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ABSTRACT

Critical mechanical structures are structures on the verge of mechanical instability. Me-

chanical instability governs many fascinating phenomena in nature, including jamming, rigid-

ity percolation, glass transitions, and structural phase transitions. Close to mechanical in-

stability, the mechanical response and properties of these critical structures are dominated

by the emergence of floppy modes, which are structural deformations that cost very little

elastic energy. Although mechanical instability in athermal systems is well understood, how

thermal fluctuations interact with floppy modes to modify transitions associated with the

point of instability remains largely unexplored. To this end, we study the effect of thermal

fluctuations on the phase transitions of various critical mechanical systems.

The first project presented in this dissertation concerns the buckling of rods at finite

temperature. Thermal fluctuations can play an important role in the buckling of elastic

objects at small scales, such as polymers or nanotubes. We study the finite-temperature

buckling transition of an extensible rod by analyzing fluctuation corrections to the elasticity

of the rod. We find that, in both two and three dimensions, thermal fluctuations delay the

buckling transition, and near the transition, there is a critical regime in which fluctuations

are prominent and make a contribution to the effective force that is of the order of the

square root of the temperature. We verify our theoretical prediction of the phase diagram

with Monte Carlo simulations.

The second project discussed in this dissertation examines how thermal fluctuations

change structural transitions in lattices. We present an analytic study of the finite-temperature

structural transition for the kagome lattice. Our model exhibits a zero-temperature contin-
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uous twisted-untwisted transition as the sign of the next-nearest-neighbor spring constant

changes. At finite temperature, we show that the divergent contribution of floppy modes to

the vibrational entropy renormalizes this spring constant, resulting in a first-order transition.

Another expanding area of research is the self-assembly of open structures and mechanical

metamaterials with novel properties at small scales. In large part to floppy modes, these

intriguing properties include negative Poisson’s ratio and tunable topological mechanical

properties. Employing self-assembly allows for the expedient synthesis of such structures.

To this end, we study different techniques currently used in self-assembly. We propose an

experimental manifestation of the twisted kagome lattice via self-assembling tri-block Janus

particles with offset attractive patches. We also characterize the twisted-untwisted phase

transition that these particles can undergo. This may lead to a novel smart material with,

for instance, a Poisson’s ratio that is tunable between positive and negative values.

The third project discussed in this dissertation explores the self-assembly of open struc-

tures using triangular prisms on an air-water interface. We present our theoretical and

numerical analysis of how capillary interactions between these prisms, mediated by the de-

formation of the interface around the prisms, lead to directional binding and the self-assembly

of large-scale open structures. We show how particle bowing and contact-line pinning yields a

capillary hexapole-like interaction that results in two sets of distinct, highly-directional bind-

ing events: tip-to-tip and tip-to-edge-midpoint. We analyze the collapse of these binding

events to edge-sharing configurations that impede the formation of ordered, open structures

such as the kagome lattice, and we briefly discuss design principles that can be used to

stabilize such interactions.
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CHAPTER I

Introduction

1.1 Critical mechanical structures and mechanical in-

stability

Critical mechanical structures are structures that are close to mechanical instability. Of

course, the subject of mechanical instability has always been an area of great interest, as

we specifically engineer large-scale structures to be stable and resistant to failure – under-

standing the potential areas of weakness and sources of instability is, naturally, a matter of

safety. It is not always the case, however, that mechanical instability is a property simply to

be avoided. In expediently-engineered systems, especially at small scales, mechanical insta-

bility is indeed a property that can be exploited for various practical purposes. This is due

to that fact that in critical mechanical structures – that is, near mechanical instability – a

small number of “floppy modes”, which are modes of deformation in the structure that cost

very little energy (in fact, theoretically, there exist deformation modes that cost no energy,

but in real systems, there is always a finite energy cost, albeit quite small), arise. Because

the floppy modes cost such little energy, they are oftentimes the modes of deformation that

significantly determine a material’s response and, correspondingly, its properties.

For instance, there is a burgeoning interest in so-called “mechanical metamaterials”,

which are materials that derive their novel mechanical properties from their structure rather
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than their chemical composition. Examples of these novel properties include negative Pois-

son’s ratio, negative compressibility, negative thermal expansion, reprogrammability, and

transformability, and it is precisely the specific structure of the material and the consequent

existence of floppy modes that enable them [1–7]. The study of floppy modes and deforma-

tion mechanisms is also important in a biological context, such as in disordered networks of

biopolymers (as can be found in the extracellular matrix, for instance), which are soft against

small deformations but stiff against large ones due to the fact that initial deformation modes

are floppy, involving only bending of the polymers, rather than energetically-costly stretching

of the polymers [8, 9].

At small scales, as well, systems are being fabricated that utilize these minimal-energy

mechanisms [10, 11]. At the colloidal and nano scales, however, thermal fluctuations are

an important consideration, and it becomes crucial to understand the effect of thermal

fluctuations on these systems and their inherent floppy modes. In some cases, the inter-

play between floppy modes and thermal fluctuations produces intriguing properties, such as

“order-by-disorder”, a phenomenon in which thermal fluctuations induce entropic splitting

of energetically-degenerate ground states [12, 13] – though one can imagine how the destruc-

tion of such a degeneracy could also potentially interfere with the engineered exploitation

of mechanisms in systems. Another interesting phenomenon arising from finite temperature

effects is that of negative thermal expansion [14]. Normally, we expect positive thermal

expansion when a sample is heated, but in open structures with transverse phonon floppy

modes – such as in the example of Sc1−xTixF3 [15], which has a cubic arrangement of corner-

sharing octahedra that can twist – the fluctuations cause, on average, the volume of the unit

cell to decrease as temperature increases, resulting in negative thermal expansion. Clearly,

it is important to study the effect of thermal fluctuations on a variety of systems with floppy

modes.

Finally, critical mechanical structures are frequently open structures, meaning that, once

assembled, the packing fraction of their constituent components is far less than the maximal
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packing fraction achieved by close-packing. This manifests itself in the form of open spaces

and voids in between the components that make up the structure. Due to this openness,

certain deformation and floppy modes are accessible to the structure that would not have

been otherwise, if it were close-packed. A pathway towards efficient realization of open

structures on small scales that does not require manual construction is self-assembly, which

is the automated assembly of components into a larger organized structure. As we will

discuss in this dissertation, there are various promising methods of self-assembly that enable

the synthesis of open, critical structures with interesting mechanical properties.

1.1.1 The Maxwell counting rule

We begin our discussion of critical mechanical structures by characterizing instability

and floppy modes in a mathematical way. In 1864, James C. Maxwell completed his seminal

work [16] in structural rigidity theory, in which he formulated the conditions necessary for

the mechanical stability of a frame, or truss. For a frame – a collection of points connected

by rigid lines, or struts – to be stiff, such that attempting to alter the distance between any

two points in the frame would require changing the length of at least one connecting line,

Maxwell determined that each nominal degree of freedom in the frame would need to be

stabilized by a constraint. In the context of a lattice with N sites and Nb central-force bonds

embedded in d dimensions, this can be expressed as the equation

N0 = Nd.o.f. −Nb, (1.1.1)

where N0 is the number of zero modes, which correspond to deformations of the system that

cost no elastic energy, and Nd.o.f. = dN is the number of degrees of freedom of the system,

given no constraints; each bond is a constraint that removes one degree of freedom. Out of

the N0 zero modes, f(d) = d(d+1)/2 are trivial rigid translations and rotations of the entire

lattice with free boundary conditions; for a lattice with periodic boundary conditions, which
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is the case we will be primarily concerned with, f(d) = d – only the rigid translations remain

as trivial zero modes. The number of zero modes that correspond to actual deformations of

the lattice, then, is

M = N0 − f(d) = Nd.o.f. −Nb − f(d). (1.1.2)

These remaining modes are called floppy modes or mechanisms. For a lattice to be stiff, or

rigid, there cannot be any floppy modes – M = 0; all lattice deformations must cost finite

energy. Therefore, the condition on the number of constraints in order for the lattice to be

rigid is

Nb = dN − f(d). (1.1.3)

It is common to re-express this condition in terms of a critical coordination number zc,

where z = 2Nb/N is the number of neighbors that a given site is connected to via bonds (for

a disordered system where each constituent particle has a varying number of neighbors, the

mean coordination number 〈z〉 is used instead). In this case,

zc = 2d− 2
f(d)

N
≈ 2d, (1.1.4)

where the approximation becomes exact in the limit that N → ∞. Thus, a large system

with a coordination number of z = 2d is marginally stable or rigid. For z > 2d, the system is

over-constrained and there are no floppy modes, whereas for z < 2d, the system is completely

floppy.

The above Maxwell rule is not completely general, as it does not account for the fact that

constraints can be redundant [17] – placed in such a way to not increase rigidity – which

allows for stresses to be distributed among the bonds in such a way as to not yield any net

forces on the particles. This is known as a state of self stress. The generalized version of the

counting rule, which can be rigorously proven as an index theorem [18], is

M = dN −Nb +Ns − f(d), (1.1.5)
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where Ns is the number of states of self stress. For a system with no redundant bonds,

Ns = 0, and we recover the analysis of above. In a lattice that has a finite number of states

of self stress (Ns > f(d)), however, even for a lattice with Nb = dN − f(d) constraints (or,

in the large lattice limit, z = zc = 2d), there will exist floppy modes. A lattice where z = zc,

such that Ns = N0, is called a Maxwell lattice, and the point z = zc is called the Maxwell

critical point.

There are two types of floppy modes: “finite” floppy modes that are associated with

finite displacements of sites that do not stretch any bonds, and “infinitesimal” ones that are

associated with small displacements of sites that do not change the length of any bonds to

first order in displacements. Small motions that are transverse to the initial direction of the

bond correspond to infinitesimal floppy modes: for a small displacement δx, the change in

the length of the bond (which we take to initially have length 1) is

δl =

√
1 + (δx)2 − 1 ≈ (δx)2

2
= 0 +O((δx)2). (1.1.6)

Whereas finite floppy modes are possible when considering a finite lattice with free boundary

conditions, only infinitesimal floppy modes are available to a periodic Maxwell lattice with

periodic boundary conditions.

Let us consider a couple of simple illustrative examples of the Maxwell counting rule.

The first is a two-square frame consisting of bonds connecting N = 6 sites. When the frame

contains Nb = 7 bonds positioned as shown in Fig. 1.1(a), it has N0 = 2 × 6 − 7 = 5 zero

modes and M = 5 − 3 = 2 floppy modes, one for each square plaquette. When an extra

diagonal bond is placed in the left square (Fig. 1.1(b)), it becomes rigid (N0 = 2× 4− 5 = 3

and M = 3−3 = 0), while the right square remains floppy; the entire frame has only that one

floppy mode: M = 2× 6− 8− 3 = 1. With diagonal bonds placed in both square plaquettes

(Fig. 1.1(c)), the entire frame becomes rigid. In the three preceding cases, there are no

redundant bonds, and, therefore, the simple Maxwell count (without needing to consider
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Figure 1.1: Two-square frames consisting of bonds connecting N = 6 sites. (a) has 7 bonds
and two floppy modes, as indicated by the dashed bonds, (b) has 8 bonds and one floppy
mode, and (c) has 9 bonds and no floppy modes – it is entirely rigid. Note that, in these
cases, each addition of a bond has removed one floppy mode. (d) also has 9 bonds, but
the extra bond has been redundantly placed in the left square plaquette, creating a state of
self stress, as indicated by the arrows on the bonds. Therefore, according to the generalized
Maxwell counting rule, there is still one floppy mode, corresponding to the right square
plaquette.

states of self stress) suffices. If, however, the final diagonal bond is also placed in the left

square (Fig. 1.1(d)), the right square becomes floppy even though the number of bonds in the

frame is the same as in the previous case. This is because the outer bonds of the left square

can be placed under tension (compression) and the inner diagonal bonds under compression

(tension) with magnitudes such that the net forces on all sites are zero – hence, the frame has

a state of self stress, and Ns = 1. Then, according to Eq. (1.1.5), M = 2× 6− 9 + 1− 3 = 1.

A second example, of particular relevance to the study of lattices, as we will see, is a set

of sites connected by a straight line of parallel bonds under periodic boundary conditions. A

state of self stress exists in this configuration: there are no forces on any of the sites when all

the bonds are under either equal tension or equal compression. This state of self stress and,

consequently, the extra floppy mode, are removed when the straight line is eliminated by,

for instance, changing the bonds to a “zigzagged” configuration. Thus, in a lattice, there is

one additional floppy mode for each straight line of bonds, and that floppy mode is removed

by any modification of the lattice that eliminates those straight lines.

Maxwell’s counting analysis has been applied to a number of systems, including rigidity

percolation [19–22], jamming of packed spheres [23–26], biopolymer networks [9, 27, 28], and
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beyond. For instance, let us consider rigidity percolation, which describes the transition of

a system to (from) a rigid state with the addition (dilution) of bonds, in a two-dimensional

central-force triangular lattice. If all bonds are present, the coordination number is 〈z〉 = 6 >

2d = 4. As expected, this lattice is completely rigid. If we retain bonds with a probability p,

however, the lattice is diluted, and the average coordination number becomes 〈z〉 = 6p. For a

sufficiently large value of p, the lattice should become floppy. Mean field as well as numerical

analyses have shown that this occurs at the critical value pc ≈ 2/3, which is precisely the

value that is predicted by Maxwell counting, since, in this case, 〈z〉 = 4, the Maxwell critical

point for two-dimensional systems.

Granular matter, which consist of particles that interact repulsively only when touching

and are of macroscopic scale so that thermal fluctuations are negligible, is one of a class of

disordered materials that undergo a jamming transition as the packing fraction, φ, of the

system is increased. Granular materials can be approximately modeled as frictionless disks

or spheres1 in two or three dimensions, respectively, which interact via finite-range repulsive

pair potentials as governed by their diameters. For small packing fractions, the particles are

free to flow in response to any applied stresses without overlapping with each other, and

the systems behaves as a fluid. Above a critical density, φJ , which occurs at the so-called

Point J , each particle (aside from a small number of rattlers) is held in mechanically-stable

equilibrium positions by its neighbors, and the system becomes jammed – it is able to

withstand small stresses without deforming irreversibly. This jamming transition can be

characterized by the order parameter 〈z〉. Below the critical point, there are no overlaps,

and 〈z〉 = 0. Numerical simulations have shown that at the critical point, the coordination

number jumps discontinuously from 0 to zc = 2d, in accordance with Maxwell counting, and

1Note that this is merely an approximation. At macroscopic scales, in particular, granular materials are
frictional, though on colloidal scales, the frictionless approximation is valid. Granular materials have also
been studied using frictional constituents, which leads to interesting phenomena such as shear jamming [29]
at lower packing fractions than the critical value φJ we discuss here.
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Figure 1.2: Examples of floppy modes for two-dimensional critical lattices. The left column
corresponds to finite floppy modes in the (top) nearest neighbor (NN) square lattice and the
(bottom) NN kagome lattice. In particular, the floppy mode for the NN kagome lattice is
the uniform twisting mode that we will be considering further. Both of these deformations
cost no energy as they do not change the length of the NN bonds. These finite floppy modes
only apply under free boundary conditions. The right column corresponds to infinitesimal
floppy modes. These floppy modes exist even under periodic boundary conditions. Note that
the include of next-nearest-neighbor (NNN) bonds would gap these modes, as they would
change the length of the NNN bonds.

that above the critical packing fraction,

∆z ≡ 〈z〉 − zc ∼ (∆φ)1/2, (1.1.7)

where ∆φ ≡ φ− φJ [30–32].

1.1.2 Examples of critical lattices

In this section, we introduce three simple two-dimensional periodic lattices that, when

only consisting of sites joined by nearest-neighbor bonds, are Maxwell lattices, with z =

2d = 4.
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1.1.2.1 The square lattice

The nearest-neighbor square lattice has a unit cell consisting of a single site with z = 4

neighbors; therefore, it has a phonon spectrum that consists only of 2 acoustic phonon bands

and no optical phonon bands. Because the square lattice contains straight lines in orthogonal

directions, each line is a state of self stress for a periodic lattice: Ns = Nx +Ny, where there

are Nx (Ny) sites in the x (y) direction. Therefore, since the nearest-neighbor (NN) square

lattice is a Maxwell lattice, there are also N0 = Nx + Ny zero modes, where the trivial

zero modes are associated with q = 0 and are states of infinitesimal uniform shear, and the

non-trivial zero modes are infinitesimal floppy modes in which any row or column is rigidly

displaced (Fig. 1.2). These zero modes lie along the qx and qy axes of the first Brillouin

Zone (1BZ), from one edge to the other. When next-nearest-neighbor bonds are added in,

all floppy modes are removed, and the phonon spectrum becomes gapped everywhere except

at q = 0.

1.1.2.2 The kagome lattice

The nearest-neighbor kagome lattice has a unit cell consisting of three sites, each with

z = 4 neighbors; therefore, it has a phonon spectrum that consists of 2 acoustic phonon bands

and 4 optical phonon bands. The kagome lattice contains straight lines along three symmetry

directions; taking Nx = Ny for simplicity, we can determine that there should be 3Nx states

of self stress along the symmetry directions and, consequently, the same number of zero

modes along those same lines. Just as above, each non-trivial zero mode is an infinitesimal

floppy mode corresponding to microrotations of triangles along the corresponding straight

line (Fig. 1.2). Adding next-nearest-neighbor (NNN) bonds gaps the lowest mode and all

other modes except for the two zero modes remaining at q = 0.
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1.1.2.3 The twisted kagome lattice

The twisted kagome lattice is constructed from the kagome lattice by rotating all the

upward-facing triangles uniformly by a twisting angle α, which corresponds to the zero

mode at point Γ (Fig. 1.2). In this case, the straight lines of the untwisted kagome lattice

become zigzagged and, therefore, unable to sustain any states of self stress. This leaves only

the two q = 0 states of self stress so that the lines of floppy modes of the untwisted kagome

lattice have been lifted without the need for NNN bonds. The finite nearest-neighbor twisted

kagome lattice is uniformly compressed by a factor of cosα in each direction – the volume of

the unit cell is equal to 2
√

3a2 cos2 α for NN bonds fixed at length a. Since the volume of the

NN lattice can change without changing the length of any NN bonds – and, hence, without

any energy cost – the bulk modulus B = 0 for the twisted kagome lattice. Furthermore,

it contract isotropically: any contraction undergone in one direction will also be undergone

in the orthogonal direction. This corresponds to the property of being auxetic, or having a

negative Poisson’s ratio. This, coupled with the fact that B = 0, means that the twisted

kagome lattice is maximally auxetic – it has a Poisson’s ratio of −1. Adding NNN bonds

stabilizes the lattice, yielding a finite bulk modulus.

1.2 Self-assembly of open structures

Self-assembly is a process by which constituent components of a system autonomously

organize into ordered patterns or structures due to the nature of interactions among the com-

ponents, obviating the need for tedious and difficult top-down manipulation [33, 34]. Self-

assembly is ubiquitous in nature: all biological entities, from cell membranes and individual

cells to supremely complex multicellular life are indeed self-assembled. In non-biological con-

texts, self-assembly has been implemented with building blocks on various scales, including

atoms, molecules, macromolecules, and colloidal particles, and there is a growing focus on

the role of shape and interaction anisotropy in creating novel structures [35, 36].
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We will focus on so-called static self-assembly, in which the final structure is a global

or local equilibrium state. Frequently, self-assembly is a purely spontaneous process in

which the associated change in free energy is negative throughout – though it is possible

that self-assembly may require overcoming an initial energy barrier. In some instances, the

spontaneous self-assembly process is driven by a decrease in energy (such as with capillary

interactions, as we will discuss); in many others, the process is due to an increase in entropy.

In the latter case, it may seem counterintuitive that the entropy of the system has increased

since most self-assembled structures are more “ordered” than the initial “disordered” mixture

of the individual components. However, as in the cases of the isotropic to nematic transition

of thin rods as well as in the crystallization of hard spheres, we observe that the loss of

orientational or positional entropy due to ordering is more than compensated by the increase

in translational entropy due to an increase in available space per particle [37].

The simplest primary building block that can be used in self-assembly are isotropic

spherical colloids. Using these constituents yielded ordered structures with simple symme-

tries and high packing fractions, such as face-centered cubic, hexagonal close-packed, and

body-centered cubic. Over the past decade, however, there have been significant advances

made in particle synthesis that have led to a variety of anisotropic particles, both in shape

and chemical heterogeneity. Some examples include cubes, triangles, tetrahedra, rods, and

stars, as well as Janus and patchy particles of various shapes [36]. These anisotropies can pro-

duce highly-tuned and directional particle interactions that lead to the formation of specific

desired structures with novel properties.

One particular aim of this directed self-assembly with anisotropic particles is the for-

mation of open structures, which consist of ordered arrangements of their constituents that

result in low packing fractions and open spaces between them. The openness of the struc-

ture enables fluctuations and deformations that are not accessible to close-packed structures.

Open structures are known to exist in nature and have also been artificially engineered; they

exhibit a fascinating array of properties, such as negative Poisson’s ratio, negative ther-
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mal expansion, and tunable topological mechanical properties, that typically do not occur

in more conventional materials. In connection with our discussion on lattices, the kagome

family of lattices consists of open lattices that share many of these unique material aspects.

Necessarily, open structures have low coordination numbers and, therefore, are close to

the point of mechanical instability. Consequently, the constituent components must be de-

signed in such a way that ensure stabilized directional bonding, such that the open structures

do not collapse into close-packed assemblies. In the remainder of this section, we will intro-

duce two different techniques, with differing constituent components, that can be used to

self-assemble stable open structures, which we will expound upon in Chapters III and IV.

1.2.1 Janus particles

Janus particles are named after the two-faced Roman god Janus, as they both share the

characteristic of having two distinct and opposing faces [38]. Janus particles are nano- and

micro-scale colloidal particles with differing surface chemical compositions on their two sides.

Even without considering self-assembly, this anisotropy has interesting applications: for

instance, micron-sized spherical polysterene beads with a thin layer of platinum deposited on

one hemisphere placed in an aqueous hydrogen peroxide solution display monodirectional self-

propelled “swimming” trajectories [39], and biocompatible Janus polymeric nanoparticles

can carry both a hydrophobic drug and a hydrophilic drug in a single particle, allowing for

the effective delivery of two drugs with disparate solubility [40]. Janus particles can also be

fabricated in a variety of shapes, including spheres, ellipsoids, and cylinders, and disks, with

the functionalization axis either horizontal or vertical [41].

The asymmetric, directional interaction between Janus particles has been shown to in-

duce self-assembly of the particles into clusters [42], staggered one-dimensional chains and

two-dimensional crystals in an AC electric field [43], and, theoretically, a rich variety of close-

packed crystalline phases for varying finite external pressure [44]. There is also another inter-

esting application of Janus particles in the form of ellipsoids that relates to the idea of mecha-
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nisms in mechanical metamaterials: they are found to self-assemble into orientationally- and

positionally-ordered finite-length one-dimensional fibers that can be reversibly elongated and

contracted through a sliding mechanism under the presence of an AC electric field [10].

In all of these examples thus far, the constituent components of self-assembly have been

diblock Janus particles, and all resultant assemblies have involved clustering or close-packing.

Recently, the use of triblock Janus particles, consisting of two hydrophobic attractive patches

on either end and a charged band in the middle, lying in an aqueous salt solution, which

screens the electrostatic repulsion, allowing for self-assembly by the short-range attractive

hydrophobic interaction, has been found to spontaneously self-assembly into a large-scale

two-dimensional kagome lattice [45, 46]. We will explore this further in Chapter III and

discuss how the triblock Janus particle can be modified to allow for the self-assembly of the

twisted kagome lattice.

1.2.2 Capillary interactions

A particle adsorbed to an interface between two immiscible fluids deforms the interface

around itself by imposing a boundary condition on the height of the interface at the three-

phase contact line, where the interface between the two fluids meets the particle surface. The

deformation of the interface away from its equilibrium state (for the case of no background

curvature, this is a flat interface) creates excess interfacial surface area. Since interfacial

energy is directly proportional to its area, where the proportionality constant is the surface

tension, this corresponds to excess interfacial energy. If there is a second particle in the

vicinity of the first particle, the nature of the resultant interface-mediated capillary force

between the two particles – that is, whether it is attractive or repulsive – is determined

entirely by whether the excess area decreases (attractive) or increases (repulsive). For two

millimeter-scaled particles with circular horizontal cross-sections, the interface will deform

non-negligibly and isotropically (this is what will later be termed as a monopole term) due

to gravitational forces; therefore, the interface deformation is in the same direction for both
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particles so that the particles will want to move toward each other in order to minimize

the excess interfacial area. If there are numerous particles, they will attract one another

and ultimately clump together into an ordered, close-packed structure. The phenomenon is

surely familiar to many – it is known as the “Cheerios” effect, as individual Cheerios floating

on milk tend to clump together after some time.

For micron-scaled particles, however, gravitational effects are typically negligible and,

thus, there should seemingly be no interface deformation and resultant capillary assembly.

Interestingly, however, it has been observed in experimental systems that interface deforma-

tions in the form of undulations around the contact line do in fact occur due to anisotropic

particle shape, surface roughness, and chemical inhomogeneity. The effect of this is that, for

a given particle anisotropy, there will be regions around the particle where the interface de-

forms upwards – which we will consider to be a positive capillary charge – and other regions

where the interface deforms downwards – a negative capillary charge (of course, the entirety

of the deformation occurs in such a way that the particle remains in mechanical equilibrium).

Particles will attract one another when they are oriented such that like capillary charges are

pointing towards each other, and will repel one another when unlike charges are lined up

instead. Furthermore, the capillary interaction is strongest where the deformation is most

significant. In the case of a cylindrical particle with a small radius-to-length aspect ratio

lying with its long axis parallel to the interface, the interface necessarily deforms much more

at the ends than along the sides of the cylinder in order to satisfy mechanical equilibrium;

therefore, end-to-end assembly is much more favorable than side-to-side assembly in a system

of these cylindrical particles.

Thus, for a system of particles with undulating contact lines, the particles will assume

energetically-favorable relative orientations and inter-particle distances to minimize the ex-

cess interfacial surface area. By expediently selecting specific particle shapes and associated

design parameters, capillary interactions can be utilized to promote self-assembly of these

particles into extended regular open structures, as desired. In particular, thin polygons such
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as triangles are well-suited for the self-assembly of open lattices if the anisotropic interac-

tions can be biased to favor tip-to-tip capillary interactions over side-to-side (or tip-to-side)

interactions, since the latter would result in a close-packed structure.

1.3 Organization of the dissertation

There are two general questions that have motivated the various works contained in this

dissertation. First, what is the effect of thermal fluctuations on critical mechanical structures

and mechanical instability? And second, how can we employ various self-assembly techniques

to create mechanical metamaterials with novel properties. Both of these are rather large in

their scope, and will require significant study by a number of researchers from many different

facets and viewpoints, but we have attempted to add to the general understanding of these

concepts for some specific systems.

In Chapter II, based on [47], we study the finite-temperature buckling transition of

an extensible rod by analyzing fluctuation corrections to the elasticity of the rod using a

continuum model. We find that, in both two and three dimensions, thermal fluctuations

delay the buckling transition. We also verify our theoretical prediction of the phase diagram

with Monte Carlo simulations using a discrete model for the rod.

In Chapter III, we present an analytic study of the finite-temperature rigidity transition

for the kagome lattice. Our model exhibits a zero temperature continuous twisted-untwisted

transition as the sign of the next-nearest-neighbor spring constant changes. At finite tem-

perature, we show that the divergent contribution of floppy modes to the vibrational entropy

renormalizes this spring constant, resulting in a first-order transition. We also propose an

experimental manifestation of such open lattices and the associated transition in the system

of self-assembling tri-block Janus particles.

In Chapter IV, we present the experimental findings, from our collaborators Joseph

Ferrar and Michael Solomon, of capillary-driven binding between thin, equilateral triangular
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microprisms adsorbed to a flat air-water interface, where physical bowing of the prisms

is observed, leading to tip-to-tip or tip-to-side-midpoint binding events dependent on the

relative bowing polarities of the prisms. We present the results of numerical simulations of

these triangular particles at an interface, including individually and in pairs. We show how

particle bowing can yield two distinct binding events and connect it to theory in terms of a

capillary multipole expansion. Finally, we use our numerical simulation results to compute

dilute-binding trajectories and compare them to experiment.

Finally, in Chapter V, we summarize the work in this dissertation and discuss relevant

future research directions.
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CHAPTER II

Finite-temperature buckling of an extensible

rod

2.1 Introduction

When a thin elastic rod is under compression on its two ends, it experiences an instability

towards buckling as the compression exceeds a critical value; this is the classical Euler buck-

ling problem [48, 49]. This critical compression is determined by the competition between

the compression and bending energy costs of the rod. The buckling instability plays an im-

portant role in many problems in fields ranging from physics to engineering and biology [27,

50–54].

More recently, experimental studies on buckling phenomena at small length scales, such

as the buckling of stiff or semiflexible polymers, nano-filaments, and nanotubes, have been

enabled by advances in various technologies [55–59]. These studies may lead to novel devices

that utilize transitions between multiple mechanical ground states. At these small scales,

it is necessary to include effects of thermal fluctuations, which have been shown to lead

to interesting phenomena near mechanical instabilities in various systems [13, 46, 60–64].

Such thermal-fluctuation effects have been theoretically investigated, and phenomena such

as corrections to the projected end-to-end length, shifts in the critical compression, and
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softening of the buckling transition have been discovered [65–72]. However, most of these

theoretical studies on how fluctuations renormalize the buckling transition have focused on

the case of inextensible polymers and have employed the worm-like chain model, which

assumes that the polymer has a constant contour length. This is an idealized limit where

the rod cannot be stretched or compressed. For real rods, although the resistance against

stretching is much stronger than that against bending, it is worthwhile to discuss whether

the extensibility of the rod changes what is known about buckling at finite temperature.

In this chapter, we investigate finite-temperature buckling using a model elastic energy

that allows for rod extensions. In this model, the end-to-end distance is the control parameter

(fixed-strain ensemble), and the rod is allowed to have transverse fluctuations, which both

stretch/compress and bend the rod. By integrating out higher-momentum modes which

couple to the first fundamental mode through anharmonic terms, we calculate fluctuation

corrections to the rigidity and analyze the buckling transition of the renormalized theory. We

find that, in both two and three dimensions, thermal fluctuations shift the buckling transition

to larger-magnitude values of compression. Our Monte Carlo simulations verify the analytic

phase diagram we obtain (Fig. 2.1). In addition, we also analytically calculate the effective

force of the rod, showing that, close to the buckling transition, thermal fluctuations are

prominent and contribute an O(
√
T ) correction to the effective force.

It is worth pointing out that, in the presence of thermal fluctuations, the rod is never

completely “straight.” The physical meaning of having a “straight-buckled” transition is

that the mean-square transverse fluctuations of the rod (e.g., the mean-square transverse

displacement of the midpoint of the rod) change from zero in the straight phase to a nonzero

value in the buckled phase. In other words, the elastic free energy minimum of the rod

changes from the straight configuration to the buckled configurations.

This chapter is organized as follows: we construct the model and discuss the analytic

theory in Sec. 2.2 and present the Monte Carlo simulations in Sec. 2.3. Then, in Sec. 2.4,

we summarize our results and discuss relations to other studies.
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Figure 2.1: (a) Illustration of an extensible rod under compression. (b) Predicted phase
diagram for two-dimensional finite-temperature buckling of an extensible rod in the plane
of normalized compression and temperature (as defined in Sec. 2.2). The thick black curve
represents the phase boundary between the straight (unshaded) and the buckled (shaded
with vertical lines) phases. The dashed curve denotes the boundary of the critical regime
(light blue region) where the thermal-fluctuation correction to the effective force is of O(

√
T ).

2.2 Model and analytic theory

2.2.1 The extensible-rod Hamiltonian with anharmonic terms

We consider a thin elastic rod with rest length Lrest embedded in d dimensions, as shown

in Fig. 2.1a. Here, L0 is the end-to-end distance, or projected length, of the rod, which is the

control parameter of our theory, and L is the instantaneous contour length in the presence

of thermal fluctuations.

Assuming that the rod is made of a homogeneous material with Young’s modulus E, its

stretching rigidity g and bending rigidity κ are given by

g = πa2E/Lrest,

κ = EI = (π/4)Ea4, (2.2.1)

where a is the radius of the rod, and I is the moment of inertia of the cross-section. Through-

out this work, we require that the relative strengths of the (mechanical) rigidities against
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bending and against stretching or compression of the rod satisfy

k⊥
k‖
∝ κ

gL3
rest

∝
(

a

Lrest

)2

� 1, (2.2.2)

where k⊥ and k‖ are the corresponding longitudinal and transverse spring constants, respec-

tively, meaning that it is much more energetically costly to stretch/compress the rod than it

is to bend the rod. This is satisfied by most microscopic rod-like objects, including polymers,

nanowires and nanotubes [71].

The instantaneous stretching and compression elastic energy of the rod can be written

as

Usc =
1

2
g(L− Lrest)

2

=
1

2
g
[
(L− L0) + (L0 − Lrest)

]2
. (2.2.3)

We define τ to be the force applied to the ends of the straight rod at T = 0, when there are

no thermal fluctuations (i.e., L = L0):

τ ≡ g(L0 − Lrest), (2.2.4)

so that τ > 0 corresponds to stretching of the rod, while τ < 0 corresponds to compression.

We proceed to derive the Hamiltonian of the rod for a given compression τ and an

instantaneous fluctuation configuration, which is described by

r(xd) = (x1, . . . , xd−1, xd) ≡ (x⊥, xd),

0 ≤ xd ≤ L0, (2.2.5)

where xd parametrizes the rod using the projected end-to-end distance, r(xd) is the position
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of the rod at xd, and x⊥ denotes the transverse displacement of the rod. We define derivatives

π(xd) ≡
dx⊥

dxd
=

(
dx1

dxd
, · · · , dxd−1

dxd

)
, (2.2.6)

where π is a one- (two-) dimensional vector for the case of a rod embedded in two (three)

dimensions.

The change in the length of the rod due to thermal fluctuations can be expressed in terms

of the π field as

L− L0 =

L0∫
0

dxd

(√
1 + |π|2 − 1

)
. (2.2.7)

Using this, we can then write the stretching and compression elastic energy (2.2.3) as

Usc =
τ 2

2g
+ τ

L0∫
0

dxd

(√
1 + |π|2 − 1

)
+
g

2

 L0∫
0

dxd

(√
1 + |π|2 − 1

)2

. (2.2.8)

The bending energy of the rod is given by

Ub =
κ

2

L∫
0

ds |dst̂(s)|2, (2.2.9)

where s labels the arc length. We assume the bending rigidity to be homogeneous along

the arc length, given that we are considering the regime where stretching is much more

energetically costly than bending. Here, t̂(s) is the unit tangent vector at s and |dst̂(s)| is

the local curvature. Ub can also be expressed in terms of π(xd):

Ub =
κ

2

L0∫
0

dxd

[
|π′|2

(1 + |π|2)3/2
− (π · π′)2

(1 + |π|2)5/2

]
, (2.2.10)
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where π′ is shorthand for dπ/dxd and we used

t̂(xd) =
dr(xd)/dxd
|dr(xd)/dxd|

=
(π(xd), 1)√
1 + |π(xd)|2

(2.2.11)

and

ds =
√

1 + |π|2dxd. (2.2.12)

The total Hamiltonian of the rod is a sum of both the stretching/compression and the

bending contributions,

H = Usc + Ub. (2.2.13)

The Hamiltonian can then be written as a series expansion up to O(π4),

H = H0 +H2 +H4, (2.2.14)

where

H0 =
τ 2

2g
(2.2.15)

is the energy of the straight rod with no fluctuations (L = L0),

H2 =
1

2

L0∫
0

dxd
(
τ |π|2 + κ|π′|2

)
(2.2.16)
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contains terms quadratic in π, and

H4 =
1

2

L0∫
0

dxd

[
−τ

4
|π|4 − 3κ

2
|π|2|π′|2 − κ(π · π′)2

]

+
g

8

L0∫∫
0

dxddx
′
d |π(xd)|2|π(x′d)|2 (2.2.17)

includes terms quartic in π. Here π′ is shorthand notation for dπ/dxd. This Hamiltonian

H includes contributions from both stretching and compression as well as bending of the

rod. The last term in H4, coming from g(L − L0)2/2, appears to be nonlocal; however, as

we shall see, it simply leads to a π4 term in Fourier space with its momentum sum limited

to a special channel.

Note that this formulation with fixed end-to-end distance is the same as the one used in

the classical Euler buckling problem in textbooks [49]. A similar formulation has also been

used in Refs. [67, 68], which focus on quantum aspects of buckling. Additionally, because

we are interested in the case where the rod is much more resistant to stretching than it is to

bending, the stretching can be taken to be small and highly homogeneous throughout the

rod. This allows for the approximation to be made that the parameters κ and g are uniform

along the rod, as in Ref. [73].

2.2.2 Classical (T = 0) Euler buckling

The T = 0 buckling transition is obtained by analyzing the stability of the quadratic

coefficient of the Hamiltonian H, while the T = 0 configuration is determined by the location

of the minimum of H. It is convenient to analyze this Hamiltonian in momentum space.

To obtain the Fourier transform of this Hamiltonian, we need to pay special attention

to the specific boundary conditions of the problem. Here, π has to be a real-valued field,

and x⊥(xd) (the perpendicular component of r, as defined in Eq. 2.2.5) has to vanish at the

two ends, xd = 0 and xd = L0. This limits the Fourier series of x⊥(xd) to sin(nπxd/L0)

23



basis functions, and the Fourier series of π(xd) to cos(nπxd/L0) basis functions. In order to

work with the more convenient basis of exponential functions, we necessarily extend the rod

to xd ∈ [−L0, L0] to obtain periodic boundary conditions from the physical fixed boundary

conditions and limit π(xd) to be real-valued even functions on this interval (correspondingly,

x⊥(xd) is limited to real-valued odd functions), so that the value of π(xd) for −L0 < xd < 0

is determined by

x⊥(xd) = −x⊥(−xd)

π(xd) = π(−xd). (2.2.18)

Therefore, we can write the Fourier transform as

π(xd) =
1

2L0

∑
q

πqe
iqxd , (2.2.19)

πq =

L0∫
−L0

dxd π(xd)e
−iqxd , (2.2.20)

with

q =
nπ

L0

, n ∈ Z \ {0}. (2.2.21)

Because π(xd) is real and even, we have constraints on πq that

πq = π−q = π∗q. (2.2.22)

Therefore, positive and negative q values do not constitute independent modes.

The quadratic-order Hamiltonian, which is sufficient to ascertain the stability of the

system, can then be written as

H2 =
1

8L0

∑
q

(τ + κq2)π2
q, (2.2.23)
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where q is given by Eq. (2.2.21). To reiterate, although the sum seemingly counts excess

modes by including both positive and negative values of q, these modes are not actually

independent; the above sum is even in q, and the number of independent modes is the same

as in the case of expanding H in terms of sin(nπxd/L0). It is straightforward to extract the

T = 0 Euler buckling condition from this equation. The magnitude of the lowest allowed

momentum mode is q1 = π/L0, since the q = 0 mode is excluded by the above fixed-end

boundary conditions. In order for the Hamiltonian to have a stable equilibrium at πq = 0,

its matrix representation must be positive definite – all its eigenvalues must be positive:

τ + κq2 > 0 ∀q. (2.2.24)

Applying this condition to the lowest mode, we obtain the critical compression

τc(0) = −κπ
2

L2
0

, (2.2.25)

where the 0 in parentheses indicates that this is a T = 0 result. Recall that τ < 0 corresponds

to compression of the rod, so that for any compression τ > τc(0) (i.e., compression with a

magnitude less than that of the critical value), the rod remains straight.

For τ < τc(0), on the other hand, the harmonic-level Hamiltonian is no longer stable at

π = 0. The number of modes that have become unstable depends on the value of τ ; for

(n + 1)2τc(0) < τ < n2τc(0), the first n modes are unstable, as each of their coefficients in

H2 is negative. Thus, for increasingly negative values of τ , it is possible to have various

metastable states corresponding to higher orders of buckling; for any value of τ < τc(0),

however, the most energetically favorable buckled configuration is the n = 1 mode. In this

chapter, we will only be concerned with analyzing the instability of the first momentum mode

when considering the buckling transition; therefore, our discussion in the buckled phase will

be restricted to the case of 4τc(0) < τ < τc(0), since the second mode becomes unstable for

τ < 4τc(0). In this range of compression values, the new stable state – corresponding to the
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n = 1 buckled phase – is fixed by the anharmonic terms in H4 with only π1 nonzero.

The value of π1 is determined by minimizing the total Hamiltonian with both π2 and π4

terms. Taking πq = 0 for all but the first mode (|q| = π/L0), the Hamiltonian becomes

H = H0 +
τ − τc(0)

4L0

|π1|2 +
−3

2
τ + 5τc(0) + gL0

32L3
0

|π1|4. (2.2.26)

The minimum-energy configuration is determined by

∂H

∂π1

∣∣∣∣
π̂1

= 0, (2.2.27)

where π̂1 denotes the mode corresponding to this minimum-energy configuration. Thus, we

find that

|π̂1| =

√
4L2

0(τc(0)− τ)

−3
2
τ + 5τc(0) + gL0

. (2.2.28)

Applying the limit of stretching stiffness much greater than bending stiffness [Eq. (2.2.2)]

such that gL0 � |τc(0)|, |τ |, we obtain

|π̂1| =

√
4L0(τc(0)− τ)

g
. (2.2.29)

This leads to the T = 0 equilibrium buckled configuration

|x̂⊥(xd)| =
1

π

√
4L0(τc(0)− τ)

g
sin

(
πxd
L0

)
. (2.2.30)

In two dimensions, where x⊥ is simply a number, there are two degenerate equilibrium

buckled configurations corresponding to ±|x̂⊥(xd)|. In three dimensions, however, there are

an infinite number, consistent with a U(1) symmetry corresponding to rotation about the

xd-axis.
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The energy of this equilibrium buckled configuration is

H =
τ 2

2g
− (τc(0)− τ)2

2g
=

2ττc(0)− τc(0)2

2g
, (2.2.31)

indicating a constant force at T = 0 in the buckled phase

f = g
∂H

∂τ
= τc(0). (2.2.32)

2.2.3 Fluctuation corrections to stability and finite-temperature

buckling

The finite-temperature phases are determined by the minima of the free energy of the rod,

which includes entropic contributions. At finite temperature, thermal fluctuations excite all

modes of the rod, and these fluctuations renormalize the stability of the rod against buckling.

In order to analyze this entropic effect on the buckling transition, at which the first mode q1

becomes unstable, we follow a procedure similar to that of momentum shell renormalization.

We first separate the first modes from the higher-momentum fluctuation modes:

π = π<
q + π>

q , (2.2.33)

where

π<
q =


πq if |q| = q1

0 if |q| > q1

and π>
q =


0 if |q| = q1

πq if |q| > q1

. (2.2.34)

It follows that π(xd) = π<(xd) + π>(xd). These two components are decoupled in the

quadratic Hamiltonian because they are nonzero over disjoint momentum ranges and, there-

fore, orthogonal, so

H2 = H2(π<) +H2(π>). (2.2.35)

27



In the quartic-order Hamiltonian H4, on the other hand, they are coupled via cross terms.

The partition function can then be written as

Z =

∫
Dπ<Dπ> e−

1
T

(H0+H2(π<)+H2(π>)+H4(π<,π>))

=

∫
Dπ< e−F

<(π<)/T

=Z>
0

∫
Dπ< e−(H0+H2(π<))/T

〈
e−H4(π<,π>)/T

〉
>

(2.2.36)

where, in the second line, we define the Landau free energy

F<(π<) = H0 +H2(π<)− T ln

∫
Dπ> e−

1
T

(H2(π>)+H4(π<,π>)). (2.2.37)

This Landau free energy, with all other modes π> integrated out, determines the finite-

temperature stability of the first mode. This is because the resulting F<(π<) will include

terms quadratic order in π<,

F<
2 (π<) =

1

8L0

<∑
q

(τ̃ + κ̃q2)π2
q, (2.2.38)

with the original elastic parameters replaced by renormalized ones, which is subject to a

stability criterion similar to the one encountered in the T = 0 analysis. Therefore, to

facilitate the calculation of integrating out π>, we have introduced the quantities

Z>
0 =

∫
Dπ>e−H2(π>)/T , (2.2.39)

which is the quadratic-order partition function of π>, and

〈
e−H4(π<,π>)/T

〉
>
≡ 1

Z>
0

∫
Dπ> e−

1
T

(H2(π>)+H4(π<,π>)). (2.2.40)
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Following a cumulant expansion, we can then write

〈
e−H4(π<,π>)/T

〉
>

= e−
1
T
〈H4〉>+ 1

2T2 (〈H2
4 〉>−〈H4〉2>)+O((H4/T )3), (2.2.41)

which yields additional terms in the exponential that can, therefore, be directly included

into the Landau free energy as

F<(π<) = H0 +H2(π<) + 〈H4〉> +
1

T

(
〈H2

4 〉> − 〈H4〉2>
)

+O
(
H3

4

T 2

)
. (2.2.42)

Since we are ultimately trying to deduce the effect of thermal fluctuations on the stability

threshold, we are interested in the corrections to the quadratic terms in |π<|. In the straight

phase, 〈πaπb〉 ∼ Tδab, meaning that 〈H4〉 ∼ T |π<|2 will provide an O(T ) correction to the

quadratic-order coefficients, while terms from 〈H2
4 〉/T will result in an O(T 2) correction.

Since we are doing a perturbative expansion in small fluctuations, which necessitates small

temperatures, we need only calculate 〈H4〉>.

The explicit form of H4 is given in Eq. (2.2.17), and here we replace π by π< + π>.

Expanding each term inH4 out, we have (note that we are using Einstein summation notation

over the d− 1 components of the π field)

−τ
8

L0∫
0

dxd 〈|π|4〉> = −τ
8

L/2∫
−L/2

dxd 〈πaπaπbπb〉>

= −τ
8

L0∫
0

dxd

[
π<a π

<
a π

<
b π

<
b + π<a π

<
a 〈π>b π>b 〉> + 4π<a π

<
b 〈π>a π>b 〉>

+ π<b π
<
b 〈π>a π>a 〉> + 〈π>a π>a π>b π>b 〉>

]

= −τ
8

L0∫
0

dxd

[
|π<|4 + 2(d− 1)|π<|2 1

(2L0)2

>∑
q

G0q + 4|π<|2 1

(2L0)2

>∑
q

G0q + 〈|π>|4〉>

]

= −τ
8

L0∫
0

dxd

[
|π<|4 + 2(d+ 1)|π<|2 1

(2L0)2

>∑
q

G0q + 〈|π>|4〉>

]
, (2.2.43)
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−3κ

4

L0∫
0

dxd 〈|π|2|∂xdπ|2〉> = −3κ

4

L0∫
0

dxd

[
|π<|2|∂xdπ<|2 + (d− 1)|π<|2 1

(2L0)2

>∑
q

q2G0q

+ (d− 1)|∂xdπ<|2 1

(2L0)2

>∑
q

G0q + 〈|π>|2|∂xdπ>|2〉>
]
,

(2.2.44)

−κ
2

L0∫
0

dxd 〈(π · ∂xdπ)2〉> = −κ
2

L0∫
0

dxd

[
(π< · ∂xdπ<)2 + |π<|2 1

(2L0)2

>∑
q

q2G0q

+ |∂xdπ<|2 1

(2L0)2

>∑
q

G0q + 〈(π> · ∂xdπ>)2〉>
]
,

(2.2.45)

and

g

8

L0∫∫
0

dxddx
′
d 〈|π(xd)|2|π(x′d)|2〉> =

g

8

L0∫∫
0

dxddx
′
d

[
|π<(xd)|2|π<(x′d)|2 + 〈|π>(xd)|2|π>(x′d)|2〉>

]

+
g

8

L0∫
0

dxd 2(d− 1)|π<(xd)|2
1

(2L0)

>∑
q

G0q.

(2.2.46)

In these equations,

G0q =
4L0T

τ + κq2
. (2.2.47)

Using the notation of Eq. (2.2.52), we can also write

1

4L2
0

>∑
q

G0q = 2T̄A(τ̄). (2.2.48)

Feynman diagrams corresponding to these terms are included in Fig. 2.2.

As mentioned previously, we are interested in extracting the contribution to the coeffi-

cients of the quadratic-order π< terms from 〈H4〉>. Collecting terms, and defining renor-

30



𝑎𝑎𝑎𝑎

𝑏𝑏 𝑏𝑏

𝑎𝑎
𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎

𝑏𝑏

𝑎𝑎 𝑎𝑎

𝑏𝑏 𝑏𝑏

𝑎𝑎 𝑎𝑎

𝑏𝑏 𝑏𝑏

𝑎𝑎 𝑎𝑎

𝑏𝑏 𝑏𝑏

𝑎𝑎𝑎𝑎

𝑏𝑏 𝑏𝑏

𝑎𝑎 𝑎𝑎

𝑏𝑏𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎

𝑏𝑏

𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎 𝑎𝑎

𝑏𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏

𝑎𝑎𝑎𝑎 𝑎𝑎

𝑏𝑏

𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎

𝜏𝜏

𝜅𝜅

𝜅𝜅

𝑔𝑔

Figure 2.2: Feynman diagrams corresponding to terms in 〈H4〉>. The diagrams are systemat-
ically divided into rows and columns: each row is associated with a single elastic parameter
that is the coefficient of the originating term in 〈H4〉>, while the columns specify which
elastic parameter’s renormalization the diagrams contribute to. Namely, the first column
presents the basic vertex diagrams, while the second and third columns list those that renor-
malize τ and κ, respectively. Each external leg corresponds to a π< field, and slashes denote
spatial derivatives with respect to xd. The various internal lines differentiate between the
interactions and are used for index bookkeeping.

malized elastic parameters τ̃ and κ̃ as the modified coefficients, we find

τ̃ = τ +
1

2
[−(d+ 1)τ + (d− 1)gL0]

1

(2L0)2

>∑
q

G0q − κ
[
1 +

3

2
(d− 1)

]
1

(2L0)2

>∑
q

q2G0q,

(2.2.49)

κ̃ = κ

{
1−

[
1 +

3

2
(d− 1)

]
1

(2L0)2

>∑
q

G0q

}
. (2.2.50)
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The 1
(2L0)2

>∑
q

q2G0q term appears to have an ultraviolet divergence, but it actually vanishes.

This is because it originates from quartic-order terms in the bending energy (see Eq. (2.2.17))

where the spatial derivatives are on the legs that combine to form the loops in the Feynman

diagrams. This corresponds to a factor of |π′|2, which is the leading-order term in the

gradient expansion of the difference in orientation between neighboring segments on the rod.

We can show this by restoring the full form of this factor for a segmented rod,
∑

xd
|π(xd)−

π(xd + `0)|2, where `0 is the projected length of each segment, and writing it in momentum

space. Doing so, we obtain a factor of 1 − cos(q`0) rather than only the leading-order

term q2. Here, q = nπ/N`0, so that q`0 = nπ/N . Taking the continuum limit where

N → ∞, the factor 1 − cos(q`0) is highly oscillatory and the thus the whole expression,

1
(2L0)2

>∑
q

[1− cos(q`0)]G0q vanishes.

Simplifying these equations, we obtain expressions for the renormalized elastic parame-

ters,

τ̃ ≡ τ +A(τ̄)T̄ |τc(0)| [(d− 1)ḡ + (d+ 1)τ̄ ]

κ̃ ≡ κ−A(τ̄)T̄ (3d− 1)κ, (2.2.51)

where we have defined the dimensionless quantities

T̄ ≡ T

L0|τc(0)|

ḡ ≡ gL0

|τc(0)|

τ̄ ≡ τ

τc(0)
> 0, (2.2.52)

and

A(τ̄) ≡
∞∑
n=2

1

n2 − τ̄
=

3τ̄ − 1

2(τ̄ − 1)τ̄
− π

2
√
τ̄

cot π
√
τ̄ . (2.2.53)
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In accordance with the range of τ we are considering in this work, 0 < τ̄ < 4. As will be

justified shortly, close to the T = 0 buckling transition, we can expand A(τ̄) in powers of

τ̄ − 1,

A(τ̄) =
3

4
+

(
π2

12
− 11

16

)
(τ̄ − 1) +O[(τ̄ − 1)2]. (2.2.54)

The magnitude of the effective compression, τ̃ , as well as the effective bending rigidity,

κ̃, both decrease with increasing temperature. It is easy to understand the decrease in τ̃ :

thermal fluctuations tend to increase the instantaneous arc length of the rod from its T = 0

straight-rod length so that the rod effectively feels less compression. In previous works [69,

74], the fluctuation correction to κ̃ was shown to have a prefactor of (d − 2) instead of

(3d − 1) as we have here. The difference arises from the fact that the rod is assumed to

be inextensible and, therefore, is modeled as a worm-like chain in these previous papers,

whereas it is extensible in our model. Consequently, it was necessary to reparametrize the

rod in terms of xd rather than the arc length, s, modifying the form of the bending energy.

The buckling transition occurs when the first mode becomes unstable, which is when

τ̃ + κ̃q2
1 = 0. (2.2.55)

This condition can be solved to obtain a critical temperature separating the straight

(T̄ > T̄c) and buckled (T̄ < T̄c) phases of the rod for a given compression τ̄ > 1,

T̄c(τ̄) =
τ̄ − 1

[(d− 1)ḡ + (d+ 1)τ̄ − (3d− 1)]A(τ̄)
. (2.2.56)

The phase boundary in two dimensions determined by this equation is plotted as the solid

black line in Fig. 2.1. The three-dimensional version is shown in Fig. 2.3. In the limit that we

have been considering of stretching stiffness much greater than bending stiffness [Eq.(2.2.2)],
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we have ḡ � 1, so that we can write a simplified expression for the critical temperature,

T̄c(τ̄) =
τ̄ − 1

(d− 1)ḡA(τ̄)
→ 4 (τ̄ − 1)

3(d− 1)ḡ
. (2.2.57)

The expression following the arrow is the limiting case true for sufficiently low temperatures

such that ḡT̄ � 1, since, as we can see from the initial equality in Eq. (2.2.57), that condition

necessitates that τ̄ − 1 � 1, as well. In that case, we can write the critical temperature to

leading order in τ̄ − 1, allowing us to use the zeroth-order term in the expansion of A(τ̄) in

Eq. (2.2.54).

This leading-order relation can be inverted to obtain an expression for the critical com-

pression for buckling at a finite temperature T ,

τc(T ) ' τc(0)

[
1 +

3(d− 1)

4
ḡT̄

]
. (2.2.58)

This clearly represents a critical compression that is of larger magnitude than the zero-

temperature critical value. In other words, the buckling transition is “delayed” by thermal

fluctuations.

2.2.4 Effective force

In this analysis, we have utilized the ensemble with fixed end-to-end distance L0. At

T = 0, taking the derivative of the Hamiltonian with respect to L0 yields that the force

on the rod is simply τ = g(L0 − Lrest) in the straight phase (with τ < 0 corresponding to

compressional force) and τc(0) in the buckled phase [Eq. (2.2.32)].

At finite T , we determine the effective force f through

f =
∂F

∂L0

=
∂τ

∂L0

∂F

∂τ
= g

∂F

∂τ
, (2.2.59)
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Figure 2.3: Predicted phase diagram for three-dimensional finite-temperature buckling of
an extensible rod in the plane of normalized compression and temperature. The thick
black curve represents the phase boundary between the straight (unshaded) and the buckled
(shaded with vertical lines) phases. The dashed curve denotes the boundary of the critical
regime (light blue region) where the thermal-fluctuation correction to the effective force is
of O(

√
T ).

with the free energy given by

F = −T lnZ = −T ln

∫
Dπ<e−F

<(π<)/T , (2.2.60)

where, as defined earlier, F< is the Landau free energy with only π> integrated out. It

is useful to note that f is calculating by taking the derivative of F with respect to the

compression τ , rather than by taking the derivative directly with respect to L0. This is

intentional, as the derivative with respect to L0 would also act on the prefactors of L0 in

the Fourier transform (or, equivalently, on the integration limits in real space), which would

introduce an ultraviolet divergence that scales linearly with the high-momentum cutoff.

Strictly speaking, the effective force f obtained via differentiation with respect to τ describes

the change of the free energy that occurs with changing the amount of compression τ while

keeping L0 constant.

35



T = 0.001

T = 0.0005

T = 0.0001

T = 0.00001

T = 1 × 10-8

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

-1.5

-1.0

-0.5

0.0

0.5

-τ

-
f

(a)

T = 0.001

T = 0.0005

T = 0.0001

T = 0.00001

T = 1 × 10-8

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
-1.5

-1.0

-0.5

0.0

0.5

-τ

-
f

(b)

Figure 2.4: Plots of the dimensionless effective force in both two (a) and three (b) dimen-
sions at various values of T̄ . Note that −f̄ = f/|τc(0)|. Negative values correspond to a
compressive force, while positive values correspond to a stretching force. The dots on each
curve indicate the transition point between the straight and buckled phases for each value
of T̄ . The T̄ = 0.001 curve in three dimensions does not have a dot as there is no phase
transition at that temperature; the rod remains in the straight phase.

The Landau free energy F<, as defined in Eq. (2.2.37), can be written to leading order

in T as

F< = H0 − T lnZ>
0 + b2T |π1|2 + b4T |π1|4, (2.2.61)

where Z>
0 is defined in Eq. (2.2.39). The coefficients b2 and b4, and the integral over π1,

are derived in App. A. We have only needed to retain terms to quadratic order in π> in

(2.2.61) because π> modes are stable at π> = 0; quartic-order terms in (renormalized) π1

are necessary, however, because the quadratic-order coefficient, b2, can become negative for

π1 – thus, higher-order terms in the potential are needed to evaluate the free energy.

As detailed in App. A, we find that thermal fluctuations reduce the compressional force

in the straight phase but enhance it in the buckled phase; these modifications are of order

T except very close to the transition for small values of ḡT̄ , where there is a decrease in the

compression of order
√
T , as shown in Fig. 2.4.
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2.3 Monte Carlo simulations

We perform Monte Carlo (MC) simulations in two and three dimensions to corroborate

our analytical results. The rod is discretized into N segments with fixed vertical length

`0 = L0/N along the xd-axis. The segments are allowed to have transverse fluctuations x⊥,j

and to, consequently, cause stretching or compression and bending of the rod, as discussed

in Sec. 2.2. The fixed boundary conditions necessitate that x⊥,0 = x⊥,N = 0.

The Metropolis algorithm is used in our Monte Carlo simulations, in which, at each MC

step, a segment is selected at random, and a random trial displacement in the transverse

direction is attempted. For a given rod under a certain compression, runs are performed

at various temperatures. We choose the transverse displacement of the middle segment,

|x⊥,N
2
|, to be our order parameter. In the straight phase |x⊥,N

2
| is governed by a Gaussian

distribution with its mean at 0, whereas in the buckled phase, the distribution of |x⊥,N
2
|

becomes double-well (in d = 2) or Mexican-hat (d = 3) with minima at

|x̂⊥,N
2
| = 1

π

√
4L0(τc(0)− τ)

g
. (2.3.1)

At the buckling transition, the distribution sharply deviates from Gaussian. To capture this

transition, we calculate the Binder cumulant of the distribution [75],

UL = 1−
〈|x⊥,N

2
|4〉

3〈|x⊥,N
2
|2〉2

. (2.3.2)

The value of UL decreases as the temperature is lowered and the system experiences the

straight-to-buckled phase transition. This decrease becomes increasingly sharp for progres-

sively larger systems, and the simultaneous crossing of Binder cumulant curves for various

system sizes determines the location of the critical temperature Tc.

To verify our phase diagrams in Figs. 2.1 and 2.3 via the crossing of the Binder cu-

mulant curves, we simulate rods containing 10, 12, and 14 segments (corresponding to
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Figure 2.5: Results of Monte Carlo simulations run with τ̄ = 1.3, 1.5, 1.7 in both two ((a)-(c))
and three ((d)-(f)) dimensions. For each value of τ̄ and in each dimension, three different
lengths were simulated. Each data point corresponds to the combined Binder cumulant value
of ten independent simulations run with identical parameters. The lines connecting the data
points explicitly illustrate that the Binder cumulant curves do indeed simultaneously cross
at, or very close to, the respective critical temperatures.

L0 = 1.0, 1.2, 1.4, respectively, so that `0 = 0.1 is kept fixed). As discussed in Sec. 2.2,

g = πa2E/Lrest, so to keep a and E constant across the various-sized rods (so that each rod

has the same cross-section and is made of the same materials), we take the values of g to be

g = 10.00, 8.34, 7.15, corresponding to the three choices of length. In addition, in accordance

with Eqs. (2.2.1) and (2.2.2), we take κ = 0.01/π2. With these parameters, for L0 = 1, we

have τc(0) = −0.01. We take τ̄ = τ/τc(0) = 1.3, 1.5, 1.7 and vary T to observe the transition.

For these three τ̄ values, with d = 2 and all other elastic parameters corresponding to L0 = 1,

Tc = 3.78 × 10−6, 6.03 × 10−6, 8.05 × 10−6, satisfying the requirement that the persistence

length lp ≡ κ/T ' 102 is much longer than the length of the rod L0, and, therefore, the

transverse fluctuations are small. This justifies the small π expansion we make.

The resulting UL curves from our MC simulations are shown in Fig. 2.5. Because Tc, as

given in Eq. (2.2.57), depends on the system size L0 through |τc(0)|, it is necessary to shift
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the UL curves by theoretical predictions of Tc(τ) to observe the crossing of the three curves

for the different system sizes. The crossing of the three UL curves for all three values of τ̄ in

both two and three dimensions verifies our theoretical prediction of the finite-temperature

buckling transition.

2.4 Conclusion and discussion

In this chapter, we used both analytic theory and MC simulations to investigate the

buckling of an extensible elastic rod at finite temperature. We find that, in both two and

three dimensions, buckling is delayed by thermal fluctuations, and near the transition, there

is a critical regime in which the fluctuation correction to the average compression force is of

order
√
T .

In comparing the two phase diagrams in Figs. 2.1 and 2.3, one can observe that the

straight-rod phase is more stabilized in three dimensions than in two dimensions. This can

be intuitively attributed to the fact that in higher dimensions, there are an increasing number

of transverse, soft directions in which segments in the straight rod can move compared to the

when the rod is buckled. Therefore, the straight rod is increasingly entropically protected,

as there are a larger number of accessible states.

Our analytic theory is a perturbative theory that applies to small fluctuations. This

requires that the dimensionless temperature T̄ � 1. This condition can be written in terms

of the persistence length lp = κ/T as Lrest/(π
2lp)� 1, which is satisfied by stiff (Lrest � lp)

and semiflexible (Lrest ∼ lp) polymers.

Our predicted phase diagrams can be compared to experimental observations of buck-

ling [55–59]. Physical rods have finite instead of infinitely large stiffness against extension

and compression, and our theory directly applies to the experimental setup of controlling

the projected (end-to-end rather than contour) length of the rod and observing buckling as

the projected length is decreased. Our result of delayed buckling as a result of thermal fluc-
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tuations can have interesting applications in many phenomena, e.g., buckling of semiflexible

polymers in disordered polymer networks [27, 54, 76].

At lower temperatures, quantum fluctuations also become important. To make a simple

estimate of the temperature scale at which this occurs, we include the kinetic energy term

Hkinetic =

∫
dxd ρ

∣∣∣∣∂x⊥

∂t

∣∣∣∣2 , (2.4.1)

where ρ is the linear mass density of the rod. Combining this with the potential energy

terms in H, we have a phonon energy given by

~ω ∼ ~|q|
√
ρ

√
τ + κq2. (2.4.2)

Therefore, in addition to thermal fluctuation corrections, quantum fluctuations also con-

tribute to the renormalization of τ̃ and κ̃, moving the critical τ to a larger compression

value (in magnitude) even at T = 0. The significance of such contributions from quantum

fluctuations can be estimated by comparing ~ω of generic modes with kBT . For the simple

case of stiff polymers of length 10−6 m and persistence length 10−3 m, we estimate that the

characteristic temperature for ~ω ∼ kBT is T ∼ 10−6 K, which is extremely low. Other

systems with higher stiffness or shorter lengths may have stronger quantum effects.

Our result that, in both two and three dimensions, the buckling transition is delayed

by thermal fluctuations contrasts with previous studies of finite-temperature buckling of

polymers using the inextensible worm-like chain model [69, 71]. The extensibility of the rod

in our model allows for an additional independent quartic-order term in the Hamiltonian, and

this term plays an important role in determining the renormalization of the stability of the

first mode, leading to the phase diagram shown in Fig. 2.1. The simple physical reasoning

underlying this is the following: buckling of an elastic rod is a result of the competition

between compressional energy (which favors the buckled phase) and bending energy (which

favors the straight phase). Allowing extensibility and compressibility softens the first effect,
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and, thus, the rod is in the straight phase for a wider parameter range.

In addition, while numerous recent studies have focused on zero-temperature mechanical

instability in both ordered and disordered systems [18, 28, 77–83], the behavior of these

systems at finite temperature remains largely unexplored [13, 46, 61–63, 84, 85]. Our model

characterizes a relatively clean system that exhibits a shifted second-order transition, and

the results can be compared to those of future studies on finite-temperature mechanical

instabilities in various systems.

41



CHAPTER III

Twisted-untwisted transition of the kagome

lattice at finite temperature and the

self-assembly of the twisted kagome lattice

with Janus particles

3.1 Introduction

In this chapter, we will continue the study of the effects of thermal fluctuations on me-

chanical systems near the point of instability by considering the structural phase transition

between the kagome lattice and the twisted kagome lattice, which are related by a uniform

twisting mechanism in which all triangles connecting the three sites in single unit cells are

rotated by the same twisting angle α. We determine the phase boundary between these two

lattices at both T = 0 and at finite temperature to determine the effect of thermal fluctua-

tions on the transition. We then consider a system of self-assembling triblock Janus particles,

which consist of two attractive patches separated by an electrically-charged middle band, and

show how we can allow for the creation of a twisted kagome structure and, additionally, for

the temperature-controlled structural transition between a twisted kagome structure and a

kagome structure by synthesizing a triblock Janus particle that has an attractive patch that
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is offset with respect to the other patch. This can allow for the automated creation of open

structures with novel mechanical and transformable properties.

Recently, the structural phase transition between the square lattice and a system of

isoenergetic lattices with rows of rhombus plaquettes (resulting in exponentially-many –

2Nx + 2Ny , where Nx (Ny) is the number of rows (columns) of plaquettes in the lattice –

degenerate lattices with various zigzagged boundaries) was studied [13] using an analogous

spring model to the one we will be using in our subsequent analysis of the kagome lattice

structural phase transition. It was found that the straight-edge rhombus lattice is favored

over all other zigzag configurations due to it having the largest vibrational entropy (“order-

by-disorder”), and that the square lattice is stabilized by diverging thermal fluctuations

as the system approaches instability. Both of these are due to the coupling of thermal

fluctuations and floppy modes near mechanical instability. Another interesting example of

the impact of entropic stabilization due to large thermal fluctuations is discussed in the

context of disordered systems [60], where it is found that even under-coordinated lattices,

with 〈z〉 < 2d, can be stabilized.

The kagome lattice family is also of interest in the rapidly growing field of topological

mechanics. Under periodic boundary conditions, the nearest-neighbor (NN) kagome lattice,

due to its sets of straight lines of NN bonds running across the lattice in three symmetry

directions, has a large number of floppy modes (Fig. 3.3). On the other hand, the twisted

kagome lattice, which does not have straight lines, does not have floppy modes other than the

two trivial modes at q = 0. Due to the Maxwell counting argument, however, we know that

if we cut out a rectangular portion containing N sites of either lattice from a larger periodic

version, because the two are Maxwell lattices,
√
N bonds will be cut and, consequently,

√
N floppy modes will appear. In the twisted kagome lattice, which does not have any bulk

floppy modes, the floppy modes will be localized to the surface – a finite twisted kagome

lattice will have surface floppy modes that cannot penetrate into the bulk and are insensitive

to local perturbations [86]. Thereafter, this phenomenon of robust floppy edge modes was
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Figure 3.1: (Left) The kagome lattice with lattice sites (red circles), and nearest-neighbor
(NN) (solid black lines) and next-nearest-neighbor (NNN) (dashed blue lines) bonds. Note
the sets of straight lines of NN bonds in three symmetry directions, which allow for states of
self-stress and, consequently, floppy modes under periodic boundary conditions when NNN
bonds are not present. (Right) The twisted kagome lattice. Notice that the straight lines no
longer exist, so that the states of self-stress as well as floppy modes have been removed.

connected to topology with the introduction of a quantity called topological polarization

[18, 87], a vector that points in the direct of topologically-protected floppy edge modes

that cannot be destroyed by local perturbations. This led to the proposals (and in some

cases, creation) of mechanical metamaterials with novel properties that utilize the kagome

connection topology. For instance, joining together a twisted kagome lattice and a deformed

kagome lattice (which has the same connection topology as a kagome lattice, but with site

positions deformed so that the triangles are no longer equilateral) to create a domain wall

allows for the the precise positioning of floppy modes and states of self-stress. Recently, the

use of the uniform soft twisting mode of a deformed kagome lattice with two different types

of triangles was shown to control transitions between various topological states with differing

topologically-protected mechanical properties – for example, the location of stiff and floppy

edges [7]. Though we will not address topological aspects of the lattices in this dissertation,

the coupling of topological mechanics with thermal fluctuations and/or self-assembly is an

avenue that is certainly worth pursuing in the future.

44



3.2 Kagome lattice preliminaries

The kagome lattice family (see Fig. 3.1 for the two we will be discussing in this chapter)

has three sites per unit cell. We take the center of the unit cell to be (0, 0); then the

basis vectors are given by d1 = a√
3
(0, 1), d2 = a

(
−1

2
,− 1

2
√

3

)
, d3 = a

(
1
2
,− 1

2
√

3

)
, where a is

the distance between nearest-neighbor (NN) sites (note that, in this case, 2a is the lattice

constant. The two primitive lattice vectors are given by

a1 = 2(d3 − d2) = (2, 0)a, a2 = 2(d1 − d2) = (1,
√

3)a (3.2.1)

There are twelve unique bonds per unit cell – six nearest-neighbor bonds and six next-

nearest-neighbor (NNN) bonds. The length of the NN bonds, as stated above, is a, and the

length of the NNN bonds is a
√

3.

The twisted kagome lattice is formed by uniformly rotating all the triangular unit cells

of the kagome lattice by an angle α. In this case, the basis vectors are given by d1 =

a√
3

(− sinα, cosα) , d2 = a√
3

(
− cos

(
α + π

6

)
,− sin

(
α + π

6

))
, d3 = a√

3

(
cos
(
α− π

6

)
, sin

(
α− π

6

))
,

and the primitive lattice vectors are

a1(α) = (1, 0)aL(α), a2(α) =

(
1

2
,

√
3

2

)
aL(α), (3.2.2)

where aL(α) = 2a cosα is the lattice constant.

The underlying Bravais lattice of both the kagome lattice and the twisted kagome lattice

is the 2-D hexagonal/triangular lattice (which, incidentally, is the underlying Bravais lattice

of the honeycomb lattice, as well). The primitive lattice vectors of the reciprocal lattice are

given by

d1 =
2π ẑ× a2

(ẑ× a2) · a1

, d2 =
2π ẑ× a1

(ẑ× a1) · a2

. (3.2.3)
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This yields primitive reciprocal lattice vectors

d1(α) =
2π

aL(α)

(
1,− 1√

3

)
=

π

a cosα

(
1,− 1√

3

)
(3.2.4)

d2(α) =
2π

aL(α)

(
0,

2√
3

)
=

π

a cosα

(
0,

2√
3

)
(3.2.5)

The resultant reciprocal lattice is also a hexagonal/triangular lattice with a hexagonal

first Brillouin zone (1BZ). The volume of the unit cell in the direct lattice, v, and in the

reciprocal lattice, v0, are

v = 2
√

3a2 cos2 α, v0 =
2π2

√
3a2 cos2 α

. (3.2.6)

Points of high symmetry in the 1BZ are

Γ = (0, 0), M =

(
0,

π√
3 cosα

)
, K =

(
π

3 cosα
,

π√
3 cosα

)
. (3.2.7)

3.3 Zero-temperature analysis

Before including the effects of temperature, let us first consider the structural transition

that occurs between the untwisted kagome lattice and the twisted kagome lattice at zero

temperature. The Hamiltonian for a generic lattice with pairwise central-force potentials is

given by

H =
∑
b

Vb (|Rb| − |R0b|) ≡
∑
b

Vb (∆Rb) (3.3.1)

where b labels bonds between lattice sites l and l′, Vb is the interaction potential of the bond,

and

Rb = Rl′ −Rl (3.3.2)

R0b = R0l′ −R0l (3.3.3)
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are the bond vectors in the target and reference states, respectively. The reference (target)

state describes the lattice before (after) the elastic deformation. For the current problem,

to keep full generality initially, we will take the reference state to be a twisted kagome

lattice with twisting angle α0. Later on, we will specialize to the case of α0 = 0, as we

will want the reference state to be the untwisted kagome lattice to be able to analyze its

stability against twist fluctuations. In general, however, this analysis can be used to study

deformations around any particular state picked out from the continuum of twisted kagome

lattices generated by the uniform twisting by choosing a specific α0. In the reference state,

the position vector for a lattice site l is given by

R0l = l1a1(α0) + l2a2(α0) + dil0, (3.3.4)

where l1, l2 are coefficients of the primitive lattice vectors that determine the unit cell that

the lattice is contained in, and bil0 is the basis vector corresponding to the lattice site.

Note that both the primitive lattice vectors and the basis vectors are determined by the

reference-state twist angle, α0. The target space position vector is given by

Rl = l1a1(α) + l2a2(α) + dil . (3.3.5)

Then the bond vectors are given by

R0b = R0l′ −R0l = lb(α0) + db(α0) ≡ Rα0
b (3.3.6)

Rb = Rl′ −Rl = lb(α) + db(α) ≡ Rα
b . (3.3.7)

For nearest-neighbor (NN) bonds, |Rα
b | = |R

α0
b | for any values of α and α0 – the uniform

twisting mode does not change NN bonds to all orders (hence why it is a floppy mode for
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Figure 3.2: The potential energy of next-nearest-neighbor bonds connected by an anharmonic
spring as given by Eq. (3.3.9). For κ > 0, the potential is single-well, so all NNN bonds are
the same length – yielding a regular hexagonal cell corresponding to an untwisted kagome
lattice. For κ < 0, the potential is double-well, so the energetically-preferred configuration
for the hexagonal cell is one where three NNN bonds are longer than the regular-hexagon
NNN bonds, and three NNN bonds are shorter. This yields an irregular hexagonal cell
corresponding to a twisted kagome lattice. At zero temperature, this is what governs the
structural phase transition between the kagome and twisted kagome lattices.

the NN lattice). Therefore, ∆RNN = 0. Now, the central-force potentials we consider are

VNN =
k

2
(∆R)2 (3.3.8)

VNNN =
κ

2
(∆R)2 +

g

4!
(∆R)4 (3.3.9)

The NN bond is modeled as a harmonic spring, while the next-nearest-neighbor (NNN) bond

is modeled as an anharmonic spring. This is to allow for κ to be negative while still having a

bounded potential: g > 0. Since ∆RNN = 0, VNNN = 0 at zero temperature. On the other

hand, the length of the NNN bonds do change as we twist away from the reference state.

The total elastic energy in the lattice is then given by

H =
∑

bi∈NNN

VNNN(∆Ri). (3.3.10)

For a given twisting angle −π/3 ≤ α ≤ π/3, three NNN bonds will be longer than the
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α = 0 untwisted lattice NNN bond length (a
√

3) and three NNN bonds will be shorter:

R+
NNN(α) = a

√
2 + cos 2α +

√
3 sin 2α = a| sinα +

√
3 cosα| (3.3.11)

R−NNN(α) = a

√
2 + cos 2α−

√
3 sin 2α = a| sinα−

√
3 cosα| (3.3.12)

Incidentally, the increase and decrease in NNN bond lengths is symmetric only for small

twisting angles away from α = 0. The change in the NNN length between two states is

then given by ∆RNNN = RNNN(α)−RNNN(α0); for small ∆α ≡ α− α0, the results can be

expanded in terms of ∆α

∆R±NNN
a

= ±
√

3 cos 2α0 ∓ sin 2α0√
2 + cos 2α0 ±

√
3 sin 2α0

∆α− 1

2

√
2 + cos 2α0 ±

√
3 sin 2α0 ∆α2

∓ 5
√

3 cos 2α0 + 4
√

3 cos 4α0 ∓ 5 sin 2α0 ± 4 sin 4α0 ± 2 sin 6α0

6(2 + cos 2α0 ±
√

3 sin 2α0)5/2
∆α3 +O(∆α4)

= A±1 ∆α− 1

2
A±2 ∆α2 − 1

6
A±3 ∆α3 +O(∆α4) (3.3.13)

For α0 = 0, the coefficients are greatly simplified: A±1 = ±1, A±2 =
√

3, and A±3 = ±1. We

substitute this into our potential and once again do an expansion in terms of ∆α, which

yields

H =
∑
b

κ

2
(∆RNNN)2 +

g

24
(∆RNNN)4 = N

∑
B

κ

2
(∆RNNN)2 +

g

24
(∆RNNN)4

= Na2

[
3κ

2

(
(A+

1 )2 + (A−1 )2
)

∆α2 − 3κ

2

(
A+

1 A
+
2 + A−1 A

−
2

)
∆α3

+

(
3κ

2

(
(A+

2 )2 + (A−2 )2

4
− A+

1 A
+
3 + A−1 A

−
3

3

)
+
ga2
(
(A+

1 )4 + (A−1 )4
)

8

)
∆α4 +O(∆α5)

]
(3.3.14)

Note that, in the first line, b is an index over all NNN bonds in the lattice, where B is an

index over only those NNN bonds in a single unit cell. Because the unit cell is a repeating

motif in the lattice under periodic boundary conditions, any lattice expression can simply be
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computed in the unit cell and then multiplied by the number of unit cells, N . The resultant

Hamiltonian is a completely general expression for any α and α0 such that ∆α � 1. As

already mentioned, we are interested in the stability of the untwisted kagome lattice, so we

take α0 = 0. In this case, ∆α = α, and odd terms vanish, leaving

H(α) = Na2

[
3κα2 +

1

4
(5κ+ ga2)α4

]
. (3.3.15)

Introducing dimensionless couplings

τ ≡ κ

k
, λ ≡ ga2

k
, (3.3.16)

we can write a dimensionless Hamiltonian per unit cell,

h(α) ≡ H(α)

Nka2
= 3τα2 +

1

4
(5τ + λ)α4. (3.3.17)

We require λ to be large so that 5τ + λ > 0 even when τ < 0 and, consequently, the

Hamiltonian will have a well-defined minimum.

The extrema, obtained by requiring that h′(α) = 0, are

α = 0, α = ±
√
−6τ

5τ + λ
≡ ±αt0. (3.3.18)

In order for α � 1, so that our expansion in small α is justified, λ � τ (this is a stronger

condition than simply requiring 5τ+λ > 0). Note that, for τ > 0, α = 0 is the stable solution

and the latter two are imaginary; for τ < 0, the latter two solutions are the stable solutions

and α = 0 becomes an unstable equilibrium point (local maximum). Therefore, τ = 0 is the

transition point at which the system undergoes a continuous structural transition at T = 0;

for τ > 0, the untwisted kagome lattice is energetically preferred, whereas for τ < 0, the

twisted kagome lattice becomes the preferred state. This is different than the case of the
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square lattice transition discussed at the beginning of this chapter, in that there is only a

single ground state – the twisted kagome lattice – for τ < 0.

3.4 Finite-temperature free energy calculation

Now that we have obtained the transition point for the structural transition at zero

temperature, we want to explore the structural transition at finite temperature. This will

allow us to analyze the coupled effect of thermal fluctuations and floppy modes near a point

of ostensible instability. The effect of thermal fluctuations on a system can be codified by

the introduction of a random displacement field, ul, which characterizes the instantaneous

displacements of lattice site l from its equilibrium position. In this section, we systematically

incorporate thermal fluctuations into our lattice theory, expanding the resultant Hamiltonian

to second order in u (we take the fluctuations to be sufficiently small by considering only

small temperatures, an assumption that will be validated later). We then integrate out the

thermal fluctuations to obtain a free energy in terms of twisting angle α (as in the previous

section, we will include α0 throughout the derivation for full generality, but we will only

specifically analyze the α0 = 0 case, as we are considering the stability of the untwisted

kagome lattice) and elastic constants τ and λ. We can use the same machinery introduced

at the beginning of the previous section, but now the target space must include deformations

induced by thermal fluctuations. In order to capture the effect of thermal fluctuations, we

define the target space position vector to include the displacement field ul:

Rl = l1a1(α) + l2a2(α) + dil + ul. (3.4.1)
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Then the bond vectors are given by

R0b = R0l′ −R0l = lb(α0) + db(α0) ≡ Rα0
b (3.4.2)

Rb = Rl′ −Rl = lb(α) + db(α) + ub ≡ Rα
b + ub, (3.4.3)

where ub ≡ ul′ − ul has no angular dependence. Note that, for the three intracellular NN

bonds, l′i = li and, thus, lb(α) = lb(α0) = 0.

The length of the bond in the reference state can be expanded for small ub,

|Rb| =
√

(Rα
b + ub) · (Rα

b + ub) = |Rα
b |

√
1 +

2t̂αb · ub
|Rα

b |
+

u2
b

|Rα
b |2

= |Rα
b |+ t̂αb · ub +

1

2|Rα
b |
(
u2
b − (̂tαb · ub)2

)
+O(u3

b)

= |Rα
b |+ t̂αb · ub +

1

2|Rα
b |

ub ·
(
I− t̂αb t̂

α
b

)
· ub +O(u3

b), (3.4.4)

where

t̂αb =
Rα
b

|Rα
b |

(3.4.5)

is the unit vector pointing along the bond b where the kagome lattice has been twisted by

an angle α (but without considering the random displacements due to thermal fluctuations).

Then the change in bond length due to uniform twisting and thermal fluctuations is

|Rb| − |R0b| = |Rα
b | − |R

α0
b |+ t̂αb · ub +

1

2|Rα
b |

ub ·
(
I− t̂αb t̂

α
b

)
· ub +O(u3

b). (3.4.6)
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Next, we expand the potential of a bond in terms of small ub:

Vb(|Rb| − |R0b|)

= Vb(|Rα
b | − |R

α0
b |) + V ′b (|Rα

b | − |R
α0
b |)

(
t̂αb · ub +

1

2|Rα
b |

ub ·
(
I− t̂αb t̂

α
b

)
· ub
)

+
1

2
V ′′b (|Rα

b | − |R
α0
b |)(̂t

α
b · ub)2 +O(u3

b)

= Vbα + V ′bα

(
t̂αb · ub +

1

2|Rα
b |

ub ·
(
I− t̂αb t̂

α
b

)
· ub
)

+
V ′′bα
2

(̂tαb · ub)2 +O(u3
b)

= Vbα + V ′bαt̂
α
b · ub + ub ·

[
V ′bα

2|Rα
b |

I +

(
V ′′bα
2
− V ′bα

2|Rα
b |

)
t̂αb t̂

α
b

]
· ub +O(u3

b) (3.4.7)

where Vbα ≡ Vb(|Rα
b | − |R

α0
b |), V ′bα ≡ V ′b (|Rα

b | − |R
α0
b |), and V ′′bα ≡ V ′′b (|Rα

b | − |R
α0
b |). The

linear term,
∑

b V
′
bαt̂

α
b · ub vanishes, as it corresponds to the total force on each site, which is

equal to zero for any given twisting angle. Thus, the Hamiltonian (exact to O(u2
b)), becomes

H = H(0) +H(2), with

H(0) =
∑
b

Vbα (3.4.8)

and

H(2) =
∑
b

ub ·
[
V ′bα

2|Rα
b |

I +

(
V ′′bα
2
− V ′bα

2|Rα
b |

)
t̂αb t̂

α
b

]
· ub ≡

1

2

∑
b

ub ·Ab · ub, (3.4.9)

where

Ab ≡
V ′bα
|Rα

b |
I +

(
V ′′bα −

V ′bα
|Rα

b |

)
t̂αb t̂

α
b (3.4.10)

Note that
∑

b is a summation over all bonds in the lattice:

∑
b

=
∑
l

∑
l′

, (3.4.11)

where, for a fixed lattice site l, l′ indexes all the lattice sites connected to l by a bond. Thus,

for a given lattice site l, we sum over all lattice sites l′ that are connected to l by a bond.
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Writing the Hamiltonian in terms of individual lattice site displacements,

H(2) =
1

2

∑
l

∑
l′

(ul − ul′) ·Al,l′ · (ul − ul′) (3.4.12)

=
1

2

∑
L

∑
l

∑
l′

(ul − ul′) ·Al,l′ · (ul − ul′) (3.4.13)

In the second equation, L indexes the unit cells, l indexes the lattice sites in the unit cells

(l ∈ {1, 2, 3}) and l′ indexes all lattice sites connected by bounds to the lattice sites in the

unit cell (l′ ∈ B(l, l′)).

In order to integrate out the displacement field, it is most convenient to transform to

momentum space, where the resultant dynamical matrix will be block diagonal. Writing the

displacement vector of site l in momentum space,

ul =
1

V

∑
q∈1BZ

eiq·RLluil,q, (3.4.14)

where RLl is the position of the unit cell containing lattice site l and il ∈ {1, 2, 3} indexes

the basis sites in a unit cell. Thus,

H(2) =
1

2V 2

∑
L

∑
l

∑
l′

∑
q,q′∈1BZ

(
eiq·RLluil,q − e

iq·RLl′uil′ ,q

)
·Al,l′ ·

(
eiq
′·RLluil,q′ − e

iq′·RLl′uil′ ,q′
)

(3.4.15)

=
1

2V 2

∑
L

∑
l

∑
l′

∑
q,q′∈1BZ

ei(q+q′)·RLl

(
uil,q − eiq·lBuil′ ,q

)
·Al,l′ ·

(
uil,q′ − eiq

′·lBuil′ ,q′
)

(3.4.16)

=
1

2V 2

∑
q,q′∈1BZ

∑
L

ei(q+q′)·RL

∑
l

∑
l′

(
uil,q − eiq·lBuil′ ,q

)
·Al,l′ ·

(
uil,q′ − eiq

′·lBuil′ ,q′
)

(3.4.17)

=
1

2V v

∑
q∈1BZ

∑
l,l′∈B

(
uil,q − eiq·lBuil′ ,q

)
·AB ·

(
uil,−q − e−iq·lBuil′ ,−q

)
. (3.4.18)

In the second equality, we have written RLl′
= RLl + lB, where lB = (l′1 − l1)a1(α) +
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(l′2 − l2)a2(α) is the lattice vector between the unit cell containing lattice l and the unit cell

containing lattice site l′. Note that lB = 0 for the three intra-cellular NN bonds. In the

third equality, we observe that, if we index all bonds associated with a single unit cell by

B, such that (l, l′) ∈ B, only RL varies from one unit cell to the next (also, RLl = RL ∀l,

since l indexes the basis sites of a single unit cell) – all other quantities are translationally

invariant between unit cells. Thus, we can sum over all lattice sites, L, and use

∑
L

ei(q+q′)·RL = Nδq,q′ , (3.4.19)

where N is the number of unit cells in the lattice, to yield the final equality.

Finally, since there are 3 basis sites, il ∈ {1, 2, 3}. Therefore, we can consolidate the

two-dimensional displacement vectors into a single six-dimensional vector, uq:

uq = (u1,q,u2,q,u3,q) = (u1x, u1y, u2x, u2y, u3x, u3y), (3.4.20)

where we have dropped the q for notational convenience. This will allow us to write the

Hamiltonian concisely as

H(2) =
1

2V v

∑
q∈1BZ

uq ·Dq · u−q, (3.4.21)

where v is the volume of the unit cell in the direct lattice, and Dq can be either the full

6× 6 dynamical matrix or the effective/reduced 3× 3 dynamical matrix (see the end of this

section for relevant discussion).

Then the partition function is given by

Z =

∫
Du e−βH(u) =

1

AN
e−βH

(0)
∏

q∈1BZ

∫
dnuq exp

[
− β

2V v
uq ·Dq · u−q

]
, (3.4.22)

where the integration measure is Du = A−N
∏

q d
nuq with N equal to the number of lattice
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sites and n ∈ {3, 6}, depending on the dimension of the dynamical matrix. Thus, we obtain

Z = e−βH
(0)
∏
q

√
(2π)n

A2(βk/V v)n det D̃q

, (3.4.23)

where D̃q ≡ Dq/k is the dimensionless dynamical matrix. This gives us an expression for

the free energy of the system:

F = H0 +
T

2

∑
q∈1BZ

ln det D̃q −
n

2
T
∑
q

ln
2πTV v

kA2/n
. (3.4.24)

We have not yet discussed the specific form of the dynamical matrix, which depends on

the form of the potentials used for the bonds. Of course, we are still modeling our lattice

bonds using Eqs. (3.3.8) and (3.3.9). For the complete dynamical matrix, which includes the

NN and NNN potentials as well as dependence on both α and α0, each entry in the matrix

is very lengthy and is not very illuminating. See App. B for the complete NN dynamical

matrix expression as a function of twist angle α (we take α0 = 0, as usual). It is also

useful to reduce the dimensionality of the dynamical matrix; from the phonon spectra of

the kagome and twisted kagome lattices (Fig. 3.3, we see that there are three high-energy

optical branches that are “frozen out”. Thus, we can integrate out those higher modes by

requiring that they will always be in equilibrium, as determined by Hamiltonian. The result

is a 3× 3 effective dynamical matrix. More details of this process can be found in App. C.

3.4.1 Asymptotic form of the free energy

In this section, we will derive an asymptotic form of the free energy that is valid for

τ, α, λα2 � 1. In this regime, the free energy is dominated by the lowest mode, as is illus-

trated in the phonon spectra in Fig. 3.3. This allows us to produce an analytic asymptotic

theory that can be used to analyze the twisted-untwisted phase transition.

For large lattices, the spacing between modes in the first Brillouin zone becomes in-
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Figure 3.3: (Left) Complete phonon spectrum for the untwisted kagome lattice. Dashed lines
depict frequencies at τ = 0 and solid lines at τ = 0.01. The inset shows the first Brillouin
zone with high symmetry points Γ, M , and K indicated. There is a line of floppy modes
along ΓM when τ = 0 (corresponding to no NNN bonds) that are lifted to finite frequency
values for all q 6= 0 for τ = 0.01. (Right) Complete phonon spectrum for the twisted
kagome lattice. Dashed lines depict frequencies at τ = 0, λ = 0, α = 0.15 (NN lattice)
and τ = 0.01, λ = 100, α = 0.01 (NNN lattice). Note that the two twisted kagome spectra
are relatively similar, though the inclusion of the anharmonic term in the NNN potential is
coupled with α necessarily being small. The value of the ω plateau for the lowest mode is
well approximated by the value at M given in Eq. (3.4.30).

creasingly small and, ultimately, we can replace the summation in the term involving the

dynamical matrix in Eq. (3.4.24) with an integral, using the Poisson summation formula:

1

V

∑
k

M(k)→ 1

(2π)d

∫
ddkM(k). (3.4.25)

Recall that the volume of the reciprocal lattice primitive cell is given by

v0 =
(2π)d

v
=

(2π)dN

V
, (3.4.26)

where v = 2
√

3a2 cos2 α is the volume of the direct lattice primitive cell. Thus,

v0 =
2π2

√
3a2 cos2 α

(3.4.27)

57



and

V

(2π)d
=
N

v0

. (3.4.28)

Then

∑
q∈1BZ

ln det D̃q =
V

(2π)2

∫
q∈1BZ

d2q ln det D̃q =
N

v0

∫
d2q ln det D̃q (3.4.29)

In terms of its eigenvalues, ω2
i , det D̃q = ω2

1ω
2
2ω

2
3, so that ln det D̃q = lnω2

1 + lnω2
2 + lnω2

3.

Therefore, the integral will be dominated by the near-floppy modes, with a frequency close

to zero. The phonon spectrum of the lowest mode of the NN kagome lattice illustrates that

there are three symmetry-equivalent lines of zero modes traversing the 1BZ from M to Γ

to M ; for small values of τ and λα2, the zero modes (other than the two trivial translation

modes, of course) are only slightly lifted. The resultant plateau can be approximated, to

lowest order in τ and α2, by the value of the mode at M :

ω2
1‖ = 2τ + (1 + λ)α2. (3.4.30)

Notice from the form of the expression, which turns out to be valid for both the full 6 × 6

and the effective 3 × 3 dynamical matrices, that the line of zero modes is lifted by a non-

zero rotation of angle α even when the dimensionless quartic coefficient, λ, is identically

zero. Close to the slightly-lifted lines and perpendicular to them, the lowest mode rises

quadratically and has the form

ω2
1 = ω2

1‖ +
3

4
q2
⊥. (3.4.31)

Thus,

N

v0

∫
q∈1BZ

d2q ln det D̃q ≈
6N

v0

π√
3 cosα∫
0

dq‖

q‖/
√

3∫
−q‖/

√
3

dq⊥ ln

[
ω2

1‖ +
3

4
q2
⊥

]
. (3.4.32)
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To lowest order in τ and α2, the result of this integral is

N

v0

∫
q∈1BZ

d2q ln det D̃q ≈ N
(
C + 4

√
3
√

2τ + (1 + λ)α2
)
, (3.4.33)

where C = −3 + ln(π2/12).

Thus, the dimensionless free energy per unit cell is

f(α) ≡ F (α)

Nka2
= H(α) +

T̃

2

∑
q∈1BZ

ln det D̃q (3.4.34)

= 3τα2 +
1

4
(5τ + λ)α4 + T̃2

√
3
√

2τ + (1 + λ)α2, (3.4.35)

where we have dropped all terms independent of twisting angle α and introduced a reduced,

dimensionless temperature,

T̃ ≡ T

ka2
. (3.4.36)

This asymptotic form is a good approximation to the true value of the integral using the full

6×6 dynamical matrix for small values of τ and λα2; see Fig. 3.4. Finally, since F = H−TS,

it should be apparent that the last term in Eq. 3.4.35 is the entropic contribution.

3.4.2 The stability of the kagome lattice

In order to analyze the structural stability of the untwisted kagome lattice against twist-

ing, we will need to compute the twisting modulus

K(α) ≡ ∂2f

∂α2

∣∣∣∣
α=α∗

, (3.4.37)

which provides a measure of stiffness of the lattice against twisting at equilibrium values of

the twisting angle, α∗. Specifically, for the untwisted kagome lattice, we will want to evaluate
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Figure 3.4: Comparisons of the value of the integral of ln det D̃q/v0 over the first Brillouin
zone, as computed using two methods: the asymptotic form in Eq. 3.4.33 (blue solid line),
and exact values obtained by numerical integration involving the complete dynamical matrix
(orange points). (Left) Untwisted kagome lattice, with α = 0, λ = 100; (Right) twisted
kagome lattice, with α = 0.01, λ = 100. Both indicate that the asymptotic form is indeed a
good analytic approximation for the exact solution.

the twisting modulus at α = 0. At zero temperature,

K(α = 0) = 6τ, K(α = ±αt0) = −12τ. (3.4.38)

As expected, there is positive stiffness against twisting away from the untwisted kagome

phase (α = 0) for τ > 0, and positive stiffness against twisting away from the equilibrium

twisted kagome phase (α = ±αt0) for τ < 0. For τ = 0, the twisting modulus vanishes in

both cases, as there is no energy cost to changing the length of NNN bonds to harmonic

order, so the twisting modes are floppy (and this extends to all orders if λ = 0, as well).

Based on the form of the results in (3.4.38), it is useful to look at the quantity K/6. At

finite temperature, this quantity will an effective NNN harmonic coefficient,

r ≡ 1

6

∂2f

∂α2

∣∣∣∣
α=α∗

, (3.4.39)

where α∗ are now equilibrium values of the twisting angle at finite temperature and, in gen-

eral, are not equal to the equilibrium values obtained at zero temperature. The equilibrium
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values are obtained by solving

0 =
∂f

∂α
= 6τα + (5τ + λ)α3 + T̃

2
√

3(1 + λ)α√
2τ + (1 + λ)α2

. (3.4.40)

Even at finite temperature, the untwisted kagome lattice (with α = 0) remains an equilibrium

solution. Then, for the untwisted phase,

r = τ +
T̃√
3

1 + λ√
2τ

. (3.4.41)

For τ < 0, the effective stiffness is imaginary; in order to rectify this unphysical situation,

we use a self-consistent-field approximation where the bare, “tree-level” twisting modulus τ

in the phonon Green’s function is replaced by its one-loop-order renormalized value. The

effect of this in our calculation is to replace τ with r in the entropic contribution to the free

energy. Thus, the above equation for r becomes

r = τ +
T̃√
3

1 + λ√
2r

. (3.4.42)

Now, for any value of τ < 0, there exists a solution r > 0. Since the twisting modulus

K = 6r > 0, the untwisted kagome phase is always locally stable (except, of course, at zero

temperature). This local stability implies that the transition to the twisted kagome phase

must be first order, where the order parameter α will undergo a discontinuous change across

the phase boundary determined by

∆f ≡ ftw − fun = 0. (3.4.43)

The free energy of the untwisted phase fun = 2
√

6T̃
√
r, where r is the solution to (3.4.42).
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For the twisted phase, the equilibrium twisting angles are determined by solving

0 = 6τ + (5τ + λ)α2 + T̃
2
√

3(1 + λ)√
2τ + (1 + λ)α2

. (3.4.44)

The solutions will come as a pair, α = ±αt(τ, λ, T̃ , r). Then the value of r in the twisted

phase can be obtained by solving the implicit equation

r =
1

6

∂2f

∂α2

∣∣∣∣
α=αt

, (3.4.45)

and ftw is obtained by substituting these solutions into (3.4.35).

In the regime |τ | � 1� λ, rather simple expressions for the phase boundary and other

critical lines can be obtained. In the twisted kagome phase, r > 0 solutions to the coupled

equations (3.4.44) and (3.4.45) only exist for τ < τc1, where

τc1 = −0.6676
(
λT̃
)2/3

. (3.4.46)

This is where the twisted kagome phase first appears (for decreasing τ or T̃ ) as a metastable

state, locally stable but with a higher free energy than the untwisted kagome phase. The

first-order phase boundary, where ∆f = 0, is given by the equation τ = τc, where

τc = −0.9087
(
λT̃
)2/3

. (3.4.47)

This can be rewritten as T̃c = 1.1544λ−1|τ |3/2, which indicates that we are indeed operating

in the low-temperature regime, where T̃ ∼ T̃c � |τ | � 1. Therefore, our assumption of

small fluctuations made at the beginning of this analysis was valid.
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Figure 3.5: Plots of the order parameter, the twisting angle α, as a function of τ for various
values of reduced temperature, T̃ and λ = 100. The discontinuous jumps in α occur at the
transition from the untwisted kagome lattice (where α = 0) to the twisted kagome lattice
(where α 6= 0) and are characteristic of a first-order phase transition.

Along the phase boundary,

run,c = 0.1490
(
λT̃
)2/3

(3.4.48)

rtw,c = 1.2250
(
λT̃
)2/3

. (3.4.49)

Since both are positive, both phases are locally stable at the transition. Furthermore, the

order parameter α undergoes a discontinuous jump from zero in the untwisted kagome phase

to

αc = 2.0245λ−1/6T̃ 1/3 (3.4.50)

in the twisted kagome phase (Fig. 3.5). These are all consistent with the first-order nature

of the phase transition for T̃ > 0. Finally, note that αc → 0 as T̃ → 0, which coincides with

the fact that the T̃ = 0 transition is a continuous structural transition.

Looking at the phase diagram (Fig. 3.6), we see that there is a region where τ < 0 but

the kagome lattice nevertheless has a lower free energy due to thermal fluctuations. This
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Figure 3.6: The predicted phase diagram for the kagome and twisted kagome lattices. The
transition, identified by the solid blue curve, is first order for T > 0. The T = 0 structural
transition is continuous. The orange dashed curve marks where the twisted kagome lattice
first appears as a metastable state (for decreasing τ or T ). Both critical curves follow
τc ∝ −T 2/3. The lined region between τ = 0 and the phase boundary is the region where
the kagome lattice is entropically stabilized.

is the region in which the kagome lattice is entropically stabilized – the twisted-untwisted

transtion is “delayed” by thermal fluctuations. Ultimately, this is a manifestation of the

interplay between floppy modes and thermal fluctuations: the underlying reason that the

zero-temperature continuous phase transition has become first order is that the lines of zero

modes in the 1BZ in the τ → 0 limit result in a divergent phonon contribution to the free

energy and, thus, the renormalization of the twisting modulus, in a manner analogous to

that first explored by Brazovskii in the liquid-to-crystal transition [88].

3.5 Tri-block Janus particles

As we discussed when we first introduced Janus particles, Janus particles have a broad

appeal and can be used in a number of different ways for various purposes. Here, we will

specifically address their proven versatility in serving as the building blocks for lattice struc-
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tures – in particular, open lattices. Triblock Janus particles, which have two attractive

patches separated by a central electrostatically-charged band, have already been shown to

form two-dimensional lattice structures [45, 46]. When there is no lateral pressure on the

system, due to the stabilization of bond angles from a lifting of the potential-well degener-

acy (“order-by-disorder”) as well as a lack of non-attractive contacts resulting from the open

structure of the lattice (both of which will be discussed at length in succeeding sections), the

Janus particles are observed to spontaneously form an untwisted kagome lattice. Only with

the application of lateral pressure above a minimum threshold value was the close-packed

lattice phase observed.

For three-dimensional lattices, a theoretical study exhibited a similar favoring of three-

dimensional open structures over the close-packed face-centered cubic lattice [62]. In this

case, there are two distinct open lattice topologies, depending on the patch size. For a

patch size of 35◦ or larger (in the context of Janus particles, patch size refers to the angular

radius of the circular patch), the patch size is only large enough to support bonds with

three neighboring particles per patch, which corresponds to either a pyrochlore or hexagonal

tetrastack lattice (the difference is that the successive layers in the latter lattice are twisted

by 60◦). Above a patch size of 45◦, each patch can support four bonds, which results in

a perovskite pattice. Again, at low pressures, the open lattices are favored, and it is only

with an increase in the pressure (or a decrease in temperature) that the close-packed lattice

is obtained. In both the two- and three-dimensional cases, we see the effect of entropy to

stabilize the open lattice against mechanical instability as well as to favor open structures

over their energetically-equivalent close-packed counterparts.

Thus, it is worthwhile to study the possibility of the self-assembly of the twisted kagome

lattice from triblock Janus particles restricted to binding in two dimensions (Fig. 3.7). As

we will see, even though the two structures are isoenergetic, because of orientational entropy

favoring angles between bonds that are consistent with the untwisted kagome lattice, it is not

possible to obtain the twisted kagome lattice using regular triblock Janus particles. Instead,

65



Figure 3.7: Examples of isoenergetic open structures formed by Janus particles. (Left) The
kagome lattice, with an angle between triangles (outlined in green) of 120◦, formed by Janus
particles with non-offset patches. (Right) The twisted kagome lattice, with an angles between
triangles deviating from 120◦, formed by Janus particles with offset patches. Note that while
Janus particles with offset patches can potentially form a kagome lattice, depending on the
patch size, offset angle, and temperature, Janus particles with non-offset patches cannot
form a twisted kagome lattice, as angles that deviate from 120◦ are entropically disfavored.

a modification has to be made: one of the patches must be made offset by an angle with

respect to the other. After reviewing the derivation of the effective Hamiltonian that is valid

for any Janus particles that adhere to a few well-founded assumptions, as initially formulated

in [61], we will examine what conditions are necessary for the creation of a twisted kagome

lattice.

3.5.1 Derivation of the effective Hamiltonian for Janus particles

The equilibrium statistical mechanics of a set of anisotropic particles such as Janus par-

ticles can be described using the partition function

Z =

∫ ∏
j

drjdn̂j exp

[
−H ({ri, n̂i})

kBT

]
, (3.5.1)

66



where the Hamiltonian H depends on the positions rj and orientations n̂j of all the particles,

kB is the Boltzmann constant, and T is the temperature. For a three-dimensional particle

with rotational symmetry around its orientation axis, n̂j, two parameters – polar angle θ and

azimuthal angle ϕ – are sufficient to fully describe its orientation; for a completely general

particle, a third angle ψ is needed.

We consider spherical triblock Janus particles of diameter a with two spherical-cap-

shaped attractive patches on (or near) opposite poles separated by a repulsive band such

that the particles experience a short-range attraction when the particles are touching and

oriented in such a way that their patches have finite overlap and hard-core repulsion when

their separation is equal to a diameter. Experimentally, such particles can be fabricated as

in [45, 89] via treatments that create two hydrophobic patches and an electrically-charged

band, resulting in hydrophobic attraction when placed in a salt solution.

In its most general form, the Hamiltonian of a system of these so-called patchy particles

consists of pairwise potential energies of the form

V (ri, n̂i, rj, n̂k) =

∫
dΩidΩj V (n̂i, n̂j, m̂i, m̂j, |(ri + am̂i/2)− (rj + am̂j/2)|) , (3.5.2)

where the potential energy between two patchy particles is equal to the integral of interactions

v between all pairings of surface elements between the two particles over the solid angles of

both particles. In this expression, m̂i and m̂j are unit vectors pointing in the directions of

the surface elements, and |(ri + am̂i/2)− (rj + am̂j/2)| is the distance between them.

Eq. (3.5.2) is quite an imposing expression, but we can make a series of assumptions that

is well-suited to systems of colloidal patchy particles in order to simplify the calculation of the

Hamiltonian. First, we postulate that interactions between surface elements are very short-

ranged – hence, the particles must be nearly touching in order to experience an interaction.

Furthermore, the integral in (3.5.2) will be dominated by the interaction between the closest

pairs of surface elements. For spherical particles, the closest pair corresponds to the two
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surface elements crossed by the line joining the centers of the two particles, so that

V (ri, n̂i, rj, n̂k) = V (n̂i, n̂j, êij,−êij, |(ri + aêij/2)− (rj − aêij/2)|) , (3.5.3)

where êij is the unit vector lying along the line joining the centers.

Second, we need only consider small fluctuations around the equilibrium lattice configu-

ration. This is due to the fact that the potential well of the attractive patches is relatively

deep compared to thermal energy (∼ 10kBT , as determined in [45]), and the boundaries

of the well are quite sharply defined by the extent of the attractive patches, so thermal

fluctuations will not tend to break nearest-neighbor bonds radially or rotationally. Thus,

for a given lattice of patchy particles, which will have both attractive bonds, where particles

contact each other through their overlapping attractive patches, and non-attractive bonds,

where particles are forced to contact each other outside of their attractive patches due to the

lattice structure, any configurations of particle orientations that break any attractive bonds

will have negligible Boltzmann weight. Therefore, the pairwise potential can be simplified

even further. Attractive bonds have the form

V (ri, n̂i, rj, n̂k) = Va (|ri − rj|)w (êij, n̂i)w (−êij, n̂j) , (3.5.4)

where Va is the central-force interaction with three regimes: hard-core repulsion for |ri−rj| <

a; attraction over a small distance, a < |ri − rj| < a + δ, where δ � a; and vanishing

interaction for |ri − rj| > a+ δ. The weight factors, given by

w (êij, n̂i) =


1 if êij passes through the attractive patch of particle i

∞ otherwise,

(3.5.5)

ensure that only unbroken attractive bonds contribute to the Boltzmann factor. Because a

non-attractive contact will not turn into an attractive contact unless other attractive bonds

68



are broken, the potential for a non-attractive bond is simply V (ri, n̂i, rj, n̂k) = Vr (|ri − rj|),

where Vr only entails hard-core repulsion for |ri − rj| < a and vanishes otherwise.

Note that the weight factors w for a particular particle only depend on the directions of the

bonds (which, in turn, only depend on the set of particle positions {ri}) and the orientation

of that particle. Any orientations of that particle that result in broken attractive bonds will

set w → ∞, yielding a zero Boltzmann weight for that orientation. This happily allows for

the orientational degrees of freedom of different particles to be completely decoupled. More

explicitly, the partition function in (3.5.1) becomes

Z =

∫ ∏
j

drjdn̂j exp

− 1

kBT

∑
〈mn〉

V (rm, n̂m, rn, n̂n)

 (3.5.6)

=

∫ ∏
j

drjdn̂j exp

− 1

kBT

∑
〈mn〉a

Va (|ri − rj|)w (êmn, n̂m)w (−êmn, n̂n)

+
∑
〈mn〉r

Vr (|ri − rj|)

 (3.5.7)

=

∫ ∏
j

drjdn̂jΨj ({ri}, n̂j) exp

[
−HCF ({ri})

kBT

]
, (3.5.8)

where the sum in the first line is over all nearest-neighbor bonds 〈mn〉, and the sums in the

second line are over all nearest-neighbor attractive 〈mn〉a and non-attractive 〈mn〉r bonds.

In the final line, the particle orientations have been decoupled: the factor Ψj ({ri}, n̂j) = 1

if all of the attractive bonds of particle j remain within its attractive patches for a given

orientation n̂j, and vanishes if any of the attractive bonds are broken. The remaining central-

force portion of the Hamiltonian depends only on the positions of the particles,

HCF ({ri}) =
∑
〈mn〉a

Va (|ri − rj|) +
∑
〈mn〉r

Vr (|ri − rj|) . (3.5.9)

Because of the decoupling of orientations, we can integrate out the orientational degrees
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of freedom of each particle individually, resulting in a degeneracy factor

Ωj ({ri}) =

∫
dn̂j Ψj ({ri}, n̂j) (3.5.10)

that is proportional to the number of allowed orientations – all of which share the same

potential energy, due to the flatness of the attractive patches’ potential well. Therefore, we

can define an orientational entropy for a particle,

sj = kB ln Ωj (3.5.11)

so that the partition function can ultimately be written as

Z =

∫ ∏
j

drj exp

[
−Heff ({ri})

kBT

]
, (3.5.12)

where the effective Hamiltonian depends only on particle positions,

Heff ({ri}) = HCF ({ri})− T
∑
j

sj ({ri}) . (3.5.13)

3.5.2 Two-dimensional triblock Janus particles

It is instructive to begin with the case of two-dimensional disk-shaped particles, with

orientations specified by a single angle, θi, confined to a plane so that they assemble into

two-dimensional lattices. The particles have two attractive patches with equal angular radii

of φ0 (we will hereafter refer to this as the patch size), one of which has a central axis that

is offset from the central axis of the other patch by an angle β. Without loss of generality,

we take the central axis of the patch lying in the southern hemisphere of the particle (the

“bottom” patch) to point through the south pole of the particle (and, consequently, through

the north pole on the opposite side); the northern (“top”) patch is considered the offset

patch.

70



Figure 3.8: A two-dimensional triblock Janus particle with one attractive patch (of angular
radius φ0) offset by an angle β. The four green solid lines represent the four attractive bonds
of the particle separated by angles δ, δ′, γ, γ′. The red arrow points to the “north” pole of the
particle, defined without loss of generality to be opposite the non-offset bottom patch. The
orange arrow bisects the offset patch. The black portions represent the attractive patches.

The triblock Janus particle supports four attractive bonds in two dimensions, two in each

patch. These bonds define four angles (see Fig. 3.8), two between attractive bonds in the

same patch, γ and γ′ and two between attractive bonds in different patches, α and α′ such

that

δ + δ′ + γ + γ′ = 2π. (3.5.14)

In the equilibrium state at zero temperature, the values of these angles are fixed at

δ = δ′ =
2π

3
, γ = γ′ =

π

3
; (3.5.15)

at finite temperature, fluctuations cause deviations from these values. It is important to

note that the pairs of bonds separated by angles γ and γ′ connect to triblock Janus particles

that are themselves nearest-neighbor pairs; therefore, fluctuations in γ and γ′ correspond

to fluctuations in the bond length between nearest neighbors. It has been determined in
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experimentally-produced lattices of triblock Janus particles that the stiffness against fluctu-

ations in NN bond length is much stronger than the stiffness against fluctuations in angles

between bonds that does not change any NN bond lengths [46]. Thus, the fluctuations in γ

and γ′ are much smaller than those in δ and δ′, and we can reasonably ignore fluctuations

in the former. Therefore,

δ + δ′ =
4π

3
, (3.5.16)

so there is only one independent variable remaining, which we select to be δ.

For given values of δ and β, we need to determine the allowed orientations – ranges of

θ – in order to obtain the orientational entropy, as discussed previously. To this end, we

orient the particle such that the central axis through the north pole (and hence, where polar

angle θ = 0) is perpendicular to the axis across which the bonds separated by δ and δ′ have

reflection symmetry. Then four conditions – one for each attractive bond – can be derived

by comparing the angular position of each bond to that of its closest patch boundary to

ensure that, for a given orientation θ of the particle, each bond remains in its corresponding

attractive patch:

π − δ
2
≤ θ + β + φ0 (top right)

π + δ

2
≥ θ + π − φ0 (bottom right)

5π

6
+
δ

2
≤ θ + π + φ0 (bottom left)

13π

6
− δ

2
≥ θ + β + 2π − φ0 (top left) (3.5.17)

Before proceeding, it is useful to introduce the quantity

α ≡ δ − 2π

3
, (3.5.18)

which measures the fluctuation of δ from its zero-temperature equilibrium value. Since

δ + δ′ = 4π/3, α > 0 means that the two bonds separated by angle δ are further apart than
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the two bonds separated by angle δ′, and vice versa for α < 0. Note that this definition

of α is the same as in the lattice theory when α0 = 0 (i.e., when the reference state is the

untwisted kagome lattice) – when α = 0, δ = 2π/3, which corresponds to the untwisted

kagome lattice. Depending on whether the rotation is clockwise or counterclockwise, two

out of the four bonds will be the constraining bonds in the sense that they will be the first

bonds to leave an attractive patch, resulting in a broken attractive bond, during a rotation.

For a clockwise rotation (which corresponds to θ > 0), the upper left and lower right bonds

are the constraining bonds. For a counterclockwise rotation (which corresponds to θ < 0,

the upper right and lower left bonds are the constraining bonds. In each pair, the bond that

ends up being the most constraining depends on the sign of the quantity α + β. Therefore,

in order to obtain the orientational weight, we can pair the conditions in (3.5.17) together in

integrals over all possible orientations – values of θ – as Heaviside step functions to ensure

that only the configurations that keep all bonds within the bounds of the attractive patches

are counted. For α + β < 0,

Ωj =

π∫
−π

dθΘ

(
θ +

δ − π
2

+ φ0 + β

)
Θ

(
δ − π

2
+ φ0 − θ

)
= 2

(
φ0 −

π

6

)
+ α + β (3.5.19)

while for α + β > 0,

Ωj =

π∫
−π

dθΘ

(
θ +

π

6
− δ

2
+ φ0

)
Θ

(
π

6
− δ

2
+ φ0 − β − θ

)
= 2

(
φ0 −

π

6

)
− α− β. (3.5.20)

Both of these expressions can be combined into a single result,

Ωj = 2
(
φ0 −

π

6

)
− |α + β| , (3.5.21)

so that the orientational entropy for a single particle is

sj = kB ln
[
2
(
φ0 −

π

6

)
− |α + β|

]
(3.5.22)
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Figure 3.9: A three-dimensional triblock Janus particle with one attractive patch (of angular
radius φ0) offset by an angle β. The four green solid lines represent the four attractive bonds
of the particle. The red arrow points to the “north” pole of the particle, defined without loss
of generality to be opposite the non-offset bottom patch. The orange arrow, which points to
the center of the offset patch, provides the third angle needed to fully specify the orientation
of the particle. The black circular portions represent the attractive patches.

The orientational entropy is maximized when α = −β.

3.5.3 Three-dimensional triblock Janus particles

Next, we consider the case of three-dimensional spherical particles confined to a plane

(which we take to be the y = 0 plane in the following analysis) so that they form two-

dimensional lattices. The particles have two circular attractive patches with equal angular

radii (patch size) of φ0, one of which has a central axis that is offset from the central axis of

the other patch by an angle β (Fig. 3.9). Just as in the case of two-dimensional particles,

we take the central axis of the patch lying in the southern hemisphere of the particle (the

“bottom” patch) to point through the south pole (and, consequently, through the north

pole on the opposite side); the northern (“top”) patch is considered the offset patch. The
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orientation of the particle requires, in general, three angles to be fully specified: polar angle θ

and azimuthal angle ϕ, which specify the direction of the bottom patch (in our convention),

and a third angle ψ, which specifies the direction of the offset top patch as an extra azimuthal

angle around the central axis through the north pole. Therefore, the direction of the north

pole of the particle is given by the unit vector

N̂ =
(

sin θ cosφ, sin θ cosφ, cos θ
)
, (3.5.23)

while the direction of the top patch and, hence, the complete orientation of the particle, is

specified by the unit vector

N̂β =
(

cos β sin θ cosφ+ sin β (cos θ cosφ cosψ − sinφ sinψ) ,

cos β sin θ sinφ+ sin β (cos θ sinφ cosψ − cosφ sinψ) ,

cos β cos θ − sin β sin θ cosψ
) (3.5.24)

The angle between N̂ and N̂β is indeed β: N̂ · N̂β = cos β.

Just as in the case of the two-dimensional triblock disk, we can orient the triblock sphere

such that the central axis through the north pole is perpendicular to the plane across which

the bonds separated by δ and δ′ have reflection symmetry. In this case, the unit vectors in

the directions of the four attractive bonds are

M1 =

(
cos

δ

2
, 0, sin

δ

2

)
M2 =

(
cos

δ

2
, 0,− sin

δ

2

)
(3.5.25)

M3 =

(
− cos

δ′

2
, 0, sin

δ′

2

)
M4 =

(
− cos

δ′

2
, 0,− sin

δ′

2

)
(3.5.26)

The top two bonds will remain in the offset top attractive patch provided that

Nβ ·Mi ≥ cosφ0, i ∈ {1, 3}, (3.5.27)
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while the bottom two bonds will remain in the bottom attractive patch if

−N ·Mi ≥ cosφ0, i ∈ {2, 4}. (3.5.28)

Thus, the number of allowed orientations for a single particle is proportional to

Ωj =
1

2π

π∫
0

dθ sin θ

π∫
−π

dϕ

π∫
−π

dψ
∏
i=2,4

Θ
(∣∣∣N̂ · M̂i

∣∣∣− cosφ0

) ∏
i=1,3

Θ
(∣∣∣N̂β · M̂i

∣∣∣− cosφ0

)
.

(3.5.29)

The orientational entropy, as before, is then given by sj = kB ln Ωj and is plotted as a func-

tion of twisting angle α for various patch sizes φ0 and patch offset angles β in Fig. 3.10.

As expected, when there is no offset (β = 0◦), untwisted bonds (α = 0) are entropically

preferred (note that we are considering only a single particle at this time, not the entire

lattice), as discussed in [46, 61]. For intermediate values of β, the untwisted configuration

is still entropically preferred, though the entropic “well” becomes increasingly flat. At suffi-

ciently large values of β, however, a non-zero twisting angle ultimately becomes entropically

advantageous, which is a new phenomenon not exhibited by triblock Janus particles with no

offset patches, for any patch size.

The entropy profile is highly dependent on patch size, as well; for a given value of β,

larger patch sizes will allow for greater variation in the twisting angle, so that it is more

likely that the untwisted bond configuration will still be favorable, and the crossover to a

non-zero twisting angle bond configuration being preferred will occur at a higher threshold

value of β. For smaller patch sizes, the twisting angle is constrained to follow the offset patch

very closely, so that the value of the twisting angle with maximal orientational entropy α∗

is approximately equal to β (Fig. 3.11). In all cases, the value of α∗ converges towards β as

β increases.
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Figure 3.10: The orientational entropy of a three-dimensional triblock Janus particle as a
function of twisting angle α for various patch sizes φ0 and patch offset angles β. α = 0
corresponds to bonds with nearest neighbors, yielding an untwisted kagome lattice. (Left)
Orientation entropy for particles with a patch size of φ0 = 45◦ offset at β = 0◦, 15◦, 30◦.
(Right) Orientational entropy for particles with patch sizes of φ0 = 40◦, 45◦, 50◦, 55◦ at a
single offset angle β = 30◦.

Figure 3.11: Values of α∗, the value of the twisting angle α with maximal entropy, as a
function of the offset angle β for five different patch sizes. The black dashed line is α∗ = β;
for all patch sizes, the value of α∗ converges to this line as β increases; expectedly, the smaller
the patch size, the earlier the convergence, as the twisting angle is more constrained for a
smaller patch size.
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3.5.4 Effective Hamiltonian and the phase diagram

In order to ultimately connect these results for a three-dimensional triblock Janus particle

to those obtained in the lattice theory portion of this chapter, we need to construct an

expression for the effective Hamiltonian governing the patchy-particle system. The central-

force component of the Hamiltonian is obtained by treating the nearest-neighbor attractive

bonds (recall that there are no non-attractive bonds for the kagome lattice) as harmonic

springs, so that

hCF =
∑
b∈NN

vb (|Rb| − |R0b|) =
1

2

∑
b∈NN

(|Rb| − |R0b|)2

|R0b|2
, (3.5.30)

as in Section 3.4.

The next-nearest-neighbor quartic-order potential is realized as an approximation to the

orientational entropy calculated previously. It is important to note that this NNN contri-

bution is not of energetic origin, as it was in the lattice theory, where we explicitly placed

anharmonic springs between next-nearest-neighboring sites, but rather is purely entropic in

nature – thermal fluctuations have lifted the flatness of the potential well of the attrac-

tive patch via another manifestation of the “order-by-disorder” effect. The shape of the

orientation entropy, in particular for intermediate values of offset angle β, is seemingly well-

approximated by a quartic-order function. In order to fit such a function and obtain two

elastic coefficients, τeff and λeff, we need two quantities: the second-order and fourth-order

moments of α,

m2(β) ≡ 〈α2〉 =

∫
dαα2Ω(β, α)∫
dαΩ(β, α)

(3.5.31)

m4(β) ≡ 〈α4〉 =

∫
dαα4Ω(β, α)∫
dαΩ(β, α)

. (3.5.32)
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We can then generate a quartic-order fit for the entropy

s̃ ' −b2

2
α2 − b4

4!
α4 (3.5.33)

by requiring that the quartic approximation have the same second and fourth moments.1

Note that the dependence on offset angle and patch size are carried in the coefficients b2 and

b4. Then the effective Hamiltonian, which is the sum of the central-force component and the

orientational-entropy component, is

heff =
1

2

∑
b∈NN

(|Rb| − |R0b|)2

|R0b|2
+
b2T̃

2

∑
i

α2
i +

b4T̃

4!

∑
i

α4
i . (3.5.34)

In order to determine the relationship between b2, b4 and τ, λ, we will need to compare

this effective Hamiltonian with that in Eq. (3.3.17). Before that ultimate step, however, we

should recall that we are considering the uniform twisting mechanism; therefore, αi = α ∀i.

Additionally, in comparing Hamiltonians, we need not concern ourselves with fluctuations

and, hence, just as in the zero-temperature lattice theory, the nearest-neighbor summation

in our effective Hamiltonian vanishes. We can finally compare the two Hamiltonians, and

by equating the coefficients of α2 and α4, we obtain expressions for the effective elastic

constants,

τeff =
b2T̃

6
(3.5.35)

λeff =
b4T̃

6
− 5τeff =

T̃

6
(b4 − 5b2) . (3.5.36)

Now that we have obtained the effective elastic constants, we can proceed to determine

the phase boundary. Before doing so, let us consider a few regimes that require no further

1Alternatively, the entropy can be fit to a quartic approximation using a least squares algorithm. It turns
out that the resulting approximation coefficients are rather similar to those obtained using the moment-
constraint method employed in the main text over the ranges of β that are important to the discussion of
the phase transition for various patch sizes φ0.
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analysis. From our lattice theory considerations, we know that τeff < 0 is a necessary condi-

tion for the twisted-untwisted phase transition. Thus, for values of τeff > 0, we know that the

Janus particles will form an untwisted kagome lattice, regardless of temperature. Similarly,

for a given patch size, there is a threshold offset angle β0, above which the orientational

weight (degeneracy factor) of the untwisted bond configuration, Ω0 ≡ Ω(α = 0), vanishes.

In this case, it is clear that the untwisted kagome lattice cannot form, as the necessary bond

configuration would result in the energetically-costly breaking of attractive bonds. Thus, in

this region, the Janus particles necessarily form a twisted kagome lattice. Finally, there is

a region between these two, in which τ < 0, but Ω0 > 0, where the temperature-dependent

phase transition will occur. This requires the subsequent further analysis. A plot of these

regions in the β − φ0-plane is given in Fig. 3.12.

Finally, now that we have our effective constants, the results from the lattice theory

calculations can be applied. If we assume the same conditions, τeff � 1 � λeff, we can

directly use the equation for the phase boundary, Eq. 3.4.47.2 Substituting in for τeff and

λeff and solving for T̃c, we obtain a critical phase boundary in terms of b2 and b4 (which,

again, contain the dependence on β and φ0),

T̃c =
c2 |b2|3

6 (b4 − 5b2)2 , (3.5.37)

where c = 1.1544, the coefficient of the phase boundary in the lattice calculation. The

resulting phase diagram is presented in Fig. 3.13 for five patch sizes. For all patch sizes,

there is a minimum offset angle beyond which the Janus particles should spontaneously

form a twisted kagome lattice. Naturally, the phase boundary shifts to larger values of β

for larger patch sizes, as it requires a larger offset angle to create an entropic disadvantage

for the untwisted bond configuration, α = 0. Furthermore, for a range of offset angles for

2One point of caution here is that this may not be satisfied for Janus particles with large patch sizes
and/or large offset angles, since that allows for large twisting angles. One aspect of our lattice theory was
that the twisting angle should remain small. Nonetheless, this provides for an initial formulation of the phase
diagram and can subsequently be studied further.
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Figure 3.12: A plot of τ/(τ0T̃ ) as a function of offset angle β and patch size φ0, where
τ0 = τ(β = 0) for a given patch size. The left white dashed curve is τ = 0, while the right
dashed curve marks where the weight for untwisted bonds Ω0 = Ω(α = 0) first vanishes (for
increasing β). The leftmost region, where τ > 0, will necessarily yield an untwisted kagome
lattice, whereas the rightmost region, where Ω0 = 0, yields a twisted kagome lattice. The
middle region is where the temperature-dependent phase transition occurs. The three red
dots correspond to the plots of the orientational weights (degeneracy factors) on the right
for a patch size of φ0 = 40◦. The values of β were chosen to illustrate the profile of the
weight function in each of the three regions discussed above.

each patch size, the transition between the untwisted kagome lattice and the twisted kagome

lattice can be traversed simply by manipulating the temperature of the colloidal solution. It

will quite interesting to see the manifestation of such a transition in a lab setting.

3.6 Discussion

In this chapter, we have studied the structural phase transition between the kagome

lattice and the twisted kagome lattice and have found that the structural transition, which

is continuous at T = 0, becomes first order at finite temperature due to the renormalization

of the twisting modulus of the untwisted kagome lattice from the near-divergent contribution
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Figure 3.13: The Janus particle phase diagram as a function of offset angle β and temperature
T̃ for five different patch sizes. To the left of, and above, each corresponding phase boundary
is the untwisted kagome phase, while to the right of, and below, is the twisted kagome phase.

of near-floppy modes to the free energy. The transition also occurs at critical values of τc < 0,

meaning that there is a region in the phase diagram where the kagome lattice is stabilized

by these entropic contributions. To ensure that this does not simply remain an intellectual

pursuit, we then explored the experimental system of triblock Janus particles, in which

the effects of entropic stabilization can be observed in the formation of self-assembled open

structures such as the kagome lattice. We showed that the same entropic effect that leads

to directional bonding favoring the kagome lattice over a close-packed structure can result

in directional bonding favoring the twisted kagome lattice over even the kagome lattice, for

Janus particles fabricated with a sufficiently-offset attractive patch. It will be interesting to

see if this can lead to the experimental realization of a stable twisted kagome lattice and,

furthermore, if a structural transition between a kagome structure and a twisted kagome

structure can indeed be induced by control of the ambient temperature.
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CHAPTER IV

Self-assembly of thin triangular prisms via

capillary interactions

4.1 Introduction

In this chapter, we investigate the possibility of using a hexapolar-like capillary interac-

tion generated between pairs of thin, triangular microprisms to self-assemble rigid, space-

spanning open networks at low particle concentrations. Thin prisms – quasi-two-dimensional

shapes with finite, but small, thicknesses – can generate capillary interactions at fluid-fluid

interfaces if sufficient interface deformation is induced at the prism sides. The symmetry

of thin, triangular prisms indicates that the interaction will be similar to that of capillary

hexapoles when these prisms are not too close. This interaction may lead to binding of the

triangles at their vertices and yield ordered open structures such as the kagome and the

twisted kagome lattices, which consist of a recurring motif of two tip-sharing inverted trian-

gles. Based on the angle between these two triangles, an entire family of lattice sharing the

kagome connection topology can be generated, as shown in Fig. 4.1. Open structures such

as the kagome lattice family have intriguing properties including negative Poisson’s ratio,

negative thermal expansion, and, as discussed at the beginning of Chapter III, interesting

topological properties. However, open structures also have inherent instability, which make
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Figure 4.1: Hexapole-like capillary interaction between triangles may lead to the self-
assembly of kagome lattices. (a) Hexapole-like interactions between two bowed triangles
(positive at tips and negative at edges) cause tip-to-tip binding. (b) The kagome lattice
where edges of triangles form straight lines. (c,d) two twisted kagome lattices with different
twisting angle. These different versions of the kagome lattice are related by a soft deforma-
tion which only changes the angle between the triangles, which leads to a negative Poisson’s
ratio. (e) Depending on the strength of the hexapole-like interaction, disordered assemblies
of triangles may also occur.

it difficult to synthesize such structures and to keep them stable against deformations that

will lead to collapse. Therefore, to improve the prospects of assembling such complex open

structures – either ordered or disordered – the long-range and potentially highly-directional

capillary pair-binding behavior of thin homogenous microprisms at interfaces should be in-

vestigated. Better understanding of the resultant transient and steady-state binding can

identify conditions for which ordered and/or disordered open structures might occur; both

possibilities can yield interesting mechanical properties [90, 91].

In this work, we observe capillary-driven binding of thin, triangular prisms, with edge

lengths of ∼120µm and thicknesses between 2.5 and 20µm, at an air-water interface. The

particles are produced by polymeric photolithography and are found to undergo an unex-

pected bowing deformation during synthesis. The observed anisotropic, directional interac-

tions are due to the resultant generation of a capillary hexapole, which arises due to the

triangular shape and the bowing-induced curvature of the three-phase contact line (air, wa-

ter, and particle). Different types of binding events occur between the tips and the sides

of the interacting prisms, with the specific type of binding predictable from the up/down

polarity of particle attachment to the interface. From the particle shape and the radius of
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curvature of the bowing, we can compute the interface geometry and the resulting capillary

interaction numerically. We find that the capillary interaction is similar to the ideal hexapo-

lar interaction in the far field, but that it deviates from the ideal hexapole interaction in the

near field due to a focusing of interfacial deformation near the tips of the prisms. This leads

to a majority of binding events that proceed through initial binding involving one or two tips

(with the exact number dictated by the relative polarity of the prisms). We also simulate

trajectories of particle binding events numerically using the numerically-calculated potential,

and we obtain good qualitative agreement with the experimental results. These results in-

form the structural design of complex open networks from simple interfacial building-blocks.

4.2 Theory of capillary interactions

4.2.1 Analytic interface height solutions

The pressure difference across an interface between two stationary, immiscible fluids is

given by the Young-Laplace equation,

∆p = p1 − p2 = −γ∇ · n, (4.2.1)

where γ is the surface tension and n is the unit vector pointing from the lower fluid (2) to

the upper fluid (1). Note that −∇ · n = 2H, where H is the mean curvature of the interface.

Suppose that the height of the interface is given by h(x), where the far-field equilibrium

height of the interface is h = 0 (the interface is flat and, consequently, the pressure difference

across the interface is zero). Then, from hydrostatic equilibrium, we know that

pi = p0 − ρigh, (4.2.2)
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where p0 is the far-field equilibrium pressure at h = 0 and ρi is the density of the ith fluid.

Upon substitution, the Young-Laplace equation becomes

(ρ2 − ρ1) gh = −γ∇ · n. (4.2.3)

Now, the unit normal to the surface, n, can be written in terms of gradients of the height

field:

n =
∇(z − h)

|∇(z − h)|
=

êz −∇h√
1 + |∇h|2

. (4.2.4)

The divergence of the first term vanishes, as it entails the partial derivative with respect to

z of a function of only planar variables (e.g., x and y). Thus, the Young-Laplace equation

in terms of the height field is

∇· ∇h√
1 + |∇h|2

= κ2h (4.2.5)

where

κ = `−1
c ≡

√
(ρ2 − ρ1)g

γ
. (4.2.6)

is the inverse capillary length. The capillary length is a characteristic length scale arising from

comparing the relative strengths of gravitational acceleration and the surface tension; for

length scales much smaller than the capillary length, the effects of gravity can be neglected.

The capillary length of an air-water interface is 2.7 mm.

We can simplify the governing equation of the interface height h by making two assump-

tions that are typically satisfied by micron-sized particles. First, the interface slope is taken

to be small: |∇h|2 � 1. Second, we consider length scales that are much smaller than the

capillary length, a� `c. In this case, the Bond number is vanishingly small, Bo = (κa)2 � 1,

and the Young-Laplace equation simplifies to the 2-D Laplace’s equation,

∇2h = 0 (4.2.7)

Let us consider the case of a solid particle adsorbed to the interface such that the contact
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line between the interface and the particle surface is undulating. This can be due to particle

shape (anisotropies, corners, and edges) and surface roughness/irregularities. These undu-

lations can be decomposed into a multipole expansion such that this differential equation

can be solved analytically, for particles with circular cross-sections, using polar coordinates

(r, θ). The solution for the interface height profile is

h(r, θ) = H0 ln(κr) +
∞∑
m=1

Hm

(r0

r

)m
cos [m(θ − θm,0)] (4.2.8)

where Hm is the amplitude of the mth moment at the surface/circumference of the particle’s

circular projection, r0. m ∈ Z+∪{0} is the multipole moment, and m = 0, 1, 2, 3 correspond

to the monopole/charge, dipole, quadrupole, and hexapole moments, respectively (Fig. 4.2).

If the particle adsorbed to the interface is sufficiently light, the monopole moment vanishes;

if the particle is allowed to spontaneously rotate about a horizontal axis, then the dipole

moment also vanishes. Therefore, the quadrupole moment (m = 2) is typically the leading

non-zero term in the multipole expansion.

For two particles with circular cross-sections, it is convenient to use bipolar coordinates

(ω, τ) to obtain a solution to (4.2.7). They are defined implicitly via

x =
a sinh τ

cosh τ − cosω
, y =

a sinω

cosh τ − cosω
(4.2.9)

where τ ∈ R, ω ∈ [0, 2π) (or, equivalently, ω ∈ [−π, π)). Curves of constant ω and τ are

circles that intersect at right angles in the xy-plane.

The parameter a can be written entirely in terms of the particle radii R1, R2 and their

separation distance r as

a2 =
1

4r2

[
r2 − (R1 +R2)2

] [
r2 − (R1 −R2)2

]
. (4.2.10)

Note that, in the bipolar coordinate system, the circular projections of the contact lines on
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Figure 4.2: Theoretical interface height profiles for particles with circular cross-sections
and contact lines undulating according to prescribed multipole moments. (a) A capillary
quadrupole (m = 2), with four alternating regions of positive and negative interface height
(the equilibrium interface height far from any particles is taken to be zero), and (b) A
capillary hexapole (m = 3) with six alternating regions of positive and negative interface
height.

the xy-plane are curves of constant τ , τ = −τ1 and τ = τ2, where

τ1 = cosh−1

(
r2 +R2

1 −R2
2

2rR1

)
(4.2.11)

τ2 = cosh−1

(
r2 +R2

2 −R2
1

2rR2

)
. (4.2.12)

Rewriting Laplace’s equation in terms of bipolar coordinates ultimately yielding a decep-

tively simple partial differential equation of the form

∂2h

∂ω2
+
∂2h

∂τ 2
= 0. (4.2.13)
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The derivation can be found in [92]; the resultant interface solution is

h(ω, τ) = H1

∞∑
n=1

A(n,m1, τ1) cos(nω −m1φ1)
sinh[n(τ2 − τ)]

sinh[n(τ1 + τ2)]

+H2

∞∑
n=1

A(n,m2, τ2) cos(nω −m2φ2)
sinh[n(τ1 + τ)]

sinh[n(τ1 + τ2)]

(4.2.14)

where

A(n,mi, τi) = mi

min(mi,n)∑
k=0

(−1)mi−k(mi + n− k − 1)!

(mi − 1)!(n− k)!k!
exp[−(mi + n− 2k)τi]. (4.2.15)

4.2.2 Interaction energy between two capillary multipoles

The capillary interaction energy between two particles is a function of their orientations

and separation distance. It is given by

U12 = γ(δS12 − δS1 − δS2), (4.2.16)

where δS12 is the excess area created at the interface in the full two-particle system, and

δSi (i = 1, 2) is the excess area in an isolated one-particle system (i.e., the separation distance

r →∞). The excess area is defined as the difference between the actual surface area Σ∗ and

the projected surface area Σ (the interface would be planar without the deformation caused

by the particle) [93].

In order to calculate the excess surface area, we first consider an infinitesimal element of

the actual surface area, dS∗ = dx∗dy∗, and use a local rotated coordinate system such that

the slope is maximum along the y coordinate. Then the slope is zero perpendicular to that

direction, at least for an infinitesimal length element, so dx = dx∗. For dy∗,

dy∗ =
√
dy2 + dh2 ≈ dy

√
1 +

(
dh

dy

)2

= dy
√

1 + |∇h|2, (4.2.17)
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where we have generalized to a coordinate-independent expression in the last equality, using

the fact that dh/dx = 0. Using the small-slope approximation, we can expand in |∇h|, so

that

dy∗ ≈ dy

(
1 +

1

2
|∇h|2

)
. (4.2.18)

Then

δ(dS) = dS∗ − dS =
1

2
|∇h|2dxdy, (4.2.19)

and so the formula for excess surface area in the small-slope regime becomes

δS =
1

2

∫∫
Σ

dS |∇h|2. (4.2.20)

From these preceding equations, it is apparent that minimization of the capillary inter-

action potential coincides with the minimization of excess area beyond that created by two

isolated particles. This favors the adoption of particle configurations such that the slope

of the resultant interface is reduced. For particles with fixed orientations, the interaction

between the two will be attractive if moving the particles closer together will reduce the

overall slope of the interface (and, thus, decrease the amount of excess interfacial area) and

repulsive if moving the particles further apart will reduce the overall slope.

For a single particle with a circular cross-section, the formula for excess area can be

written in polar coordinates as

δS =
1

2

∞∫
R

2π∫
0

rdrdθ |∇h|2 , (4.2.21)

where R is the cross-sectional radius of the particle. The height of the interface around such

a particle with a contact line that is undulating with multipole moment m is given by

h(r, θ) = H

(
R

r

)m
cos [m (θ − θ0)] . (4.2.22)
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so that

|∇h|2 = m2H2 R
2m

r2m+2
(4.2.23)

Thus, we find that the excess surface area is

δSi =
π

2
mH2

i . (4.2.24)

For two capillary multipoles, the excess surface area is [92]

δS12 = π
[
H2

1S1 +H2
1S2 −H1H2G cos(m2θ2 −m1θ1)

]
(4.2.25)

where

Si =
∞∑
n=1

n

2
coth [n(τ1 + τ2)]A2(n,mi, τi) (4.2.26)

G =
∞∑
n=1

nA(n,m1, τ1)A(n,m2, τ2)

sinh [n(τ1 + τ2)]
(4.2.27)

and

A(n,mi, τi) = mi

min(mi,n)∑
k=0

(−1)mi−k(mi + n− k − 1)!

(mi − 1)!(n− k)!k!
exp[−(mi + n− 2k)τi]. (4.2.28)

Here, it is important to realize that, for two capillary multipoles of the same order, such that

m1 = m2, the interaction energy reduces to a two-dimensional function of their separation

distance, r, and their relative orientation, |θ1 − θ2|. The capillary interaction potential

between two capillary hexapoles is shown in Fig. 4.3.

4.2.3 Contact-line boundary conditions

The solution to the Young-Laplace equation is subject to two boundary conditions: one

at the three-phase (solid, liquid, and fluid, with the latter oftentimes a gas) contact line and
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Figure 4.3: Theoretical capillary interaction potential between two capillary hexapoles as a
function of separation distance, r, scaled by the diameter of the particles’ circular projection,
2R, and the particles’ relative orientation, |θ1−θ2|. The three insets show the interface height
profile of three configurations corresponding to relative orientations of 0◦, 30◦, and 60◦ at a
distance of r/2R = 1.8.

one at the far boundary of the interface, infinitely far away. The latter is typically taken to

be the condition of a flat interface. The boundary condition at the contact line, however,

can be more complicated. In the simplest case, in which the surface of the solid phase (e.g.,

a wall or a particle) is energetically homogeneous, the contact line is determined such that

the equilibrium contact angle, θc, between the solid surface and the surface of the interface

is constant and satisfies the Young equation [94, 95],

γ cos θc = γSG − γSL, (4.2.29)

where γ, γSG, γSL are the liquid-gas, solid-gas, and solid-liquid surface tensions, respectively.

Eq. (4.2.29) can be simply derived by considering the change in free energy per unit breadth,

df , that results from moving the contact line by a distance dx, as shown in Fig. 4.4; at
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Figure 4.4: Cross-section showing the movement of a three-phase contact line between solid
(S), liquid (L), and gas (G) phases with contact angle θc by an amount dx. The solid (dotted)
line represents the initial (resultant) interface. Used in the derivation of the Young equation.

equilibrium, the change in free energy should be equal to zero:

0 = df = (γSG − γSL) dx− γ cos θc dx. (4.2.30)

For a single, isolated solid particle at a liquid-fluid interface with a energetically-homogeneous

surface and an axisymmetric body with a vertical symmetry axis, such as a sphere or vertical

cylinder, the contact line should therefore be flat by symmetry [96]. Moreover, for a small

spherical particle of radius R and negligible weight (the particle Bond number is vanishingly

small), the interface should also be entirely planar; the depth of the particle immersed in

the liquid is d = R(1 + cos θc), with θc adhering to the equilibrium value specified by the

Young equation [97]. Contrastingly, a small cylindrical particle with negligible Bond number

oriented vertically necessarily results in a non-equilibrium contact angle, as will be discussed

below.

For a solid particle with a convoluted shape and, thus, contact line, it is not immediately

obvious how to specify the contact angle. To facilitate such a determination, we define t̂ as

the unit tangent vector to the contact line, n̂ as the unit normal vector to the surface of the

particle, and b̂ ≡ t̂× n̂ as the unit binormal vector (Fig. 4.5). Then the liquid-gas surface

tension unit vector γ̂ lies in the plane spanned by the vectors n̂ and b̂, and the contact angle is
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Figure 4.5: Close-up schematic of the surface of an arbitrary particle at an interface. t̂ is
the unit tangent vector to the contact line, n̂ is the unit normal vector to the surface of the
particle, and b̂ is the unit binormal vector. γ̂ is tangent to the interface and lies in the plane
spanned by the vectors n̂ and b̂. The angle between γ̂ and b̂ is the contact angle, θc.

given by b̂ · γ̂ = cos θc [98]. Nonspherical particles, such has ellipsoids [99, 100] and cylinders

[101] with respective symmetry axes oriented horizontally, have been shown experimentally

and numerically to generate nonplanar contact lines with constant equilibrium contact angles

due to the varying curvatures of the particles. Additionally, distortions and undulations

in contact lines can occur in particles of any shape due to surface roughness or chemical

heterogeneities, which lead to an energetically-inhomogeneous surface [93].

In this chapter, due to the specific shape of the particles used in the experiment – tri-

angular prisms – we will focus on a final form of boundary condition in which the contact

line is kinetically trapped, or pinned, at sharp corners and edges of a particle. This pinning

results in a non-equilibrium contact angle that can deviate significantly from the equilibrium

contact angle discussed above and can also vary along the contact line. As shown by Gibbs

in an extension to the Young equation [102, 103], the non-equilibrium contact angle, θg, at
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a pinned edge can be any value in the range

θc ≤ θg ≤ π − δ + θc, (4.2.31)

where δ is the wedge angle of the particle. For example, the wedge angle of the top or

bottom edges of a cube is π/2. Note that the limiting angles of the Gibbs’ inequality or

criterion are simply the equilibrium contact angles for each of the two surfaces that join

together to form the edge with a wedge angle of δ; when θg extends beyond the bounds of

the inequality, the contact line becomes unpinned and begins to slide along one of the two

surfaces, as dictated by which bound was violated [104]. This phenomenon of contact-line

pinning has been observed in various experimental systems consisting of solid particles or

substrates containing sharp edges [105–107]. For example, returning to the case of a small

cylindrical particle with negligible Bond number oriented vertically, a preferred equilibrium

contact angle of θc 6= π/2 cannot be achieved anywhere along the side of the cylinder;

therefore, the contact line will either move up (if the preferred contact angle θc > π/2) or

down (if θc < π/2) until either the top or bottom face, respectively, of the cylinder coincides

with the interface [108]. In this case, the contact line is pinned to the edge of the cylinder

with non-equilibrium contact angle θg = π/2, and the surrounding interface is completely

planar.

4.3 Experimental system

In this section, we summarize the work and findings (except for dilute binding events,

which can be found in Section 4.6) of our experimental collaborators, Joseph Ferrar and

Michael Solomon (see [109] for additional details). Four types of triangular prisms are fabri-

cated via SU-8 photolithography. All prisms have an edge length of 120µm, and thickness of:

(a) 2.5µm, (b) 5µm, (c) 12µm, and (d) 20µm. The ratio of the thickness (T ) to length (L) of

the prisms is a characteristic parameter; we hereafter refer to each type of prism, as needed,

95



Figure 4.6: SEM images of thin, equilateral triangular microprisms from SU-8 epoxy resin.
Equilateral triangle (edge length, L = 120µm) prisms of varying thickness (T) a) T ∼ 2.5µm,
T/L = 1/50, b) T ∼ 5µm, T/L = 1/25, c) T ∼ 12µm, T/L = 1/10, d) T ∼ 20µm,
T/L = 1/5. Reprinted from [109] with permission.

as: (a) T/L = 1/50, (b) T/L = 1/25, (c) T/L = 1/10, and (d) T/L = 1/5. SEM images of

the synthesized particles (Fig. 4.6) show that the thinnest particles, T/L = 1/50, 1/25 have

observable bowing prior to deposition on the interface.

The particles are placed on a flat air-water interface, whereupon prisms of all T/L ratios

undergo lateral capillary-driven particle-particle binding at the interface. Over a period of

about one hour, the prisms self-assemble into open structures of progressively increasing size.

The networks span several millimeters in space and are visible to the eye and contain a mix

of dense, close-packed regions (with numerous prisms bound edge-to-edge), long strands, and

large voids (Fig. 4.7).

Interestingly, the T/L = 1/50, 1/25 and 1/10 prisms are adsorbed to the interface in

such a way that their centers-of-mass either sit slightly above or below the interface. This

“positional” polarity (center-of-mass above or below the interface) is perfectly correlated with

the “bowing” polarity (bowed upwards or bowed downwards), in that out of all prisms whose
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Figure 4.7: Self-assembled open networks from capillary-driven binding of thin triangular mi-
croprisms. (a) T/L = 1/50, (b) T/L = 1/25, (c) T/L = 1/10, and (d) T/L = 1/5 equilateral
triangular microprisms. Scale-bars are 100µm. Reprinted from [109] with permission.

positional polarity can be determined via optical microscopy (see Fig. 4.9), all occurrences of

bonding between prisms with the same positional polarity are tip-to-tip or edge-to-edge, and

all occurrences of bonding between prisms with opposite positional polarities are tip-to-edge

or offset edge-to-edge.

Recall that interface contact lines can become kinetically-trapped, or “pinned” at sharp

corners and edges of particles. For bowed prisms, a pinned contact line that follows the edges

consequently specifies a curved boundary condition for the interface at the prism surface,

which is experimentally observed (Fig. 4.8). The resultant deformation of the interface

adhering to such a boundary condition in turn determines the capillary-driven attraction

between the prisms – the interface curvature at the tips and edges of the triangular prism is

opposite for bowed-up and bowed-down prisms, so that like geometrical features will attract

for the same bowing polarity and will repel for opposite bowing polarities. Thus, there is

a direct correspondence between relative bowing polarity and binding location and, hence,

positional polarity.
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Figure 4.8: Environmental SEM images of T/L = 1/50 triangular prisms, fixed at an air-
gellan/water, illustrating interfacial deformation that follows the bowing of the prism due to
contact-line pinning. (a) Positive “positional” polarity, corresponding to downward bowing.
(b) Negative “positional” polarity, corresponding to upward bowing. Scale bars are 20µm.
Adapted from [109] with permission.

Therefore, when we subsequently refer to particles as having the same polarity, we mean

that their centers-of-mass are either both above the far-field, equilibrium height of the inter-

face (in which case the particles are both bowed down) or both below the equilibrium height

of the interface (in which case the particles are both bowed up); particles with the opposite

polarity have centers-of-masses that are on either side, vertically, of the equilibrium interface

height (and, thus, the particles are bowed in opposite directions).

4.4 Methods for numerical analysis

4.4.1 Pairwise modeling of the interaction potential using Surface

Evolver

In this work, we consider the capillary interaction potential between triangular prisms,

for which an analytic solution to Laplace’s equation – especially close to the prisms, where

simplifying assumptions cannot be made – is not obtainable. Therefore, we use Surface

Evolver [110], a program widely utilized to model the shape of liquid surfaces and interfaces,

to numerically calculate the shape of the interface. The final solution is achieved by an

algorithmic succession of steps involving gradient and conjugate gradient descent iterations
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Figure 4.9: Identification of triangular prism binding states (T/L = 1/25). Each row of
images (a)-(c) represents a different location within a network structure. The relative posi-
tion of the microscope’s focal plane to the air-water interface is varied by column as follows:
Column (1): Microscope focal plane is ∼200µm below the interface. In-focus prisms are
identified with red markers. Column (2): Microscope focal plane is ∼200µm above the
interface. In-focus prisms are identified with blue markers. Column (3): Microscope focal
plane is at the interface. Bonds between prisms with the same positional polarity are identi-
fied with blue and red connecting lines, bonds between prisms with the opposite positional
polarity are identified with purple connecting lines. Column (4): Microscope focal plane is at
the interface. Prism-prism bonds are identified by their positional-polarity-independent ori-
entation: side-side (orange connecting lines), tip-tip (green connecting lines), side-side offset
(brown connecting lines), tip-side (pink connecting lines). Scale-bar is 100µm. Reprinted
from [109] with permission.
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and interface mesh refinements to minimize the interfacial energy subject to specific boundary

conditions.

As we will discuss further in Section 4.5, we compute the interface shape given a pinned

contact line around a bowed equilateral triangle of side length 120. In particular, this triangle

is formed by the intersection of three planes containing great circles with a thin spherical

shell. Specifying the behavior of the contact lines yields one set of boundary conditions;

the far-field boundary condition is that the interface is flat. To allow for the condition

of mechanical equilibrium to be satisfied, we do not explicitly fix the height of the far-

field boundary, which, in effect, allows for the relative height between the prisms and the

equilibrium, unperturbed height of the interface to change as needed.

In order to generate a potential energy landscape of a pair of interacting triangles, we run

Surface Evolver simulations on a regularly-spaced grid in (r, θ1, θ2) configuration space, where

r is the distance between the centers of the two triangles, θ1, θ2 are the orientations of the

two triangles (see Figure 11 for their definitions). The parameter ranges are 132 ≤ r ≤ 360

and 0◦ ≤ θ1, θ2 < 360◦, with grid spacing of 12 in distance and 5◦ in orientation. The actual

number of simulations needing to be run is substantially reduced by symmetries inherent

in the system. Simulations are run for both particles with the same bowing polarity and

opposite bowing polarities.

4.4.2 Computing particle trajectories leading to pair binding

For a particle moving through a fluid at relatively slow speeds and at a low Reynolds

number, Re, the drag force is given by Fd = −ηrṙ. Analogously, a particle rotating in a fluid

at slow speeds experiences a drag torque, τd = ηθθ̇. In these equations, ηr and ηθ are the

viscous damping coefficients for the center-of-mass and rotational degrees of freedom of the

triangular prisms, respectively.

Assuming a quasistatic force balance on the particles, we can equate the corresponding

drag and capillary forces to obtain the following system of differential equations of motion
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for the pair of prisms. This is a valid assumption to make, as both the Reynolds number

Re = ρva/µ, which is a ratio of inertial forces to viscous forces within a fluid, and the

capillary number Ca = µv/γ, which is a ratio of viscous forces to surface tension of an

interface, where ρ is the density of the liquid, v is the velocity of the particle, and µ is the

dynamic viscosity of the liquid, are quite small1, so that both inertia and viscous deformation

of the interface can be neglected, as in [99, 101]. In this case, hydrodynamic interactions

can safely be ignored, and the force balance equations are

ηr∂tr(t) = −∂rU(θ1, θ2, r) (4.4.1)

ηθ∂tθ1(t) = −∂θ1U(θ1, θ2, r) (4.4.2)

ηθ∂tθ2(t) = −∂θ2U(θ1, θ2, r) (4.4.3)

Discretizing the time derivative of our desired quantities allows us to iteratively solve for the

trajectories of the prisms via

r (ti) = r (ti−1)− 1

ηr

∂U

∂r
∆t (4.4.4)

θI (ti) = θI (ti−1)− 1

ηθI

∂U

∂θI
∆t (4.4.5)

where i, i− 1 correspond to the ith, (i− 1)th time-step, respectively, and I = 1, 2 corresponds

to the particle. The partial derivatives are taken of an interpolated interaction potential

using the potential values determined via Surface Evolver on the regular grid, as discussed

previously.

The viscous damping coefficients are not independent constants. They both originate

from the interaction between the particle and the surrounding fluid. The center of mass

drag ηr actually depends on the particle orientation and the direction of center-of-mass

1For a set of characteristic values ρ = 103 kg/m
3
, a = 120µm, µ = 1.002×10−3 Pa s, γ = 72×10−3 N/m,

and v ∼ 4× 10−4 m/s, which is representative of the upper range of velocities observed in the dilute binding
events, Re ≈ 0.048 and Ca ≈ 5.6× 10−6, both of which are small compared to unity.
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motion. To our knowledge there is no literature on fluid drag of triangular prisms, so in this

study we make a simplifying assumption that both ηr and ηθ are constants, and we estimate

their magnitude by considering the following first-principles calculation: The work done over

a small linear translation of ∆r due to the drag force is Wl = Fd∆r, while the work done

over a small rotation by ∆θ (in radians) due to the drag torque is given by Wr = τd∆θ.

We can attribute the work done by each drag to the energy required to move the fluid

due to the particle’s motion. If we keep the small distance traversed by a single tip of the

(equilateral) triangle the same in both cases, ∆r, then the amount of rotation associated

with that movement is given by ∆θ = ∆r/c, where c is the distance from the centroid to

the tip. If the equilateral triangle has a side length of s, then c = s/
√

3. Comparing these

two cases, the amount of fluid that is moved is of the same order, which means that we can

equate the two works. We also assume that these two motions took the same amount of

time, ∆t. In this case,

ηr
∆r

∆t
∆t = ηθ

∆θ

∆t
∆t (4.4.6)

so that the ratio between the two drag coefficients is

ηθ
ηr

=

(
∆r

∆θ

)2

= c2. (4.4.7)

For angles measured in degrees, the associated drag coefficient is ηθ̃ = ηθ(π/180)2, and the

ratio becomes

ηθ̃
ηr

=

(
∆r

∆θ̃

)2

= c2
( π

180

)2

. (4.4.8)

For a side length of s = 120, c = 69.3 and, thus, ηθ̃/ηr = 1.46.

4.4.2.1 Theoretical power-law relation for dilute binding trajectories

For an experimental system exhibiting pairwise binding due to capillary interactions, a

useful method to characterize the resultant trajectory is to record the separation distance

r as a function of time-to-contact, tc − t, where tc is the first instance where the particles
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touch. If the trajectory obeys a power-law relation such that

r = (tc − t)β , (4.4.9)

the value of the exponent β gives insight into the order of the capillary interaction, as we

will presently show.

The capillary interaction energy between two ideal multipoles is U12 ∼ r−α, where α = 4

for an interaction between two ideal quadrupoles and α = 6 between two ideal hexapoles

(and, in general, α = 2m for an interaction between two multipoles of order m). Thus, the

capillary force, for fixed orientations, is

F12 = −∂U12

∂r
∼ r−(α+1). (4.4.10)

Equation the capillary force to the viscous drag force Fd = ṙ(t), as we did in the previous

section, yields a simple first-order differential equation

dr

dt
∼ r−(α+1). (4.4.11)

Solving this differential equation gives tc − t ∼ rα+2; comparing this to Eq. (4.4.9) yields

the result that, for a capillary interaction between two capillary multipoles of order m, the

power-law exponent is

β =
1

α + 2
=

1

2(m+ 1)
=


1/6 quadrupole

1/8 hexapole

(4.4.12)

4.5 Capillary interactions of triangular prisms

The triangular prisms in this experiment have flat, nearly vertical side surfaces. This lack

of curvature of side surfaces leads to a different interface attachment than that of ellipsoids

103



and cylinders. As discussed in [99, 101, 111, 112], interfaces around the ellipsoids and

cylinders either rise or depress as a result of the differing curvatures of the side surface of the

particle, maintaining a constant contact angle and zero total force and torque on an isolated

particle.

For these triangular prisms with vertical side surfaces, the preferred contact angle of

the material cannot be reached, as that would correspond to a uniform rise of the interface

around the triangular prism, yielding a net force pointing up on the particle that is not

consistent with mechanical equilibrium. Therefore, instead of an equilibrium contact line in

the middle of the side surface of the triangular prisms, the interface is pinned to either the

top or the bottom edges of the triangular prisms, as discussed more generally in Sec. 4.2.3.

To characterize the interface shape and the resulting capillary interaction between the

triangular prisms, we use Surface Evolver to compute the interface with a contact line pinned

to the edges of a bowed triangle. To match the observed curvature of the thinnest particles,

we use an radius-of-curvature-to-edge-length ratio of 0.9 (thus, for an edge length of 120µm,

we take the radius of curvature to be 108µm). The resulting interface around isolated

particles (Figs. 4.10a,b) closely resembles that observed in the eSEM images of the thinnest

T/L = 1/50 particles (Fig. 4.8).

It is worth noting that the only input into the Surface Evolver computation is the pinned

contact line, and no information regarding the particle thickness is involved. Our computa-

tions show that, for a bowed-up particle (Fig. 4.10a), the particle center of mass is below

the infinitely-far interface height by 7.45µm (for the above-specified curvature), whereas

the center of mass of a bowed-down particle is the same amount above the far interface

height. This depth is greater than the particle thickness (2.5µm for T/L = 1/50 and 5µm

for T/L = 1/25), and helps explain the perfect correlation between the polarity and the

direction of the particle bowing of the thinnest particles. The relation between the interface

attachment and the bowing direction of the thicker particles may involve more complicated

mechanisms that need further investigation.
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Figure 4.10: Interface height profile for a (a) bowed-up triangular prism and a (b) bowed-
down triangular prism, where the zero value is set by the equilibrium interface height at large
distances from the prism. The inset in (a) is a close-up of the Surface Evolver simulation
output. (c) A comparison of the interface height profile around a bowed-up triangular prism
(data points) and an ideal hexapole (solid curves) as a function of angle at two different
distances from the triangular prism, shown in the inset. Simulated interface height profiles
for (d) two bowed-up triangular prisms and (e) one bowed-up and one bowed-down prism for
both tip-to-tip and tip-to-side configurations. Zoomed-in rendering of simulated interface
height profile for (f) a tip-to-tip configuration for two bowed-up prisms; and (g) a tip-to-side
configuration for one bowed-up and one bowed-down prisms, illustrating the existence of a
capillary bridge in both cases.

The interface geometry around the triangular prisms is similar to that of the capillary

hexapole in that there are six distinct regions of alternating positive- and negative-height

interface values (where the equilibrium, unperturbed height of the interface at far distances

is taken to be zero). However, important differences exist between the ideal hexapole field

and the interface around the triangular prisms at distances close to the particle. The ideal

hexapole, with a interface height profile governed by Eq. (4.2.22), has the symmetry that the

positive and negative regions are of equal width. The interface around the triangular prisms,

in contrast, has much narrower positive (negative) regions around the tip of the bowed-up
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(-down) triangles (Fig. 4.10c). As a result, the focusing of excess area around the tips of

the triangles induces stronger capillary interactions at the tips than along the triangle edges.

Note that, as one would expect, the height of the interface around a bowed triangular prism

increasingly conforms to the profile of a capillary hexapole as the distance from the prism

increases. Indeed, the effect of tips, edges, and other sharp particle features, which are quite

prominent in the near-field behavior of the interface, becomes increasingly diminished and

smoothed out at these larger distances (Fig. 4.10c).

We then study the capillary interaction potential between triangular prisms by computing

the interface geometry around a pair of triangular prisms using Surface Evolver. Once the

numerical interface solution has been obtained, we can subsequently determine the capillary

interaction energy using Eq. (4.2.16). There are, of course, two cases that are simulated: the

first is when both prisms have the same bowing polarity (by symmetry, we need only consider

the case where both particles are bowed up), and the second is when the two particles have

opposite polarities (here again we can simplify matters and consider only the case where the

particle on the left is bowed up and the particle on the right is bowed down). Examples of

the interface in the vicinity of two triangular prisms with the same and opposite polarities

are shown in Figs. 4.10d,e.

It is already evident from these plots – even before further analysis – that the tip-tip

configuration for prisms with the same polarity and the tip-edge configuration for prisms

with opposite polarities are attractive, while the opposite configurations are repulsive – the

former will result in decreased excess area as the particles move towards each other, while

the latter will result in increased excess area (the overall slope of the interface will increase

between the bowed-up and bowed-down components as they are brought closer together).

Figs. 4.10f,g show the underlying mechanism that reduces the excess area between regions

with the same capillary charge: the formation of a capillary bridge.

The capillary interaction potential U depends on both the distance between the centers

of the two triangular prisms, r, and their orientations relative to the line connecting their
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Figure 4.11: Numerically-simulated capillary interaction potential between two bowed-up
triangular prisms, with the left prism held at 0◦. This two-dimensional slice of the full
three-dimensional configuration space is directly comparable to the theoretical interaction
potential in Fig. 4.3. (b) All orientation angles for the triangular prism system are defined
according to the convention shown: the orientations are defined by the angle a specific tip
of the prism makes with the line connecting the centers of the two prisms. (c) The capillary
interaction potential for two-bowed up triangular prisms in mirror-symmetric configurations
as a function of the separation distance, r, on a log scale, for various orientation angle values.
A dashed reference line, corresponding to the theoretical interaction potential for two ideal
hexapoles, U ∼ r−6, is shown for comparison.

centers, θ1, θ2 (see Fig. 4.11b for an illustration of the convention used). This is a config-

uration space that has one extra dimension beyond that of the capillary hexapolar theory,

in which only the relative orientation of the two particles mattered. In order to be able to

directly compare the theoretical case with that of two bowed-up triangular prisms, we fix the

orientation of the left particle to be 0◦ and allow r and θ2 to vary. The resultant potential,

shown in Fig. 4.11a, is very similar to that of the ideal hexapoles; even the general shape of

the interface, as shown in a few select cases as insets in both plots, shares similar features.

The similarities extend beyond this, as well: in Fig. 4.11c, when comparing poten-

tial curves for various mirror-symmetric configurations in the triangular-prisms system with

that of the mirror-symmetric curve in the ideal-hexapoles system, which has a U ∼ r−6

dependence, we see that all the curves approach the theoretical ideal-hexapole curve at long
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Figure 4.12: (a) Interaction energy potential values for two bowed-up triangular prisms in
mirror-symmetric configurations at various separation distances. 0◦ corresponds to a tip-to-
tip configuration, while 60◦ corresponds to a side-to-side configuration. Interaction energy
potentials plotted as a function of orientation angles for (b) r = 192 and (c) r = 132. (d)-
(f) The corresponding figures for the case of one bowed-up and one bowed-down triangular
prism.

distances. Again, this makes sense: as noted before, the interface shape around an isolated

triangular prism approaches that of a pure hexapole as the distance from the prism increases;

as the distance between two triangular prisms increases, the interaction increasingly becomes

that of between two capillary hexapoles. Deviations from the pure-hexapole curve and from

each other occur at short inter-particle distances, where the anisotropic tips become increas-

ingly prominent. Note that the θ1 = θ2 = 0◦ tip-tip mirror symmetric configuration is

favored for these smaller distances.

This deviation from an ideal hexapole is further portrayed in Fig. 4.12. In the case of

pure ideal hexapoles, since the interaction energy depends only on the relative orientations of

the particles, the interaction energy for all mirror symmetric configurations, in which θ1 = θ2,

for a given distance is perfectly degenerate. As shown in Figs. 4.12a,d, for the system of

triangular prisms, however, the tip-tip mirror symmetric configuration (corresponding to
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θ1 = θ2 = 0◦) is strongly favored (disfavored) compared to the edge-edge mirror symmetric

configuration (corresponding to θ1 = θ2 = 60◦) for smaller values of inter-particle distances, r,

in the same- (opposite-) polarities system. In the case of opposite polarities, even though the

edge-edge configuration is preferred over the tip-tip configuration, it is important to realize

that it is not the global preferred state, which is a non-mirror-symmetric configuration, as will

be discussed further subsequently. Once again, in both cases, the expected ideal-hexapole

behavior of degenerate energies for all mirror symmetric configurations is recovered as the

inter-particle distance is increased.

As shown in 4.12b,c, the potential for a pair of bowed-up triangular prisms shows a clear

well for the mirror symmetric configuration, θ1 = θ2, which becomes increasingly deep for

smaller inter-particle distances. It is clear in 4.12b, as well, that for two bowed-up triangular

prisms, the potential is relatively flat for all mirror symmetric configurations at a given large

distance, which is the same as the ideal hexapole interaction. When the two prisms are close

to each other, however, the tip-to-tip configuration is much more preferred, in contrast to

the ideal hexapole interaction.

The above results indicate that when two bowed-up particles approach one another, in

general, they first rotate into mirror-symmetric configurations, and then rotate to a tip-to-tip

configuration when they are very close to each other. The case of two bowed-down triangular

prisms is very similar to the above discussion for the bowed-up case, with the simple addition

of a minus sign to the interface height, which results in the same interface energy.

The case of one bowed-up triangular prism and one bowed-down triangular prism is quite

different. At large distances, the capillary interaction is close to that between two hexapoles

but with one hexapole rotated by 60◦ degrees (or, equivalently, the “+” and “−” capillary

charges interchanged). Interestingly, at small distances, instead of favoring a particular

configuration (such as tip-to-tip for the bowed-up pairs), the potential energy valley appears

curved in (θ1, θ2)-space while slightly favoring the offset edge-edge configuration (4.12e). As

we will see below, this leads to different binding trajectories for bowed-up pairs and bowed-
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up-bowed-down pairs.

4.6 Dilute binding events

4.6.1 Experimental results

Seven dilute-binding trajectories (five for T/L = 1/25 and two for T/L = 1/50) were

collected (see Fig. 4.13 for representative optical microscopy time lapses and see Figs. 4.14

and 4.15 for visualization of all trajectory data). Four of the trajectories resulted in bindings

consistent with same-polarity prisms, while three trajectories resulted in bindings consistent

with opposite-polarity prisms. Qualitative features apparent in the dilute binding trajectories

are: (i) same-polarity particles, in a first stage, adopt mirror-symmetric configurations and

slowly move toward each other; in a second stage, particles rapidly close into a tip-tip

binding; and in a third, some particles subsequently rotate into an edge-edge configuration;

(ii) opposite-polarity particles also initially show a mirror symmetric orientation; particles

then later approach to a tip-edge-midpoint configuration; the pair finally collapsed into an

offset edge-edge bond.

The power-law exponent associated with particles approaching each other in these bind-

ing events, r ∼ (tc − t)β , where tc is the time of contact, defined as the first image frame

in which the two prisms touch, displays similarity with the exponent from ideal hexapole-

hexapole interactions, β0 = 1/8 (Fig. 4.14). The small deviation comes from the difference

between the actual capillary interactions between the triangles and the ideal hexapolar in-

teraction. In particular, at far distances, β appears to be closer to 1/6, indicating that

at far-field, quadrupolar interactions (due to higher-order contact-line undulations gener-

ated from surface roughness and other potential variations in the prism edges) may be the

dominant far-field capillary attraction mechanism.
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Figure 4.13: Optical microscopy images of the 2 types of binding trajectories observed for
polar prisms (T/L ≤ 1/10), shown for T/L = 1/50 (rows (a) and (b)) and T/L = 1/25 (rows
(c) and (d)). For prisms of T/L = 1/50 (rows (a) and (b)), contact occurs between the 5th
and 6th images of each row. For prisms of T/L = 1/25 (rows (c) and (d)), contact occurs
in the 5th image of each row. Rows (a) and (c), tip-to-tip binding trajectory: the prisms
approach and first contact occurs at the tips. The prisms then rotate into a collapsed, fully
flush edge-to-edge orientation. Rows (b) and (d), tip-to-midpoint edge binding trajectory:
the prisms approach and contact one another in an orientation such that the tip of one prism
binds at the midpoint of the other prism’s edge. The prisms then rotate into an edge-to-edge
orientation in which the two edges are offset from each other by L/2. Scale bars are 100µm.
Reprinted from [109] with permission.

4.6.2 Simulation results

To compare to these experimental results, we simulated pair-binding events using the

interaction potential (interface energy) U(θ1, θ2, r) obtained by interpolating a grid of Surface

Evolver-calculated potential values at regular intervals as described above. Details of the

trajectory simulations are described in Section 4.4.

Examples of our simulation results for same-polarity (both bowed up in our calculation)

and opposite-polarity prisms are shown in Fig. 4.14 and Fig. 4.15, respectively. Initial

conditions were chosen to be close to those observed in experiment. The ratio of the two
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Figure 4.14: Comparison of experimentally observed and simulated trajectories for a pair
of triangular prisms of the same polarity. Top row: observed r vs. tc − t curves in log-log
scale (left) and linear scale (inset), where tc is taken to be the first frame in which the two
prisms touch in each event; and observed θ1, θ2 vs t − tc curves (right). Four events are
shown as explained in the legend, and lines showing β = 1/8 (consistent with hexapolar
interaction) and 1/6 (consistent with quadrupolar interaction) are added. Illustrations of
the prism configurations are added in the θ1, θ2 plot to show the geometry. Configurations
at the time of contact (t = tc) are pointed to by arrows, and the points at t − tc > 0
show prism rotations after contact, with final configurations marked by circles. Bottom
row: counterparts of the r and θ1, θ2 plots from simulation. Instead of contact time, tm is
the time where the separation distance reaches rm = 132µm (the lower bound of r in our
computation), at which the prisms touch if θ1 = θ2 = 0. We have chosen initial conditions
that are close to two experimental trajectories.
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Figure 4.15: Comparison of experimentally observed and simulated trajectories for a pair
of triangular prisms of opposite polarities. Top row: experimental observations. Bottom
row: simulation results. All conventions are the same as in Fig. 4.14. Note that in two
experimental events, the prisms approach faster in the far-field regime than quadrupolar
interactions would dictate, which we believe to be due to some accidental drift of the interface.

viscous-damping coefficients is taken be to ηθ̃/ηr = 1.46 (see Section 4.4), and ηr is chosen to

rescale time such that the arbitrary time scale in the simulation is similar to the experimental

time scale in the unit of seconds. These simulations terminate at rm = 132µm, the distance

at which the two prisms would touch if they faced one another tip-to-tip. A reference line of

r ∼ (tc− t)β, where β = 1/8, is also plotted. In all cases, the trajectories are roughly consis-

tent with that of the ideal hexapole-hexapole case, with the expected deviations occurring

as the separation distance decreases.

It is also useful to see the effect of various viscous-damping ratios, ηθ̃/ηr. Three repre-

sentative initial conditions, corresponding to configurations close to (but purposefully not
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Figure 4.16: Configuration trajectories for three representative initial conditions (close to
(a),(b) tip-to-tip, (c),(d) tip-to-edge, and (e),(f) edge-to-edge) and two different viscous-
damping coefficient ratios. The top row shows the separation distance as a function of
simulation time, with insets plotting separation distance values as a function of time-to-
contact on a log scale. The gray reference line corresponds to the theoretical case of two
ideal hexapoles approaching each other in a mirror-symmetric configuration. The bottom
row shows the orientation angles of the triangular prisms as a function of simulation time.

exactly) tip-to-tip, tip-to-side, and side-to-side were selected, and the resultant simulated

trajectories are shown in Fig. 4.16 for two different viscous-damping coefficient ratios,

ηθ̃/ηr = 1.46, 0.146. In all three sets of trajectories, it is clear that mirror symmetric configu-

rations are preferred – for cases where the initial configuration is already mirror symmetric,

the subsequent configurations remain mirror symmetric; otherwise, the particles will first

rotate to a mirror symmetric configuration. For smaller ratios and fixed ηr, ηθ̃ becomes

correspondingly smaller, meaning that it is easier for the particles to rotate. This accounts

for the fact that, in all cases, the θ1 = θ2 = 0◦ tip-tip mirror-symmetric configuration is more

easily achieved for the smaller ratio value.

To obtain statistics of how the triangular prisms bind together, we ran simulations for all

initial angles of prism pairs at an initial distance of r0 = 264µm; our results are summarized,

for the two different ratio values, ηθ̃/ηr = 1.46, 0.146, in Figs. 4.17a,b. The first ratio is

chosen according to the simple estimate discussed above. The second ratio, which is 10 times
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Figure 4.17: “Phase” diagrams illustrating the final configurations (r = 132µm) for all
possible initial orientations for two bowed-up triangular prisms at r = 264µm for two dif-
ferent viscous-damping coefficient ratios, (a) ηθ̃/ηr = 1.46 and (b) ηθ̃/ηr = 0.146. The final
configurations are all mirror-symmetric and lie somewhere along the line in (c), with blue
corresponding to tip-to-tip final configurations, red corresponding to side-to-side final con-
figurations, and gray denoting initial conditions that lead to trapped configurations which
are due to artificial kinks in the computed pair potential. (d) Capillary interaction potential
values for mirror-symmetric configurations with two tips of the triangular prisms remaining
in contact (thus, the separation distance, r, decreases below 132µm as θ1 = θ2 increases.
The potential indicates a tendency for tip-to-tip configurations to ultimately collapse to
side-to-side configurations.
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Figure 4.18: “Phase” diagrams illustrating the final configurations (r = 132µm) for all possi-
ble initial orientations for one bowed-up and one bowed-down triangular prism at r = 264µm
for two different viscous-damping coefficient ratios, (a) ηθ̃/ηr = 1.46 and (b) ηθ̃/ηr = 0.146.
The final configurations lie somewhere along the curve in (c), with blue corresponding to
tip-to-edge final configurations and red corresponding to offset-edge-to-edge final configura-
tions.

smaller, allows the prisms to rotate faster relative to their center-of-mass motion, and shows

interesting contrast to the first case. In both cases, a significant majority of configurations

end up in, or close to, the θ1 = θ2 = 0◦ tip-tip mirror-symmetric configuration. For the case of

ηθ̃/ηr = 1.46, some trajectories end up along a continuum of mirror symmetric configurations

ranging from tip-to-tip to edge-to-edge, as the prisms did not have enough time to finish the

rotation before they contact. Contrastingly, in the second case with ηθ̃/ηr = 0.146, almost all

trajectories end up tip-to-tip, because rotational drag is smaller, leading to faster rotation.

A small fraction of initial conditions (gray in the figure) ended up in random configurations

coming from small kinks in the pair potential due to numerical error.

In order to investigate what happens after the two prisms touch at their tips, we calculated

the pair potential for two prisms with their tips touching but at different orientations (mirror

symmetric configurations θ1 = θ2 with the angles ranging between 0 and 60), as shown in Fig.

4.17c. The lower potential for larger angles indicates that, after the initial tip-to-tip contact,

the pair of triangular prisms will rotate and “collapse” into an edge-to-edge configuration.

It is worth pointing out that although, after collision, the prisms ultimately collapse into the

edge-to-edge configuration, a majority of trajectories still first go through an initial tip-tip
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binding. This is in good agreement with our experimental observations.

For bowed-up-bowed-down pairs, a similar set of simulations yield results shown in Figs.

4.18a,b for the two viscous-damping coefficient ratios. In this case, it is important to note

that the final configurations are not mirror symmetric; Fig. 4.17c shows the final orientation

values for the two triangular prisms. The curves of final orientation lie along the minimum-

energy regions of the opposite-polarity interaction potential in Fig. 4.12. Similar to the

same polarity case, the second case with the smaller drag coefficient ratio, ηθ̃/ηr = 0.146,

leads to a more uniform phase diagram where all initial conditions have enough time to

rotate to the offset edge-to-edge configuration, which is of lower energy. The first case with

the ratio as determined from our geometric estimation, ηθ̃/ηr = 1.46, yields a continuum of

final configurations. As before, our simulation terminates at rm = 132µm, the distance at

which the two prisms would touch if they faced one another tip-to-tip. The opposite-polarity

prisms, however, are in non-tip-to-tip configurations such that the prisms are not touching

yet. Our additional computations of the interface energy shows that, at smaller distances,

the offset edge-to-edge configurations exhibit lower energy, leading to the final collapsed

offset edge-to-edge configurations as observed in experiment.

4.7 Discussion

In this work, we have observed experimentally and corroborated numerically that bowing

in triangular prisms can create a hexapolar-like interaction that favors highly-directional

binding events involving a tip of at least one particle. Specifically, for two particles of the

same polarity, a significant majority of binding events are found to first bind via a tip-to-tip

interaction in our simulations before ultimately collapsing to a lower-energy edge-to-edge

state. This is due to the fact that the focused deformation of the interface near the tips of

the prisms yields a strong pathway for rapidly reducing excess interfacial area – that is, the

steepest gradient generally can be found in the direction of tip-to-tip binding. Even with the

117



final collapse, which should be conducive to the formation of close-packed structures, large-

scale disordered networks are nevertheless quite successfully formed. This is most likely

due to geometric frustration from neighboring prisms, which is partly caused by differing

preferred binding sites between particles with the same polarity and particles with opposite

polarities. Perhaps a sample of particles all with the same polarity would more efficiently

collapse and form a close-packed structure.

In attempting to create an ordered open network such as the kagome lattice, isolating

particles of a single polarity is undoubtedly the first step. However, as just alluded to, a

barrier to collapse needs to be introduced to stabilize the tip-to-tip contact. One potential

way to do this would be to slightly truncate the the tips of the triangles, which would

create a (shallow) stabilizing local minimum in the profile of the interaction potential as a

function of collapse angle. Of course, the truncation cannot be too large so as to destroy the

hexapolar interaction, as that is crucial to the prominence of the tip-to-tip binding pathway.

Ultimately, it seems as though the self-assembly of triangular particles through capillary

interactions is a promising direction towards efficiently creating open structures with novel

properties.
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CHAPTER V

Conclusion

In this dissertation, we have explored a number of topics related to critical mechanical

structures and their inherent mechanical instability. We have shown how characteristics of

mechanical instability, manifesting in the form of floppy modes, can interact with thermal

fluctuations to create intriguing and sometimes somewhat unexpected mechanical properties,

especially at small scales. We have also examined a few different experimental systems that

can yield open structures, which are intimately related to critical mechanical structures in

that their openness leads to accessible deformations that are manifestations of instability.

Our study of various aspects of self-assembly can help to improve the likelihood of engineering

long-lasting open structures that have novel and useful properties.

In Chapter II, we explored the finite-temperature buckling of an extensible rod, and

showed that thermal fluctuations delay the buckling transition, stabilizing the straight-rod

phase. In Chapter III, we studied the structural phase transition between two open struc-

tures, the kagome lattice and the twisted kagome lattice, and showed that thermal fluctu-

ations entropically stabilize the kagome phase due to a large number of near-floppy modes

that give a near-divergent contribution to the free energy and, thus, renormalize the twisting

modulus of the kagome lattice, which also drives the transition to be first-order, in contrast

with the continuous nature of the zero-temperature structural transition. We also proposed

an experimental manifestation of this transition in the form of self-assembling triblock Janus
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particles with one offset attractive patch. For an expedient choice of attractive patch size and

offset angle, a twisted kagome assembly can be spontaneously formed rather than a kagome

assembly, though there is a region of the phase diagram in which a transition between the

two can be controlled via temperature.

It is worthwhile to note that the buckling transition of Chapter II remained second-order

at finite temperature, whereas the twisting transition of Chapter III became first-order.

The reason for this difference is that, in the former case, only a single mode became floppy,

whereas in the latter case, a sub-extensive number of modes became floppy. A similar driving

mechanism to a first-order transition is encountered in the square lattice transition in [13],

which also has a sub-extensive number of floppy modes.

Finally, in Chapter IV, we analyzed the pairwise binding and self-assembly into an open

structure of thin, triangular prisms, created in the lab of our experimentalist collaborators,

Joseph Ferrar and Michael Solomon. We found that these prisms, which undergo bowing (in

both directions) during synthesis, generate capillary interactions that are similar to hexapole

in nature due to contact-line pinning that follows the bowing of the particles. These inter-

actions lead to highly-directional pairwise binding in which particles with the same bowing

polarity bind together tip-to-tip, while particles with opposite bowing polarities bind to-

gether tip-to-edge. In both instances, collapse to a shared-edge configure typically occurs;

nonetheless, the resultant large-scale disordered structures that form from this self-assembly

are open structures.

5.1 Future directions

When trying to fabricate mechanical metamaterials and open structures at small scales,

thermal fluctuations are necessarily prominent and top-down production can be difficult and

tedious – hence, an automated, bottom-up process such as self-assembly is highly desirable.

Therefore, there are certainly future directions in which research can continue in these areas.
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As discussed at the beginning of Chapter III, topological mechanics is currently a burgeoning

field, as properties that are topologically-protected are robust against local perturbations.

Therefore, it would be quite promising to combine self-assembly techniques with topological

properties. Since the deformed kagome lattice is a topological state, self-assembly techniques

that could create such a lattice may be able to generate open lattices with topologically-

protected novel properties.

A seemingly viable way to do this would be by exploiting the highly-directional binding

of anisotropic capillary interactions. If triangles of specific non-equilateral geometries, or

if two different shapes and sizes of non-equilateral triangles, could be fabricated, deformed

kagome lattices that emulate those found in [7, 87], with novel and potentially topological

properties, could manifest. Of course, in order to do so, isolating the fabricated prisms so

that only a single bowing polarity is present, specifically designing the tips and their corre-

sponding interactions to significantly favor certain tip-tip pairings to generate a deformed

lattice structure with minimal defects, and also stabilizing the tip-to-tip binding, are all

seemingly necessary hurdles to overcome in order to achieve the desired results. Stabiliza-

tion of tip-to-tip binding could occur via a small blunting of the tips to mechanically prevent

collapse. Other mechanisms for preventing collapse, such as making the centers of the par-

ticles’ side faces repulsive, could also be explored further. Tip-tip pairings could perhaps be

specified by fabricating bowed triangles with tips at varying heights. Consequently, tips of

different triangles with the same height would encounter the strongest capillary attraction,

as their combining would minimize excess area the most. Additionally, it would also be

interesting to see if certain configurations of Janus particles and/or patches could allow for

the creation of the desired deformed kagome lattices in order to attempt to create topological

open structures.

Finally, subsequent study is needed to further understand the effect of thermal fluctua-

tions on mechanical instability and associated phase transitions. It would be useful to study

finite-temperature transitions between polymorphs in three-dimensional lattices to see which
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results generalize. There is also interest in the analysis of topological phase transitions at

finite temperature. For instance, introducing next-nearest neighbor bonds with a varying

harmonic spring cofficient to a deformed kagome lattice and doing a similar analysis to that

of Chapter III would be insightful and could lead to intriguing results.
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APPENDIX A

Deriving the effective force for an extensible

rod

In this section, we derive the effective force as prescribed in Eq. (2.2.59). Starting from

Eq. (2.2.37) and building on the calculations of Sec. 2.2.3, we have that

F<(π<) = H0 +H2(π<) + 〈H4〉> − T lnZ>
0 (A.1)

= H0 + F<
2 (π<) + F<

4 (π<)− T lnZ>
0 +O(T 2),

with F<
2 (π<) defined as in Eq. (2.2.38), and F<

4 (π<) containing terms of quartic order in

π<. The O(T 2) terms, arising from four-point correlation functions of π>, can be discarded.

It is more convenient, going forward, to write F<
2 and F<

4 in terms of π1:

F<
2 =

τ̃ + κ̃ π
2

L2
0

4L0

|π1|2 ≡ b2T |π1|2 (A.2)

and

F<
4 =

−3
2
τ + 5τc(0) + gL0

32L3
0

|π1|4 ≈
g

32L2
0

|π1|4 ≡ b4T |π1|4, (A.3)
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where

b2 ≡
τ̃ + κ̃ π

2

L2
0

4TL0

b4 ≡
g

32TL2
0

. (A.4)

Once again, we have taken the limit of the stretching stiffness being much stronger than

the bending stiffness in simplifying the expression for F<
4 . Thus, the Landau free energy

becomes

F< = H0 − T lnZ>
0 + b2T |π1|2 + b4T |π1|4. (A.5)

Since the first two terms are independent of π1, we can easily obtain an expression for the

free energy,

F = H0 − T lnZ>
0 − T ln

∞∫
−∞

dd−1π1e
−b2|π1|2−b4|π1|4 . (A.6)

We now proceed to compute the latter two terms in this expression.

First,

−T lnZ>
0 = −T ln

∫
Dπ>e−H2(π>)/T

= −T ln
∞∏
n=2

(
4πTL0

τ + κ(πn/L0)2

) d−1
2

= −T (d− 1)

2

∞∑
n=2

ln
4πTL0

τ + κ(πn/L0)2
. (A.7)

Second, we need to evaluate the integral

Z1 ≡
∞∫

−∞

dd−1π1e
−b2|π1|2−b4|π1|4 . (A.8)
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This integral can be evaluated using the (d− 1)-dimensional spherical coordinates; we find

Z1 =
1

4
b
− d−1

4
4 Ωd−1

[
Γ

(
d− 1

4

)
1F1

(
d− 1

4
;
1

2
;
c

4

)

∓
√
cΓ

(
d+ 1

4

)
1F1

(
d+ 1

4
;
3

2
;
c

4

)]
, (A.9)

where Ωd−1 is the solid angle subtended by the (d− 1)-dimensional hypersphere, the dimen-

sionless number

c ≡ |b2|2

b4

=
2
(
τ̃ + κ̃ π

2

L2
0

)2

gT
, (A.10)

and 1F1 represents the Kummer confluent hypergeometric function. The − sign in Eq. (A.9)

applies to b2 > 0, which is the straight phase, whereas the + sign corresponds to b2 < 0, the

buckled phase.

To better understand the expression in Eq. (A.9), we expand it in different regimes. The

behavior of the 1F1 function takes different limits for c � 1 (close to the transition – the

critical regime) and c � 1 (far from the transition). The boundary between these two

regimes, determined by c ∼ 1, is indicated by the dashed curves in Figs. 2.1 and 2.3. For

c� 1, we have

Z1 ≈
1

4
b
− d−1

4
4 Ωd−1Γ

(
d− 1

4

)[
1− Γ̃

b2√
b4

+
d− 1

8

|b2|2

b4

]
, (A.11)

where Γ̃ ≡ Γ(d+1
4

)/Γ(d−1
4

). For c � 1, the asymptotic expressions depend on the phase of

the rod: for the straight phase (b2 > 0),

Z1 =
1

2
Ωd−1Γ

(
d− 1

2

)
b
− d−1

2
2 , (A.12)

while for the buckled phase (b2 < 0),

Z1 =

√
π

2
d−1
2

Ωd−1 |b2|
d−3
2 b

− d−2
2

4 ec/4. (A.13)
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The expressions for Z1 in the c � 1 regime yield simple expressions when specializing to

d = 2 and d = 3, so it is useful to explicitly list them:

Z1 =



√
π/b2 b2 > 0 and d = 2,

π/b2 b2 > 0 and d = 3,√
2π/|b2| ec/4 b2 < 0 and d = 2,√
π3/b4 e

c/4 b2 < 0 and d = 3.

(A.14)

The ec/4 factor in the latter two equations comes from the finite expectation value of π1

when b2 < 0. It is straightforward to see this by plugging π̂1 – as given in Eq. (2.2.28) –

into H.

Next, we put the terms together and derive the effective force. Following Eq. (2.2.59),

f =
∂H0

∂L0

− Tg ∂
∂τ

lnZ>
0 − Tg

∂

∂τ
lnZ1

= τ +
d− 1

2
ḡT̄ |τc(0)|A(τ̄) + f1, (A.15)

where f1 is from the lnZ1 term and can be expanded in the various limits.

In the critical regime, we use Eq. (A.11) and find

f1 =

(
Γ̃
√

2gT +
1− d+ 4Γ̃2

2

(
τ̃ + κ̃

π2

L2
0

))

×
(
1− (d− 1)ḡT̄A′(τ̄)

)
, (A.16)

where A′(τ̄) is the derivative of A(τ̄) with respect to τ̄ . Deep in the straight phase, we use

Eq. (A.12) to obtain

f1 =
d− 1

2

gT

τ̃ + κ̃(π/L0)2

(
1− (d− 1)ḡT̄A′(τ̄)

)
, (A.17)
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while deep in the buckled phase, Eq. (A.13) gives us

f1 =

(
−τ̃ − κ̃ π

2

L2
0

+
3− d

2

gT

τ̃ + κ̃(π/L0)2

)
×
(
1− (d− 1)ḡT̄A′(τ̄)

)
. (A.18)

In the latter regimes, where c � 1, it turns out that ḡT̄ � 1; therefore, we can write

the expressions for f1 to O(ḡT̄ ). The complete force expressions then simply become a

leading-order term plus an O(ḡT̄ ) correction. Specifically, in the straight phase,

f1 =
d− 1

2
ḡT̄ |τc(0)| 1

1− τ̄
, (A.19)

so that

f = τ +
d− 1

2
ḡT̄ |τc(0)|

[
A(τ̄) +

1

1− τ̄

]
, (A.20)

and in the buckled phase,

f1 = τc(0)− τ − ḡT̄ |τc(0)|

[
(d− 1)A′(τ̄)(τ̄ − 1)

+ (d− 1)A(τ̄) +
3− d

2

1

τ̄ − 1

]
, (A.21)

so that

f = τc(0)− ḡT̄ |τc(0)|

[
(d− 1)A′(τ̄)(τ̄ − 1)

+
d− 1

2
A(τ̄) +

3− d
2

1

τ̄ − 1

]
. (A.22)

Notice the major difference between the two final expressions for the effective force: deep in

the straight phase, the force is just the original and unmodified compression with a small
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O(ḡT̄ ) correction; on the other hand, deep in the buckled phase, the force is the zero-

temperature critical compression with a small correction of the same order.

The critical regime, however, is not constrained to only small values of ḡT̄ , so a similar

expansion cannot be made everywhere; therefore, we further divide this regime into two

limiting cases. In the region where ḡT̄ � 1, Eq. (A.16) becomes

f1 = Γ̃
√

2gT + (τ − τc(T ))
1− d+ 4Γ̃2

2
, (A.23)

where we discard all corrections of O(ḡT̄ ) and also note that τ − τc(0) = τ − τc(T ) +

O(ḡT̄ ), using Eq. (2.2.58). Furthermore, in this regime, τ will deviate minimally from τc(T );

therefore, we can simply take f1 ≈ Γ̃
√

2gT – which is indeed the value of f1 on the transition

curve – as a reasonable approximation for the entire critical region (for ḡT̄ � 1). Thus, the

total force in this regime is

f = τ + Γ̃
√

2gT , (A.24)

which indicates an O(
√
T ) correction to the force in the critical regime.

Finally, when ḡT̄ ∼ O(1) in the critical regime, the f1 contribution to the total force is

suppressed, as 1− (d− 1)ḡT̄A′(τ̄) ≈ 0. In this case,

f = τ +
d− 1

2
ḡT̄ |τc(0)|A(τ̄), (A.25)

and there is, once again, an O(ḡT̄ ) correction to the compression.
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APPENDIX B

The kagome lattice dynamical matrix

The central force potentials and their derivatives are given by

VNN =
k

2
(∆R)2 V ′NN = k∆R V ′′NN = k (B.1)

VNNN =
κ

2
(∆R)2 +

g

24
(∆R)4 V ′NNN = κ∆R +

g

6
(∆R)3 V ′′NNN = κ+

g

2
(∆R)2

(B.2)

Recall that AB contains V ′Bα ≡ V ′B(|Rα
B|− |R

α0
B |) and V ′′Bα. Since the length of any NN bond

is independent of the twisting angle, |Rα
B| = |R

α0
B |; therefore,

V ′Bα = 0 and V ′′Bα = k (NN bonds). (B.3)

Then

AB = kt̂αB t̂αB (NN bonds). (B.4)

130



B.1 The nearest-neighbor dynamical matrix

For the three intercellular NN bonds, lB in (3.4.18) is equal to the lattice vector connecting

the two unit cells together. In particular,

l1 ≡ (1,
√

3)a cosα

l2 ≡ −(2, 0)a cosα

l3 ≡ (1,−
√

3)a cosα (B.1)

The dynamical matrix can be written in terms of 2× 2 block matrices,

Dq = k


D11 D12 D13

D21 D22 D23

D31 D32 D33

 =


D11 D12 D13

D†12 D22 D23

D†13 D†23 D33

 (B.2)

with

D11 =

2− cos 2α 0

0 2 + cos 2α

 (B.3)

D12 =
1

4

a12 b12

c12 d12

 =
1

4

a12 b12

b12 d12

 (B.4)

where

a12 = −2 + cos 2α +
√

3 sin 2α− e−il1·q
(

2− cos 2α +
√

3 sin 2α
)

(B.5)

b12 = −
√

3 cos 2α + sin 2α− e−il1·q
(√

3 cos 2α + sin 2α
)

(B.6)

d12 = −2− cos 2α−
√

3 sin 2α− e−il1·q
(

2 + cos 2α−
√

3 sin 2α
)

(B.7)
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D13 =
1

4

a13 b13

c13 d13

 =
1

4

a13 b13

b13 d13

 (B.8)

where

a13 = −2 + cos 2α−
√

3 sin 2α− eil3·q
(

2− cos 2α−
√

3 sin 2α
)

(B.9)

b13 =
√

3 cos 2α + sin 2α + eil3·q
(√

3 cos 2α− sin 2α
)

(B.10)

d13 = −2− cos 2α +
√

3 sin 2α− eil3·q
(

2 + cos 2α +
√

3 sin 2α
)

(B.11)

D22 =
1

2

4 + cos 2α
√

3 cos 2α
√

3 cos 2α 4− cos 2α

 (B.12)

D23 =

 (
−1− e−il2·q

)
cos2 α

(
−1 + e−il2·q

)
cosα sinα(

−1 + e−il2·q
)

cosα sinα
(
−1− e−il2·q

)
sin2 α

 (B.13)
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APPENDIX C

Deriving the three-band effective dynamical

matrix

At any point q in the first Brillouin zone (though typically this is done at q = 0),

the dynamical matrix can be diagonalized such that its three low-energy modes and three

high-energy modes are decoupled for all values of q as

Dq =

DLL DLH

DHL DHH

 (C.1)

The resultant Hamiltonian of the system is, then,

H =
1

2

(
u†L u†H

)DLL DLH

DHL DHH


uL

uH


=

1

2

(
u†LDLLuL + u†LDLHuH + u†HDHLuL + u†HDHHuH

)
(C.2)

where uL (uH) corresponds to low-energy (high-energy) fluctuations. Because the uH modes

are high-energy, they are “frozen out” and not affected by thermal fluctuations; they should

be at equilibrium, as determined by the Hamiltonian. Therefore, for a given uL, we require
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uH to take values such that

∂H

∂uH
= 0. (C.3)

0 =
∂H

∂uH
=

1

2

(
u†LDLH + u†HDHH

)
, (C.4)

where we note that

∂u†H
∂uH

= 0, (C.5)

analogous to how

∂z∗

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
(x− iy) = 0. (C.6)

for complex variables.

Note that the dynamical matrix is Hermitian and, therefore,

D†LL = DLL D†LH = DHL

D†HL = DLH D†HH = DHH (C.7)

Taking the Hermitian conjugate of both sides, we have

0 = D†LHuL + D†HHuH = DHLuL + DHHuH , (C.8)

allowing us to solve for uH :

uH = −D−1
HHDHLuL. (C.9)
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Plugging this expression for uH into H, we have

H =
1

2

(
u†LDLLuL − u†LDLHD−1

HHDHLuL − u†LD†HL
(
D−1
HH

)†
DHLuL

+ u†LD†HL
(
D−1
HH

)†
DHHD−1

HHDHLuL

)
=

1

2

(
u†LDLLuL − u†LDLHD−1

HHDHLuL

)
=

1

2
u†L
(
DLL −DLHD−1

HHDHL

)
uL

=
1

2
u†LD̃LLuL (C.10)

where

D̃LL = DLL −DLHD−1
HHDHL (C.11)

is the effective 3× 3 dynamical matrix, true for all q.
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