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ABSTRACT

Overweight and obesity are highly prevalent in the United States, with over two-

thirds of the adult population classified as overweight and over one-third as obese.

Associated with a number of serious diseases, these conditions have been shown to

increase the risk of issues such as hypertension, type 2 diabetes mellitus, and depres-

sion, among others. All told, overweight and obesity place a significant burden on the

modern healthcare industry, with estimates on the cost as high as $210 billion per

year. Many obese individuals attempt to lose weight but, following a loss, a series of

neurobehavioral mechanisms activate that commonly result in weight regain. There

are no methods to date for determining a priori who will successfully lose weight and

maintain the loss, nor have any definitive factors been identified that can be used

to predict who will see a long-term reduction in his or her weight-related medication

regimen.

These problems, along with many others in the clinical field, stand to benefit

from the application of signal processing and machine learning methods. To begin

addressing these issues, participants in a two-year weight-loss study are split into two

groups based on their ability to lose weight while dieting and to maintain at least

a portion of that loss. Utilizing accelerometer data collected before each subject’s

diet, a windowed approach to persistent homology is used to show a clear differ-

ence in the intra-group similarities between the movement profiles of the two groups

(p “ 1.505ˆ 10´23). This application of persistent homology presents a novel take on

the topological method, allowing for more clinically relevant results by placing limits
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on the time frame in which two activities can be considered related. By expand-

ing upon and investigating the measured difference, insights can be gained on how

movement affects diet efficacy. From the same study, a separate metric for success

based on an individual’s medication history is developed. Using features extracted

from physiological signals collected both before and after the diet, a Näıve Bayes

model is generated. After reducing the feature set to filter out noise, this model is

shown to be able to predict, with an accuracy of nearly 86%, which individuals will

require more prescription medications and which will require fewer a year and a half

later. This indicates that weight loss can have a lasting impact on health, regardless

of future weight regain, and has major implications for the pharmacological indus-

try. Furthering these results, a new machine learning algorithm is developed and

presented. Meant for noisy datasets, Laplacian of Correlation Graph Classification

shows improvements in accuracy and robustness over standard machine learning al-

gorithms when applied to unreduced feature sets of varying sizes. This method not

only removes the risk of excluding potentially useful data through feature selection,

but it can also provide clinically relevant insights into the underlying relationships

between disparate measurements.
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CHAPTER I

Introduction

1.1 Problem Statement

With the prevalence of overweight and obesity on the rise, the need to develop

computational approaches to predict which individuals will benefit from dieting is

also increasing. While weight loss is an obvious indication of success, it must be

balanced against any future weight regain. Similarly, a reduction in an individual’s

weight-related medication regimen may be an indication of an improvement of overall

health, but it must be maintained in order to be considered a long-term improvement.

In addition to the metric used to determine success, the means by which the data

are gathered must also be considered. While in-lab tests may yield more reliable

and detailed information, at-home monitoring involves significantly less time and

effort, especially for the clinicians. This thesis begins to address the issue of diet-

induced weight loss through the application of signal processing and machine learning

algorithms: by studying available physiological data, recorded both in controlled

laboratory settings and at home, patterns begin to emerge. Through the use of

methods introduced here, it becomes possible to make predictions of the long-term

efficacy of dieting for any given individual. This has major implications not only in

the clinical field but in the healthcare industry as a whole.

A background on obesity, as well as an overview of signal processing and machine
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learning, is found in the next section. In Chapter II an application of persistent

homology to recorded movement data is presented. Chapter III demonstrates the

successful application of machine learning algorithms to physiological data, where

the labels are defined by a reduction in medication regimen. This is followed by

the introduction of a graph-based machine learning algorithm in Chapter IV that not

only allows for the integration of data from disparate sources but also performs better

than standard approaches on unfiltered feature sets. A discussion of the work follows

in Chapter V, and Chapter VI concludes the thesis.

1.2 Background

1.2.1 Overweight and Obesity

Figure 1.1: Percent of population classified as obese in the United States, by
county [1]

Overweight and obesity are growing problems in the United States: over two thirds

of the adult population are considered overweight, and 36.5% of adults aged 20 or

older are considered obese [2]. An individual is classified as overweight if he or she

has a Body Mass Index (BMI) - the ratio of mass in kilograms to the square of height

2



in meters - above 25 kg/m2, and obese if his or her BMI is above 30 kg/m2. A major

risk factor for a number of other conditions and diseases, obesity has been linked to

higher incidences of problems such as obstructive sleep apnea, type 2 diabetes mellitus,

stroke, asthma, hypertension, hyperlipidemia, depression, and certain cancers [2–5].

These associated conditions combine to place an impressive burden on the healthcare

industry, with estimates of the cost ranging from $147 billion to $209.7 billion annually

(in 2008 dollars) [5, 6].

Many obese individuals attempt volitional weight loss through dieting, and those

involved in controlled studies often see significant progress. Unfortunately, a series of

neurobehavioral mechanisms are activated following a caloric restriction, some within

24 hours, that typically result in weight regain [7]. There are, however, a number

of individuals that can maintain a notable decrease in weight: some estimates put

this at 23% of dieters [8, 9]. To date, no factors have been definitively identified as

predictive of future success.

1.2.2 Signal Processing

Signal processing involves taking as input some ordered collection or series of

data and analyzing or modifying it to enhance a desired component or extract a

particular characteristic. With applications in a broad and diverse set of scenarios,

there are a wide array of available techniques. In the medical field in particular,

signal processing has been used to analyze heart rate data, brain activity, physical

motion, and numerous other measurements. The purposes and uses of these studies

are just as varied, from peak detection and movement classification to motion artifact

reduction and prediction of panic attacks [10–13].

One of the most-used methods in signal processing, the Fourier transform trans-

lates a signal from the time domain to the frequency domain [14]. By breaking down

the input to a Fourier series, this method produces a set of peaks representing the
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amplitudes of the original signal’s constituent parts. By examining this decomposi-

tion, previously obscure information may more readily present. In addition, as the

process is reversible (inverse Fourier transform), changes can be applied in the fre-

quency domain to alter the signal in the time domain. For example, a low-pass filter

only allows through those components of a signal’s Fourier transform below a set fre-

quency; this results in a time-domain signal with any high-frequency noise removed.

This filtering, together with features extracted from the Fourier transform, has been

used in countless medical studies. By applying various high- and low-pass filters,

major components of noise can be removed from a recorded heart-rate signal [15].

The Fourier transform can also be used to detect abnormal breathing rates, epilepsy,

and even certain cancers [16–18].

The wavelet transform, like the Fourier transform, involves the frequency domain.

The main difference, though, is that while the Fourier transform looks at discrete

functions set at specific frequencies (sines and cosines) to decompose the original sig-

nal, the wavelet transform uses a function with both time and frequency components

(mother wavelet) [19]. While in a typical Fourier transform it is impossible to tell

at what time a frequency is present, using a mother wavelet allows for the determi-

nation of which frequencies are present, and at what magnitude, for any given point

in time. Also unlike the Fourier transform, which has a consistent scale across time

and frequency, the wavelet transform has varying resolutions: the high frequencies

are calculated at a superior temporal resolution than the low frequency components,

which in turn have a better frequency resolution. While not as widespread, use of

the wavelet transform has benefited numerous medical applications including signal

noise reduction, heart rate variability characterization, gait analysis, and pacemaker

design [20–23].
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1.2.3 Machine Learning

Machine learning is a branch of computer science that explores algorithms meant

to learn from data. Widely applicable, various implementations of this approach have

been used to examine a wide range of problems. From protein-protein interactions

and tumor classification to detecting oil spills in satellite images, machine learning

algorithms have a large impact on current science [24–27].

In deep learning algorithms, multiple non-linear transformations are used to model

the input data. These sets of non-linear processes are often regarded as ‘black boxes’

due to the fact that the user often does not see the workings of each individual

layer [28]. As such, it is impossible to trace backwards any resulting classifications

to determine why an instance was given a particular label. This in turn prevents any

insight being gained into hidden patterns or underlying features that could have oth-

erwise proven useful. In addition, for implementations with large sets of parameters,

searching for ideal configurations is an extremely complicated and time-consuming

process [29, 30]. An expert is often needed to help determine acceptable parame-

ters, though this process is rarely deterministic and results in a conceptual barrier for

non-experts [31]. In cases where finding the right set of parameters is crucial to the

success of the algorithm, this could prove prohibitively restrictive.

Like deep learning, the random forest approach is also a popular machine learn-

ing method. While the result of the algorithm is a set of decision trees, the split

rules in any one tree can often be too complex for any meaningful insights to be de-

rived [32, 33]. Coupled with the number of trees typically generated by this approach,

the reason behind the resulting classification for any input can be difficult to dissect.

This again prevents the researcher from discovering or understanding the underlying

patterns meant to be exposed by machine learning. The random forest method can

also be extremely computationally intense, requiring the generation of a large number

of potentially deep trees. For certain datasets, arbitrarily long trees are needed to
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successfully split the training examples, a task that requires not only the computa-

tional power to generate the trees but also the space to keep them in memory [34].

In addition, while able to handle local noise, the random forest algorithm is highly

susceptible to global noise [35]. For datasets suffering from this issue, such as those

with nonzero baselines or wide background peaks, the random forest approach may

produce useless classifications.

Support vector machines (SVMs) are another widely used machine learning ap-

proach. Unfortunately, as with the above methods, SVMs can be computationally

prohibitive, both in terms of computational time and memory requirements [36, 37].

For datasets with large training groups, it may be impossible to store the required

information and impractical to calculate it every time it is needed. The performance

of SVMs is also subject to the underlying kernel used in the implementation, with

some yielding strong interpolation results while others are better suited for extrapo-

lation [38]. One of the major disadvantages to SVMs comes from the fact that they

are inherently binary classifiers: for multiclass problems, extra steps must be taken

to correctly classify an instance. This not only necessitates the construction of mul-

tiple binary classifiers, each subject to the computational disadvantages mentioned

above, but it also raises the issue of how to combine the resulting outputs [39]. A

true multiclass SVM could be used, but this would involve resolving an even larger

optimization problem.

“Adaptive Boosting”, or AdaBoost, is more a method of combining other machine

learning algorithms than an algorithm itself. Like SVMs, AdaBoost was not designed

to handle multiclass problems and generally grows more computationally intense with

the introduction of more than two classes [40]. As the method relies on its constituent

‘weak learners’ having an error rate less than 50%, having multiple classes increases

the likelihood of failure. For a dataset with complex classification rules, a weak

learner with constrained computational resources - both time and memory - may
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perform poorly, in turn breaking the general method [41]. In addition, AdaBoost is

known to overfit the training data, resulting in poor performance when applied to

testing or general instances [42, 43].

Computational time varies across the above methods, ranging from OpNq to

OpN3q [44]. This depends on both the algorithm and the kernel: Random For-

est can go as OpN1.5q or OpMN logpNqq, where M is the number of trees [44, 45].

These methods can be improved or optimized to achieve a computational complex-

ity of OpNq, though some assumptions and reductions must be made to reach this

level [46].

1.2.4 Data

Figure 1.2: Data collected in and timeline of the full study

This research utilizes the databases created by a longitudinal study conducted by

the University of Michigan Weight Management Program clinic (MWMP), a demon-
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stration unit of the NIH-funded (grant DK089503) University of Michigan Nutrition

Obesity Research Center. The MWMP is a two-year, multidisciplinary, multicompo-

nent, structured lifestyle intervention which promotes 15% weight loss though inten-

sive caloric restriction for the first 12 weeks. This is succeeded by interventions and

routine follow-up aimed at supporting long-term behavioral change. All participants

provided written informed consent and the study was approved by the University of

Michigan Medical School’s Institutional Review Boards (IRBMED, HUM0030088).

As shown in 1.2, participants complete a wide array of clinical, psychological, and

metabolic assessments at a baseline (Phase 1), after intensive weight loss over the

course of 3-6 months (Phase 2), and at the end of two years (Phase 3). Included

among these assessments are the measurements of an individual’s movement profile,

Resting Metabolic Rate (RMR), and fitness (peak rate of oxygen consumption, VO2

peak). 1

One complicating factor in analyzing this data lies in the timeline: because the

tests are subject the participants’ schedules, as well as those of the clinicians, the

visits associated with phases 2 and 3 do not always occur on the ideal dates. Even

within one phase, the different assessments may be spread over a significantly large

time period. In addition, all aspects of the study are ‘opt-in’ which results in a sparse

dataset. If an individual chooses not to complete a particular test, the corresponding

section is left empty. This issue was largely handled at the clinical level, with leeway

given in characterizing a particular visit as belonging to a certain phase. An additional

difficulty presented in parsing the data. The results of each assessment were saved

separately, spreading the measurements across a wide array of files and formats. As

the tests were run by different clinicians over a number of years, the layout of any

one file type also varied. Extensive scripts were developed to parse these disparate

sources per participant and combine all relevant information into single, consistently

1This paragraph was previously submitted in Biwer et al. [47].
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formatted files.

The data used in this research can be split into two categories: those collected at

home and those collected in a laboratory or clinic setting. Details of the data from

both categories will be presented in the chapters in which the algorithms used to an-

alyze them appear. In addition to the tests used, a number of other assessments were

performed. For example, each subject could complete a series of psychological assess-

ments, undergo various blood tests and biopsies, or have a DEXA scan performed.

While these provide a wealth of data, including them would have significantly reduced

the already limited number of individuals who completed all relevant tests.
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CHAPTER II

Signal Processing for Analyzing Activity Data 1

2.1 Background

As medical monitoring devices continue to grow in complexity and shrink in size,

both the number of possible concurrent measurements and the size of the observable

population increase. These factors in turn result in a rise in the amount of data

available for analysis, which is driving the need for new processing algorithms. The

sheer volume of recorded values makes it difficult to process within a relevant timeline

using conventional means, and the intricacies of some of the more obscure variables

makes them difficult to interpret at all. Because of this, the need for novel signal

processing algorithms that can detect and highlight underlying subtleties and features

is becoming ever more apparent.

This problem, along with many others in the clinical setting where time-series

measurements are to be analyzed, stands to benefit from advanced signal processing.

A common practice in the medical field, various signal processing algorithms have

been applied to a wide variety of situations. From heart rate monitoring to myo-

electric signal classification, various techniques are used to analyze time series data.

Feature extraction has proved to be an effective approach, commonly used in health

applications, and involves calculating variables characteristic of the signal. Another

1Sections of this chapter were previously published in Biwer et al. [48].
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approach, direct comparison methods, analyzes and compares raw signals simultane-

ously. The power, entropy, and average value of a signal are three common features

used in signal processing, and the Pearson correlation coefficient is used when com-

paring signals and samples directly. The currently used methods, while effective in

many applications, cannot always differentiate between two sets of similar signals in

complex health applications, especially when the differences among signals are subtle.

Indeed, the main shortcoming of existing models in predicting weight maintenance is

a clear lack of effective computational approaches to mining available data. Instead,

most of the existing predictive models of obesity are based on correlation of weight

regain/loss with only a small amount of basic patient information, which result in

models with limited predictive capabilities. For instance, a major factor that can

help lead the personalization of treatments for obesity is estimation of the type and

level of physical activities. However, the motion signals, when analyzed with the

conventional signal processing methods, have failed to produce accurate and robust

prediction results. The complexity of the data collected for any one patient, let alone

that found in the collective data of a large study groups, demands more advanced

computational techniques that can extract these subtle patterns and distinguish sub-

classes of weight loss and regain. This chapter describes a new approach in signal

processing that can detect subtle changes in the behavior of complex signals, in partic-

ular motion time-series, and as such distinguish between patient cohorts with different

clinical outcome. The proposed approach is based on an extended formulation of the

persistent homology theory and introduction of a modified, semimetric version of the

Hausdorff distance to analyze data in the feature space [49–55]. The proposed com-

putational methods are applied, and their efficacy in differentiating between various

levels of weight loss maintenance is demonstrated.
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2.2 Materials and Methods

2.2.1 Data

As part of the study described in Chapter I, participants were routinely asked to

wear a tri-axial accelerometer, hereafter referred to as an armband, that also measures

galvanic skin response and near body ambient temperature (BodyMedia SenseWear

armbands, http://www.bodymedia.com) for a period of 7 days, only removing the

monitor to charge it while participating in water activities (e.g. showering, swim-

ming). Each test yielded an individual file, which resulted in a large number of

disparate data sources for each participant. Each individual, before testing began,

gave his or her informed consent that the collected data be used for research pur-

poses. In addition, after collection, all data files were de-identified and curated prior

to analysis. This pre-processing also involved automatic and manual error-checking.

Once all the relevant patient data were parsed, the files were spot-checked for incon-

sistencies. This was done by plotting various data values from numerous participant

files and checking for outliers.

An advantage to this data lies in the fact that they can be passively recorded by

the individual. By removing the complete reliance on self-reported activity levels, the

armband allows for collection of signals while outside the clinic or laboratory without

placing any undue responsibility on the wearer. Because of this, the data is not only

cheaper to collect but their collection removes part of the burden previously placed

on clinicians.

While worn, the armbands recorded the number of peaks in the accelerometer

signal, once per minute, for each of three dimensions: transverse, forward, and lon-

gitudinal. These three numbers were summed each minute, resulting in a roughly

week-long general movement profile for each individual. In this study, only partici-

pants who wore the device for at least 7000 minutes are included. This meant each
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individual wore the device for at least 16.5 hours per day for the full week, or ap-

proximately 23 hours per day for five days. This number was chosen as it yielded

as long a signal as possible while including as many participants as possible. Any

participant for whom 7000 minutes of data were not recorded was excluded from this

analysis, as well as those that had not yet progressed far enough into the study to

have measurable results. Each included signal was cropped at the 7000-minute mark,

resulting in a uniform length across all studied movement profiles. This was done for

a number of reasons: the set length allowed for uniform mapping of the data without

the need to stretch or skew the signals, preventing any interference from different time

resolutions; no signal included more potential information than another, as they were

all of equal length. A final inclusion requirement was that the participant be classified

as a ‘success’ or ‘failure’. As the specific aim of this study was to predict weight-loss

maintenance, each participant was given a label based on weight loss and regain. If

an individual failed to lose at least 15% of his or her starting body weight between

Phase 1 and Phase 2, that person was labeled a ‘failure’. Those who succeeded in

achieving that goal, and who finished Phase 3 at a weight no greater than 90% of

his or her starting weight, were labeled a ‘success’. Any individual who completed

the study without maintaining at least a 10% weight loss was considered a ‘failure’.

As a result, the individuals included in the study had all successfully completed at

least Phases 1 and 2, and some had finished Phase 3. Accounting for all of the above

criteria, 100 participants were included in this study. This cohort consisted of 36

males and 64 females with an average age of 50 ± 9 years old.

Next, the computational analysis based on persistent homology is described. A

windowed formulation of persistent homology was used to extract characteristic fea-

tures from the data from each participant. These features, represented as persistence

diagrams, were then used to predict success. The ability of persistent homology-based

features to predict success/failure was statistically analyzed, as described later.
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2.2.2 Signal Analysis using Persistent Homology

Persistent homology is a broad mathematical theory, and one of its applications is

examining how the characteristics of an object in a space change based on the spatial

resolution used to examine the object. As the resolution changes, persistent homology

features, representing the special characteristics of the object, quantify these changes.

The transitions in these features can be studied to help develop a better understanding

of the object. When applied to time series as objects, persistent homology can be used

to extract features of a signal representing the changes in the characteristic patterns

of variations observed in the signal at different resolutions [56–63]. Specifically, the

persistent homology algorithm converts a signal into points scattered across a min-

max plane. By treating each minimum in a time-series as the ‘birth’ of a feature and

each maximum as a ‘death’ it is possible to examine the significance of a trend by

the persistence of its corresponding min-max pairing. Larger differences between two

extrema correspond to more pronounced variation, and any resulting points will be

farther from the y “ x diagonal. Conversely, a point closer to the diagonal represents

a smaller magnitude of change and is more likely to be noise. The resulting min-max

plot, or ‘persistence diagram’, represents the characteristics of the input sequence and

can be used to compare the differences between the patterns and variations of signals.

This information can also be visualized in a ‘barcode’ format, as described in Ghrist

[64]. The process, including the derivation of the persistence diagram, is as follows:

Suppose that f is a real-valued function on the discrete set t1, 2, . . . , nu. To make

notation convenient, define fp0q “ 8 and fpn ` 1q “ ´8. Also, modify f to define

a function rf defined by rfpiq “ fpiq ` εi where ε ą 0 is infinitesimal. We define the

function-value ordering Ď on t0, 1, . . . , n ` 1u as follows. If 0 ď i, j ď n ` 1 then

define i Ď j if rfpiq ď rfpjq. Equivalently, i Ď j if fpiq ă fpjq, or fpiq “ fpjq and

i ă j. The relation Ď on t0, 1, , . . . , n` 1u is a total ordering. So for all i and j:

1. i Ď i;
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2. i Ď j or j Ď i;

3. if i Ď j and j Ď i, then i “ j;

4. if i Ď j and j Ď k then i Ď k.

We also write i Ă j if i Ď j and i ‰ j. Define the set of local minima and maxima

by

Emin “ ti | 1 ď i ď n, i Ă i´ 1, i Ă i` 1u (2.1a)

Emax “ ti | 1 ď i ď n, i´ 1 Ă i, i` 1 Ă iu (2.1b)

respectively.

Lemma II.1. The sets Emin and Emax have the same number of elements.

Proof. It is not hard so see that the smallest element of the set of extrema E “

EminYEmax with respect to the ordering ď lies in Emin. Also, the largest element lies

in Emax. It is also elementary to see that local maxima and local minima alternate.

So the number of local maxima and local minima is the same.

By the lemma, there exists r, a1, a2, . . . , ar, b1, b2, . . . , br such that Emin “ ta1, a2, . . . , aru

and Emax “ tb1, b2, . . . , bru such that a1 Ă a2 Ă ¨ ¨ ¨ Ă ar and b1 Ă b2 Ă ¨ ¨ ¨ Ă br.

The proof of the lemma shows that there are permutations τ and γ in the symmetric

group Sr such that

aτp1q ă bγp1q ă aτp2q ă bγp2q ă ¨ ¨ ¨ ă aτprq ă bγprq.

Lemma II.2. We have ai Ă bi for all i.

Proof. It is clear that aτpiq Ă bγpiq for all i. For j ď i, aγ´1τpjq Ă bj Ď bi. So at least i

of the a’s are smaller than bi with respect to Ă. This implies that ai Ă bi.
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If a, b P R then define

pa, bq “

$

’

’

&

’

’

%

tx P R | a ă x ă bu, if a ď b

tx P R | b ă x ă au, if a ą b

(2.2)

We define a permutation σ P Sr and sets U1, U2, . . . , Ur inductively as follows:

Uk “
 

i
ˇ

ˇ 1 ď i ď r, ai Ă bk, i R tσp1q, σp2q, . . . , σpk ´ 1qu
(

(2.3)

and

σpkq “ maxti | i P Uk and for all j P Uk with j ă i, aj R pai, bkqu. (2.4)

By Lemma II.2, the set Uk is nonempty.

Definition II.3. The persistence diagram associated to the function f is

tpfpaσp1qq, fpb1qq, pfpaσp2qq, fpb2qq, . . . , pfpaσprqq, fpbrqqu.

The mathematical complexity of the persistent homology approach formulated

above might mask its great conceptual potentials to analyze complex signals. Below

is a graphical illustration and explanation of this method. As shown in Figure 2.1, first

a given signal is plotted and all local extrema (maxima and minima) are identified. A

square plot in the min-max plane is generated and placed such that the vertical axes

align between the two graphs, and the line y “ x is drawn (Figure 2.1a). Starting

with the smallest minimum (in this case, point 1), a mark is placed on the min

axis of the second graph corresponding to the minimum’s y value (Figure 2.1b). Each

local extremum is considered, moving from smallest to largest, and for each minimum

another mark is placed (Figure 2.1c). When a maximum is encountered, that point’s

y value is paired with the mark from the most recent unpaired minimum, as long

as there is no other maximum between the two points. If such a maximum exists,
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the second most recent minimum is considered, and the process continues until a

suitable pairing is found (Figure 2.1d). The next extremum is then considered, and

the algorithm proceeds until all points are paired (Figure 2.1e). In the event that

there are more minima than maxima (or vice versa), the point with the largest x

value in the larger set is dropped. Once completed, the points in the min-max plane

constitute the signal’s persistence diagram (Figure 2.1f). As it can be seen, starting

from a time-series, persistent homology creates a pattern of dots in the max-min plot

that represent the variations of the signal.

Figure 2.1: A visual representation of persistent homology

These min-max patterns represent how the variations in signals can be used,

as described later, to effectively distinguish between different types of signals (e.g.

signals representing ‘success’ and those representing ‘failure’). Next is a description

of the method for distinguishing between different patterns/signals by using a measure

that quantifies the disparity between different min-max plots.

17



2.2.3 Assessment of Feature Space using Modified Hausdorff Semimetric

and Wasserstein Distance

The persistent homology method can be used either as a stand-alone analysis

tool or as a comparative metric. For the former case, the persistence diagram can

be examined and features extracted, and for the latter two persistence diagrams can

be compared in a number of different ways. For this study, persistent homology

was used to compare different armband activity signals. However, calculating and

comparing the persistence diagrams for the full 7000 points from each input is not

only computationally expensive but also masks some important patterns in parts of

the signals due to the averaging effect. Moreover, for such long signals, not only would

the persistence diagrams be extremely dense but any order to the signals would be

lost: points generated by pairings of extrema from the beginning of one signal could

be near points generated by extrema at the end of the second signal. In addition, the

dots themselves may result in inaccurate interpretation or analysis of the signal. For

instance, pairing a minimum from near the beginning of the signal with a maximum

from near the end would be relating two otherwise independent measurements: the

activity from the first point would be entirely separate from the activity that generated

the second. As such, comparing the persistence diagrams of two long signals would

yield little valuable information. To solve this problem the armband signals were first

broken into windows and the algorithm was applied to each window. This had the

added benefit of decreasing the computational time of the implementation by a factor

of over 300.

This study involves the design and implementation of a windowed based approach

to persistent homology to address the above mentioned issues. Specifically, each 7000-

point signal was broken into 350 windows, each containing 20 points. This was done

by simply splitting the original signal into equally-sized standalone segments using a

rectangular window: no overlap or tapering was used. The window size was chosen
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because it allowed for reasonable variation within a window while at the same time

ensuring that any two paired points would be closely related in time. A persistence

diagram was calculated for each window, and corresponding windows from two signals

were compared (i.e. the first window from each signal was paired, followed by the

second, etc.). An overview of the process can be seen in Figure 2.2.

Figure 2.2: Overview of the windowed persistent homology method

Various metrics exist for calculating the distance between two sets of points, in-

cluding the Hausdorff distance and the q-th Wasserstein distance. The latter is defined

in Kerber et al. [65] between two sets A and B as:

WqpA,Bq “

„

inf
f :AÑB

ÿ

aPA

||a´ fpaq||q8

1{q

(2.5)

where f is the set of all bijections A Ñ B. When q “ 1, this metric reduces to the

minimum possible sum of the distances between each point in A and its corresponding
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point in B. By allowing points to map to the y “ x line, any contribution from noise

is minimal. The Hausdorff distance dH is calculated as:

dHpA,Bq “ maxtsup
aPA

min
bPB

dpa, bq, sup
bPB

min
aPA

dpa, bqu (2.6)

where dpa, bq is the Euclidean distance between points a and b. However, this method

is quite sensitive to outliers: one anomalous point in either set could greatly skew the

measured value. Due to the stochastic and noisy nature of the data being examined,

the metric used to compare two persistence diagrams had to be tolerant of such

deviations and outliers; if it was not, one large peak caused by on outlier could alter

the distance. This led us to the use of a modified, semimetric version of the Hausdorff

distance [55]. Replacing the inner suprema with an average gives:

dmHpA,Bq “ max

"

1

|A|

ÿ

aPA

min
bPB

dpa, bq,
1

|B|

ÿ

bPB

min
aPA

dpa, bq

*

(2.7)

This metric is much more tolerant of outliers as they are included as one part in a

general sum and not the only representative number. However, as noted in Dubuisson

and Jain [55], this version is not a true distance metric as it does not satisfy the tri-

angle inequality. As such, because it satisfies the other distance metric requirements,

this comparison qualifies as a semimetric.

2.3 Results

To begin, the power of each raw armband data was calculated (Table 2.1). This

rather simple and intuitive feature is often used in analysis of activity signals as a

main characteristic number describing the data. In this study, however, there is no

measurable difference between the power of a participant labeled as a failure and that

of a participant labeled as a success (p “ 0.326). The sample size was 100, of which
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79 were labeled ‘failures’ and the remaining 21 were considered ‘successes’.

Table 2.1: Standard signal features extracted from activity data

Label Average Standard Deviation
Power (p “ 0.326) Failures 196205 56942

Successes 182888 46034
Entropy (p “ 0.608) Failures 0.6560 0.1433

Successes 0.6732 0.1037
Average (p “ 0.262) Failures 289.9 57.1

Successes 274.3 53.0

The entropy and average of signals, also popular in assessment of activity signals,

were calculated and analyzed as well (Table 2.1). Entropy as a measure of disorder

and information can often distinguish between functional classes of data, in particular

when dealing with biomedical signals, and is heavily used in the signal processing lit-

erature. However, as in the case of power, there was no significant difference between

the failure and success groups (p “ 0.608 and p “ 0.262, respectively).

As a final check using current established methods, correlation coefficient calcula-

tion was used to analyze the data. For this, each signal was compared to every other

signal in the pool and a correlation value was obtained. When armband data from

two individuals labeled as failures were compared, the resulting signal was placed into

a ‘failure vs failure’ group (N = 3081); likewise, when the movement profiles of two

successes were compared, the result was placed into a ‘success vs success’ group (N

= 210). When comparing two ‘failure’ signals, the average correlation coefficient was

0.0712, while the average for comparing two ‘success’ signals was 0.0992. While the

standard deviations were relatively high, as shown in Table 2.2, there was a statisti-

cally relevant difference between the groups (p “ 0.006).

Comparing the ‘failure vs success’ group (N = 1659) to the ‘failure vs failure’

group yields another statistically significant difference (p “ 0.0004), but comparing

it to the ‘success vs success’ group does not (p “ 0.1968). This indicates that the

failures share less intra-group similarities than do the successes, but the second two
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Table 2.2: Pairwise correlation analysis results

Correlation (p “ 0.006) Average Standard Deviation
Failure vs Failure 0.0712 0.1431
Failure vs Success 0.0864 0.1376
Success vs Success 0.0992 0.1158

cases are indistinguishable under this metric.

Figure 2.3: Activity signal comparison using windowed persistent homology and a
modified Hausdorff semimetric

Next, the armband data of each of the 100 participants was compared to every

other file using the proposed windowed persistent homology method. Persistence

diagrams were generated for each of the 350 windows extracted from a signal. These
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plots were compared to corresponding plots from a second signal using the modified

Hausdorff semimetric, and a single number was noted for each window. The result

of the algorithm, when applied to two armband/activity files, was a new signal with

a length of 350 points, corresponding to the distance between the two input plots

over time. The top of Figure 2.3 shows two armband signals plotted together, one

drawn in red and the other in blue. Plotting the measured distance between two

corresponding windows over the course of the analysis yields the signal shown in the

bottom of Figure 2.3.

The average value of the resulting signal was placed into a group based on the

input signals, again separating ‘failure vs failure’, ‘failure vs success’, and ‘success vs

success’. The average of these averages was then calculated and this was used as the

characteristic value for each group (Table 2.3). Using an unpaired t test, the analysis

showed that there is a statistically significant difference between not only the two main

groups (p “ 1.505ˆ 10´23) but between any two of the three (p “ 1.661ˆ 10´28 and

p “ 5.715ˆ 10´9 for ‘failure vs failure’ vs ‘failure vs success’ and ‘failure vs success’ vs

‘success vs success’, respectively). It should be noted that the smaller average distance

between successes when compared to that between failures is further strengthened by

the correlation analysis: while the coefficients were small, the successes tended to be

more highly correlated with one another than did the failures.

Table 2.3: Results of applying windowed persistent homology with a modified
Hausdorff semimetric to activity data

Per. Hom. (p “ 1.505ˆ 10´23) Average Standard Deviation
Failure vs Failure 378.27 64.79
Failure vs Success 356.99 58.59
Success vs Success 332.58 41.29

These results were consistent across variations in window size: values from 15

to 25 were also tried, with p-values no worse than an order of magnitude higher

(p “ 1.170ˆ 10´8 for ‘failure vs success’ vs ‘success vs success’ with a window size
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of 16); some comparisons were more significant. Additionally, the method was im-

plemented on ‘blind’ files in which the labels were randomly generated. With this

random distribution there were no statistically significant differences between the

groups (average p “ 0.113 over 100 trials for the main pairing), further reinforcing

the notion that the presented method is capturing some difference in the underlying

structures of the signals.

Finally, the same approach was applied, but this time the q-th Wasserstein true

distance metric was used to compare the persistence diagrams (q equal to one; code

provided by Kerber et al. [65] was used). As shown in Table 2.4, the results are again

statistically significant when comparing the ‘failure vs failure’ group to the ‘success

vs success’ group (p “ 1.241ˆ 10´5). While comparing the ‘failure vs failure’ cohort

to the ‘failure vs success’ set also yields a significant difference (p “ 6.181ˆ 10´7), it

should be noted that both p-values are larger than their counterparts obtained using

the semimetric. In addition, this true metric does not detect a measurable variation

between the ‘failure vs success’ and ‘success vs success’ groups (p “ 0.012). When

run with randomly generated labels, the results are once again not significant for any

combination of groups (average p “ 0.084 over 100 trials for the main pairing).

Table 2.4: Results of applying windowed persistent homology with a q-Wasserstein
distance to activity data

q-Wass. (p “ 1.241ˆ 10´5) Average Standard Deviation
Failure vs Failure 711.88 63.17
Failure vs Success 702.63 56.36
Success vs Success 692.48 44.47

Despite the lack of complete statistical significance between all pairs, the pattern

of higher intra-group similarities in the successes than the failures is continued. This,

combined with the results of the ‘blind’ files, lends even more credence to the claim

that there is an underlying disparity between the behaviors of the two groups.
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2.4 Discussion

Figure 2.4 shows an example comparison from each of the three groupings. As

shown in the plots, the general movement profile recorded by the armband sensors

varies more heavily within the failure group than in the success group. Intuitively,

this indicates that those destined to fail behave in a variety of different ways while

those who will lose weight and maintain the loss share a more unified pattern of

behavior. The general topographical structures present in the signals represent these

overall patterns of activity and are captured in the persistence diagrams; in this

sense, persistent homology is ideally suited to uncovering the underlying differences.

Because of the larger variation present across the movement profiles of the ‘failures’,

the signal-to-signal comparisons yield consistently higher values of both the average

distance and the corresponding standard deviation across all metrics (true and semi-)

used above.

In utilizing the presented persistent homology algorithm, a set of connected com-

ponents from the time-series data are extracted [66]. In looking at this homology

group, the underlying patterns of each individual’s short-term behavior are exposed.

Intuitively, this shows that the types, frequencies, and amplitudes of movement vary

between each group, not just in general trends but also in minute-to-minute fluctu-

ations. Future studies of this phenomenon could lead to discoveries pertaining to

physical movement and how it contributes to and informs future weight loss success.

While further analyses with more participants would greatly help strengthen and

validate these results, the initial implications are twofold. First, the clear disparity

between the two groups indicates that there is a measurable difference in the move-

ment profiles of those that will lose weight and keep it off versus those that will not

lose any or, after losing weight, regain a substantial amount. By measuring this con-

trast a patient could potentially be classified as a ‘success’ or a ‘failure’ before even

beginning a diet, in turn leading to more effective and individually tailored interven-
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Figure 2.4: Example signal comparisons between different classes
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tions. This would help to greatly ease the economic costs associated with overweight

and obesity, as well as their related diseases. It would also save both the clinician and

the patient time spent pursuing a course of action likely to produce unsatisfactory

results, instead allowing them the option to first pursue alternatives. Secondly, and

more immediately evident, the results indicate that the windowed persistent homol-

ogy method, coupled with the modified Hausdorff semimetric, is capable of detecting

subtle, underlying differences between signals. This method could potentially be used

in other clinical settings where a deeper analysis of a complex signal would result in

improved care, as well as other signal processing applications. Relatively tolerant of

noise and sampling frequency, the presented algorithm can be easily applied to short

and long time-series alike, drawing out features from the signal useful in exposing

subtle differences.

2.4.1 Future Work

While the exact physical characteristics measured by the persistence diagram re-

main unclear and will be closely examined in future work, it can be said that the

patterns representing more scattering in the persistence diagram represent higher

levels of physical activity. In addition to further exploring the physical and phys-

iological implications of an individual persistence diagram, there are a number of

modifications to the implemented algorithm that will be investigated in future work.

For instance, in this analysis, the inputs were blindly compared. In future work, a

set of alignment procedures in the pre-processing steps will be implemented. Syncing

time of day or sleep/wake cycles between two armband signals before the persistent

homology algorithm is applied could help reduce any noise associated with compar-

ing across states (e.g. one participants sleep data with another’s morning routine).

Another route for future investigations will be to implement a dynamic windowing

method: by altering the length of each window based on the number of included
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extrema, the resolution of the algorithm in areas of high activity (e.g. exercise) can

be improved without sacrificing accuracy in low-movement periods (e.g. sleep). A

third future improvement to the analysis involves error-checking the edge cases. If a

window boundary splits a monotonically increasing or decreasing section of the signal,

a false maximum and minimum are formed on either side. By implementing a check

on the next point outside any given window, the number of artificial extrema can be

reduced, thus minimizing inaccurate pairings and noise in the persistence diagrams.

2.5 Summary

To predict a priori weight loss/maintenance success in overweight or obese individ-

uals by applying information learned from one week of simple, noninvasive measures

would heavily impact the healthcare industry. With such a high prevalence rate in

the country, both the economic burden and the time spent treating overweight, obe-

sity, and their related diseases could be drastically reduced. By facilitating more

tailored and individualized treatment, which may include modifying an existing pro-

gram, identifying alternative modalities, or focusing on other patient issues, countless

hours could be saved for both the patient population and the clinicians. The results

presented in this chapter indicate, through the use of a novel computational method,

a measurable contrast between the group of participants able to maintain weight loss

and the group unable to do so. By using the windowed persistent homology method

defined above and the modified Hausdorff semimetric, a physician could determine

whether or not a specific intervention would be effective for a given patient. This

project demonstrates the effectiveness of the novel signal processing method and the

potential impact it can have on clinical decision making and patient care.
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CHAPTER III

Machine Learning Applied to Physiological Data

to Predict Future Prescription Medication Use 1

3.1 Background

As mentioned in Chapter I, two major in-clinic tests often used in physiological

assessments are the Resting Metabolic Rate (RMR) and VO2 peak exams. These pro-

vide valuable information on an individual’s basal metabolic rate and level of fitness,

but require a trained clinician to administer. While this provides for more accurate

results, it also places a temporal burden on the clinician. Moreover, quantitative

interpretation of the resulting data, considering the complexity of the time series

produced by these machines, poses a challenge. As such, applying signal processing

techniques to analyze this data can provide invaluable clues to clinicians that would

have otherwise gone unnoticed.

By applying current methodologies in signal processing and machine learning, new

insights can be gained in studying this problem. Already commonplace in the medical

field, numerous situations have benefited from the use of signal processing algorithms.

For example, myoelectric signal classification and heart rate monitoring are two areas

in which modern techniques have been successfully used [67, 68]. In particular, feature

1Sections of this chapter were previously submitted as Biwer et al. [47].
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extraction has proven quite effective: in this process, an input signal is analyzed and

various characteristic measurements that describe it are obtained. This allows for an

extremely long, dense time-series to be condensed into a significantly smaller dataset

that can then be fed into various machine learning algorithms. By further analyzing

the extracted features to determine which possess meaningful information - that is,

which features are better suited to help predict the labeled outcome - the feature set

can be reduced to an even more compact size. This can not only increase the accuracy

of the machine learning techniques by removing unwanted noise, but it can also

greatly decrease the computational time required to build the models. When applied

to physiological data, this overall process can yield important and clinically relevant

predictions based on simple inputs. This chapter presents a computational method

to analyze clinical data, namely physiological measurements from two different study

phases, and predict the long-term impact of diet-induced weight loss on reduction or

increase in number of medications.

3.2 Methods

3.2.1 Data

Both RMR and VO2 peak tests are completed in the morning following an overnight

fast (ě 10 hours), with the RMR assessment completed by 10am to minimize the ef-

fect of circadian rhythm [69, 70]. Height and weight are measured in light clothing

and stocking feet. Baseline height is utilized for all subsequent assessments. Partic-

ipants are escorted in to a darkened room and rested on a bed for one hour. The

bed is flat but includes an adjustable 30-degree incline for the participant’s chest

and head. Individuals are provided one pillow and covered with two light blankets.

Participants are provided additional pillows if desired and are permitted to remove

blankets at will. They are instructed to remain still, quiet, to relax but not to sleep,
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and are closely monitored throughout the entire test. If sleep is suspected, study

personnel first create noise - i.e. kick two office chairs together, loudly tap a pen

against a countertop - and if participant does not stir lightly tap the individual’s feet.

At thirty minutes, a canopy is placed over the participant’s head and upper chest,

permitting measurements of O2 consumption and CO2 exhalation for the ensuing

half hour. Per manufacturer protocol, all fan and canopy adjustments are completed

within ten minutes of the initial canopy placement. Upon completion of the RMR

assessment, participants are encouraged to rise, use the restroom, and change into ex-

ercise attire in preparation for the VO2 assessment. Shades are opened, lights turned

on, and the metabolic cart is re-calibrated to suit exercise assessment. Participants

complete a modified Bruce treadmill protocol. Those with joint or other concerns

that limit the ability to ambulate on an incline instead complete a modified Balke

treadmill protocol. An easy, ‘dummy’ stage is included in the beginning of each pro-

tocol to enable successful completion by even the least fit of study participants. Both

protocols feature ramped stages which increase in incline, speed, or both. The test is

stopped at volitional exhaustion or if study personnel deems it necessary to halt for

safety reasons. All tests are conducted by CPR/AED certified study personnel.

A number of signals (Table 3.1) are recorded continuously during both RMR and

VO2 peak assessments. Per manufacturer recommendations, smoothed averages are

created every 60 seconds during the RMR assessment and every 30 seconds during

the VO2 assessment, resulting in low-frequency time-series for both. The results of

each procedure are saved to standalone files, one per test.

Figure 3.1 shows a schematic of the methodology used in this study. After col-

lection, all data files were deidentified. They were then aggregated and parsed by

individual, with each participant’s data saved into one distinct file. This allowed for

easier analysis, as all recorded tests were in one place. It also served as a means to

check for errors: when the parser encountered a problem, it was examined by hand.
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Table 3.1: Description of signals captured during RMR and VO2 tests

Signal Tests Description

FECO2 RMR, VO2 CO2 in expired air (%)

FEO2 RMR, VO2 O2 in expired air (%)

METS RMR, VO2 Energy cost of physical activity

REE RMR Energy expended at rest

RQ / RER RMR, VO2 CO2 produced / O2 consumed

RR VO2 Respiratory Rate (breaths / minute)

Time RMR, VO2 Seconds since test start

Treadmill Elevation VO2 Treadmill incline (% gradient)

Treadmill Speed VO2 Treadmill pace (miles per hour)

VE RMR, VO2 Minute Volume (L/min)

VCO2 RMR, VO2 CO2 processed (L/min)

VO2 RMR, VO2 Oxygen processed (L/min)

VO2/KG RMR, VO2 Normalized oxygen processed (ml / (kg ˆ min))

Once this process was complete, the files were also checked for additional errors by

plotting the same values across multiple participants and looking for outliers. For the

purposes of this study, only the datasets from phases 1 and 2 were used for each of

the RMR and VO2 tests; inclusion of phase 3 data would negate the benefit of early

prediction.

Both treadmill elevation and speed were included in the processed signals for

the VO2 peak assessment as they contained information on the protocol used in the

test (e.g. the rate at which the speed / incline increase). Respiratory rate was also

recorded during this test but not the RMR assessment. Similarly, resting energy

expenditure was included in the RMR output and not the VO2 peak output. As the

exercise test continued until exhaustion, the length of the recorded signals differed

for each participant. To compensate for this variance, each signal was interpolated

using a cubic spline from which thirty equidistant points were pulled. This resulted

in signals of identical length for both tests (RMR and VO2 peak; the former was a
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Figure 3.1: Data analysis pipeline

static thirty points regardless of participant) across all subjects. When completed, a

wide variety of features were extracted from each short signal from each individual

(Table 3.2). These were chosen to capture the general trend and characteristics of

each set of points.

3.2.2 Feature Calculation and Normalization

The extracted features can be grouped into two categories: statistical and alge-

braic. For the former, the maximum and minimum values were noted for each signal,

along with the average value, the range of the data, and the 25th, 50th, and 75th

percentiles. These allowed for a small but detailed description of the data. The alge-

braic features extracted were more intricate. The first value calculated was the total
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Table 3.2: Descriptions of features extracted from RMR and VO2 signals

Feature Description

Max The global maximum recorded during the test

Min The global minimum recorded

Average The average value of the signal (mean)

Range The difference between the maximum and minimum values

25th The 25th percentile value

50th The 50th percentile value (median)

75th The 75th percentile value

Number of turns (Ce) The number of local extrema

Fit The slope of the best-fit line

Fit residuals The residuals of the best-fit (R2)

First-half fit The slope of the best-fit line for the first half of the data

First-half fit residuals The residuals of the first-half best-fit line

Second-half fit The slope of the best-fit line for the second half of the data

Second-half fit residuals The residuals of the second-half best-fit line

number of local extrema, or number of times the series changed direction (Ce). For

a given signal, first remove any consecutive repeated values: by consolidating any

horizontal sections to a single point, it becomes easier to detect local extrema that

have been stretched into plateaus. With this reduced sequence composed of points

s1, s2, ..., sN , define the second order geometric differential d at point i as:

di “ ppi`1 ´ piqppi ´ pi´1q (3.1)

Using this, calculate the number of local extrema Ce as:

Ce “ ´
1

2

n´1
ÿ

i“2

di
|di|

`
n´ 2

2
(3.2)

The slope of the line of best fit for a given set of data was also included as a feature,

calculated using the linear least squares method, as was the sum of the squares of
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the residuals. To check for trend variations in the data that may have otherwise been

hidden, a unique ‘split-slope’ approach was used wherein the same two features were

extracted using just the first and second half of each series. Comparing the three

slopes and residual values allowed for a better understanding of the underlying shape

of the data, and whether the individual experienced a significant change during the

assessments. The residuals, coupled with the number of local extrema, offer a measure

of both the signal’s variability and jitter. The participant’s sex, age, and height were

also included in the extracted features.

Once these features had been generated for each signal from each subject for both

phases 1 and 2, the difference between the two was calculated (phase 2 minus phase

1). This produced one dataset that described the change in values between the first

and second phases of the experiment. The result was then normalized by dividing

each number by the sum of the absolute values of the two phases, e.g. for P1 and

P2 the feature matrices from phases 1 and 2, respectively, the final dataset Pf was

calculated as:

Pf “ pP2 ´ P1q� p|P1| ` |P2|q (3.3)

where � is the Hadamard matrix division. In cases where the sum in the denominator

would be zero (e.g. the minimum of a signal was zero for both phases), it was instead

replaced by one. As all of the signals were nonnegative, this normalization resulted

in values ranging from -1 to 1, inclusive.

3.2.3 Label Assignment Based on Prescribed Medications

In addition to the RMR and VO2 peak features, each subject’s medication history

was used in this study. For each participant, a list was generated consisting of the

medication, its type, the dosage, the frequency of the dosage, and the start and stop

dates, if applicable. Medications that had been prescribed before the start of the
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intervention were indicated by a blank start date, and the end dates of those drugs

still taken at the end of the study were likewise left empty. This allowed for the

calculation of the number of medications taken by any individual both at the start of

the study (phase 1) as well as the end (phase 3).

A label was given to each subject based on his or her medication history. As

one aim of this study was to develop a method for predicting successful outcomes

from the lifestyle intervention, each included individual had to have finished the

intervention with complete test data. If a participant ended the study on more

medications than initially prescribed, he or she was labeled a ‘failure’, and those that

finished the two-year program taking fewer medications were considered a ‘success’.

Those that finished the study taking the same number of medications as they were

at the start were considered neutral and were omitted. For the purposes of this

study, only medications that were prescribed for controlling co-morbid weight related

conditions (e.g. hypertension, type 2 diabetes, gastroesophagael reflux disease) were

included. For example, allergy medications were ignored as the underlying condition

is not affected by weight. Some medications (e.g. HMG Co-A reductase inhibitors

‘statins’) were also ignored in subjects with diabetes, as it is best practice to continue

an individual on the drug irrespective of weight loss. In addition, dosage was not

considered: while a reduction in prescribed dose could be viewed as a positive, the

focus of this chapter includes a stricter definition of success. A second analysis was

performed that included all medications in the label generation process, and the

results are discussed below. When comparing these labels to the weight-based ones

used in Chapter II, only 58% of them remained unchanged.

Forty-two subjects (51 ˘ 10 years, 50% female) were included in this study. Based

upon medications taken at phases 1 and 3, 23 were labeled as successes while the

remaining 19 were categorized as failures. The initial dataset included 283 features

per subject, extracted as described above from the physiological time-series data
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collected during the RMR and VO2 peak assessments from phases 1 and 2.

3.2.4 Predictive Model Generation Using Machine Learning

Machine learning algorithms were then applied to the dataset using the Waikato

Environment for Knowledge Analysis (Weka); for each test, 10-fold cross-validation

was used [71]. In this approach, the data is first split randomly into ten chunks. The

algorithm is then run ten times, with each run using a different subset for testing and

the remaining nine for training. The results of each of the runs are then averaged

together to produce the final accuracy. For the Support Vector Machine (SVM),

Random Tree, Neural Net, and Random Forest algorithms this total process was done

ten times, with a different starting seed value used each run. The total accuracies,

specificities, and sensitivities were then averaged. In the case of the SVM algorithm,

the starting seed made no difference on the final results. For the K-Nearest Neighbor

method, the algorithm was run using one, two, three, and four as values for K, with

the total results again averaged. The Näıve Bayes algorithm was run only once, as

there was no starting seed value parameter.

After the initial examination, feature selection was performed to reduce the num-

ber of features and remove unwanted noise. Due to the limited size of the dataset,

this process was done using the entirety of the available input; to reduce the impact

of any resultant bias, 10-fold cross-validation was used. The features were evaluated

using information gain, a method for determining the usefulness of a feature in dis-

tinguishing between classes. For a given set of training instances, S, each entry with

n features and a label r, the information gain of feature f is:

IgpS, fq “ HpSq ´
ÿ

vPF

|ts P S|sf “ vu|

|S|
¨Hpts P S|sf “ vuq (3.4)

where Hpyq denotes the entropy of y, F the possible values for feature f , and sf the

value of feature f in instance s. The resulting value, or merit, is a measure of how
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much predictive power that feature has in modeling the label. As the information

gain method was run ten times on different subsets of the dataset, each returning

potentially different results, the average output for each feature was taken across all

runs.

Table 3.3: Average information gain merit for the 25 most significant features; those
with the same asterisk counts are duplicates

Feature Average Merit

Number of turns, VO2 (RMR test)* 0.295 ˘ 0.044

Number of turns, METS (RMR test)* 0.295 ˘ 0.044

Number of turns, VO2\kg (RMR test)* 0.295 ˘ 0.044

Sex 0.086 ˘ 0.029

Second-half fit slope, respiratory rate (VO2 test) 0.067 ˘ 0.103

Second-half fit residuals, respiratory rate (VO2 test) 0.023 ˘ 0.069

Max of treadmill speed (VO2 test)** 0.111 ˘ 0.14

Range of treadmill speed (VO2 test)** 0.111 ˘ 0.14

Second-half fit slope, VCO2 (VO2 test) 0.106 ˘ 0.106

Number of turns, resting energy expenditure (RMR test) 0.12 ˘ 0.063

Second-half fit residuals, treadmill speed (VO2 test) 0.212 ˘ 0.112

75th percentile, VCO2 (VO2 test) 0.021 ˘ 0.064

Full fit residuals, VCO2 (VO2 test) 0.025 ˘ 0.074

Full fit slope, treadmill speed (VO2 test) 0.088 ˘ 0.108

Second-half fit residuals, treadmill elevation (VO2 test) 0.021 ˘ 0.064

First-half fit residuals, respiratory quotient (RMR test) 0.049 ˘ 0.099

Range of resting energy expenditure (RMR test) 0.021 ˘ 0.063

Range of respiratory quotient (RMR test) 0.029 ˘ 0.088

Range of VO2 (RMR test) 0.021 ˘ 0.063

Max of FECO2 (RMR test) 0.021 ˘ 0.063

Range of METS (RMR test) 0.021 ˘ 0.063

75th percentile, VO2\kg (RMR test) 0.026 ˘ 0.079

75th percentile, METS (RMR test) 0.026 ˘ 0.079

Range of VO2\kg (RMR test) 0.021 ˘ 0.063

Second-half slope, treadmill speed (VO2 test) 0.023 ˘ 0.069
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This evaluation complete, the top 25 features were selected and copied into a

separate file. As can be seen in Table 3.3, a number of the selected features were

identical. These were pared down to include only unique columns, resulting in 22

useful attributes. The columns containing the max and range of the treadmill speed

were identical for all but one subject: in that case the difference was negligible and

likely due to recording error (the speed should always start at zero, so the range

should be equal to the max), so the columns were treated as equal. The same machine

learning algorithms were applied, as above, to the newly-pared data, and the results

were significantly improved. As before, the starting seed made no impact on the

results of the SVM algorithm.

3.3 Results

The SVM machine learning algorithm was used to develop a preliminary predictive

model based on the input features, and it outperformed other classification methods

(Table 3.4).

Table 3.4: Results of various machine learning algorithms on the unreduced dataset

Algorithm Accuracy Sensitivity Specificity F1-Score

Näıve Bayes 40.5% 0.39 0.42 0.42

Random Forest 52.1 ˘ 7.8% 0.60 ˘ 0.08 0.43 ˘ 0.10 0.58 ˘ 0.07

Random Tree 52.6 ˘ 8.1% 0.59 ˘ 0.07 0.43 ˘ 0.15 0.58 ˘ 0.07

K-Nearest Neighbor 56.0 ˘ 7.4% 0.50 ˘ 0.20 0.63 ˘ 0.15 0.54 ˘ 0.14

Neural Net 61.9 ˘ 1.1% 0.61 ˘ 0.00 0.63 ˘ 0.02 0.64 ˘ 0.01

SVM 64.3 ˘ 0.0% 0.78 ˘ 0.00 0.47 ˘ 0.00 0.71 ˘ 0.00

After the feature set was reduced using information gain, another SVM model was

generated with the smaller dataset. In this scenario the Näıve Bayes algorithm slightly

outperformed the SVM method in terms of both accuracy and combined sensitivity

and specificity (Table 3.5). As this method relies on products of probabilities, having
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a large number of noisy features can greatly affect the results [72]. While the Näıve

Bayes approach assumes independence between features, given the label, this is not

a valid assumption for this particular setting. A number of characteristics are highly

correlated, with some being linear transforms of others (e.g. the VO2/kg signal is

simply the VO2 series divided by the particular individual’s weight, meaning a number

of the extracted features are similarly related). As a result of this faulty assumption,

the steps used to reduce and simplify the underlying probabilities are invalid and the

predictive power of the generated classifier is compromised. By reducing the feature

set to only relevant and independent entries, the observed significant jump in accuracy

is not unexpected. Indeed, by selecting only those data that contribute meaningfully

to generating a predictive model, the accuracies increase across the board. While not

the top performer, the SVM model still returned markedly improved results over its

implementation on the larger dataset and was only marginally behind the Näıve Bayes

model. This latter method also saw such an improved score due to its formulation: by

performing feature selection and reduction the number of confounding input vectors

is limited.

Table 3.5: Results of various machine learning algorithms on the reduced dataset

Algorithm Accuracy Sensitivity Specificity F1-Score

Random Tree 65.9 ˘ 5.7% 0.70 ˘ 0.10 0.62 ˘ 0.08 0.69 ˘ 0.06

K-Nearest Neighbor 70.8 ˘ 6.0% 0.70 ˘ 0.12 0.72 ˘ 0.05 0.72 ˘ 0.08

Neural Net 76.7 ˘ 2.2% 0.75 ˘ 0.04 0.78 ˘ 0.02 0.78 ˘ 0.02

Random Forest 77.4 ˘ 2.3% 0.78 ˘ 0.04 0.76 ˘ 0.04 0.79 ˘ 0.02

SVM 83.3 ˘ 0.0% 0.83 ˘ 0.00 0.84 ˘ 0.00 0.84 ˘ 0.00

Näıve Bayes 85.7% 0.83 0.90 0.86
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3.4 Discussion

Based on these results it is clear that the normalized change in a select few fea-

tures extracted from RMR and VO2 peak tests, taken before and after a weight-loss

intervention, can predict an individual’s likelihood to reduce his or her number of

medications at two years with over 85% accuracy. While RMR and VO2 peak as-

sessments were used in this study, the simple fact that an accurate prediction of an

individual’s two-year prognosis can be made using only data collected at baseline and

after rapid weight loss has incredible clinical and financial implications for the health-

care industry. For physicians, knowing which patients will maintain the benefits of

rapid weight loss, as measured by the number of prescribed medications, would prove

useful in managing their long-term care. For example, if two individuals present with

the same initial results after intense dieting, but one is classified as likely to be on

more medications in the future, the clinician could choose different courses of ac-

tion for each person. For ‘successes’, maintaining the current treatment plan would

be appropriate; for the ‘failures’ an alternative approach could be implemented (e.g.

bariatric surgery), potentially saving both doctor and patient over a year of time and

effort. This approach could be applied prior to an intervention to guide clinicians in

determining the strategy and/or level of intensity of treatment to offer.

In addition to the patient side of the clinical implications, the significance of the

research side should also be considered. The results presented above are indicative

of a positive, underlying physiological change induced by weight loss that persists

regardless of any weight regain. In looking at the selected features (Table 3.3), a

number of intriguing observations can be made. For example, the RMR and VO2 peak

tests are nearly evenly represented: after removing duplicates, the former accounts for

11 features and the latter 10. This shows an equal importance of both an individual’s

energy spent at rest and his or her level of fitness. In addition, there is a similarly

even split between the statistical and algebraic features. Interestingly, the selected
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characteristics derived from the RMR test tend to fall into the first group while the

second group is composed primarily of features extracted from VO2 peak test signals.

This implies that, while both types of features are important, the overall changes

observed in the resting data are more significant than how those changes progress.

The opposite is true of the exercise data: the slope and best-fit residuals are generally

more valuable than the absolute measurements. One potential explanation of this

phenomenon is that an individual’s RMR is fairly static, meaning measurements

related to its value are more useful than those related to its short-term movement.

While his or her VO2 peak is also not subject to rapid fluctuations, the process

whereby an individual reaches it is significant.

On a larger scale, previous randomized controlled clinical studies have demon-

strated that weight loss can reduce the risk of progression to incident disease or re-

duce the number of medications used to treat established disease [73, 74]. This study

takes that research and builds on it, showing that the persistence of these reductions

in medications can be determined over a year ahead of time. Because a number of

the medications taken by various participants directly affect an individual’s weight,

some clinicians consider a reduction in medication a more clinically relevant outcome

than weight loss. While an individual’s long-term health, and therefore medication

regimen, can be affected by weight loss, one surprising result of this analysis was

that this is mostly independent of any future weight regain. In fact, if the labels are

defined strictly by weight loss as in Chapter II (a certain percent lost and kept off be-

tween phases 1 and 3) instead of by a persistent reduction in prescribed medications,

the results are vastly different. Conventional machine learning algorithms produce

no useful results, and including other input does not affect this low accuracy. Both

time and frequency characteristics were included through the extraction of features

from Fourier and wavelet transforms, but no meaningful models could be created.

These poor results may be related to the fact that only approximately two-thirds of
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individuals remain the same class when the criteria are changed (i.e. one third of

individuals switch from ‘success’ to ‘failure’ or vice versa). Such a high incidence of

unstable labels suggests a minimally causal relationship.

3.4.1 Future Work

In future studies, additional more advanced machine learning algorithms could be

employed to further increase the classification accuracy. Other features should also

be considered, including some related to the Fourier Transforms of the input signals.

The labels themselves will also be explored more thoroughly, with dosages and types

of medications being considered. While individuals that saw neither an increase nor

a decrease in their number of prescribed medications were excluded from this study,

future research could examine this group in a number of different ways. For example,

by including dosages one could define ‘success’ as those on lower or more infrequent

dosages. Alternatively, this relatively stable population could be considered a third

and separate class, further refining the scale and allowing for borderline cases to be

examined more closely or using alternative methods.

3.5 Summary

Overweight and obese adults constitute over two-thirds of the American popula-

tion. Many are prescribed numerous medications to treat obesity-related diseases.

To be able to accurately predict which individuals will require fewer medications af-

ter a 3-6 month lifestyle intervention could revolutionize the way in which obesity is

managed. This chapter presents a method whereby the number of prescribed weight-

related medications in an individual’s regimen can be predicted to increase or decrease

with an accuracy of nearly 85%. While this has important implications for health

care, industry, and insurance providers, future studies will expand upon these results

to improve their accuracy and resolution.
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CHAPTER IV

Laplacian of Correlation Graph Classification: A

Graph-Based Approach to Analyzing Noisy

Datasets 1

4.1 Background

As medical technologies progress and monitoring devices grow more intricate, the

number and resolution of collected data increases. Coupled with the reduction in

cost of high-throughput molecular and cellular measurement systems, this results in

a wide variety of information available for any given patient [76, 77]. While this

diversity can prove beneficial in uncovering otherwise subtle issues, the analysis of

such large and disparate amounts of data can be challenging. Machine learning, a

process whereby a dataset is fed into an algorithm that attempts to build a classi-

fication model for future data, is a promising solution. When coupled with feature

extraction - choosing only the most useful datapoints - these methods can prove quite

effective [78, 79]. However, the task of selecting which data to include can be daunt-

ing, and the inherent noise in the individual measurements must be considered [80].

While numerous methods exist for analyzing clean, curated data, these approaches

are often plagued by poor accuracy when confronted with noisy datasets. A number

1Sections of this chapter were previously submitted as Biwer et al. [75].
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of machine-learning algorithms perform some ”built-in” feature selection, though this

process can be time-consuming [81]. This chapter presents a graph-based approach

to machine learning, Laplacian of Correlation Graph classification (LCG), that can

outperform current approaches when applied to a noisy, unreduced dataset.

4.2 Methods

4.2.1 Data

The dataset used in this study is constructed in the same way as in Chapter III.

To begin, signals are collected during RMR and VO2 peak tests before and after

an intensive lifestyle intervention (phases 1 and 2, respectively). Each individual’s

medication list is also noted. These are measured again two years after the initial

visit (phase 3) in order to determine the long-term effects of the diet. To generate the

set of features used for this research, characteristic values are computed from each

signal collected during the first two RMR and VO2 tests. The difference between the

two sets is taken (phase 2 minus phase 1), and then each feature is normalized by the

sum of its absolute values from the same tests (|phase 1| plus |phase 2|). This results

in a dataset with values ranging from -1 to 1, inclusive.

In addition to these features, a label of ‘success’ or ‘failure’ is calculated for each

participant based on his or her medication history. For an individual to be considered

a ‘success’, he or she had to be taking fewer medications at the conclusion of the study

(phase 3) than at baseline (phase 1). Conversely, a subject is labeled a ‘failure’ if he or

she concluded the study taking more medications than before dieting. Any participant

that was taking the same number of medications at phase 3 as phase 1 was excluded

from the study; by eliminating these borderline cases, only the extremes were left to

be considered. The prescribed dosage was not taken into consideration as a means to

strengthen the validity of the labels. While a reduction could be considered positive
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(or an increase considered negative), looking at each medication as a binary variable

results in a more rigorous definition of ‘success’. It should be noted that not all

medications were included in the generation of these labels: only those prescribed for

managing weight-related co-morbid conditions (e.g. gastroesophagael reflux disease,

hypertension, type 2 diabetes) were used. The reason for this reduction is to allow

for a better insight into the effectiveness of dieting on related co-morbidities. If

allergy medications (or other non-weight-related medications) were included, they

could skew the results away from the effects of the low-calorie lifestyle intervention

towards other non-controlled changes. Additionally, some weight-related medications

were also omitted for participants with diabetes as it is best practice to maintain the

drugs despite any decrease in weight (e.g. statins).

This study includes data from forty-two subjects (50% female; average age 51 ˘

10 years). Using the above method to generate labels, 23 are considered ‘successes’

while the remaining 19 are classified as ‘failures’. The initial dataset is comprised of

280 features per subject, as described above.

4.2.2 Laplacian of Correlation Graph Classification

An overview of LCG is shown in Figure 4.1. With the dataset generated, the first

step to LCG is to split the input into a training set and a testing set. Based on a

preliminary grid search, this dataset was split such that there are 18 instances in the

training group and the remaining 24 are used for testing. The search involved starting

with two entries in the training set: one ‘success’ and one ‘failure’. For each iteration

the size was increased by two, with the 50/50 split between classes maintained. This

was repeated until half of the available data was in the training set (20 subjects).

The instance with 18 training and 24 testing cases yielded the best results across all

runs. While the 18 entries in the training set are split evenly between ‘successes’ and

‘failures’, the exact combination of subjects was left to vary in the analysis and will
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Figure 4.1: Schematic diagram of LCG
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be further discussed below. Once this separation is decided, a matrix of features is

generated for each of the two training groups (‘success’ and ‘failure’) where each row

represents a unique participant and each column a feature. A graph is also generated

for each training group such that each node represents a feature. For each pair of

distinct nodes in the same graph, the two are connected if the correlation between

the corresponding columns in the feature matrix has a t-test p-value below some set

threshold hp. For this study hp was set to 0.31, again optimized through a grid search:

as the value of a p-value is bounded by zero and one, trial values of hp started at 0.01

and increased to 1.0 in steps of 0.01. The results of this search showed a value of 0.31

to yield the most consistent results. This complete, an adjacency matrix is created

for each of the ‘success’ and ‘failure’ graphs: S0 and F0, respectively. These serve as

the baseline from the training set.

Once these initial matrices are created, one instance T from the testing set is

chosen and appended to the end of the two training matrices. The process is repeated

as above, with the end result being an additional ‘success’ and an additional ‘failure’

graph, St and Ft. Using a modified version of the Hamming distance, the difference

Sd between the Laplacian of S0 and that of St is calculated, as is that between the

Laplacians of F0 and Ft (denoted Fd). The Laplacian L of a matrix is the difference

between its degree and adjacency matrices, or:

L “ G´ J (4.1)

where G and J are the degree and adjacency matrices, respectively [82]. The Lapla-

cian was chosen because it contains information relevant to the related graph, e.g.

each node’s connectedness in terms of both number of neighbors as well as which

particular vertices are nearby. By calculating the differences between Laplacian ma-

trices, changes from one to the next become more exaggerated and any deviations

from the baseline are highlighted.
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To understand the modified Hamming distance used in this research, let A and B

be any two mˆ n matrices. First define Ni,j and Di,j as:

Ni,j “

$

’

’

&

’

’

%

1 if Ai,j ‰ 0 or Bi,j ‰ 0, but not both;

0 otherwise.

(4.2)

and

Di,j “

$

’

’

&

’

’

%

1 if Ai,j ‰ 0 or Bi,j ‰ 0;

0 if Ai,j “ Bi,j “ 0.

(4.3)

With these, the modified Hamming distance can be calculated as:

modHampA,Bq “

řm
i“1

řn
j“1Ni,j

řm
i“1

řn
j“1Di,j

(4.4)

As such, define Sd and Fd as:

Sd “modHampLpS0q,LpStqq (4.5)

Fd “modHampLpF0q,LpFtqq (4.6)

These distances are then normalized by the number of nonzero entries in the initial

training-set graphs (yielding Sdn and Fdn), thereby allowing a change in a relatively

sparse graph to account for more of a difference than the same change in a more dense

graph. The ratio Sdn{Fdn is taken and thresholded: if the value is above the cutoff

the instance T is labeled a ‘success’, and otherwise labeled a ‘failure’. This threshold

was varied throughout the study to generate receiver operating characteristic curves,

as discussed below. Figure 4.2 shows two example thresholded correlation graphs, a

‘success’ (top) and a ‘failure’ (bottom) generated from a training set with 67 features.

In this instance the ‘success’ graph is noticeably less dense: there are a total of 1316

connections between nodes, while there are 1620 edges in the ‘failure’ graph. Adding
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in an entry from a testing set and regenerating the plots changes their densities. The

new ‘success’ graph has 1418 connections, an increase of 92, while the new ‘failure’

graph only sees a decrease of 6 edges to 1614. The former not only sees a more marked

change in connectedness, but because of its relative sparsity the normalized difference

is even more pronounced. As such, the added entry from the testing set is labeled a

‘failure’, a correct classification.

Figure 4.2: Example LCG Graphs

4.3 Results

To test the robustness of LCG, as well as its effectiveness at handling noise,

numerous variations of the dataset were examined and compared the results to those

of other well-established methods.

In the first case, the full 280 features described above were used. The rows were

randomly permuted 100 times under the constraint that the first 18 rows had to be

evenly split between ‘successes’ and ‘failures’. In each permutation these initial rows

were then used as the training set, with the remaining 24 instances comprising the

test set. With this split defined LCG was applied to the dataset, each time generating

a Receiver Operating Characteristic (ROC) curve - a measure of the robustness of

a classifier - by varying the final ratio threshold. The Area Under the ROC Curve

(AUC) is used to gauge how resilient a method’s accuracy is to perturbations of its
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discrimination threshold, with larger values preferred. In addition to LCG, WEKA

was utilized to apply four standard machine learning approaches to the same datasets

with the same training / testing splits: Näıve Bayes, support vector machine (SVM),

random forest, and random tree. The results are shown in Table 4.1.

Table 4.1: Results with 280 features

Method Average Accuracy Average AUC
SVM 50.4% .505
Random Forest 51.0% .518
Näıve Bayes 51.2% .506
Random Tree 52.1% .521
LCG 58.2% .568

After generating these results, the size of the dataset was reduced to 197 columns

by eliminating a selection of noisy features. As described in Chapter III, this was done

by calculating the ‘information gain’ of each column, a measure of the information

inherent within any given feature. This process was repeated twice more, generating

two additional datasets with 137 and 67 features. Appendix A lists which features

were included at each step. Each of these three feature sets was randomly permuted

100 times, again with the stipulation that the first 18 rows be split evenly between

the two classes. This complete, LCG and the other four prominent machine learning

algorithms were applied to the resulting datasets; the results are shown in Table 4.2.

Looking at this table, it is easy to see the extent to which LCG outperforms the

other standard approaches, regardless of the level of noise inherent in the dataset.

Indeed, even in the most difficult case LCG scores an average accuracy above 58%;

while in itself not particularly impressive, the fact this represents more than an 11%

increase over the next-best method lends credence to the effectiveness of the graph-

based approach.

If the average AUC values are examined, it is even more clear that LCG presents

an improvement over standard approaches when applied to noisy datasets. Figure 4.3

shows a selection of ROC curves typical to each method for the smaller two datasets,
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Figure 4.3: Typical ROC graphs for various dataset sizes
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Table 4.2: Results with smaller feature sets

Method Average Accuracy Average AUC
197 Features

SVM 51.7% .511
Random Forest 55.2% .565
Näıve Bayes 54.2% .557
Random Tree 52.0% .515
LCG 59.9% .639

137 Features
SVM 50.5% .525
Random Forest 55.0% .579
Näıve Bayes 55.1% .576
Random Tree 52.7% .527
LCG 59.3% .650

67 Features
SVM 61.2% .614
Random Forest 63.7% .712
Näıve Bayes 65.9% .700
Random Tree 58.2% .584
LCG 66.0% .774

further illustrating the fact that LCG is generally more robust. The ROC plot for the

dataset with 137 features, in particular, shows a significant advantage for LCG. When

the AUC data from Table 4.2 are plotted (Figure 4.4), they show a clear trend shared

between the five methods. The values for LCG, however, are consistently higher than

the standard approaches. This bias is further evidence that the graph-based approach

outperforms other algorithms on noisy datasets.

4.4 Discussion

As is shown in the above results, LCG outperforms other standard machine learn-

ing methods over a wide array of noisy datasets. While there are a number of variables

that need to be tuned to best optimize LCG, these can be easily determined by a

brief grid search. Indeed, the customization options allow for LCG to be applied to

a wide array of problems, not just those in the medical field. For example, if a case
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Figure 4.4: Average AUC values for various dataset sizes

were to present itself in which one class was heavily favored over another, the final

ratio threshold could be altered so as to weight the classification towards the more

likely group. Another alternative would be to skew the size of the training set: if

one class has more training entries than another, it would take a more drastic change

from the testing input to overcome this bias. Like the SVM algorithm, the underlying

kernel in LCG could even be changed: instead of using a modified Hamming distance,

other similarity functions can be put in its place. This allows for more complex and

tailored approaches to determining the likeness of any two given connected graphs.

Extending this concept, it would be easy to convert LCG from a binary to a multi-

class classifier. After generating a training graph for each class, dissimilarity scores

can be calculated for a given test case by adding it to each. Instead of calculating

and thresholding a ratio as above, any method could be used to select to which class

the example belongs (e.g. the class with the smallest dissimilarity score).

One other advantage to LCG is the ease and extent to which it can be parallelized.

With the prevalence of multi-core machines and cloud computing, the ability of an

algorithm to make the most of distributed calculations can result in huge decreases

in runtime. The creation of the training graphs can easily be split, even to the
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point of parsing out node-pairs to determine if they are connected. Once these initial

adjacency matrices are calculated, each testing case can be run independently (and

each can be further split by again parsing out node-pairs).

While the ROC curves show LCG to be robust, because of the large number of

steps involved changing a parameter at the beginning of the process (e.g. the size of

the training set, or the threshold for joining two nodes) can greatly affect the final

results. This can easily be addressed by performing a quick grid search to determine

what values will work best for a given problem, but it means that there are not any

‘out-of-the-box’ parameter values that are guaranteed to give better-than-average

results.

4.4.1 Future Work

In future studies, a more lenient approach to generating the class labels could

be used (e.g. dosage could be considered). Alternatively, the training set could be

chosen from the current dataset, with the testing set built to include participants with

more loosely-defined labels. As was mentioned in Chapter III, other features could

also be included. Characteristics derived from Fourier transforms may prove useful,

and wavelet transforms could allow for relationships between time and frequency to

help differentiate the two classes. As to improving the algorithm, other kernels could

be used to generate different similarity scores between graphs. Missing data could

also be incorporated into the dataset, and the approach could be altered to weigh

certain features over others accordingly. Likewise, instead of thresholding the edges

(thus setting them to 0’s and 1’s), the p-values could be left as weights. This would

however also necessitate a more intricate method for determining the similarity of

any two graphs, as the current implementation takes advantage of the binary nature

of the edges.
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4.5 Summary

Overweight and obesity are major problems currently facing the healthcare in-

dustry. With over two-thirds of the US population overweight, the burden on both

physicians and patients is significant. This strain is readily apparent when looking

at the number of medications many overweight individuals are prescribed to help

manage their weight-related co-morbidities. While many people attempt weight-loss

as a means to improve their health and reduce the size of their medication regimen,

there are as of yet no ways to predict whether that weight-loss will translate to fewer

pills in the long term. While machine learning is ideally suited to this problem, with

ever-improving medical monitoring technologies and the ready availability of digital

storage the feature space can be dauntingly large. This chapter not only shows a

method for predicting the relative size of an individual’s medication regimen, but

also demonstrates that LCG is better-suited to noisy datasets. By allowing for less-

clean input at a relatively small cost to accuracy LCG has the potential to impact a

wide array of fields, not just those related to healthcare.
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CHAPTER V

Contributions and Insights

In this chapter, the implications of the research are examined both in terms of

their effects on the relevant fields and also in the underlying ramifications of the

presented results. By studying the windowed persistent homology method described

in Chapter II, a clear difference can be shown between those for whom dieting will

prove effective and those for whom it will not. Applicable to any time-series, this

signal processing algorithm can be used to uncover subtle differences in problems

outside the clinical field as well. Chapter III presents a means other than weight loss

by which the efficacy of dieting can be measured, which in turn allows for a number

of interesting observations to be made pertaining to an individual’s overall health.

Finally, the machine learning algorithm developed in Chapter IV shows promise in

mining noisy datasets. This graph-based approach can be easily distributed across

multiple processors, and the results are amenable to interpretation.

5.1 Signal Processing for Analyzing Activity Data

5.1.1 Contributions of Windowed Persistent Homology

In studying overweight and obesity, the steady improvements in monitoring tech-

nologies have allowed for a growth in available signal data. While current methodolo-

gies for processing time series are readily applicable to this new dataset, they are not
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always effective. For example, standard signal processing algorithms yield no useful

results when applied to the activity data presented in Chapter II. By developing a

windowed variation of persistent homology, along with a modified version of the Haus-

dorff distance, it is possible to detect a difference between individuals likely to lose

weight through dieting and maintain the loss and those for whom caloric restriction

will be less effective. While future studies are needed to investigate the intricacies of

persistence diagrams as they pertain to movement profiles, this research has shown a

clear separation where other methods failed to do so. Through the inclusion of more

data, a predictive model can be built with the potential to save the time, effort, and

money of clinicians and patients alike.

5.1.2 Insights Gained by Analyzing Activity Data

These promising results lend themselves to additional questions and avenues of

research. For example, the role of the signal’s sampling frequency must be considered:

in the above study, the armband data was aggregated and recorded once every minute.

By increasing or decreasing this resolution, certain types of movement may become

more apparent while those present in the current movement profiles are obscured. As

these different activities shift in and out of focus, the split between the two groups

may grow or shrink. Another question to consider is whether or not an individual

can alter his or her lifestyle enough to effectively switch groups. By changing one’s

behavior to better align with the movement profiles of those labeled ‘successes’, it may

be possible to increase the long-term efficacy of dieting. Perhaps the most promising

implication of this research is that it may one day be possible to predict this efficacy

before even attempting any caloric restrictions.
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5.2 Machine Learning Applied to Physiological Data to Pre-

dict Future Prescription Medication Use

5.2.1 Contributions to Defining Weight Loss Success

While weight loss is an obvious metric for determining the success of dieting,

other factors must also be considered. For example, long-term maintenance of any

loss should be noted, as many that succeed in losing weight end up regaining some or

all of their loss. While this can be viewed as negating the original success, there may

be other underlying benefits that persist through the regain: these can be thought

of as successes in their own right. By altering the metric by which an individual’s

progress is evaluated, the results of any subsequent analyses may be markedly differ-

ent. For example, utilizing the same dataset presented in Chapter III but with labels

generated by thresholding initial weight loss and long-term weight-loss maintenance,

the demonstrated machine learning algorithms produce no significantly useful mod-

els. By instead focusing on medication regimens, a simple, systematic definition of

success can be created. As shown above, looking at the number of weight-related

prescription medications makes it possible to generate meaningful class labels. This

approach differs from current methodologies in that it values relative change over

absolute thresholds, allowing for a more personalized experience.

5.2.2 Insights Gained from Predictive Modeling

Despite the impressive accuracy of the predictive models created using these labels,

a number of questions remain. One such issue pertains to the removal of medications

deemed to be unrelated to weight: if ignoring these drugs alters the results, their

influences must be further studied. Certain medications in particular were excluded

for diabetic subjects during label generation because of clinical best-practice proce-

dures; by examining those with diabetes separately from those without the condition,
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it would be possible to control for this disparate treatment. While this would require

a more substantial dataset, additional subjects could be included if a means were de-

veloped to classify those previously unlabeled. These edge-case individuals who saw

neither an increase nor a decrease in their medication regimen may hold valuable infor-

mation pertaining to the role weight actually plays in overall health. Taken together,

the three groups may allow clinicians a better understanding of how an individual can

regain lost weight but not previously-diagnosed weight-related complications. This

understanding may be furthered by also examining the selected features. Both the

RMR and VO2 peak tests produced useful signals, but the underlying reasons for

their significance should be considered. The statistical nature of the resting test’s

notable characteristics indicates the value lies in the absolute measurements, while

the more complex algebraic features typically chosen from the exercise test signify

the manner in which the data change is more informative.

5.3 Laplacian of Correlation Graph Classification

5.3.1 Contributions to Graph-Based Machine Learning

As datasets continue to grow in size and complexity, so too must the methods used

to analyze them. Feature selection is an integral part of this process, but it must be

balanced against filtering out potentially informative data. With large inputs come

the possibilities of intricate relationships between different aspects of the data, which

means that while a particular feature may not be useful on its own it may prove valu-

able when paired with another. As such, removing data through feature selection may

limit the potential effectiveness of a generated model. However, skipping this step will

result in noisy datasets. Chapter IV introduces LCG, a graph-based method capable

of outperforming a number of standard approaches when applied to a noisy feature

set. By examining the pairwise correlations between features, important relationships
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may be discovered that would have otherwise gone unnoticed. In addition, because

each pairing is independent of the next, the calculations can be broadly distributed

without any loss in accuracy.

5.3.2 Insights Gained on Processing Noisy Data

While LCG has proven useful in examining physiological signals as they relate

to medication regimens, its potential applications are much more widespread. Other

sources of data can be incorporated into the input, allowing for the discovery of

previously unknown relationships between disparate measurements. Not limited to

the medical field, LCG can also be used in any setting where machine learning would

be applicable. In particular, situations that involve large amounts of noisy data are

ideal candidates, as are classification problems involving more than two classes. In

addition, the structure of the algorithm allows for it to be easily parallelized: by

distributing the correlation calculations, the computation time required is limited

only by the available processing power. The generation of graphs to represent the

underlying feature set is also an advantage as it allows for easy visual comparisons

between classes.
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CHAPTER VI

Conclusion and Future Directions

6.1 Conclusion

With overweight and obesity on the rise, the health and financial impacts of their

associated diseases and conditions will only continue to grow. Many individuals at-

tempt volitional weight loss through diet and exercise, but no current methods exist

that yield a priori knowledge of success. However, through the use of advances in

clinical monitoring capabilities and modern signal processing methods, paired with

innovative machine learning algorithms, models for predicting an individual’s chances

of success are becoming possible. By studying the movement profiles of overweight

and obese individuals, a pattern emerges that shows a clear difference between those

likely to lose weight and those for whom dieting will be less effective. This alone

has major implications on the healthcare industry: not only does it allow for massive

potential savings of time and resources through the avoidance of ineffective treatment

options, but it also shows an underlying predisposition that can and should be further

studied. In addition to long-term weight loss, a reduction in an individual’s medica-

tion regimen is indicative of an improvement in his or her general health. Through

features calculated from physiological signals that can be measured non-invasively, a

model can be built that accurately predicts long-term medication use. This too has

the potential to drastically affect the healthcare industry.

62



With the methods and algorithms presented in this thesis, predicting the efficacy

of dieting on overweight and obesity is possible. Future studies are needed to refine

and improve these approaches, but the investments will no doubt have a lasting

impact. Both the medical field and the healthcare industry stand to benefit, as these

diseases and their underlying causes and associated conditions are a major epidemic

facing not only the United States but the entire world.

6.2 Future Directions

The work presented in this thesis is a step towards a better understanding of

overweight and obesity. While the results are promising, more research is needed

to improve not only the accuracy and robustness of the methods but also the med-

ical understanding of the diseases. For example, the difference in movement profiles

shown in Chapter II has the potential to drastically change the way in which dieting

is approached. As it stands, however, there are not enough cases to build a predictive

model. Recording more data would allow for more robust results: from strength-

ening the evidence of an underlying difference to generating a predictive model, the

potential benefits are staggering. In addition to gathering more data, future studies

could investigate the medical reasons behind the separate groups. By understanding

what aspects of an individual’s movement profile are responsible for his or her long-

term weight loss success, new diet and exercise strategies could be developed to help

those not predisposed to beneficial behavior. From a signal-processing perspective,

persistent homology has a wide range of potential uses. As the method has no require-

ments pertaining to sampling rate or other properties, it can be applied to virtually

any time-series data. One potential application is heart-rate signals: by applying the

method to healthy input, a persistence diagram template can be generated. This

complete, any future signals can be processed and compared to the standard. If a

difference threshold between the two plots is reached, it may be indicative of a cardiac

63



issue.

As mentioned in Chapter III, the criteria for success were quite strict. Future stud-

ies can relax these requirements, taking into account other medications or prescribed

dosages. Those individuals that saw neither an increase nor a decrease in their med-

ication regimens should also be more closely examined, as these border cases could

hold valuable insights into their underlying conditions. The various combinations of

comorbidities should also be considered: as individuals with diabetes were treated

differently than those without, a study involving only members from one group may

shed light on how the associated conditions affect each other. Likewise, any health

concerns present in both overweight and lean individuals could be studied to examine

the effects of other influences (e.g. diet composition, activity) on medication levels.

As data storage becomes cheaper and monitoring devices more intricate, applica-

tions for the algorithm presented in Chapter IV become more varied and widespread.

Future studies could look to improve its accuracy or computational time, whether

through tweaks to the underlying method or by exploiting any potential shortcuts.

Other difference metrics could be used to compare the resulting graphs, as this is

a critical step in the algorithm and could produce drastically different results. Ap-

plying LCG to other datasets would also prove useful, especially large or noisy col-

lections of features, as this would demonstrate its ability to function on unreduced

input. In particular, generating a feature set that includes additional clinically rele-

vant measurements could produce more accurate results and allow for the discovery

of previously unrecognized correlations across disparate sources of data. For example,

incorporating the data previously omitted from the above studies may yield useful

insights. Integrating the psychological questionnaires, bloodwork results, and DEXA

scans with the RMR and VO2 peak tests, tensors can be created to further strengthen

and elucidate any underlying connections. By examining these interactions, the re-

lationships between an individual’s weight and his or her mental and physical health
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can be studied. This could have major implications on the ways in which overweight

and obesity are treated, as well as on how the efficacy of dieting is defined.
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APPENDIX A

Feature Selection Using Information Gain

Table A.3 shows which features were kept as the dataset used in Chapter IV

was reduced in size. In the first column, a description of the feature can be found

formatted as signal test feature. Table A.1 describes the shorthand used to indicate

from which signal the feature is derived, and Table A.2 the shorthand used to indicate

the feature. To differentiate between signals recorded during the RMR and VO2 peak

tests, an indicator is included: rmr indicates the former and ex the latter. While

the features kept in the reduced dataset described in Chapter III had non-zero merits

(as calculated by the information gain method), the remainder of the feature set was

trivial. Due to this, the characteristics removed in each reduction were chosen at

random, under the condition they had zero merit.

67



Table A.1: Legend of signal shorthands found in A.3

Shorthand Signal

feco2 FECO2

feo2 FEO2

mets METS

ree REE

rq RQ / RER

rr RR

tm elv Treadmill Elevation

tm spd Treadmill Speed

vco2 VCO2

ve VE

vo2 VO2

vo2kg VO2/KG

Table A.2: Legend of feature shorthands found in A.3

Shorthand Description

25th The 25th percentile value

50th The 50th percentile value (median)

75th The 75th percentile value

avg The average value of the signal (mean)

fit The slope of the best-fit line

fit 1 The slope of the best-fit line for the first half of the data

fit 1 residuals The residuals of the first-half best-fit line

fit 2 The slope of the best-fit line for the second half of the data

fit 2 residuals The residuals of the second-half best-fit line

fit residuals The residuals of the best-fit (R2)

max The global maximum recorded during the test

min The global minimum recorded

numTurns The number of local extrema

range The difference between the maximum and minimum values
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

feco2 ex 25th x x x

feco2 ex 50th x x x

feco2 ex 75th x x x

feco2 ex avg x x x

feco2 ex fit x x x

feco2 ex fit 1 x x x

feco2 ex fit 1 residuals x x x

feco2 ex fit 2 x x x

feco2 ex fit 2 residuals x x x

feco2 ex fit residuals x x x

feco2 ex max x x x

feco2 ex min x x x

feco2 ex numTurns x x x

feco2 ex range x x x

feco2 rmr 25th x

feco2 rmr 50th x

feco2 rmr 75th x

feco2 rmr avg x

feco2 rmr fit x

feco2 rmr fit 1 x

feco2 rmr fit 1 residuals x

feco2 rmr fit 2 x

feco2 rmr fit 2 residuals x

feco2 rmr fit residuals x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

feco2 rmr max x x x x

feco2 rmr min x

feco2 rmr numTurns x

feco2 rmr range x

feo2 ex 25th x x x x

feo2 ex 50th x x x x

feo2 ex 75th x x x x

feo2 ex avg x x x x

feo2 ex fit x x x x

feo2 ex fit 1 x x x x

feo2 ex fit 1 residuals x x x x

feo2 ex fit 2 x x x x

feo2 ex fit 2 residuals x x x x

feo2 ex fit residuals x x x x

feo2 ex max x x x x

feo2 ex min x x x x

feo2 ex numTurns x x x x

feo2 ex range x x x x

feo2 rmr 25th x x

feo2 rmr 50th x x

feo2 rmr 75th x x

feo2 rmr avg x x

feo2 rmr fit x x

feo2 rmr fit 1 x x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

feo2 rmr fit 1 residuals x x

feo2 rmr fit 2 x x

feo2 rmr fit 2 residuals x x

feo2 rmr fit residuals x x

feo2 rmr max x x

feo2 rmr min x x

feo2 rmr numTurns x x

feo2 rmr range x x

mets ex 25th x x x

mets ex 50th x x x

mets ex 75th x x x

mets ex avg x x x

mets ex fit x x x

mets ex fit 1 x x x

mets ex fit 1 residuals x x x

mets ex fit 2 x x x

mets ex fit 2 residuals x x x

mets ex fit residuals x x x

mets ex max x x x

mets ex min x x x

mets ex numTurns x x x

mets ex range x x x

mets rmr 25th x

mets rmr 50th x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

mets rmr 75th x x x x

mets rmr avg x

mets rmr fit x

mets rmr fit 1 x

mets rmr fit 1 residuals x

mets rmr fit 2 x

mets rmr fit 2 residuals x

mets rmr fit residuals x

mets rmr max x

mets rmr min x

mets rmr numTurns x x x x

mets rmr range x x x x

ree rmr 25th x x

ree rmr 50th x x

ree rmr 75th x x

ree rmr avg x x

ree rmr fit x

ree rmr fit 1 x

ree rmr fit 1 residuals x

ree rmr fit 2 x

ree rmr fit 2 residuals x

ree rmr fit residuals x

ree rmr max x x

ree rmr min x x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

ree rmr numTurns x x x x

ree rmr range x x x x

rq ex 25th x

rq ex 50th x

rq ex 75th x

rq ex avg x

rq ex fit x

rq ex fit 1 x

rq ex fit 1 residuals x

rq ex fit 2 x

rq ex fit 2 residuals x

rq ex fit residuals x

rq ex max x

rq ex min x

rq ex numTurns x

rq ex range x

rq rmr 25th x x

rq rmr 50th x x

rq rmr 75th x

rq rmr avg x x

rq rmr fit x

rq rmr fit 1 x x

rq rmr fit 1 residuals x x x x

rq rmr fit 2 x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

rq rmr fit 2 residuals x x

rq rmr fit residuals x x

rq rmr max x x

rq rmr min x x

rq rmr numTurns x

rq rmr range x x x x

rr ex 25th x x x x

rr ex 50th x x x x

rr ex 75th x x x x

rr ex avg x x x x

rr ex fit x x x x

rr ex fit 1 x x x x

rr ex fit 1 residuals x x x x

rr ex fit 2 x x x x

rr ex fit 2 residuals x x x x

rr ex fit residuals x x x x

rr ex max x x x x

rr ex min x x x x

rr ex numTurns x x x x

rr ex range x x x x

tm elv ex 25th x x

tm elv ex 50th x x

tm elv ex 75th x x

tm elv ex avg x x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

tm elv ex fit x x

tm elv ex fit 1 x x x

tm elv ex fit 1 residuals x x x

tm elv ex fit 2 x x x

tm elv ex fit 2 residuals x x x x

tm elv ex fit residuals x x x

tm elv ex max x x

tm elv ex min x x

tm elv ex numTurns x x

tm elv ex range x x

tm spd ex 25th x x x x

tm spd ex 50th x x x

tm spd ex 75th x x x

tm spd ex avg x x x x

tm spd ex fit x x x x

tm spd ex fit 1 x x

tm spd ex fit 1 residuals x

tm spd ex fit 2 x x x x

tm spd ex fit 2 residuals x x x x

tm spd ex fit residuals x x

tm spd ex max x x x x

tm spd ex min x x x x

tm spd ex numTurns x x x

tm spd ex range x x x x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

vco2 ex 25th x x x x

vco2 ex 50th x x x

vco2 ex 75th x x x x

vco2 ex avg x x x x

vco2 ex fit x x x

vco2 ex fit 1 x x x

vco2 ex fit 1 residuals x x x

vco2 ex fit 2 x x x x

vco2 ex fit 2 residuals x x x

vco2 ex fit residuals x x x x

vco2 ex max x x x x

vco2 ex min x x x x

vco2 ex numTurns x x x

vco2 ex range x x x x

vco2 rmr 25th x x

vco2 rmr 50th x x

vco2 rmr 75th x x

vco2 rmr avg x x

vco2 rmr fit x x

vco2 rmr fit 1 x x

vco2 rmr fit 1 residuals x x

vco2 rmr fit 2 x x

vco2 rmr fit 2 residuals x x

vco2 rmr fit residuals x x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

vco2 rmr max x x

vco2 rmr min x x

vco2 rmr numTurns x x

vco2 rmr range x x

ve ex 25th x x x

ve ex 50th x x x

ve ex 75th x x x

ve ex avg x x x

ve ex fit x x x

ve ex fit 1 x x x

ve ex fit 1 residuals x x x

ve ex fit 2 x x x

ve ex fit 2 residuals x x x x

ve ex fit residuals x x x

ve ex max x x x

ve ex min x x x

ve ex numTurns x x x

ve ex range x x x

ve rmr 25th x

ve rmr 50th x

ve rmr 75th x

ve rmr avg x

ve rmr fit x

ve rmr fit 1 x

77



Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

ve rmr fit 1 residuals x

ve rmr fit 2 x

ve rmr fit 2 residuals x

ve rmr fit residuals x

ve rmr max x

ve rmr min x

ve rmr numTurns x

ve rmr range x

vo2 ex 25th x x x

vo2 ex 50th x x x

vo2 ex 75th x x x x

vo2 ex avg x x x

vo2 ex fit x x x x

vo2 ex fit 1 x x x x

vo2 ex fit 1 residuals x x x x

vo2 ex fit 2 x x x x

vo2 ex fit 2 residuals x x x x

vo2 ex fit residuals x x x x

vo2 ex max x x x

vo2 ex min x x x

vo2 ex numTurns x x x x

vo2 ex range x x x

vo2 rmr 25th x

vo2 rmr 50th x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

vo2 rmr 75th x

vo2 rmr avg x

vo2 rmr fit x

vo2 rmr fit 1 x

vo2 rmr fit 1 residuals x x

vo2 rmr fit 2 x x

vo2 rmr fit 2 residuals x x

vo2 rmr fit residuals x

vo2 rmr max x

vo2 rmr min x

vo2 rmr numTurns x x x x

vo2 rmr range x x x x

vo2kg ex 25th x x x

vo2kg ex 50th x x x

vo2kg ex 75th x x x

vo2kg ex avg x x x

vo2kg ex fit x x x

vo2kg ex fit 1 x x x

vo2kg ex fit 1 residuals x x

vo2kg ex fit 2 x x

vo2kg ex fit 2 residuals x x

vo2kg ex fit residuals x x

vo2kg ex max x x x

vo2kg ex min x x x
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Table A.3: List of features included in each dataset

Feature 280 Features 197 Features 137 Features 67 Features

vo2kg ex numTurns x x x

vo2kg ex range x x x

vo2kg rmr 25th x

vo2kg rmr 50th x

vo2kg rmr 75th x x x x

vo2kg rmr avg x

vo2kg rmr fit x

vo2kg rmr fit 1 x

vo2kg rmr fit 1 residuals x

vo2kg rmr fit 2 x

vo2kg rmr fit 2 residuals x

vo2kg rmr fit residuals x

vo2kg rmr max x

vo2kg rmr min x

vo2kg rmr numTurns x x x x

vo2kg rmr range x x x x
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