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ABSTRACT 

 

 

Kinases are important enzymes in cellular signaling with their expression and 

activity tightly regulated.  Dysregulated kinase activity can lead to numerous disease 

states such as cancer. Inhibiting aberrant kinase activity can slow cancer cell growth or 

cause cancer cell death.  Thus, kinase inhibitors are well-validated drugs for cancer 

treatment. To date, nearly all kinase inhibitors approved for cancer treatment have been 

discovered using hypothesis driven target-based approaches. This is in sharp contrast to 

other cancer drug classes which have recently seen an increase in approvals and new 

chemical entities whose leads were discovered through phenotypic-based approaches. 

Phenotypic screening enables the discovery of novel mechanisms of action. Furthermore, 

cancer drug discovery is steadily moving toward strategically combining target- and 

phenotypic-based approaches with success in multiple drug classes. Kinase inhibitor 

cancer drugs lag behind other drug classes in this regard due, in part, to the use of poor 

phenotypic models.  Cancer cell lines, the most common model, do not recapitulate cells 

found in tumors, and kinase signaling pathways are very sensitive to the context of 

cellular environment. For kinase inhibitor drugs to benefit from integrating target- and 

phenotypic-based approaches, creative strategies combining kinase target data with 

clinically relevant models will be needed. Versatile small molecule probes will be needed 

to investigate kinase targets identified from such approaches. 

Herein, I describe a library of profiled kinase inhibitors with diverse chemistries 

and biochemical activities for use in phenotypic assays. I use a machine learning-based 

algorithm to relate the compound inhibition profiles across 237 kinases to their cell-based 

activities.  This approach enables the identification of important kinases in multiple cell 

lines of sarcoma, a class of rare and understudied cancers.  In these screens I identified 

Protein Kinase D (PRKD) as a putative novel target in synovial sarcoma.  A synergy 
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screen of a synovial sarcoma cell line in the presence of a PRKD inhibitor vastly changed 

the targets identified. These new targets, such as Cyclin Dependent Kinase (CDK) and 

AKT, displayed synergism when inhibited along with PRKD. I then apply this framework 

in advanced models of triple negative breast cancer (TNBC).  Here, I use ten TNBC 

patient-derived xenografts (PDXs) to create short-term ex vivo 3D cell cultures from 

harvested tumors that are amenable for high-throughput screening.  The profiled kinase 

inhibitor screen of these cultures identified multiple kinases broadly important in TNBC. 

Two identified kinase groups, FES/FER and MARK/SIK, have early emergent genomic 

evidence as potential targets in TNBC.  My pharmacologically-based findings suggest 

these kinases as actionable targets.  Also, I cluster these PDXs using the kinase target 

scores obtained.  Lastly, I describe the development of an irreversible small molecule 

fluorescent probe for use in localization studies.  This probe was found to exhibit a signal 

in fluorescent microscopy specific to c-SRC, a kinase shown to be a TNBC target in 

previous studies and in the above PDX screens. I found that this probe displayed turn-on 

fluorescence, could be used in live-cell microscopy, did not require washing, and was 

compatible with live-cell super-resolution stimulated emission depletion (STED) 

microscopy. I then use this probe to interrogate c-SRC localization in multiple TNBC cell 

lines and track localization changes in response to drug treatment. This work highlights 

that understanding kinase chemical biology on both molecular and global levels will be 

needed to continue investigating these bona fide cancer targets. 
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CHAPTER I 

Small Molecule Kinase Inhibitors in Target- and Phenotypic-Based Cancer Drug 

Discovery 

 

Abstract 

 Kinases are important enzymes in cellular signaling with their expression and 

activity tightly regulated.  Dysregulated kinases can lead to numerous disease states such 

as cancer. Kinase inhibitors have emerged as a well-validated means of cancer treatment 

by inhibiting aberrant kinase activity, slowing cancer cell growth, or causing cancer cell 

death.  To date, nearly all kinase inhibitors approved for cancer treatment have been 

discovered using target-based approaches. This chapter briefly details the limitations of 

target-based approaches, especially as they pertain to kinase inhibitors in cancer.  I then 

discuss how, despite its promise, phenotypic-based drug discovery has failed to 

significantly predict clinical success of these drugs in cancer.  I then describe how 

combining target- and phenotypic-based approaches has recently led to increased 

approval of drugs and how kinase inhibitor drug discovery can stand to benefit.  Lastly, I 

briefly touch on how small molecule kinase inhibitor probes are used to understand the 

role of these targets in cancer.  

 

Kinases in Cellular Signaling and Disease 

 Post-translational phosphorylation of proteins, lipids, or other cellular 

components, has long been established as a pillar of cellular signaling.
1, 2

 These events 

are regulated by kinases, enzymes which catalyze the transfer of the γ-phosphate of 

adenosine triphosphate (ATP) to a given substrate (Figure 1.1A).
3
  The phosphorylation 

status of a these substrates can then alter their function and/or activity which can 

propagate a signal.  The fate of these signals can have a wide range of effects on the cell 

(Figure 1.1B)  The most obvious examples are kinases phosphorylating other kinases, 

increasing or decreasing their catalytic activity which then alters the flux of a given 
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cellular signaling pathway.
3
  This phospho-signaling network is tightly regulated by 518 

protein kinases and 156 phosphatases.
1, 3, 4

 Despite this, kinases can become dysregulated 

through activating mutations, overexpression, or absence of negative regulators. Such 

events can result in dysregulated cellular signaling which can lead to disease states.
5
  

With dysregulated cellular signaling often tied to cancer, the role of kinases has been a 

focus of research in these diseases.
5
  Often, this research will tie a specific kinase, or 

group of kinases, as important in progression of a given cancer subtype.
6, 7

  As such, 

considerable effort has been invested into developing drugs that target such kinases. 

 

 

 

 

 

Figure 1.1: Overview of kinases in cellular signaling. A) Cartoon depicting a kinase phosphorylating 

substrate to propagate a cellular signal. B) End results of cellular signaling pathways propagated by 

kinases. Dysregulation of these pathways result in disease states such as cancer. 
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Kinase Inhibitors in Target-Based Cancer Drug Discovery  

In many ways, kinases are an ideal target for cancer drug development. They have 

a well-defined ATP-binding pocket where small molecules can tightly bind, are amenable 

for crystal structures with bound inhibitors, and inhibition/binding assays are relatively 

easy to perform. For these reasons and others, most therapeutic kinase inhibitors have 

been developed using target-based approaches (Figure 1.2).
8, 9

 In target-based screening, 

a target of a disease is known, and biochemical assays of this purified target can be 

performed to identify and optimize lead drug compounds.  This often leads to potent 

drugs for the target in question. The case of imatinib (Gleevec) is only one example of 

successful targeted-based kinase inhibitor drug discovery.
10, 11

  Imatinib was FDA-

approved in 2001 for the treatment of chronic myelogenous leukemia (CML), a disease in 

which a chromosomal translocation results in the BCR-ABL fusion protein with the 

constitutively active kinase domain of c-ABL.
10, 11

  Optimized to potently and selectively 

inhibit BCR-ABL in an ATP-competitive manner, imatinib was one of the first rationally 

designed small molecule molecularly targeted cancer therapies.
11

  This success has led to 

target-based screening as the dominant strategy for developing therapeutic kinase 

inhibitors.
9, 12

  Indeed, 26/27 approved kinase inhibitors are the result of target-based 

cancer drug development.
8
 

Despite this success, developing kinase inhibitor cancer drugs with target-based 

screening is not without challenges and limitations. First, the biochemical assays of a 

target may not accurately model the target’s behavior in the cell, where the presence of 

cofactors or post-translational modifications can affect inhibitor binding.
13, 14

  Also, many 

of these biochemical assays only use a single domain of multi-domain complexes due to 

the difficulty in purification of many full length proteins.
13

 In the case of kinase 

biochemical assays, usually only the kinase domain is used despite many kinases 

possessing autoregulatory domains.
13, 15

 To account for these limitations, cell-based 

assays have been used.  A recent review details the available cell-based assays for kinase 

drug discovery.
14

   

Cases where a single kinase drives a cancer in which an inhibitor of said kinase 

results in effective treatment (i.e. imatinib treatment of CML) are few and far between.
9, 

12
  Instead, target kinases in cancer are often nodes of complex signaling networks in 
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which their inhibition can be compensated through crosstalk signaling, feedback, or 

redundancy.
9, 16

  As such, highly selective kinase inhibitors often have less of an effect 

than predicted in a given disease.
17

 In fact, it may be more beneficial to use multi-

targeted kinase inhibitor therapies for cancer treatment to overcome these obstacles.
17

 

Additionally, the efficacy of some approved kinase inhibitors developed with target-

based approaches was found to be due to cryptic off-targets.  For example, sorafenib 

(Nexavar) was developed as a RAF inhibitor but was found to be most efficacious in 

some cancers by inhibiting VEGFR2, independent of RAF mutation status.
3, 18

 

Elucidating the kinase, or collection of kinases, important in the efficacy of an inhibitor is 

a blind spot of target-based approaches which rely entirely on the strength of the disease-

target hypothesis. 

 

 

 

 

 

In practice, target-based drug discovery is rationally informed by phenotypic 

assays as a means to form hypotheses.  This requires appropriate selection of phenotypic 

models used to establish rationale for pursuit of a given target(s).  A recent review 

identified that lack of a clear link between pursued nominal targets and mechanism-based 

phenotypic models was a common trait amongst failed drugs stemming from target-based 

drug discovery.
9
 Despite target-based discovery being a hypothesis-driven and logical 

approach it may be oversimplified in many cases. This is especially true with drugs of 

kinases, due to their compensatory signaling pathways.   

  

Figure 1.2: Timeline of FDA approval small molecule kinase inhibitor drugs for cancer treatment.  In 

green are inhibitors discovered using primarily target-based approaches. In red are inhibitors 

discovered using phenotypic-based approaches. 
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Phenotypic Screens in Cancer Drug Discovery 

In light of the above there has been growing interest in phenotypic screening, 

where leads and/or targets are initially identified on the basis of a desired functional 

effect without regard for mechanism of action.
9, 17

  Also, phenotypic screens with target-

agnostic approaches can benefit from the potential of novel target discoveries that might 

not be found otherwise.  In 2011, Swinney and Anthony found that phenotypic screening 

resulted in higher rates in the approval of new chemical entities compared to the more 

prevalent target-based screening approaches.
19

   

The MEK inhibitor trametinib (Mekinist) emerged as the first approved kinase 

inhibitor for cancer discovered in a de novo phenotypic screen.
20

 However, phenotypic 

screening has not impacted the number of approved kinase inhibitor cancer drugs, in 

contrast to other cancer drug classes. Indeed, trametinib is the only example.  Excluding 

kinase inhibitors, from 1999-2013 there were more approved cancer drugs originating 

from phenotypic-based approaches than target-based approaches (Figure 1.3).
9
  

However, considering all cancer drug classes, targeted-based drug discovery was still by 

far the dominant origin of new chemical entities in phase II/III clinical cancer trials in 

2013 (Figure 1.3).
9
  This highlights that despite the success of phenotypic screening, 

there is still a large focus in target-based screening in cancer drug discovery.  

 

 

Figure 1.3: Clinical cancer drugs categorized by the approach in their lead discovery. Left) FDA-approved 

small molecule cancer drugs (from 1999-2013). Right) New chemical entities in phase II/III clinical trials 

(in 2013) as categorized in a cancer drug analysis by Moffat et al.
9
  Numbers indicate the number of drugs 

in a given category.  
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Phenotypic-based drug discovery, despite its promise, has some serious 

limitations in cancer. Phenotypic screens in cancer often utilize cancer cell lines as the 

systems in which these studies are performed.
9
  This is mostly due to the fact that cancer 

cell lines are easy to handle and readily amenable for high-throughput screening.  

However, cancer cell lines in culture are themselves limited in their ability to model cells 

found in tumors.
9
  Cancer cell lines have shown to be poor predictors of clinical efficacy 

based on results in both in vitro as well as in vivo preclinical studies.
9, 21, 22

  These 

concerns have likely delayed the wide scale adoption of phenotypic screening in the field 

of cancer drug discovery. Despite these obstacles, incremental improvements in the 

modeling of the tumor microenvironment have been made.
21, 23, 24

  Improvements such as 

3D culture and patient-derived xenografts, are described and utilized in my work 

described in Chapter III. 

Another obstacle inherent to phenotypic screening is the identification of the 

target or combination of targets through which a lead compound exerts its effect.  Failing 

to identify the targets of a lead compound makes it extremely difficult to chemically 

optimize that lead.  The difficulty of this identification has thus limited the potential of 

phenotypic screening in cancer, as well as in other disease types.
12

  Much effort has been 

spent in developing methodologies to identify the targets of hits from phenotypic 

approaches.   

One strategy is to directly detect the target(s) through the use of affinity 

purification.
12

  In one example, the identified lead is immobilized via a covalent linker 

attached to a solid scaffold material which is then exposed to whole-cell lysate.
25

  The 

target(s) then bind the lead drug, is eluted, and then identified through mass spectrometry 

and/or sequencing.  This approach was used in the discovery of the target of trametinib, 

MEK, and was done so in a purely target agnostic manner.
20

 One problem with this 

strategy is that it can be difficult to detect low abundance targets and targets with weak 

binding affinity for the lead.
26

 A systems-based interference approach can also be used. 

In these cases, treatment of a phenotypic model, i.e. a cancer cell line, will bring about 

changes such as alterations in cellular signaling pathways through changes in protein 

levels or post-translational modifications.
27, 28

  These changes, which can be detected at 

the proteome level using mass spectrometry or at the gene level using RNA sequencing, 
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can provide clues to a lead compound’s mechanism of action.  In the case of RNA 

sequencing, care must be taken in interpreting the results as mRNA expression is not 

always a function of protein level and activity.
29

  This is especially true of kinases, whose 

activity can widely change depending on multiple phosphorylation states.  Alternative 

strategies in identifying targets in phenotypic screening will help to push forward the 

potential of this screening approach.  In Chapter II, I describe the use of a recently 

described machine learning methodology to identify targets of lead compounds in 

phenotypic screening, and use this strategy in cancer.
17

 

 

Selecting Readouts for Phenotypic Screening in Cancer 

Selection of the phenotypic model used in phenotypic screening is the most 

important part in the experimental design of these campaigns. An inappropriate model 

and readout can doom a screening study before it even begins. As described above, 

cancer cell lines, despite their disadvantages, have been the model of choice for drug 

screening in cancer.  In most screens with cancer cell lines, the most common phenotypic 

output is cell viability or cell cytotoxicity.
9
  The widespread use of these readouts is due 

to the ease in performing their respective assays.  While these outputs have resulted in 

successful discovery of several cancer drugs, they likely cause a bias toward highly 

druggable mechanisms of action, i.e. DNA modulators or microtubule-targeting drugs.
9
 

Thus, many mechanisms of action are constantly being rediscovered using phenotypic 

screening despite its inherent ability to discover novel mechanisms of action.  

Furthermore, there are many cancer specific activities that can be altered via drugs 

beyond simple cancer cell viability, such as metastasis or invasion.   

To break from this pattern, alternative phenotypic readouts can be used.  In the 

example of invasion, high throughput three-dimensional invasion assays have been 

leveraged to identify potential drugs that modulate this activity.
30-32

   In terms of cancer 

cell motility, simple scratch-wound healing assays can be used in a high throughput 

manner as well.
30, 32

  These readouts, which are widely used, add new dimensions to 

phenotypic screening efforts by identifying leads that would not be discovered strictly 

using cell viability. 
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Ideally, the phenotypic readout of a phenotypic screen should be mechanistically 

tied to the disease state in question.
9
  For example, if a specific signaling pathway is 

known to be tightly correlated to the progression of a cancer subtype, a phenotypic 

readout which measures the flux of that pathway is extremely valuable in identifying the 

most promising leads.
9
  The same can be said for phenotypic readouts which evaluate 

gene expression or protein phosphorylation that are integral to the progression of a given 

cancer.
9
 For example, trametinib was discovered through phenotypic screening using 

expression of CDK4/6 inhibitor p15
INK4b

, a negative regulator in cancer cell cycle 

progression, as the readout.
33

  In another example of screening mechanistically relevant 

cancer phenotypes, one group used an assay that measures the disruption of a fusion 

oncoprotein complex responsible for synovial sarcoma tumorigenesis for phenotypic 

screening.
34

  Examples of drugs discovered using these mechanistically informed and 

relevant phenotypic outputs can be found in a recent review.
9
  

 

Combining Target and Phenotypic-based Screening  

Moffat et al. recently reviewed the roles of target-based and phenotypic-based 

cancer drug discovery in newly approved drugs, including kinase inhibitors.
9
  One major 

conclusion drawn from the authors was that despite early success, the approval rates of 

new molecular entity cancer drugs from pure target-based approaches have decreased.  

This was also found in an earlier review by Swinney and Anthony for drugs as a whole.
19

 

Also, despite the promise of phenotypic-based strategies only a handful of drugs have 

been discovered using them in the purest sense in target-agnostic studies.
9
 Although pure-

phenotypic screening can directly identify the most efficacious compounds, figuring out 

how these compounds exert their effects is a challenge. Instead, Moffat et al. found that 

recently approved cancer drugs have been discovered using a combination of the two 

approaches in ways that complement each other.
9
 They concluded that the future of 

cancer drug discovery will continue to move, and should, toward “mechanistically-

informed phenotypic drug discovery.”9
  In other words, screens of compounds with 

known mechanisms of action are assessed and optimized using clinically relevant 

phenotypic models.  These mechanisms of action can then be directly tied to the observed 

phenotype. As described above, the phenotypic output should ideally be mechanistically 
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tied to the disease state in question. Comparison of the two approaches can show how 

strategic combination can have a synergistic effect on cancer drug discovery (Figure 

1.4).   

 

 

Figure 1.4: Overview of target-based and phenotypic-based approaches in drug discovery screening. 

 

Despite continuing trends of combined target- and phenotypic-based approaches 

in cancer drug discovery, recently approved kinase inhibitors have still been the result of 

strictly target-based lead discovery (Figure 1.2).
8
  This may be limiting the discovery of 

approved kinase inhibitors with novel mechanisms of action. Encouragingly, a number of 

kinase inhibitors using phenotypic or partial-phenotypic approaches have made it to late 
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clinical trials (Figure 1.3).
9
  With multiple kinase profiling services available and the 

plethora of kinase inhibition data in the literature, kinase inhibitors are primed for this 

integrative approach. Strategically combining kinase inhibitor target data with clinically 

relevant phenotypes could be a boon for the field.  Recently, Al-Ali et al. used such an 

approach to identify new kinase targets and lead compounds that promote neuron growth 

in a proof-of-concept study.
17

  It is easy to envision how kinase inhibitors may benefit 

using such an approach in cancer.  I describe an approach inspired by this study in 

Chapter II.   

 

Investigating Kinase Targets using Small Molecule Kinase Inhibitors as Chemical 

Probes 

 Small molecule inhibitors are almost invariably used to assess the potential of 

kinase cancer targets identified with the above described approaches.
3, 15

 Aside from 

demonstrating how actionable a given kinase is as a therapeutic target, small molecule 

kinase inhibitors are widely used in basic chemical biology studies in drug discovery.  

Small molecules as kinase probes are important as they can inhibit the catalytic domain 

of multi-domain kinases without interfering with the other domains, as would be the case 

with genetic techniques such as RNAi.
1
  Based on the type of studies undertaken in drug 

discovery projects, the needs for the type of kinase inhibitors may vary. These needs can 

range from inhibitors that are selective or promiscuous, to inhibitors that bind a certain 

combination of kinases, or inhibit a particular kinase family.
35, 36

 

With respect to using inhibitors selective for a given kinase, or group of kinases, 

there are significant challenges.  Many kinase inhibitors bind competitively in the ATP-

binding site, which is highly conserved across the kinome (Figure 1.5A).
3, 37

 This high 

conservation makes the use of small molecules to inhibit target kinases, and only target 

kinases, difficult.  These ATP-competitive kinase inhibitors often bind to the conserved 

hinge region, which connects the N-terminal and C-terminal kinase lobes, forming tight 

hydrogen bonds with the inhibitor.
37

  Through these hydrogen bonds and utilizing van der 

Waals interactions within the pocket, many ATP-competitive inhibitors can bind 

potently.
37

 However, as our understanding of kinase chemical biology has increased so 

too has our ability to develop inhibitors with desired selectivities. Selective inhibitors of 
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kinases will often take advantage of variable features within the kinase domain (Figure 

1.5B). These features include the position of the activation loop, αC-helix, and 

phosphate-binding loop (P-loop), which can allow for differing inhibitor binding modes 

(i.e. binding of active or inactive kinase conformations).
35, 37-39

 Other strategies can range 

from inhibitors that are allosteric, bivalent, bind the substrate site, and bind covalently 

through non-conserved cysteines. 
20, 40-42

 

 

 

 

 

 

 

 

Understanding these nuances of small molecule kinase inhibitor probes go beyond 

use of simply perturbing target kinase catalytic function.
44

  These strategies can be 

applied for other types of probes that aid in understanding kinase chemical biology in a 

given context.  For example, synthesis of a selective kinase probe with an attached azide 

can be used in click chemistry experiments for capture and identification of kinase 

substrates in the cell.
45

  Another example is the design of small molecule fluorescent 

probes for live-cell cellular localization studies of a particular kinase.
46

  In latter case, 

Figure 1.5: A representative kinase domain bound to ATP-γ-S (red). A) A surface depiction 

highlighting the highly conserved ATP-binding pocket in yellow. B) A cartoon depiction of key 

features the representative kinase domain. The hinge region (blue), activation loop (purple), P-loop 

(yellow), and αC-helix (cyan) are highlighted as structural features used confer kinase selectivity on 

small molecule inhibitors. (PDB: 3DQX) 
43
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achieving selectivity is extremely important so that any fluorescent signal can be 

attributed to the kinase in question. Strategic and/or alternative strategies are needed to 

achieve the selectivity required and to enhance the scope of fluorescent kinase probes in 

microscopy.  In Chapter IV, I describe such alternative strategies for designing new 

irreversible fluorescent kinase probes and their use. Expanding the scope of kinase 

probes, both fluorescent and otherwise, will continue to further our understanding of 

these bona fide cancer targets. 

 

Conclusions 

  The kinase inhibitor class of cancer drugs has overwhelmingly been the result of 

target-based drug discovery.  While this has given medicine a myriad of cancer drugs this 

has likely limited the discovery kinase inhibitors with novel mechanisms of action. 

Indeed, only one kinase inhibitor has been approved whose lead was discovered in a 

phenotypic screen.  This is in sharp contrast to other cancer drug classes in which the 

number of approvals resulting from phenotypic and phenotypic/target hybrid approaches 

have increased in recent years.  Strategic ways to combine kinase target data with 

clinically relevant cancer phenotype models and readouts would aid in identifying novel 

targets and lead compounds.  Phenotypes that are directly related to the progression of a 

specific cancer subtype, if appropriately modeled, will enable phenotypic screening to 

identify more clinically relevant targets. These novel targets that would be identified will 

then need to be further explored using small molecule kinase inhibitors as chemical 

probes.  Expanding the scope of such probes by demonstrating new methods of achieving 

desired selectivity will always be beneficial to basic science research of kinases in 

general.  A clear understanding of individual kinase chemical biology as well as the 

kinome at large will be valuable in continuing kinase inhibitors as an important class of 

cancer therapeutics. 
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CHAPTER II 

Target Identification in Sarcomas using Machine Learning and a Profiled Kinase 

Inhibitor Library 

 

Abstract 

Protein kinases are established and attractive therapeutic targets in oncology. 

Sarcomas are mesenchymal cancers for which few therapeutic targets are known. Here, I 

screen a library of kinase inhibitors with diverse chemistries and biochemical activities in 

a phenotypic assay using a variety of sarcoma cell lines. I use a previously described 

machine learning-based algorithm to relate the compound inhibition profiles across 237 

kinases to their cell-based activities. Using this method, I identified Protein Kinase D 

(PRKD) as a putative novel target kinase in synovial sarcoma cell lines whereby its 

inhibition leads to a decrease in cell proliferation. I perform a synergy screen of synovial 

sarcoma cells in presence of a PRKD inhibitor to identify kinases whose co-inhibition 

with PRKD may synergistically inhibit synovial sarcoma cell proliferation. In this second 

screen, I identified Cyclin Dependent Kinase (CDK) and AKT kinase as targets with 

increased target scoring in the machine learning algorithm.  Using selective clinical 

inhibitors of these kinases, I confirmed that their inhibition with PRKD synergistically 

reduced synovial sarcoma cell proliferation as defined by Chou-Talalay.  Together, this 

approach provides a promising framework to identify new targets of rare cancers and a 

novel methodology to identify new combinational strategies for treatment. This chapter is 

part of my overarching work in strategically combining phenotypic- and target-based 

screening for investigating cancer.
†‡

 

 

                                                 
†
 Curation of inhibitor profiling data, kinase grouping, and kinase scoring using a machine learning 

algorithm was performed by Hassan Al-Ali (University of Miami). 
‡
 Western blots were obtained with the help of Zhi Fen Wu (University of Miami). 
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Introduction 

Phenotypic screening is a promising approach for drug discovery, in part due to 

its ability to identify promising leads without a priori knowledge of drug targets.
1
 

Identifying targets is a challenging task, particularly in cancer, where drug sensitivities 

consistently show poor correlation with gene expression and genomic mutational 

analyses.
2
 Nevertheless, target-centric approaches are important for drug development 

activities, including lead optimization, mechanistic investigation, and development of 

biomarkers for clinical studies. As discussed in Chapter I, strategies that combine both 

approaches may thus be warranted for efficient identification of both promising lead 

compounds and effective targets. 

A small molecule library with comprehensive target binding and/or inhibition data 

would prove instrumental in combining phenotypic- and target-screening to identify 

targets in diseases.  The published kinase inhibitor set 1 (PKIS1) is a publically available 

collection of 360 small molecule kinase inhibitors that have been previously published by 

scientists at GlaxoSmithKline.
3, 4

 The PKIS compound collection is an open source drug 

discovery effort with publically available biochemical and cellular screening data. 

Significantly, each of the 360 inhibitors within the PKIS has been profiled against a panel 

of 220 kinases at two concentrations (0.1 and 1 µM).
3,

 
4
 The small molecule kinase 

inhibitors consist of >20 diverse chemotypes that have activity for 217 of the 220 kinases 

profiled.
3, 4

 The public availability of the profiling data matrix enables use of this library 

to identify druggable targets using phenotypic screens. An extension of the PKIS1, the 

PKIS2, was also briefly made available, and was comprised of 523 kinase inhibitors 

profiled against the entire kinome at 1 µM.  Additionally, several kinase inhibitor 

libraries are commercially available which contain a number of compounds with 

published kinase binding and/or inhibition data. Curating the published data of the 

inhibitors in these commercial libraries could be combined with open source libraries like 

the PKIS.  This would form a broad kinase inhibitor library with comprehensive kinase 

inhibition data.  Based on previous success of target identification in axon repair studies 

using only the PKIS1 data set with this strategy, an expanded profiled library such as the 

one proposed could be useful in target identification in cancer.
5
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Sarcomas are cancers of mesenchymal origin that, while common in animals, 

account for less than one percent of human cancer diagnoses yearly; however, over 20% 

of pediatric cancers are sarcomas.
6-10

 Protein kinases have emerged as a promising target 

for cancer drug discovery as many tumors, including sarcomas, exhibit aberrant kinase 

signaling.
11

 Many kinase inhibitors approved for other cancers have been studied in 

sarcoma clinical and pre-clinical experiments.
12-16

 As an encouraging example, imatinib 

(Gleevec), a BCR-ABL tyrosine kinase inhibitor that was originally developed by 

Novartis to treat chronic myeloid leukemia, was approved in 2002 for the treatment of 

metastatic gastrointestinal stromal tumor (GIST).
17

 This successful repurposing was 

possible because imatinib was known to also inhibit c-KIT tyrosine kinase.
18

  Prior 

research had identified c-KIT activation through a gain-of-function mutation as crucial to 

the tumorigenesis of GIST and led to the study of imatinib for anti-GIST activity.
19

 

Unfortunately, other sarcomas have not been as extensively studied due to their rarity and 

kinase target validation has been limited. Indeed, for many sarcomas, clinical trials are 

often performed using kinase inhibitors approved for other cancers without extensive pre-

clinical justification for their use. Sarcomas thus make a good candidate to demonstrate 

the impact a profiled kinase inhibitor-based target discovery approach could have on 

specific cancer subtypes. 

I chose to apply the comprehensive profiled kinase inhibitor library toward the 

study of three sarcomas without promising targeted therapies; osteosarcoma, Ewing’s 

sarcoma, and synovial sarcoma. Osteosarcoma is a malignant tumor of the bone and 

arises primarily in children and adolescents.
20, 21

 Current therapy combines surgery with 

conventional cytotoxic chemotherapy, however, the 5-year survival rate survival has 

remained unchanged at 20% in metastatic and relapse cases.
20

 Characterized by 

chromosomal instability resulting in multiple complex karyotypes, osteosarcoma is a 

heterogeneous disease.
20, 22

  As a result of this heterogeneity and a lack of pathognomonic 

mutations, targeted therapies have not been realized.
20, 22

  Conversely, Ewing’s sarcoma 

and synovial sarcoma are tumors whose malignancy are driven by pathognomonic fusion 

oncoproteins, EWS-FLI1 and SS18-SSX respectively.
7
  Ewing’s sarcoma is a tumor of 

the bone or soft tissue and synovial sarcoma is a soft-tissue sarcoma with both having a 

high occurrence in adolescents and young adults.
21, 23

  For Ewing’s sarcoma, intense 
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chemotherapy with localized tumors has improved survival rates to more than 70%, but 

survival rates of metastatic disease has remained at 20%.
24, 25

 For synovial sarcoma, 

current treatment of this disease involves surgical removal of the tumor followed by 

adjuvant or neo adjuvant radiotherapy or chemotherapy to cure local disease.
26-28

 Late 

recurrence and metastasis usually results in synovial sarcoma patient mortality with 

conventional chemotherapy only giving a temporary response.
29

  Despite the presence of 

pathognomonic mutations, Ewing’s sarcoma and synovial sarcoma, like osteosarcoma, 

have not benefited from molecularly target therapy. The number of validated and 

druggable targets has been a hindrance to the development of targeted therapies for these 

sarcomas. Herein, I describe a profiled kinase inhibitor-based target deconvolution 

platform. This approach combines phenotypic- and target-screening (as described in 

Chapter I), to identify kinase targets and combinational strategies for these sarcomas, 

with particular success in synovial sarcoma.  

 

Phenotypic Screens of Sarcoma Cell Lines with a Profiled Kinase Inhibitor Library 

To identify kinase targets for sarcomas, I performed a phenotypic screen (cell 

viability) using a collection of profiled kinase inhibitor libraries (Table 2.1). This 

collection comprised the PKIS1, PKIS2, commercial kinase inhibitor libraries obtained 

from EMD Millipore, Enzo Life Sciences, Cayman Chemical, and an in house collection 

consisting of kinase inhibitors profiled in previous studies.  As described above, the PKIS 

libraries have extensive kinase profiling available.  The commercial libraries contain 

many kinase inhibitors with published profiling data.  This data was curated from the 

ChEMBL database by Hassan Al-Ali (University of Miami) for use.
†
 

The panel of sarcoma cell lines consisted of three sarcoma subtypes: MG63, 

SAOS2, and U2OS cell lines for osteosarcoma; A673 and TC32 cell lines for Ewing’s 

sarcoma; SYO1 and MOJO cell lines for synovial sarcoma; and the SW982 cell line 

derived from a surgical specimen described as a biphasic synovial sarcoma lacking the 

SS18-SSX translocation pathognomonic of this disease. The profiled kinase inhibitor 

collection was screened at 1 µM (n=2) against the sarcoma cell line panel, the 

concentration at which a majority of compounds were profiled against the kinome. 

Percent viability values relative to vehicle control were converted to z-scores (z-score = 
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(x - vehicle)/(stdev.)).  For future analysis, the data of each cell line was stratified into 

hits (Z-score ≤ -4 or -6) and non-hits (Z-score ≥ -1).  A representative screen with 

stratified data is shown in Figure 2.1. In Chapter I, it was discussed in detail that cancer 

cell lines with viability outputs are not always ideal for phenotypic screening.  In this 

case, where I am evaluating the utility of a methodology for target deconvolution in 

cancer, these simple models and outputs are sufficient. 

 

Table 2.1: Profiled kinase inhibitor library overview. 
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Figure 2.1:  Representative sarcoma cell line screen with a profiled kinase inhibitor library.  In this screen 

with the A674 Ewing’s sarcoma cell line, viability (relative to vehicle) was converted to z-scores on a 

plate-per-plate basis and then averaged (n=2).  Data was stratified into hits and non-hits using designated 

thresholds for subsequent analysis. Additional plots for other sarcoma cell line screens can be found in 

Appendix A. 
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Target Deconvolution using a Machine Learning-based Algorithm 

Machine learning has emerged as a useful tool in cancer research.
30, 31

  With the 

advent of large data sets that can be derived from a patient or group of patients, machine 

learning has proven useful to deconvolute and interpret these data in meaningful ways.
30

  

For example, machine learning has been used for prediction of cancer susceptibility, 

recurrence, and survival using proteomics and genomic sequencing.
30, 32-34

 It is estimated 

that machine learning can improve cancer prediction accuracy by 15-25%.
31

  

Identification of predictive cancer biomarkers and targets has also benefited from 

machine learning.
35

  Thus, machine learning has a well-established precedent for use in 

cancer research and will continue to be influential well into the future in this regard. 

In light of this, I used a previously described machine learning-based algorithm to 

relate phenotypic (viability) data of screened compounds to their kinase inhibition 

profiles and identify kinase targets, i.e. kinases whose inhibition suppresses cellular 

proliferation.
5
 Ultimately, the goal is to identify novel sarcoma subtype kinase targets that 

can be inhibited in order to suppress proliferation or viability. Towards that goal, I 

performed this analysis on the sarcoma cell line panel results. 

Due to similarities in binding pocket architecture and inhibitor interactions of 

topologically similar kinases, a kinase can be identified as a target in the analysis even if 

it does not participate in the biological effect, provided the kinase is pharmacologically 

linked to one or more kinases that do participate. Therefore, kinases must first be scored 

as groups of pharmacologically linked members, and a second line of evidence is 

required to investigate which kinase(s) actually participate in the phenotypic readout.
†
  

First, profiled kinases were organized into pharmacologically-linked groups 

(listed in Table A.1) as previously described.
5
  Briefly, the algorithm then applies a rule-

based feature selection scheme to identify the set of kinases whose inhibition is most 

relevant to the cellular outcome (Maximum Information Set, MAXIS).
5
 Each group of 

kinases obtains a score that reflects overall frequency of appearance of its members in the 

MAXIS, earning a score of 1 for each appearance in 100 different test runs. Additionally, 

a metric devised by Al-Ali et al. was used to reflect whether a kinase is more frequently 

and/or strongly inhibited by hits or non-hits of a screen (stratified as described earlier).
5
  

This metric, Bk, is positive for a kinase whose inhibition directly correlates with hits 
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(suppressed proliferation), and negative when correlated with non-hits (minimal or 

increased proliferation) (-2 ≤ Bk ≤ +2).
5
   Finally, kinase groups were prioritized using a 

score combining the group MAXIS scores and average group Bk. This is the Combined 

Score, with a higher Combined Score giving higher priority to a kinase group (Combined 

Score= Group MAXIS score * avg. group Bk).
5
 A detailed list of MAXIS, Bk, and 

Combined Scores for each cell line can be found in Table A.2. Kinase groups were 

designated as targets using a cutoff of Combined Scores ≥ 50. These data are summarized 

in Figure 2.2.
 †

 

 

 

Figure 2.2: Combination scores of kinase groups across a sarcoma cell line panel. Kinase groups (circles) 

designated as targets (Combined Score > 50) in two cell lines within a sarcoma subtype are highlighted. All 

target kinase groups are highlighted in the SW982 cell line. The highlight kinase groups are labeled with a 

represented kinase. Only kinase groups with Combination Score ≥ 0 are shown. 
 

Identification of Important Kinases in Sarcoma Cell Lines in vitro 

I narrowed the list of highest scoring targets to kinase groups that were present in 

two cell lines within a sarcoma subtypes (with the exception of the SW982 cell line) 

(Figure 2.2).  Gratifyingly, this method identified kinases in sarcoma subtypes that have 

been well established as targets.  Inhibiting IGF1R has been well established to be 

efficacious in Ewing’s sarcoma in preclinical studies.
23, 36, 37

 However, it has had mixed 

results as a target with single agents at the clinical level.
36, 37

  PIK3CA has also been 

found to regulate EWS-FL1 expression in Ewing’s sarcoma cell lines.
38

 In osteosarcoma, 
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PTK2B (FAK2 and by extension FAK) has recently been identified as a possible target.
39, 

40
 FAK inhibition or knockdown significantly lowered proliferation and invasion while 

increasing apoptosis in osteosarcoma cell lines.
40

  Additionally, FAK was seen to be 

overexpressed in osteosarcoma and was a strong predictor of overall and metastasis-free 

survival.
40

 PIK3CA and the PIK3/mTOR pathway have begun to emerge as 

vulnerabilities in osteosarcoma as well, with dual inhibitors of PIK3 and mTOR inducing 

apoptosis.
41

 The NEK kinases were identified as targets across all subtypes. As regulators 

of cell mitosis, their identification as pan-sarcoma targets is not unexpected.
42

 Identifying 

targets that range from the well-established to the emergent demonstrates that this 

approach can distinguish important kinases in sarcoma subtypes, at the very least in vitro.  

 

Identification of PRKD as a Putative Novel Target in Synovial Sarcoma 

The kinase group made up of the Protein Kinase Ds (PRKD1, PRKD2, PRKD3) 

was identified as a target in the synovial sarcoma cell lines and not in the other sarcoma 

subpanels. It is notable in that there is no literature evidence of PRKD as a target in 

synovial sarcoma, representing a potential novel discovery. These proteins have been 

implicated in disease progression of breast, pancreatic, prostate, and colorectal cancers.
43-

46
 Also, there has been multiple overlapping as well as distinct functions between the 

different PRKDs identified in cancer.
45, 47

 I proceeded to pharmacologically confirm 

PRKD as a target(s) in synovial sarcoma cell lines.  I obtained two commercially 

available inhibitors that were reported to inhibit PRKD, CRT0066101 and kb NB 142-70 

(Figure 2.3A). 
43, 46, 48, 49

   These two inhibitors are structurally distinct and thus should 

have orthogonal off-targets. I then tested these inhibitors across the entire panel of 

sarcoma cell lines.  In line with the previous finding of PRKD as a highly scored target 

only in the synovial sarcoma cell lines, I observed that both CRT0066101 and kb NB 

142-70 displayed higher potency in the synovial sarcoma cell lines compared to the other 

sarcoma subtypes (Figure 2.3B).  The activity of these inhibitors in these cell lines were 

comparable or better than the cell lines of cancers where PRKD has been implicated.
44, 46

 

To further confirm synovial sarcoma viability is dependent on PRKD and because there 

are no known small molecule inhibitors with selectivity to distinguish between PRKD1, 

PRKD2, and PRKD3, I examined the effect of siRNA knockdown of these genes in 
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SYO1 and MOJO synovial sarcoma cells.
‡
 There was a significant (p < 0.05) reduction in 

cell proliferation upon knockdown of PRKD3 in each of the synovial sarcoma cell lines 

compared to non-targeting siRNA control (Figure 2.4).  I also treated a cell line that had 

a low PRKD Combined Score with PRKD siRNA, MG63 osteosarcoma cell line (PRKD 

Combined Score= 0.0). No decrease in viability for this cell line was observed in any of 

the PRKD siRNA treatments.  Thus, genetic knockdown is consistent with the 

pharmacological results.  Of note, in data from siRNA screening studies of osteosarcoma 

and Ewing’s sarcoma cell lines (including the ones used in this study), PRKD knockdown 

also did not result in significant decreases in viability.
50, 51

 Together, these data indicate 

PRKD as a putative target specific to synovial sarcoma. 

 

 

Figure 2.3: PRKD inhibitor activity in a sarcoma cell line panel. A) Chemical structures of two structurally 

distinct PRKD inhibitors. B) Dose response curves of the sarcoma cell line panel with PRKD inhibitors 

after 72 hour compound exposure and calculated IC50s (concentration at 50% maximum inhibition). 
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Identifying Synergistic Drug Combinations through a Synergy Screen 

Drug combination is a strategy in cancer treatment where increased therapeutic 

effect, dose reduction, toxicity reduction, and minimized resistance are desired.
52, 53

  To 

these ends it is important to identify drug combinations in which the desired effect is 

synergistic, in other words greater than an additive effect of the drugs alone. I speculated 

that the profiled kinase inhibitor based target ID approach could be leveraged to identify 

novel synergistic drug combinations.  For this aim, I repeated the phenotypic screen with 

the profiled kinase inhibitor collection against SYO1 cells in the presence of a PRKD 

Figure 1.4: Sarcoma cell line viability after siRNA knockdown of PRKD.  A) SYO1 and MOJO 

synovial sarcoma cell lines transfected with PRKD3 siRNA results in a significant decrease in 

viability relative to non-targeting siRNA (96 hours post transfection). No decrease in viability 

observed in MG63 osteosarcoma cell line.*p<0.05. B) Western blot confirming protein knockdown 

of PRKD.  No high-quality PRKD1 antibody was available. Knockdown of all three PRKD proteins 

at the same time could not be achieved.
 ‡

 

A) 

B) 
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inhibitor, CRT0066101 (at 300 nM, IC30 concentration).  From this “synergy screen” I 

again employed the machine learning target identification as described above.  Strikingly, 

the top 15 scoring kinase groups were vastly different compared to the original screen as 

shown in Table 2.2 (see Table A.3 for a full comparison). These newly identified kinase 

groups, with their increased Combined Scores, thus have an amplified importance in 

SYO1 cell viability with concurrent of PRKD inhibition.  Importantly, I observed a 

decrease in the Combined Score of PRKD in the screen with 300 nM CRT0066101, as 

would be expected.   

 

Table 2.2: Top 15 target kinase groups of SYO screen and the SYO1 synergy screen with a PRKD 

inhibitor (300 nM CRT0066101).  In the synergy screen, newly identified targets are bolded in green. In the 

original screen, targets no longer represented in the synergy screen list are bolded in red.  Kinases listed are 

representative of their group. 

 

 

 

 

 

 

 

I then moved to investigate if combinations of CRT0066101 and selective clinical 

inhibitors of the newly identified kinase targets would be synergistic. For this study I 

chose CDK4 and AKT, as selective clinical inhibitors for these kinases were readily 

available.  Palbociclib is a selective inhibitor of CDK4/6 and is currently in Phase II/III 

clinical trials.
54

 BAY1125976 and AZD5363 are selective inhibitors for AKT1/2/3 and 

are also currently in Phase II/III clinical trials.
55, 56

  To assess if CRT0066101 is 

synergistic with these drugs I employed Chou-Talalay synergy analysis, which calculates 

a Combination Index (CI) at various effect levels of the combination.
52, 53, 57, 58

 A CI< 1 

denotes synergism, a CI=1 denotes additivity, and a CI>1 denotes antagonism of the 

drugs being assessed.  I found that CRT0066101 was synergistic with all three inhibitors 

in SYO1 cells (Table 2.3). Combination Index plots, which relate CI across various 

effect levels, of each of the combinations demonstrated that synergy was present across a 

wide range of effect levels.  The synergism found in the higher effect levels is an 
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important trait in combination treatments of cancer where high amounts of cancer cell 

death is desired.
52, 53

  I also performed Chou-Talalay analysis of CRT0066101 with 

VX745, a highly selective p38 inhibitor, on the basis that the p38 kinase group 

(represented as MAPK11 in Table 2.2) dropped from in the target list.
59

  This analysis 

revealed that these two agents range from additive to slightly antagonistic over similar 

effect levels as the previous combinations.  I then repeated this Chou-Talalay synergy 

analysis with other PRKD inhibitor, kb NB 142-70. I observed the same trends, namely, 

synergy with the selective clinical CDK and AKT inhibitors and antagonism with the 

selective p38 inhibitor. These findings suggests that this methodology can distinguish 

synergistic combinations from ones that are not. I envision further use of this target ID 

synergy screen methodology to find new synergistic combinations for investigation in 

other diseases as well, and could be applied with established treatments. 

 

 

 

 

 

 

 

 

 

 

 

 Table 2.3: Combination Indexes (CI) of CRT0066101 and kb NB 142-70 with selective inhibitors at 

various effect levels (ED50, ED 75, ED, 90, and ED95).  CI < 1 is synergism, CI=1 is additive, CI > 1 is 

antagonism. Newly identified targets are in green. Targets no longer represented in the synergy screen list 

are in red.    
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Figure 2.5:  Combination Index Plots output by Compusyn showing continuous combination index (CI) 

values across fractional affect levels (Fa).  The horizontal line shows CI=1.  Error bars represent 95% 

confidence intervals calculated from serial deletion analysis.
52, 53

 Plots are of combinations of 

CRT0066101or kb NB 142-40 with BAY1125976 (selective clinical AKT inhibitor), AZD5363 (selective 

clinical AKT inhibitor), Palbocicib (selective clinical CDK4/6 inhibitor), and VX745 (selective p38 

inhibitor). Green and red are inhibitors whose targets appeared and did not appear in the synergy screen 

target list respectively.  Full outputs from Compsyn can be found in Appendix A. 
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Conclusions 

Progress toward developing targeted therapies against sarcomas has been slow 

due to the lack of defined and druggable molecular targets in these cancers. I have 

presented a strategy of combining phenotypic- and target-screening to overcome this 

obstacle. I identified various kinase targets in sarcomas using a profiled kinase inhibitor 

library made up of open source and commercial libraries. Of particular interest was the 

identification and confirmation of PRKD as a target in synovial sarcoma both due to its 

specificity in the panel and potential novelty in this disease. This success in target 

identification in the case of synovial sarcoma, a rare and understudied cancer, gives 

promise that targets may be identified in other more highly studied cancers such as that of 

the breast. Indeed, the progress of such studies is described in Chapter III. Further target 

confirmation in the other sarcoma subtypes tested in this chapter can also be carried out 

in the future, with studies currently being planned.  

Expanding the scope of this work was the use of the machine-learning target 

deconvolution in scoring kinase targets as a means to identify novel combinational 

strategies.  I performed an additional phenotypic screen of a synovial sarcoma cell line in 

the presence of a PRKD inhibitor.  I discovered that scores of many kinases from the 

machine learning algorithm changed greatly, including CDK and AKT which increased.  

Using Chou-Talalay synergy analysis, I discovered that selective clinical inhibitors of 

these kinases synergistically decreased viability along with PRKD inhibition.  This 

strategy could be reapplied with other cancers in the presence of any drug, kinase 

inhibitor or not, in which new combinational strategies are desired.  

This work uses cancer cell lines and a simple cell viability readout to demonstrate 

the effectiveness of this methodology. However, as previously mentioned, more 

advanced sarcoma models and phenotypic readouts would be desirable to identify targets 

with higher clinical relevance.  In the case of synovial sarcoma, a phenotypic screen 

which measures the disruption of the SS18-SSX fusion oncoprotein complex has been 

reported.
60

  Combining the machine learning target identification approach with this 

assay in a high-throughput format would identify targets directly related to a key 

molecular event (oncoprotein complex disruption) shown to have a beneficial therapeutic 

effect.
60, 61

 Demonstrating that this approach works using simple cancer cell viability data 
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positions it for use with higher relevant phenotypic outputs such as the one described 

above. 
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Materials and Methods 

 

Cell Lines and General Cell Culture and Dosing Conditions 

SYO1 synovial sarcoma cell, MOJO synovial sarcoma cells, TC32 Ewing’s 

sarcoma cells, and SAOS2 osteosarcoma cells were maintained in 10% Fetal Bovine 

Serum (FBS) in RPMI 1640 media. SW982 sarcoma cells, A673 Ewing’s Sarcoma cells, 

and MG63 osteosarcoma cells were maintained in 10% FBS in DMEM. U2OS 

osteosarcoma cells were maintained in 10% FBS in McCoy’s 5A media.  SYO1 and 

MOJO cell were kind gifts from Torsten Nielsen (University of British Colombia). A673, 

TC32, U2OS, and SAOS2 cells were kind gifts from Elizabeth Lawlor (University of 

Michigan).  MG63 and SW982 cells were purchased from American Type Culture 

Collection (ATCC).  A humidified incubator at 37 °C and 5 % CO2 was used for storing 

all cell cultures. 

 

General Cell Viability Assay Protocol 

Cell lines were dispersed from 70-80% confluent monolayer cultures using 0.05% 

Trypsin-EDTA (Invitrogen) and plated in 96-well plates in 100 μL of appropriate cell 

culture media.  Cells were seeded at concentrations of 3000 x 10
3
 cells/well and were 

incubated overnight to adhere. Cells were then dosed with compounds to be tested by 

addition of 10 μL 1% DMSO stocks of 10x concentration in Cell Culture Media (0.1% 

DMSO final concentration).  After the 72-hour dosing period was complete, plates were 

removed from the incubator and 11 μL of WST-1 reagent (Roche Applied Science) was 

added to each well. Plates were returned to the incubator until a sufficient color change 

developed (1-4 hr.). Plates were placed on a plate shaker for 60 s and read on a Synergy 4 

plate reader (Biotek). The difference in the absorbance at wavelengths of 450 nM and 

630 nM (A450-A630) was recorded for each well and then corrected by subtracting out the 

blank (no cell) readings. Cell viability was measured as percent viability with respect to 

vehicle. Dose-response growth curves were generated with measurements of triplicate 

wells with fitting performed using Graphpad Prism 7 (Graphpad Software). The equation 

Y = Bottom + (Top – Bottom)/(1 + 10^(X – LogIC50)), where X = log(concentration) and 
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Y = Response was used in the nonlinear regression. Plots summarizing this data for each 

screen can be found in Appendix A. 

 

Phenotypic Screen with a Profiled Kinase Inhibitor Library 

SYO1, MOJO, TC32, A673, MG63, SAO2, U2OS, and SW982 cells were 

subjected to a cell growth assay (detailed above) with a profiled kinase inhibitor library.  

A counter screen of SYO1 plus 300 nM CRT0066101 was also performed.  This library 

was composed of the GSK PKIS1 and PKIS2 (obtained from GlaxoSmithKline), Enzo 

Screen-Well Kinase Inhibitor Library (#BML-2832-0100, Enzo), EMD Millipore 

InhibitorSelect Protein Kinase Inhibitor Library I (#539743, EMD Millipore), the 

Cayman Kinase Screening Library (#10505, Cayman Chemical), and an in-house 

collection of commercial profiled kinase inhibitors (purchased from various sources 

including SelleckChem and LC Labs).  In the primary screen, 2 µL of the 1 mM (1000X) 

DMSO master stocks were diluted into 200 uL of cell culture media. From these daughter 

plates, 10 uL was added to each cell culture well to give 1 μM final compound 

concentrations (0.1% DMSO final concentration). The screen was performed in duplicate 

and the viabilities (measured as described above) were averaged and compared to 

vehicle. Viabilities were converted to z-scores (z-score = (x - vehicle)/(vehicle stdev.)).     

 

Target Deconvolution by Machine Learning-based Algorithm 

We excluded from this analysis compounds whose z-score fell between -4 and -1 

(the SYO1 screen was the exception with compounds excluded between -6 and -1). This 

stratification accentuates differences between the hit and non-hit categories and improves 

selection of relevant kinases. The remaining compounds comprised the input for the 

analysis. For SYO1 (461 compounds; 256 stratified hits and 205 stratified non-hits), 

MOJO  (606 compounds; 76 stratified hits and 530 stratified non-hits), A673  (452 

compounds; 83 stratified hits and 369 stratified non-hits), TC32  (558 compounds; 118 

stratified hits and 440 stratified non-hits), MG63  (661 compounds; 83 stratified hits and 

578 stratified non-hits), SAOS2 (559 compounds; 85 stratified hits and 474 stratified 

non-hits), U2OS (540 compounds; 54 stratified hits and 486 stratified non-hits), and 

SW982 (605 compounds; 92 stratified hits and 513 stratified non-hits), and SYO1 plus 
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300 nM CRT0066101 (534 compounds; 92 stratified hits and 442 stratified non-hits) 

screens, compounds with profiling data against 237 wildtype kinases constituted the input 

for analysis. Generation of pharmacologically-linked kinase groups was done by 

pharmacological interaction strength (Pij) (direct measure) and sequence similarity 

(indirect measure) as previously described.
5, 62

 Any two kinases with a Pij score ≥ 0.6 or 

kinase domain sequence similarity score ≥ 0.7 belonged to the same group. Calculation of 

group MAXIS scores, hit/non-hit inhibition bias (Bk), and Combined Scores within each 

phenotypic screen using a Support Vector Machine was performed by Hassan Al-Ali 

(University of Miami), as previously described.
5
 
†
 

 

Analysis of Combined Drug Effects  

The effect of combining CRT0066101 or kb NB 142-70 with Palbociclib, 

BAY1125976, AZD5363, VX745 in SYO1 synovial sarcoma cells were analyzed using a 

median effect analysis as described by Chou and Talalay (2006).  The fractional effect 

measured for the analysis was on cell viability after 72 hours (measured as described 

above). This analysis was performed using Compusyn software (ComboSyn).
58

 Full 

outputs from Compusyn are given in Appendix A. 

 

Western Blot Analysis 

Plated cells were washed with ice cold PBS and lysed with 

radioimmunoprecipitation (RIPA) buffer containing freshly added protease 

(#1186145001) and phosphatase (#4906837001) inhibitors (Roche Applied Sciences). 

Lysed samples were sonicated and centrifuged at 14,000 rpm for 30 min at 4 °C. The 

supernatant was collected and the total amount of protein in the lysate was measured 

using the BCA kit. 40–50 μg of protein were separated in 8–12 % SDS polyacrylamide 

gel electrophoresis (SDS–PAGE). Resolved protein was transferred onto a 

polyvinylidene fluoride (PVDF) membrane (Bio-Rad Laboratories). The membrane was 

blocked using 5 % milk in PBS-Tween for 1h and then probed with specific mouse or 

rabbit primary antibody for PRKD2 (#8188S), PRKD3 (#5655S), β-actin (#3700S) 

overnight at 4 °C (Cell Signaling Technology). After washing the membrane in PBS-

Tween, it was incubated with rabbit, mouse, or goat secondary antibody conjugated to 
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horseradish peroxidase for 1h at RT. The membrane was then washed three times in PBS-

Tween and visualized with enhanced chemiluminescence reagent, following the 

manufacturer’s instructions (Amersham ECL Western Blotting Analysis System, GE 

Healthcare).  The blots shown were obtained with the help of Zhi Fen Wu.
‡
 

 

siRNA Transfection  

SYO1, MOJO, and MG63 cells were plated in a 24-well plate and allowed to 

adhere overnight. Cells were then transfected with pools of PRKD1, PRKD2, PRKD3, 

and non-targeting Accell siRNA (Dharmacon) (1 µM) using Accell delivery Media 

(Dhamacon) following manufacturer’s instructions. After 96-hours post-transfection, cell 

viability was then measured as described above. The following siRNA pools used were: 

PRKD1 (GUUGUAAAUUUGGAGUGUA, CGAUCUUAUUGAAGUGGUC, 

CCAACUUGCACAGAGAUAU, CGGUCAGGUUUAACAUUUG), PRKD2 

(CCCUUAUCAAUGGAGAUGU, GCGUGAUCAUGUACGUCAG, 

UCUUCUGCCUCAUCGUAUA, UGAAGAUGCGCAAACGCUA), PRKD3 

(CUUGUGUGCUCCAUAGUUU, CGAUGUGCCUUCAAGAUUC, 

GCAUACAAGUUUCAUUUCUA, GCAACAGCUUCUAAGAUAA), non-targeting 

siRNA control (UGGUUUACAUGUCGACUAA, UGGUUUACAUGUUUUCUGA, 

UGGUUUACAUGUUUUCCUA, UGGUUUACAUGUUGUGUGA). 
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CHAPTER III 

Target Identification in Triple Negative Breast Cancer Patient Derived Xenograft 

Cell Cultures with a Profiled Kinase Inhibitor Library 

 

Abstract 

Triple negative breast cancer (TNBC) is a particularly aggressive subtype of breast 

cancer with poor prognosis and a lack of effective targeted therapies.  Patient-derived 

xenografts (PDXs) are a promising avenue to improve the success of cancer drug 

development by better modeling patient tumors.  In an effort to discover actionable 

molecular targets, I employ the profiled kinase inhibitor-based target identification 

platform from Chapter II in short-term ex vivo cell cultures of TNBC PDXs. I identify 

target kinases in ten established TNBC PDXs using this framework.  Using kinase target 

scores to cluster these TNBC PDXs revealed heterogeneous sensitivity to kinase 

inhibition. Additionally, several kinases were identified as targets in at least half of the 

PDX screens, with some having little or early emergent evidence of importance in 

TNBC.  This chapter highlights how higher cellular models can be leveraged when 

combining target- and phenotypic-based screening.
† ‡

 

 

Introduction 

In drug discovery, cancer cell lines have been widely used in identifying disease 

targets, lead compounds, and biomarkers.
1-3

  However, cancer cell lines have a variety of 

shortcomings which have hindered success in cancer drug development.  These include: 

low heterogeneity as compared to patient tumors; clonal selection from long-term growth 

in cell culture conditions such that the cell lines may no longer behave like or embody the 

                                                 
†
Tumor implantation, maintenance, and harvest of PDXs were performed by Xu Cheng and Rabia Gilani 

(University of Michigan). 
‡
 Curation of inhibitor profiling data, kinase grouping, and kinase scoring using a machine learning 

algorithm was performed by Hassan Al-Ali (University of Miami). 
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parental cancer cells; and no longer representing the tumor microenvironment especially 

when grown on plastic.
4, 5

 Several in vitro strategies to overcome these limitations have 

been implemented in cancer research. Co-cultures in vitro, where multiple cell types of a 

tumor are exposed to one another, help recreate the tumor environment.
6
  Additionally, 

3D cell cultures can be used to incorporate cell-cell and cell-extracellular matrix (ECM) 

interactions in in vitro models as well.  Three-dimensional culture technologies, which 

range from spheroids or cells embedded in purified basement membrane extract, are 

regarded as a more stringent model that is better representative of the tumor environment 

compared to 2D models.
7
 For example, 3D cultures are known to take into account 

diffusion limited nutrient supply in addition to the above mention cell-cell and cell-ECM 

contacts.
3, 7

 Two-dimensional models are otherwise agnostic to these factors.  

Furthermore, advancements in these technologies have enabled their use in high-

throughput studies.
3, 7, 8

   

In in vivo studies, mouse xenografts of implanted cancer cell lines have widely 

been used in the evaluation of drug efficacy. However, it has been widely recognized that 

these models are poor predictors of success in clinical cancer trials. One reason is that the 

mice used are often immunocompromised to enable engraftment of human cancer cell 

lines.  Thus, these models fail to take into account the immune system in the context of 

the progression of the tumor, which has been shown to be vital.
9, 10

 In cases where the 

immune system must be taken into account, mice with humanized immune systems can 

be used.
10

  Another key limitation of cancer cell line xenografts is that they lack the 

heterogeneity and molecular characteristics that are found in patient tumors, which is true 

of the cancer cell lines themselves.
3-5

  Models that account for this heterogeneity and 

patient molecular features are positioned to be invaluable in cancer discovery. 

Patient-derived xenografts (PDXs), where primary patient tumor material is 

explanted into immunocompromised mice, overcome these obstacles and thus have the 

potential to greatly improve success rates of cancer drug discovery studies.
11-14

  These 

models are an improvement over traditional cancer cell line xenografts in that they are 

more likely to maintain the molecular characteristics and heterogeneity present in 

parental tumors.
4
  Indeed, PDX response has been shown to accurately predict 

chemotherapeutic drug response in cancer patients.
13

 Thus, PDX models have been 
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proposed has patient avatars to evaluate drug response for individual patients.
10

  

However, it is worth noting that PDXs share a limitation with cancer cell line xenografts, 

in that the immune system’s role in tumor progression may not be fully taken into 

account.
9
  Still, PDXs are widely regarded as highly clinically relevant models for cancer 

which, as described in Chapter I, are extremely valuable for phenotypic-based screening.  

A PDX-based phenotypic screen, such as the one described in Chapter II, would be 

extremely useful in identifying targets of clinical significance.   

 Triple negative breast cancer (TNBC) is an extremely aggressive breast cancer 

subtype that is highly lethal due to increased risks of metastasis and early reoccurrence.
15, 

16
  TNBCs are so named for their lack of expression of estrogen and progestogen 

receptors (ER and PR), and lack of overexpression of human epidermal growth factor 

receptor 2 (HER2). Thus, TNBC patients do not benefit from therapies targeting these 

receptors which have been successful in other breast cancer subtypes.
17, 18

 The surprising 

heterogeneity and lack of predictive markers for patient response to targeted therapy have 

hindered the path to FDA-approved targeted drugs for TNBCs.
18, 19

 With conventional 

cytotoxic chemotherapies as the current standard treatment, the benefits of effective 

molecular targeted therapies would be a boon for TNBC treatment.
19, 20

 With this need in 

mind, I moved to apply the profiled kinase inhibitor-based target identification platform 

against an available panel of TNBC PDXs to discover actionable and clinically relevant 

targets. Herein, this ongoing effort is described. 

 

A TNBC PDX Panel  

Prof. Sofia Merajver and her group have acquired and developed a bank of over 

30 TNBC PDXs.  PDXs were maintained by passaging from mouse to mouse until the 

tumor burden became too high.  To preserve the molecular characteristics of parental 

tumor, PDX tumor samples were saved and stored at low passages to be used as needed.  

In all experiments described herein, low passage tumors (<5) were used.  Through 

collaboration with the Merajver group I have access to this extensive bank of TNBC 

PDXs.
†
 

 

 



44 

 

Short-term PDX Cell Cultures for High-Throughput Screening 

 High-throughput screening with PDXs is highly impractical due to size, cost, and 

technical limitations.  For this reason, cell cultures that are derived from PDXs for use in 

ex vivo studies would be highly valuable for such screens. Such a use is directly 

analogous to the application of cancer cell lines in high-throughput screens (i.e. as 

described in Chapter II). Recently, Bruna et al. showed that short-term cell cultures 

derived from PDXs retain the molecular characteristics and heterogeneity of PDX tumors 

as well as the parental tumors from which they are derived.
4
  It was also demonstrated 

that drug response in these ex vivo cultures matched the response of the PDX in vivo.  I 

thus moved to establish short-term TNBC PDX-derived cell cultures through isolation of 

tumor cells. 

 I chose to use 3D cultures in this screening methodology which, as described 

above, have been shown to better mimic cell-cell and cell-ECM interaction as compared 

to 2D cultures. My 3D model of choice was suspension culture which promotes cell-cell 

adhesion in suspension culture. Through the Merajver Lab, I obtained isolated tumor cells 

from PDX mice following established preparations (outlined in Figure 3.1 and materials 

and methods).
†
 The resulting human tumor cells and tumor associated cells were plated in 

384-well ultra-low attachment plates.  The PDX-derived cell cultures resulted in spheroid 

formation over a span of 5 days. Presence of drug at the time of plating results in dose-

dependent response after five days of culture with disrupted spheroid and cell aggregate 

formation (Figure 3.1). This dose response is also reflected in a high-lytic luminescence-

based viability assay, amenable for high throughput screening (Figure 3.1). 
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Figure 3.1: General workflow for preparation of assays using PDX derived cell cultures. 

 

Satisfied that the short-term PDX-derived 3D cell cultures could be applied to a 

high-throughput format measuring drug response, I screened against the profiled kinase 

inhibitor library.  The phenotypic screen was performed in duplicate at a concentration of 

1 µM with viability measured after 5 days of compound exposure (dosing the same day 

as plating).  With the acquired viability data, I applied the target identification 

methodology and scored kinase groups for each screen as described in Chapter II.  In 

total, 10 PDX-derived cell cultures were screened.  A full listing of the kinase group 

scores can be found in Table B.1.
‡
 

 

Clustering TNBC PDXs using Kinase Group Target Scores 

The heterogeneity of TNBC has proven to be an obstacle in establishing new 

treatments in clinical studies. Alternative ways to classify cancers that can complement 

more traditional methods such as RNAseq, IHC, and proteomic analysis would be 

valuable in improving the high attrition rate of drug discovery projects.  Clustering PDXs 

based upon sensitivity to functional inhibition of proteins could provide a new layer of 

information that would aid in this end.  Such a method also has the obvious benefit of 

relating its established subtypes directly to drug sensitivity.  Thus, I subtyped the TNBC 

PDXs based on sensitivity to kinase inhibition.  I employed unsupervised hierarchal 
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clustering using the combination scores of kinase groups.  Consistent with what is known 

about TNBC, this subtyping returned a heterogeneous clustering result of the TNBC PDX 

screens (Figure 3.2).  In other words, the PDX cell cultures overall were different in their 

sensitivities to specific kinase inhibition.  Additional screening of other TNBC PDXs is 

currently underway and their kinase group target scores will be added to this analysis. 

 

 

 

 

Figure 3.2: Unsupervised hierarchal clustering results of TNBC PDXs based on kinase inhibition 

sensitivity.  Combination scores of kinase groups were used.  A) Two-way clustering result of PDXs and 

kinase groups (one representative kinase for groups shown). B) Constellation plot of the PDX clusters. The 

circle represents the dendrogram tree stem. 

A) 

B) 
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Highly Scored Kinase Targets Identified Across TNBC PDX Screens 

I identified the highest scoring target kinase groups (Top 15 by Combined Score) 

in each PDX screen to see if inhibition of any kinase was broadly effective in TNBC.  

Comparisons of these results revealed some common kinase groups present in at least 

half of the PDXs screened (Table 3.1).  Several of these identified kinase groups have 

established and/or have emerging importance in TNBCs. PIK3CA was identified as a 

target in 9/10 PDX screens, and the PIK3/AKT pathway is commonly altered in TNBC.
21

 

The CDKs (5/10 screens) have proven to be promising targets in preclinical studies, and 

phase 2 trials with inhibitors of these kinases are underway. Downstream effectors of 

IGF1R (5/10 screens) signaling has been shown to be increased in malignant tissue in 

African American patients and IGF1R expression levels correlate with shorter survival.
22-

24
  Inhibitors of IGF1R and INSR have also shown efficacy in in vivo models.

25
  Several 

papers have identified PLK1 (6/10 screens) as a potential therapeutic target in 

combination with conventional chemotherapy in TNBC.
26

 High expression of PTK2B 

(FAK) (6/10 screens), has been shown to be associated with more invasive TNBC 

phenotypes.
27

 Lastly, SRC (or SRC Family Kinases) was identified as a target in 5/10 

screens. Recenlty it has be shown that inhibition of SRC can prevent tumor growth in 

vivo.
28

  Together, these precedents in the literature demonstrate that this target 

identification methodology, when paired with clinically relevant PDX models, can 

distinguish kinase groups that are important in TNBC.  

 

Table 3.1: Most frequent kinase target groups identified as targets in the PDX target identification screen.  

A kinase group was counted as a target if it was in the top 15 groups ranked by highest Combined Score.  

Those that were identified in in at least 5/10 screens are shown.  Kinase groups listed in red are ones with 

novel or early emerging significance in TNBC. 
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Of greater interest are the kinase groups that were highly scored across PDX 

screens that are not established targets and/or have very early emerging importance in 

TNBC in the literature. The FES/FER kinase group was highly scored across 5 of the 10 

PDX screens.  I have not found literature where FES/FER was reliably proven to be 

targets in TNBC pharmacologically.  This is due, in part, to the scarcity of selective 

inhibitors published for these kinases.
29

  Despite this, there have been intriguing genomic 

results in some TNBC studies concerning FES/FER. RNAi of FER kinase results in 

decreased viable cell count compared to control in TNBC cell lines.
30, 31

 Additionally, 

FER was found to contribute to pro-invasive features in TNBC cell lines, and knockdown 

of FER in MDA-MB-231 TNBC xenograft mice significantly abrogated tumor growth.
31

 

FES on the other hand was found to have pro-tumorigenic functions within the breast 

tumor niche in studies with knockout mice.
32

 This role of FES has not been investigated 

in the TNBC subtype specifically.   In light of this emerging genetic-based evidence of 

FER/FES importance in TNBC, syntheses of selective inhibitors for these kinases are 

currently being planned.  Such inhibitors will further validate these kinases as targets 

pharmacologically.  

There is less evidence in the literature of the MARK/SIK kinase group concerning 

TNBC. However, a recent study illustrated, again with primarily genetic experiments, 

that SIK2 is important in restricting autophagy in TNBC cells.
33

  This was particularly 

true with TNBC cell lines of the claudin-low subtype.
33

 In one example, genetic 

knockdown of SIK2 resulted in decreased tumor growth in vivo with the claudin-low 

TNBC cell line SUM159.
33

 The finding that SIK2 kinase has more therapeutic 

importance in a subset of TNBC highlights that this subtype is itself heterogeneous, and 

that targets may be more important in one TNBC subtype than others. Like FER/FES, 

syntheses of selective inhibitors of these kinases are currently being planned to further 

validate them pharmacologically as targets. 

 

Conclusions 

PDXs have been positioned as one way to improve the success rate cancer drug 

development by better modeling patient tumor microenvironment and tumor 

heterogeneity. From the success in identifying new targets specific to cancer subtypes, I 
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combined the profiled kinase inhibitor target identification approach from Chapter II 

with PDX-derived models to discover clinically relevant and actionable drug targets in 

TNBC.  I used short-term PDX-derived 3D cell culture model that has been previously 

shown to retain molecular characteristics of the PDX and parent primary tumors. I 

identified several kinase groups that scored highly as targets in at least half of the screens.  

Some of these have been well established as targets or possible targets in the literature, 

demonstrating that this method and PDX models can distinguish therapeutically relevant 

kinases.  More importantly, I identified the FES/FER and MARK/SIK kinase groups as 

targets, which represent possible novel pharmacological findings in TNBC. Early 

evidence of these kinases as targets in TNBC has only been genetic in nature.  In addition 

to supporting the emerging evidence of these kinases as TNBC targets, this 

pharmacological based approach indicates that these putative target kinases can be 

actionable.  Studies to design and synthesize selective inhibitors for these kinases are 

being planned. 

TNBC is itself a heterogeneous cancer which has, in part, resulted in a lack of 

FDA-approved targeted therapies.  Alternative ways of subtyping this disease, as well as 

others, would aid in classifying patients as candidates who would respond to specific 

targeted therapies, thus improving outcome.  To this end, I used the kinase target scores 

as a means of unsupervised hierarchal clustering of the PDXs screened. I observed 

heterogeneous clustering of the PDXs using this method.  I plan to continue TNBC PDX 

screens and to use their results for further clustering. 

 The worked outlined in the chapter demonstrates how clinically relevant models 

can be leveraged for target discovery.  While the use of PDXs in this chapter and in 

cancer research overall is noteworthy, it is important to appreciate that the PDXs fail to 

accurately model patient immune system.  As mentioned above, this is because of the use 

of immunocompromised mice in their generation.  Patient-derived mouse models with 

humanized immune systems will help to overcome this shortcoming.
10

 Additionally, 

testing tumor samples taken directly from the patient with drug may also provide a way 

forward. Directly testing drugs on isolated patient cancer cells of blood-based cancers, 

such as leukemia, has steadily gained traction.
34, 35

 However, directly testing cancer cells 

from solid tumors, such as breast cancer presents a challenge.  Sample size, appropriate 
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culture conditions, time, and general experimental logistics are only a few considerations 

that need to be taken into account.
36-38

 As our understanding progresses of what it takes 

for efficient and successful establishment of ex vivo cancer patient martial, we will be 

even closer in achieving personalized drug studies.  Such studies, when combined with 

target identification methodologies like the one described in this chapter, will enable 

discovery of cancer targets on a patient-to-patient basis. 
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Materials and Methods 

 

PDX Tumor Preparation 

Tumor samples were obtained either directly from patient or from previous 

implantation from mouse for secondary implantation, or from frozen sample.  If from 

frozen sample for implantation, sample was rapidly thawed in 37 °C water bath and put 

directly into sterile petri dish with a HBSS to wash. Tumor samples were cut into tiny 

pieces in sterile conditions, at least 2x2x2 mm
3
. Tumor pieces were then implanted into 

the mammary fat pad in NSG mice. Fresh tumors were harvested once they reach to 0.8- 

1cm in diameter for organoid and spheroid culture. Freshly excised tumor tissue was 

washed with 1x pbs/HBBS in a 10 cm Petridish, cut into small pieces using scalpels 

while removing any obvious necrotic tissue. Tumor pieces were dissociated into single-

cell suspensions by combining mechanical dissociation with enzymatic degradation using 

a tumor dissociation kit (MACS Miltenyi Biotec) following manufacturer’s instructions.  

This work was primarily performed by Rabia Gilani and Xu Cheng (University of 

Michigan).
†
 

 

Processing PDX Tumor Tissue into Suspension Culture for Drug Screening 

Digested PDX tumor suspensions were subjected to a mouse cell depletion kit 

(MACS Miltenyi Biotec) following manufacturer’s instructions. Eluted cells were 

pelleted by gentle centrifugation (5 min, 120 x g) and resuspended in suspension media 

(DMEM, 1X B-27 serum-free supplements, 1X insulin transferrin selenite ethanolamine, 

1X non-essential amino acids, EGF (10 ng/mL), bFGF (10 ng/mL), Antibiotics). From 

this solution the concentration of viable cells was measured. Cells were then seeded into 

Costar Ultralow Attachment 384-well opaque-sided plates at a density of 7000 viable 

cells/well (if the total number of viable cells allowed). After seeding, the plates were 

briefly centrifuged (30 sec, 100 x g). 

 

Phenotypic Screen with a Profiled Kinase Inhibitor Library 

Cell cultures derived from ten PDXs (9040, VARI068, VARI004, GUM17, 

GUM28, 4664, 2147, 3402, MUM12, MC1) were treated the same day of plating with a 



52 

 

profiled kinase inhibitor library (see Chapter II for details). In the primary screen, 2 µL 

of the 1 mM (1000X) DMSO master stocks were diluted into 200 uL of suspension cell 

culture media. From these daughter plates, 5 µL was added to each cell culture well to 

give 1 μM final compound concentrations (0.1% DMSO final concentration). The screen 

was performed in duplicate and the viabilities measured after 5 days of compound 

incubation using a highly lytic luminescence-based assay (Cell Titer-Glo 3D Cell 

Viability Assay (Promega)) following manufacturer instructions. The viabilities were 

averaged and compared to vehicle. Viabilities were converted to z-scores on a per plate 

basis (z-score = (x - vehicle)/(vehicle stdev.)).  Plots summarizing this data for each 

screen can be found in Appendix B. 

 

Target Deconvolution by Machine Learning-based Algorithm 

I used a similar method as described in Chapter II to score and identify target 

kinase groups.  Briefly, I excluded from this analysis compounds whose z-score fell 

between -1 and 1. This stratification accentuates differences between the hit and non-hit 

categories and improves selection of relevant kinases. The remaining compounds 

comprised the input for the analysis. For VARI004 (486 compounds; 35 stratified hits 

and 435 stratified non-hits), 2147  (1036 compounds; 199 stratified hits and 837 stratified 

non-hits), 3402  (838 compounds; 137 stratified hits and 701 stratified non-hits), 4664  

(1036 compounds; 394 stratified hits and 642 stratified non-hits), 9040  (534 compounds; 

59 stratified hits and 475 stratified non-hits), MUM12 (1036 compounds; 232 stratified 

hits and 804 stratified non-hits), GUM17 (534 compounds; 105 stratified hits and 429 

stratified non-hits), GUM28 (982 compounds; 263 stratified hits and 719 stratified non-

hits), MC1 (534 compounds; 79 stratified hits and 455 stratified non-hits), and VARI068 

(489 compounds; 101 stratified hits and 388 stratified non-hits) screens, compounds with 

profiling data against 237 wildtype kinases constituted the input for analysis. Generation 

of kinase groups and calculation of their MAXIS scores, hit/non-hit inhibition bias (Bk), 

and Combined Scores within each phenotypic screen using a Support Vector Machine 

was performed by Hassan Al-Ali (University of Miami) as previously described.
39

 
‡ 
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Hierarchal Clustering Analysis 

 I performed unsupervised hierarchal clustering using kinase group combination 

scores for each of the screens.  I employed JMP 13 (SAS Institute Inc.) statistical 

software to perform the clustering analysis using the Average method of calculating 

cluster distances.  The clustering history for both PDX screens and kinases can be found 

in Table B.2. 
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CHAPTER IV 

Development of a Turn-on No-Wash Fluorescent Probe for c-SRC in Live Cell 

Microscopy Studies 

 

Abstract 

The subcellular localization of kinases is an important regulator of their activation 

and function.  Small molecule fluorescent probes for kinases offer complementary 

advantages to immunofluorescence and genetically encoded tag techniques. Through 

leveraging orthogonal selectivity filters of small molecule kinase inhibitors, I develop a 

highly selective and versatile fluorescent probe for the non-receptor tyrosine kinase c-

SRC.  This probe, which combines the kinase binding head group PP2 and a coumarin 

fluorophore, covalently binds through the non-conserved cysteine C280 of c-SRC 

through an electrophilic moiety within the linker.  Covalent fluorophore labeling of this 

cysteine represents an alternative to previously utilized cysteines near the kinase ATP-

binding site, expanding the scope of small molecule fluorophore strategies for kinases. 

This probe, PP2-Coumarin, displayed turn-on fluorescence and could be used in live-cell 

microscopy. This probe also enabled subcellular visualization of endogenous c-SRC, did 

not require washing, and was compatible with live-cell super-resolution stimulated 

emission depletion (STED) microscopy.  I use PP2-Coumarin to profile differential c-

SRC localization within a panel of Triple Negative Breast Cancer (TNBC) cell lines in 

which this kinase is therapeutically relevant. c-SRC localization in TNBC cells in 

response to drug treatment is also monitored using this probe.  This chapter underscores 

how knowledge of chemical biology of kinases and their inhibitors can be utilized in 

designing small molecule probes to investigate therapeutically relevant kinase targets.
†
 

 

                                                 
†
 Kinases and kinase mutants were designed, prepared, and purified by Frank Kwarcinski and Christel Fox 

(University of Michigan). 
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Introduction 

Modern cell biologists have long used fluorescence microscopy as a powerful tool 

to investigate protein localization in cells. However, there is a consistent need of new 

complementary strategies to existing techniques. Small molecule fluorescent probes have 

been positioned as a means to compensate the limitations of other microscopy methods 

such as immunofluorescence and genetically encoded tags.
1-3

 Antibody-based 

immunofluorescence requires fixation (i.e. killing) and permeablization of the cell which 

prevents live-cell studies, can produce artifacts, and disrupts membrane archetecture.
4
 For 

proteins which belong to families or classes with highly homologues members, antibodies 

can have limited use in immunofluorescent techniques due to nonspecificity.
5
 Genetically 

encoded tags, such as GFP, enable studies of the dynamic changes in protein localization 

but can itself influence protein function and result in ectopic expression of the protein 

being studied.
4, 5

  Additionally, such a technique is only possible in cellular systems 

highly amenable to genetic manipulation preventing its use with primary patient-derived 

cell lines.  The aforementioned small molecule fluorescent probes, by virtue of being cell 

permeable, are capable of live-cell imaging and do not require genetic manipulation of 

the system being studied. Thus, they are thus highly complementary to the described 

commonly used methods.
6
 While the use of such probes in the visualization of DNA, 

RNA, and specific cytoskeletal proteins has been well documented, their use in protein 

kinases has only recently been explored. 
6, 7

  

Kinases are involved in a myriad of cellular processes with localization and 

expression levels intimately tied to the dynamic cellular state (Figure 4.1).
8
 Thus, native 

live-cell imaging enabled by small molecule fluorescent probes would greatly enhance 

kinase localization studies.  This is especially true for investigations of therapeutically 

relevant kinases in specific disease states. In one of the first examples, the small molecule 

kinase inhibitor dasatinib was fluorescently tagged with BODIPY to enable fluorescent 

microscopy of c-SRC, the prototypical nonreceptor tyrosine kinase.
6
 However, other 

homologous kinases (e.g. c-ABL, YES, LYN, etc.) were also fluorescently tagged as 

dasatinib itself is a relatively promiscuous kinase inhibitor.
6, 9

 While this strategy of 

amending cell permeable fluorescent dyes with existing kinase inhibitors provides a 

robust basis for such probes, it can result in the staining of undesirable off-targets. This 
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is, in part, due to the highly conserved nature of the ATP-binding pocket where most 

kinase inhibitors bind.
10

 Selectivity is very important for fluorescent probes in 

microcopy, as a signal that is not specific can confound results.  

 

Figure 4.1: Generalized cartoon highlighting the dynamics of kinase localization and function with c-SRC 

as an example. 

 

Irreversible fluorescent probes which target non-conserved cysteine residues help 

alleviate this shortcoming, as higher selectivity is obtained through combined reversible 

and covalent binding.
11

  Lui et al. estimated that there are 18 cysteines that can 

theoretically be targeted by inhibitors that first bind reversibly to the ATP pocket, and 

then can react irreversibly (via an electrophilic moiety) to the non-conserved cysteine.
11

 

Thus, the binding of such probes are dependent on the ability to reversible bind and to be 

attacked by a cysteine (if present). With these cysteines present in 200 unique kinases, 

and well documented irreversible kinase inhibitor strategies present in the literature, there 

should be ample opportunity to leverage these probes for fluorescent microscopy against 

an array of kinases. Surprisingly, of these 18 cysteines I could find evidence of only one 

that has been utilized for fluorescence microscopy with irreversible probes (Figure 

4.2).
12-15

 This cysteine at C481 of BTK (and analogous positions) has been targeted 

successfully with a handful of fluorescent probes demonstrating that this approach is 

feasible.
12-15

 Failure to utilize these other cysteines for irreversible fluorescent probes has 

severely limited the scope of live cell studies in kinases localization. As such, the full 
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potential of small molecule fluorescent probes for kinases, including therapeutically 

relevant kinases, remains unrealized.  
 

 

 

 

Figure 4.2: Representative kinase domain (with inhibitor bound, red) with accessible cysteines shown in 

representative positions.  Locations where cysteines can sometimes be found are shown in yellow spheres. 

The cyan sphere is the cysteine found at C481 in BTK (and analogous position) that has been previously 

targeted for irreversible fluorescent probes in microscopy.  In purple is a cysteine analogous to C280 of c-

SRC, of which this work concerns. (PDB: 5P9F) 
16

 

 

Herein, I describe new strategies to confer selectivity to kinase fluorescent probes, 

using the kinase c-SRC as a model. This approach is two-fold: i) the incorporation of an 

electrophilic moiety into the probe that targets an alternative non-conserved cysteine 

found in c-SRC which have previously been shown to be readily amenable to covalent 

modification; ii) the addition of a fluorophore with turn-on characteristics upon covalent 

modification by this cysteine of c-SRC. I demonstrate the capabilities of this probe such 

as its turn-on, no-wash, optional-wash, live-cell microscopy, and stimulated emission 

depletion (STED) microscopy capability. In previous studies, c-SRC has been identified 

as a therapeutic target in TNBC.
17, 18

 In Chapter III, I also identified c-SRC as a target in 

5/10 PDX screens. I then utilize the c-SRC specificity of this probe to interrogate its 
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localization in live-triple negative breast cancer (TNBC) cell lines. I also use this 

fluorescent probe to show how different drugs can influence the localization of this 

therapeutically relevant kinase.
 

 

Design of a c-SRC Fluorescent Probe 

High selectivity for the target kinase is an important feature for small molecule 

fluorescent probes for kinases to be fully realized.
3
 Irreversible small molecule 

fluorescent probes with an electrophilic moiety targeting a non-conserved nucleophilic 

cysteine residue near the ATP-binding site have shown to be advantageous. Unbound 

probe may be subsequently washed away to give an increased signal to noise ratio.  Probe 

that is bound reversibly to off-targets could also be washed away to help ensure a target 

specific signal. However, this strategy has been limited to the non-conserved C481 of 

BTK and analogous cysteines in other kinases. To increase the scope of this strategy, I 

employed a previously reported approach of covalent modification of an alternative non-

conserved cysteine near the ATP binding site, using c-SRC as a model.
19

  I began with a 

previously reported kinase-binding head group modeled after the pyrazole pyrimidine 

PP2, a classic ATP-competitive c-SRC inhibitor shown to be highly promiscuous across 

the kinome (Figure 4.3B, highlighted in pink).
20, 21

  Strategically incorporating an 

electrophilic moiety within the probe would put it in close proximity to cysteine C280, a 

non-conserved residue in the P-loop (phosphate binding loop) in the kinase ATP-binding 

pocket of c-SRC (Figure 4.3B, highlighted in light blue).
19

 This cysteine is found in only 

9 of the 518 known protein kinases and was previously used to produce selective 

irreversible inhibitors of c-SRC.
19

  The orthogonal selectivities of the kinase binding head 

group and the as-of-yet chosen electrophile would produce a highly selective fluorescent 

probe for c-SRC (Figure 4.3B).  Only the SRC-family members YES and FGR are 

possible off target kinases with FGR only expressing in select cells. A detailed list of 

kinases bound by these selectivity filters can be found in Figure C.1. 
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I chose the Michael acceptor-containing cyanoacrylamidecoumarin to serve as the 

basis of the fluorophore.
23

 It has been shown that a 1,4-Michael addition across the 

cyanoacrylamide olefin moiety by thiols result in an increase in fluorescent intensity.
23, 24

 

Such a characteristic would further increase the S/N ratio of the probe and add versatility 

*Expressed only in select cell types. 

Figure 4.3: Design of PP2-Coumarin, an irreversible turn-on fluorescent probe selective for c-SRC. A) 

General strategy for an irreversible turn-on probe for c-SRC with a kinase binding head group and an 

electrophile. B) PP2-Coumarin and the selectivity filters for its various components. The kinase binding 

head group (pink) based off of the promiscuous c-SRC inhibitor PP2. The acrylamide electrophile (light 

blue) can undergo a 1,4 Michael addition with a non-conserved cysteine.  The acrylamidecoumarin 

(green) increases in fluorescence intensity upon a 1,4-Michael addition with the acrylamide moiety. 

Venn diagram shows the selectivity filters of the various parts of the proposed fluorescent probe (full 

list in Figure C.1).   C) Structure of PP2C built into a crystal structure of c-SRC bound to PP2 (PDB: 

3GEQ). 
22 

A) 

C) 

B) 
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for experiments where washing may be undesirable.  For example, where real-time 

imaging immediately following addition of probe is desired, required repetitive washing 

would impair its use. To ensure c-SRC specific turn-on fluorescence, I chose to remove 

the cyano group which would decrease the reactivity of the electrophile with endogenous 

glutathione and other off-target cellular thiols. The cyano group also activates the retro 

1,4-Michael addition reaction and its removal will ensure that any reaction with the 

electrophile is irreversible. Attachment of the kinase binding head group to the resultant 

acrylamidecoumarin (Figure 4.3B, highlighted in green) with an aliphatic linker 

produced the designed probe, PP2-Coumarin (PP2C).  PP2C was found to have excitation 

and emission maxima at 450 and 510 nm respectively.  These maxima correspond to 

commonly used filters used in fluorescent microscopy, specifically those used to 

visualize GFP. 

 

PP2-Coumarin is a Turn-on Irreversible Fluorophore Specific for C280 of c-SRC 

To determine if PP2C is an irreversible inhibitor of c-SRC, I employed a 

continuous fluorometric activity assay as a means to determine IC50 as a measure of 

potency.
25

 Incubation with the kinase domain of c-SRC at varying time points showed 

that PP2C displayed a modest time-dependent increase in inhibition. Mutating C280 to a 

serine in c-SRC significantly abrogated this effect, giving no clear trend in the IC50 over 

time, a trait of irreversible inhibitors.
26

  This indicates that this time-dependent 

characteristic of PP2C is dependent upon C280 of c-SRC.
†
  These data, summarized in 

Table 4.1, is a trait of irreversible inhibitors. To expand upon these findings, I included 

the SRC-Family kinase HCK, which lacks a P-loop cysteine, in the evaluation of PP2C.  

As expected, PP2C exhibited no time-dependent increase in potency with wild-type 

HCK, but did so when a P-loop cysteine was added through mutagenesis (Q252C HCK) 

(Table 4.1).
†
  This not only confirms that the presence of a P-loop cysteine is required for 

irreversible inhibition of PP2C, but also shows preliminary potential for its use with other 

kinases through chemical genetics.  I can envision studies leveraging gene editing or 

transfecting P-Loop cysteine kinase mutants into cells for localization studies of other 

kinases. 
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In the presence of c-SRC kinase domain I measured a significant time dependent 

increase in the fluorescence intensity at 510 nm for PP2C (> 350% increase after 120 

min) (Figure 4.4).  This is consistent with the time-dependent inhibition of c-SRC by 

PP2C as measured above.  Additionally, this increase in fluorescence intensity is 

significantly abrogated when the C280S c-SRC mutant is used instead.
†
  This 

demonstrates that the turn-on fluorescence is dependent not only on c-SRC binding but 

also the presence C280 in the P-loop. 

 

 

 

 

 

 

Table 4.1: Time dependent IC50 values of PP2C with c-SRC and HCK and their mutants. Potency of 

PP2C increases with time for wild-type c-SRC and Q277C HCK.  No clear time dependent increase in 

potency observed with C280S c-SRC and wild-type HCK. PP2C IC50 time-dependence is contingent on 

the presence of a cysteine in the P-loop of the kinase domain.  * Denotes that no full dose response was 

achieved in any of the independent runs.  Here, full dose response curves designated to have at least two 

points below IC50 enzyme activity. 
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In the cell, glutathione is present at high concentrations and could potentially 

react with PP2C.  This would result in nonspecific turn-on fluorescence as well as 

prohibit wash out of non c-SRC bound probe.  Average cellular glutathione concentration 

is approximately 5 mM.
27

 Unlike c-SRC, the presence of increasing concentrations of 

glutathione of up to 20 mM resulted in no fluorescence intensity increase of PP2C.  No 

increase in fluorescence intensity was measured at these glutathione concentrations over 

time as well.  This data can be found in Figure C.2. This demonstrates the inertness of 

PP2C’s turn-on fluorescence with glutathione biochemically. 

 

PP2-Coumarin gives a c-SRC Specific Signal in Live-Cell Fluorescent Confocal 

Microscopy 

I moved to see if fluorescent signal of PP2C is specific to c-SRC in fluorescent 

confocal microscopy.  I utilized two cell lines, SYF mouse embryonic fibroblasts (MEF) 

(null for the ubiquitous SRC family kinases c-SRC, YES, and FYN) and SYF + c-SRC 

MEFs (SYF MEF cells in which c-SRC is stably transfected and overexpressed).  

Incubating 1 μM PP2C with SYF + c-SRC MEF cells for 4 hours resulted in strong PP2C 

staining upon examination with live-cell fluorescence confocal microscopy (Figure 4.5).  

This served in contrast to the lack of detectible signal with identical procedures and 

Figure 4.4: PP2C displays increased time-dependence turn-on fluorescence PP2C in the presence of 

C280 of c-SRC. PP2C (2 μM) was added to wells of buffer with no enzyme and wells with either wild-

type or C280S c-SRC kinase domain (1 µM).  Presence of the P-loop cysteine in c-SRC greatly 

enhances fluorescence intensity increase over time. Ex: 450 nm, Em: 510 nm * p < 0.05, *** p < 0.001, 

**** p < 0.0001. 
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microscope settings when performed with SYF MEF cells. This shows not only the no-

wash capabilities of the probe but also demonstrates the c-SRC specific signal in cellulo. 

 

 

 

The c-SRC expression levels in SYF + c-SRC MEF cells are not indicative of the 

endogenous levels of c-SRC in other cell lines where it would be lower. I thus moved to 

evaluate if PP2C can be used to detect c-SRC in cell lines that have not been genetically 

manipulated.  To this end, I chose the TNBC cell line MDA-MB-468 and treated it with 

PP2C followed by probe-free washings. Upon imaging, a strong staining of the plasma 

membrane was observed, consistent with reports that c-SRC can sometimes be found on 

the plasma membrane of TNBC cells (Figure 4.5).  To evaluate the endogenous c-SRC 

specificity of this observed signal I pre-incubated MDA-MB-468 TNBC cells with an 

irreversible analog of the c-SRC inhibitor dasatinib (Sprycel) before treatment with PP2C 

(structure in Figure C.3).
19

 Irreversible dasatinib is highly selective for c-SRC and 

covalently modifies C280 of c-SRC and thus should occlude PP2C binding which can 

then be washed away.
19

 This led to no observable signal in the irreversible dasatinib pre-

incubated cells. Gratifyingly, this served in direct contrast to the strong plasma membrane 

staining observed in cells pre-incubated with DMSO vehicle and imaged under identical 

microscope settings (Figure 4.6).  Such a result suggests that that the observed 

Figure 4.5: PP2-coumarin gives a c-SRC specific signal and can be used to in endogenous c-SRC 

expressing cells. SYF + c-SRC MEF and SYF MEF cell lines imaged 4 hours after PP2C (1 μM) treatment 
with no media renewal. MDA-MB-468 TNBC cells with endogenous c-SRC expression treated with PP2C 

as above, followed by multiple media washings. Image acquisition settings were identical between the left 

and center images. Green channel= PP2C, Red Channel= NucRed Live 647, and Grey channel= DIC. 
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fluorescent staining is a result of c-SRC specific binding of PP2C in this cell line.  Thus, 

PP2C can be used in c-SRC localization studies in cells with endogenous levels of c-SRC 

and not just those in which it is overexpressed. 

 

 

 

PP2-Coumarin is Compatible with Live-Cell STED Super-Resolution Imaging 

In traditional confocal microscopy resolution is restricted by the diffraction limit 

of the emitted light (~200 nm).
28

 To distinguish features below the diffraction limit, 

Stimulated Emission Depletion (STED) microscopy has been used to obtain true super-

resolution.
28, 29

 In sum, employing a fluorescence excitation beam in combination with a 

surrounding doughnut-shaped STED beam has enabled microcopy to beat the diffraction 

limit.
28, 29

 However, photobleaching from the high intensity STED laser has limited the 

fluorescent probes in live-cell STED microscopy.
29

  I evaluated the probe’s compatibility 

with live-cell STED microscopy in SYF + c-SRC MEF cells.  At higher STED laser 

powers it was difficult to distinguish organized structure, likely in part due to movement 

of cellular components from localized heating by the STED laser. Decreasing the STED 

laser power remedied this (detailed settings listed in materials and methods). I was able to 

detect fine vesicle-like structures near the plasma membrane of many cells.  The Full-

Width at Half Maxima (FWHM) of these resolved structures were measured to be below 

Figure 4.6: An irreversible analog of the c-SRC inhibitor dasatinib gives eliminates fluorescent signal in 

endogenous c-SRC expressing cells.  MDA-MB-468 TNBC cells were pre-treated with DMSO vehicle or 

irreversible dasatinib analog for 2 hours followed by 1-hour incubation with PP2C, and then washings 

with probe-free media.. Image acquisition settings were identical. Green channel= PP2C, Red Channel= 

NucRed LiveGreen channel= PP2C, Red Channel= NucRed Live 647, and Grey channel= DIC. 
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the diffraction limit while in conventional confocal microscopy were measured to be well 

above (Figure 4.7). Structures with detectible detail below the diffraction limit show that 

PP2C is compatible with live-cell STED microscopy.  Such a feature is noteworthy as not 

all fluorophores are capable of withstanding the high power of the STED laser, quickly 

becoming photobleached in the process. Fewer fluorophores still have this capability with 

live-cells, which will lack strong antifade reagents typically present with fixed cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential Localization of c-SRC in Triple Negative Breast Cancer Cell Lines 

c-SRC has recently been identified as a target of interest in TNBC.
17, 30

 As shown 

in Chapter III, c-SRC was also identified as a target in 5/10 TNBC PDX screens using 

the profiled kinase inhibitor approach. With c-SRC subcellular localization an important 

regulatory mechanism in its activation and function, c-SRC localization in TNBC cell 

lines is of particular interest.
31

 c-SRC localization experiments in TNBC has previously 

relied upon immunofluorescence and immunohistochemistry despite their 

D) 

Figure 4.7:  Live-Cell Stimulated Emission Depletion (STED) Super-Resolution Microscopy with PP2-

Coumarin A) Bright field image of a portion of a SYF + c-SRC .  Arrows indicate visible fine-structure 

on plasma membrane.  B) STED image of the same cell.  Visible vesicle-like structure can be seen in the 

within Region of Interest (ROI) (red box). C) A comparison of conventional confocal (left) and STED 

(right) images of the ROI.  Images were taken sequentially and both were deconvoluted using Huygens 

Essential Package.    D)  Line intensity profiles along the red line in C were fitted to Gaussian or 

Lorentzian distributions.  The Full Width at Half Maximum (FWHM) and associated standard deviation 

were calculated from the fits of each. The diffraction limit is ~200 nm. 

A) 

B) 

C) 

A) 
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disadvantages.
17, 18, 32

 Thus I used PP2C as a means to interrogate c-SRC localization in 

TNBC cell lines using live-cell fluorescent microscopy.  I treated live TNBC cells using 

PP2C and noted varying staining patters (Figure 4.8).  As stated previously, MDA-MB-

468 cells displayed primarily plasma membrane staining.  Localization at the plasma 

membrane has been associated with a catalytically activated c-SRC.
31, 33

 MDA-MB-231, 

SUM149, HCC1937, Hs57t, and Vari068 cells displayed either general cytosolic or 

perinuclear region staining, the latter of which is a common localization pattern of c-

SRC. SUM159 cells showed a high population of cells (approximately 60%) with 

staining in both the cytosol and plasma membrane.  

 

 

 

 

Figure 4.8:  Representative live-cell confocal images of TNBC breast cancer cell lines imaged with 

PP2C.  A) MDA-MB-231, B)  SUM159 C) SUM149, D) Hs578t, E) MDA-MB-468, and F) 

HCC1937 TNBC Cell Line. Green channel= PP2C, Red Channel= NucRed Live 647, and Grey 

channel= DIC. 
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Recently, a promising lead compound for TNBC was identified, UM164.
30

  The 

efficacy of this drug was attributed, in part, to inhibition of c-SRC through binding of an 

inactive kinase conformation.
30

  The drug dasatinib, shares a very similar scaffold to 

UM164 but binds the active conformation of c-SRC but with diminished efficacy in 

TNBC.
30

  It has been hypothesized that part of UM164’s improved efficacy over 

dasatinib may be a result of it altering non-catalytic functions through binding of the 

different c-SRC conformation.  To explore this hypothesis I imaged c-SRC using the 

PP2C probe in MDA-MB-468 cells treated with either UM164 or dasatinib (5 uM) for 4 

hours before fixing of cells and washing away of drug. I observed a profound change in 

the localization of the c-SRC probe in the cells treated with UM164 but not dasatinib 

(Figure 4.9).  The UM164 treated cells caused a distinct punctate staining as opposed to 

the nearly exclusive membrane staining found in cells treated with dasatinib and vehicle. 

This supports other published data that UM164s improved efficacy in TNBC could be, in 

part, the result of its induced changes in c-SRC localization.  These experiments serve as 

examples of how PP2C is positioned as a valuable tool to continue live-cell investigations 

into the effects of c-SRC localization in TNBC.  

 

 

 

Figure 4.9: Altered localization of c-SRC when bound by UM-164. Representative fluorescence 

microscopy images of MDA-MB 468 cells treated with vehicle (DMSO), 5 uM dasatinib, or 5 uM UM-164 

for 4 hours. In the vehicle-treated cells, c-SRC (green) is predominately localized to the cell membranes. 

UM-164–treated cells show cytoplasmic punctate structures indicated by the white triangles. Green 

channel= PP2-Coumarin, Red Channel= NucRed Live 647, and Grey channel= DIC. 
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Conclusions 

I have developed a versatile small molecule fluorescent probe, PP2C, with turn-

on, no-wash, and irreversible features with high selectivity for its target, c-SRC.  The 

development of this probe expands the scope of small molecule irreversible fluorescent 

probes by demonstrating the use of an alternative non-conserved cysteine.  I also 

demonstrated that incorporating a cysteine in the P-loop through mutagenesis can enable 

this probe’s use in other kinases. This further expands its scope as either gene editing or 

transfecting P-Loop cysteine kinase mutants into cells will facilitate its use in other 

kinase localization studies. The probe also benefited from being compatible with live-cell 

STED microscopy techniques measuring structures below the diffraction limit.  With this 

probe able to show localization of endogenous c-SRC, I used it in live-cell experiments 

with TNBC cell lines in which c-SRC has been shown to be a therapeutic target in vivo. I 

observed differential staining among the TNBC cell lines tested.  Additionally, I used this 

fluorescent probe to show how an investigative drug can influence the localization of c-

SRC in TNBC cell lines.  

The capabilities of this or a similar probe would be useful for high-content 

analysis screens which interrogate changes in c-SRC localization.  High-content analysis 

screens involve automated high-throughput fluorescent microscopy with automated 

image analysis.  Such screens have been recognized as a means for their usefulness in 

phenotypic assays and can provide a strong mechanistic rationale for observed 

phenotypes (in this case c-SRC localization and cell viability).
34

  This is important as 

strong mechanistic relationships between phenotype and disease states is integral for 

further advancing phenotypic-based screens, as discussed in Chapter I.
34

  

This approach demonstrates how features of kinases and their inhibitors can be 

leveraged to design specific kinase fluorescent probes with varying uses. The applications 

of such specific and versatile probes, as described herein, demonstrate their value.  
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Materials and Methods 

 

 

Cell Lines and General Cell Culture 

SYF MEF and SYF + c-SRC MEF cell lines were purchased from American Type 

Culture Collection (ATCC).   MDA-MB-468 and Hs578t TNBC breast cancer cell lines 

were purchased from ATCC. MDA-MB-231, HCC-1937, SUM-149, and SUM-159 

TNBC breast cancer cell lines were kind gifts from Sofia Merajver.  SYF MEF, SYF + c-

SRC MEF, MDA-MB-231, and MDA-MB-468 were maintained in DMEM 

supplemented with 10% Fetal Bovine Serum (FBS).  SUM149 and Sum 159 cell lines 

were maintained in 5% FBS in Ham’s F-12 media supplemented with 5% FBS, 1 µg/mL 

hydrocortisone, and 5 μg/mL bovine insulin. Hs579t were maintained in DMEM 

supplemented with 10% FBS and 10 μg/mL insulin. HCC1937 cells were maintained in 

RPMI 1640 media supplemented with 10%.  A humidified incubator at 37 °C and 5% 

CO2 was used for storing all cell cultures with the exception of SUM149 and SUM159 

cell lines which were grown at 10% CO2.   

 

Production of c-SRC, HCK, C280S c-SRC mutant, and Q272C HCK  

Chicken c-SRC kinase domain and HCK kinase domain in pET28a plasmid with a 

TEV protease cleavable N-terminal 6X-His tags were provided by Markus Seeliger 

(SUNY, Stony Brook). The desired c-SRC mutation (C280S) was added to this plasmid 

using the Agilent QuikChange II kit. The desired HCK mutation (Q272C) was added to 

its plasmid using DpnI digent and transformation.  The plasmids were transformed by 

electroporation into Bl21DE3 electrocompetent cells containing YopH expression vector 

in pCDFDuet-1. Cell growth and expression and protein purification were performed 

using modified literature protocols for expression of wild-type c-SRC kinase domain.
35

 

This work was performed by Frank Kwarcinski and Christel Fox.
†
 

 

Determination of Biochemical IC50 Values 

A continuous fluorescence assay
 
was used to determine IC50 values.

25
 Reaction 

volumes of 100 μL were used in 96-well black opaque plates. 85 μL of enzyme in buffer 

was added to each well. 2.5 μL of the appropriate inhibitor dilution was then added for 
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the various pre-incubation times.  After the pre-incubation period, 2.5 μL of a c-SRC 

substrate peptide (“compound 3” as described in Wang et al)
4
 solution (1.8 mM in 

DMSO) was added. The reaction was initiated with 10 μL of ATP (1 mM in water), and 

reaction progress was immediately monitored at 405 nm (ex. 340 nm) for 10 minutes 

using a Synergy 4 microplate reader (Biotek). Reactions had final concentrations of 45 

µM c-SRC substrate peptide, 100 μM ATP, 100 μM TCEP, 100 μM Na3VO4, 100 mM 

Tris buffer (pH 8), 10 mM MgCl2, 0.01% Triton X-100.  Final enzyme concentrations 

were 30 nM for c-SRC Kinase Domain, 30 nM for C280S c-Sr Kinase Domain, 100 nM 

for HCK Kinase Domain, and Q272C HCK Kinase Domain.  The initial rate data 

collected was used for determination of IC50 values for each time point. For IC50 

determination, the kinetic values were obtained directly from nonlinear regression of 

substrate-velocity curves in the presence of various concentrations of the inhibitor. The 

equation Y = Bottom + (Top – Bottom)/(1 + 10^X – LogEC50), X = log(concentration) 

and Y = binding; was used in the nonlinear regression. Each inhibitor IC50 value was 

determined using at least two independent experiments; a representative inhibition curve 

for each condition is shown below. Representative dose response curves can be found in 

Appendix C. 

 

Turn-on Fluorescence 

In a 96 well plate, 2 µL of a 100 µM DMSO stock of PP2-Coumarin was added to 

a 98 uL of Buffer D (100 mM Tris buffer pH 8, 10 mM MgCl2, 5% Glycerol, and 5 mM 

DTT) containing 1 µM enzyme (100 µL total reaction volume).  Fluorescence intensity 

increase relative to no enzyme control at 510 nm (ex. 470 nm) was immediately recorded 

at the indicated time points with a Synergy 4 microplate reader (Biotek).  The 

fluorescence intensities of the same wells were measured at each time point.  Likewise, 

fluorescence increase in response to increasing concentrations of reduced glutathione at 

the indicated time points was also recorded under identical conditions (sans enzyme).  All 

conditions were done in triplicate.   Wells were re-read at each time point. 
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Live Cell Confocal Microscopy 

Cells were trypsinized and allowed to adhere overnight on 4-well Lab-Tek II 1.5# 

chambered coverglass (Thermo Scientific).  Unless otherwise specified, cells were then 

treated with PP2C at a final concentration of 1 µM for 4 hours, followed by three 

washings with complete media with 3 minute incubations in between.  Cells typically 

grown with DMEM as a base media were washed and imaged with Flourobrite DMEM 

(Life Technologies) along with additional supplements to form complete medium. After 

the final wash the culture was treated with NucRed Live 647 nuclear stain (Life 

Technologies) (1 drop/500 µL culture media) and then incubated for 15 minutes.  During 

image acquisition, cells were placed in a humidified enclosed stage with temperature and 

CO2 levels maintained at the growth conditions above for each cell cline by a regulator 

(Live Cell).  Images were acquired with an Olympus FluoView 500 Laser Scanning 

Confocal Microscope with a 60X/1.4NA or 40X/1.2NA oil immersion objectives 

(Olympus). Samples were sequentially excited by Argon (488 nm), Helium-Neon Green 

(543 nm), and Helium-Neon Red (633 nm) lasers for coumarin fluorophores, m-Cherry-

c-SRC, and NucRed Live 647 respectively. Emission signals were collected by barrier 

filters set to 505-525 nm for coumarin dyes, 610 nm NucRed Live 647.  Differential 

Interference Contrast (DIC) images were also collected using the Argon laser channel.  

Images of 1024 x 1024 pixel dimensions were collected using the medium setting for 

scan speeds and Kalman filtering (averaging) of at least 4 scans.  A zoom factor of two 

was also used when indicated.  Unless otherwise stated the Z-resolution for each image 

was 0.5 μm. For each laser channel the laser intensity, detector PMT, and detector offset 

settings were adjusted to give sufficiently black background black backgrounds with 

minimal oversaturated pixels.  

 

Stimulated Emission Depletion Microscopy 

STED images were obtained using a Leica TCS SP8 Stimulated Emission 

Depletion Module (Leica Microsystems) equipped with a HCX PL APO 100X/1.40NA 

oil objective, White Light Laser, and an enclosed heated stage at 37 °C.  SYF + c-SRC 

cells imaged were treated with PP2-Coumarin then washed as described above.  
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Excitation and depletion wavelengths were 488 nm and 594 nm respectively.  For 

confocal imaging the 592 nm depletion laser was turned off.  Signal detection was 

achieved using Leica Hybrid Detection System (HyD).  For detection with bright field 

images a regular photomultiplier tube detector was used.   The pinhole was set to 1.0 Airy 

Unit. For confocal and STED, Kalman filtering (averaging) of six scans at a speed of 600 

Hz/scan and a zoom factor of three gave final images of 835 x 936 pixels with a pixel 

size of 38 nm. Bright field images of 1024 x 1024 pixels were likewise collected with an 

identical pixel size. Confocal and STED images were deconvoluted using Huygens 

Essentials package.  A comprehensive list of acquisition parameters are given in Table 

4.2 below. 

 

 

Image Size (Confocal, 

STED) 

835 x 936 pixels, 31.63 µm 

x 36.61 µm, pixel size = 38 

nm 

 
STED Beam Slider SD 592 

Image Size (Bright Field) 

1024 x 1024 pixels, 39.75 

µm x 38.75 µm, pixel size = 

38 nm 

 STED Phase Filter 

Beam 1 
Vortex 600 

Scan Mode xyz 

 Simple Beam 

Expander 
No FRAP Booster 

Scan Direction X Unidirectional  Target Slider Target Park 

Objective Name 
HCX PL APO 100x/1.40 

OIL 

 X2 Lens Changer CS2 UV Optics 1 

Immersion Oil  White Light Laser On 

Numerical Aperture 1.4  STED Output 1.2450 W 

Refraction Index 1.518 
 STED 1 ( 592 nm) 

Intensity 
50% 

Zoom 3 

 Supercontinuum 

Visible ( 488 nm) 

Intensity 

20% 

Pinhole 151.6 µm 

 

Detector (Confocal, 

STED 

HyD (493nm - 568nm), 

Gain=500, Offset= -0.1, 

Gate Start = 1.50 ns, Gate 

End = 6.00 ns, Reference 

Wavelength = 488.0 nm 

Pinhole Airy 1.00 AU 
 Detector (Bright 

Field) 

PMT, Gain = 329.5, 

Offset= 0 

Emission Wavelength for 

Pinhole Airy Calculation 
580.0 nm 

   

Scan Speed 600 Hz    

Frame Accumulation 6    

Notch FW 2 NF 492    

Polarization FW NF 488    

Attenuation MP Min    

External Detection FW Mirror    

Galvo Slider Galvo X Normal    

Multi-Function Port Substrate    

Table 4.2:  Comprehensive list of parameters during STED image acquisition. 
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General Synthetic Methods 

 Unless otherwise noted, all reagents were obtained from commercial sources 

without further purification. 
1
Hand 

13
C NMR spectra were obtained using either a Varian 

Vnmrs500, Varian Vnmrs700, or Inova 500 spectrometer.  Mass spectrometry (HRMS) 

was carried out by the University of Michigan Spectrometry Facility (J. Windak, 

director). 

 

Synthetic Protocols 

 

 

 

 

Synthesis of 4.1.  9-Formyl-8-hydroxyjulolidine (2.12 g, 9.76 mmol) (prepared as 

previously described)
36

 and dissolved in anhydrous methanol in a flame dried flask.  To 

this solution was added dimethyl 2-pentenedioate (1.62 g, 10.24 mmol) (prepared as 

previously described).
37

  Three drops of piperidine that was distilled over KOH was 

added to the reaction mixture which was then heated to reflux under N2 overnight to 

form an orange precipitate.  The reaction mixture was cooled on ice and the orange 

precipitate collected by vacuum filtration.  The orange solid was further purified using 

silica chromatography to give compound 4.1 as an orange solid (0.692 g, 2.13 mmol, 

21.8% yield). Spectral Data: 
1
H NMR (500 MHz, CDCl3) δ 7.59 (s, 1H), 7.54 (d, J = 

15.7 Hz, 1H), 6.94 – 6.86 (m, 2H), 3.79 (s, 3H), 3.31 (q, J = 6.3 Hz, 4H), 2.88 (t, J = 6.5 

Hz, 2H), 2.76 (t, J = 6.3 Hz, 2H), 1.97 (p, J = 6.2 Hz, 4H) ppm; 
13

C NMR (126 MHz, 

CDCl3) δ 168.33, 160.53, 151.58, 147.20, 144.58, 140.02, 125.87, 119.03, 118.12, 

113.48, 108.48, 106.09, 77.18, 51.51, 50.16, 49.77, 27.45, 21.27, 20.32, 20.15; MS-ESI 

(m/z): [M + Na]
+
 calcd for C19H19NO4 348.1206; found 348.1203.  

 

Scheme 4.1. Synthesis of compound 4.1. 
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Synthesis of 4.2.  In a flame dried flask compound 4.1 (40 mg, 0.123 mmol) was 

dissolved in 1,2-dichloroethane.  Trimethyltinhydroxide (222 mg, 1.23 mmol) was then 

added and the reaction mixture heated at 80 C under N2 for five days.  Once the starting 

material was consumed as indicated by TLC, the reaction was diluted with 100 mL of 

ethyl acetate.  The resulting mixture was then washed with 5% (w/w) HCl (5 x 25 mL), 

washed with brine (100 mL), dried over sodium sulfate. And then concentration in vacuo 

to give compound 4.2 as an orange solid (30 mg, 0.096 mmol, 78% yield). Spectral 

Data: 
1
H NMR (500 MHz, DMSO-d6) δ 8.05 (s, 1H), 7.38 (d, J = 15.7 Hz, 1H), 6.99 (s, 

1H), 6.63 (d, J = 15.8 Hz, 1H), 3.23 – 3.09 (m, 4H), 2.68 (q, J = 6.7 Hz, 4H), 1.85 (td, J = 

13.6, 11.6, 7.8 Hz, 4H) ppm; 
13C NMR (126 MHz, dmso) δ 168.56, 160.29, 151.47, 

147.58, 145.59, 139.99, 126.61, 119.41, 118.29, 111.98, 108.24, 105.34, 49.91, 49.38, 

27.20, 21.08, 20.14, 20.03 ppm; MS-ESI (m/z): [M + H]
+
 calcd for C18H17ClNO4 

312.1230; found 312.1230. 

 

 

 

 

Synthesis of 4.3.  2-((4-chlorophenyl)(methoxy)methylene)malononitrile (5.00 g, 22.87 

mmol) (prepared as previously described)
38

 and added to a flame dried round bottom 

flask and dissolved in methanol.  Triethylamine (5.79 g, 57.3 mmol) and methyl 3-

hydrazinylbenzoate hydrochloride (4.63 g, 22.87 mmol) (prepared as previously 

described)
39

 were then added and the reaction mixture was heated to reflux for 1 hour. 

4.3 

4.2 4.1 

Scheme 4.2. Synthesis of compound 4.2. 

Scheme 4.3. Synthesis of compound 4.3. 
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Reaction mixture was then cooled to room temperature and an orange precipitate was 

formed.  Approximately half the solvent volume was removed and 100 mL of water was 

added. The precipitate was collected by vacuum filtration and washed with water and 

then dried to give compound 4.3 as an orange solid (6.29 g, 17.6 mmol, 77% yield). 

Spectra Data: 
1
H NMR (401 MHz, DMSO-d6) δ 8.07 (s, 1H), 7.98 (d, J = 7.8 Hz, 1H), 

7.91 – 7.81 (m, 3H), 7.67 (t, J = 7.9 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 6.99 (s, 2H), 3.86 

(s, 3H). 
13

C NMR (101 MHz, DMSO-d6) δ 165.86, 153.70, 149.89, 138.01, 134.29, 

131.32, 130.60, 130.28, 129.40, 129.29, 128.94, 128.11, 125.15, 115.68, 71.87, 52.91. 

MS-ESI (m/z): [M + H]
+
 calcd for C18H13ClN4O2 353.0800; found 353.0797.  

 

 

 

 

 

 

Synthesis of 4.4.  In a flame dried round bottom flask compound 4.3 (3.00 mg, 8.5 

mmol) was dissolved in formamide.  The reaction mixture was gently heated to reflux for 

2.5 hours. The reaction mixture was cooled on ice and water added to form a tan 

precipitate that was collected by vacuum filtration and washed with water followed by 

hexanes then dried. The tan solid was further purified by silica chromatography to give 

compound 4.4 as a white solid (100 mg, 0.272 mmol, 3.1% yield) (note: increase yields 

were observed by only heating to 160 C in subsequent analogous reactions).  Spectral 

Data: 
1
H NMR (700 MHz, DMSO-d6) δ 8.83 (t, J = 2.0 Hz, 1H), 8.55 (ddt, J = 8.1, 2.0, 

0.8 Hz, 1H), 8.40 (s, 1H), 7.91 (ddt, J = 7.8, 1.7, 0.8 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.71 

(t, J = 7.9 Hz, 1H), 7.65 – 7.61 (m, 2H), 3.89 (s, 3H). 
13C NMR (176 MHz, dmso) δ 

166.19, 158.85, 157.25, 155.20, 145.46, 139.41, 134.48, 131.30, 131.07, 130.74, 130.27, 

129.68, 127.16, 125.61, 121.40, 99.30, 52.91. MS-ESI (m/z): [M + H]
+
 calcd for 

C19H14ClN5O2 380.0909; found 380.0906.  

4.3 4.4 

Scheme 4.4. Synthesis of compound 4.4. 
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Synthesis of 4.5.  In round bottom flask compound 4.4 (100 mg, 0.263 mmol) was 

dissolved in THF/H2O (3:1).  LiOH was then added and dissolved and resulting mixture 

was heated to reflux for until starting material was consumed as indicated by TLC.  The 

reaction mixture was cooled and the THF was removed in vacuo and then acidified with 

addition of aq. HCl to form a white precipitate.   The mixture was vacuum filtered and 

the collected precipitate washed with water to give compound 4.5 as a white solid (45 

mg, 0.123 mmol, 46.7%).  Spectral Data: 
1
H NMR (500 MHz, DMSO-d6) δ 8.84 (s, 

1H), 8.51 (d, J = 8.2 Hz, 1H), 8.44 (s, 1H), 7.93 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.1 Hz, 

2H), 7.70 (t, J = 8.0 Hz, 1H), 7.65 (d, J = 8.1 Hz, 2H).
 13C NMR (176 MHz, dmso) δ 

167.21, 158.28, 156.47, 154.90, 145.54, 139.17, 134.53, 132.29, 131.19, 130.75, 130.10, 

129.71, 127.49, 125.39, 121.84, 99.28. MS-ESI (m/z): [M + H]
+
 calcd for C18H12ClN5O2 

366.0752; found 366.0751.  

 

 

 

 

Synthesis of 4.6.  To a flame dried flask compound 4.5 (45 mg, 0.123 mmol) was 

dissolved in dry DMF followed by addition of DIEA (47.7 mg, 0.369 mmol) and PyBOP 

(70 mg, 0.135 mmol).  The solution was stirred under N2 at room temperature for 10 

minutes.   tert-butyl (4-aminobutyl)carbamate (26 mg, 0.135 mmol) (prepared as 

previously described)
40

 dissolved in dry DMF was then added and the resultant reaction 

mixture was stirred for 2 hrs.  Upon consumption of the starting material as determined 

4.4 4.5 

4.5 4.6 

Scheme 4.5. Synthesis of compound 4.5. 

Scheme 4.6. Synthesis of compound 4.6. 
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by TLC, water was added to give a precipitate that was collected by vacuum filtration 

then washed with water which resulted in compound 4.6 as a tan brown solid (58 mg, 

0.108 mmol, 88% yield). Spectral Data: 
1
H NMR (500 MHz, DMSO-d6) δ 8.68 – 8.59 

(m, 2H), 8.46 – 8.35 (m, 2H), 7.82 (d, J = 7.9 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.69 – 7.59 

(m, 3H), 6.80 (t, J = 5.8 Hz, 1H), 3.27 (q, J = 6.4, 5.8 Hz, 2H), 2.93 (q, J = 6.5 Hz, 2H), 

1.51 (p, J = 7.8, 7.4 Hz, 2H), 1.42 (t, J = 7.7 Hz, 2H), 1.36 (d, J = 1.8 Hz, 9H). 
13

C NMR 

(176 MHz, DMSO-d6) δ 165.96, 158.84, 157.15, 156.02, 155.08, 145.18, 139.06, 136.32, 

134.39, 131.42, 130.74, 129.67, 129.54, 125.21, 123.90, 120.49, 109.99, 99.16, 77.77, 

39.87, 28.71, 27.55, 26.96. MS-ESI (m/z): [M + Na]
+
 calcd for C27H30ClN7O3 558.1991; 

found 558.1990.  

 

 

 

 

 

Synthesis of 4.7.  In a round bottom flask, compound 4.6 (58 mg, 0.108 mmol) was 

dissolved in 4 M HCl in Dioxane and stirred at room temperature for 3 hours.  The 

solvent was removed under reduced pressure to give a white residue.  The residue was 

suspended in 1 M NaOH  and the suspension was vacuum filtered.  The collected solid 

was washed with water to give compound 4.7 as a brown tan solid (32 mg, 0.073 mmol 

67.8% yield). Spectral Data: 
1
H NMR (500 MHz, DMSO-d6) δ 8.68 (t, J = 5.7 Hz, 1H), 

8.60 (m, 1H), 8.38 (m, 2H), 7.78 (m, 4H), 7.66 – 7.53 (m, 4H), 3.27 (m, 2H), 2.62 (t, J = 

7.0 Hz, 2H), 1.60 – 1.45 (m, 4H) ppm; 
13C NMR (126 MHz, dmso) δ 165.95, 158.85, 

157.14, 155.08, 145.18, 139.08, 136.32, 134.40, 131.42, 130.73, 129.66, 129.54, 125.18, 

123.91, 120.47, 99.18, 40.99, 29.40, 26.94 ppm; MS-ESI (m/z): [M + H]
+
 calcd for 

C22H22ClN7O 436.1647; found 436.1645.  

 

4.6 4.7 

Scheme 4.7. Synthesis of compound 4.7. 
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Synthesis of PP2-Coumarin.  In a flame dried flask compound 4.2 (30 mg, 0.096 mmol) 

was dissolved in dry DMF followed by addition of DIEA (51.9 mg, 0.401 mmol) and 

PyBOP (50 mg, 0.096 mmol).  The solution was stirred under N2 at room temperature for 

10 minutes.   Compound 4.7 (35 mg, 0.080 mmol) dissolved in dry DMF was then added 

and the resultant reaction mixture was stirred under N2 at 60 C overnight.  When 

progress of the reaction was halted as determined by TLC, water was added.  This 

mixture was then extracted with ethyl acetate (3 X 20 mL), the combined organics 

washed with water (5 x 10 mL) to remove DMF, washed with Brine, dried over sodium 

sulphate, and concentrated to give a crude orange solid.  The orange solid was further 

purified using a reverse phase HPLC to give PP2-Coumarin as a orange yellow solid (7 

mg, 0.0096 mmol, 11% yield). Spectral Data: 
1
H NMR (500 MHz, DMSO-d6) δ 8.64 (d, 

J = 6.0 Hz, 2H), 8.44 – 8.38 (m, 2H), 8.15 (t, J = 5.7 Hz, 1H), 7.95 (s, 1H), 7.80 (dd, J = 

17.4, 7.9 Hz, 4H), 7.68 – 7.61 (m, 4H), 7.23 (d, J = 15.4 Hz, 1H), 7.03 (s, 1H), 6.92 (d, J 

= 15.5 Hz, 1H), 3.19 (q, J = 6.5, 5.9 Hz, 2H), 2.72 (dt, J = 13.2, 6.3 Hz, 4H), 2.54 (s, 2H), 

1.87 (dp, J = 12.3, 6.0 Hz, 4H), 1.63 – 1.53 (m, 6H), 1.23 (s, 2H) ppm; 
13

C NMR 165.56, 

159.85, 158.42, 156.72, 154.65, 150.68, 146.64, 144.75, 144.58, 138.65, 135.87, 134.42, 

133.98, 130.99, 130.32, 129.25, 129.13, 125.84, 124.78, 123.48, 122.06, 120.05, 118.77, 

112.73, 107.89, 104.95, 98.75, 49.43, 48.91, 40.43, 38.48, 31.33, 26.80, 26.66, 20.76, 

19.85, 19.72 ppm; MS-ESI (m/z): [M + Na]
+
 calcd for C40H37ClN8O4 751.2519; found 

751.2509.  

Spectral Data for Compounds 

 
1
H and 

13
C NMR spectra for compounds 4.1-4.7 and PP2-Coumarin are shown 

in Appendix C. 

4.7 4.2 PP2-Coumarin 

Scheme 4.8. Synthesis of compound PP2-Coumarin. 
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CHAPTER V 

Conclusions 

 

Abstract 

Combining target screening with phenotypic assays has driven the discovery of 

approved drugs with novel mechanisms of action.  The exception is kinase inhibitor drug 

discovery, which is still primarily target-based due to limitations of many phenotypic 

models. My approach, which employed machine learning data deconvolution, combined 

kinase target data of compounds with phenotypic results. This work provided a 

framework that enables kinase inhibitors to be used for the discovery of novel kinase 

targets and new lead compounds using cancer models such as cell lines and more 

advanced models like patient-derived xenografts.  Interrogating newly identified kinase 

targets can be done through design of versatile chemical probes as described herein.  In 

this chapter, I summarize my findings from these approaches. 

 

Small Molecule Kinase Inhibitors in Target- and Phenotypic-Based Cancer Drug 

Discovery  

Kinases are attractive drug targets in cancer due to their role in cellular 

signaling.
1-3

 Target-based drug discovery has driven the approval of kinase inhibitors in 

cancer.
4, 5

 However, only one kinase inhibitor has been approved whose lead was 

discovered in a phenotypic screen.
4, 6, 7

 This is in sharp contrast to other cancer drug 

classes which have recently seen an increase in approved drugs with phenotypic-based 

origins.
5
  This is important because drugs discovered through phenotypic approaches can 

possibly exert their effect through novel mechanisms of action.  Kinase inhibitor drug 

discovery will need to take advantage of phenotypic screening if it is to benefit from 

potential novel mechanisms of action.   

One reason kinase inhibitors have lagged behind in phenotypic-based lead 

discovery is a flaw inherent to phenotypic screening itself.  Cancer cell lines are often 
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used as models in these approaches and do not recapitulate cells found in tumors.
5
 This is 

especially true of cell lines grown on 2D plastic.  Cellular signaling, and by extension 

kinases, is extremely sensitive to the context of the cellular environment.  Therefore, if 

success is to be had with kinase inhibitors in phenotypic screening, appropriate models 

and readouts will need to be utilized. Phenotypes that are mechanistically related to the 

progression of a specific cancer subtype, if appropriately modeled, will enable 

phenotypic screening to identify more clinically relevant targets.  Furthermore, recently 

approved drugs and those in clinical trials have been discovered by combining target-

based and phenotypic-based approaches.
5, 8, 9

  Strategically combining kinase-target data 

with clinically relevant cancer phenotype models would aid in identifying novel targets 

and lead compounds for this drug class.   

Once novel kinase cancer targets are discovered, kinase chemical probes will need 

to be utilized to understand their role.  These probes, which can inhibit and/or bind to a 

specific kinase, or combination of kinases, will need to be carefully designed to answer 

the desired questions.  New approaches in the design of such tool, like fluorescent probes, 

will expand their versatility in both kinases and overall techniques. A clear understanding 

of individual kinase chemical biology as well as the kinome at large will be valuable in 

continuing kinase inhibitors as an important class of cancer therapeutics. 

 

Target Identification in Sarcomas using Machine Learning and a Profiled Kinase 

Inhibitor Library 

Sarcomas are a rare class of cancers with no highly effective targeted therapies 

against most subtypes.
10-13

 Progress toward developing targeted therapies for these 

cancers has been slow due to the lack of defined and druggable molecular targets in these 

cancers. I have presented a strategy that combines phenotypic- and target-screening to 

efficiently overcome this obstacle. Combining kinase target data from a profiled kinase 

inhibitor library with a phenotypic screen enabled us to identify various kinase targets in 

sarcoma subtypes via a machine learning approach. Of particular interest was the 

identification of PRKD as a possible target in synovial sarcoma both due to its specificity 

in the panel and potential novelty in this disease. This success in target identification in 

synovial sarcoma, a rare and understudied cancer, gives promise that targets may be 
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identified in other cancers. In this study I screened for kinase importance in viability to 

demonstrate this approach, but other phenotypes, such as motility and metastasis, could 

also be interrogated using the presented framework. Phenotypes directly related to a 

cancer subtype, like disruption of the SS18-SSX fusion oncoprotein complex in synovial 

sarcoma for example, could also be used with this methodology.
14

  Clinically relevant 

phenotypic readouts such as this, when combined with this target ID approach, would 

enable the discovery of highly relevant cancer targets. 

We also used of this machine-learning target deconvolution as a means to identify 

novel combinational strategies.  I performed a synergy screen of a synovial sarcoma cell 

line in the presence of a PRKD inhibitor.  I discovered that scores of many kinases from 

the machine learning algorithm changed greatly, including CDK and AKT which 

increased.  Using Chou-Talalay synergy analysis, I discovered that selective clinical 

inhibitors of these kinases synergistically decreased viability along with PRKD 

inhibition.  This strategy could also be used in the presence of any drug, kinase inhibitor 

or not, in which new combinational strategies are desired. I envision that this strategy 

could be reapplied with other cancers to find novel combination of approved treatments.  

This could be highly impactful for approved treatments with toxicity or resistance 

concerns. This work shows how combining kinase profiling data with phenotypic 

screening can be used to advance kinase target identification and drug discovery. 

 

Target Identification in Triple Negative Breast Cancer Patient Derived Xenograft 

Cell Cultures with a Profiled Kinase Inhibitor Library 

Our previous framework of discovering kinase targets using a profiled kinase 

inhibitor library will need to be used with higher-level cancer models to discover 

clinically relevant targets. Patient-derived xenografts (PDXs) have been positioned as one 

way to improve the success rate of cancer drug development by better modeling patient 

tumor microenvironment and tumor heterogeneity.
15-19

 I combined short-term triple 

negative breast cancer (TNBC) PDX-derived 3D cell cultures with the profiled kinase 

inhibitor target ID framework.
19

 I identified several kinase groups that scored highly as 

targets in at least half of the screens.  Some of these kinases have been well established as 

possible TNBC targets in the literature.  This demonstrates that this method with PDX 
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models can identify therapeutically important kinases.  More importantly, I identified the 

FES/FER and MARK/SIK kinase groups as targets, which represent possible novel 

pharmacological findings in TNBC.
20-22

 Early evidence of these kinases as targets in 

TNBC has only been genetic in nature.  In addition to supporting the emerging evidence 

of these kinases as TNBC targets, this pharmacological based approach indicates that 

these putative target kinases can be actionable. Synthesis of selective inhibitors of these 

kinases for further studies is currently planned.  

TNBC is itself a heterogeneous cancer which has, in part, resulted in a lack of 

FDA-approved targeted therapies.
23, 24

  Alternative ways of subtyping this disease, as 

well as others, would aid in classifying patients as candidates who would respond to 

specific targeted therapies, thus improving outcome.  Subtyping based on sensitivity to 

protein inhibition (such as kinases) would directly classify patients based on inhibitor 

sensitivity.  To this end, I used the kinase target scores as a means of unsupervised 

hierarchal clustering of the PDXs screened. I observed a heterogeneous clustering of the 

PDXs using this method.  I plan to continue TNBC PDX screens and to add the results to 

this target clustering. 

The use of PDXs in this work demonstrates that this target identification 

methodology can be applied to higher level phenotypic models. Models which take into 

account the immune systems role in tumor progression will be needed as most PDXs are 

generated in immunocompetent mice. Mice with humanized immune systems would fill 

this role and are positioned to impact the in vivo cancer studies.
25

 Another way to account 

for the immune systems role is through ex vivo cultures derived from solid tumor samples 

taken directly from the patient.
5
 Such models will also be important in the future of 

cancer drug discovery. With further advances in this technique, we will be able to treat 

these patient cancer cells directly with drug and predict patient drug response.  It is easy 

to envision using this target identification approach with either of these two approaches 

that take into account the role of the immune system. With regards to ex vivo solid tumor 

patient samples, we could use the described approach for target identification on a 

patient-to-patient basis.  This will further help the goal of personalized medicine come 

closer to reality. 
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Development of a Turn-on No-Wash Fluorescent Probe for c-SRC in Live Cell 

Microscopy Studies 

Versatile small molecule probes will be needed to investigate kinase targets 

identified from the previously described approaches. For example, c-SRC, which has 

been identified as a target in TNBC in previous studies as well as in a handful PDX 

screens in Chapter III.
26, 27

  To this end, I developed a versatile small molecule 

fluorescent probe, PP2-Coumarin, with turn-on, no-wash, and irreversible features with 

high selectivity for its target, c-SRC.  The development of this probe also expands the 

scope of small molecule irreversible fluorescent probes through the use of an alternative 

non-conserved cysteine.  I also demonstrated that incorporating a cysteine in the P-loop 

through mutagenesis can enable this probe’s use in other kinases. Thus, by using gene 

editing or transfecting P-Loop cysteine kinase mutants into cells, localization of other 

kinases can be investigated. The probe also benefited from being compatible with live-

cell super resolution stimulated emission depletion (STED) microscopy techniques, 

measuring structures below the diffraction limit.  

With the probe able to show localization of endogenous c-SRC, I used it in live-

cell experiments with TNBC cell lines. I observed differential staining among the TNBC 

cell lines tested.  Additionally, I used this fluorescent probe to show how drug treatment 

can influence the localization of c-SRC in TNBC cell lines.  The capabilities of this or a 

similar probe would be useful for high-content screens which interrogate changes in c-

SRC localization. Such screens, which involve automated high-throughput fluorescent 

microscopy with automated image analysis, have been recognized as means for their 

usefulness in phenotypic assays.
5
  They can provide a strong mechanistic rationale for 

observed phenotypes in the screen performed (in this case c-SRC localization and cell 

viability). This is important as strong mechanistic relationships between phenotype and 

disease states are integral for further advancing phenotypic-based screens. 

 My approach demonstrates how features of kinases and their inhibitors can be 

leveraged to design specific kinase fluorescent probes with a variety of uses. This work 

also highlights that understanding kinase chemical biology on the molecular level, will be 

needed to continue investigating these bona fide cancer targets. 
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Supplemental Tables 

 

 

Table A.1: Pharmacologically linked kinase groups. Kinases on the same row represent one group.  

Kinases were grouped by pharmacological interaction strength (Pij) (direct measure) and sequence 

similarity (indirect measure) as previously described. Any two kinases with a Pij score ≥ 0.6 or kinase 

domain sequence similarity score ≥ 0.7 belonged to the same group.1, 2
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Table A.2: Complete MAXIS, Bk, and Combination Scores for kinase groups for each sarcoma screen 

performed. One representative of kinase groups is shown. 
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39 15 0.285029 4.275442 ABL1 
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240 0 -0.07867 0 PAK4 

49 6 0.429612 2.577672 CSF1R 

 

41 15 0.392368 5.885524 PDGFRA 

253 0 0.257508 0 CSK 

 

71 0 0 0 PDPK1 

134 0 -0.09141 0 CSNK1A1 

 

46 8 0.563568 4.508548 PHKG1 

12 60 -0.7608 -45.6477 CSNK1G2 

 

62 1 0.404439 0.404439 PI4KB 

152 0 0.242105 0 CSNK2A1 

 

8 72 0.738437 53.16744 PIK3CA 

110 0 -0.15867 0 DAPK1 

 

31 25 0.556972 13.92429 PIK3CB 

112 0 0 0 DCLK1 

 

120 0 0.186258 0 PIM1 

255 0 -0.05318 0 DDR1 

 

121 0 -0.25157 0 PIM2 

23 31 0.654125 20.27787 DMPK 

 

1 95 0.965582 91.73028 PLK1 

15 52 0.645512 33.56664 DYRK1A 

 

72 0 0.089451 0 PRKACA 

153 0 -0.23831 0 DYRK3 

 

75 0 0.199512 0 PRKCD 

25 29 -0.61347 -17.7908 EGFR 

 

57 3 0.443606 1.330819 PRKCE 

48 6 0.246613 1.479679 EPHA2 

 

76 0 0 0 PRKCI 

22 34 0.981461 33.36969 FER 

 

2 81 0.598393 48.46981 PRKD1 

262 0 0.258727 0 FGFR1 

 

58 3 0.315364 0.946092 PRKG1 

29 27 0.287568 7.764339 FGR 

 

73 0 -0.01642 0 PRKX 

278 0 0.068228 0 FLT1 

 

6 72 1.014537 73.04669 PTK2B 
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269 0 0.180533 0 FLT3 

 

274 0 -0.14032 0 PTK6 

59 3 0.254333 0.762999 FLT4 

 

47 8 0.242517 1.940137 RET 

273 0 -0.14945 0 FRK 

 

43 10 0.226154 2.261543 ROCK1 

37 15 0.552743 8.29115 GRK7 

 

18 38 0.882808 33.54669 ROS1 

44 10 0.31998 3.199803 GSK3A 

 

51 5 0.109048 0.54524 RPS6KA4 

32 24 0.839199 20.14077 HIPK3 

 

5 72 0.280631 20.2054 RPS6KB1 

36 16 0.617624 9.881983 HIPK4 

 

79 0 0.160845 0 SGK1 

174 0 0 0 IKBKB 

 

305 0 -0.29879 0 SRMS 

33 23 0.779173 17.92099 IKBKE 

 

163 0 0.474665 0 SRPK1 

55 5 -1.51733 -7.58667 IRAK4 

 

165 0 -0.29808 0 SRPK3 

56 4 0.196942 0.787769 ITK 

 

28 27 0.600537 16.21449 STK10 

263 0 0 0 JAK1 

 

242 0 -0.03472 0 STK24 

7 72 -1.55268 -111.793 JAK2 

 

52 5 0.002802 0.014011 STK3 

26 29 -0.68164 -19.7676 JAK3 

 

275 0 0.116398 0 SYK 

45 9 0.241 2.168998 KIT 

 

175 0 -0.00972 0 TBK1 

19 37 0.529439 19.58925 LRRK2 

 

34 22 0.304127 6.690789 TEK 

243 0 -0.18172 0 MAP2K1 

 

53 5 0.607175 3.035874 TNK1 

235 0 0.049282 0 MAP4K2 

 

250 0 -0.01044 0 TNK2 

236 0 -0.01016 0 MAP4K4 

 

10 61 1.036474 63.22494 TSSK2 

156 0 0 0 MAPK1 

 

20 35 0.570427 19.96495 TTK 

35 20 -0.53337 -10.6674 MAPK14 

 

264 0 -0.47866 0 TYK2 

61 1 -0.44091 -0.44091 MAPK8 

 

251 0 0.171951 0 TYRO3 

      

276 0 0 0 ZAP70 
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TC32 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Group 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Group 

60 2 0.230314 0.460627 ABL1 

 

117 0 0 0 MAPKAPK3 

31 17 0.522048 8.874818 AKT1 

 

118 0 0 0 MAPKAPK5 

28 20 0.832483 16.64966 ALK 

 

23 25 0.322514 8.062852 MARK2 

12 63 -0.54371 -34.2537 ARAF 

 

107 0 0.272199 0 MELK 

48 5 0.170406 0.852029 AURKA 

 

56 3 0.378866 1.136597 MET 

255 0 0.341658 0 AXL 

 

119 0 0.002132 0 MKNK2 

24 25 0.607231 15.18078 BMX 

 

37 10 0.464881 4.64881 MST1R 

41 7 0.366793 2.567553 BRSK2 

 

8 78 0.733805 57.23676 MUSK 

102 0 0 0 CAMK1 

 

188 0 0.167279 0 NEK1 

63 1 0.482061 0.482061 CAMK2A 

 

4 89 1.503703 133.8296 NEK2 

101 0 0 0 CAMK4 

 

193 0 0 0 NEK6 

6 80 0.314138 25.13107 CDK1 

 

5 83 0.911231 75.63219 NEK9 

104 0 0.301775 0 CHEK1 

 

53 4 0.207226 0.828903 NTRK1 

127 0 0.112105 0 CHEK2 

 

64 1 0.351628 0.351628 NUAK1 

178 0 0 0 CHUK 

 

244 0 -0.10423 0 PAK1 

26 21 0.465435 9.774142 CLK1 

 

245 0 0.201775 0 PAK4 

57 3 0.466382 1.399145 CSF1R 

 

25 24 0.407739 9.785733 PDGFRA 

258 0 0.305525 0 CSK 

 

13 60 0.523213 31.39281 PDPK1 

66 1 0.151423 0.151423 CSNK1A1 

 

124 0 0.465016 0 PHKG1 

138 0 -0.12947 0 CSNK1G2 

 

305 0 0.306775 0 PI4KB 

156 0 0.15085 0 CSNK2A1 

 

3 96 0.833324 79.99907 PIK3CA 

35 12 0.392199 4.706387 DAPK1 

 

46 6 0.422727 2.536363 PIK3CB 

115 0 0 0 DCLK1 

 

65 1 0.221206 0.221206 PIM1 

50 4 0.305508 1.222032 DDR1 

 

125 0 -0.05067 0 PIM2 

54 3 0.523986 1.571959 DMPK 

 

38 9 0.655662 5.900956 PLK1 

43 6 0.398413 2.390478 DYRK1A 

 

77 0 0.282496 0 PRKACA 

15 56 -0.7998 -44.7889 DYRK3 

 

62 1 0.335627 0.335627 PRKCD 

39 9 -0.32638 -2.93739 EGFR 

 

40 7 0.504655 3.532582 PRKCE 

27 21 0.500452 10.5095 EPHA2 

 

80 0 0 0 PRKCI 

21 29 0.914852 26.53071 FER 

 

1 100 0.693563 69.3563 PRKD1 

51 4 0.335558 1.342231 FGFR1 

 

58 2 0.369058 0.738116 PRKG1 

9 78 0.350235 27.31831 FGR 

 

78 0 0.235743 0 PRKX 

16 52 0.490206 25.49073 FLT1 

 

18 33 0.99908 32.96965 PTK2B 

270 0 0.197513 0 FLT3 

 

275 0 0.162474 0 PTK6 

45 6 0.481589 2.889534 FLT4 

 

44 6 0.255882 1.535294 RET 

274 0 0.106278 0 FRK 

 

69 0 0.11601 0 ROCK1 
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36 11 0.497061 5.46767 GRK7 

 

33 14 0.792306 11.09229 ROS1 

159 0 0.021901 0 GSK3A 

 

20 29 0.377931 10.95999 RPS6KA4 

22 27 0.654839 17.68065 HIPK3 

 

7 79 0.500493 39.53891 RPS6KB1 

17 33 0.639048 21.08859 HIPK4 

 

47 5 0.50166 2.508301 SGK1 

179 0 -0.27789 0 IKBKB 

 

304 0 -0.05069 0 SRMS 

19 31 0.474395 14.70625 IKBKE 

 

168 0 0.442923 0 SRPK1 

67 1 -1.475 -1.475 IRAK4 

 

170 0 -0.45856 0 SRPK3 

52 4 0.035526 0.142105 ITK 

 

32 17 0.511051 8.687868 STK10 

266 0 0 0 JAK1 

 

55 3 0.479048 1.437143 STK24 

10 71 -0.87889 -62.4015 JAK2 

 

14 60 -0.2944 -17.6637 STK3 

61 2 -0.47828 -0.95656 JAK3 

 

276 0 -0.1212 0 SYK 

29 19 0.349361 6.637851 KIT 

 

180 0 -0.43291 0 TBK1 

30 18 0.251646 4.529622 LRRK2 

 

42 7 0.62345 4.364149 TEK 

247 0 0.057846 0 MAP2K1 

 

49 4 0.624509 2.498038 TNK1 

240 0 -0.0869 0 MAP4K2 

 

254 0 0.087576 0 TNK2 

241 0 -0.04746 0 MAP4K4 

 

11 70 1.08115 75.68048 TSSK2 

160 0 0 0 MAPK1 

 

59 2 0.488756 0.977512 TTK 

2 98 0.236492 23.17619 MAPK14 

 

34 13 -1.5 -19.5 TYK2 

164 0 -0.10198 0 MAPK8 

 

256 0 0 0 TYRO3 

      

277 0 0 0 ZAP70 
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MG63 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

250 0 0.250132 0 ABL1 

 

115 0 0 0 MAPKAPK3 

22 27 0.502368 13.56393 AKT1 

 

116 0 0 0 MAPKAPK5 

36 15 0.786955 11.80432 ALK 

 

12 52 0.486746 25.31078 MARK2 

292 0 -0.19004 0 ARAF 

 

104 0 0.272263 0 MELK 

58 1 -0.0323 -0.0323 AURKA 

 

267 0 -0.13799 0 MET 

252 0 0.352027 0 AXL 

 

117 0 -0.02804 0 MKNK2 

50 8 0.479285 3.834277 BMX 

 

268 0 0.471674 0 MST1R 

40 12 0.495858 5.950298 BRSK2 

 

39 14 0.654393 9.161506 MUSK 

99 0 0 0 CAMK1 

 

183 0 -0.22549 0 NEK1 

51 6 0.284007 1.704043 CAMK2A 

 

8 58 0.794085 46.05695 NEK2 

98 0 0 0 CAMK4 

 

188 0 0 0 NEK6 

5 67 0.675922 45.28677 CDK1 

 

11 53 0.933221 49.46071 NEK9 

101 0 0.37033 0 CHEK1 

 

54 5 0.342885 1.714427 NTRK1 

126 0 -0.04903 0 CHEK2 

 

13 47 0.508175 23.88424 NUAK1 

174 0 -1.56667 0 CHUK 

 

240 0 -0.59275 0 PAK1 

18 31 0.6397 19.83071 CLK1 

 

241 0 0.181031 0 PAK4 

41 12 0.503243 6.038912 CSF1R 

 

2 71 0.440582 31.28131 PDGFRA 

255 0 -0.01482 0 CSK 

 

69 0 -1.58333 0 PDPK1 

45 10 -0.53076 -5.30762 CSNK1A1 

 

122 0 -0.00903 0 PHKG1 

26 22 -1.4875 -32.725 CSNK1G2 

 

305 0 0.435323 0 PI4KB 

154 0 -0.02049 0 CSNK2A1 

 

1 84 0.961929 80.80201 PIK3CA 

111 0 -0.15259 0 DAPK1 

 

32 19 0.800948 15.21801 PIK3CB 

113 0 0 0 DCLK1 

 

44 10 0.249405 2.494045 PIM1 

59 1 0.343245 0.343245 DDR1 

 

123 0 -0.36487 0 PIM2 

23 25 0.465686 11.64216 DMPK 

 

10 54 0.925011 49.95057 PLK1 

3 70 0.633744 44.36205 DYRK1A 

 

70 0 0.005745 0 PRKACA 

16 36 -0.38804 -13.9693 DYRK3 

 

73 0 0.129899 0 PRKCD 

27 21 -0.58301 -12.2432 EGFR 

 

52 5 0.383232 1.916159 PRKCE 

38 14 0.425992 5.963881 EPHA2 

 

74 0 0 0 PRKCI 

20 28 1.072757 30.03721 FER 

 

124 0 0.308789 0 PRKD1 

42 11 -0.21996 -2.41959 FGFR1 

 

75 0 0.243631 0 PRKG1 

56 4 0.126379 0.505515 FGR 

 

71 0 0.276639 0 PRKX 

14 47 0.511597 24.04505 FLT1 

 

4 70 0.888169 62.17182 PTK2B 

43 11 0.342621 3.768835 FLT3 

 

37 15 -0.36584 -5.48764 PTK6 

34 18 0.59254 10.66572 FLT4 

 

49 9 0.358515 3.226634 RET 

272 0 -0.43209 0 FRK 

 

61 0 0.023334 0 ROCK1 
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47 9 0.378272 3.404446 GRK7 

 

29 20 0.81425 16.285 ROS1 

17 34 0.431283 14.66362 GSK3A 

 

19 29 0.297617 8.630896 RPS6KA4 

25 23 0.768521 17.67599 HIPK3 

 

77 0 0.305195 0 RPS6KB1 

30 19 0.638808 12.13735 HIPK4 

 

79 0 0.38283 0 SGK1 

53 5 -1.54213 -7.71065 IKBKB 

 

6 62 -1.55667 -96.5133 SRMS 

24 25 0.61317 15.32925 IKBKE 

 

164 0 0.608774 0 SRPK1 

281 0 -1.484 0 IRAK4 

 

166 0 -0.09424 0 SRPK3 

275 0 -0.59954 0 ITK 

 

46 10 0.51111 5.111095 STK10 

263 0 -1.57778 0 JAK1 

 

35 16 0.668885 10.70216 STK24 

28 21 -0.76952 -16.16 JAK2 

 

238 0 -0.03272 0 STK3 

9 55 -1.57917 -86.8542 JAK3 

 

273 0 0 0 SYK 

33 18 0.302911 5.452392 KIT 

 

175 0 -0.15049 0 TBK1 

21 28 0.553599 15.50077 LRRK2 

 

276 0 0.211128 0 TEK 

243 0 -0.12198 0 MAP2K1 

 

55 4 0.570942 2.283766 TNK1 

235 0 0.134817 0 MAP4K2 

 

251 0 0.05631 0 TNK2 

236 0 0.027998 0 MAP4K4 

 

15 45 0.878149 39.5167 TSSK2 

157 0 0 0 MAPK1 

 

57 2 0.495424 0.990848 TTK 

7 60 -1.299 -77.9401 MAPK14 

 

31 19 -1.53168 -29.1018 TYK2 

48 9 -0.68586 -6.17276 MAPK8 

 

253 0 0.27033 0 TYRO3 

      

274 0 0 0 ZAP70 
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SAOS2 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

12 39 0.462225 18.02678 ABL1 

 

111 0 0 0 MAPKAPK3 

16 33 0.667329 22.02185 AKT1 

 

112 0 0 0 MAPKAPK5 

20 27 0.678128 18.30946 ALK 

 

31 16 0.329027 5.264427 MARK2 

293 0 -0.10704 0 ARAF 

 

100 0 0.315592 0 MELK 

24 24 0.306564 7.357544 AURKA 

 

266 0 0.342078 0 MET 

249 0 0.1283 0 AXL 

 

113 0 -0.16951 0 MKNK2 

42 11 0.596814 6.564949 BMX 

 

56 2 0.617727 1.235453 MST1R 

39 11 0.430383 4.734212 BRSK2 

 

51 7 0.5472 3.830402 MUSK 

94 0 0 0 CAMK1 

 

182 0 0.320918 0 NEK1 

95 0 0.133745 0 CAMK2A 

 

8 64 0.736351 47.12647 NEK2 

93 0 0 0 CAMK4 

 

187 0 0 0 NEK6 

18 30 0.530657 15.9197 CDK1 

 

5 67 0.909397 60.92963 NEK9 

97 0 0.254505 0 CHEK1 

 

61 1 0.151763 0.151763 NTRK1 

121 0 -0.52734 0 CHEK2 

 

53 5 0.401723 2.008614 NUAK1 

173 0 0 0 CHUK 

 

239 0 -0.68644 0 PAK1 

13 37 0.541599 20.03916 CLK1 

 

240 0 0.093061 0 PAK4 

37 12 0.427494 5.129925 CSF1R 

 

26 23 0.38641 8.887441 PDGFRA 

252 0 0.385383 0 CSK 

 

54 3 -1.55 -4.65 PDPK1 

132 0 0.003615 0 CSNK1A1 

 

118 0 -0.36203 0 PHKG1 

6 66 -1.50364 -99.2404 CSNK1G2 

 

52 6 0.642727 3.856359 PI4KB 

150 0 0.191683 0 CSNK2A1 

 

2 92 0.93974 86.45609 PIK3CA 

107 0 -0.23462 0 DAPK1 

 

35 15 0.601739 9.026084 PIK3CB 

109 0 0 0 DCLK1 

 

55 3 0.241624 0.724873 PIM1 

254 0 0.286125 0 DDR1 

 

119 0 -0.11297 0 PIM2 

21 26 0.765219 19.89568 DMPK 

 

15 34 0.771363 26.22634 PLK1 

9 60 0.536732 32.20392 DYRK1A 

 

44 9 0.510246 4.59221 PRKACA 

40 11 -0.38344 -4.21782 DYRK3 

 

33 15 0.482698 7.240467 PRKCD 

4 74 -0.94007 -69.5649 EGFR 

 

25 23 0.680446 15.65025 PRKCE 

49 7 0.302317 2.116221 EPHA2 

 

71 0 0 0 PRKCI 

23 25 0.918508 22.96271 FER 

 

1 100 0.781029 78.10288 PRKD1 

261 0 0.46237 0 FGFR1 

 

17 33 0.526339 17.36917 PRKG1 

10 51 0.33228 16.94626 FGR 

 

45 9 0.521128 4.690148 PRKX 

29 19 0.41076 7.804448 FLT1 

 

7 66 0.854602 56.40376 PTK2B 

267 0 0.171872 0 FLT3 

 

273 0 -0.15886 0 PTK6 

43 11 0.450395 4.954342 FLT4 

 

268 0 0.093012 0 RET 

272 0 0.364724 0 FRK 

 

22 26 0.378164 9.83227 ROCK1 
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38 11 0.510079 5.610874 GRK7 

 

14 36 0.736399 26.51035 ROS1 

153 0 0.246448 0 GSK3A 

 

3 78 0.446706 34.84304 RPS6KA4 

27 21 0.726279 15.25185 HIPK3 

 

73 0 0.307432 0 RPS6KB1 

19 29 0.696394 20.19542 HIPK4 

 

36 13 0.371863 4.834218 SGK1 

34 15 -1.54531 -23.1797 IKBKB 

 

47 9 -0.47718 -4.29464 SRMS 

32 16 0.465492 7.447864 IKBKE 

 

163 0 0.243061 0 SRPK1 

281 0 -1.475 0 IRAK4 

 

165 0 -0.12748 0 SRPK3 

57 2 0.354769 0.709537 ITK 

 

30 18 0.438923 7.90062 STK10 

262 0 -1.53778 0 JAK1 

 

242 0 0.267078 0 STK24 

50 7 -0.7352 -5.14642 JAK2 

 

48 8 -0.3462 -2.76963 STK3 

60 1 -0.5706 -0.5706 JAK3 

 

274 0 0.078509 0 SYK 

46 9 0.26672 2.400478 KIT 

 

174 0 -0.14492 0 TBK1 

286 0 0.289619 0 LRRK2 

 

276 0 0.142603 0 TEK 

58 1 -1.5246 -1.5246 MAP2K1 

 

41 11 0.590794 6.498735 TNK1 

235 0 -0.1892 0 MAP4K2 

 

59 1 0.207525 0.207525 TNK2 

236 0 -0.14261 0 MAP4K4 

 

11 41 0.818838 33.57235 TSSK2 

154 0 0 0 MAPK1 

 

218 0 0.192604 0 TTK 

160 0 -0.05172 0 MAPK14 

 

28 19 -1.52789 -29.03 TYK2 

158 0 -0.4233 0 MAPK8 

 

250 0 0 0 TYRO3 

      

275 0 0 0 ZAP70 
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U2OS 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

14 39 0.614956 23.98328 ABL1 

 

116 0 0 0 MAPKAPK3 

59 0 0.13992 0 AKT1 

 

117 0 0 0 MAPKAPK5 

31 22 0.430553 9.472167 ALK 

 

16 36 0.584904 21.05656 MARK2 

28 24 -0.79118 -18.9884 ARAF 

 

105 0 0.058824 0 MELK 

38 12 0.280355 3.364258 AURKA 

 

267 0 0.045833 0 MET 

25 28 0.566018 15.8485 AXL 

 

118 0 -0.01712 0 MKNK2 

11 48 0.57643 27.66863 BMX 

 

268 0 0.459615 0 MST1R 

21 31 0.743642 23.05291 BRSK2 

 

35 18 0.66311 11.93598 MUSK 

99 0 0 0 CAMK1 

 

187 0 0.172115 0 NEK1 

100 0 0 0 CAMK2A 

 

10 58 0.836403 48.51138 NEK2 

98 0 0 0 CAMK4 

 

192 0 0 0 NEK6 

5 74 0.840164 62.17217 CDK1 

 

4 78 0.939696 73.29628 NEK9 

102 0 0.484615 0 CHEK1 

 

278 0 0.261259 0 NTRK1 

126 0 -0.14488 0 CHEK2 

 

33 18 0.782762 14.08971 NUAK1 

176 0 0 0 CHUK 

 

49 5 -0.49015 -2.45075 PAK1 

17 36 0.720776 25.94794 CLK1 

 

242 0 -0.06667 0 PAK4 

47 6 0.414145 2.484868 CSF1R 

 

29 23 0.493929 11.36037 PDGFRA 

254 0 -0.10963 0 CSK 

 

3 80 0.807215 64.57721 PDPK1 

55 1 -0.64005 -0.64005 CSNK1A1 

 

123 0 0.021324 0 PHKG1 

137 0 -1.4996 0 CSNK1G2 

 

30 23 0.652778 15.01389 PI4KB 

155 0 -0.20584 0 CSNK2A1 

 

2 90 0.855998 77.03982 PIK3CA 

112 0 0.017857 0 DAPK1 

 

46 7 0.481094 3.367656 PIK3CB 

114 0 0 0 DCLK1 

 

44 7 0.29726 2.080817 PIM1 

256 0 0.383049 0 DDR1 

 

124 0 -0.19015 0 PIM2 

61 0 0.325714 0 DMPK 

 

23 29 0.866185 25.11938 PLK1 

22 30 0.716735 21.50206 DYRK1A 

 

70 0 0.120803 0 PRKACA 

156 0 -0.05595 0 DYRK3 

 

73 0 -0.18425 0 PRKCD 

42 8 -0.27197 -2.17576 EGFR 

 

74 0 -0.08052 0 PRKCE 

24 29 -0.71764 -20.8115 EPHA2 

 

75 0 0 0 PRKCI 

52 2 0.595833 1.191667 FER 

 

54 1 -0.03564 -0.03564 PRKD1 

15 39 0.095159 3.711196 FGFR1 

 

76 0 0.03037 0 PRKG1 

1 94 0.443484 41.6875 FGR 

 

71 0 0.185521 0 PRKX 

279 0 0.102425 0 FLT1 

 

8 61 0.712025 43.43355 PTK2B 

57 1 0.326223 0.326223 FLT3 

 

273 0 -0.29299 0 PTK6 

43 8 0.411059 3.288473 FLT4 

 

58 1 0.200603 0.200603 RET 

272 0 0.229947 0 FRK 

 

12 47 -1.59504 -74.967 ROCK1 
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65 0 0.284615 0 GRK7 

 

48 6 0.767742 4.60645 ROS1 

20 32 0.634356 20.29939 GSK3A 

 

27 24 -1.28265 -30.7835 RPS6KA4 

18 34 0.901475 30.65014 HIPK3 

 

53 1 -1.47989 -1.47989 RPS6KB1 

40 10 0.666383 6.663829 HIPK4 

 

79 0 0.522115 0 SGK1 

177 0 -1.54213 0 IKBKB 

 

6 71 -1.56154 -110.869 SRMS 

178 0 0.182039 0 IKBKE 

 

166 0 0.560217 0 SRPK1 

283 0 -1.48667 0 IRAK4 

 

168 0 0.110714 0 SRPK3 

51 3 -0.86797 -2.6039 ITK 

 

36 16 0.594816 9.517057 STK10 

263 0 0.512394 0 JAK1 

 

32 21 0.737619 15.49 STK24 

26 28 -1.5615 -43.722 JAK2 

 

56 1 0.233988 0.233988 STK3 

13 46 -1.56316 -71.9053 JAK3 

 

274 0 0.298505 0 SYK 

37 16 0.383351 6.133611 KIT 

 

179 0 0.046429 0 TBK1 

9 60 -1.49643 -89.7857 LRRK2 

 

276 0 -0.19369 0 TEK 

244 0 0.365743 0 MAP2K1 

 

251 0 0.32524 0 TNK1 

34 18 0.658242 11.84835 MAP4K2 

 

41 10 0.411716 4.11716 TNK2 

39 11 0.374453 4.118983 MAP4K4 

 

50 4 0.396813 1.587254 TSSK2 

159 0 0 0 MAPK1 

 

223 0 0.019868 0 TTK 

7 62 -1.53812 -95.3637 MAPK14 

 

45 7 -1.55057 -10.854 TYK2 

19 34 -1.53021 -52.0271 MAPK8 

 

252 0 0 0 TYRO3 

      

275 0 0 0 ZAP70 
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SYO1 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

37 6 0.791189 4.747134 ABL1 

 

110 0 0 0 MAPKAPK3 

25 15 1.260228 18.90342 AKT1 

 

111 0 0 0 MAPKAPK5 

28 12 0.560921 6.73105 ALK 

 

22 26 0.641437 16.67737 MARK2 

291 0 0.328345 0 ARAF 

 

99 0 0.399164 0 MELK 

31 9 0.411208 3.70087 AURKA 

 

48 3 0.83964 2.51892 MET 

15 42 0.809304 33.99076 AXL 

 

112 0 0.139911 0 MKNK2 

39 6 0.825952 4.955711 BMX 

 

267 0 0.118731 0 MST1R 

43 4 0.386188 1.544754 BRSK2 

 

29 11 0.753299 8.286291 MUSK 

93 0 0 0 CAMK1 

 

181 0 0.528837 0 NEK1 

94 0 0 0 CAMK2A 

 

6 83 1.511111 125.4222 NEK2 

92 0 0 0 CAMK4 

 

186 0 0 0 NEK6 

17 35 0.731052 25.58681 CDK1 

 

41 5 0.698708 3.493539 NEK9 

96 0 0.21217 0 CHEK1 

 

34 7 0.487506 3.41254 NTRK1 

44 4 1.502778 6.01111 CHEK2 

 

32 7 0.883954 6.187675 NUAK1 

171 0 0 0 CHUK 

 

238 0 -0.21063 0 PAK1 

33 7 0.960073 6.720511 CLK1 

 

239 0 0.143335 0 PAK4 

52 2 0.812507 1.625014 CSF1R 

 

4 96 0.779259 74.80882 PDGFRA 

252 0 -0.00861 0 CSK 

 

66 0 0.181234 0 PDPK1 

46 3 0.473437 1.420312 CSNK1A1 

 

117 0 0.50958 0 PHKG1 

129 0 0.228555 0 CSNK1G2 

 

305 0 0.167141 0 PI4KB 

147 0 0.109804 0 CSNK2A1 

 

13 51 0.782638 39.91451 PIK3CA 

106 0 0.024726 0 DAPK1 

 

53 2 0.472796 0.945592 PIK3CB 

108 0 0 0 DCLK1 

 

24 17 0.736418 12.5191 PIM1 

14 43 0.899528 38.67972 DDR1 

 

12 53 1.458333 77.29167 PIM2 

57 0 0.630451 0 DMPK 

 

206 0 0.297519 0 PLK1 

148 0 0.456146 0 DYRK1A 

 

67 0 0.574063 0 PRKACA 

149 0 0.117038 0 DYRK3 

 

69 0 0.369789 0 PRKCD 

254 0 -0.31452 0 EGFR 

 

18 33 1.615152 53.30001 PRKCE 

21 27 1.161113 31.35004 EPHA2 

 

70 0 0 0 PRKCI 

23 26 1.068332 27.77663 FER 

 

9 66 0.973469 64.24899 PRKD1 

27 15 0.689197 10.33795 FGFR1 

 

40 5 0.580125 2.900626 PRKG1 

10 62 0.597895 37.06949 FGR 

 

8 73 1.55 113.15 PRKX 

30 11 1.037298 11.41027 FLT1 

 

16 42 0.705006 29.61024 PTK2B 

49 3 0.71876 2.15628 FLT3 

 

271 0 0.516016 0 PTK6 

51 3 1.037384 3.112153 FLT4 

 

45 4 0.816088 3.264353 RET 

42 5 0.883621 4.418107 FRK 

 

54 1 0.434039 0.434039 ROCK1 
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61 0 0.164565 0 GRK7 

 

20 28 0.987268 27.6435 ROS1 

7 77 0.621543 47.85883 GSK3A 

 

35 6 0.758916 4.553498 RPS6KA4 

151 0 0.569245 0 HIPK3 

 

11 58 1.47037 85.28146 RPS6KB1 

36 6 0.717314 4.303884 HIPK4 

 

73 0 0.470312 0 SGK1 

26 15 -1.52083 -22.8125 IKBKB 

 

304 0 -0.22454 0 SRMS 

172 0 0.804366 0 IKBKE 

 

161 0 0.041079 0 SRPK1 

279 0 -0.51862 0 IRAK4 

 

163 0 -0.46567 0 SRPK3 

274 0 0.366099 0 ITK 

 

47 3 0.587673 1.763018 STK10 

261 0 0 0 JAK1 

 

241 0 0.452118 0 STK24 

2 100 -0.96648 -96.6485 JAK2 

 

55 1 0.314243 0.314243 STK3 

262 0 -0.26286 0 JAK3 

 

272 0 0 0 SYK 

3 99 0.69279 68.58621 KIT 

 

173 0 0.345503 0 TBK1 

284 0 0.59192 0 LRRK2 

 

50 3 1.533611 4.600833 TEK 

242 0 -0.2671 0 MAP2K1 

 

249 0 0.383105 0 TNK1 

235 0 0.406866 0 MAP4K2 

 

38 6 0.691863 4.151181 TNK2 

5 89 0.531018 47.26056 MAP4K4 

 

19 33 0.640581 21.13918 TSSK2 

153 0 0 0 MAPK1 

 

218 0 0.592401 0 TTK 

1 100 0.506079 50.60786 MAPK14 

 

263 0 -0.77862 0 TYK2 

157 0 0.437406 0 MAPK8 

 

250 0 0 0 TYRO3 

      

273 0 0 0 ZAP70 
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MOJO 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

243 0 -0.15336 0 ABL1 

 

106 0 0 0 MAPKAPK3 

21 29 0.750595 21.76724 AKT1 

 

107 0 0 0 MAPKAPK5 

39 13 0.492891 6.407584 ALK 

 

54 3 0.443463 1.330389 MARK2 

12 43 -0.85614 -36.8142 ARAF 

 

51 6 0.650649 3.903896 MELK 

24 27 0.421685 11.3855 AURKA 

 

264 0 -0.22688 0 MET 

56 2 0.433369 0.866738 AXL 

 

108 0 -0.27715 0 MKNK2 

52 6 0.329983 1.979899 BMX 

 

265 0 0.461312 0 MST1R 

10 46 0.725763 33.38511 BRSK2 

 

42 12 0.645797 7.749562 MUSK 

91 0 0 0 CAMK1 

 

177 0 0.340084 0 NEK1 

92 0 0.338483 0 CAMK2A 

 

7 73 0.812031 59.27826 NEK2 

90 0 0 0 CAMK4 

 

182 0 0 0 NEK6 

20 32 0.680589 21.77886 CDK1 

 

5 74 0.978317 72.39545 NEK9 

33 18 0.715842 12.88515 CHEK1 

 

53 4 0.366804 1.467215 NTRK1 

117 0 0.153089 0 CHEK2 

 

18 37 0.674658 24.96235 NUAK1 

167 0 0 0 CHUK 

 

234 0 0.352222 0 PAK1 

25 26 0.726704 18.89431 CLK1 

 

235 0 -0.0876 0 PAK4 

43 12 0.477112 5.725347 CSF1R 

 

28 23 0.413713 9.515402 PDGFRA 

246 0 0.021717 0 CSK 

 

3 88 0.791198 69.62543 PDPK1 

58 1 -0.54895 -0.54895 CSNK1A1 

 

113 0 0.289671 0 PHKG1 

128 0 -0.31666 0 CSNK1G2 

 

305 0 0.459371 0 PI4KB 

146 0 0.204314 0 CSNK2A1 

 

38 14 0.944016 13.21622 PIK3CA 

102 0 -0.2213 0 DAPK1 

 

2 97 0.867344 84.13236 PIK3CB 

104 0 0 0 DCLK1 

 

114 0 0.159976 0 PIM1 

248 0 0.274222 0 DDR1 

 

115 0 -0.11525 0 PIM2 

49 7 0.828697 5.80088 DMPK 

 

35 16 0.747002 11.95202 PLK1 

15 40 0.709784 28.39137 DYRK1A 

 

30 20 0.506752 10.13503 PRKACA 

147 0 0.178599 0 DYRK3 

 

36 14 0.404043 5.656606 PRKCD 

249 0 -0.07233 0 EGFR 

 

31 19 0.709837 13.48689 PRKCE 

251 0 -0.1074 0 EPHA2 

 

69 0 0 0 PRKCI 

23 28 0.853342 23.89356 FER 

 

1 100 0.825058 82.50585 PRKD1 

257 0 0.294182 0 FGFR1 

 

13 42 0.649283 27.2699 PRKG1 

271 0 0.147909 0 FGR 

 

55 2 0.595711 1.191421 PRKX 

4 87 0.510267 44.39321 FLT1 

 

27 23 0.80916 18.61067 PTK2B 

57 2 0.357844 0.715689 FLT3 

 

16 39 -0.72263 -28.1827 PTK6 

44 12 0.542758 6.513099 FLT4 

 

266 0 0.332263 0 RET 

270 0 -0.02766 0 FRK 

 

8 68 0.680744 46.29062 ROCK1 
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47 9 0.594265 5.348384 GRK7 

 

26 25 0.768358 19.20895 ROS1 

45 10 0.298612 2.986118 GSK3A 

 

9 59 0.52101 30.73958 RPS6KA4 

6 73 0.901677 65.82245 HIPK3 

 

22 29 0.571873 16.58432 RPS6KB1 

19 33 0.774876 25.5709 HIPK4 

 

41 12 0.489267 5.871206 SGK1 

168 0 -1.55417 0 IKBKB 

 

304 0 -0.16574 0 SRMS 

37 14 0.670794 9.391119 IKBKE 

 

157 0 0.570919 0 SRPK1 

280 0 0.167501 0 IRAK4 

 

159 0 -0.14908 0 SRPK3 

274 0 0.407143 0 ITK 

 

34 17 0.474396 8.064724 STK10 

258 0 -1.63472 0 JAK1 

 

17 38 0.900783 34.22976 STK24 

259 0 -0.36109 0 JAK2 

 

232 0 0.242388 0 STK3 

260 0 -0.52485 0 JAK3 

 

272 0 0 0 SYK 

50 7 0.362761 2.539325 KIT 

 

169 0 0.074835 0 TBK1 

285 0 0.15197 0 LRRK2 

 

275 0 0.130549 0 TEK 

46 10 0.64592 6.459197 MAP2K1 

 

32 19 0.663015 12.59728 TNK1 

229 0 0.074659 0 MAP4K2 

 

244 0 -0.04743 0 TNK2 

230 0 0.081754 0 MAP4K4 

 

14 40 0.81433 32.5732 TSSK2 

150 0 0 0 MAPK1 

 

59 1 0.557867 0.557867 TTK 

11 45 -1.28519 -57.8337 MAPK14 

 

29 21 -1.52789 -32.0857 TYK2 

48 9 -0.66035 -5.94313 MAPK8 

 

40 13 0.792153 10.29799 TYRO3 

      

273 0 0 0 ZAP70 
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SW982 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

 

Cluster 
MAXIS 
Rank 

Cluster 
MAXIS 
score 

Cluster 
Mean Bk 

Combined 

Score 

Kinase 
Groups 

38 10 0.259689 2.596887 ABL1 

 

114 0 0 0 MAPKAPK3 

56 1 0.11247 0.11247 AKT1 

 

115 0 0 0 MAPKAPK5 

30 14 0.637092 8.919286 ALK 

 

40 8 0.322982 2.583854 MARK2 

60 1 -0.33548 -0.33548 ARAF 

 

103 0 0.189514 0 MELK 

163 0 0.132652 0 AURKA 

 

36 11 0.572023 6.292253 MET 

248 0 0.295219 0 AXL 

 

53 2 0.108334 0.216669 MKNK2 

10 66 0.547418 36.12958 BMX 

 

26 19 0.579201 11.00482 MST1R 

20 23 0.602043 13.847 BRSK2 

 

264 0 0.188454 0 MUSK 

98 0 0 0 CAMK1 

 

46 4 0.409523 1.638092 NEK1 

52 2 -1.6 -3.2 CAMK2A 

 

7 82 0.855845 70.17932 NEK2 

97 0 0 0 CAMK4 

 

185 0 0 0 NEK6 

5 87 0.669049 58.20725 CDK1 

 

2 99 1.56 154.44 NEK9 

100 0 0.254471 0 CHEK1 

 

43 6 0.005473 0.032839 NTRK1 

6 85 -1.52144 -129.322 CHEK2 

 

16 38 0.574688 21.83814 NUAK1 

171 0 0.097918 0 CHUK 

 

236 0 0.014586 0 PAK1 

15 41 0.585555 24.00775 CLK1 

 

237 0 -0.10884 0 PAK4 

265 0 0.251826 0 CSF1R 

 

45 5 0.202232 1.01116 PDGFRA 

251 0 0.205836 0 CSK 

 

3 97 0.775035 75.17842 PDPK1 

132 0 0.039209 0 CSNK1A1 

 

120 0 0.258714 0 PHKG1 

133 0 0.161688 0 CSNK1G2 

 

305 0 0.280854 0 PI4KB 

54 2 0.582981 1.165963 CSNK2A1 

 

39 9 0.922061 8.29855 PIK3CA 

110 0 -0.09495 0 DAPK1 

 

1 100 0.839345 83.93448 PIK3CB 

112 0 0 0 DCLK1 

 

28 16 0.489452 7.831232 PIM1 

253 0 -0.28286 0 DDR1 

 

41 7 0.355054 2.48538 PIM2 

9 66 0.470848 31.07599 DMPK 

 

42 6 0.766689 4.600135 PLK1 

24 20 0.676791 13.53582 DYRK1A 

 

70 0 -0.09694 0 PRKACA 

49 3 0.20419 0.612569 DYRK3 

 

57 1 0.316931 0.316931 PRKCD 

31 14 -0.34444 -4.8221 EGFR 

 

73 0 0.231058 0 PRKCE 

29 16 0.280189 4.483021 EPHA2 

 

74 0 0 0 PRKCI 

12 47 0.936977 44.03791 FER 

 

4 87 0.541922 47.14722 PRKD1 

55 2 0.237641 0.475281 FGFR1 

 

75 0 0.31258 0 PRKG1 

18 35 0.289539 10.13388 FGR 

 

71 0 0.172398 0 PRKX 

278 0 -0.0382 0 FLT1 

 

27 18 0.809292 14.56725 PTK2B 

58 1 0.183924 0.183924 FLT3 

 

272 0 -0.18569 0 PTK6 

279 0 0.212222 0 FLT4 

 

267 0 -0.18173 0 RET 

271 0 -0.18534 0 FRK 

 

62 0 0.113887 0 ROCK1 
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34 11 0.538629 5.924917 GRK7 

 

23 21 0.615482 12.92511 ROS1 

17 35 0.529129 18.5195 GSK3A 

 

13 41 0.29363 12.03881 RPS6KA4 

8 67 0.851775 57.06896 HIPK3 

 

14 41 0.335119 13.73989 RPS6KB1 

37 10 0.475825 4.758252 HIPK4 

 

78 0 0.347604 0 SGK1 

32 13 -1.54464 -20.0803 IKBKB 

 

44 6 -0.49466 -2.96795 SRMS 

172 0 0.237801 0 IKBKE 

 

160 0 0.459523 0 SRPK1 

59 1 -1.52167 -1.52167 IRAK4 

 

162 0 -0.20667 0 SRPK3 

275 0 0.262079 0 ITK 

 

35 11 0.435856 4.794411 STK10 

51 3 -1.57778 -4.73333 JAK1 

 

19 29 0.774553 22.46204 STK24 

22 21 -0.70106 -14.7224 JAK2 

 

50 3 0.236699 0.710097 STK3 

260 0 0.101138 0 JAK3 

 

273 0 0 0 SYK 

266 0 0.065631 0 KIT 

 

173 0 0.345888 0 TBK1 

48 4 0.370062 1.480247 LRRK2 

 

276 0 -0.1538 0 TEK 

239 0 -0.18462 0 MAP2K1 

 

247 0 0.240762 0 TNK1 

232 0 0.189417 0 MAP4K2 

 

246 0 0.09262 0 TNK2 

233 0 0.070284 0 MAP4K4 

 

25 19 0.610861 11.60636 TSSK2 

153 0 0 0 MAPK1 

 

47 4 0.459722 1.838887 TTK 

33 12 -0.09734 -1.16812 MAPK14 

 

11 51 -1.49712 -76.3532 TYK2 

21 22 -0.45775 -10.0704 MAPK8 

 

249 0 0.147918 0 TYRO3 

      

274 0 0 0 ZAP70 
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SYO1 (synergy screen with 300 nM CRT0066101) 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

31 16 0.533594 8.537507 ABL1 

 

113 0 0 0 MAPKAPK3 

19 35 0.880709 30.8248 AKT1 

 

114 0 0 0 MAPKAPK5 

17 37 0.88285 32.66545 ALK 

 

44 7 0.456015 3.192105 MARK2 

290 0 0.085512 0 ARAF 

 

57 3 0.479693 1.43908 MELK 

27 25 0.544029 13.60072 AURKA 

 

43 8 0.753348 6.026786 MET 

40 10 0.448906 4.48906 AXL 

 

115 0 0.400627 0 MKNK2 

55 5 0.573409 2.867043 BMX 

 

269 0 0.54308 0 MST1R 

6 71 0.695603 49.38781 BRSK2 

 

41 9 0.691013 6.219113 MUSK 

97 0 0 0 CAMK1 

 

184 0 0.295476 0 NEK1 

98 0 0 0 CAMK2A 

 

49 6 0.655431 3.932584 NEK2 

96 0 0 0 CAMK4 

 

189 0 0 0 NEK6 

2 79 0.705954 55.7704 CDK1 

 

30 20 0.730431 14.60861 NEK9 

100 0 0.437141 0 CHEK1 

 

61 1 0.286263 0.286263 NTRK1 

122 0 0.352038 0 CHEK2 

 

18 36 0.616518 22.19466 NUAK1 

173 0 0.164531 0 CHUK 

 

240 0 0.195476 0 PAK1 

29 21 0.531725 11.16623 CLK1 

 

241 0 0.378806 0 PAK4 

10 48 0.664934 31.91685 CSF1R 

 

1 94 0.546102 51.33363 PDGFRA 

254 0 0.040044 0 CSK 

 

71 0 0.376031 0 PDPK1 

58 2 0.421079 0.842158 CSNK1A1 

 

45 7 0.794808 5.563655 PHKG1 

133 0 0.319842 0 CSNK1G2 

 

305 0 0.099377 0 PI4KB 

151 0 0.334016 0 CSNK2A1 

 

7 59 0.846075 49.91844 PIK3CA 

109 0 0.320474 0 DAPK1 

 

302 0 0.233697 0 PIK3CB 

111 0 0 0 DCLK1 

 

120 0 0.464853 0 PIM1 

33 15 0.598678 8.980177 DDR1 

 

46 7 0.741707 5.191951 PIM2 

42 8 0.713253 5.706024 DMPK 

 

36 12 0.547218 6.566621 PLK1 

48 6 0.538941 3.233646 DYRK1A 

 

47 6 0.612101 3.672608 PRKACA 

152 0 0.431073 0 DYRK3 

 

39 10 0.629507 6.295074 PRKCD 

256 0 -0.2623 0 EGFR 

 

38 11 0.660609 7.266699 PRKCE 

13 44 0.646182 28.43201 EPHA2 

 

73 0 0 0 PRKCI 

25 27 1.036152 27.9761 FER 

 

11 47 0.602404 28.31298 PRKD1 

21 33 0.693671 22.89115 FGFR1 

 

20 33 0.617553 20.37926 PRKG1 

35 14 0.400778 5.610885 FGR 

 

15 39 0.769422 30.00748 PRKX 

9 49 0.71552 35.06049 FLT1 

 

4 78 0.934916 72.92345 PTK2B 

22 29 0.50852 14.74708 FLT3 

 

54 5 0.509355 2.546773 PTK6 

24 28 0.745448 20.87255 FLT4 

 

28 23 0.498226 11.4592 RET 

16 38 0.743225 28.24256 FRK 

 

63 0 0.243046 0 ROCK1 
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32 15 0.588764 8.831461 GRK7 

 

8 49 1.037943 50.85919 ROS1 

3 79 0.544697 43.03109 GSK3A 

 

75 0 -0.18461 0 RPS6KA4 

52 5 0.656643 3.283214 HIPK3 

 

76 0 0.506599 0 RPS6KB1 

5 74 0.831282 61.5149 HIPK4 

 

56 4 0.97024 3.880959 SGK1 

174 0 -1.5474 0 IKBKB 

 

304 0 0.053858 0 SRMS 

175 0 0.534048 0 IKBKE 

 

163 0 0.235364 0 SRPK1 

279 0 0.062714 0 IRAK4 

 

165 0 0.103858 0 SRPK3 

60 1 0.465541 0.465541 ITK 

 

34 14 0.502394 7.033515 STK10 

263 0 -1.55972 0 JAK1 

 

243 0 0.530431 0 STK24 

264 0 -0.33564 0 JAK2 

 

238 0 -0.24539 0 STK3 

265 0 0.172213 0 JAK3 

 

273 0 0 0 SYK 

37 12 0.399084 4.789003 KIT 

 

176 0 0.016358 0 TBK1 

26 26 0.739574 19.22891 LRRK2 

 

51 6 0.571351 3.428104 TEK 

244 0 -0.1811 0 MAP2K1 

 

50 6 0.668121 4.008726 TNK1 

236 0 0.240173 0 MAP4K2 

 

251 0 0.138091 0 TNK2 

59 1 0.414497 0.414497 MAP4K4 

 

14 40 0.977866 39.11464 TSSK2 

155 0 0 0 MAPK1 

 

53 5 0.684597 3.422986 TTK 

12 47 0.466013 21.90261 MAPK14 

 

23 28 -1.5236 -42.6608 TYK2 

159 0 0.385289 0 MAPK8 

 

252 0 0.297868 0 TYRO3 

      

274 0 0 0 ZAP70 
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Table A.3: Comparison of Combined Scores between original SYO1 screen and SYO1 counter screen with 

300 nM CRT0066101. One representative of kinase groups is shown. 
 

Kinase 

Groups 

SYO1 Combined 

Score Difference 

(w/ CRT0066101 - 

Original Screen) 

 

Kinase 

Groups 

SYO1 Combined 

Score Difference 

(w/ CRT0066101 - 

Original Screen) 

 

Kinase 

Groups 

SYO1 Combined 

Score Difference 

(w/ CRT0066101 - 

Original Screen) 

 

Kinase 

Groups 

SYO1 Combined 

Score Difference 

(w/ CRT0066101 - 

Original Screen) 

ABL1 3.790373 

 

EPHA2 -2.91803 

 

MAPKAPK5 0 

 

PRKD1 -35.936 

AKT1 11.92138 

 

FER 0.199469 

 

MARK2 -13.4853 

 

PRKG1 17.47863 

ALK 25.9344 

 

FGFR1 12.5532 

 

MELK 1.43908 

 

PRKX -83.1425 

ARAF 0 

 

FGR -31.4586 

 

MET 3.507866 

 

PTK2B 43.3132 

AURKA 9.899848 

 

FLT1 23.65022 

 

MKNK2 0 

 

PTK6 2.546773 

AXL -29.5017 

 

FLT3 12.5908 

 

MST1R 0 

 

RET 8.194847 

BMX -2.08867 

 

FLT4 17.7604 

 

MUSK -2.06718 

 

ROCK1 -0.43404 

BRSK2 47.84306 

 

FRK 23.82445 

 

NEK1 0 

 

ROS1 23.21569 

CAMK1 0 

 

GRK7 8.831461 

 

NEK2 -121.49 

 

RPS6KA4 -4.5535 

CAMK2A 0 

 

GSK3A -4.82775 

 

NEK6 0 

 

RPS6KB1 -85.2815 

CAMK4 0 

 

HIPK3 3.283214 

 

NEK9 11.11508 

 

SGK1 3.880959 

CDK1 30.1836 

 

HIPK4 57.21101 

 

NTRK1 -3.12628 

 

SRMS 0 

CHEK1 0 

 

IKBKB 22.81251 

 

NUAK1 16.00698 

 

SRPK1 0 

CHEK2 -6.01111 

 

IKBKE 0 

 

PAK1 0 

 

SRPK3 0 

CHUK 0 

 

IRAK4 0 

 

PAK4 0 

 

STK10 5.270497 

CLK1 4.445722 

 

ITK 0.465541 

 

PDGFRA -23.4752 

 

STK24 0 

CSF1R 30.29184 

 

JAK1 0 

 

PDPK1 0 

 

STK3 -0.31424 

CSK 0 

 

JAK2 96.64846 

 

PHKG1 5.563655 

 

SYK 0 

CSNK1A1 -0.57815 

 

JAK3 0 

 

PI4KB 0 

 

TBK1 0 

CSNK1G2 0 

 

KIT -63.7972 

 

PIK3CA 10.00393 

 

TEK -1.17273 

CSNK2A1 0 

 

LRRK2 19.22891 

 

PIK3CB -0.94559 

 

TNK1 4.008726 

DAPK1 0 

 

MAP2K1 0 

 

PIM1 -12.5191 

 

TNK2 -4.15118 

DCLK1 0 

 

MAP4K2 0 

 

PIM2 -72.0997 

 

TSSK2 17.97546 

DDR1 -29.6995 

 

MAP4K4 -46.8461 

 

PLK1 6.566621 

 

TTK 3.422986 

DMPK 5.706024 

 

MAPK1 0 

 

PRKACA 3.672608 

 

TYK2 -42.6608 

DYRK1A 3.233646 

 

MAPK14 -28.7053 

 

PRKCD 6.295074 

 

TYRO3 0 

DYRK3 0 

 

MAPK8 0 

 

PRKCE -46.0333 

 

ZAP70 0 

EGFR 0 

 

MAPKAPK3 0 

 

PRKCI 0 
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Compusyn Outputs for Median-Effect Plots of Single Agents  
Fa=Fraction affected, Fu=fraction unaffected, m=slope, D=Dose, Dm= median-effect 

dose, r=goodness of fit. 

 

CRT0066101 

 

 

kb NB 142-40 

 

 

 

BAY1125976 
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AZD5363 

 

 

Palbociclib 

 

 

VX745 
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Compusyn Outputs for Median-Effect Plots of Combinations and Experimental 

Combination Index Values  

Fa=Fraction affected, Fu=fraction unaffected, m=slope, D=Dose, Dm= median-effect 

dose, r=goodness of fit, CI= Combination Index. 

 

CRT0066101 + BAY1125976 Combination (6400:2400 Dose Ratio) 

 

CRT0066101 + AZD5363 Combination (6400:2400 Dose Ratio) 

 

CRT0066101 + Palbociclib Combination (6400:2000 Dose Ratio) 

 



119 

 

CRT0066101 + VX745 Combination (6400:500 Dose Ratio) 

 

kb NB 142-40 + BAY1125976 Combination (16000:2400 Dose Ratio) 

 

kb NB 142-40 + AZD5363 Combination (16000:2400 Dose Ratio) 
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kb NB 142-40 + Palbociclib Combination (16000:2000 Dose Ratio) 

 

 

 

kb NB 142-40 + VX745 Combination (16000:5000 Dose Ratio) 
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Primary Phenotypic Screens of a Profiled Kinase Inhibitor Library against Sarcoma 

Cell Lines with Stratification of Hits and Non-hits Shown 
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APPENDIX B 

Supplemental Information for Chapter III  
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Supplemental Tables 
 

Table B.1: Complete MAXIS, Bk, and Combination Scores for kinase groups for each PDX screen 

performed. One representative of kinase groups is shown. 

 

9040PDX 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score  

Kinase 

Groups 

6 65 -0.09648 -6.27103 ABL1 

 

121 0 0 0 MAPKAPK3 

27 26 -0.29822 -7.75371 AKT1 

 

122 0 0 0 MAPKAPK5 

14 51 0.21501 10.96551 ALK 

 

5 66 0.219249 14.47042 MARK2 

9 60 -0.3775 -22.6503 ARAF 

 

110 0 0.046022 0 MELK 

34 20 0.209496 4.189928 AURKA 

 

68 1 -0.20399 -0.20399 MET 

19 42 -0.19497 -8.18891 AXL 

 

20 41 -0.2581 -10.5821 MKNK2 

22 40 -0.32885 -13.1538 BMX 

 

42 15 0.241537 3.623054 MST1R 

44 12 0.286061 3.43273 BRSK2 

 

69 1 -0.23536 -0.23536 MUSK 

106 0 -0.13075 0 CAMK1 

 

18 44 0.360864 15.878 NEK1 

66 1 0.468258 0.468258 CAMK2A 

 

50 9 -0.13451 -1.21061 NEK2 

105 0 0 0 CAMK4 

 

53 8 0.156274 1.250193 NEK6 

21 40 0.104557 4.182289 CDK1 

 

191 0 0.062048 0 NEK9 

17 45 -1.55625 -70.0313 CHEK1 

 

275 0 -0.02018 0 NTRK1 

128 0 -0.19501 0 CHEK2 

 

38 17 0.209086 3.554461 NUAK1 

177 0 0.087265 0 CHUK 

 

54 8 -0.32132 -2.57056 PAK1 

10 58 0.201657 11.69609 CLK1 

 

41 15 -0.56602 -8.49024 PAK4 

266 0 -0.07375 0 CSF1R 

 

269 0 -0.03347 0 PDGFRA 

51 9 -0.55282 -4.97539 CSK 

 

37 18 0.653749 11.76747 PDPK1 

26 29 -0.25358 -7.35384 CSNK1A1 

 

45 12 0.326442 3.917301 PHKG1 

56 7 -0.21911 -1.53374 CSNK1G2 

 

305 0 0.11853 0 PI4KB 

157 0 0.244561 0 CSNK2A1 

 

8 63 0.779338 49.09832 PIK3CA 

117 0 0.038653 0 DAPK1 

 

13 52 0.332768 17.30394 PIK3CB 

119 0 0 0 DCLK1 

 

57 6 -0.15539 -0.93237 PIM1 

58 6 -0.24447 -1.46683 DDR1 

 

49 10 0.229029 2.290291 PIM2 

36 18 -0.43405 -7.81289 DMPK 

 

35 19 0.517545 9.833363 PLK1 

23 37 0.400433 14.81602 DYRK1A 

 

80 0 -0.18299 0 PRKACA 

60 4 0.2057 0.8228 DYRK3 

 

39 16 -0.23811 -3.80971 PRKCD 

1 98 -0.65636 -64.3234 EGFR 

 

83 0 -0.18738 0 PRKCE 

7 64 -0.14156 -9.05952 EPHA2 

 

84 0 0 0 PRKCI 

55 8 -0.014 -0.11203 FER 

 

48 11 -0.17293 -1.90224 PRKD1 

262 0 -0.00252 0 FGFR1 

 

52 8 0.031362 0.250899 PRKG1 
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4 70 -0.12454 -8.71779 FGR 

 

81 0 -0.10644 0 PRKX 

276 0 -0.10505 0 FLT1 

 

11 57 0.465758 26.54822 PTK2B 

267 0 0.008958 0 FLT3 

 

32 22 -0.39611 -8.71432 PTK6 

277 0 0.0507 0 FLT4 

 

12 53 -0.19114 -10.1303 RET 

46 12 -0.23208 -2.78496 FRK 

 

33 20 -0.19474 -3.89487 ROCK1 

47 11 0.306312 3.369427 GRK7 

 

29 25 0.449452 11.23631 ROS1 

64 2 -0.01526 -0.03053 GSK3A 

 

15 49 -0.04977 -2.43893 RPS6KA4 

24 36 0.145153 5.225512 HIPK3 

 

59 4 -0.37747 -1.50988 RPS6KB1 

159 0 0.030855 0 HIPK4 

 

28 26 -0.68411 -17.7868 SGK1 

178 0 -0.07161 0 IKBKB 

 

304 0 -0.12814 0 SRMS 

179 0 0.147559 0 IKBKE 

 

40 15 0.240016 3.600244 SRPK1 

71 1 -0.2092 -0.2092 IRAK4 

 

169 0 0.075936 0 SRPK3 

30 23 -0.3753 -8.63187 ITK 

 

31 22 -0.2199 -4.83782 STK10 

3 80 -0.44441 -35.5529 JAK1 

 

243 0 -0.13158 0 STK24 

25 34 0.146214 4.971265 JAK2 

 

16 46 -0.06664 -3.06532 STK3 

61 4 -0.14825 -0.59298 JAK3 

 

273 0 -0.01878 0 SYK 

268 0 -0.01459 0 KIT 

 

43 13 0.520532 6.766914 TBK1 

285 0 0.282451 0 LRRK2 

 

63 3 -0.19553 -0.5866 TEK 

244 0 -0.2342 0 MAP2K1 

 

252 0 -0.03239 0 TNK1 

239 0 0.02001 0 MAP4K2 

 

251 0 0.002525 0 TNK2 

67 1 -0.04033 -0.04033 MAP4K4 

 

136 0 -0.068 0 TSSK2 

161 0 0 0 MAPK1 

 

222 0 -0.20634 0 TTK 

2 92 -0.42342 -38.9544 MAPK14 

 

65 2 -0.16291 -0.32582 TYK2 

62 3 -0.11743 -0.35229 MAPK8 

 

253 0 -0.22582 0 TYRO3 

      

70 1 -0.18059 -0.18059 ZAP70 
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MUM12PDX 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

60 2 0.37788 0.755759 ABL1 

 

111 0 0 0 MAPKAPK3 

18 25 0.793645 19.84113 AKT1 

 

112 0 0 0 MAPKAPK5 

51 6 0.438013 2.628079 ALK 

 

13 29 0.913247 26.48416 MARK2 

292 0 0.426473 0 ARAF 

 

31 13 0.676409 8.793314 MELK 

8 51 0.607084 30.96131 AURKA 

 

264 0 0.102444 0 MET 

56 4 0.489126 1.956503 AXL 

 

113 0 0.327501 0 MKNK2 

25 20 0.764438 15.28875 BMX 

 

265 0 0.575602 0 MST1R 

99 0 0.292129 0 BRSK2 

 

266 0 0.476935 0 MUSK 

41 9 0.790266 7.112396 CAMK1 

 

32 13 0.730791 9.50028 NEK1 

97 0 0.465399 0 CAMK2A 

 

186 0 0.585316 0 NEK2 

55 4 1.415 5.66 CAMK4 

 

23 21 1.44375 30.31875 NEK6 

7 54 0.55004 29.70219 CDK1 

 

37 10 0.800227 8.002271 NEK9 

62 1 0.771881 0.771881 CHEK1 

 

57 4 0.404436 1.617746 NTRK1 

46 8 0.708227 5.665813 CHEK2 

 

42 9 0.734649 6.611841 NUAK1 

172 0 0.329342 0 CHUK 

 

24 20 0.94466 18.8932 PAK1 

49 6 0.437408 2.62445 CLK1 

 

239 0 0.670086 0 PAK4 

267 0 0.347374 0 CSF1R 

 

270 0 0.26716 0 PDGFRA 

249 0 0.583267 0 CSK 

 

29 17 0.812602 13.81423 PDPK1 

131 0 0.455795 0 CSNK1A1 

 

14 29 0.650896 18.87599 PHKG1 

9 41 0.659606 27.04385 CSNK1G2 

 

305 0 0.344281 0 PI4KB 

43 9 0.81542 7.338776 CSNK2A1 

 

26 19 1.6205 30.7895 PIK3CA 

52 5 0.650451 3.252253 DAPK1 

 

3 99 0.946098 93.66369 PIK3CB 

109 0 0 0 DCLK1 

 

118 0 0.498544 0 PIM1 

251 0 0.271099 0 DDR1 

 

119 0 0.345503 0 PIM2 

65 0 0.512882 0 DMPK 

 

1 99 0.775768 76.80098 PLK1 

15 28 0.508402 14.23525 DYRK1A 

 

10 40 0.700365 28.01459 PRKACA 

149 0 0.515041 0 DYRK3 

 

74 0 0.350993 0 PRKCD 

252 0 0.02175 0 EGFR 

 

20 23 0.591819 13.61183 PRKCE 

30 16 0.645268 10.32428 EPHA2 

 

75 0 0.546628 0 PRKCI 

12 30 1.09832 32.9496 FER 

 

53 5 0.503174 2.515868 PRKD1 

35 11 0.512114 5.633249 FGFR1 

 

6 66 0.755241 49.84592 PRKG1 

2 99 0.67278 66.60524 FGR 

 

4 74 0.887095 65.645 PRKX 

276 0 0.332255 0 FLT1 

 

27 18 0.658647 11.85565 PTK2B 

268 0 0.278587 0 FLT3 

 

38 10 0.600931 6.009308 PTK6 

40 10 0.481747 4.817475 FLT4 

 

61 2 0.46455 0.929101 RET 

28 18 0.541338 9.744075 FRK 

 

11 31 0.562867 17.44887 ROCK1 
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45 8 0.799045 6.392357 GRK7 

 

16 28 0.835294 23.38825 ROS1 

152 0 -0.15625 0 GSK3A 

 

59 2 0.441987 0.883974 RPS6KA4 

22 21 0.602357 12.64949 HIPK3 

 

36 10 0.69793 6.979299 RPS6KB1 

44 9 0.580084 5.220759 HIPK4 

 

78 0 0.580206 0 SGK1 

173 0 0.504682 0 IKBKB 

 

63 1 0.632538 0.632538 SRMS 

174 0 0.525267 0 IKBKE 

 

162 0 0.464946 0 SRPK1 

280 0 0.270461 0 IRAK4 

 

164 0 0.400518 0 SRPK3 

48 8 0.609364 4.874915 ITK 

 

47 8 0.42233 3.378636 STK10 

58 3 0.679243 2.037729 JAK1 

 

241 0 0.205498 0 STK24 

54 5 0.526861 2.634303 JAK2 

 

237 0 0.243143 0 STK3 

259 0 0.33445 0 JAK3 

 

17 28 0.893489 25.0177 SYK 

269 0 0.243189 0 KIT 

 

175 0 0.529248 0 TBK1 

285 0 0.489715 0 LRRK2 

 

274 0 0.269638 0 TEK 

50 6 0.58353 3.50118 MAP2K1 

 

19 24 0.696123 16.70695 TNK1 

5 68 0.860374 58.50546 MAP4K2 

 

21 22 0.811942 17.86272 TNK2 

235 0 0.172175 0 MAP4K4 

 

33 11 0.596588 6.562472 TSSK2 

153 0 0 0 MAPK1 

 

218 0 0.234759 0 TTK 

159 0 0.29749 0 MAPK14 

 

260 0 0.320497 0 TYK2 

157 0 0.184294 0 MAPK8 

 

34 11 0.847801 9.325814 TYRO3 

      

39 10 1.433333 14.33333 ZAP70 
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GUM17PDX 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

30 28 0.213887 5.988842 ABL1 

 

115 0 0 0 MAPKAPK3 

40 12 0.265626 3.187506 AKT1 

 

116 0 0 0 MAPKAPK5 

45 10 0.274962 2.749624 ALK 

 

14 51 0.820613 41.85124 MARK2 

9 69 0.233433 16.10691 ARAF 

 

17 48 0.34676 16.64448 MELK 

49 7 0.252119 1.764836 AURKA 

 

269 0 0.277348 0 MET 

4 93 0.327473 30.45502 AXL 

 

117 0 0.015824 0 MKNK2 

275 0 0.148792 0 BMX 

 

270 0 0.283352 0 MST1R 

103 0 0.135266 0 BRSK2 

 

271 0 0.315759 0 MUSK 

35 16 0.546108 8.737728 CAMK1 

 

190 0 0.270283 0 NEK1 

42 11 0.946103 10.40713 CAMK2A 

 

194 0 0.253977 0 NEK2 

101 0 0 0 CAMK4 

 

2 95 1.485714 141.1429 NEK6 

62 1 0.120333 0.120333 CDK1 

 

59 2 0.361931 0.723861 NEK9 

19 41 1.45625 59.70625 CHEK1 

 

278 0 0.035544 0 NTRK1 

125 0 0.030451 0 CHEK2 

 

26 31 0.423147 13.11754 NUAK1 

179 0 0.05754 0 CHUK 

 

244 0 0.175182 0 PAK1 

155 0 0.094745 0 CLK1 

 

245 0 -0.10488 0 PAK4 

20 41 0.429415 17.606 CSF1R 

 

16 50 0.282901 14.14507 PDGFRA 

8 71 -0.2436 -17.2955 CSK 

 

75 0 0.269828 0 PDPK1 

136 0 -0.12056 0 CSNK1A1 

 

11 65 0.814189 52.92226 PHKG1 

32 27 0.451213 12.18274 CSNK1G2 

 

305 0 -0.04191 0 PI4KB 

154 0 0.139255 0 CSNK2A1 

 

5 81 0.837088 67.80415 PIK3CA 

112 0 -0.13328 0 DAPK1 

 

303 0 -0.08895 0 PIK3CB 

38 13 1.482143 19.26785 DCLK1 

 

122 0 0.043595 0 PIM1 

256 0 0.134896 0 DDR1 

 

123 0 -0.25173 0 PIM2 

66 0 0.078153 0 DMPK 

 

3 93 0.529705 49.26258 PLK1 

156 0 -0.03702 0 DYRK1A 

 

76 0 0.224375 0 PRKACA 

157 0 -0.21894 0 DYRK3 

 

78 0 -0.01596 0 PRKCD 

28 30 0.285195 8.555852 EGFR 

 

79 0 0.25176 0 PRKCE 

258 0 0.141382 0 EPHA2 

 

80 0 0 0 PRKCI 

6 77 1.181045 90.94044 FER 

 

58 2 -0.0912 -0.18241 PRKD1 

7 76 0.486036 36.93876 FGFR1 

 

33 25 0.41389 10.34725 PRKG1 

1 97 0.33848 32.83256 FGR 

 

10 65 0.728335 47.34178 PRKX 

18 42 0.382677 16.07241 FLT1 

 

22 35 0.821711 28.75987 PTK2B 

51 6 0.293763 1.76258 FLT3 

 

56 3 0.242868 0.728605 PTK6 

31 28 0.306616 8.585251 FLT4 

 

37 14 0.314485 4.402786 RET 

25 32 0.352866 11.29172 FRK 

 

67 0 0.232654 0 ROCK1 
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27 30 0.608368 18.25105 GRK7 

 

39 13 0.521684 6.781887 ROS1 

21 39 -0.42188 -16.4535 GSK3A 

 

12 55 0.467248 25.69863 RPS6KA4 

159 0 -0.08789 0 HIPK3 

 

36 15 0.711523 10.67284 RPS6KB1 

29 29 0.504059 14.6177 HIPK4 

 

41 11 0.403913 4.443038 SGK1 

180 0 -0.07386 0 IKBKB 

 

52 6 0.424022 2.544131 SRMS 

181 0 0.424234 0 IKBKE 

 

169 0 0.121299 0 SRPK1 

47 9 0.552713 4.97442 IRAK4 

 

171 0 0.008088 0 SRPK3 

23 35 0.267495 9.362325 ITK 

 

24 32 0.410573 13.13832 STK10 

61 2 0.28318 0.56636 JAK1 

 

247 0 -0.12126 0 STK24 

54 5 -0.15864 -0.79321 JAK2 

 

50 7 0.191848 1.342936 STK3 

264 0 0.02034 0 JAK3 

 

46 9 0.21625 1.946251 SYK 

15 50 0.341228 17.06141 KIT 

 

182 0 0.158716 0 TBK1 

64 1 0.369019 0.369019 LRRK2 

 

276 0 0.134548 0 TEK 

34 20 0.5082 10.164 MAP2K1 

 

44 11 0.365797 4.023763 TNK1 

48 8 0.387005 3.096037 MAP4K2 

 

43 11 0.51529 5.668193 TNK2 

60 2 0.240215 0.48043 MAP4K4 

 

13 52 0.694191 36.09792 TSSK2 

161 0 0 0 MAPK1 

 

55 3 0.329658 0.988975 TTK 

63 1 -0.0506 -0.0506 MAPK14 

 

265 0 -0.22732 0 TYK2 

165 0 -0.16323 0 MAPK8 

 

53 5 0.333955 1.669773 TYRO3 

      

57 3 0.630838 1.892515 ZAP70 
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Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 
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Combined 

Score 
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Groups 

14 39 0.5083 19.82369 ABL1 

 

114 0 0 0 MAPKAPK3 

6 61 0.742574 45.29701 AKT1 

 

115 0 0 0 MAPKAPK5 

24 25 0.72841 18.21025 ALK 

 

16 35 1.003215 35.11252 MARK2 

8 51 0.302854 15.44557 ARAF 

 

52 6 0.537054 3.222326 MELK 

28 22 0.495517 10.90137 AURKA 

 

268 0 0.445581 0 MET 

11 47 0.401956 18.89192 AXL 

 

116 0 0.395716 0 MKNK2 

274 0 0.187839 0 BMX 

 

55 4 0.61955 2.478201 MST1R 

4 71 1.125407 79.90391 BRSK2 

 

46 10 0.865179 8.651793 MUSK 

100 0 0.435788 0 CAMK1 

 

184 0 0.449923 0 NEK1 

101 0 0.472049 0 CAMK2A 

 

60 1 0.691641 0.691641 NEK2 

99 0 0.031779 0 CAMK4 

 

189 0 0.239759 0 NEK6 

13 40 0.451929 18.07718 CDK1 

 

61 1 0.467091 0.467091 NEK9 

35 16 1.527206 24.43529 CHEK1 

 

33 20 0.485414 9.708271 NTRK1 

43 12 0.723092 8.677106 CHEK2 

 

42 12 0.809664 9.715974 NUAK1 

174 0 0.126564 0 CHUK 

 

62 1 0.287295 0.287295 PAK1 

150 0 0.370603 0 CLK1 

 

240 0 0.387465 0 PAK4 

5 69 0.498962 34.42835 CSF1R 

 

44 12 0.396061 4.752729 PDGFRA 

252 0 -0.34975 0 CSK 

 

19 30 0.60366 18.1098 PDPK1 

49 7 0.465993 3.26195 CSNK1A1 

 

30 21 0.762613 16.01488 PHKG1 

17 33 0.893082 29.47172 CSNK1G2 

 

305 0 0.039167 0 PI4KB 

53 6 0.657444 3.944662 CSNK2A1 

 

3 76 0.960987 73.03504 PIK3CA 

111 0 0.48909 0 DAPK1 

 

20 30 0.541717 16.25152 PIK3CB 

57 1 1.532143 1.532143 DCLK1 

 

121 0 0.370335 0 PIM1 

41 14 0.47659 6.672254 DDR1 

 

38 15 0.67422 10.1133 PIM2 

65 0 0.324181 0 DMPK 

 

1 99 0.852243 84.37203 PLK1 

58 1 0.394093 0.394093 DYRK1A 

 

74 0 0.519296 0 PRKACA 

151 0 0.36506 0 DYRK3 

 

76 0 0.409609 0 PRKCD 

254 0 -0.16281 0 EGFR 

 

26 23 0.340851 7.839581 PRKCE 

2 81 0.841359 68.15006 EPHA2 

 

77 0 0.589922 0 PRKCI 

21 29 1.524544 44.21178 FER 

 

9 49 0.500865 24.54239 PRKD1 

18 32 0.707036 22.62515 FGFR1 

 

27 23 0.40831 9.391126 PRKG1 

63 1 0.295405 0.295405 FGR 

 

51 6 0.461966 2.771798 PRKX 

37 16 0.47164 7.546234 FLT1 

 

10 48 1.521545 73.03417 PTK2B 

32 20 0.506285 10.12571 FLT3 

 

273 0 0.097869 0 PTK6 

50 7 0.516527 3.615689 FLT4 

 

40 15 0.514247 7.713698 RET 

272 0 0.325564 0 FRK 

 

66 0 0.21752 0 ROCK1 
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47 8 0.762248 6.097985 GRK7 

 

36 16 0.825343 13.20549 ROS1 

155 0 0.079905 0 GSK3A 

 

15 35 0.32746 11.46109 RPS6KA4 

153 0 0.514231 0 HIPK3 

 

79 0 0.289423 0 RPS6KB1 

39 15 0.594538 8.918072 HIPK4 

 

29 21 1.003343 21.0702 SGK1 

175 0 -0.19499 0 IKBKB 

 

304 0 -0.16126 0 SRMS 

59 1 0.466798 0.466798 IKBKE 

 

25 24 0.557197 13.37273 SRPK1 

281 0 0.528494 0 IRAK4 

 

166 0 0.203058 0 SRPK3 

275 0 0.121886 0 ITK 

 

22 26 0.450253 11.70658 STK10 

261 0 0.629978 0 JAK1 

 

34 18 0.877118 15.78812 STK24 

262 0 0.390578 0 JAK2 

 

238 0 0.189765 0 STK3 

263 0 0.232953 0 JAK3 

 

45 11 0.694515 7.639667 SYK 

48 8 0.33134 2.650717 KIT 

 

176 0 0.711578 0 TBK1 

54 6 0.719869 4.319215 LRRK2 

 

276 0 0.394037 0 TEK 

12 43 0.691025 29.71407 MAP2K1 

 

249 0 0.292584 0 TNK1 

31 21 0.718568 15.08992 MAP4K2 

 

248 0 0.132374 0 TNK2 

56 2 0.324635 0.64927 MAP4K4 

 

7 57 0.938767 53.5097 TSSK2 

156 0 0 0 MAPK1 

 

220 0 0.235089 0 TTK 

162 0 0.220044 0 MAPK14 

 

264 0 0.280503 0 TYK2 

160 0 0.215336 0 MAPK8 

 

250 0 -0.03338 0 TYRO3 

      

23 26 1.425 37.05 ZAP70 
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252 0 0.211608 0 ABL1 

 

118 0 0 0 MAPKAPK3 

14 48 0.379391 18.21078 AKT1 

 

119 0 0 0 MAPKAPK5 

57 4 0.228154 0.912614 ALK 

 

19 41 0.630983 25.87031 MARK2 

10 72 0.277521 19.98153 ARAF 

 

22 36 0.347184 12.49863 MELK 

43 15 0.192524 2.887863 AURKA 

 

55 5 0.418234 2.091169 MET 

60 3 0.248459 0.745377 AXL 

 

46 12 0.337482 4.04979 MKNK2 

24 34 0.423192 14.38852 BMX 

 

269 0 0.101255 0 MST1R 

16 46 0.708177 32.57616 BRSK2 

 

270 0 -0.16467 0 MUSK 

105 0 0.273149 0 CAMK1 

 

4 80 0.60005 48.004 NEK1 

52 7 0.538945 3.772612 CAMK2A 

 

191 0 -0.11764 0 NEK2 

104 0 0 0 CAMK4 

 

62 2 0.563945 1.127889 NEK6 

12 64 0.50368 32.2355 CDK1 

 

36 23 0.607591 13.9746 NEK9 

53 7 0.718216 5.027513 CHEK1 

 

278 0 0.04046 0 NTRK1 

125 0 0.420913 0 CHEK2 

 

29 28 0.531929 14.89402 NUAK1 

177 0 0.168414 0 CHUK 

 

243 0 0.38157 0 PAK1 

47 10 0.37178 3.7178 CLK1 

 

244 0 0.25603 0 PAK4 

66 1 0.202406 0.202406 CSF1R 

 

15 47 0.267208 12.55877 PDGFRA 

254 0 0.157589 0 CSK 

 

78 0 -0.09262 0 PDPK1 

136 0 0.063592 0 CSNK1A1 

 

8 76 0.804911 61.17327 PHKG1 

17 46 0.416686 19.16756 CSNK1G2 

 

305 0 0.352461 0 PI4KB 

154 0 0.439961 0 CSNK2A1 

 

9 74 1.632143 120.7786 PIK3CA 

54 5 0.284406 1.422032 DAPK1 

 

32 28 0.591429 16.56001 PIK3CB 

116 0 0 0 DCLK1 

 

64 1 0.30955 0.30955 PIM1 

256 0 0.233855 0 DDR1 

 

34 24 0.618032 14.83277 PIM2 

26 30 0.492677 14.78031 DMPK 

 

212 0 0.095645 0 PLK1 

23 34 0.526632 17.90549 DYRK1A 

 

51 7 0.297125 2.079878 PRKACA 

155 0 0.171542 0 DYRK3 

 

80 0 0.135352 0 PRKCD 

1 100 0.487751 48.77513 EGFR 

 

81 0 0.13366 0 PRKCE 

40 20 0.238675 4.77349 EPHA2 

 

82 0 0 0 PRKCI 

25 31 1.05962 32.84821 FER 

 

39 20 0.27486 5.497207 PRKD1 

6 78 0.630625 49.18873 FGFR1 

 

27 30 0.474007 14.22021 PRKG1 

5 80 0.382478 30.59821 FGR 

 

58 3 0.434306 1.302917 PRKX 

20 41 0.273217 11.20189 FLT1 

 

7 77 1.499811 115.4855 PTK2B 

67 1 0.274217 0.274217 FLT3 

 

275 0 0.232959 0 PTK6 

31 28 0.39091 10.94547 FLT4 

 

18 43 0.420678 18.08915 RET 

35 24 0.417611 10.02266 FRK 

 

70 0 0.126682 0 ROCK1 
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38 20 0.525197 10.50394 GRK7 

 

49 9 0.455338 4.09804 ROS1 

65 1 0.211202 0.211202 GSK3A 

 

3 81 0.504018 40.82547 RPS6KA4 

56 4 0.297068 1.188271 HIPK3 

 

84 0 0.328828 0 RPS6KB1 

45 13 0.367282 4.774662 HIPK4 

 

37 21 0.657634 13.81031 SGK1 

178 0 0.131747 0 IKBKB 

 

33 25 0.398565 9.964125 SRMS 

179 0 0.198863 0 IKBKE 

 

167 0 0.020833 0 SRPK1 

68 1 0.431629 0.431629 IRAK4 

 

169 0 -0.13412 0 SRPK3 

30 28 0.282692 7.91537 ITK 

 

42 16 0.349376 5.590024 STK10 

263 0 0.439961 0 JAK1 

 

50 8 0.63793 5.103441 STK24 

264 0 0.129413 0 JAK2 

 

59 3 0.25243 0.757289 STK3 

28 30 0.435608 13.06824 JAK3 

 

61 3 0.31196 0.93588 SYK 

271 0 0.163645 0 KIT 

 

180 0 -0.07964 0 TBK1 

286 0 0.073581 0 LRRK2 

 

276 0 0.100208 0 TEK 

2 82 0.912565 74.83036 MAP2K1 

 

21 37 0.364961 13.50357 TNK1 

44 15 0.610208 9.153115 MAP4K2 

 

41 18 0.574763 10.34574 TNK2 

13 52 0.507679 26.39932 MAP4K4 

 

11 64 0.521196 33.35653 TSSK2 

158 0 0 0 MAPK1 

 

224 0 0.221746 0 TTK 

164 0 0.037335 0 MAPK14 

 

265 0 0.081124 0 TYK2 

162 0 0.005248 0 MAPK8 

 

48 9 0.463192 4.16873 TYRO3 

      

63 2 0.547278 1.094556 ZAP70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 

 

VARI068PDX 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

 

Cluster 

MAXIS 

Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

38 10 0.429114 4.291143 ABL1 

 

108 0 0 0 MAPKAPK3 

9 55 -0.54683 -30.0755 AKT1 

 

109 0 0 0 MAPKAPK5 

249 0 0.016447 0 ALK 

 

24 19 -0.17242 -3.27607 MARK2 

293 0 0.144979 0 ARAF 

 

25 19 -0.52408 -9.95746 MELK 

163 0 -0.07684 0 AURKA 

 

39 10 1.444444 14.44444 MET 

58 1 -0.04019 -0.04019 AXL 

 

110 0 0.00656 0 MKNK2 

21 22 1.46875 32.3125 BMX 

 

266 0 0.381226 0 MST1R 

35 11 1.42 15.62 BRSK2 

 

267 0 0.436571 0 MUSK 

93 0 -0.36504 0 CAMK1 

 

180 0 0.039417 0 NEK1 

94 0 -0.23171 0 CAMK2A 

 

184 0 -0.04189 0 NEK2 

92 0 0 0 CAMK4 

 

33 12 -0.29948 -3.59374 NEK6 

29 16 0.696996 11.15194 CDK1 

 

186 0 0.12567 0 NEK9 

42 9 -0.60574 -5.45164 CHEK1 

 

47 7 0.286461 2.005228 NTRK1 

45 8 -0.45786 -3.66289 CHEK2 

 

56 1 -0.24462 -0.24462 NUAK1 

171 0 -0.34912 0 CHUK 

 

2 91 -0.64446 -58.6455 PAK1 

147 0 -0.1396 0 CLK1 

 

36 11 -0.63074 -6.93811 PAK4 

55 2 0.253188 0.506375 CSF1R 

 

15 40 0.268717 10.74868 PDGFRA 

26 19 1.488889 28.28889 CSK 

 

69 0 -0.29189 0 PDPK1 

57 1 -0.31307 -0.31307 CSNK1A1 

 

115 0 -0.19837 0 PHKG1 

54 2 -0.23594 -0.47189 CSNK1G2 

 

19 24 1.52 36.48 PI4KB 

146 0 -0.20962 0 CSNK2A1 

 

37 11 1.625 17.875 PIK3CA 

104 0 0.074071 0 DAPK1 

 

44 9 1.503703 13.53333 PIK3CB 

106 0 0 0 DCLK1 

 

48 6 -0.35345 -2.12068 PIM1 

253 0 0.183049 0 DDR1 

 

116 0 -0.20856 0 PIM2 

3 86 -0.57289 -49.2685 DMPK 

 

10 48 1.663889 79.86666 PLK1 

148 0 -0.04398 0 DYRK1A 

 

41 9 -0.5923 -5.33071 PRKACA 

149 0 -0.33756 0 DYRK3 

 

22 21 -0.52509 -11.0268 PRKCD 

59 1 -0.18018 -0.18018 EGFR 

 

20 22 -0.61194 -13.4626 PRKCE 

4 77 1.524832 117.4121 EPHA2 

 

71 0 0 0 PRKCI 

49 6 1.45 8.7 FER 

 

117 0 -0.15073 0 PRKD1 

261 0 0.145904 0 FGFR1 

 

16 39 -0.60771 -23.7007 PRKG1 

12 47 0.3682 17.30541 FGR 

 

11 47 -0.67131 -31.5515 PRKX 

277 0 0.068072 0 FLT1 

 

259 0 0 0 PTK2B 

268 0 0.147011 0 FLT3 

 

274 0 0.168819 0 PTK6 

27 18 0.756066 13.60919 FLT4 

 

52 4 -0.13797 -0.55187 RET 

17 32 0.585423 18.73352 FRK 

 

1 97 -0.72765 -70.5817 ROCK1 
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64 0 -0.49196 0 GRK7 

 

273 0 0.112429 0 ROS1 

6 64 1.512468 96.79792 GSK3A 

 

7 59 -0.50286 -29.6686 RPS6KA4 

151 0 -0.25671 0 HIPK3 

 

32 13 -0.39635 -5.15252 RPS6KB1 

152 0 -0.12827 0 HIPK4 

 

5 71 -0.90883 -64.5271 SGK1 

13 43 -0.71574 -30.7767 IKBKB 

 

14 41 1.5375 63.0375 SRMS 

172 0 -0.09189 0 IKBKE 

 

51 5 -0.18827 -0.94136 SRPK1 

281 0 0 0 IRAK4 

 

162 0 -0.18635 0 SRPK3 

30 16 0.580603 9.289656 ITK 

 

239 0 0.104211 0 STK10 

34 12 -0.41863 -5.02353 JAK1 

 

18 31 -0.67037 -20.7815 STK24 

262 0 0.060484 0 JAK2 

 

237 0 0.228463 0 STK3 

28 17 -0.33974 -5.77551 JAK3 

 

40 10 1.47 14.7 SYK 

269 0 0.075269 0 KIT 

 

43 9 -0.51259 -4.61329 TBK1 

286 0 0.303448 0 LRRK2 

 

23 21 1.552565 32.60387 TEK 

241 0 -0.08118 0 MAP2K1 

 

53 3 0.536816 1.610448 TNK1 

234 0 -0.43759 0 MAP4K2 

 

248 0 0.119659 0 TNK2 

235 0 -0.10069 0 MAP4K4 

 

31 15 -0.43759 -6.56381 TSSK2 

154 0 0 0 MAPK1 

 

217 0 0.010132 0 TTK 

8 56 -0.26736 -14.9723 MAPK14 

 

46 7 -0.43592 -3.05143 TYK2 

50 5 -0.23212 -1.16058 MAPK8 

 

250 0 0.249071 0 TYRO3 

      

275 0 -0.41259 0 ZAP70 
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8 65 -0.13585 -8.83055 ABL1 

 

123 0 0 0 MAPKAPK3 

20 33 0.325977 10.75724 AKT1 

 

124 0 0 0 MAPKAPK5 

44 13 0.528937 6.876178 ALK 

 

22 31 0.164469 5.098545 MARK2 

28 28 -0.23156 -6.48355 ARAF 

 

113 0 0.088023 0 MELK 

11 52 0.246245 12.80472 AURKA 

 

71 1 0.223466 0.223466 MET 

250 0 0.149718 0 AXL 

 

125 0 0.165152 0 MKNK2 

13 49 -0.11549 -5.65889 BMX 

 

53 11 0.406289 4.469182 MST1R 

109 0 -0.00049 0 BRSK2 

 

12 52 0.437638 22.75717 MUSK 

64 3 0.287473 0.862418 CAMK1 

 

68 2 0.364623 0.729245 NEK1 

107 0 0 0 CAMK2A 

 

189 0 0.045153 0 NEK2 

106 0 0 0 CAMK4 

 

36 22 0.510971 11.24135 NEK6 

4 77 0.469553 36.15555 CDK1 

 

61 4 0.418488 1.67395 NEK9 

110 0 0.055899 0 CHEK1 

 

9 61 0.218904 13.35314 NTRK1 

55 10 -0.39411 -3.94111 CHEK2 

 

43 14 0.350733 4.910257 NUAK1 

51 12 0.40375 4.844995 CHUK 

 

7 69 -0.03933 -2.71357 PAK1 

1 90 0.547152 49.24368 CLK1 

 

56 9 -0.45633 -4.107 PAK4 

268 0 0.095289 0 CSF1R 

 

72 1 0.118555 0.118555 PDGFRA 

62 4 -0.323 -1.292 CSK 

 

21 31 -0.21818 -6.76361 PDPK1 

142 0 0.152327 0 CSNK1A1 

 

29 27 0.605615 16.3516 PHKG1 

19 35 0.253562 8.874665 CSNK1G2 

 

32 26 0.475593 12.36543 PI4KB 

3 79 0.513634 40.57706 CSNK2A1 

 

35 23 0.808914 18.60502 PIK3CA 

48 12 -0.29735 -3.56818 DAPK1 

 

54 11 0.523884 5.762725 PIK3CB 

121 0 0 0 DCLK1 

 

49 12 0.2528 3.033602 PIM1 

254 0 -0.18269 0 DDR1 

 

30 27 0.582296 15.722 PIM2 

38 20 0.288678 5.773562 DMPK 

 

33 24 0.478843 11.49223 PLK1 

16 43 0.438889 18.87221 DYRK1A 

 

82 0 0.017566 0 PRKACA 

67 2 0.331954 0.663908 DYRK3 

 

46 12 0.187473 2.249673 PRKCD 

37 21 -0.14261 -2.99487 EGFR 

 

84 0 0.072675 0 PRKCE 

34 24 0.153376 3.681024 EPHA2 

 

41 17 -1.45 -24.65 PRKCI 

261 0 0 0 FER 

 

39 20 0.249479 4.989584 PRKD1 

10 60 0.508441 30.50648 FGFR1 

 

47 12 0.251739 3.020873 PRKG1 

14 48 -0.02822 -1.35469 FGR 

 

26 28 0.31629 8.85611 PRKX 

23 31 -0.10488 -3.25125 FLT1 

 

45 13 0.543488 7.065338 PTK2B 

269 0 0.034665 0 FLT3 

 

274 0 -0.01308 0 PTK6 

277 0 -0.03524 0 FLT4 

 

270 0 -0.05367 0 RET 

65 3 0.242025 0.726076 FRK 

 

5 75 -0.11719 -8.78928 ROCK1 
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77 0 0.190132 0 GRK7 

 

15 46 0.72952 33.55791 ROS1 

17 43 0.30827 13.25563 GSK3A 

 

24 29 0.134241 3.892994 RPS6KA4 

25 29 0.429124 12.44458 HIPK3 

 

86 0 0.303511 0 RPS6KB1 

42 16 0.466578 7.465256 HIPK4 

 

2 83 -0.29291 -24.3114 SGK1 

178 0 0.007355 0 IKBKB 

 

305 0 0.199798 0 SRMS 

57 8 0.513634 4.109069 IKBKE 

 

52 11 0.194951 2.144458 SRPK1 

281 0 -0.06791 0 IRAK4 

 

170 0 0.158884 0 SRPK3 

275 0 0.104432 0 ITK 

 

240 0 0.088239 0 STK10 

70 1 -0.11377 -0.11377 JAK1 

 

242 0 0.055899 0 STK24 

262 0 0.049098 0 JAK2 

 

18 42 0.190527 8.002119 STK3 

263 0 0.068356 0 JAK3 

 

40 18 0.310807 5.594522 SYK 

27 28 0.117558 3.291611 KIT 

 

59 6 0.393488 2.360925 TBK1 

286 0 0.059438 0 LRRK2 

 

66 3 0.173778 0.521334 TEK 

31 27 0.389623 10.51981 MAP2K1 

 

249 0 -0.12824 0 TNK1 

6 72 0.633478 45.61043 MAP4K2 

 

58 8 -0.28044 -2.24348 TNK2 

60 6 0.218307 1.30984 MAP4K4 

 

138 0 0.083131 0 TSSK2 

162 0 0 0 MAPK1 

 

221 0 0.059438 0 TTK 

50 12 -0.03661 -0.43931 MAPK14 

 

264 0 -0.11535 0 TYK2 

69 1 -0.17139 -0.17139 MAPK8 

 

251 0 0.119592 0 TYRO3 

      

63 4 0.460154 1.840617 ZAP70 
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52 2 0.354477 0.708954 ABL1 

 

112 0 0 0 MAPKAPK3 

54 0 0.132651 0 AKT1 

 

113 0 0 0 MAPKAPK5 

28 22 0.471415 10.37113 ALK 

 

8 59 0.515762 30.42993 MARK2 

293 0 -0.04887 0 ARAF 

 

101 0 0.380075 0 MELK 

42 7 0.324936 2.274549 AURKA 

 

267 0 0.435474 0 MET 

24 27 0.476381 12.8623 AXL 

 

114 0 0.290164 0 MKNK2 

274 0 0.391093 0 BMX 

 

26 24 0.629467 15.10722 MST1R 

21 31 0.651512 20.19687 BRSK2 

 

268 0 0.285926 0 MUSK 

96 0 0.003275 0 CAMK1 

 

181 0 0.17607 0 NEK1 

34 16 0.734042 11.74467 CAMK2A 

 

185 0 0.462152 0 NEK2 

95 0 -0.09568 0 CAMK4 

 

187 0 0.729529 0 NEK6 

11 53 0.616842 32.69264 CDK1 

 

10 57 0.767238 43.73255 NEK9 

98 0 0.416373 0 CHEK1 

 

277 0 0.057411 0 NTRK1 

122 0 0.422963 0 CHEK2 

 

30 17 0.474238 8.06205 NUAK1 

171 0 0.311671 0 CHUK 

 

239 0 0.096649 0 PAK1 

31 17 0.387604 6.589268 CLK1 

 

240 0 -0.426 0 PAK4 

19 35 0.413625 14.47688 CSF1R 

 

4 92 0.450961 41.48837 PDGFRA 

51 3 0.54846 1.645381 CSK 

 

66 0 0.125681 0 PDPK1 

14 49 -0.42375 -20.7637 CSNK1A1 

 

35 15 0.55918 8.387702 PHKG1 

133 0 0.210175 0 CSNK1G2 

 

39 11 0.405168 4.45685 PI4KB 

151 0 0.469498 0 CSNK2A1 

 

13 52 0.889529 46.25549 PIK3CA 

108 0 0.23289 0 DAPK1 

 

27 24 0.453501 10.88402 PIK3CB 

110 0 0.734052 0 DCLK1 

 

119 0 0.360243 0 PIM1 

252 0 -0.16562 0 DDR1 

 

41 8 0.719759 5.758072 PIM2 

56 0 0.017765 0 DMPK 

 

38 11 0.660961 7.270567 PLK1 

15 42 0.610062 25.62262 DYRK1A 

 

67 0 0.007825 0 PRKACA 

50 3 0.417158 1.251475 DYRK3 

 

70 0 0.046033 0 PRKCD 

1 100 0.485647 48.56472 EGFR 

 

71 0 -0.08975 0 PRKCE 

254 0 -0.11396 0 EPHA2 

 

72 0 0 0 PRKCI 

6 65 1.095937 71.2359 FER 

 

120 0 0.16418 0 PRKD1 

25 24 0.564914 13.55794 FGFR1 

 

73 0 0.160391 0 PRKG1 

3 94 0.525117 49.36096 FGR 

 

68 0 0.044234 0 PRKX 

48 5 0.3386 1.692999 FLT1 

 

36 13 0.568096 7.385251 PTK2B 

20 33 0.378214 12.48105 FLT3 

 

29 21 0.649646 13.64257 PTK6 

49 4 0.443945 1.775778 FLT4 

 

40 9 0.329866 2.968796 RET 

45 6 0.457862 2.747174 FRK 

 

57 0 0.030438 0 ROCK1 
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61 0 0.20382 0 GRK7 

 

9 59 0.704588 41.57071 ROS1 

5 83 0.518326 43.02103 GSK3A 

 

23 28 -0.00807 -0.22602 RPS6KA4 

18 36 0.713943 25.70196 HIPK3 

 

75 0 -0.13481 0 RPS6KB1 

16 41 0.584153 23.95029 HIPK4 

 

46 5 0.243075 1.215373 SGK1 

172 0 0.124126 0 IKBKB 

 

33 17 0.788867 13.41074 SRMS 

53 1 0.282505 0.282505 IKBKE 

 

161 0 0.204477 0 SRPK1 

281 0 -0.00357 0 IRAK4 

 

163 0 0.206734 0 SRPK3 

43 7 0.437571 3.063 ITK 

 

44 6 0.42276 2.536563 STK10 

260 0 -0.22204 0 JAK1 

 

242 0 0.09507 0 STK24 

261 0 0.233766 0 JAK2 

 

237 0 0.141491 0 STK3 

262 0 0.264702 0 JAK3 

 

272 0 0.518365 0 SYK 

17 37 0.390446 14.44651 KIT 

 

173 0 0.07077 0 TBK1 

286 0 0.27571 0 LRRK2 

 

275 0 0.099396 0 TEK 

32 17 0.744027 12.64846 MAP2K1 

 

37 12 0.547494 6.569929 TNK1 

22 31 0.557039 17.26821 MAP4K2 

 

249 0 0.425328 0 TNK2 

235 0 0.23297 0 MAP4K4 

 

7 62 0.645294 40.00826 TSSK2 

154 0 0 0 MAPK1 

 

218 0 0.379974 0 TTK 

2 97 -0.46533 -45.1367 MAPK14 

 

263 0 0.169834 0 TYK2 

12 53 -0.50887 -26.97 MAPK8 

 

47 5 0.602306 3.01153 TYRO3 

      

273 0 0.485123 0 ZAP70 
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3402PDX 

Cluster 
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Rank 

Cluster 

MAXIS 

score 

Cluster 
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Score 
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Cluster 
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Rank 

Cluster 

MAXIS 

score 

Cluster 

Mean Bk 

Combined 

Score 

Kinase 

Groups 

253 0 0.086507 0 ABL1 

 

120 0 0 0 MAPKAPK3 

4 74 0.681428 50.42564 AKT1 

 

121 0 0 0 MAPKAPK5 

29 21 0.431257 9.056388 ALK 

 

48 11 0.183848 2.022329 MARK2 

16 34 0.291339 9.90552 ARAF 

 

63 3 0.425728 1.277184 MELK 

5 73 0.362349 26.45149 AURKA 

 

271 0 0.039644 0 MET 

43 13 0.331613 4.310969 AXL 

 

122 0 0.182948 0 MKNK2 

62 4 0.184626 0.738503 BMX 

 

28 22 0.272844 6.002576 MST1R 

108 0 -0.15625 0 BRSK2 

 

23 26 0.37314 9.701652 MUSK 

53 8 0.428876 3.43101 CAMK1 

 

21 27 0.682317 18.42256 NEK1 

106 0 0 0 CAMK2A 

 

8 57 -0.37384 -21.3087 NEK2 

105 0 0 0 CAMK4 

 

46 12 0.400899 4.81079 NEK6 

14 37 0.530805 19.6398 CDK1 

 

31 18 0.351462 6.32632 NEK9 

9 52 1.485714 77.25714 CHEK1 

 

26 24 0.276268 6.630444 NTRK1 

36 15 0.559885 8.398274 CHEK2 

 

45 12 0.479008 5.7481 NUAK1 

179 0 0.194343 0 CHUK 

 

49 11 0.028217 0.310382 PAK1 

17 31 0.43323 13.43013 CLK1 

 

3 86 0.632734 54.41509 PAK4 

39 15 0.332419 4.98629 CSF1R 

 

33 16 0.233373 3.73396 PDGFRA 

256 0 0.23133 0 CSK 

 

81 0 0.119461 0 PDPK1 

140 0 0.292096 0 CSNK1A1 

 

69 1 0.437302 0.437302 PHKG1 

59 5 0.279241 1.396207 CSNK1G2 

 

305 0 0.200867 0 PI4KB 

60 5 0.421303 2.106515 CSNK2A1 

 

11 51 0.894481 45.61855 PIK3CA 

50 9 0.487895 4.391052 DAPK1 

 

52 9 0.304032 2.736288 PIK3CB 

118 0 0 0 DCLK1 

 

127 0 0.043117 0 PIM1 

258 0 0.236205 0 DDR1 

 

128 0 0.107536 0 PIM2 

55 7 0.340257 2.381798 DMPK 

 

42 13 0.33524 4.358118 PLK1 

2 93 0.546653 50.8387 DYRK1A 

 

20 27 0.489378 13.21321 PRKACA 

158 0 0.052073 0 DYRK3 

 

58 6 0.323778 1.94267 PRKCD 

12 46 0.224936 10.34705 EGFR 

 

47 11 0.175489 1.930383 PRKCE 

10 52 0.300578 15.63005 EPHA2 

 

83 0 0 0 PRKCI 

41 14 0.468275 6.555852 FER 

 

1 98 0.586365 57.46376 PRKD1 

19 30 0.564015 16.92046 FGFR1 

 

30 20 0.41619 8.323799 PRKG1 

56 7 0.171603 1.20122 FGR 

 

35 15 0.314165 4.712477 PRKX 

24 25 0.193167 4.829168 FLT1 

 

18 30 0.771736 23.15208 PTK2B 

67 2 0.237217 0.474434 FLT3 

 

71 1 0.232166 0.232166 PTK6 

27 24 0.4259 10.2216 FLT4 

 

61 4 0.339366 1.357466 RET 

7 69 0.572173 39.47995 FRK 

 

73 0 -0.03444 0 ROCK1 
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34 15 0.537633 8.064495 GRK7 

 

51 9 0.617885 5.560966 ROS1 

65 2 0.145325 0.290649 GSK3A 

 

68 1 0.074009 0.074009 RPS6KA4 

37 15 0.509533 7.642997 HIPK3 

 

85 0 0.057558 0 RPS6KB1 

22 26 0.662257 17.21869 HIPK4 

 

13 37 -0.02814 -1.04133 SGK1 

180 0 -0.10155 0 IKBKB 

 

25 25 0.331724 8.293092 SRMS 

15 36 -0.27405 -9.86595 IKBKE 

 

169 0 0.153629 0 SRPK1 

282 0 -0.09121 0 IRAK4 

 

171 0 0.10342 0 SRPK3 

276 0 0.184048 0 ITK 

 

245 0 0.205959 0 STK10 

44 13 0.746547 9.70511 JAK1 

 

38 15 0.61565 9.234756 STK24 

265 0 0.130415 0 JAK2 

 

243 0 -0.0056 0 STK3 

266 0 0.247679 0 JAK3 

 

57 7 0.393677 2.755738 SYK 

40 15 0.268825 4.032379 KIT 

 

181 0 0.099462 0 TBK1 

32 18 0.431241 7.76233 LRRK2 

 

277 0 0.122796 0 TEK 

66 2 0.335799 0.671599 MAP2K1 

 

254 0 0.042895 0 TNK1 

240 0 0.280536 0 MAP4K2 

 

64 3 0.359062 1.077185 TNK2 

241 0 0.083959 0 MAP4K4 

 

6 69 0.600582 41.44018 TSSK2 

161 0 0 0 MAPK1 

 

223 0 0.240295 0 TTK 

54 8 0.222061 1.776489 MAPK14 

 

267 0 0.106129 0 TYK2 

165 0 0.253608 0 MAPK8 

 

70 1 0.38049 0.38049 TYRO3 

      

275 0 -0.12595 0 ZAP70 
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45 7 0.223399 1.563791 ABL1 

 

114 0 0 0 MAPKAPK3 

11 34 0.464899 15.80656 AKT1 

 

115 0 0 0 MAPKAPK5 

39 10 0.424465 4.244655 ALK 

 

23 23 0.542148 12.4694 MARK2 

5 90 0.495835 44.62518 ARAF 

 

61 2 0.272192 0.544385 MELK 

13 32 0.353114 11.29964 AURKA 

 

46 7 0.55448 3.881358 MET 

37 11 0.427667 4.704342 AXL 

 

21 25 0.350629 8.765716 MKNK2 

273 0 0.108096 0 BMX 

 

266 0 0.107301 0 MST1R 

6 87 0.551568 47.98638 BRSK2 

 

14 32 0.333978 10.6873 MUSK 

101 0 0.19304 0 CAMK1 

 

57 3 0.413272 1.239816 NEK1 

102 0 0.230361 0 CAMK2A 

 

65 1 0.543356 0.543356 NEK2 

100 0 0.08048 0 CAMK4 

 

31 16 1.475 23.6 NEK6 

34 13 0.255359 3.319668 CDK1 

 

55 4 0.615414 2.461658 NEK9 

35 12 0.706346 8.476148 CHEK1 

 

29 17 0.372192 6.327265 NTRK1 

17 27 0.751203 20.28249 CHEK2 

 

51 5 0.348477 1.742385 NUAK1 

169 0 0.145857 0 CHUK 

 

58 3 0.502831 1.508492 PAK1 

149 0 0.329851 0 CLK1 

 

235 0 0.364637 0 PAK4 

267 0 0.264425 0 CSF1R 

 

63 2 0.227361 0.454721 PDGFRA 

249 0 0.141962 0 CSK 

 

4 96 0.709689 68.13019 PDPK1 

131 0 0.336266 0 CSNK1A1 

 

15 31 0.542895 16.82976 PHKG1 

54 4 0.44646 1.785841 CSNK1G2 

 

305 0 0.107073 0 PI4KB 

27 18 0.601642 10.82955 CSNK2A1 

 

50 6 0.763163 4.578976 PIK3CA 

42 9 0.603481 5.431331 DAPK1 

 

3 100 0.670158 67.01583 PIK3CB 

33 13 1.505714 19.57428 DCLK1 

 

9 73 0.658096 48.04101 PIM1 

7 81 0.425983 34.50464 DDR1 

 

64 1 0.494112 0.494112 PIM2 

44 8 0.603478 4.82782 DMPK 

 

2 100 0.625991 62.5991 PLK1 

36 12 0.345981 4.151772 DYRK1A 

 

75 0 0.356467 0 PRKACA 

48 6 0.477992 2.867952 DYRK3 

 

77 0 0.303034 0 PRKCD 

251 0 -0.15601 0 EGFR 

 

78 0 0.278536 0 PRKCE 

20 26 0.437296 11.36969 EPHA2 

 

60 2 1.495833 2.991665 PRKCI 

18 27 0.439001 11.85302 FER 

 

16 29 0.456758 13.24597 PRKD1 

258 0 0.152365 0 FGFR1 

 

10 38 0.494408 18.7875 PRKG1 

24 21 0.267145 5.610037 FGR 

 

59 2 0.461004 0.922009 PRKX 

277 0 0.118597 0 FLT1 

 

8 81 0.855685 69.31053 PTK2B 

12 34 0.433861 14.75129 FLT3 

 

66 1 0.239723 0.239723 PTK6 

278 0 0.111736 0 FLT4 

 

268 0 0.229626 0 RET 

272 0 0.174236 0 FRK 

 

38 10 0.457824 4.578242 ROCK1 
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47 6 0.627022 3.762134 GRK7 

 

22 25 0.325334 8.133346 ROS1 

152 0 -0.04402 0 GSK3A 

 

26 18 0.449758 8.095639 RPS6KA4 

30 16 0.502798 8.044761 HIPK3 

 

80 0 0.448246 0 RPS6KB1 

56 3 0.423161 1.269483 HIPK4 

 

41 9 0.358645 3.227808 SGK1 

170 0 -0.16376 0 IKBKB 

 

304 0 -0.0245 0 SRMS 

171 0 0.382984 0 IKBKE 

 

160 0 0.423553 0 SRPK1 

32 16 0.616599 9.865589 IRAK4 

 

28 18 0.643278 11.57901 SRPK3 

274 0 0.194084 0 ITK 

 

53 5 0.245398 1.226991 STK10 

259 0 -0.15999 0 JAK1 

 

237 0 0.037841 0 STK24 

260 0 0.210494 0 JAK2 

 

233 0 0.010985 0 STK3 

261 0 0.104421 0 JAK3 

 

43 9 0.48135 4.33215 SYK 

62 2 0.257644 0.515288 KIT 

 

172 0 0.086758 0 TBK1 

40 10 0.666811 6.668105 LRRK2 

 

275 0 0.213202 0 TEK 

238 0 0.386017 0 MAP2K1 

 

246 0 0.299519 0 TNK1 

49 6 0.460006 2.760033 MAP4K2 

 

245 0 0.036806 0 TNK2 

231 0 0.156194 0 MAP4K4 

 

25 19 0.450657 8.562483 TSSK2 

153 0 -0.05517 0 MAPK1 

 

214 0 0.116911 0 TTK 

1 100 0.217025 21.70247 MAPK14 

 

262 0 0.0183 0 TYK2 

52 5 0.441218 2.206092 MAPK8 

 

247 0 -0.10492 0 TYRO3 

      

19 27 1.422222 38.4 ZAP70 
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Table B.2: Clustering history of PDXs and kinase groups. 

 

  PDX Clustering History 

    

Number of 

Clusters 

Distance     Leader Joiner 

    9 8.75297218  3402 GUM28 

    8 8.76696068  VARI004 9040 

    7 8.77513789  GUM17 MC1 

    6 9.41529839  3402 4664 

    5 9.95002835  VARI004 2147 

    4 9.96036614  MUM12 GUM17 

    3 10.91785391  3402 MUM12 

    2 11.78114869  VARI004 3402 

    1 14.02383804  VARI004 VARI068 

 

 

  Kinase Group Clustering History 

 

Number of 

Clusters 

Distance     Leader Joiner 

  110 0.00000000  MAPK1 MAPKAPK3 

  109 0.00000000  MAPK1 MAPKAPK5 

  108 0.17783690  PIM1 SRPK3 

  107 0.21998936  PAK1 ROCK1 

  106 0.22682724  IKBKB TYK2 

  105 0.50047695  DDR1 PIM1 

  104 0.54560248  NEK6 TTK 

  103 0.54776426  SRMS TEK 

  102 0.63960051  CHUK CSNK2A1 

  101 0.64909602  TNK1 TYRO3 

  100 0.67233483  MUSK NTRK1 

   99 0.74644931  DCLK1 IRAK4 

   98 0.75406424  DMPK IKBKB 

   97 0.78433492  IKBKE NEK2 

   96 0.78572243  MET SRMS 

   95 0.79442605  PRKX RPS6KB1 

   94 0.80616964  MAP2K1 MAP4K4 

   93 0.81438201  CSNK1A1 MAPK8 

   92 0.85737404  PAK4 PRKD1 

   91 0.87816795  TNK1 TNK2 

   90 0.88211354  GSK3A PI4KB 

   89 0.90266215  DDR1 PDPK1 

   88 0.90412644  DMPK PRKCD 

   87 0.91657160  JAK3 MAP2K1 

   86 0.92878525  CAMK2A KIT 

   85 0.95060185  FLT1 GRK7 

   84 0.97765138  ARAF MKNK2 

   83 0.98262564  AKT1 STK24 

   82 0.98989218  CHUK CLK1 
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Number of 

Clusters 

Distance     Leader Joiner 

   81 1.00676925  AURKA PRKACA 

   80 1.01549212  AXL STK10 

   79 1.01872422  PHKG1 RPS6KA4 

   78 1.04594231  PRKCE PRKG1 

   77 1.05588337  NUAK1 PIK3CA 

   76 1.05596017  HIPK3 ROS1 

   75 1.05795709  NEK9 PDGFRA 

   74 1.07255218  CAMK1 PRKX 

   73 1.09740573  FER MARK2 

   72 1.12461954  CSK GSK3A 

   71 1.14241370  MELK PHKG1 

   70 1.20397288  DMPK PAK1 

   69 1.22353959  CHEK1 JAK1 

   68 1.22605419  ABL1 CSF1R 

   67 1.23891388  CHUK STK3 

   66 1.24012719  CAMK4 SYK 

   65 1.25141125  CSK MET 

   64 1.26507791  CHEK2 LRRK2 

   63 1.27342010  ALK SRPK1 

   62 1.34396902  EGFR RET 

   61 1.37188008  BRSK2 ZAP70 

   60 1.40107727  FGFR1 NUAK1 

   59 1.40267054  FGR TNK1 

   58 1.40884681  AKT1 SGK1 

   57 1.44542668  JAK3 NEK1 

   56 1.44797686  DDR1 DYRK3 

   55 1.47570503  BMX ITK 

   54 1.49919180  HIPK4 MST1R 

   53 1.50881899  FLT4 FRK 

   52 1.53269524  NEK9 PTK6 

   51 1.61476887  CHEK2 DAPK1 

   50 1.62390055  CSNK1A1 MAPK14 

   49 1.63092761  CSK EPHA2 

   48 1.63214948  AXL FER 

   47 1.64153523  CAMK4 PIK3CB 

   46 1.66535376  JAK2 TBK1 

   45 1.71972027  CDK1 MAP4K2 

   44 1.76337924  JAK3 PTK2B 

   43 1.77171141  AKT1 TSSK2 

   42 1.77744029  DYRK1A PAK4 

   41 1.78127794  BRSK2 FLT3 

   40 1.86334114  FGFR1 MELK 

   39 1.90948192  CSNK1G2 PRKCE 

   38 2.00840923  HIPK4 NEK9 

   37 2.11139675  FGFR1 FLT1 

   36 2.22218410  CHUK MUSK 

   35 2.29708700  CDK1 PIM2 

   34 2.31979300  AURKA CAMK4 

   33 2.32319309  CAMK1 NEK6 

   32 2.36701186  ABL1 ALK 

   31 2.42548784  ARAF DCLK1 

   30 2.44529966  BMX FLT4 



148 

 

Number of 

Clusters 

Distance     Leader Joiner 

   29 2.47046006  HIPK3 HIPK4 

   28 2.47519953  AXL CAMK2A 

   27 2.48148636  CHEK2 PRKCI 

   26 2.48399978  CHEK1 EGFR 

   25 2.56116247  BRSK2 PLK1 

   24 2.79437405  AURKA CSNK1G2 

   23 2.82442886  ARAF DDR1 

   22 2.95792332  AKT1 DMPK 

   21 3.02257475  JAK2 MAPK1 

   20 3.15050455  ABL1 BRSK2 

   19 3.34941738  BMX CHEK1 

   18 3.40585723  CDK1 CHUK 

   17 3.40730431  AURKA FGR 

   16 3.64926286  ARAF CHEK2 

   15 3.66447689  IKBKE JAK2 

   14 3.69259273  AXL CAMK1 

   13 3.70517239  FGFR1 JAK3 

   12 4.43395441  BMX DYRK1A 

   11 4.65867277  ARAF CSNK1A1 

   10 4.98392424  ABL1 IKBKE 

    9 6.04681516  AKT1 FGFR1 

    8 6.25123285  BMX HIPK3 

    7 6.43179366  ABL1 ARAF 

    6 6.67528178  AKT1 AXL 

    5 7.07170622  BMX CDK1 

    4 7.58240146  AURKA BMX 

    3 8.14171009  ABL1 CSK 

    2 8.53924352  AKT1 AURKA 

    1 10.10631691  ABL1 AKT1 
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Primary Phenotypic Screens of a Profiled kinase Inhibitor Library against Short-

term PDX Cell Cultures with Stratification of Hits and Non-hits Shown 
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APPENDIX C 

Supplemental Information for Chapter IV  
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Supplemental Tables and Figures  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: Selectivity filter information for PP2-Coumarin. Selectivity Filter #1: PP2-Coumarin Precursor 

was previously profiled against a panel of 200 diverse kinases by KINOMEscan (DiscoveRx) at a 

concentration of 10 µM.  Kinases which bound >35% are listed (52/200). Previously reported.
1
 Selectivity 

Filter #2:  Kinases with P-loops containing cysteines.
2
 Kinases that pass both selectivity filters are also 

listed. 
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Figure C.2: Representative excitation and emission spectra of PP2-Coumarin. 
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Figure C.3: PP2-Coumarin max fluorescence intensity after reduced glutathione (GSH) addition. PP2-

Coumarin (2 μM) was added to concentrations of GSH. The change in the max Fluorescence Intensity of an 

emission spectra (ex. 450 nm) for each condition compared to no GSH wells were determined at multiple 

time points. No clear treads over time were observed. 

 

 

 

 

 

 

Figure C.4: Structure of a previously reported irreversible dasatinib analog.
2
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Spectral Data for Compounds 4.1-4.7 and PP2-Coumarin 
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Representative Time Dependent IC50 Curves of PP2-Coumarin in Kinase activity 
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Avg 5 min IC50 Value = 1.88 ± 0.59 μM Avg 15 min IC50 Value = 1.11 ± 0.09 μM 

Avg 50 min IC50 Value = 0.763 ± 0.08 μM Avg 120 min IC50 Value = 0.766 ± 0.08 μM 
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Avg 180 min IC50 Value = 0.603 ± 0.032 μM Avg 360 min IC50 Value = 0.422 ± 0.076 μM 

Avg 5 min IC50 Value = 4.29 ± 0.048 μM Avg 15 min IC50 Value = 6.66 ± 4.93 μM 
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Avg 50 min IC50 Value = 4.17 ± 0.162 μM Avg 120 min IC50 Value = 1.490 ± 0.632 μM 

Avg 180 min IC50 Value = 1.91 ± 0.191 μM Avg 360 min IC50 Value = 1.79 ± 0.42 μM 



168 

 

P P 2 -C o u m a r in  w ith  H c k  K in a s e  D o m a in

a t 5  m in u te s  In c u b a tio n

L o g  (M )

M
e

a
n

 V
e

lo
c

it
y

 (
R

F
U

/s
e

c
)

-1 0 -9 -8 -7 -6 -5 -4

0

2 0

4 0

6 0

8 0

1 0 0

EC50 4.122e-006

P P 2 -C o u m a r in  w ith  H c k  K in a s e  D o m a in

a t 1 0  m in u te s  In c u b a tio n

L o g  (M )

M
e

a
n

 V
e

lo
c

it
y

 (
R

F
U

/s
e

c
)

-9 -8 -7 -6 -5 -4

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

EC50 2.057e-005

P P 2 -C o u m a r in  w ith  H c k  K in a s e  D o m a in

a t 1 2 0  m in u te s  In c u b a t io n

L o g  (M )

M
e

a
n

 V
e

lo
c

it
y

 (
R

F
U

/s
e

c
)

-1 0 -9 -8 -7 -6 -5 -4

0

5 0

1 0 0

1 5 0

EC50 3.518e-006

 

 

 

Avg 5 min IC50 Value = 7.78 ± 4.20 μM Avg 10 min IC50 Value = 20.8 ± 0.30 μM 

Avg 120 min IC50 Value = 3.84 ± 0.453 μM 
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Avg 5 min IC50 Value = 2.69 ± 0.24 μM 
Avg 10 min IC50 Value = 1.61 ± 0.13 μM 

Avg 120 min IC50 Value = 0.484 ± 0.064 μM 
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