eq. (4.11) to get a first-order approximation for early postseismic deformation,

upred(x, t) ≈
∫
F

s(ξ, t)g(x, ξ)dξ +

∫ t

0

∫
F

∫
L

s(τ, ξ)

ηeff(ζ)
h(x, ξ, ζ)dζdξdτ, (4.14)

which is valid for as long as the rate of deformation resulting from viscoelastic relaxation is

approximately constant. Although eq. (4.14) may only be valid for a short portion of the

postseismic period, its utility becomes apparent when noting that g and h are only functions

of the fault geometry and instantaneous elastic properties, λ and µ, and thus g and h can

be computed numerically as a preprocessing step. The forward problem in eq. (4.14) can

then be rapidly evaluated for any realization of s and ηeff . This is in contrast to evaluating

the full forward problem, eq. (4.11), numerically for each realization of s and the unknown

rheologic properties.

Details on how eq. (4.14) is used to estimate s and ηeff from postseismic deformation can

be found in Hines and Hetland (2015). A non-linear Kalman filter based inverse method

can also be used to estimate s and ηeff in a manner similar to Segall and Mathews (1997) or

McGuire and Segall (2003), in which we would not have to explicitly impose a time dependent

parametrization of s. We have thoroughly explored Kalman filter based approaches, but we

ultimately prefer the method described in Hines and Hetland (2015) because of its relative

simplicity. Moreover, we believe the piecewise continuous representation of slip with respect

to time is sufficiently general for the resolving power of these GPS data.

We estimate coseismic slip and afterslip with the same spatial and temporal discretization

as in Section 4.4.1. Simultaneously, we estimate ηeff within six vertically stratified layers

which have depths ranging from 15-30 km, 30-60 km, 60-90 km, 90-120 km, 120-150 km, and

from 150 km to the bottom of our numerical model domain at 800 km. We again restrict

fault slip to occur between 0 and 15 km depth, which is done in order to help eliminate

inevitable non-uniqueness in the inversion. It is well understood that fault slip at sufficiently

great depths can produce surface deformation that is indistinguishable from viscoelastic
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Figure 4.9: Displacements resulting from fault slip at lower crustal depths (a), and initial velocities resulting
from subsequent relaxation of a viscoelastic lower crust (b). The fault segment dips 75◦ to the north-east
and its surface projection is outlined in magenta. The highlighted area on the fault extends from 15 to 30
km depth and indicates where 1 meter of right-lateral slip was imposed. The elastic properties of the crust
and mantle are the same as in Table 4.1, and ηeff is 1018 Pa s in the lower crust. Vertical displacements are
interpolated between station locations.

relaxation, at least in two-dimensional earthquake models (Savage, 1990). Additionally, we

note that when simultaneously estimating both afterslip and viscosity in the lower crust, the

inverse problem becomes particularly ill-posed. This ill-posedness is illustrated in Figure 4.9,

which shows the displacements resulting from a meter of slip on a fault extending from 15 to

30 km depth and the initial velocity resulting from subsequent viscoelastic relaxation in the

lower crust, which is given a viscosity of 1018 Pa s. In this demonstration, the viscoelastic

relaxation is entirely driven by the fault slip in the lower crust. The horizontal displacements

from fault slip are in the opposite direction as the displacements resulting from viscoelastic

relaxation. This means that surface displacements resulting from afterslip at lower crustal

depths can be cancelled out, at least partially, by a low viscosity lower crust. We eliminate

this null space by allowing only one mechanism in the lower crust, which we choose to be

viscoelastic relaxation. This is not to say that we do not believe deep afterslip is a possibility;

rather, we restrict slip to seismogenic depths as a modeling necessity. Although, it has been

noted that the pattern of vertical postseismic deformation following the El Mayor-Cucpah

earthquake indicates that a significant amount of afterslip must be shallow (Rollins et al.,

2015).

We must determine at which point the early postseismic approximation breaks down,

which we will denote as tbd. As noted, eq. (4.14) is valid for as long as the rate of deformation

resulting from viscoelastic relaxation is approximately constant. We can almost certainly

assume that deformation at the most far-field stations, which are ∼400 km away from the El
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Mayor-Cucapah epicenter, is the result of viscoelastic relaxation. The approximation should

then be valid for as long as a linear trend adequately approximates the far-field deformation.

Using this logic, it would appear that tbd is about one year after the El Mayor-Cucapah

earthquake. Another way to determine tbd is to find the best fitting prediction of eq. (4.14)

to observed deformation using increasing durations of the postseismic time series. tbd should

be the point when eq. (4.14) is no longer capable of describing the observed deformation

without incurring systematic misfits. When using eq. (4.14) to fit the entire five years of

postseismic displacements, we see that the near-field displacements (e.g., station P501) are

accurately predicted. When looking at displacements in the far-field (e.g., station P621), we

see that eq. (4.14) overestimates the rate of deformation in the later postseismic period and

underestimates the rate of deformation in the early period (Figure 4.10). Due to the low

signal-to-noise ratios for far-field stations, it is difficult to determine at what point eq. (4.14)

is no longer able to predict the observed displacements; however, we settle on tbd = 0.8 years

after the earthquake, while acknowledging that the choice is subjective. As noted in Hines

and Hetland (2015), overestimating tbd will result in a bias towards overestimating ηeff , while

picking a tbd which is too low will not necessarily result in a biased estimate of ηeff , although

the uncertainties would be larger. We can then consider inferences of ηeff to be an upper

bound on the viscosity needed to describe the far-field rate of deformation during the first

0.8 years of postseismic deformation.

We estimate coseismic slip, afterslip, and effective viscosities by solving

mins,ηeff

(∣∣∣∣∣∣∣∣upred(s, ηeff)− upost

σpost

∣∣∣∣∣∣∣∣2
2

+ λs||s||22 + λη||∇η−1
eff ||

2
2

)
, (4.15)

where upost consists of the first 0.8 years of postseismic deformation and upred are the pre-

dicted displacements from eq. (4.14). Due to inherent non-uniqueness, we have added zeroth-

order Tikhonov regularization to estimates of s and second-order Tikhonov regularization

to estimates of effective fluidity η−1
eff . The degree to which we impose the regularization on

slip and fluidity is controlled by the penalty parameters λs and λη, which are chosen with

trade-off curves (Figure 4.15). Our goal is to get a prior constraint on ηeff to minimize the

amount of searching we have to do when describing the postseismic deformation over the

full five years, which we do in Section 4.4.3. Estimates of s made here will not be used in

Section 4.4.3, and so the motivation behind adding regularization to s is to ensure that the

slip driving viscoelastic relaxation in eq. (4.14) is sensible.

Our initial estimate for coseismic slip and cumulative afterslip over the first 0.8 years

after the El Mayor-Cucapah earthquake are shown in Figure 4.11. Similar to our elastic

slip model from Section 4.4.1, a significant amount of right-lateral and normal coseismic
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Figure 4.10: Observed postseismic displacements (black) and best fitting predictions of eq. (4.14) to 5.0
(blue), 3.0 (green), and 0.8 (yellow) years of the postseismic data.
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slip is inferred to be on the Sierra Cucapah segment. Our coseismic slip solution on the

Sierra Cucapah segment is consistent with field studies (Fletcher et al., 2014) and the model

from Wei et al. (2011b). Our inferred slip on the Indiviso fault segment differs from Wei

et al. (2011b) because the GPS data used in this study is not capable of resolving the spatial

distribution of fault slip on that segment (Figure 4.16). The potency of inferred coseismic slip

is 3.3×109 m3, which is also about the same as that inferred from Section 4.4.1. The present

inference of afterslip on the Indiviso fault is significantly less than what was found in the

Section 4.4.1 where we did not account for viscoelasticity. When fault slip is simultaneously

estimated with viscosity, the potency of inferred afterslip over the first 0.8 years after the

earthquake is 0.85× 109 m3, compared to 3.5× 109 m3 when we assume the crust and upper

mantle are elastic. The significant amount of afterslip inferred on the Indiviso fault in Section

4.4.1 seems to be compensating for unmodeled viscoelastic relaxation. The fact that there

is still an appreciable amount of afterslip inferred on the Indiviso fault raises the question of

whether it is compensating for viscoelastic relaxation that is more localized than what we

allow for since we only estimate depth dependent variations in viscosity.

Our estimated effective viscosities, and corresponding fluidities, are shown in Figure 4.12.

Although fluidity is rarely used in geophysical literature, eq. (4.13) is linear with respect to

fluidity and so the fluidity indicates the amplitude of the viscoelastic signal coming from each

layer. We use bootstrapping to find the 95% confidence intervals for our estimated effective

viscosities which are shown as shaded regions in Figure 4.12. It is important to remem-

ber that the presented effective viscosities were estimated with a smoothing regularization

constraint and so the uncertainties are almost certainly underestimated (Aster et al., 2011).

Indeed, many viscosity profiles which are outside of the shown confidence intervals can just

as adequately described the first 0.8 years of postseismic deformation. Our solution in Fig-

ure 4.12 should be interpreted as the smoothest effective viscosity profile which is capable

of describing the data. This means that any sharp viscosity transitions will be tapered out

in the inversion, which we demonstrate with a synthetic test in Figure 4.16. Nonetheless, a

robust feature that we see with a variety of choices for λs, λη, and tbd is that the largest jump

in fluidity is at 60 km depth, which is consistent with the range of lithosphere-asthenosphere

boundary depths inferred by Lekic et al. (2011). This transitional depth is also consistent

with the the viscosity structure required to explain far-field postseismic deformation follow-

ing the Hector Mine earthquake (Freed et al., 2007). We find that the viscosity below 60 km

depth needs to be ∼1 × 1018 Pa s to describe the early rate of postseismic deformation at

far-field stations while the lower crust and uppermost mantle need to be relatively stronger.

The viscosity of the lower crust has the largest uncertainties because there is no evidence of

relaxation in that layer, meaning that it is effectively elastic over the first 0.8 years after the
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Figure 4.11: Coseismic slip and afterslip inferred by fitting eq. (4.14) to the first 0.8 years of postseismic
displacements.

earthquake.

4.4.3 Full postseismic inversion

In the previous section, we used the inverse method from Hines and Hetland (2015) to

constrain the effective viscosity structure required to explain the first 0.8 years of postseismic

deformation. In this section, we use these effective viscosities as a prior constraint when

searching for models which are capable of describing the available five years of postseismic

data, where our forward problem is now eq. (4.11) rather than the approximation given by

eq. (4.14). We perform a series of fault slip inversions assuming a variety of rheologies for

the lower crust and upper mantle which are consistent with our findings from Section 4.4.2.

We appraise each model using the mean chi-squared value,

χ̄2 =
1

N

∣∣∣∣∣∣∣∣upred − upost

σpost

∣∣∣∣∣∣∣∣2
2

, (4.16)

where N is the number of observations.

We first assume that the crust and mantle can be described with a Maxwell rheology,

and we set the steady-state viscosity, ηM, equal to our inference of ηeff . We compute f and

g from eq. (4.11) using Pylith, and we use the same spatial and temporal discretization of s

as in Sections 4.4.1 and 4.4.2. We estimate s using linear least squares and find a misfit of
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Figure 4.12: Effective viscosities and associated fluidities inferred by fitting eq. (4.14) to the first 0.8 years of
postseismic displacements. 95% confidence intervals, estimated from bootstrapping, are indicated by shaded
regions.

χ̄2 = 37.4. For comparison, χ̄2 = 35.3 for the elastic model from Section 4.4.1. The Maxwell

viscoelastic model has a larger misfit because it tends to overestimate the rate of deformation

after about three years (Figure 4.7). Since our initial estimates of ηeff may be biased towards

overestimating viscosities, we have also performed the slip inversion where we use uniformly

lower viscosities in the crust and mantle; however, decreasing the viscosity only increases

the misfit. Although, the viscosities used here are consistent with the successful Maxwell

viscoelastic models found by Rollins et al. (2015) and Spinler et al. (2015), which had mantle

viscosities on the order of 1018 Pa s and relatively higher lower crustal viscosities, we find

that such a model is incapable of describing the entire postseismic time series. Pollitz et al.

(2001) similarly recognized this deficiency in a Maxwell rheology, which then motivated their

exploration of a Burgers rheology upper mantle (Pollitz , 2003).

Instead of exploring a Burgers rheology mantle, which introduces two new parameters

that need to be estimated, the transient viscosity, ηK , and transient shear modulus, µK , we

first consider a Zener rheology for the mantle, which only introduces one unknown model

parameter, µK . We assume that the lower crust still has a Maxwell rheology. The steady-

state viscosity in the crust and the transient viscosity in the mantle are set equal to the
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Figure 4.13: Mean chi-squared value as a function of the transient shear modulus relative to the elastic shear
modulus in a Zener rheology upper mantle. Large dot indicates our preferred ratio.

inferred effective viscosities. We then estimate the ratio of shear moduli, µK
µ

. We compute

nine different sets of Green’s functions, f and g, where we assume values of µK
µ

ranging from

0 to 1. The former being a degenerate case where the Zener model reduces to the above

Maxwell model. We estimate coseismic slip and afterslip for each realization of µK
µ

. We

find that a shear moduli ratio of 0.375 yields the best prediction to the observed postseismic

displacements with a misfit of χ̄2 = 31.2 (Figure 4.13). The improvement in the Zener model

over the Maxwell model can be seen in the fit to the far-field data (Figure 4.7) where the

Zener model does a significantly better job at explaining the transient rate of deformation

throughout the five years considered in this study. The rheologic parameters for our preferred

Zener model are summarized in Table 4.1.

Because we are able to adequately describe the available five years of postseismic defor-

mation with a Zener model, we do not find it necessary to explore the parameter space for

a more complicated Burgers rheology. However, since the Zener model is a Burgers model

with an infinite steady-state viscosity, we can conclude that any Burgers rheology that has

a transient viscosity consistent with that found in Section 4.4.2 and a steady-state viscosity

& 1020 Pa s, which is effectively infinite on the time scale of five years, would also be able

to satisfactorily describe the observable postseismic deformation.

The regularized inference of coseismic slip and afterslip for our preferred Zener model

is shown in Figure 4.14. The inferred coseismic potency is 3.0 × 109 m3, equivalent to a
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Mw=7.26 earthquake, where most of the slip is shallow and on the Sierra Cucapah fault

segment. The potency of five years of afterslip is 1.1 × 109 m3. Most of the afterslip in

our preferred model occurs within the first year after the earthquake and coincides with the

location of our inferred coseismic slip. Inferred afterslip within the first year is accounting

for the most rapid near-field transient deformation (Figure 4.17). After one year, afterslip

is inferred to be deeper down on the Sierra Cucapah segment. The sustained near-field

postseismic deformation is being explained by this continued afterslip as well as viscoelastic

relaxation in the lower crust. We emphasize, that the GPS station closest to where we infer

afterslip, P496, is still about 30 km away, which is too far for us to conclusively discern deep

afterslip from viscoelastic relaxation in the lower crust. The deep afterslip inferred after

one year could potentially be compensating for an overestimated lower crustal viscosity. To

test this, we have modified our preferred model by decreasing the lower crustal viscosity

from 4.4 × 1019 Pa s to 1 × 1019 Pa s, which is still consistent with our viscosity inference

from Section 4.4.2, and we inverted for fault slip. We find that a model with a weaker

lower crust adequately describes the postseismic displacements without any afterslip after

one year, while still requiring about the same amount of afterslip over the first year. We

do believe that the early afterslip on the Sierra Cucapah segment is a robust feature in our

preferred model, while we are not confident in our inference of later deep afterslip.

The postseismic displacements predicted by our preferred Zener model are shown in

Figures 4.4, 4.5 and 4.7. The largest misfit occur within the Imperial Valley where there

does not appear to be any systematic trend in the residuals. This suggests that the large

errors are due to localized processes such as fault slip in the Imperial Valley triggered by

the El Mayor-Cucapah earthquake (Wei et al., 2011a, 2015). We do not see any pattern

in the residuals that would suggest a laterally heterogeneous viscosity structure, which has

been explored by Pollitz et al. (2012) and Rollins et al. (2015). We do notice regional

scale seasonal oscillations in the lateral and vertical components of the residuals with an

amplitude of 1-2 millimeters. This is the result of our method for data processing which is

not able to completely remove the seasonal signal in the GPS data, which was discussed in

Section 4.3. Additionally, we see systematic misfit in the later postseismic period west of the

Landers and Hector Mine earthquakes, which may be the result of unmodeled postseismic

deformation following those earthquakes. Lastly, there are clear discrepancies between the

observed and predicted vertical displacements following the first year after the El Mayor-

Cucapah earthquake. We observe a broad uplift throughout Southern California which is

inconsistent with any postseismic model.
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Figure 4.14: Inferred coseismic slip and afterslip for our preferred model, which has a Maxwell rheology in
the lower crust and a Zener rheology in the upper mantle. The transient viscosity, ηK , in the mantle and
steady-state viscosity, ηM , in the crust are set equal to the effective viscosities from Figure 4.12. We use
µK

µ = 0.375 in the upper mantle.

4.5 Discussion

It has long been recognized that deep afterslip and viscoelastic relaxation following an upper

crustal earthquake can result in similar horizontal ground deformation at the surface (e.g.,

Savage, 1990; Pollitz et al., 2001; Hearn, 2003; Feigl and Thatcher , 2006). The similarity

of the horizontal postseismic deformation results in a non-uniqueness in inferences of after-

slip or viscoelastic relaxation. The spatial pattern of vertical postseismic deformation has

been proposed to be a discriminant between deep afterslip and viscoelastic relaxation (e.g.,

Pollitz et al., 2001; Hearn, 2003). It is, however, important to note that patterns of vertical

deformation are very sensitive to the depth-dependence of viscosity below the upper crust

(Yang and Toksöz , 1981; Hetland and Zhang , 2014). The similarity between deformation

resulting from deep afterslip and viscoelastic relaxation of coseismic stresses is different from

the ill-posedness described in Section 4.4.2. In our method, any inferred afterslip will also

mechanically drive additional viscoelastic relaxation. The horizontal deformation resulting

from deep afterslip will generally be in the opposite direction as horizontal deformation re-

sulting from viscoelastic relaxation of subsequent stresses in the lower crust (Figure 4.9).

As a result, there is a trade-off between inferences of deep afterslip and lower crustal vis-

cosity. In our synthetic tests in Hines and Hetland (2015), we have found that inverting

surface deformation for afterslip and viscosity within the same depth interval tends to result

in overestimated afterslip and an underestimated viscosity.
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Most postseismic studies assume Maxwell viscoelasticity in the lower crust and upper

mantle (e.g., Nur and Mavko, 1974; Pollitz et al., 2000; Hetland , 2003; Freed et al., 2006b;

Johnson et al., 2009; Hearn et al., 2009), which is the simplest viscoelastic rheologic model.

In Southern California, postseismic studies following the Landers (Pollitz et al., 2000), Hector

Mine (Pollitz et al., 2001), and El Mayor-Cucapah earthquake (Spinler et al., 2015; Rollins

et al., 2015), have assumed Maxwell viscoelasticity in the lower crust and upper mantle

and have inferred upper mantle viscosities on the order of 1017 to 1018 Pa s and lower crust

viscosities & 1019 Pa s. These postseismic studies are consistent with Kaufmann and Amelung

(2000) and Cavalié et al. (2007), who found that an upper mantle viscosity of 1018 Pa s and

a crustal viscosity & 1020 Pa s are necessary to describe subsidence resulting from changes

in loading from Lake Mead. This isostatic adjustment is a process with similar spatial and

temporal scales as postseismic deformation, and thus the inferred viscosities of these two

types of studies would likely agree. While these studies found viscosities that are consistent

with our effective viscosities from Section 4.4.2, they are inconsistent with viscosity estimates

made from geophysical processes that occur over longer time scales. For example, Lundgren

et al. (2009) found that lower crust and upper mantle viscosities on the order of 1021 and

1019 Pa s, respectively, are needed to describe interseismic deformation along the Southern

San Andreas fault zone in the Salton Sea region. An even higher mantle viscosity, on the

order of 1020 Pa s, is required to describe isostatic adjustment resulting from the draining of

Lake Bonneville, which occurs on the time scales of 104 years (Crittenden, 1967; Bills and

May , 1987).

An additional deficiency with the Maxwell rheology is that it predicts a steady decay in

the rate of postseismic deformation over time, which fails to describe the commonly observed

rapid, early transience followed by a relatively steady rate of postseismic deformation. One

could explain the early transient postseismic deformation with fault creep and the later

phase with relaxation in a Maxwell viscoelastic lower crust and upper mantle (e.g Hearn

et al., 2009; Johnson et al., 2009). However, postseismic deformation at distances greater

than ∼200 km from the El Mayor-Cucapah epicenter can only be attributed to viscoelastic

relaxation (e.g., Freed et al., 2007) and we have demonstrated that the far-field deformation

cannot be explained with a Maxwell rheology (Figure 4.7).

We found that a Zener rheology in the upper mantle with a transient viscosity of ∼1018

Pa s does a noticeably better job at predicting far-field postseismic deformation. A general-

ization of the Zener viscoelastic model, schematically represented as several Kelvin elements

connected in series, is commonly used to describe seismic attenuation (Liu et al., 1976). The

highest viscosity needed to describe seismic attenuation is on the order of 1016 Pa s (Yuen and

Peltier , 1982) which has a characteristic relaxation time on the order of days. Even though
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our inferred transient viscosity is orders of magnitude larger than that required for seismic

attenuation models, the two models are not incompatible. Rather, the delayed elasticity in

seismic attenuation models occurs on such short time scales that it can be considered part

of the instantaneous elastic phase of deformation associated with the preferred Zener model

in this study.

Of course, a Zener rheology provides an incomplete description of the asthenosphere

because it does not have the fluid-like behavior required to explain isostatic rebound or

convection in the mantle (O’Connell , 1971). Yuen and Peltier (1982) proposed a Burgers

rheology with a low transient viscosity (ηK ≈ 1016 Pa s) and high steady-state viscosity

(ηM ≈ 1021 Pa s) to describe both seismic attenuation and long term geologic processes.

The justification of a Burger’s rheology mantle is further supported by laboratory experi-

ments on olivine (Chopra, 1997). Pollitz (2003) sought to describe postseismic deformation

following Hector Mine with a Burgers rheology mantle and they found a best fitting transient

viscosity of 1.6× 1017 Pa s and steady-state viscosity of 4.6× 1018 Pa s. While the Burgers

rheology was introduced as a means of bridging the gap between relaxation observed in long

and short term geophysical processes, the inferred steady state viscosity from Pollitz (2003)

is still inconsistent with the Maxwell viscosities inferred from studies on the earthquake cycle

and Lake Bonneville. The transient viscosity inferred by Pollitz (2003) is constrained by the

earliest phase of postseismic deformation following the Hector Mine earthquake. While Pol-

litz (2003) ruled out deep afterslip as an alternative mechanism based on inconsistent vertical

deformation, it is still possible to successfully describe all components of early postseismic

deformation following the Hector Mine earthquake with afterslip at seismogenic depths (Ja-

cobs et al., 2002). It is then possible that the preferred rheologic model from Pollitz (2003)

was biased towards inferring a particularly low transient viscosity by neglecting to account

for afterslip. This is in contrast to the present study, where we have inferred a viscosity

structure simultaneously with afterslip. We also argue that a transient rheology is necessary

to explain postseismic deformation; however, our preferred transient viscosity of ∼1018 Pa

s in the upper mantle is an order of magnitude larger than the transient viscosity found by

Pollitz (2003). The transient viscosity inferred here is consistent with the results of Pollitz

(2015), who reanalyzed postseismic data following the Landers and Hector Mine earthquake

allowing the first few months of transient deformation to be described by afterslip. Since a

Zener model is able to describe the available postseismic deformation following the El Mayor-

Cucapah earthquake, any Burgers rheology with a steady-state viscosity that is & 1020 Pa s,

effectively infinite over five years, would also be able to describe the postseismic deformation.

Such a Burgers model might then be consistent with the steady-state viscosities necessary

for lake loading, interseismic deformation, and mantle dynamics.
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4.6 Conclusion

We have extracted a smoothed estimate of postseismic deformation following the El Mayor-

Cucapah earthquake from GPS displacement time series. Our estimated postseismic de-

formation reveals far-field (epicentral distances &200 km) transient deformation which is

undetectable after about three years. Near-field deformation exhibits transience that decays

to a sustained, elevated rate after about one or two years. We found that near-field tran-

sient deformation can be explained with shallow afterslip. The sustained rate of near-field

deformation can be explained with viscoelastic relaxation in the lower crust and possibly

continued afterslip. Far-field transient deformation can be more definitively ascribed to vis-

coelastic relaxation at depths greater than ∼60 km. Beneath that depth, a transient viscosity

of ∼1× 1018 Pa s is required to describe the rate of far-field deformation throughout the five

years considered in this study. By describing the available postseismic deformation with a

transient rheology in the mantle, our preferred model does not conflict with the generally

higher steady-state viscosities inferred from geophysical processes occurring over longer time

scales.
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4.8 Supporting information

Figures 4.15 and 4.16 provide additional information about the inversion in Section 4.4 of

the main text. Figures 4.17 and 4.18 show the predicted displacements, which have been

decomposed into elastic and viscoelastic components, for the preferred model from Section

4.4.3.
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text. The left panel shows the trade-off curve for the fault slip penalty parameter, λs. We pick λs while
keeping the penalty parameter for fluidity, λη, fixed at zero. The right panel shows the trade of curve for
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Figure 4.17: Elastic (black) and viscoelastic (green) components of the near-field predicted displacements
for the preferred Zener model from Section 4.4.3. The elastic component is the deformation resulting from
fault slip and the viscoelastic component is the deformation resulting from viscoelastic relaxation of stresses
induced by the fault slip. The elastic and viscoelastic components are calculated from the first and second
terms in eq. (4.11), respectively. The vertical elastic component is shown as an interpolated field and the
vertical viscoelastic component is shown within the green circles.
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Figure 4.18: Same as figure 4.17 but for far-field stations.
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CHAPTER 5

Unbiased characterization of noise in geodetic data†

5.1 Abstract

Geodetic time series contain temporally correlated noise that must be quantified before the

data can be used to make geophysical inferences. If the noise is not accurately quantified

then there is a risk of underestimating the uncertainties on inferred geophysical parameters.

The maximum likelihood estimation (MLE) method is commonly used to characterize noise

in geodetic time series; however, this method is known to be biased. Specifically, the MLE

method has a tendency to underestimate the amplitude of random walk noise. This bias

is most pronounced when estimating the noise in shorter time series. We discuss an unbi-

ased alternative to the MLE method, which is known as the restricted maximum likelihood

(REML) method. We use synthetic tests to demonstrate that the REML method does not

suffer from the bias inherent in the MLE method. Considering that the computational costs

of the REML and MLE methods are nearly equivalent, there is no reason to prefer the MLE

method over the REML method for quantifying noise in geodetic data.

5.2 Introduction

Before geodetic data can be used to make geophysical inferences, it is necessary to have an

accurate noise model. Here we consider noise to be any observed deformation that is not

representative of tectonic processes. The noise in geodetic time series is temporally correlated

and its power spectrum is often described by the power law relationship (Agnew , 1992)

P (f) = Pof
−k, (5.1)

where f is frequency, k is the spectral index and Po is the noise amplitude. For data

recorded by strain and tilt meters (Wyatt , 1982, 1989) and electronic distance measuring

†This chapter is under review at Journal of Geodesy.
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(EDM) instruments (Langbein and Johnson, 1997), the temporally correlated noise can be

modeled as a random walk (k = 2). In those studies, the random walk noise was attributed

to unstable geodetic monuments. Global Navigation Satellite System (GNSS) data, which is

prone to additional non-physical sources of error, often has temporally correlated noise that

is best modeled as flicker noise (k = 1) (e.g., Zhang et al., 1997; Mao et al., 1999; Williams

et al., 2004). However, the most appropriate model can vary between stations. Generally,

the noise in GNSS data is best described as white noise plus some combination of random

walk and flicker noise (Langbein, 2008).

If temporally correlated noise is mismodeled or ignored then the uncertainties in geo-

physical parameters inferred from geodetic data may be underestimated (e.g., Zhang et al.,

1997; Langbein, 2012). Since no single noise model is universally appropriate, it may be

preferable to determine a noise model for each station before attempting to study any un-

derlying signal. Langbein and Johnson (1997) introduced a maximum likelihood estimation

(MLE) method to determine the hyperparameters (e.g., Po and k) that best characterize the

noise in geodetic time series. Furthermore, the MLE method can be used to discern which

type of stochastic process (e.g., power law or Gauss-Markov) is most appropriate (Langbein,

2004). There are other methods for determining noise models, such as the least squares

variance component estimation method (Amiri-Simkooei et al., 2007) and the network noise

estimator (Dmitrieva et al., 2015). However, the MLE method from Langbein and Johnson

(1997) is the most widely used (e.g., Langbein, 2004, 2008; Zhang et al., 1997; Mao et al.,

1999; Williams et al., 2004; Hill et al., 2009; King and Williams , 2009; Murray and Svarc,

2017).

One deficiency with the MLE method, which was recognized by Langbein and Johnson

(1997), is that it can be biased towards underestimating the amplitude of random walk

noise. The MLE method is biased because it assumes that residual geodetic time series,

with geophysical signals estimated and removed, are representative samples of noise. This

is not always a fair assumption because estimating and removing geophysical signals will

inevitably also remove low frequency components of noise. Langbein (2012) further explored

the bias in the MLE method and how it propagates into the uncertainties for estimated

tectonic rates of deformation. They demonstrated with synthetic data, consisting of white

noise and random walk noise, that the bias is stronger for shorter time series. Langbein

(2012) emphasized the role of the crossover frequency, fc, which is the frequency where the

power of the white noise is equal to the power of the random walk noise. They suggested

that a time series should be several times longer than f−1
c in order to accurately quantify its

random walk noise.

In this paper we discuss an alternative to the MLE method, which is known as the
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restricted maximum likelihood (REML) method (e.g., Cressie, 1993). We use synthetic

tests to demonstrate that the REML method produces unbiased estimates of random walk

noise. With the REML method, we can accurately quantify the random walk noise in time

series that are as short as f−1
c . Furthermore, the REML and MLE methods have practically

equivalent computational costs. For these reasons, we argue that there is no reason to prefer

using the MLE method over the unbiased REML method.

5.3 Maximum likelihood methods

In this section we briefly describe the MLE method and explain why it is biased. We then

provide a description of the REML method. Let d∗ denote a column vector of n observations.

We treat d∗ as a realization of the random vector

d = Gm + ε, (5.2)

where ε is the data noise vector, G is an n×m matrix with linearly independent columns that

are used to describe geophysical signal in d (e.g., secular rates, coseismic offsets, postseismic

transience), and m is a column vector of m model parameters which have uninformative

priors (i.e. m ∼ N (0, λI) in the limit as λ → ∞). We assume that the data noise can be

described as ε ∼ N (0,Σ(θ)), where θ are the hyperparameters which we want to estimate

appropriate values for. If we had chosen an informed prior for m, we would select θ such that

the probability of drawing d∗ from d, pd(d∗|θ), is maximized. However, the uninformed prior

on m makes d improper and pd is infinitesimally small for all choices of θ. Consequently,

it is not possible to numerically maximize pd and we must seek an alternative likelihood

function to maximize.

The MLE method chooses θ such that the probability of sampling the least squares

residual vector,

r∗ =
(
I−G

(
GTΣ(θ)−1G

)−1
GTΣ(θ)−1

)
d∗, (5.3)

from ε is maximized. To put it explicitly, The MLE method maximizes the probability

density function

pε(r∗|θ) =

(
1

(2π)n |Σ(θ)|

) 1
2

e−
1
2

dT
∗K(θ)d∗ (5.4)

with respect to θ, where

K(θ) = Σ(θ)−1 −Σ(θ)−1G
(
GTΣ(θ)−1G

)−1
GTΣ(θ)−1. (5.5)
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Implementations of the MLE method typically maximize the logarithm of eq. (5.4) with the

downhill simplex method (Press et al., 2007). It is important to recognize that the MLE

method assumes that r∗ is a representative sample of ε. This assumption is only valid when

n is sufficiently large. To elaborate, we note that r∗ is a sample of the random variable

r =
(
I−G

(
GTΣ(θ)−1G

)−1
GTΣ(θ)−1

)
d, (5.6)

which is distributed as

r ∼ N
(
0,Σ(θ)−G

(
GTΣ(θ)−1G

)−1
GT
)
. (5.7)

The term being subtracted in eq. (5.7) is the covariance of the least squares prediction

vector, which will typically get smaller as n increases. The distribution of r will then tend

towards that of ε as n increases. Hence, we can only assume that r∗ is a representative

sample of ε when n is sufficiently large. We can also observe from eq. (5.7) that the variance

of r will always be less than the variance of ε. This is the reason why the MLE method is

biased towards underestimating the noise in short time series.

Having demonstrated that the MLE method is biased, we move on to discuss the REML

method for selecting θ. The REML method was introduced by Patterson and Thompson

(1971), and is now established in the Kriging literature as an unbiased method for estimating

covariance functions (e.g., Cressie, 1993). The REML method can be understood by first

considering an (n−m)×n matrix R which satisfies RG = 0. We then consider the random

variable x = Rd, which is distributed as x ∼ N (0,RΣ(θ)RT ). As opposed to d, x is a

proper random variable since it is independent of the prior on m. The REML method chooses

θ such that the probability of drawing x∗ = Rd∗ from x, px(x∗|θ), is maximized. As shown

by Harville (1974), the θ which maximizes px(x∗|θ) also maximizes pd(d∗|θ) because the two

likelihood functions are proportional. The REML method thus circumvents the numerical

difficulty that pd is infinitesimally small and identifies the θ which we initially sought to

find. The particular choice for R does not matter because it will only change the likelihood

function which we are maximizing by a scale factor. Following Harville (1974), we then let

R have the properties RTR = I −G(GTG)−1GT and RRT = I. The probability density

function for x can then be written as

px(x∗|θ) =

( ∣∣GTG
∣∣

(2π)n−m |Σ(θ)| |GTΣ(θ)−1G|

) 1
2

e−
1
2

dT
∗K(θ)d∗ . (5.8)

Note the similarity between eq. (5.8) and eq. (5.4). If programmed efficiently (see Appendix
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4A) and if m� n, the computational cost of the REML method is practically equivalent to

that of the MLE method. What remains to be determined is whether the REML method

remediates the bias in the MLE method. We demonstrate that this is indeed the case with

a numerical test.

5.4 Synthetic demonstration

We compare the REML and MLE methods by using them to estimate hyperparameters

from synthetic data. This demonstration is modeled after the demonstration from Langbein

(2012) which highlights bias in the MLE method. Our synthetic noise is a combination of

white and random walk noise, which has a power spectrum described by

P (f) =
σ2
rw

2π2f 2
+ 2σ2

w∆t, (5.9)

where σrw and σw are hyperparameters for the random walk and white noise components,

respectively. ∆t is the sampling period, which is set at one day. The crossover frequency for

the synthetic noise is then

fc =
1

2π
√

∆t

σrw
σw

. (5.10)

In order to use the MLE or REML method, we must express the power law relationship

in the frequency domain as a covariance matrix in the time domain. A general procedure

for doing so can be found in Langbein (2004). The components of the covariance matrix

corresponding to eq. (5.9) can be concisely written as

Σij = σ2
rw min(i∆t, j∆t) + σ2

wδij, (5.11)

where δij is the Kronecker delta function. Similar to Langbein (2012), we set σrw = 1.3

mm/yr0.5 and σw = 1.1 mm. We generate 5,000 synthetic noise time series, which each have

a length of 2.5 yr.

We consider σw to be known, and we want to estimate σrw from the synthetic data.

Although our synthetic data just consists of noise, we assume that the unknown underlying

geophysical signal (i.e. Gm) consists of an offset plus a linear trend. We estimate σrw with

the MLE and REML methods using varying lengths of the synthetic time series. The time

series lengths range from 0.1 yr to 2.5 yr at 0.1 yr increments. The distribution of estimated

σrw is shown in Figure 5.1.

The distribution of σrw estimated by the MLE method indicates that there is a bias

towards underestimating σrw when the length of the time series is comparable to f−1
c , which
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Figure 5.1: Random walk amplitudes, σrw, estimated by the MLE and REML methods from synthetic data.
The length of the synthetic time series used to estimate σrw is varied from 0.1 yr to 2.5 yr. The black
line indicates the true random walk amplitude (σrw = 1.3), the light blue region shows the 10-90 percentile
of estimates, the dark blue region shows the 25-75 percentile of estimates, the solid blue line indicates the
median, and the dashed blue line indicates the mean.

87



is 0.3 yr in this demonstration. The bias is appreciable when the time series is shorter than

∼1 yr, and estimates of σrw cluster around 0.0 when the time series is shorter than f−1
c . The

distribution tightens up around the true value and remains relatively constant for time series

with length greater than ∼1 yr. This is consistent with Langbein and Johnson (1997) who

said that the time series should be at least 5 times greater than f−1
c to get a good estimate

of the random walk component. Even when the full length of the time series is used, the

mean and median of the distribution tend to be slightly less than the true value.

In contrast, the REML method does significantly better at estimating σrw. For every time

series length considered, the true value for σrw is within the 25-75 percentile of estimated σrw.

For time series longer than f−1
c , the mean and median of estimated σrw closely resembles

the true value, indicating that the REML method is indeed unbiased. When the length of

the time series is less than f−1
c , the mean and median deviate from the true value and the

variance of estimated σrw sharply increases. For such short time series, the random walk

component cannot be resolved because it is being masked by the white noise.

5.5 Discussion and conclusion

The MLE method is the most commonly used method for quantifying noise in geodetic time

series, despite the fact that it is known to be biased. The bias in the MLE method can result

in underestimated uncertainties in geophysical parameters derived from geodetic time series

(Langbein, 2012). The intention of this paper is to bring the REML method to light in the

geodetic community as an unbiased alternative. Since the MLE method is well established,

it may not be reasonable to suggest that researchers abandon it in favor of the REML

method. However, the REML method is nearly identical to the MLE method in terms of its

computational cost and in terms of its implementation. Indeed, the only difference between

the log likelihood functions being maximized by the REML and MLE methods is that the

REML method includes two additional, easily computed, terms (See Appendix 4A). We can

therefore view the REML method as merely an unbiased correction to the MLE method.

In this paper, we have used synthetic tests to demonstrate that the REML method does

not suffer from the bias inherent in the MLE method from Langbein and Johnson (1997).

We show that the REML method is able to characterize random walk noise in geodetic time

series that are as short at f−1
c . In contrast, the MLE method can only accurately quantify

random walk noise for time series that are several times longer than f−1
c . We believe that

the REML method should always be preferred over the MLE method for quantifying noise

in geodetic time series.
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Appendix 4A: REML algorithm

Algorithm 1 demonstrates how to efficiently compute the log of the REML likelihood func-

tion. For comparison, we include Algorithm 2, which evaluates the log of the MLE likelihood

function. If we assume that m� n, then the main computational burden in both algorithms

is computing the Cholesky decomposition of Σ. Since we are just interested in finding the Σ

that maximizes these functions, we can omit the terms in the log likelihood functions that

are independent of Σ. In that case, the only difference between the two algorithms is that

Algorithm 1 includes a summation along the diagonals of C in the log likelihood function.

Algorithm 1 Function that takes d, Σ, and G as input and returns the logarithm of eq.
(5.8). We use the notation X\Z to denote solving the system of equations XY = Z for Y.

function reml log likelihood(d,Σ,G)
A← cholesky(Σ)
B← A\G
C← cholesky(BTB)
D← cholesky(GTG)
a← A\d
b← C\(BTa)
return

∑m
i log(Dii)−

∑n
i log(Aii)−

∑m
i log(Cii)− 1

2
aTa + 1

2
bTb− n−m

2
log(2π)

end function

Algorithm 2 Function that takes d, Σ, and G as input and returns the logarithm of eq.
(5.4).

function mle log likelihood(d,Σ,G)
A← cholesky(Σ)
B← A\G
C← cholesky(BTB)
a← A\d
b← C\(BTa)
return −

∑n
i log(Aii)− 1

2
aTa + 1

2
bTb− n

2
log(2π)

end function
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CHAPTER 6

Revealing transient strain in geodetic data with Gaussian process

regression†

6.1 Summary

Transient strain rates derived from GNSS data can be used to detect and understand geo-

physical phenomena such as slow slip events and postseismic deformation. Here we propose

using Gaussian process regression (GPR) as a tool for estimating transient strain rates from

GNSS data. GPR is a non-parametric, Bayesian method for interpolating scattered data.

Transient strain rates estimated with GPR have meaningful uncertainties, allowing geophys-

ical signal to be easily discerned from noise. In our approach, we assume a stochastic prior

model for transient displacements. The prior describes how much one expects transient dis-

placements to covary spatially and temporally. A posterior estimate of transient strain rates

is obtained by differentiating the posterior displacements. One limitation with GPR is that

it is not robust against outliers, so we introduce a pre-processing method for detecting and

removing outliers in GNSS data. As a demonstration, we use GPR to detect transient strain

resulting from slow slip events in Cascadia. Maximum likelihood methods are used to con-

strain a prior model for transient displacements in this region. The temporal covariance of

our prior model is described by a compact Wendland covariance function, which significantly

reduces the computational burden that can be associated with GPR. Our results reveal the

spatial and temporal evolution of strain from slow slip events. We verify that the transient

strain estimated with GPR is in fact geophysical signal by comparing it to the seismic tremor

that is associated with Cascadia slow slip events.

6.2 Introduction

Crustal strain rates are fundamentally important quantities for assessing seismic hazard.

Knowing where and how quickly strain is accumulating gives insight into where we can

†This chapter is under review at Geophysical Journal International.
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expect stored elastic energy to be released seismically. Consequently, secular crustal strain

rates estimated from GNSS data have been used to constrain seismic hazard models such

as UCERF3 (Field et al., 2014). Transient crustal strain, which is caused by geophysical

phenomena such as slow slip events (SSEs) or postseismic deformation, is also relevant for

assessing seismic hazard. While transient strain itself is not damaging, there is a risk that

it can trigger major earthquakes (Roeloffs , 2006; Freed and Lin, 2001). Dense networks of

continuous GNSS stations, such as the Plate Boundary Observatory (PBO), make it possible

to identify transient strain with high fidelity. Developing and improving upon methods for

deriving secular and transient strain from GNSS data is an active area of research.

Most methods for estimating strain rates from GNSS data assume some parametric form

of the deformation signal. The simplest method for estimating secular strain rates assumes

that GNSS derived velocities can be described with a first-order polynomial (i.e., having

constant deformation gradients) over some subnetwork of the GNSS stations (e.g., Feigl

et al., 1990; Murray and Lisowski , 2000). The components of the strain rate tensor for each

subnetwork are then determined through a least squares fit to the observations. The assump-

tion that deformation gradients are spatially uniform is not appropriate when subnetworks

span too large of an area. To help overcome this deficiency, Shen et al. (1996, 2015) used

an inverse distance weighting scheme, in which the estimated strain rate at some point is

primarily controlled by observations at nearby stations. However, the methods described

in Shen et al. (1996, 2015) are still formulated by assuming that the deformation gradients

are uniform over the entire network. The errors in this assumption manifest as implausibly

low formal uncertainties for the estimated strain rates. Other methods for estimating sec-

ular strain rates have parameterized GNSS derived velocities with bi-cubic splines (Beavan

and Haines , 2001), spherical wavelets (Tape et al., 2009), and elastostatic Green’s functions

(Sandwell and Wessel , 2016). The type of basis functions and the number of degrees of

freedom for a parameterization can be subjective. If there are too few degrees of freedom in

the parameterization, then estimated strain rates will be biased and the uncertainties will

be underestimated. On the other hand, if there are too many degrees of freedom, then there

will not be any coherent features in the estimated strain rates. The methods described by

Beavan and Haines (2001) and Tape et al. (2009) also require the user to specify penalty

parameters that control a similar trade-off between bias and variance in the solution. One

could parameterize deformation with a physically motivated model of interseismic deforma-

tion (e.g., Meade and Hager , 2005; McCaffrey et al., 2007). In such models the lithospheric

rheology and fault geometries are assumed to be known. Any errors in the assumed physical

model could result in biased strain estimates and underestimated formal uncertainties.

The aforementioned studies are concerned with estimating secular strain rates. In recent
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years the Southern California Earthquake Center (SCEC) community has shown interest in

developing methods for detecting transient strain. SCEC supported a transient detection

exercise (Lohman and Murray , 2013), where several research groups tested their methods for

detecting transient geophysical signal with a synthetic GNSS dataset. Among the methods

tested were the Network Strain Filter (NSF) (Ohtani et al., 2010) and the Network Inversion

Filter (NIF) (Segall and Mathews , 1997). The NSF uses a wavelet parameterization to

describe the spatial component of geophysical signal. The NIF, which is intended for imaging

slow fault slip from geodetic data, uses the elastic dislocation Green’s functions from Okada

(1992). For the NSF and NIF, the time dependence of the geophysical signal is modeled

as integrated Brownian motion. The method described in Holt and Shcherbenko (2013) was

also tested in the SCEC transient detection exercise, which calculates strain rates using a bi-

cubic spatial parameterization of displacements between time epochs. Holt and Shcherbenko

(2013) defined a detection threshold based on the strain rate magnitude, and below we

demonstrate that this is indeed an effective criterion for identifying geophysical signal. For

the same reasons descibed above, the transient deformation and corresponding uncertainties

estimated by these methods can be biased by the chosen spatial parameterization. It is then

difficult to distinguish signal from noise with these methods, which limits their utility for

transient detection.

Here we propose using Gaussian process regression (GPR) (Rasmussen and Williams ,

2006) to estimate transient strain from GNSS data. GPR is a Bayesian, non-parametric

method for inferring a continuous signal from scattered data. Since GNSS stations are

irregularly spaced and observation times may differ between stations, GPR is an ideal tool

for synthesizing GNSS data into a spatially and temporally continuous representation of

surface deformation. GPR is closely related to kriging (Cressie, 1993) and least squares

collocation (Moritz , 1978). The latter has been used by Kato et al. (1998) and El-Fiky and

Kato (1998) to estimate secular strain rates from GNSS data. GPR is Bayesian in that

we describe our prior understanding of the geophysical signal with a Gaussian process. A

Gaussian process is a normally distributed stochastic process that is fully defined in terms of

a mean function and a positive definite covariance function. For example, Brownian motion,

B(t), is a well known Gaussian process in R1 which has zero mean and covariance function

cov(B(t), B(t′)) = min(t, t′), where t, t′ ≥ 0. If no prior information is available for the

geophysical signal, then maximum likelihood methods can be used to objectively choose a

prior Gaussian process that is most consistent with the observations. We incorporate GNSS

observations with the prior to form a posterior estimate of transient strain. The posterior

transient strain is also a Gaussian process, and we can use its distribution to confidently

discern geophysical signal from noise. We use GPR to infer strain resulting from SSEs in
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Cascadia, demonstrating that GPR is an effective tool for detecting transient geophysical

processes.

6.3 Estimating transient strain rates

We seek a spatially and temporally dependent estimate of transient crustal strain rates. We

consider transient strain rates to be any deviation from secular strain rates, and our attention

is limited to horizontal strain rates in this study. We denote transient crustal strain rates

as ε̇(p), where p represents the ordered pair (~x, t), ~x are spatial coordinates in R2, and t is

time. We determine ε̇(p) by spatially and temporally differentiating estimates of transient

displacements, ~u(p). We make a prior assumption that each component of ~u is a Gaussian

process,

ui(p) ∼ N (0, Cui) , (6.1)

where Cui(p, p
′) is a covariance function indicating how we expect ui(p) to covary with

ui(p
′). For simplicity, we treat each component of displacements independently and ignore

any potential covariance between them. Hence, we drop the component subscripts with the

understanding that the same analysis is being repeated to estimate the easting and northing

components of ~u. We assume that Cu can be separated into spatial and temporal functions

as

Cu ((~x, t), (~x′, t′)) = X(~x, ~x′)T (t, t′). (6.2)

As long as the functions X and T are positive definite, Cu is guaranteed to also be positive

definite and thus a valid covariance function (Rasmussen and Williams , 2006, sec. 4.2.4).

The appropriate choice for X and T may vary depending on the geophysical signal we are

trying to describe, and we discuss this matter in Section 6.5.2.

We constrain u with GNSS data, which records u as well as other physical and non-

physical processes that we are not interested in. We describe GNSS observations at position

~xi and time tj as a realization of the random variable

dij =u(~xi, tj) + η(~xi, tj) + wij + a
(1)
i + a

(2)
i tj+

a
(3)
i sin(2πtj) + a

(4)
i cos(2πtj) + a

(5)
i sin(4πtj) + a

(6)
i cos(4πtj),

(6.3)

where a
(1)
i is an offset that is unique for each GNSS monument, a

(2)
i is the secular velocity

at ~xi, and the sinusoids describe seasonal deformation (using units of years for tj). We use

wij to denote normally distributed, uncorrelated noise. Correlated noise which does not

have a parametric representation is denoted by η. For example, η can consist of temporally
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correlated noise describing benchmark wobble (e.g., Wyatt , 1982, 1989), and/or spatially

correlated noise describing common mode error (e.g., Wdowinski et al., 1997). For now,

we will only assume that η ∼ N (0, Cη). We consider the six coefficients in eq. (6.3) to

be uncorrelated random variables distributed as N (0, κ2) in the limit as κ → ∞ (i.e., the

coefficients have diffuse priors). Of course, the secular velocities, a
(2)
i , are spatially correlated

and we could invoke a tectonic model to form a prior on a
(2)
i . However, in our application

to Cascadia, we will be using displacement time series which are long enough to sufficiently

constrain a
(2)
i for each station, avoiding the need to incorporate a prior. Likewise, seasonal

deformation is spatially correlated (Dong et al., 2002; Langbein, 2008), and it may be worth

exploring and exploiting such a correlation in a future study.

We now consider the column vector of n GNSS observations made at m stations, d∗. Let

P be the set of (~xi, tj) pairs describing where and when each of the GNSS observations have

been made. Let a be the vector of coefficients from eq. (6.3) for each of the m GNSS stations.

We use G to represent the n×6m matrix of corresponding basis functions evaluated at each

point in P. We also denote the vector of uncorrelated noise for each observation as w, whose

standard deviations are given by the formal data uncertainty, σ. The observations can then

be viewed as a realization of the random vector

d = u(P) + η(P) + w + Ga, (6.4)

which is distributed as N (0,Σ + κ2GGT ), where

Σ = Cu(P,P) + Cη(P,P) + diag
(
σ2
)
. (6.5)

It should be understood that notation such as u(P) and Cu(P,P) represents the column

vector [u(Pi)]Pi∈P and the matrix [Cu(Pi, Pj)](Pi,Pj)∈P×P, respectively.

The prior for transient displacements is then conditioned with d∗ to form a posterior

estimate of transient displacements, û = u|d∗. For now, we will assume that appropriate

covariance functions and corresponding hyperparameters for Cu and Cη have already been

chosen. In Section 6.5.1 and 6.5.2, we discuss how the covariance functions are chosen for

our application to GNSS data from Cascadia. If κ is kept finite then, from Rasmussen and

Williams (2006, sec. 2.2), we find that û is distributed as N (µû, Cû), where

µû(p) = Cu(p,P)
(
Σ + κ2GGT

)−1
d∗ (6.6)

and

Cû(p, p
′) = Cu(p, p

′)− Cu(p,P)
(
Σ + κ2GGT

)−1
Cu(P, p

′). (6.7)
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However, we are interested in the limit as κ→∞, and the form for eq. (6.6) and eq. (6.7) is

not suitable for evaluating this limit. We use a partitioned matrix inversion identity (Press

et al., 2007, sec. 2.7.4) to rewrite eq. (6.6) and eq. (6.7) as

µû(p) =
[
Cu(p,P) 0

] [ Σ G

GT −κ−2I

]−1 [
d∗

0

]
(6.8)

and

Cû(p, p
′) = Cu(p, p

′)−
[
Cu(p,P) 0

] [ Σ G

GT −κ−2I

]−1 [
Cu(P, p

′)

0

]
. (6.9)

Taking the limit as κ→∞, we get the solution for the mean and covariance of û,

µû(p) =
[
Cu(p,P) 0

] [ Σ G

GT 0

]−1 [
d∗

0

]
(6.10)

and

Cû(p, p
′) = Cu(p, p

′)−
[
Cu(p,P) 0

] [ Σ G

GT 0

]−1 [
Cu(P, p

′)

0

]
. (6.11)

We use eq. (6.10) and (6.11) to find the posterior easting and northing components

of transient displacements. Using ûi to denote the posterior transient displacements along

direction i and xi to represent the components of ~x, we can write the components of ε̇ as

ε̇ij(p) =
1

2

∂

∂t

(
∂ûi(p)

∂xj
+
∂ûj(p)

∂xi

)
. (6.12)

The transient strain rate components are stochastic processes whose distributions can be

interpreted as the distributions of samples of û that have been differentiated by the operator

from eq. (6.12). Since differentiation is a linear operation, the transient strain rate compo-

nents are Gaussian processes. From Papoulis (1991, sec. 10.2), we find that the components

of ε̇ have mean functions

µε̇ij(p) =
1

2

∂

∂t

(
∂µûi(p)

∂xj
+
∂µûj(p)

∂xi

)
(6.13)

and covariance functions

Cε̇ij(p, p
′) =

1

4

∂2

∂t ∂t′

(
∂2Cûi(p, p

′)

∂xj ∂x′j
+
∂2Cûj(p, p

′)

∂xi ∂x′i

)
. (6.14)

Our motivation for estimating transient strain rates is, in part, to detect geophysical

95



phenomena. As we will see, geophysical signal can be easily identified by visually inspecting

the solution for transient strain rates. However, if we want to detect geophysical phenomena

automatically, then we need to define a detection criterion. We propose using a signal-to-

noise ratio, SNR, based on ε̇ for our detection criterion. The Frobenius norm of ε̇, ||ε̇||F,

which is sometimes referred to as the second invariant of strain rate in the geodetic literature,

is often used as a metric for the strain rate “magnitude”. Noting that ||ε̇||F is a random

variable, SNR can be taken as the ratio of the estimated mean and standard deviation of

||ε̇||F. Using nonlinear uncertainty propagation, we find SNR to be

SNR(p) =
µε̇nn(p)2 + µε̇ee(p)

2 + 2µε̇en(p)2(
Cε̇nn(p, p)µε̇nn(p)2 + Cε̇ee(p, p)µε̇ee(p)

2 + 4Cε̇en(p, p)µε̇en(p)2
) 1

2

, (6.15)

where the subscripts “n” and “e” denote north and east, respectively. For simplicity, we

have ignored covariances between the transient strain rate components in eq. (6.15), even

though they are non-zero.

6.4 Outlier detection

In our formulation for estimating transient strain rates, we have assumed that noise in the

data vector is normally distributed. This is not an appropriate assumption for GNSS data,

which often have more outliers than would be predicted for normally distributed noise. It

follows that proposed methods for analyzing GNSS data should be robust against outliers

(e.g., Blewitt et al., 2016). In order to make our estimates of transient strain more robust,

we automatically identify and remove outliers in the GNSS data as a pre-processing step.

Our method for detecting outliers is based on the data editing algorithm described in

Gibbs (2011). We calculate the residuals between the observations and a best fitting model.

Data with residuals that are anomalously large are then identified as outliers. We treat d∗

as a sample of d and assume that there is no correlated noise (i.e., η(p) = 0). The best

fitting model for d∗ is considered to be the expected value of the random vector u(P) + Ga

after conditioning it with non-outlier observations. We still consider u to have a separable

covariance function as in eq. (6.2), and the choice for X and T does not need to be the same

as that used in Section 6.3. Since outliers are determined based on how well a spatially and

temporally dependent model fits the data, we are able to identify anomalous observations

which may not be immediately apparent from inspecting individual time series.

To begin the algorithm, we let Ω be the index set of non-outliers in d∗ and initiate it

with all n indices. This algorithm is iterative, and for each iteration we calculate the residual
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vector

r =
d∗ − E

[
(u(P) + Ga)|d̃∗

]
σ

(6.16)

=
1

σ

d∗ −
[
Cu(P, P̃) G

] [ Cu(P̃, P̃) + diag(σ̃2) G̃

G̃T 0

]−1 [
d̃∗

0

] , (6.17)

where the tilde indicates that only elements corresponding to indices in Ω are retained (e.g.,

P̃ = {Pi}i∈Ω). We then update Ω to be

Ω = {i : |ri| < λ · RMS}, ri ∈ r, (6.18)

where RMS is the root-mean-square of r̃ and λ is an outlier tolerance. We use λ = 4 in this

study, which in our experience accurately identifies outliers without unnecessarily decimating

the data. Iterations continue until the new Ω is equal to the previous Ω.

It should be noted that this algorithm does not identify jumps in GNSS time series,

which are another common issue. Some, but not all, jumps can be automatically removed

by looking up the dates of equipment changes and earthquakes. However, it is still necessary

to manually find and remove jumps of unknown origin. That being said, this outlier detection

algorithm significantly reduces the effort needed to manually clean GNSS data.

6.5 Application to Cascadia slow slip events

We use our method to estimate transient strain rates in Cascadia, and we are specifically

interested in identifying strain resulting from SSEs (e.g., Dragert et al., 2001). In Cascadia,

SSEs can be detected by monitoring for associated seismic tremor (Rogers and Dragert ,

2003), which is actively being done by the Pacific Northwest Seismic Network (Wech, 2010).

We can thus compare the tremor records to the transient strain rates estimated with GPR

to verify that we are indeed identifying strain from SSEs.

We use the daily displacement solutions generated by the Geodesy Advancing Geosciences

and EarthScope (GAGE) facility for continuous GNSS stations (Herring et al., 2016). This

data is publicly available and can be found at www.unavco.org. We limit the dataset to the

stations and time ranges which are pertinent to the seven most recent SSEs in the Puget

Sound region. The earliest SSE considered in this study began in August 2010, and the

most recent SSE began in February 2017. We use these most recent SSEs because the

station coverage is sufficiently dense for us to use maximum likelihood methods to constrain

prior models. The positions of GNSS stations used to estimate transient strain rates are
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shown in Figure 6.1.

6.5.1 Noise model

Before we determine the transient strain rates, we must establish a prior for the transient

displacements, u, and the noise, η. In this section we discuss our choice for the noise

covariance function Cη. There have been numerous studies on temporally correlated noise

in GNSS data (e.g., Zhang et al., 1997; Mao et al., 1999; Williams et al., 2004; Langbein,

2008). In these studies, temporally correlated noise was described with some combination of

Brownian motion, a first-order Gauss-Markov (FOGM) process, and/or flicker noise. There is

some physical justification for using Brownian motion as a noise model because it accurately

describes the power spectrum of motion resulting from instability in geodetic monuments

(e.g., Wyatt , 1982, 1989). Here we describe the time dependence of η as a FOGM process

and consider η to be spatially uncorrelated. A FOGM process is a solution to the stochastic

differential equation

η̇(t) + αη(t) = βw(t), (6.19)

where w(t) is white noise with unit variance. The FOGM process degenerates to the com-

monly used Brownian motion noise model under the condition that α = 0 and η(0) = 0. Our

noise model that satisfies eq. (6.19) is a Gaussian process with zero mean and the covariance

function

Cη ((~x, t), (~x′, t′)) =
β2

2α
exp (−α|t− t′|) δ(||~x− ~x′||2). (6.20)

We constrain the hyperparameters for η, α and β, with a set of 38 continuous GNSS

stations in Cascadia that are east of 121◦W. These stations are sufficiently far from the

subduction zone that they are unlikely to contain transient signal associated with SSEs. We

clean the data for these stations by removing jumps at times of equipment changes, and we

remove outliers that have been detected with the algorithm described in Section 6.4. We then

find α and β for each station time series with the Restricted Maximum Likelihood (REML)

method (e.g., Harville, 1974; Cressie, 1993; Hines and Hetland , 2017a). The REML method

finds the hyperparameters, which we collectively refer to as θ, that maximize the likelihood

function

L(θ) =

( ∣∣GTG
∣∣

(2π)n−6m |Σ(θ)| |GTΣ(θ)−1G|

) 1
2

e−
1
2

dT
∗K(θ)d∗ , (6.21)

where

K(θ) = Σ(θ)−1 −Σ(θ)−1G
(
GTΣ(θ)−1G

)−1
GTΣ(θ)−1. (6.22)

Harville (1974) showed that choosing the hyperparameters which maximize eq. (6.21) is
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Figure 6.1: Positions of continuous GNSS stations used to estimate transient strain rates. The colored
regions indicate the distribution of seismic tremor as determined by Wech (2010). The red dots show the
positions of GNSS stations mentioned in this paper. The blue dot indicates the location of the transient
strain rates shown in Figure 6.7 and the signal-to-noise ratio shown in Figure 6.8. The blue dashed circle
demarcates the spatial extent of the tremors shown in Figure 6.8.
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equivalent to choosing the hyperparameters which maximize the probability of drawing d∗

from d. We use the REML method over the maximum likelihood method (e.g., Langbein and

Johnson, 1997) because the REML method accounts for the improper prior that we assigned

to a (Hines and Hetland , 2017a). We independently estimate θ for each station, and so d∗

consists of displacements for an individual station. We are assuming u(p) = 0 when esti-

mating the noise hyperparameters for this section. The distribution of inferred α and β are

shown in Figure 6.2. The amplitude of FOGM noise, β, for the easting and northing com-

ponents is notable low and are clustered around 0.5 mm/yr0.5. The corresponding estimates

of α tend to cluster around 0 yr−1, suggesting that noise can be described with Brownian

motion. We also estimate hyperparameters for the vertical component of displacements, un-

der the hope that vertical deformation gradients could reveal some geophysical signal. The

amplitude of FOGM noise for the vertical component is relatively large with a median value

of 13.5 mm/yr0.5. The inferred values for α are also higher for the vertical component with

a median value of 8.21 yr−1. In Figure 6.3, we use the median values of α and β to generate

two random samples of FOGM noise for each component. The samples span five years and

over these five years the easting and northing samples drift by about 1 mm. In the context

of detecting SSEs, which produce several mm’s of surface displacement on the time-scale of

weeks, the estimated FOGM noise for the easting and northing component is negligible. In

contrast, the estimated FOGM noise for the vertical component is larger than the signal we

would expect from SSEs. We suspect that the higher amplitude for the FOGM noise in the

vertical component is accommodating for deficiencies in our rather simple seasonal model.

Based on this analysis, we henceforth ignore temporally correlated noise in the easting and

northing component because of its low amplitude. We also do not use vertical displacements

because of the presumably low signal-to-noise ratio.

Another significant source of noise in GNSS data is common mode error (e.g., Wdowinski

et al., 1997; Dong et al., 2006), which is noise that is highly spatially correlated. When not

accounted for, common mode error manifests as spatially uniform undulations in estimated

transient displacements. However, estimated transient strain rates are insensitive to common

mode error. We therefore do not include common mode error in our noise model. We then

make the simplifying assumption that η(p) = 0 for the easting and northing component of

GNSS data.

6.5.2 Prior model

We next establish our prior model for transient displacements. Specifically, we discuss our

choice for the covariance functions X(~x, ~x′) and T (t, t′). For X, we use the squared expo-
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Figure 6.2: Distribution of estimated FOGM hyperparameters (eq. 6.20). Hyperparameters are estimated
with the REML method for 38 stations in Cascadia that are east of 121◦W. “IQR” is the interquartile range.
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Figure 6.3: Two FOGM noise samples for each component. The FOGM hyperparameters have been set to
the median values from Figure 6.2.

nential (SE) covariance function,

X(~x, ~x′) = exp

(
−||~x− ~x′||22

2`2

)
. (6.23)

The SE covariance function is commonly used in kriging (e.g, Cressie, 1993) and Gaussian

process regression (e.g., Rasmussen and Williams , 2006). The SE is a positive definite

covariance function for any number of spatial dimensions. A Gaussian process with an SE

covariance function is isotropic and has realizations that are infinitely differentiable. In terms

of geodetic applications, Kato et al. (1998) and El-Fiky and Kato (1998) demonstrated that

the SE accurately describes the covariance of secular GNSS derived velocities in Japan.

We consider three potential models for the temporal covariance of u. First, we consider

the one-dimensional SE covariance function,

T (t, t′) = φ2 exp

(
−|t− t′|2

2τ 2

)
. (6.24)

Note that T includes the hyperparameter φ, which serves to scale the covariance function

Cu. Second, we consider integrated Brownian motion (IBM). IBM has zero mean and its
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covariance function can be found by integrating the covariance function for Brownian motion

as

T (t, t′) =

∫ t

0

∫ t′

0

φ2 min(s, s′) ds′ ds (6.25)

=
φ2

2
min(t, t′)2

(
max(t, t′)− 1

3
min(t, t′)

)
, t, t′ ≥ 0. (6.26)

IBM has been used in the context of Kalman filtering as a non-parametric model for the

time dependence of geophysical signals (e.g., Segall and Mathews , 1997; McGuire and Segall ,

2003; Ohtani et al., 2010; Hines and Hetland , 2016). It should be emphasized t = 0 is a

reference time at which the Gaussian process is exactly zero. For some geophysical signals,

it is appropriate to have this reference time. For example, if we are trying to identify

postseismic deformation then t should be zero at the time of the earthquake. However, if we

are interesting in detecting transient events, where there is no known start time, then IBM

may not be an appropriate prior, and an isotropic Gaussian process should be preferred.

In the following analysis, we make the quite arbitrary choice that t is zero on the first

epoch of d∗. Using an earlier reference time does not change the results discussed in this

section. Our third option for T is the Wendland class of covariance functions (Wendland ,

2005). Wendland covariance functions have compact support and hence their corresponding

covariance matrices are sparse. In our analysis, we exploit this sparsity with the CHOLMOD

software package (Chen et al., 2008). Wendland functions are positive definite in Rd, and

they describes an isotropic Gaussian process with realizations that can be differentiated k

times. The form of the covariance function depends on the choice of d and k. We use d = 1

since we are describing the temporal covariance of u. We use k = 2, giving samples of u

continuous velocities and accelerations. The corresponding Wendland covariance function is

T (t, t′) = φ2

(
1− |t− t

′|
τ

)5

+

(
8|t− t′|2

τ 2
+

5|t− t′|
τ

+ 1

)
, (6.27)

where

(t)+ =

t, t > 0

0, otherwise.
(6.28)

We next determine appropriate hyperparameters for X and each of the three candidate

covariance functions for T . First, we clean the GNSS datasets by removing offsets at times

of equipment changes and removing outliers with the method describe in Section 6.4. For

the outlier detection algorithm, our prior model, u, is chosen to have a length-scale and time-

scale which is able to approximately describe SSE displacements. We use the SE covariance
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Figure 6.4: Detrended easting component of displacements at station SC03, which is located on Mount
Olympus in Washington. The orange markers indicate outliers that were automatically detected using the
algorithm from Section 6.4. The error bars show one standard deviation uncertainties. Note that outliers
tend be observed in the winter, suggesting that they were caused by snow or ice.

function for X with length-scale ` = 100 km, and we use the Wendland covariance function

for T , due to its computational efficiency, with time-scale τ = 0.1 yr and φ = 1 mm. The

outlier detection algorithm is particularly effective at removing outliers for stations at high

elevation (Figure 6.4), which can be adversely affected by ice or snow during the winter

(Lisowski et al., 2008). After cleaning the dataset, we divide it into seven subsets which

are four months long and each centered on the time of a SSE. The times of the seven SSEs

are determined with tremor records from Wech (2010). We use the REML method to find

the optimal hyperparameters for T and X for each subset of data. We choose to make each

data subsets four months long because it is long enough to encompass a SSE in Cascadia,

while it is short enough to still be computationally tractable. However, four months is too

short to resolve the sinusoids in d, and they are omitted from d in this REML analysis

for Cascadia SSEs. The estimated hyperparameters for u are summarized in Table 6.1.

Based on the interquartile ranges, the estimated hyperparameters for the SE and Wendland

covariance functions do not vary significantly between SSEs. This suggests that the median

of estimated hyperparameters should be an appropriate prior model for all Cascadia SSEs.

For the IBM model, there are several anomalously large values for ` and φ, which results in

large interquartile ranges.

Next we identify which covariance function for T best describes the SSEs. One approach

is to compare the REML likelihoods for each covariance function, similar to the analysis

in Langbein (2004). In Table 6.1, we summarize how the log REML likelihoods for the
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Table 6.1: Optimal hyperparameters for the prior on transient displacements determined with the REML
method. The temporal covariance function is indicated by the “T” column. The SE, IBM, and Wendland
covariance functions are defined in eqs. (6.24), (6.25), and (6.27), respectively. The spatial covariance
function, X, is the squared exponential (eq. 6.23) in all cases. The hyperparameters are estimated for each
of the seven SSEs considered in this study, and the tabulated values indicate the median and interquartile
ranges of estimates. The “diff log(REML)” column compares the log REML likelihood to the log REML
likelihood when using the SE covariance function for T . Negative values indicate that observations are more
consistent with the SE covariance function.

T direction ` φ τ diff. log(REML)
SE east 92 ± 25 km 0.62 ± 0.11 mm 0.026 ± 0.011 yr -
SE north 91 ± 53 km 0.43 ± 0.05 mm 0.030 ± 0.017 yr -
Wendland east 95 ± 30 km 0.66 ± 0.15 mm 0.093 ± 0.044 yr 0.78 ± 0.87
Wendland north 92 ± 57 km 0.46 ± 0.10 mm 0.116 ± 0.057 yr 0.08 ± 0.58
IBM east 110 ± 130 km 290 ± 420 mm/yr1.5 - -16.4 ± 7.8
IBM north 150 ± 560 km 110 ± 250 mm/yr1.5 - -10.1 ± 2.3

Wendland and IBM covariance functions compare to the SE covariance function. Based on

the differences in log REML likelihoods, the data is substantially more likely to come from

a Gaussian process with a SE or Wendland covariance function than an IBM covariance

function. The REML likelihoods do not definitively indicate whether the SE or Wendland

covariance function is preferable.

To further explore which covariance function for T best describes SSEs, we compare

the observations to the predicted displacements for each covariance function. We consider

the data prediction vector to be d̂ = (u(P) + Ga) |d∗. Following a similar procedure as in

Section 6.3, it can be shown that d̂ is normally distributed with mean

µd̂ =
[
Cu(P,P) G

] [ Σ G

GT 0

]−1 [
d∗

0

]
(6.29)

and covariance

Cd̂ = Cu(P,P)−
[
Cu(P,P) G

] [ Σ G

GT 0

]−1 [
Cu(P,P)

GT

]
. (6.30)

We compute d̂ using SE, Wendland, and IBM covariance functions for T and the median

hyperparameters from Table 6.1. Figure 6.5 compares the easting component of d∗ to d̂

for the winter 2015-2016 SSE at station P436, which is among the stations that record the

strongest signal. The data prediction vector reasonable fits the displacements throughout

the SSE, regardless of the choice of T . The prediction for the IBM covariance function con-

tains slightly more high frequency, and perhaps spurious, features. The predictions for the

Wendland and SE covariance functions are nearly indistinguishable. Overall, the predicted
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Figure 6.5: Observed easting component of displacements at station P436 and predicted displacements when
using different covariance functions for T . The one standard deviation uncertainties are shown for the
observations and the predicted displacements when using the SE covariance function. For clarity, uncertain-
ties are not shown for the IBM and Wendland covariance functions, but they are nearly equivalent to the
uncertainties for the SE covariance function.

displacements are not strongly sensitive to the choice of temporal covariance function. In

our estimates of transient strain discussed in the next section, we ultimately settle on the

Wendland covariance function for T and use the median values from Table 6.1 for the hyper-

parameters. We choose the Wendland covariance function over the SE covariance function

because of its computational advantages.

6.5.3 Transient strain rates

Having established a noise model and a prior for transient displacements, we use the cleaned

GNSS dataset to calculate transient strain rates in the Puget Sound region. We calculate

transient strain rates for each day from January 1, 2010 to May 15, 2017. The strain rates

are estimates at a grid of points spanning the study area. In Figure 6.6 we show the transient

strain rates on January 1, 2016, which coincides with the height of an SSE. We have included

an animation showing the map view of strain rates through time as supplementary material.

The strain rates shown in Figure 6.6 are generally similar to the strain rates during the

other six SSEs considered in this study. The SSEs cause trench perpendicular compression

in the Olympic Peninsula and extension east of Puget Sound. The strain transitions from

compressional to extensional strain around the southern tip of Vancouver Island, which

coincides with the location of where thrust slip tends to be inferred for SSEs in the Puget

Sound region (e.g., Dragert et al., 2001; Wech et al., 2009; Schmidt and Gao, 2010). Thus,
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this pattern of strain is to be expected. During the period in between SSEs, secular strain

rates indicate trench perpendicular compression throughout this study region (Murray and

Lisowski , 2000; McCaffrey et al., 2007, 2013). When comparing inferred strain rates from

SSEs to the secular strain rates, we see that SSEs are concentrating tectonically accumulated

strain energy towards the trench, and presumably pushing the subduction zone closer to

failure.

In Figure 6.7 we show the time dependence of estimated transient strain rates at a position

on the Olympic Peninsula, where transient strain rates from SSEs are largest. To verify that

the estimated transient strain rates are accurately identifying geophysical signal, we compare

the signal-to-noise ratio from eq. (6.15) to the frequency of seismic tremor (Figure 6.8). A

signal-to-noise ratio greater than ∼3 can be interpreted as a detected geophysical signal.

For each detected event there is a corresponding peak in seismic tremor. We are also able

to clearly identify transient strain associated with a more subtle SSE in August 2014. In

between peaks in seismic tremor, the signal-to-noise ratio is consistently between 0 and 2,

suggesting that all the transient strain detected at this location is associated with SSEs.

The results we have presented thus far indicate that we are identifying the strain that

we should expect to see. There are, however, subtle features in our estimated transient

strain rates which we were not expecting. For example, there is a brief period of east-west

extension on the Olympic Peninsula several days prior to some of the SSEs. This feature

can be seen before the summer 2012 and winter 2015-2016 SSEs in Figure 6.7 as well as

in the supplementary animation. While this deformation is noteworthy, a discussion on the

mechanisms causing it is outside the scope of this study.

6.6 Discussion

Our results demonstrate that GPR is an effective tool for estimating transient strain from

GNSS data, which can then be used to detect geophysical processes. One may argue that

geophysical signal can also be detected by merely inspecting the GNSS displacement time

series. Indeed, the SSEs identified in Figure 6.8 do produce visible displacements in the

GNSS data. However, the GNSS data also contains outliers and non-tectonic deformation

that is localized to individual stations. In contrast, our estimates of transient strain only

identify features that are sufficiently spatially and temporally coherent, based on our chosen

prior model. Furthermore, our estimates of transient strain are insensitive to common mode

noise, which is highly spatially correlated noise resulting from factors such as reference frame

error. Common mode noise can obscure geophysical signal in the GNSS data, but it gets

canceled out when computing the transient strain. Lastly, our estimates of transient strain
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Figure 6.6: Estimated transient strain rates during the winter 2015-2016 SSE. Strain glyphs show the normal
strain rate along each azimuth, where orange indicates compression and blue indicates extension. The shaded
regions indicate one standard deviation uncertainties in the normal strain rates.
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Figure 6.7: Three components of the transient horizontal strain rate tensor estimated at the position shown
in Figure 6.1. The shaded regions indicate one standard deviation uncertainty.
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Figure 6.8: (top) Signal-to-noise ratio (eq. 6.15) at the position shown in Figure 6.1. (bottom) Frequency
of tremors in the region shown in Figure 6.1.

rates are a spatial and temporal derivative of displacements, and thus any geophysical signal

in the transient strain rates tends to be more pronounced than in the GNSS data. For these

reasons, we argue that transient strain rates estimated with the method described in Section

6.3 can illuminate geophysical signal that may not be discernible from the noise in the GNSS

displacement data.

In addition to detecting geophysical processes, the GNSS derived transient strain rates

can be used to better understand the data from borehole strain meters (BSMs). The Plate

Boundary Observatory maintains about forty BSMs in the Pacific Northwest, and it has been

demonstrated that BSMs are able to record transient geophysical events such as SSEs (e.g.,

Dragert and Wang , 2011). However, there are complications that prevent BSM data from

being used quantitatively in geophysical studies. One difficulty is that BSM data should

be calibrated with a well known strain source, such as diurnal and semidiurnal tides (Hart

et al., 1996; Roeloffs , 2010; Hodgkinson et al., 2013). Unfortunately, the tidal forces at BSMs

which record SSEs are strongly influenced by local bodies of water such as the Straight of

Juan de Fuca, making it difficult to form a theoretical prediction of tidal strains (Roeloffs ,

2010). Another complication is that noise in BSM data is not well understood. The noise

consists, in part, of a long-term decay resulting from the instrument equilibrating with the
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surrounding rock (Gladwin et al., 1987). Typically, this noise is dealt with in an ad-hoc

manner by fitting and removing exponentials and low-order polynomials. We envision that

the GNSS derived strain rates from this paper can be used as a reference strain for calibrating

BSM data and quantify its noise.

There is potential for a more thorough analysis of the spatio-temporal noise in GNSS

data, η, than what was performed in Section 6.5.1. We did not explore the spatial covariance

of η, which would describe common mode noise. We are able to ignore common mode error

in this study; however, for other geophysical studies based on GNSS data, such as fault

slip inversions, it may be necessary to incorporate a spatially covarying noise model (e.g.,

Miyazaki et al., 2003). We can also improve upon the seasonal model used in this study,

which consists of four spatially uncorrelated sinusoids for each station. We did not explore

the spatial covariance of seasonal deformation or the temporal roughness (i.e., the number

of sinusoids needed to describe the observations). The periodic Gaussian process (Mackay ,

1998) is an alternative model for seasonal deformation and is well suited for exploring the

roughness of seasonal deformation. The periodic Gaussian process has zero mean and the

covariance function

T (t, t′) = φ2 exp

(
− sin(π|t− t′|)2

2τ 2

)
. (6.31)

Realizations have annual periodicity and the roughness is controlled by τ . Decreasing τ has

the same effect as including higher frequency sinusoids in the seasonal model. The optimal

value for τ can be found with the REML method as described in Section 6.5.1.

The transient strain rates estimated in this study are constrained by about seven years of

daily displacement observations from 94 GNSS stations. It can be computationally intensive

to evaluate eqs. (6.10) and (6.11) for a dataset with this size. We significantly reduce

the amount of memory needed to estimate transient strain rates by describing the temporal

covariance of displacements with a compact Wendland covariance function. Using a compact

covariance function for our prior turns eqs. (6.10) and (6.11) into sparse systems of equations,

which we then solve with CHOLMOD. CHOLMOD is designed for solving sparse, positive

definite systems of equations. The matrix being inverted in eqs. (6.10) and (6.11) is not

positive definite; however, we can use another partitioned matrix inversion identity from

Press et al. (2007) to partition it into positive definite submatrices to be inverted. Even when

using a compact covariance function, it may still be necessary to reduce the computational

burden by dividing the data into subsets and evaluating transient strain rates for each subset.
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6.7 Conclusion

In this paper we propose using Gaussian process regression (GPR) to estimate transient

strain rates from GNSS data. Most other methods for estimating strain rates assume a

parametric representation of deformation, which can bias the results if the parameterization

is not chosen carefully. Here we assume a stochastic, rather than parametric, prior model

for displacements. Our prior model describes how much we expect transient displacements

to covary spatially and temporally. If we know nothing about the underlying signal that

we are trying to recover, then the prior model can be chosen objectively with maximum

likelihood methods. Because GPR is a Bayesian method, the uncertainties on our estimated

transient strain rates are well quantified, allowing one to discern geophysical signal from

noise. We demonstrate that GPR is an effective tool for detecting geophysical phenomena,

such as slow slip events, in our application to GNSS data from Cascadia. One limitation

with GPR is that it is not robust against outliers. To overcome this limitation, we have

introduced an effective pre-processing method for identifying and removing outliers from

GNSS datasets. Another complication with GPR is that it usually involves inverting a

dense matrix where the number of rows and columns is equal to the number of observations.

This is prohibitive when using several years of daily GNSS observations from a network of

several hundred stations. We significantly reduce the computational burden of GPR by using

compact Wendland covariance function to describe our prior model. While this paper just

focuses on estimating transient strain rates, we believe that GPR is a powerful tool that can

be applied to a wide range of geophysical problems.
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CHAPTER 7

Validating Plate Boundary Observatory borehole strainmeter

data with GNSS derived strain

7.1 Introduction

The Plate Boundary Observatory (PBO), operated by UNAVCO, contains 82 borehole strain

meters (BSMs), most of which were installed along the western United States. BSMs have

been used to study geophysical processes such as coseismic and postseismic deformation (e.g.,

Langbein et al., 2006; Langbein, 2015), slow slip events (SSEs) (e.g., Dragert and Wang ,

2011), and seismic wave propagation (Barbour and Crowell , 2017). BSMs are intended for

measuring deformation over timescales of seconds to months. At longer timescales, BSM

data is contaminated by factors such as borehole relaxation (Gladwin et al., 1987). The

amplitude and timescale of strain resulting from SSEs and postseismic deformation are near

the limit of what BSMs can be expected to resolve. It is then important to understand the

noise in BSM data before using it to study these geophysical processes. Another complication

with BSM data is that the strain measured at the borehole may deviate from the regional

strain due to local topographic or geologic features (Berger and Beaumont , 1976). In this

study, we assess the ability of BSMs to measure strain resulting from SSEs on the Cascadia

subduction zone. This is done by comparing BSM data to strain derived from GNSS data.

7.2 BSM Data

The are about forty PBO BSMs in the Pacific Northwest, and only five of them, B003, B004,

B005, B007, and B018, record noticeable deformation from SSEs. We limit our attention

to these five station in this study. The remaining stations either contain too much noise on

the timescale of SSEs or are too far away from the SSEs to observe any strain. Each of the

PBO BSMs are Gladwin four-component tensor strainmeters, which are about 2 m long, 8.7

cm in diameter, and are installed at depths of about 100 to 200 m. Each BSM contains

four extensometers, or gauges. Only three gauges are necessary to completely determine the
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Figure 7.1: Location of BSM and GNSS stations used in this study.

horizontal strain tensor, and the fourth gauge is included for redundancy. Gauges 1, 2, and

3 are oriented 60◦, 120◦, and 150◦ counterclockwise from gauge 0. The orientation of gauge

0 is recorded by a magnetic compass on the instrument.

We use the level 2 gauge data provided by UNAVCO at www.unavco.org, which has

undergone several post-processing steps. In the level 2 gauge data, a borehole curing trend

is removed by estimating and subtracting two exponential terms and a linear trend. Tidal

strains are removed by estimating and subtracting sinusoids with known tidal frequencies.

There is also a correction for barometric pressure because the normal stress imposed on

the surface by barometric pressure results in horizontal strains recorded by the BSM. The

barometric pressure correction is the observed barometric pressure at each site multiplied

by a best fitting scaling factor. Lastly, spurious offsets and outliers have been identified and

removed in the level 2 data product.

We denote the extension measured at gauge i as ei, and the horizontal strain tensor com-

ponents as εxx, εyy, and εxy, where x and y indicate the east and north direction, respectively.
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The extensions measured at BSMs are traditionally converted to areal strain, εa = εxx + εyy,

differential strain, εd = εxx − εyy, and engineering shear strain, εs = 2εxy. We follow this

convention and use εa, εd, and εs for comparing BSM data to GNSS derived strains. Using

θ0 to denote the orientation of gauge 0, in degrees north of east, these strain components

can be expressed in terms of the gauge measurements through the equation

 εa

εd

εs

 = 2K−1


1 cos(2θ0) sin(2θ0)

1 cos(2(θ0 + 60)) sin(2(θ0 + 60))

1 cos(2(θ0 + 120)) sin(2(θ0 + 120))

1 cos(2(θ0 + 150)) sin(2(θ0 + 150))


+ 

e0

e1

e2

e3

 , (7.1)

where “+” indicates the Moore-Penrose pseudoinverse and K is a coupling matrix describing

how the instrument strains relate to the crustal strains (Hart et al., 1996). The components

εa, εd, and εs represent crustal strains, and ei are instrument strains. We use a pseudoinverse

in eq. (7.1) because we have four gauge measurements, and the three strain components are

overdetermined. Following Gladwin and Hart (1985), we assume that BSMs are installed in

homogeneous, isotropic rock, allowing us to write the coupling matrix as

K =

 c 0 0

0 d 0

0 0 d

 , (7.2)

where c, and d are response factors that depend on the elastic properties of the instrument,

the grout, and surrounding rock. Based on the analysis of Gladwin and Hart (1985), we

use c = 1.5 and d = 3.0. UNAVCO uses these same response factors for their final data

products.

Local topographic or geologic features can cause K to have non-zero off diagonal elements.

If possible, the components of K should be determined in-situ by calibrating the BSM data

with a well known strain source, such as diurnal and semi-diurnal tides (Hart et al., 1996;

Roeloffs , 2010; Hodgkinson et al., 2013). Hart et al. (1996) calibrated a BSM at Pinyon Flat,

using the tidal strains recorded at a collocated laser strain meter. This calibration method

is, of course, not possible for most PBO BSMs. Roeloffs (2010) and Hodgkinson et al. (2013)

calibrated PBO BSMs using theoretical predictions of tidal strains (e.g., Agnew , 1997). This

approach is still not adequate for BSMs near large local bodies of water, which can make it

difficult to form an accurate theoretical estimate of tidal strains. As determined by Roeloffs

(2010), the five BSM stations considered in this paper are too close to the Straight of Juan de

Fuca to be accurately calibrated with tidal strains. Since in-situ calibration is not possible,
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we note that our choice for K is likely to be a significant source of error in the BSM data.

Another potential source of error is the orientation for θ0. It is possible that magnetic

minerals in the surrounding rock can give the compass used to orient the instrument an

incorrect reading.

7.3 GNSS derived strain

We compare the BSM strain components to transient strains estimated from GNSS data.

Here we consider transient strains to be any deviation from the secular strain rate. We use

daily GNSS displacement solutions for 94 continuous GNSS stations in the Pacific Northwest

(Figure 7.1). This data has also been made available through UNAVCO. We convert the

GNSS data to transient strains using Gaussian process regression (GPR) as described in

Hines and Hetland (2017b). With GPR, we select a prior spatio-temporal covariance model

for the geophysical signal that we want to recover. Following Hines and Hetland (2017b), we

assume that our prior for displacements is a Gaussian process with zero mean, and covariance

function described by

Cu((t, x), (t′, x′)) = φ2T (t, t′)X(x, x′), (7.3)

where T is the Wendland covariance function

T (t, t′) =

(
1− |t− t

′|
τ

)5

+

(
8|t− t′|2

τ 2
+

5|t− t′|
τ

+ 1

)
, (7.4)

and X is the squared exponential covariance function

X(~x, ~x′) = exp

(
−||~x− ~x′||22

2`2

)
. (7.5)

The hyperparameters φ, τ , and ` control the amplitude, characteristic time-scale, and char-

acteristic length-scale of the prior, respectively. Hines and Hetland (2017b) found that the

optimal hyperparameters for describing displacements from SSEs are roughly φ = 0.5 mm,

τ = 0.1 yr, and ` = 100 km. These parameters were chosen objectively using maximum

likelihood methods; however, based on our experience, this prior may not be sufficiently

flexible to described all the observed data. Consequently, we explore using lower values for

τ and ` and a higher value for φ. For each tested set of hyperparameters, we condition the

prior with the observed GNSS data and visually compare the posterior displacements to the

observations. We settle on the values φ = 1.0 mm, τ = 0.05 yr, and ` = 80 km. With this

final set of hyperparameters, we condition the prior with the GNSS data and then spatially

differentiate the posterior displacements to obtain transient strain.
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Figure 7.2: differential (left) and engineering shear (right) strains during the summer 2010 SSE observed at
BSMs (solid) and derived from GNSS data (dashed). The horizontal dotted lines are spaced by 0.1 micro-
strain. The shaded region around the GNSS derived strains show the one standard deviation confidence
interval. The dotted line for station B018 shows the BSM data using the optimal instrument orientation.
The shown BSM data has been detrended by estimating and removing a second-order polynomial from each
time series.
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7.4 Results

We compare the BSM data to GNSS derived strains for eight SSEs in the Puget Sound region.

The earliest SSE considered occurred in spring 2009 and the latest SSE occurred in winter

2017. The two datasets are in best agreement for the summer 2010 SSE, which is shown

in Figure 7.2. The data for the remaining SSEs are included at the end of this manuscript

in Figures 7.7 through 7.13. We only show the differential and engineering shear strains

because there is no clear signal in the areal strain for either the GNSS derived strains or the

BSM data. Roeloffs (2010) also expressed doubt in the areal strains measured at stations

B003, B004, B007, and B018 because the areal strains derived from different combinations of

gauges at these stations are not self consistent. Roeloffs (2010) also noted an inconsistency

in the differential strains at B003.

Station B004 records differential and engineering shear strains that are most consistent

with the GNSS derived strains. However, the initiation of SSE strains recorded at B004

tend to lag several days behind the GNSS derived strains. The strain rates recorded at B004

also tend to be greater than the GNSS derived strains. One possible explanation for this

discrepancy is that the GNSS station spacing is too wide to resolve a relatively sharp pulse

of strain from the SSE as it traverses along the subduction zone.

The engineering shear strain, but not the differential strain, recorded at B003 contain

a clear signal from each SSE that is consistent with the GNSS derived strains. Similar

to B004, the recorded strain rates exceed those predicted by the GNSS data. There are

many spurious features in the differential strains recorded at B003, which makes it difficult

determine whether or not that component contains signal from SSEs.

Stations B005 and B007, which are located within a few hundred meters of each other,

both show clear SSE signals in their engineering shear strains. However, the temporal pattern

of strain recorded at these stations are not consistent with the GNSS derived strains. For

the summer 2010 and summer 2011 SSEs, the GNSS derived strains predict a single positive

pulse of engineering shear strain at these locations, but both B005 and B007 record an

initially positive pulse that then becomes negative. We cannot explain this discrepancy with

mis-oriented instruments because both B005 and B007 would need to have nearly identical

orientation errors. If the negative pulse of engineering shear strain were a regional (&50 km

scale) feature, then it would have been recognized in the GNSS data. We then suspect that

the discrepancy can be explained with topographic of geologic features that may distort the

local strain field. While, we are not saying that the engineering shear strains at B005 and

B007 are erroneous, it is clear that they are inconsistent with the regional scale strains. The

differential strains at station B005 and B007 do not show any clear SSE signal, even though
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Figure 7.3: GNSS derived differential and engineering shear strains for station B018. The shaded blue regions
indicate the one standard deviation confidence interval. The shaded gray regions indicate times of strain
drops, which are the result of SSEs.

a signal is observed in the GNSS derived strains. This too could be due to distortion of the

strain field from local features.

The differential and engineering shear strains recorded at station B018 have notably

less noise than most BSMs. Nonetheless, the engineering shear strains at B018 are not

consistent with the GNSS derived strains. For example, BSM data shows a strain increase

from the summer 2010 SSE, and the GNSS derived strains predict a strain decrease with

about equal magnitude. We consider the possibility that this discrepancy is due to an error

in the instrument orientation, and we identify a new, optimal orientation for station B018.

We want to find the value for θ0 that causes the strain drops (or increases) recorded at B018

to best match the strain drops derived from GNSS data. We identify 11 strain drops in

the GNSS derived strains, which are due to SSEs in the Puget Sound region and in Oregon

(Figure 7.3). We define strain drops as the total strain change over the hand-selected intervals
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Figure 7.4: Gauge readings at station B018. The gray shaded regions indicate times of strain drops from
Figure 7.3.

shown in Figure 7.3. The strain drops for each event are shown in Figure 7.5. For each tested

θ0, we use eq. (7.1) to convert the strain drops recorded at each gauge (Figure 7.4) to the

differential and engineering shear strain drops. We then use the L2 norm of the residuals, the

difference between the BSM strain drops and the GNSS derived strain drops, as the misfit

metric. We find an optimal value of θ0 to be 293◦ east of north, which can be compared

to the recorded value of 267◦ (Figure 7.6). With the new orientation, the engineering shear

strain recorded at B018 decreases during the summer 2010 SSE, which is now consistent

with the GNSS data (Figure 7.2). The differential strains at B018 are roughly consistent

with the GNSS derived strains, regardless of whether the recorded θ0 or optimal θ0 is used.

7.5 Conclusion

We have compared BSM data to GNSS derived strains for eight of the past SSEs in the Puget

Sound region. The summer 2010 SSE produced the clearest signal in both the BSM data

and GNSS derived strain, and yet it is still difficult to reconcile the two datasets. Of the five

BSM stations that record strain from SSEs, only one of them, B004, records differential and

engineering shear strains that are consistently in agreement with the GNSS derived strains.
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Figure 7.5: GNSS derived strain drops at station B018 during the 11 events identified in Figure 7.3 (blue
dots), BSM strain drops using the recorded orientation for B018 (orange dots), and BSM strain drops using
the optimal orientation for B018 (green dots).
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Figure 7.6: Misfit as a function of instrument orientation for station B018.

For station B003, only the engineering shear strains are consistent with the GNSS data.

Both the differential and engineering shear strains recorded at B018 can be made to agree

with the GNSS data when assuming a new instrument orientation. For station B005 and

B007 it may be necessary to use a coupling matrix other than the isotropic one considered

in this study. We are unaware of a reliable calibration method for these stations, since tidal

calibration is not possible. In general, we urge caution when attempting to use BSM data

to describe regional strains.
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Figure 7.7: Same as Figure 7.2, but for the spring 2009 SSE.
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Figure 7.8: Same as Figure 7.2, but for the summer 2011 SSE.
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Figure 7.9: Same as Figure 7.2, but for the summer 2012 SSE.
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Figure 7.10: Same as Figure 7.2, but for the fall 2013 SSE.
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Figure 7.11: Same as Figure 7.2, but for the fall 2014 SSE.
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Figure 7.12: Same as Figure 7.2, but for the winter 2015-2016 SSE.
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Figure 7.13: Same as Figure 7.2, but for the winter 2017 SSE.
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CHAPTER 8

Conclusion

Transient deformation, resulting from either aseismic fault slip or distributed viscous defor-

mation, offers valuable insight into the mechanical behavior of the crust and upper mantle.

In this dissertation I provided guidance on detecting and interpreting transient deformation.

In Chapter 2, I assessed the accuracy of existing constraints on the strength of the crust and

upper mantle determined from interseismic deformation. I have concluded that the meth-

ods typically used to infer lithospheric strength from interseismic deformation are biased

towards finding a more viscous lower crust and a less viscous upper mantle. In Chapter

3, I introduced a method for discerning the mechanisms driving postseismic deformation.

Chapter 4 is an application of that method to postseismic deformation following the 2010 El

Mayor-Cucapah earthquake in Baja California. I found that a Burgers rheology upper man-

tle is necessary to describe far-field postseismic deformation. This finding helps to reconcile

a discrepancy between the upper mantle rheology inferred from postseismic studies and in-

terseismic studies. In general, studies of interseismic deformation find that the upper mantle

is significantly stronger than estimates made from postseismic studies. My inferred Burgers

rheology reconciles this discrepancy because I can explain interseimic deformation with the

steady-state viscosity, and postseismic deformation, which occurs over shorter timescales,

can be explained with the transient viscosity.

Chapters 5, 6, and 7 are generally on detecting geophysical signal in geodetic data.

Before geophysical signal can be identified, the noise in geodetic data must be quantified.

In Chapter 5, I pointed out a bias in the maximum likelihood estimation (MLE) method

typically used for quantifying noise in geodetic data. I then demonstrated the efficacy of the

restricted maximum likelihood (REML) method as an unbiased alternative. In Chapter 6,

I showed that Gaussian process regression (GPR) is a powerful tool for detecting transient

geophysical signal in GNSS data. This method is able to successfully identify strain from

slow slip events, and it provides an unprecedented view of how that strain evolves over time.

These estimates of transient strain reveal features in the GNSS data that could potentially

be used to constrain our understanding of how faults behave. In Chapter 7, I analyzed data
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from borehole strain meters (BSMs) and I found that it is generally difficult to reconcile

BSM data with the regional strains derived from GNSS data. Of the several dozen BSMs in

the Pacific Northwest, only two stations record strain that is consistent with GNSS data.

8.1 Future work

8.1.1 Revisiting Hines and Hetland 2015

If postseismic deformation is being driven by viscous relaxation of coseismic stresses, then

it can be used to infer the strength of the crust and upper mantle. On the other hand,

if postseismic deformation is the result of afterslip, then it can be used to constrain the

frictional properties of faults. The complication is that it is unclear which of the mechanisms

is at play. The geodetic community thus needs a method for definitively discerning the

mechanisms driving postseismic deformation, and I proposed such a method in Chapter 3.

This method, which I refer to as the Hines and Hetland (2015) method, is not without its

own complications, and I now elaborate on some areas where the method can be improved.

The Hines and Hetland (2015) method is based on an approximation for early postseis-

mic deformation. This approximation takes a matter of seconds to evaluate, which makes

it tractable to estimate fault slip and lithospheric viscosity from observable deformation.

However, the approximation requires a precomputed set of elastic and viscoelastic Green’s

functions. Evaluating these Green’s functions turns out to be the largest computational

burden for the Hines and Hetland (2015) method because they must be evaluated numeri-

cally with finite element software. Not only is it computationally expensive to perform the

finite element modeling, there is also the laborious task of meshing. The Hines and Hetland

(2015) method is thus quite impractical because of its reliance on finite element modeling.

Recently, Barbot et al. (2017) has derived an analytical solution for displacements resulting

from anelastic deformation in a three-dimensional half-space. One could conceivably use

the solution from Barbot et al. (2017) to generate the viscoelastic Green’s functions used in

the Hines and Hetland (2015) method. The elastic Green’s functions can be generated with

the well known analytical solution from Okada (1992). This would completely eliminate the

need for finite element modeling in the Hines and Hetland (2015) method.

Another complication with the Hines and Hetland (2015) method is that the approxi-

mation for early postseismic deformation breaks down once coseismic stresses substantially

decay. If the upper mantle has a viscosity of 1018 Pa·s, which is consistent with the com-

pilation of estimated upper mantle viscosities from (Thatcher and Pollitz , 2008), then the

approximation should break down after about one year. In Chapter 4, where I apply the

Hines and Hetland (2015) method to postseismic data following the El Mayor-Cucapah
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earthquake, I indeed found that the approximation broke down 0.8 years after the earth-

quake. Unfortunately, this meant that the remaining 4.2 years could not be utilized by

the Hines and Hetland (2015) method. Clearly, the Hines and Hetland (2015) needs to be

improved so that it is capable of modeling all the available postseismic data. Perhaps this

can be accomplished with a higher order approximation that is still numerically efficient to

evaluate.

8.1.2 Geophysical applications for Gaussian processes

In Chapter 6, I used GPR for the purpose of estimating transient strain from GNSS data;

however, I cannot understate the wide range of additional geophysical problems that GPR

can address. I believe that GPR can be a valuable tool for assimilating different types of

geodetic data. In Chapter 7, I used GPR to compare GNSS data to data from BSMs. While

much of the BSM data contained spurious features, I did note that BSMs can resolve the

timing of geophysical events with greater precision than the GNSS data. It may then be

advantageous to combine GNSS and BSM data into a single estimate of transient strain.

GNSS and BSM data can be assimilated by recursively performing GPR. Specifically, the

posterior estimate of transient strain derived from GNSS data can be conditioned again with

the BSM data, forming a new posterior incorporating both datasets.

I also believe that GPR can be a valuable tool for regularizing inverse problems. One

common approach to deal with ill-posed tomographic inverse problems is to impose smooth-

ness on the solution (Aster et al., 2011). This is done by assuming that the Laplacian of

the model parameters is close to zero, and there is usually no physical justification for this

assumption. An alternative to Laplacian smoothing could be to assume a prior Gaussian

process for the unknown model parameters. Since there are a wide range of Gaussian pro-

cesses available, the choice of prior can be tailored to be appropriate for the particular inverse

problem. For example, an inversion for coseismic slip can use a prior Gaussian process which

has been constrained so that stress drops are geophysically reasonable.

In addition to describing geophysical signal, Gaussian processes can also be used to

characterize noise in geodetic data. While I have focused on characterizing noise in GNSS

data in Chapters 5 and 6, the same analysis could be used to describe the temporal noise

in BSM data and the spatially correlated noise in interferometric synthetic aperture radar

(InSAR) data.
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