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Abstract

There has been a renewed interest in SmB6 during the past several years after the theo-

retical prediction that it is a topological Kondo insulator (TKI). Soon after, the conducting

surface was experimentally discovered, which is the key initial step for the TKI verifica-

tion. Motivated by this work, this dissertation further studies both the surface and the bulk

properties of SmB6 using electrical transport methods.

To study the surface transport of SmB6, choosing the appropriate transport geometry is

extremely important. A Corbino disk geometry, which confines the current path to a single

surface, was used in this study. The measurements from the Corbino disk resulted in more

physically acceptable values of carrier density than the results that were obtained from other

conventional transport geometries. During this study, we also found that subsurface cracks

that are created during surface preparation and domain boundaries of a polycrystal can

provide unwanted conduction paths. After careful surface preparation, the magnetotransport

was measured with an applied magnetic field of 34.5 T and a temperature of 0.3 K. A higher

magnetic field was also applied up to 93 T, using the pulsed magnetic field, but Shubnikov

de-Haas oscillations were not observed. Therefore, the strongest signatures needed to verify

the nontrivial topology, such as the half-integer Landau index in the fan diagram have not

yet been seen, nor were we able to find signatures of the three Fermi pockets predicted by

theory.

Instead, the Corbino disk magnetotransport results were consistent with the case when

only one Fermi pocket exists. This can happen when the mobilities for each of the pockets

are too small. From analyzing our magnetotransport, possible ranges of carrier density and

mobility of each of the three Fermi pockets could be constructed in a 2D parameter space.

When comparing with these Fermi pocket ranges that were constructed by magnetotransport

to other experimental reports, only the angle-resolved photoemission spectroscopy reports

are within the X-pocket range.

To study the bulk of SmB6, a new transport method was invented, called the inverted

resistance measurement. This inverted resistance measurement can be used for studying

the bulk of SmB6 when the surface conduction dominates. By comparing the numerical

xi



simulation and the experimental measurement, the bulk resistivity was successfully extracted

in the low-temperature range, where previously this was impossible due to the overwhelming

surface conduction.

Using this new method, we investigated the bulk of pure and disorder-induced SmB6

samples. We find that the bulk of SmB6 is an ideal insulator. The thermally activated

behavior, with an activation energy of 4.01 meV, continues for ten orders of magnitude

in resistivity. This thermally activated bulk behavior is found to be almost identical in

the highly disordered SmB6 samples. These results suggest that the bulk of SmB6 has

an energy gap that is free of impurity states, making the bulk transport remarkable. In

addition to the thermally activated bulk behavior, in our disorder-induced samples, our

measurements revealed a mysterious bulk resistivity plateau that has been buried under

the surface conduction. This bulk plateau cannot be understood by normal impurity states.

Instead, a new understanding of impurity and disorder may be required for the case of SmB6.
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Chapter 1

Introduction

1.1 Introduction to SmB6: Early History

Samarium hexaboride (SmB6) refers to a chemical composition of a material, which is

studied in this dissertation. A crystal consists of atoms and molecules, and it has a repeating

structure. The basic unit that repeats in the material is called a unit cell. In SmB6, the unit

cell is shown in Fig. (1.1) (a), and the repeating nature is shown in Fig. (1.1) (b). This unit

cell consists of one samarium (Sm) and six borons (B). The boron atoms are arranged in an

octahedral1 structure. If one is familiar with the group theory notation (Hermann-Mauguin

notation), the corresponding space group is Pm3̄m, which is identical to cesium chloride

(CsCl) [1]. The size of the unit cell can be represented by a lattice constant, which is a =

4.133 Å for SmB6.

Metallic hexaboride crystal structures, in general, have been studied and confirmed by

X-ray crystallography even in the early 1930s [2], and their electronic structure has been

studied since the 1950s [3–5]. Finding the hexaboride orbitals from hybridization of the boron

atomic orbitals is not as intuitive as finding hybridization orbitals of simple molecules such as

ammonia (NH3). H. C. Longuet-Higgins and M. de V. Roberts [3] have shown theoretically

that the metallic hexaboride structure results in 10 bonding and 14 antibonding molecular

orbitals in the metallic hexaboride structure. The 10 bonding orbitals try to become filled,

requiring a total of 20 electrons. The electronic configuration of a boron atom itself is

[He]2s22p1, so 18 electrons (3 e/boron × 6 borons) can be filled by the six borons. Then,

the two remaining electrons must be acquired from the metallic atom. The understanding

around the 1950s was that, when only considering s and p orbitals, the hexaborides formed

with divalent metals are insulators, and the hexaborides formed with trivalent metals are

1The prefix octa- comes from the fact that it has eight faces.

1



B

B
B

B

B

B

Sm

Sm Sm

Sm

Sm

Sm

Sm

Sm

2 nm

Figure 1.1: SmB6 crystal structure. (a) Unit cell of SmB6 (b) The periodic structure (lattice)
of SmB6 seen by TEM. Figure courtesy of A. Rakoski.

metals [3, 4].

The electronic configuration of a Sm atom is [Xe]4f 66s2. Samarium is particularly in-

teresting because it has f electrons, which occupy localized orbitals that can potentially

result in magnetic moments in the material2. For SmB6, one of the first transport studies

was done by A. Menth, E. Buehler, and T. H. Geballe in the late 1960s [7]. Of course, the

band structure of SmB6 was not known at the time (50s - 60s). Nevertheless, their primary

goal was to understand the relation of the electric and magnetic properties of SmB6. They

measured the magnetic susceptibility and concluded that SmB6 has no magnetic ordering

at low temperatures. Their interpretation was that Sm is in the 4f 6 state (Sm2+) since

J = 0. This made sense in that the two electrons in the 6s2 can be taken away from B6,

according to the hexaboride theory from H. C. Longuet-Higgins et al., and the 4f 6 electrons

remain together. Also, the resistance increased as the temperature was lowered, so they

concluded that SmB6 at low temperature is an insulator. At high temperatures, they see a

Curie-Weiss-like susceptibility behavior. They interpret this behavior is due to the Sm mag-

netic moments in the 4f 5 state (Sm3+), resulting from the loss of one electron by thermal

excitations. Also, the resistivity vs. temperature shows a metallic behavior at this range.

Therefore, Menth et al.′s interpretation of SmB6 was that at low temperatures the Sm is

in the 2+ valence state, and SmB6 is insulating, and at high temperatures the valence of

2I must acknowledge that this summary was greatly influenced by Prof. J. W. Allen′s historic review of
SmB6 [6]. The history introduced in is chapter is a very trimmed down version, and I recommend the reader
to watch the video for a more complete story.
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Sm changes to 3+, and SmB6 becomes metallic. This interpretation was acceptable at that

time, although the researchers did not know the electronic band structure of SmB6. One

year later in 1970, the same researchers, together with G. W. Hull, measured SmB6 doped

with Eu2+ and Gd3+ [8]. In this study, they show that the resistivity of the Gd-doped SmB6

drops drastically compared to the Eu-doped SmB6. This is consistent with their picture that

an increasing number of atoms in the 3+ valence state will become less insulating.

In the studies by Menth et al., the resistivity vs. temperature was mostly consistent with

a narrow gapped insulator (R ∝ exp(Ea/kBT )). However, at temperatures below ∼3 K,

there was a mysterious plateau that they attribute to an impurity band conduction, but did

not investigate in great detail as it was not the main focus of their study. Although not

known as well as the report by Menth et al., there is also another report that was published

almost at the same time by Yu. B. Paderno, V. I. Novikov, and E. S. Garf that focused on

the general electrical properties of various metallic hexaborides [9]. They also report the

resistivity plateau of SmB6 at low temperatures, and they mention that the plateau appears

continuously in samples, independent of the crystal growth method. 40 years later by our

group, this plateau becomes identified as a surface conductor. We will discuss this in Sec. 1.3.

In 1970, very soon after the reports by Menth et al., their interpretation of the valence

change was challenged by the reports from R. L. Cohen, M. Eibschutz, and K. W. West

[10]. R. L. Cohen et al. study Mössbauer spectroscopy and see that the valence of Sm is

neither a 2+ nor 3+. In contrast to what was explained by Menth et al., their susceptibility

measurement fits well with a linear combination of 40 % of Sm2+ and 60 % of Sm3+, resulting

in a non-integer valence (2.6+) that is almost independent of temperature. This result meant

that SmB6 cannot be understood by an integer valence change from 3+ to 2+, suggested

by Menth et al. It is worth to mention that samarium sulfide was also studied during this

era (the early 1970s). In 1970, A. Jayaraman, V. Narayanamuri, E. Bucher, and R. G.

Maines find that an insulator-to-metal transition happens when a pressure is applied [11].

At room temperature and ambient pressure, SmS is an insulator, called the black phase, and

becomes a metal at 6.5 kbar, called the gold phase. Similar to Menth et al.′s interpretation,

they attribute this behavior from a change in Sm valence from 2+ to 3+. A year later, in

1971, M. B. Maple and D. Wohlleben further studied the susceptibility of SmS [12]. Their

measurement of susceptibility in the gold phase is similar to the one of SmB6 measured from

Cohen et al. in that the valence of SmS also does not demonstrate an integer value shift.

The materials such as SmB6 and SmS became categorized into (homogeneous) mixed valence

compounds in which the valence of an atom is not in an integer state [13].

As mentioned before, to tell if the material is an insulator or a metal with confidence, one

should refer to the band structure. The minimum requirement is that we look at the band

3



structure near the Fermi energy. The relevance of band theory to transport will be discussed

in more detail in the following chapter (Chapter 2), but the bottom line is that if the Fermi

energy crosses one of the bands, we know the material is a metal, whereas if the Fermi energy

lies in the forbidden gap between two bands, we know it is an insulator. However, the band

structure of SmB6 was not known in the early 1970s, as it had just became appreciated as a

mixed valence material. Thinking that SmB6 and the gold phase of SmS belong in the same

class, and a general perception that mixed valent compounds are metallic [13], researchers

had doubts that SmB6 is an insulator, and it is a metal instead [14]3. In the metal scenario,

the resistivity rise by lowering the temperature seen by researchers [7, 15] can be explained

as a mobility (µ) change by a Kondo-like f − d scattering instead of the carrier density (n)

change.

What was understood about mixed valence systems in the 1970s is that the 4f (ionization)

energy levels are separated by a large Coulomb interaction (U), and at least one of them

crosses the dispersive band (d band in the case of SmB6). Then, the width of the f band

broadens, and the Fermi energy lies at the broadened peak [13, 16]. If SmB6 involves this

picture only, it is a metal because the Fermi energy crosses a band. To consider SmB6 to be

an insulator instead, a gap must somehow exist where the Fermi energy is located. In 1974,

N. F. Mott proposed that f and d bands can hybridize and form a gap, and suggested that

this mechanism can explain the insulating behavior of SmB6 [17]. It is also important to

note that the possible gap opening was developed in another way, started by S. Doniach. S.

Doniach introduced a model called a Kondo lattice in which the local moments are located

in an array that interacts with the conduction electrons [18]. The idea is tied intimately

to the Kondo effect, which describes the scattering of conduction electrons by magnetic

impurities [19]. In the Kondo effect, the scattering enhances at a lower temperature. This

scattering is related to the conduction electron and magnetic moment of the impurity forming

a singlet. In S. Doniach′s model, using the same kind of antiferromagnetic interaction in the

Kondo effect, he explained the moment loss from the exchange interaction between the f and

d electrons. Later, C. Lacroix and M. Cyrot further developed this model and constructed a

phase diagram. Under certain exchange interaction strength compared to the bandwidth of

the conduction band [20,21], the gap opens at the hybridization between the f and d bands.

This dual history is related to why SmB6 is referred to as a Kondo insulator after the early

1990s [22], and not only as a mixed-valent insulator. In both descriptions, if a band gap

opens and the Fermi energy lies in that gap, the material is an insulator.

The more realistic band gap opening model was proposed later by R. M. Martin and J.

3In fact, Prof. Allen remembers in the mid 70s, the community thought SmB6 was a metal although
researchers have not published such ideas that much [6].
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W. Allen, where they referred to the band structure of LaB6 to estimate the d bands, and

carefully considered the symmetry of the f levels of SmB6 [23,24]. This band gap model was

motivated after the Hall measurement from J. W. Allen, B. Batlogg, and P. Wachter [25]

in 1979. At the time, the increasing resistivity by lowering the temperature was thought

as either SmB6 being a metal or an insulator. In the metal scenario, the resistivity rise

by lowering the temperature is from a Kondo-like scattering mechanism. In the insulator

scenario, the increase in resistivity by lowering the temperature is from the carrier density

decrease. To distinguish the two, the mobility (µ) and carrier density (n) needed to be

separated from the conductivity (σ = neµ). This is why the Hall coefficient (RH = 1/ne) had

to be measured. An earlier Hall measurement was taken by J. C. Nickerson et al. in 1971 [15],

but it was not clear enough to claim that SmB6 is either a metal or an insulator because

their resistivity magnitude change was only a factor of ∼2.5. J. W. Allen et al. measured

the Hall effect in 1979 [25] with high-quality crystals and demonstrated the resistivity rise

of four orders of magnitude. The large resistivity magnitude at low temperatures already

suggested that the temperature dependence rules out the metal scenario involving scattering

by magnetic moments because their resistivity magnitude exceeds the allowed scattering

limit, so-called the unitarity limit [26]. Also, in their Hall effect measurement, they saw a

large thermally activated behavior. This is consistent with the picture of an insulator, where

the carrier density changes with temperature.

However, at low temperatures, they also observed the mysterious resistivity plateau that

was continuously observed since 1969 by A. Menth et al. and Yu. B. Paderno et al. [7, 9],

and they had trouble explaining the origin using impurity conduction. J. W. Allen et al.

calculated the Mott impurity limit, which is the minimum conductivity allowed for the

resistivity plateau to be attributed to impurity conduction, and found that its value exceeded

this limit by a factor of 15 [25]. Other researchers such as T. Kasuya, K. Kojima, and M.

Kasaya tried to explain this feature by variable range hopping in 1977 [27], but two years

later T. Kasuya and his collaborators realized that their estimation was also unphysical [28]4.

1.2 Topology in Condensed Matter Physics

In this section, we will pause our discussion on SmB6, and discuss topology in a solid.

Topology is a subfield of mathematics that studies the properties of objects. More specifically,

if an object can be smoothly deformed into another object, the two objects are topologically

indistinguishable. For example, a sphere and an ellipsoid are topologically identical. How-

ever, if one needs to punch a hole or tear the object to change from one object to another,

4They alternatively proposed that SmB6 [28] forms a Wigner lattice.
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then the two objects are topologically distinct. For example, a sphere and a donut (torus)

are topologically distinct.

To categorize objects (more precisely manifolds) in this way, mathematicians have devel-

oped a label called the Euler characteristic, χ. If the manifold, M , is closed, χ can be found

by a surface (S) integral of the curvature, K:

χ =
1

2π

∮
M

KdS. (1.1)

From Eq. (1.1), we can find if two objects are topologically identical. For example, a sphere

and an ellipsoid both have χ = 2, and a donut has χ=0.5

The integer quantum Hall (IQH) effect is one of the earliest examples that use topology

in solid state physics. In a high-quality two-dimensional electron gas (2DEG) system, when

a perpendicular magnetic field is applied, the Hall conductivity becomes quantized at certain

levels:

σxy = N
e2

h
. (1.2)

This is the IQH effect that was discovered by K. von Klitzing in 1980 [29]. In the IQH

state, the 2DEG is an insulator in which the electrons form a closed cyclotron orbit, but at

the boundary of the sample, electrons move in a skipping motion, which is also referred to

as a chiral edge state. In 1982, Thouless, Kohmoto, Nightingale, and den Nijs (TKNN for

short) explained the quantized Hall conductivity using topology [30]. As a brief summary

of the idea, if u(~k) is the Bloch part of the wave function, with crystal momentum, ~k, we

define the Berry phase that integrates around the boundary of the Brillouin zone (BZ):

γ = −
∑
n

∮
∂BZ

dk · ~an, (1.3)

where ~an is called the Berry connection for the n’th band, defined as:

~an(~k) = −i < un(k)| ∂
∂~k
|un(k) > (1.4)

It turns out that the the integer N , in the quantized Hall conductivity in Eq. (1.2), is

related to the Berry connection by:

N =
1

2π

∑
n

∮
∂BZ

d~k · ~an. (1.5)

5A famous example is that a donut and coffee cup have the identical Euler characteristic.
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Alternatively, we can use Stokes′ theorem and express this as:

N =
1

2π

∑
n

∮
BZ

~An d
2~k. (1.6)

where ~An is called the Berry curvature in the crystal momentum space, defined as:

~An = ∇~k × ~ak. (1.7)

Notice that there is a resemblance between Eq. (1.1) and Eq. (1.6). However, the difference

is that we are integrating the sum of the Berry curvatures instead of the curvature of the

manifold, and integrating the BZ instead of the manifold (M) in real space. One can see that

this formalism is based on the wave function (Bloch wave function) of the material and not

related to the curvature of the real sample. Therefore, the topology that is related in this

context is not about the shape of real objects. It is related to the mathematical structure of

the electron wave function. What is important for an experimentalist is that the topology

has measurable consequences such as Eq. (1.2).

The 2DEG that is in the IQH state is an insulator in the sense that the electrons form

a closed cyclotron orbit and becomes inert, but it is a nontrivial insulator because of the

presence of the chiral edge modes at the boundary of the sample. The nontrivial topology

information is encoded in the value N , in Eq. (1.6), not being zero. Another way theorists

view this is that the insulator of a quantum Hall state (N = 1, 2, ..) cannot be adiabatically

deformed into a vacuum, which is a trivial insulating state. Bands of most well-known

insulators can be adiabatically deformed into a vacuum, and they are classified topologically

trivial.

A topological insulator is an insulator that has a nontrivial topological structure encoded

in the electron wave function, just like the IQH effect. However, the IQH state is not the

topological insulator that researchers refer to nowadays. Notice that in σxy, N 6= 0 in

Eq. (1.2), can only be obtained when the magnetic field is applied to the 2DEG. In other

words, time-reversal symmetry must be broken to achieve a topologically nontrivial insulating

state. The topological insulators we refer today are materials that have nontrivial topology

while the time-reversal symmetry is preserved. An important ingredient is strong spin-orbit

coupling. In 2005, C. Kane and E. Mele proposed a model of graphene with spin-orbit

coupling that can realize a quantum spin Hall insulator [31]. It turns out that the spin-orbit

coupling in graphene is too small for this to be realized, but they noticed that their model

has a topology that is nontrivial even without breaking the time-reversal symmetry. In their

work, C. Kane and E. Mele proposed a topological index called Z2 [32]: +1 if the topology
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Figure 1.2: Idea of band inversion. Adiabatic atomic separation from an insulator to an atom.
(a) Trivial insulator. No band inversion. (b) Band inversion of a topological insulator.

is trivial, -1 if nontrivial. Soon after their work, B. Bernevig, T. Hughes, and C. Zhang

proposed a quantum spin Hall effect that can be realized in CdTe/HgTe/CdTe quantum

wells [33]. In 2007, this effect was experimentally verified by L. Molenkamp’s group [34].

This idea of Z2 topology in materials that preserve time-reversal symmetry was expanded

to a three-dimensional version by L. Fu, C. Kane, E. Mele [35], and J. Moore and L. Ba-

lents [36]. In 3D systems, there are four Z2 indices that categorize the topology of materials.

Depending on the indices, there can be weak 3D TIs and strong 3D TIs. When the topo-

logical indices are nontrivial, this is what we call today a 3D Topological insulator (TI).

The interpretation, roughly speaking, is that if we were able to separate the atoms in the

material slowly, the band structure of the material deforms into atomic energy levels, as

shown in Fig. (1.2). If the order of the bands does not change, then the material has a trivial

topology, as shown in Fig. (1.2) (a). If the order of the conduction band and valence band

invert, as shown in Fig. (1.2) (b), then the material has a nontrivial topology, and leaves a

gapless edge state, as shown in orange. Because the edge state crosses the Fermi energy, it

manifests a conducting state at the surface. L. Fu and C. Kane soon developed a simple and

powerful way to distinguish topological insulators from trivial insulators when the material
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has inversion symmetry in addition to time-reversal symmetry [37]. What is most important

here is that they predict that surface states will have the following unique properties that

can be verified by experiments: odd number of Dirac cones, the spin of the electrons being

locked to the crystal momentum direction (helical spin structure), and lack of backscatter-

ing, resulting in weak antilocalization. They predicted that Bi1−xSbx is a 3D TI, with the

mentioned surface properties. In 2008, D. Hsieh and others from Z. Hasan’s group verified

this prediction experimentally from angle-resolved photoemission spectroscopy (ARPES). To

date, there are many 3D topological insulators that have been verified [38,39].

It is important to note that when L. Fu and C. Kane proposed a way to distinguish 3D

TIs with inversion symmetry in addition to time-reversal symmetry, theorists had gained a

powerful tool to search for 3D TIs in many other materials [37]. The Z2 topology index can

be calculated by:

(−1)ν =
8∏

n=1

N∏
i=1

ξn(Γi), (1.8)

where ν is the topological index (+1 or -1), n is the band index for filled bands, and ξn(Γi)

is the parity eigenvalue at one of the eight high symmetry points (Γi). Notice that the

dispersion of the bands are irrelevant in this calculation except at the high symmetry points.

This is extremely powerful because, even for a complicated band structure that is not fully

known, the topology can still be found as long as the parities of the bands at the high

symmetry points are known.

1.3 Topological Kondo Insulators

We come back to our discussion of SmB6. It is interesting to note that when R. M.

Martin and J. W. Allen proposed their gap model of SmB6 [24], they did notice that the

hybridization cannot take place at the X and Γ high symmetry point in the BZ because the

parity is violated. Instead, they proposed that the hybridization takes place along the ∆

line (Γ to X) to avoid the parity violation.

About 30 years later, in 2010, M. Dzero, K. Sun, V. Galitski, and P. Coleman considered

the topology in Kondo insulators by using the criterion of Eq. (1.8) [41]. They predicted

that SmB6 is almost at the border of a weak and strong topological insulator. In 2011,

T. Takimoto specifically focused on SmB6 and claimed that SmB6 is a strong topological

insulator, with three Dirac pockets in the BZ, existing on the (001) surface [42]. These

theoretical predictions had an important impact on both the traditional SmB6 community

and the 3D TI community. If SmB6 could be a 3D topological insulator, it also had the

possibility to explain the mysterious resistance plateau that puzzled the researchers.
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Figure 1.3: Transport configuration to verify the surface states of SmB6 that was performed
by S. Wolgast et al. (a) Bulk origin scenario of the vertical configuration transport. (b)
Surface origin scenario of the vertical configuration transport. (c) Bulk origin scenario of
the lateral and hybrid configuration transport. (d) Surface origin scenario of the lateral
and hybrid configuration transport. Reprinted figure with permission from [40], and also
additional kind permission from the first author. Copyright (2013) by the American Physical
Society.

In 2012, to verify that the resistance plateau is from the surface conducting state, S.

Wolgast, Ç. Kurdak, K. Sun, and J. W. Allen used a nonlocal transport geometry on a slab-

shaped SmB6 sample, grown by D. J. Kim and Z. Fisk [40]. If the resistivity behavior, both

the high temperature and low temperature, is purely a bulk phenomenon, the resistance, R,

must always be inversely proportional to the bulk conductivity, σb:

R =
Cb
σb
. (1.9)

If this is the case, two resistances that are measured with different contact configurations will

only differ by a prefactor (Cb)
6, so the ratio of the two resistances will always be constant.

On the other hand, if the high-temperature region is from the bulk conduction and the

low-temperature region is from the surface conduction, Eq. (1.9) only holds approximately

true at high temperatures, and at low temperatures, the resistance is more dominated by

6We will introduce Cb and Cs as C−1 and C1/t, respectively, in Chapter 4.
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Figure 1.4: Numerical simulations and experimental results of the non-local transport geom-
etry that were performed by S. Wolgast et al. (a) Simulation of SmB6, assuming that both
high- and low-temperature resistance originate from the bulk only. (b) Simulation of SmB6,
assuming that the low-temperature resistance plateau originates from the surface. (c) Ex-
perimental result of R vs. T . Reprinted figure with permission from [40], and also additional
kind permission from the first author. Copyright (2013) by the American Physical Society.

the surface conductivity, σs:

R ≈ Cs
σs
, (1.10)

with a different prefactor, Cs. Cb is determined by how the current flows in bulk, and Cs is

determined by how the current flows on the surface, and they are not the same (even the units

are different). Therefore, if the surface conduction is responsible for the resistance plateau,

in contrast to the bulk conduction at high temperatures, the two resistance measurements

with different contact configurations will have different values of transition, Cb to Cs, as

the temperature is lowered. This is the key idea that S. Wolgast et al. used to verify the

conducting surface. They used three different contact configurations. If the resistance is

purely from a bulk origin, the current will flow as shown in Fig. (1.3) (a) and Fig. (1.3) (c),

whereas if the conducting origin is from the surface, the current will flow as Fig. (1.3) (b) and

Fig. (1.3) (d). The numerical simulations for the corresponding configurations are shown in

Fig. (1.4) (a) and Fig. (1.4) (b) for both the purely bulk scenario and the transition from bulk

to surface state scenario, respectively. S. Wolgast et al. measured three different resistance

configurations, and found that the resistance vs. temperature measurements do indeed follow

the surface conduction scenario, as shown in Fig. (1.4) (c). This measurement clearly resolved

the mystery of the resistance plateau. Soon after, many other experimental reports came
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out, including many other transport experiments, dHvA studies, ARPES studies, tunneling

spectroscopy studies, etc. Many of them support the picture of the 3D TI, although many

others disagree with the picture of the 3D TI.

The work in this dissertation started soon after the discovery of S. Wolgast et al. The

work by S. Wolgast et al. opened up a wide range of new experimental questions that must be

answered to fully understand SmB6. Of course, the most important question the researchers

ask is: “Is the surface state really from a nontrivial topological origin?” To fully answer

with confidence, we must verify the key signatures that L. Fu et al. suggested for satisfying

3D TI surface (odd number of Dirac cones, helical spin structure, etc.). Also related to this

question, we must resolve the disagreement among other experimental results that have been

reported by many groups7.

From a slightly different perspective, 2DEG physics becomes immediately important as

soon as a 2D conducting surface is discovered. Historically, notice that a new 2DEG platform,

with high quality, has provided exciting discoveries, including IQH effect, fractional quantum

Hall effect [43], Dirac fermions in graphene [44, 45], and many more. Related to this, we

must answer: “What is the quality of the 2DEG of the SmB6 surface?”

Lastly, when comparing to the weakly correlated 3D TIs, in which the bulk overwhelms

the surface because of the existence of hopping conduction, it is fascinating that the sur-

face conducting state in SmB6 can be measured without interference from the bulk if the

temperature is low enough. This is because the bulk carrier density continues to become

smaller at low temperatures, not being disturbed by the presence of impurities. This implies

that the role of disorder and impurities in SmB6 may play a very different role than in other

materials. Therefore, the bulk must also be investigated related to this aspect.

7The related references will be cited in Chapter 3.
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Chapter 2

Understanding the Properties of

Solids from Resistance Measurements

2.1 Introduction

Throughout this dissertation, the experimental technique that is used to understand the

properties of SmB6 is electrical transport close to zero frequency (DC limit). Transport

measurements are typically performed on samples with multiple contacts where resistance,

R, is obtained by passing a current, I, and measuring the voltage, V : R = V/I. When we

measure the resistance, we typically change the conditions of the environment that surround

the material. Many parameters of the sample′s environment can be controlled during the

measurement of R. In this work, we control the temperature, T , and the magnetic field, B.

The dependence of resistance on these two parameters, R(T ) and R(B), contains valuable

information about the material property. For example, R(T ) increases as T is lowered when

the material is an insulator. We need to understand why this is the case. This chapter

is, therefore, devoted to touching on the basics of transport theory. The subsections are

designed in a sequence so that the reader can understand how a measured resistance can

be used to understand fundamental properties of a solid. The connection between transport

and band theory will be emphasized in this chapter. Also, we will mention whenever there

is a difference between an ordinary material and a 3D TI while introducing key ideas of

transport and band theory.
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Figure 2.1: Basic transport geometries. The gray color is the sample and yellow is a highly
conductive metal. (a) 3D slab geometry. (b) 2D sheet geometry. (c) Corbino disk geometry.
Dotted line is the Gaussian surface for integration.

2.2 Resistance to Conductivity: Ohm′s law

When we measure the resistance, R, of a sample, we apply a current, I, through the

sample and measure the voltage, V (i.e., R = V/I), across the sample1. Here, we only

consider the resistance when the current is sufficiently small, so that I and V have a linear

relationship (Ohmic regime).

The measured resistance, R, is then expected to depend on the shape, position of the

contacts, as well as the type of material of the sample. Suppose we measure a resistance

of a slab sample that is shown in Fig. (2.1) (a). We intuitively know that the carriers will

experience more of the material if the sample is longer, and feel less when the cross-sectional

area is larger. Therefore, the resistance of the slab sample shown in Fig. (2.1) (a) scales with

length, L, and inversely scales with the cross-sectional area, A. That is:

R =
V

I
=

1

σb

L

A
. (2.1)

In addition to the geometry of the sample, the resistance also depends on the type of ma-

terial (Cu, Ag, Si, SmB6, etc.). This information is contained in the bulk conductivity,

σb. Therefore, if we want to understand the material property by transport (measuring the

resistance), we must first know the conductivity from the resistance.

This intuition of geometry also holds for a two-dimensional case. If electrons are confined

1One can measure the resistance alternatively by applying a voltage and measure the current.
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in a two-dimensional space, this system is called a two-dimensional electron gas (2DEG).

Consider a sheet sample that is shown in Fig. (2.1) (b). We know that the resistance

increases as the length, L, increases, and the resistance decreases as the width, W , increases.

Therefore, we have the following relation:

R =
V

I
=

1

σs

L

W
, (2.2)

where σs is the surface conductivity. Note that in Eq. (2.1), σb is in units of 1/(Ω · cm),

in Eq. (2.2), σs is in units of (1/Ω). We were able to easily guess Eq. (2.1) and Eq. (2.2)

because the current in Fig. (2.1) (a) and Fig. (2.1) (b) flows uniformly.

In order to analyze general transport geometries with irregular shapes, we must consider

a more general form that works for transport geometries of any shape. This is the differential

form of Ohm′s law, which we learn from classical electrodynamics [46,47]:

~J = σ~E , (2.3)

where ~J is the current density, and ~E is the electric field.

Here we introduce a slightly more complicated geometry, as shown in Fig. (2.1) (c). This

is a ring-shaped sample in 2D, also famously known as the Corbino disk. The current flows

radially in the annular region for this geometry. To find the resistance of this geometry,

let us consider a circular loop that is shown in a red-dotted circle (Gaussian circle). The

current is enclosed in this circle, so integrating the current density, which is the left-hand

side of Eq. (2.3), of an enclosed circle will be the total current, I, that is being applied to

the Corbino disk. Also, from symmetry, we know that ~E is always in the radial direction (r̂)

and the magnitude is constant along the circumference of the red-dotted circle. Integrating

the right-hand side of Eq. (2.3) along the enclosed loop is:

σs

∮
~E dl = σs ~E (2πr). (2.4)

Since Eq. (2.4) is equal to I, the electric field can be expressed as:

~E =
I

2πr

1

σs
r̂. (2.5)

By integrating the electric field in the radial direction from rin, the inner radius of the disk,

to rout, the outer radius of the disk, results in the potential difference (or voltage) between

the inner- and the outer-region of the annulus. Then, the resistance is found by dividing this
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voltage to the current:

R =
1

σs

ln(rout/rin)

2π
. (2.6)

We will use this transport geometry when analyzing the surface of SmB6 in Chapter 3. In

other complicated geometries, we no longer have a good way to find the resistance analyti-

cally. The problem becomes even more complicated when the bulk and surface conductivity

both exist in the sample. In fact, a 3D topological insulator is exactly this case. The geome-

try consideration for this case is challenging. We will discuss how we overcome this challenge

in Chapter 4. In most other geometries besides the cases in Fig. (2.1), finding the resistance

from Eq. (2.3) cannot be done analytically, and we must use numerical calculations instead.

In this section, we have reviewed how the resistance depends on the geometry of the

sample and the conductivity of the material. If we can find the conductivity, then we must

know how it is related to the microscopic details of the material. The approach we will take

in the following sections is that we start from a more fundamental physics knowledge with

certain assumptions and find a linear relationship between the electric field and the current

density. From this, we will find the conductivity, and we will find that it can be expressed

in terms of fundamental quantities of a solid. Here we do this twice following a historical

sequence: the classical way (Drude model), and then the semiclassical way (Boltzmann

model). From this sequence, we understand from the crudest properties to the more detailed

properties of a solid.

2.3 Conductivity from Classical Transport Theory

In the previous subsection, we have mentioned that Ohm′s law (Eq. (2.3)) can be used

to find the relation between the resistance and the conductivity of the sample. We want to

know more about σ in detail, and from it, we want to understand the properties of solids. Let

us try to find Eq. (2.3), where the current density is proportional to the electric field. The

prefactor will be the conductivity. We introduce the idea of freely moving charged particles

in a solid to justify Eq. (2.3).

How should we define the current density, ~J , in terms of charged carriers? It should

depend on the charge of each carrier (e), the density of the carriers (n), and the (drift)

velocity of the carriers (v). We just multiply them all together:

~J = ne~v. (2.7)

By defining the current density this way, we have assumed that every carrier behaves identi-

cally with the same drift velocity. Then, we can first consider a single carrier and then scale
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with the carrier density afterward. Of course, this is an oversimplification, and we will later

modify Eq. (2.7) based on our knowledge of statistical mechanics of fermions (i.e. electrons)

in non-equilibrium.

Next, we need to find a linear relationship between ~J and ~E . According to Newtonian

mechanics, a particle must accelerate when there is an external force. Then, the charged

carriers must accelerate if the applied electric field is the only external force present in the

system: ~F = e~E = m~a. Since we want the velocity to be proportional to the electric field,

instead of the acceleration, we need to additionally introduce a drag force of ~Fd = m~v/τ in

the equation of motion:
~F = e~E −m~v/τ, (2.8)

where τ is the relaxation time. At steady state, ~F = 0, and we then arrive at a relation

between velocity and electric field:

~v = eτ/m~E . (2.9)

Inserting Eq. (2.9) in Eq. (2.7), we then have:

~J = ne
eτ

m
~E . (2.10)

Comparing Eq. (2.10) with Eq. (2.3), the conductivity is:

σ =
ne2τ

m
= neµ, (2.11)

where we have defined the mobility, µ = eτ/m. The approach in this section to find the

conductivity is called the Drude model, and Eq. (2.11) is the famous Drude conductivity.

From this model, we have found the conductivity from Newtonian mechanics after making

some crude modeling and assumptions. Based on this development, the conductivity depends

on the density of carriers in the material and some scattering (relaxation) time. This way of

thinking works extremely well for many materials. However, when it comes to attempting to

understand what those carriers exactly are (they are not electrons in a vacuum), and what

n and µ are in a classical way, the model fails to explain correctly. Perhaps most seriously,

the model does not capture why some materials are metals and why other are insulators.

In the following section, we will briefly review our knowledge of band theory from intro-

ductory solid state physics. Then, we will introduce the semiclassical transport theory. We

will come back to the current density, ~J , with a more sophisticated definition than Eq. (2.7),

and find the conductivity that is related to the band structure of the material. From this,

we will correctly interpret the meaning of carrier density and mobility.
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2.4 Band Theory in a Nutshell

To understand basic electrical properties of a solid, we need to start from band theory

of solids. This section is designed for the reader to learn how to read the dispersion relation

and the density of (energy) states. Before moving on, we note that the review here is based

on weakly correlated materials.

Understanding materials using band theory is one of the greatest success of quantum

mechanics in the 20th century. In quantum mechanics, we solve the Schrödinger equation

with a given Hamiltonian, H, that describes the system of interest. For a material, the

system consists of a collection of ions (with charge Ze) and electrons. We can write the

corresponding Hamiltonian as [48,49]:

H =
∑
i

P 2
i

2M
+
∑
j

p2
j

2m
+

(Ze)2

2

∑
i,i′

1

|Ri −Ri′ |
+
e2

2

∑
j,j′

1

|rj − rj′|
−Ze2

∑
i,j

1

|rj −Ri|
, (2.12)

where M is the mass of the ion, m is the mass of the electron, and Ri (rj) and Pi (pj),

respectively, is the position and momentum of the ith (jth) ion (electron). The first term

is the sum of the kinetic energy of the ions (Ti), the second term is the sum of the kinetic

energy of the electrons (Te), the third term is the sum of interaction between the ions (Vii),

the fourth term is the sum of interaction between electrons (Vee), and the last term is the

sum of the interaction between the ions and the electrons (Vie). Here, we ignore the effect

of spin-orbit coupling, Zeeman effect, and the Stark effect. From quantum mechanics, we

learn that even for a single particle system, only a few examples are available that can be

solved exactly. Therefore, solving Eq. (2.12) is hopeless without making good assumptions

and dramatic simplifications.

To simplify Eq. (2.12), we use the Born-Oppenheimer approximation [50]. That is, we

assume that the ions move much less compared to the conduction electrons. Then, the

dynamics of the ions and electrons are on different energy scales, and we can separate the

two. Let us separate the wave function for the Hamiltonian of Eq. (2.12) into two pieces:

Ψ(r, R) =
∑
n

Φn(R)ψn(r, R), (2.13)

where n is the index of the energy eigenvalues (later band indices). When this wave function is

acted on the Hamiltonian, the Born-oppenheimer approximation allows us to regard ψn(r, R)

as the solution for the electron wave functions in the presence of ions at position R:

(Te + Vee + Vie)ψn(r, R) = En(R)ψn(r, R), (2.14)
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and Φn(R) as the wave function for the ions at position R:

(Ti + Vii + En(R))Φn(R) = ξnΦn(R), (2.15)

where ξn is the modes for phonons.

In our studies, we are more interested in Eq. (2.14), which describes electrons. Even

Eq. (2.14) is too difficult to solve in general if we do not make any further simplifications.

What makes this equation particularly difficult to solve is the presence of the electron-electron

interactions (Vee)
2.

Let us keep simplifying the Hamiltonian by only considering a weakly correlated material

case (week e-e interactions). Notice that each term on the left-hand side of Eq. (2.14) is a

sum of j (jth electron).

Te + Vee + Vie =
∑
j

(te,j + vee,j + vie,j) =
∑
j

hj, (2.16)

By boldly ignoring vee,j or treating it as a constant (an average field created by the other

electrons that the electron feels) [49], and solving hj = te,j +vee,j +vie,j instead of Eq. (2.12),

we have simplified the problem into an independent single-electron problem.

We can further work with hj using Bloch′s theorem. Since we have assumed that the ions

do not move greatly in position compared to the electrons, we can regard that the ions are

positioned periodically, say with a lattice constant of a. Then the electron feels a periodic

(ion) potential,

vie,j(r) = vie,j(r + a), (2.17)

Bloch’s theorem states that the wave function of an electron can be expressed in the following

form [1,49,51]:

ψn(r) =
∑
k

un,k exp(ikr), (2.18)

where un,k(r) is a periodic function that satisfies un,k(r) = un,k(r + a), k is the crystal

momentum that is the momentum modulo the reciprocal lattice (e.g., 2π/a in 1D). As a

result, the energy eigenvalue of an electron is parameterized by k, i.e., En(k). And because

of the periodicity of the lattice, the crystal momentum is bound to a certain range, called

the Brillouin zone (BZ) (e.g., −π/a ≤ k ≤ +π/a in 1D).

Furthermore, Eq. (2.16) can be solved approximately in different ways, which will not

be discussed in this dissertation. The simplest one is the nearly free electron model, which

2This contribution is significant for considering the bulk of SmB6. Of course, this is one of the many
factors that make SmB6 difficult.
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Figure 2.2: Example of bands. (a) Example of parabolic bands. (b) Example of linear bands.

starts with a plane wave and uses the time-independent perturbation theory by adding a

weak periodic potential of the ions. Another one is the tight binding model, which assumes

that the potential of the ions is strong. The model starts with a wave function that is

superimposed with atomic orbitals and allows hopping to the neighboring atoms [52]. In

both models, the lesson is that, in the BZ, there are bands of allowed energies that the

electrons can occupy, and there is a forbidden gap between two bands, where there are no

available states to be occupied. An example of energy vs. crystal momentum (E-k) diagram

showing two such bands in the BZ is shown in Fig. (2.2) (a).

Another important feature is that the bands can be approximated as a parabola (quadratic

k-dependence). Therefore, we can approximate the band into a form of kinetic energy:

E = ~2k2/2m∗, where m∗ is the effective mass defined by:

1

m∗
=

1

~2

∂2E

∂k2
. (2.19)

Note that for the top band, m∗ > 0, and for the bottom band, m∗ < 0. These are the

effective masses for electrons and holes, respectively.

Another example of a band in the E-k diagram is shown in Fig. (2.2) (b). The dispersion

relation, in this case, is linear and the two bands touch at one point (called the Dirac

point). This dispersion is important because it appears in graphene and on the surface of 3D

topological insulators. Here, the bands can be approximated by a form of the massless Dirac

equation, where instead of the speed of light we use the Fermi velocity, vF , E = ~vFk (Dirac
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Figure 2.3: Example of density states of an insulator and a metal. (a) Example of the
density of states of an insulator (top) and the Fermi-Dirac distribution (bottom) at finite
temperatures. (b) Example of the density of states of a metal (top) and the Fermi-Dirac
distribution (bottom) at finite temperatures.

dispersion). Because the band is linear, we cannot define the effective mass like Eq. (2.19).

For a linear dispersion, the effective mass is typically defined as [53]:

1

m∗
=

1

~2k

∂E

∂k
. (2.20)

If the crystal momentum dependence is not of interest, and we only need to know the

states at a given energy, the density of (energy) states is useful. From the band dispersions

at a fixed energy, we can integrate over all k in the BZ to calculate the (total) density of

states (in units of energy per unit volume):

g(E) = s
∑
n

∫
ddk

(2π)d
δ(E − En(k)), (2.21)

where d is the dimension of the system (e.g, d = 3 for bulk and d = 2 for 2DEG) and s

is the degeneracy of states by spins. s = 2 for normal materials where two opposite spins

can occupy a state, whereas s = 1 for a 3D TI surface for the spins are split in opposite

k-directions. The 1/(2π)d comes from the periodic boundary condition (Born-von Karman

boundary condition) of the wave function to describe a very large system (not the periodic
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boundary condition of vie). Examples of density of states are shown in Fig. (2.3).

From bands, we know where the states can be occupied and where they cannot. Now we

must know in what order they are occupied. Since electrons are fermions, they will fill from

the lowest state and fill up the energy states following the Fermi-Dirac (F-D) distribution:

f 0(E) =
1

1 + exp((E − EF )/kBT )
, (2.22)

where EF is the Fermi energy3. Here, we used the symbol f 0(E) instead of f(E) to emphasize

that the system is in equilibrium. Therefore, the electrons will fill up the energy states from

low to high energy.

Now we must know how high of energy the states will be occupied. If a total of N

particles is present in a crystal, we must have the following relation:

n =
N

V
=

∫
dEg(E)f 0, (2.23)

where n is the carrier density of the material.

With the bands (or density of states) and the F-D distribution, we can distinguish between

insulators and metals. As shown in Fig. (2.3) (a), if the Fermi energy is positioned in the

forbidden energy gap, the material is called an insulator. As shown in Fig. (2.3) (b), if the

Fermi energy crosses a band, as shown in Fig. (2.3) (b), we call this material a metal. By

convention, we call the highest occupied band by F-D distribution the valence band and call

the lowest unoccupied band or partially filled band the conduction band. In the following

section, we go back to transport. Now we will use the semiclassical approach, where the

electrons obey the band structure (or density of states) and F-D statistics.

2.5 Conductivity from Semiclassical Transport Theory

Now we come back to transport and continue our discussion of current density, J . We will

treat the current density semiclassically, meaning that we will use the occupation of states in

bands with the F-D distribution. Also, we will use the Boltzmann transport equation from

statistical mechanics, which describes the statistics in nonequilibrium.

To treat transport semiclassically, we first need some modifications of ~J = ne~v (Eq. (2.7),

where we have treated all the electrons to move with the same velocity. A more reasonable

definition of J is treating it as a flux density of charged particles with a statistical distribution

3Strictly speaking, it should be the chemical potential, and the Fermi energy is when T=0. We will use
a more loose definition for simplicity.

22



of energy, f(E):

~J = e

∫
dEg(E)f(E)~v(E). (2.24)

Note that f(E) is not the Fermi-Dirac distribution in equilibrium, but instead, it is the

nonequilibrium distribution function when the system is perturbed by the electric field. To

find f(E), we use the Boltzmann transport equation [1,54]. The change in f(E) by collisions,

(∂f/∂t)coll, includes the effect by perturbation from the external electric field:

∂f

∂t
+ ~v · ∂f

∂~r
− e~E

~
· ∂f
~∂k

= (
∂f

∂t
)coll, (2.25)

where k is in the direction parallel to the applied electric field (E) direction. On the left-hand

side of Eq. (2.25), the first term is zero in DC transport because it is in steady state, and

the second term also does not contribute when there is no spatial distribution. Next, we use

the relaxation-time approximation to the first order of the Boltzmann equation:

(
∂f

∂t
)coll = −f − f

0

τ(E)
. (2.26)

Then we can make the following approximation, which becomes a perturbed population from

equilibrium [1,55,56]:

f ≈ f 0 − e

m
τ(E)

∂f 0

∂vx
· Ex = f 0 +

e

~
τ(E)(−∂f

0

∂E
)(
∂E(k)

∂kx
)Ex, (2.27)

where we have defined the x direction as the direction of the applied electric field. Therefore,

the terms that involve the dot product with ~E have a subscript of x. Also, v is the (group)

velocity associated with the crystal momentum (k) direction.

Also, the relaxation time, τ , has a clear meaning. It is the scattering time of the electrons

by some scattering potential. Formally, it is determined by [1]:

1

τ
=

∫
W (k, k′)(1− cosθk,k′)dk (2.28)

where W (k, k) is the scattering rate that depends on the scattering mechanism in the solid.

To the first order, W (k, k) is found by Fermi′s golden rule, which is basically the time-

dependent perturbation of the interaction term of the Hamiltonian. For example, for (dilute)

impurities that are disordered in the crystal with a scattering potential, Vimp, the scattering

rate is:

W (k, k′) =
2π

~
niδ(E(k)− E(k′))| < k|Vimp|k′ > |2 (2.29)
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where ni is the density of the impurities.

Since we have found f in Eq. (2.27), we insert it in Eq. (2.24). The first order term,

which corresponds to the system at equilibrium, from the expansion in Eq. (2.27) does not

contribute to current. The second term contributes to the current density, and we have:

Jx =
e2Ex
~2

∫
dEg(E)τ(E)(

∂E(k)

∂kx
)2(−∂f

0

∂E
). (2.30)

Again, this is consistent with Ohm′s law (Eq. (2.3)) since ~J is proportional to ~E . We

can further simplify Eq. (2.30) by making more assumptions. First, we assume that the

equipartition theorem holds for the kinetic energy, just like for a free electron gas: < v2
x >=

1/d < v2 >, where vx is the velocity in the same direction as the electric field, v is the total

velocity in all directions, and d is the dimension of the system. Also, we assume that τ is

independent of energy. Then, the conductivity is:

σ =
e2τ

d

∫
dEg(E)v2(−∂f

0

∂E
). (2.31)

Now we have a conductivity that depends on the g(E) of a solid (or roughly speaking,

integrating the bands for each k at a given E), and the temperature dependence of the

statistics contained in f 0.

With Eq. (2.31) derived from the semiclassical transport theory, let us examine the

conductivity of metals and insulators we have defined in the previous section. Remember,

we have defined them using band theory of solids, that a material is a metal if the Fermi

energy crosses a band, and the material is an insulator if the Fermi energy is positioned

within the forbidden gap (See Fig. (2.3) for example).

Let us consider a metal first. In Eq. (2.31), it involves (−∂f0

∂E
) inside the integral. This

is a sharply peaked function at sufficiently low temperatures. Therefore, we can assume

(−∂f0

∂E
) ≈ δ(E − EF ) at low temperatures. Then, Eq. (2.31) is:

σ ≈ e2τ

d

∫
dEg(E)v2δ(E − EF ) =

v2
F τ

d
e2gc(EF ). (2.32)

where vF is the Fermi velocity, and gc(EF ) is the density of states of the conduction band,

specifically at the Fermi energy. Eq. (2.32) is known as the Einstein relation of conductivity.

We note that from Eq. (2.32), we do not need to completely abandon the Drude model

if we interpret the carrier density and mobility properly. Comparing Eq. (2.32) to the

conductivity from the Drude model (Eq. (2.11), the carrier density n = 2
d
EFg(EF ), where

we have used EF = 1/2m∗v2
F . We have shown that only the states in the vicinity of the Fermi
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energy participate in carrier transport. Typically, for a metal, the temperature dependence

of the carrier density is weak. Usually, the temperature dependence of the conductivity in a

metal is mostly from the temperature dependence of the scattering time, τ .

Now let us consider the case of an insulator where the Fermi energy lies within the

forbidden gap. For an insulator, there are no states available at the Fermi energy, g(EF ) =

0, so the approximation of conductivity in Eq. (2.32) results in zero conductivity for an

insulator. This is, in fact, true when the temperature is at T = 0 K. At temperatures slightly

above 0 K, there are higher order contributions from the tail of the F-D distribution. As a

result, the bands that are near the Fermi energy (conduction and valence band) contribute.

The following relation is useful to see this [56]:

− ∂f 0

∂E
=

1

kBT
f 0(1− f 0). (2.33)

Then, Eq. (2.31) for an insulator becomes:

σ =
e2

dkBT

∫
dEv2f 0(1− f 0)g(E). (2.34)

Remember, from the definition of density of states (Eq. (2.21)), the density of states sums

all the nth bands (g(E) =
∑

n gn(E)). When considering the conduction band, the lowest

band above the Fermi energy, Eq. (2.33) can be approximated as, f 0(1− f 0) ≈ exp(−(E −
EF ))/kBT ). When considering the valence band, the highest band below the Fermi energy,

Eq. (2.33) can be approximated as, f 0(1− f 0) ≈ exp(−(EF − E))/kBT ). The contribution

of the rest of the bands is much smaller, so it can be neglected. Then Eq. (2.34) is:

σ ≈ e2

dkBT
(

∫
dE v2

cτc exp(−(E −EF ))gc(E) +

∫
dE v2

vτv exp(−(EF −E))gv(E)), (2.35)

where gc is the density of states from the conduction band and gv is the density of states

from the valence band. This is the conductivity of an insulator in which the first term is

generally regarded as electrons and the second term as holes. Since the velocity is related to

the slope of the band, the conduction band (vc) and valence band (vv) must have different

velocities. Also, in general, the scattering time associated with the conduction band (τc)

and the valence band (τv) are different. From Eq. (2.35), we learn that although there are

no states available near the Fermi energy, the tail of the Fermi energy at finite temperatures

reaches to the nearby bands and contributes to transport.

We can also reinterpret the Drude conductivity for an insulator. To do this, we continue

working with Eq. (2.35) a little further. First, we consider the contribution of the conduction

25



band, which is the first term on the left side of Eq. (2.35). Since the statistical average of

v2 can be estimated as4

< v >2=

∫
dE g(E)v2 exp(−(E − EF )/kBT )

n
≈ kBT

m∗
, (2.36)

we therefore can express the conductivity from the conduction band into the Drude conduc-

tivity form, σ = ne2τ/m, where [1]

n =

∫
dE gc(E) exp(−(E − EF )

kBT
) = n0 exp(−(Ec − EF )

kBT
), (2.37)

and

n0 =

∫ ∞
Ec

dEgc(E) exp(−(E − Ec)
kBT

). (2.38)

Here, Ec is the bottom of the conduction band. n is the carrier density of electrons. The

energy difference between the conduction band the Fermi energy is often called the activation

energy, Ea = Ec − EF . Similarly, when we consider the valence band, we have the carrier

density of holes:

p =

∫
dE gv(E) exp(−(EF − E)

kBT
) = p0] exp(−(EF − Ev)

kBT
), (2.39)

and

p0 =

∫ Ev

−∞
dEgv(E) exp(−(Ev − E)

kBT
), (2.40)

where Ev is the top of the valence band.

If we assume that either the electrons or holes dominate the conductivity, we can see that

the temperature dependence of the resistance is exponential, R ∝ 1/σ ∝ exp(Ea/kBT ).

In this section, we have found the conductivity from a semiclassical approach. One

important lesson we have learned from this section is that we do not fully have to abandon

the Drude formalism as long as we interpret the carrier density and mobility correctly. For a

metal, the carrier density is interpreted as the sum of the occupied electron states near the

Fermi energy. For an insulator, although there are no states available at the Fermi energy,

the carrier density is determined by the contribution of the F-D distribution tail reaching

the conduction band and the valence band. This explains why in transport, we have a

temperature dependence of σ ∝ exp(−Ea/T ). For the mobility, eτ/m, we replace m to m∗.

4There are two alternative ways to treat this equation. One is using a known density of states and doing
an honest integral. However, this would not be general. Another is using the Einstein relation. But we try
to not introduce additional material for simplicity.
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We note that the sign can be negative if we consider holes5. τ is related to the relaxation

time that is related to the scattering potential of the disorder potential.

In the following section, we will discuss how to separately determine the carrier density

and mobility by applying magnetic fields.

2.6 Magnetotransport: Determining the Carrier Den-

sity and Mobility

By just finding the conductivity from measuring the resistance, we only know the prod-

uct of the carrier density and mobility, and do not know their values individually. The

carrier density and mobility can be separately determined by performing measurements in

a magnetic field. To see how this magnetotransport works, we add the Lorentz force to the

equation of motion in the steady state of Eq. (2.8) [1]:

0 = e(~E + ~v × ~B) − m∗~v

τ
, (2.41)

Since the dissertation will only focus on the surface magnetotransport, we consider only

the 2D case when the magnetic field is applied in the out-of-plane direction (z-direction).

After we multiply neτ/m∗ with Eq. (2.41), and separate the vector components in the x and

y direction, we have the following relations [1]:

(neµ)Ex = µBJy + Jx,

(neµ)Ey = −µBJx + Jy,
(2.42)

We can change this into a matrix form after re-arranging:

~J =
neµ

1 + (µB)2

(
1 µB

−µB 1

)
~E (2.43)

Therefore, in the presence of a perpendicular magnetic field, we can treat the conductivity

as a tensor:

σ(B)xy =
neµ

1 + (µB)2

(
1 µB

−µB 1

)
(2.44)

We note that this form can be particularly useful for numerical calculations. For example,

numerical methods such as finite element analysis can solve the Laplace equation (∇2V =

5Alternatively, we can encode the sign of electrons and holes in the charge [52].
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0) with the appropriate boundary conditions to solve for the potential and electric field

throughout the geometry. Then, the current density can be found by multiplying the electric

field vector with Eq. (2.44) without any further complications.

Next, we consider two examples in this section using Eq. (2.43): a sheet geometry and

a Corbino disk geometry, as shown in Fig. (2.1) (b) and Fig. (2.1) (c), respectively. First

for a sheet geometry, if we send current in the x-direction (through L), and measure the

voltage vertically in the y-direction that is sufficiently far away from the current sources, we

have Jy= 0, so that the current only flows in the x-direction. Applying this condition to

Eq. (2.43), we find the Hall resistance6

RHall =
Vy
Ix

=
EyW
JxW

= −B
ne
. (2.45)

Therefore, by measuring the Hall resistance, RHall, the carrier density can be estimated.

Also, RHall depends on the sign of the carriers, so that we can also distinguish between

electrons and holes. We note that the Jy= 0 condition must be strictly satisfied. If the Hall

effect is measured on the surface of a thick a 3D TI with a slab geometry, satisfying Jy=

0 is difficult in practice because current can flow on all six surfaces. We later discuss in

Chapter 3 that the Hall bar configuration for characterizing the surface of SmB6 may cause

incorrect estimations of the carrier density.

We next consider a Corbino disk both analytically and numerically. Because the annular

region of the Corbino disk requires the equipotential to be circular by symmetry, this requires

the electric field to be only in the radial direction (Er). Then, it is convenient to express the

x and y components of E in terms of Er by choosing the polar coordinates, (r, φ):

Ex = Er cosφ,

Ey = Er sinφ,
(2.46)

Then, inserting Eq. (2.46) into Eq. (2.43), the current density becomes:

~J =
neµ

1 + (µB)2

(
1 µB

−µB 1

)(
cosφ x̂

sinφ ŷ

)
Er. (2.47)

We can calculate the current by integrating over a closed circle (red-dotted circle in Fig. (2.1) (c))

6Note that we distinguish RHall from RH . RH is the hybrid resistance, which will be introduced in
Chapter 4.
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Figure 2.4: Numerical simulation results of a Corbino disk in the presence of the out-of-plane
magnetic field. A commercial finite element analysis software (Comsol Multiphysics AC/DC
module) is used for the simulations. The surface is set to µ=100 (cm2/(V · s)), n=2.5 × 1013

(1/cm2). The applied current is set to I=10−6 (A). (a) Equipotential (in gradient color) and
current (in red arrows) results at 30 T. (b) Simulated Resistance vs. Magnetic field of the
Corbino from -30 T to +30 T.

somewhere in the annulus:

I =

∮
~J · d~l =

neµ

1 + (µB)2
(2πrEr). (2.48)

We then integrate from the inner radius, rin, to the outer radius, rout, to calculate the

potential difference (voltage). Then, the resistance of a Corbino disk in the presence of the

magnetic field is:

RCorbino =
ln(rout/rin)

2π

1 + (µB)2

neµ
. (2.49)

Notice that the resistance in Eq. (2.49) has a 1+µ2B2 factor. The resistance has a quadratic

magnetic field dependence because of this factor.

As an instructive exercise, we also use Eq. (2.44) as the anisotropic conductivity tensor

and simulate the Corbino disk numerically. The result of the potential distribution and

the current density direction is shown in in Fig. (2.4) (a). Here, the equipotential lines

are circular, consistent with Eq. (2.5), while the current direction spirals consistent with

Eq. (2.47).

A simulated magnetic field sweep is shown in Fig. (2.4) (b). As we expect from Eq. (2.49),

the numerical results also show a quadratic dependence that is consistent with the 1 +µ2B2
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factor. This extra quadratic-magnetic-field dependence factor in resistance allows us to find

the mobility. From this mobility and the conductivity at zero magnetic field, we can also

find the carrier density. Note that in the Corbino disk configuration, the sign of the carrier

does not influence the resistance. In Chapter 3, we will go into more detail about using the

Corbino disk to study the surface of SmB6.

2.7 Shubnikov de-Haas Oscillations: Finding the Car-

rier Density and Mobility from Landau Levels

In the previous section, we have shown that the carrier density and mobility can be found

when applying the magnetic field using the classical Drude formalism. In addition to this

effect, there is a quantum mechanical effect that can be used to find the carrier density and

mobility. When the magnetic field is strong enough, the density of states is quantized into

discrete levels, called Landau levels, and they can be used to find the carrier density and

mobility. This effect is called Shubnikov de-Haas (SdH) oscillations.

For a two-dimensional electron gas (2DEG) without any interactions, the Landau levels

can be understood easily. In the Hamiltonian for a free electron, if we modify the momentum

operator that includes minimal coupling, p̂→ p̂+ e ~A, and choose the Landau gauge for the

vector potential, ~A = (0, Bx, 0). The eigenvalue solution becomes similar to the simple

harmonic oscillation problem:

En = ~ωc(n+ 1/2), (2.50)

where ωc is the cyclotron frequency defined as eB/m∗. Therefore, the energies are discretized

with an energy width of ~ωc, which becomes wider at higher magnetic fields. This idea can

be applied to a 2DEG that has very small vee (electron-electron interactions).

The Landau levels are manifested in conductivity with an oscillating behavior. Unfor-

tunately, the semiclassical approach that we have used for understanding conductivity for

metals and insulators is not suitable for explaining the quantum oscillation phenomena in

conductivity. Still, by making a brave assumption, we will eventually arrive to the Lifshitz-

Kosevich formula, which describes not only the oscillating behavior of conductivity but also

the damping of the oscillations7.

Inspired by the Boltzmann transport, which we have worked with so far, we assume that

the conductivity is related to the density of states. The density of states are quantized into

Landau levels. We assume that the conductivity is proportional to the sum of density of

7Most derivations found from textbooks require additional knowledge that is not covered in this chapter.
But by accepting a simple assumption, the derivation works amazingly well.
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states only near the Fermi energy with a thermal broadening (δ ≈ −∂f0

∂E
dE).

σ ∝
EF +δ/2∑
EF−δ/2

g(E)→
∫
g(E)(−∂f

0

∂E
)dE. (2.51)

Note that this does not necessarily mean that the integral above is the carrier density that

is associated with the drift caused by the electric field in the Boltzmann equation8.

Now, let us construct the density of states. Without broadening of the Landau levels by

disorder, we can use Eq. (2.21) with the Landau levels, Eq. (2.50). The density of states can

be regarded as delta functions peaked at the eigenvalue of energies (Landau level peaks):

g(E) = C
∑
n

δ(E − (n+
1

2
)~ωc), (2.52)

where we defined a constant, C, that absorbs all the constants that do not contribute in the

rest of the calculation. We can express this density of states in a series of integers, p:

g(E) =
C

~ωc
[1 + 2

∞∑
p=1

cos(2π(
E

~ωc
− 1/2)p)], (2.53)

where we have used the Poisson formula:

∞∑
n=−∞

h(n+ φ) =
∑
p

e2πipφ

∫ ∞
−∞

h(y)e2πipydy. (2.54)

Note that from changing Eq. (2.52) to Eq. (2.53), we have now expressed the density of

states of Landau levels that results in a sum of oscillating terms (cosine terms).

Now we include the broadening of the peaks due to disorder. We assume the broadened

peak is a Lorentzian shape associated with a (quantum) scattering time, τQ. Then, we use

the convolution integral to modify the delta peaks to Lorentzian peaks to find the correction

to density of states due to disorder broadening, gd [58]:

gd(E) =

∫ ∞
0

g(E ′)
~/2τQ

(E − E ′)2 + (~/2τQ)2
dE ′

=
C

~ωc
[1 + 2

∞∑
p=1

e−π/ωcτQ cos[2π(
E

~ωc
− 1/2)p]],

(2.55)

8Pippard, in his book, does a somewhat similar approach and discusses in greater detail. According to
this interpretation, the integral in Eq. (2.51) is related to the scattering rate [57].
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Inserting Eq. (2.55) into Eq. (2.51), the conductivity can be expressed as:

σ =
C

~ωc
[1 + 2

∞∑
p=1

e−π/ωcτQ
(2π2kBT

~ωc
)p

sinh[(2π2kBT
~ωc

)p]
cos[2π(

E

~ωc
− 1/2)p], (2.56)

where we have used the following integrals:∫ +∞

−∞
(−∂f

0

∂E
)dE = 1,∫ +∞

−∞
(−∂f

0

∂E
) cos(E/E0)dE =

πkBT/E0

sinh(πkBT/E0)
cos(E/E0)

(2.57)

Conveniently, we define the temperature damping factor, DT , and the Dingle damping factor,

DD:

DT =
2π2kBT

~ωc

sinh[2π2kBT
~ωc

]
,

DD = exp(− π

ωcτQ
) = exp(− π

µQB
).

(2.58)

Keeping only p = 1 in Eq. (2.56), which is the dominating term, we express the magneto-

conductivity as:
∆σ(B)

σ(B = 0)
= DTDD cos[2π(

EF
~ωc
− 1

2
)]. (2.59)

Alternatively, we can write:

∆σ(B)

σ(B = 0)
= DTDD cos[2π(

F

B
− 1

2
)]. (2.60)

where F is the frequency that oscillates with

F =
~

2πe
(πk2

F ) =
~

2πe
AFS, (2.61)

where AFS is the area of the Fermi surface, which is πk2
F if a perfect circle. Eq. (2.61) is the

Onsager relation.

Therefore, we see that if quantum oscillations are observed from applying a magnetic field,

we can find the area of the Fermi surface from the frequency. In k space, there are a density

of sV d/(2π)d carriers since we are using the Born von-Karman boundary conditions [1] for

the wave function. The total number of carriers is then N = sV d/(2π)d × AFS. In 2D, d =

2, and the V is the area, and thus the relation between the carrier density and the Fermi
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surface area is:

n2D =
N

Area
=

s

(2π)2
AFS. (2.62)

From the magnetic field dependence at a fixed temperature, µQ can be found from DD.

If necessary, m∗ can be found by the temperature dependence of the amplitude at a fixed

magnetic field. Note that the quantum mobility, µQ, is not necessarily the same as the

mobility that we find from classical transport.

2.8 Summary

In this chapter, we have briefly reviewed transport theory. An introduction to the classical

and semiclassical transport theory was introduced to understand conductivity of a material.

An introduction of band theory and its connection to transport was also reviewed. The role

of magnetic field in classical transport and SdH quantum oscillations was introduced. In the

following chapters, the actual experimental work on transport measurement of SmB6 will be

presented.
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Chapter 3

Surface Studies of SmB6: Cornering

the Transport Parameter Space

3.1 Introduction

1Two years after the first prediction that SmB6 is a topological Kondo insulator [41],

Ç. Kurdak′s group [40] from the University of Michigan and J. Xia′s [59] group from the

University of California-Irvine verified that the surface conduction is responsible for the

resistance plateau below 3 – 4 K using electrical transport. The origin of this plateau has

been a 40-year-old mystery, and finally, the topological insulator hypothesis together with

the transport experiments offered a compelling explanation.

The next job for the researchers is to examine the properties of this surface conductor.

This investigation is important for the following reasons. First, we must make sure that

this surface conduction originates from the nontrivial topological nature of the bulk states.

Second, if this surface is a two-dimensional electron gas system (2DEG), we must report what

is different compared to other 2DEGs or the surface of 3D TIs. Third, we must quantify the

quality of this 2DEG.

From an electrical transport perspective, the most powerful way to investigate the surface

property is through Shubnikov de-Haas (SdH) quantum oscillations. SdH oscillations provide

very accurate information about the Fermi surface. First, from the oscillation frequency, the

area of the Fermi surface(s) can be estimated. Second, the magnetic-field-angle dependence

of the oscillation frequency can distinguish if the Fermi surface is from the surface or bulk

of the sample. If the origin of the oscillations is from the surface of the sample (2DEG),

then the amplitude of the oscillations should be proportional to the inverse of the cosine

1The author and his collaborators are preparing a manuscript for submitting to a peer-reviewed journal
that will contain contents in this chapter.
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Figure 3.1: Absence of Shubnikov de-Haas oscillations in SmB6 up to 93 T. Magnetotransport
was measured using a Corbino disk on the (001) surface. The magnetic field was applied by
a pulse field at the National Magnetic Field Laboratory at Los Alamos up to 93 T at 1.4 K.
The negative magnetoresistance above 80 T is believed to be the surface-to-bulk crossover
behavior at high fields. Figure courtesy of S. Wolgast.

angle. Third, by analyzing the damping of the oscillation amplitude, the scattering time

and effective mass, and hence the mobility can be found. Lastly, in the Landau level index

vs. inverse magnetic field plot (Landau fan diagram), if the linear connection of the Landau

indices is extrapolated to the infinite magnetic field limit (1/B → 0), the Berry phase can be

found from the intercept. This Berry phase can be used to verify that the energy dispersion

is Dirac-like. However, quantum oscillations in transport has not been observed to date.

In 2013, in collaboration with L. Li’s group, we tried to observe SdH while sweeping the

magnetic field up to 45 T [60]. Later in 2015, from a study from our group, Wolgast et al.

subsequently studied with a pulsed field magnet even up to 93 T, as shown in Fig. (3.1), and

still failed to observe SdH oscillations.

Five years have passed since the two seminal reports by S. Wolgast et al. and D. J. Kim

et al., and many experimental reports on SmB6 have been published. Many of the reports are

exciting, but the situation, in whole, is problematic because many of them do not agree with

each other. Unlike SdH oscillations, dHvA quantum oscillations have been observed, with an

oscillation onset of ∼5 T, by G. Li et al. (L. Li’s group), using a magneto-torque technique

[60]. In this dHvA report, they see signatures of the 2D Fermi surface that is consistent with

the 3D TI picture: the field-angle-dependence of the oscillation frequency has an inverse

cosine angle dependence, three Fermi-pockets, and a half integer from the extrapolation of

the Landau fan diagram to the infinite magnetic field limit. This is an exciting result in that
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it verifies the 3D TI picture. However, it raises a mystery why quantum oscillations from

magneto-torque (dHvA) can be seen, whereas quantum oscillations from magnetotransport

(SdH) cannot. The reason for SdH and dHvA to exhibit quantum oscillations is because

both conductivity and magnetization are both functions of the density of states that become

quantized by Landau levels at high magnetic fields. Therefore, in principle, they should

not be fundamentally different. Furthermore, about two years after the dHvA quantum

oscillation report by G. Li et al. [60], the 2D Fermi surface picture has been challenged

by Tan et al. [61] from the University of Cambridge. This group studied magnetization

on two SmB6 samples that were grown by the floating zone method, and they report that

their dHvA quantum oscillations come from an exotic bulk state instead of the surface.

First, Tan et al. observe quantum oscillations with a field-angle-dependence that does not

follow an inverse-cosine-angle behavior, but rather more of a bulk Fermi surface behavior. In

addition to the similar low-frequency oscillations that G. Li et al. observed, they observe high-

frequency oscillations that G. Li et al. did not report. The Landau fan diagram extrapolates

to an integer, which implies that the frequencies are not from a topological origin. Most

surprisingly, they observe a temperature dependence that deviates from the typical Lifshitz-

Kosevich damping factor. They also claim the high-frequency quantum oscillations cannot

be coming from the surface based on the amplitude of their dHvA oscillations. They further

supported this claim by looking at two samples with different crystalline surfaces.

In addition to transport and magneto-torque measurements, a large number of other

experimental studies has been reported in this material system. Among these, recent high-

resolution Angle-Resolved Photoemission Spectroscopy (ARPES) measurements have pro-

vided invaluable information about both bulk and surface states of SmB6 [62–67]. From

some of the studies, the three Fermi pockets that contribute to the surface states have been

observed [64–66]. Even the helical spin structure, which is a unique surface TI property,

has been claimed to be observed [67]. However, there are also some other ARPES reports

that claim that the surface is from a trivial origin, and not from a topologically nontrivial

origin [68,69].

Returning to electrical transport, when we look at the 2D reports that are performed by

many groups on SmB6, we see a large variation of the quantitative values related to the 2D

surface (2D resistance, carrier density, and mobility). This chapter is about understanding

the reason for this large variation, and then finding the correct values (or the correct ranges).

Only after finding the correct values, we can compare with other experimental reports such

as ARPES and dHvA.

Because SdH oscillations cannot be observed in magnetotransport, researchers rely on

the classical (Drude) transport to characterize the 2DEG of the SmB6 surface. In principle,
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the properties of the surface can still be found. For the early reports that used conventional

transport methods, the large variation may be due to the following reasons. First, current

flows on every surface (top, bottom, side surfaces, and even the edges) and an order-of-

magnitude incorrect estimate of the sheet resistance can easily be made if the details of the

surface geometry are not known accurately. It will be shown later in this chapter that even

the simplest task of accurately measuring the 2D conductivity of this material turns out

to be challenging. The sheet resistance is typically extracted from four-terminal resistance

measurements performed on a Hall bar or a van der Pauw sample. The measured resistance

and sheet resistance are proportional to a geometric factor (g) that is determined by the

geometry of the sample. Unlike bulk materials or thin film topological insulators, knowing g

is not a trivial task for SmB6 unless the geometry is simplified. Second, the magnetoresistance

can play a complicated role in a 3D TI surface. In addition to the complication of the current

path, the complication from magnetoresistance can arise because the carriers on different

surfaces experience a different Lorentz force. If the direction of the applied magnetic field is

perpendicular to the top and bottom surface (out-of-plane direction), at the same time, this

field direction is parallel to the side surfaces (in-plane direction). Also, a theoretical report

discusses the possibility of electrons and hole pockets both existing on the surface Brillouin

zone [70]. This raises the possibility that the Hall coefficient can further overestimate the

carrier density when the species are not identified correctly. Therefore, we must choose a

transport geometry that is free from these complications.

To this end, we study magnetotransport on a Corbino disk fabricated on a SmB6 surface.

The Corbino disk allows us to confine the transport region to a single surface, and the sheet

resistance can be found easily since g, which converts from resistance to sheet resistance, is

well-known. By applying the magnetic field, the Corbino disk is immune to the sign of the

carriers and the mobility and carrier density can be found.

Throughout years of studies, we find another possibility that can complicate the surface

transport study. We find that subsurface cracks can also conduct as well as the exposed

crystalline surface of SmB6. This implies that surface preparation such as thinning and

polishing is extremely important. For example, rough polishing can create subsurface cracks

and change g. Similarly, it is also possible that even small grain boundaries on the surface

can serve as extra conducting paths, and can further change g. After noticing the subsurface

crack conduction possibility, we carefully screened and prepared our surfaces to minimize

the effect of these cracks, and re-investigated our magnetotransport studies.

From our results, we find the carrier density and mobility of the surface, but we do

not have enough resolution to distinguish the contribution from each of the Fermi pockets.

Instead, from our effective carrier density and mobility, we construct a transport parameter
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Figure 3.2: Incorrect transport geometries for measuring SmB6. (a) Hall bar measurement on
a polished SmB6 sample with indium contacts. Reprinted figure with permission from [40],
and also additional kind permission from the first author. Copyright (2013) by the American
Physical Society. (b) Standard four-prong measurement on a raw disordered SmB6 sample
(9 % Sm-deficient). (c) Resistance vs. temperature measurement of the sample shown in (b).

space where each of those channels can be located. This parameter space allows us to

compare with not only other transport reports but also with dHvA and ARPES reports.

Our results are consistent with only the ARPES reports of the X-pocket.

3.2 Choosing the Improper Transport Geometry (Early

Attempts)

In this section, we present some examples of our early transport experiments. In retro-

spect, the sheet resistance, surface carrier density, and mobility are wrong values. Neverthe-

less, we present them here because they provide a good lesson to understand how important

it is to design the experiment properly.

Soon after the non-local transport was performed and the existence of the conducting

surface was verified, Wolgast et al. performed magnetic field studies on a Hall bar sample,

as shown in Fig. (3.2) (a). The sheet resistance was estimated as 9.1 Ω, and Hall coefficient

is in the ∼10 – 4 Ω/T [40] range. A conversion to surface carrier density from this Hall

coefficient results in the range of 1018 cm−2. This is a very large carrier density that easily

exceeds the highest known carrier densities of the 2DEG/thin film systems. For example,

the oxide interface systems such as GdTiO3/SrTiO3 [71], which is known to have very high

38



carrier density, are reported in the low 1014 cm−2 range. We later show that this high carrier

density estimation is not physical when we consider the area of the Brillouin zone.

Another instructive example that is shown in Fig. (3.2) (b) is the standard four-prong

geometry, which many researchers use in their transport experiments. The resistance is

typically measured by sending current from the two leads at the ends and measuring the

voltage difference between the two leads. This is a standard method for bulk studies. When

researchers perform use this method, since the geometric factor is complicated unless the

sample is polished into a perfect slab shape, they avoid converting their resistance data to

resistivity. Instead, they estimate the resistance ratio, which is the ratio of the resistivity

at some temperature to the resistivity at room temperature. By taking the ratio of the

resistances at the temperature and at 300 K, the geometric factor (g) is not involved, and

therefore this ratio is the same as the resistivity ratio (R(T )/R(300K) = ρ(T )/ ρ(300 K)).

However, this does not work when a material allows the current to flow on the surface as well

as the bulk. For SmB6, the g at 300 K and temperatures below 3 – 4 K are not the same.

For 300 K, the g is related to the bulk geometry, whereas at 0 K, g is related to the surface

geometry. For the sample shown in Fig. (3.2) (b), the resistance vs. temperature is shown

in Fig. (3.2) (c). Although we now know that the resistance plateau at temperatures below

4 K is from the surface, we do not know the geometric factor for converting the resistance

to sheet resistance. Therefore, we must choose a simple transport geometry that allows us

to easily predict how the current flows. In the following section, we introduce the Corbino

disk geometry, which is eventually used for measuring the surface properties of SmB6.

3.3 Choosing the Proper Geometry: Corbino Disk

In this section, we first introduce the Corbino disk geometry, including its magnetotrans-

port, which we used in our SmB6 transport studies. We then discuss our measurement, and

how we interpret our data to find the surface carrier density and mobility.

To correctly find the geometric factor (g) of the transport geometries that are shown

in Fig. (3.2) (a) and Fig. (3.2) (b), we must know where and how much the current flows

through each surface. This can be difficult because every surface of SmB6 conducts, including

the top, bottom, side surfaces, and even the edges. To interpret the resistance to the sheet

resistance easily, we must choose a simpler geometry. If we can confine the current path to

flow on a single surface, we can ignore the surfaces where current does not flow. To this

end, we choose a Corbino disk geometry, as shown in Fig. (3.3) (a) and Fig. (3.3) (b). The

pattern is shaped by a highly conductive metal on the surface. We used gold in our studies.

This metal can be used as terminals, and the current on the sample surface flows radially
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Figure 3.3: Corbino disk(s) for surface SmB6 studies. (a) Picture of two Corbino disks
fabricated on a polished SmB6 (001) crystalline surface. (b) Top and Side view of the
Corbino disk with the electrical configuration. The yellow indicates the highly conductive
metal (gold) and the gray indicates the sample. The red arrow indicates the magnetic field
direction applied to the sample. In preparation for submission to a journal.

only on the annular region where the sample surface is exposed. In this case, when there is

only surface conduction, the measured resistance (RCorbino) and the surface sheet resistance,

R�, have the following relation (also derived in Chapter 2):

RCorbino =
1

2π
ln(rout/rin)R�, (3.1)

Currently, our carefully prepared samples measured by a Corbino disk geometry result

in a sheet resistance in the range of 2– 3 kΩ, consistently. Comparing to the early sheet

resistance estimation from the Hall bar geometry, as shown in Fig. (3.2) (a), this is more

than two orders of magnitude higher. In addition to choosing a geometry that confines the

surface current path to properly convert the resistance to sheet resistance, surface polishing

must also be carefully prepared. We show later in this chapter that hidden cracks in the

subsurface region and domains in polycrystals can also conduct, and therefore must be

eliminated (Sec. 3.4). In the presence of magnetic field that is in the out-of-plane direction

to the surface, the carriers on the surface experience a Lorentz force, and the radial trajectory

of the current (or carriers) deflect to form a spiral path in the annular region of the Corbino

disk. This effect to the sheet resistance can be derived by the classical Drude picture, and
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the result is (also derived in Chapter 2):

R�(B) = (1 + µ2B2)/neµ, (3.2)

where µ is the mobility of the surface, n is the carrier density of the surface, and B is the

applied magnetic field in the out-of-plane direction. When the magnetic field is tilted to an

angle of θ about the out-of-plane direction, only a projection of the surface contributes to the

Lorentz force on the carriers. Then, B is replaced to B cos θ (where B is the total magnitude

of the applied magnetic field), and therefore RCorbino ∝ (1 + µ2B2 cos θ2). Therefore, in

a 2DEG, the resistance would change quadratically with the out-of-plane component of

the magnetic field. If the magnetic field is in the in-plane direction, the resistance does

not change. Also, when the magnetic field direction is changed at a fixed magnitude, the

resistance is expected to follow a cosine square behavior.

Our magnetotransport measurement of SmB6 employing a Corbino disk on the (001)

surface is shown in Fig. (3.4) (a). The temperature is at 0.35 K, and the magnetic field is

swept up to 34.5 T while the sample is fixed at certain angles. The trace at the out-of-plane

direction (0-degree angle, shown in a black line) deviates from a quadratic behavior. Also, the

in-plane direction (90-degree angle, shown in green line), does not show a constant line that

is predicted by the Drude model, but rather shows a negative magnetoresistance. However,

when dividing the resistances by the in-plane magnetic field resistance (R(θ)/R(θ = 90◦)),

the ratio shows a good agreement with the quadratic dependence, as shown in Fig. (3.4) (b).

When rotating the angle of the sample while the magnetic field is fixed, the data follows

the cosine square behavior, as shown in Fig. (3.4) (c). Fig. (3.4) (b) and Fig. (3.4) (c) show

that the surface carriers are still experiencing the Lorentz force in two dimensions. However,

from Fig. (3.4) (a), this implies that the surface is an unusual 2DEG in that the carrier

density and mobility changes as the magnetic field increases [72]. Fitting a quadratic fit to

Fig. (3.4) (b) results in a mobility of 104.5 (cm2/V·sec) and the carrier density of 2.71×1013

(1/cm2). From cosine square fits of Fig. (3.4) (c), the carrier density changes by about 10

%, and the mobility changes by about 3 %. We note that this is our most carefully prepared

sample. Two years ago before this measurement shown in Fig. (3.4), we found a larger

carrier density and a smaller mobility [72]. Along the journey of characterizing the surface

transport of SmB6, we later found that subsurface cracks that can exist beneath the surface

can contribute to surface conduction, and therefore the sheet resistance and mobility can be

estimated incorrectly. We discuss about this issue in the following section.
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Figure 3.4: Surface magnetotransport results of the Corbino disk on SmB6. The temperature
is at 0.35 K, and the field is raised up to 34.5 T. (a) Sheet resistance vs. magnetic field at
different angles of the surface respect to the field direction. (b) Resistance ratio (resistance
divided by the resistance at θ = 90 degrees) vs. magnetic field. (b) Resistance ratio vs. angle.
In preparation for submission to a journal.
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3.4 Conduction through Subsurface Cracks and Do-

main Boundaries

Within the SmB6 community, there is a widespread perception that the surface sheet

resistance estimated from the resistance plateau below ∼3 – 4 K varies from sample to

sample. Of course, depending on the crystal growth, the leading order of defects can be

different from one sample to another, and some samples can even be non-stoichiometric.

While studying surface transport on multiple samples, we found a tendency that is even

more disturbing. Sample surfaces that were prepared with rougher polishing tend to result

in lower resistance plateau values than the ones that were more finely polished. In typical

materials, we would expect the opposite. If the surface is rough, the surface roughness

can contribute to extra scattering. Because this scattering will contribute to lowering the

mobility, the resistance is expected to be higher.

We hypothesized in this study that subsurface cracks that are created by rough polishing

can serve as additional surface conduction paths. If SmB6 is truly a 3D TI, then since

subsurface cracks are termination of the bulk, they must also be topologically protected

surfaces. This hypothesis is consistent with the resistance plateau value trend that we

observed for different polishing qualities because, in semiconductors, it is well known that

rougher polishing creates subsurface cracks with larger length scales [74, 75].

To test the hypothesis that subsurface cracks contribute to surface conduction, we pre-

pared an SmB6 sample with two Corbino disks fabricated on a fine polished surface. The

resistance vs. temperature was measured below ∼4.5 K, before and after the active re-

gion (annular ring) of one of the Corbino disk was scratched with a scriber, as shown in

Fig. (3.5) (a). As shown in Fig. (3.5) (b), while the plateau resistance of the unscratched

Corbino disk remains almost identical within a few percent, the plateau resistance of the

scratched Corbino disk further lowered from 140 Ω to 110 Ω. After the second scratch, the

resistance further lowers to 60 Ω. Indeed, the surface roughness increases after scratching

the surface, but the resistance does not become higher, it rather becomes lower, consistent

with our hypothesis that subsurface cracks conduct.

We further investigated if a scratched surface indeed harbors subsurface cracks. An

ion-beam milling was performed on the scratched surface. The ion-milled wall profile is

shown in Fig. (3.5) (c) through a SEM image. We indeed observed subsurface cracks that

are several microns long and up to 100 nm wide. Normally, we would expect that the

polishing grit particles would introduce a stress to the surface, and therefore create subsurface

cracks. The length scales of these subsurface cracks would scale with the size of the grit

particles. Therefore, the sample must be polished with the finest possible grit size and
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thinned sufficiently to eliminate the subsurface cracks that are created from the rougher

polishing grit introduced in the previous polishing step.

Next, we consider surfaces that are as-grown. In most of the crystals that we receive from

the crystal growers with whom we collaborate, the area of the as-grown crystalline surfaces

is too small to fit a Corbino disk pattern, and therefore the samples have to be thinned until

a large enough surface is obtained. However, if thinning and polishing can potentially create

cracks, a single crystal that begins with a large enough surface is desirable. We were fortunate

to obtain a single crystal that had a large enough area to fabricate a Corbino disk, as shown in

Fig. (3.6) (a). In comparison, we also fabricated a Corbino disk on a polycrystalline sample.

The surface of this sample is large enough to fit a Corbino disk pattern but consists of many

domains. Both samples did not undergo any thinning or polishing treatments. The samples

were only cleaned in dilute HCl before and after the lithography process. We measured

both the resistance vs. temperature using the standard Corbino disk measurement (shown

in Fig. (3.3) (b)). The results are shown in Fig. (3.6) (c). The resistance curve of the single

crystalline surface is shown in a blue line, and the polycrystalline surface is shown in the

red line. The single crystal shows a resistance plateau of ∼260 Ω, which the corresponding

sheet resistance is 2.3 kΩ. This value is consistent with the measurement of the sample that

was most carefully polished, presented in the previous section (Sec. 3.3). On the other hand,

the resistance plateau value of the polycrystalline sample is only 3.2 Ω. We believe that

the domain boundaries serve as conduction paths, similar to that of the conduction through

subsurface cracks.

In conclusion, we believe the true sheet resistance of the SmB6 is 2 - 3 kΩ when the

sample is free from cracks or domains. This is consistent with the minimum sheet resistance

of 1kΩ for the surface to exist, according to the AC conductivity report from N. Laurita et

al [76].

In this section, we have emphasized through the set of our experimental demonstrations

that the surface of SmB6 must be carefully prepared. To obtain the desired transport geom-

etry, a widespread practice is thinning and polishing the crystal. However, we have shown

that since SmB6 is a surface conductor, particularly if the conducting surface is topologically

protected from a true 3D TI, then subsurface cracks and even domain boundaries are ter-

mination regions of the bulk, and can provide extra conduction. After measuring multiple

samples over several years, we consistently see a sheet resistance of 2 – 3 kΩ for carefully pre-

pared surfaces. In the following section, we explain how the magnetotransport is influenced

by the surface preparation. Also, we provide a summary of how our understanding of the

transport parameters (sheet resistance, surface carrier density, and mobility) has evolved.
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Figure 3.5: Conduction through subsurface cracks. (a) Picture of the scratched Corbino
disk sample. The scratched parts are indicated in red arrows. (b) The resistance change
after scratching the sample. (c) SEM picture of subsurface cracks after ion-milling a section
beneath the scratched region [73]. In preparation for submission to a journal.

Figure 3.6: Comparison of resistance vs. temperature of a Corbino disk on unpolished single
crystal vs. polycrystal. (a) Corbino disk on a clean single crystal surface in the (001) di-
rection. (b) Corbino disk on a clean polycrystal surface with many domain boundaries. (c)
Resistance vs. temperature of the two samples. The blue curve is measured from sample (a),
and the red curve is measured from sample (b). In preparation for submission to a journal.
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3.5 Evolution of our Understanding of the Surface Trans-

port Parameters

In this section, we explain how the magnetotransport of a Corbino disk on a SmB6

surface becomes influenced by the existence of subsurface cracks. This is important because

the carrier density and mobility is found by magnetotransport. Throughout our several years

of study of surface transport on SmB6, our understanding of the transport parameters (sheet

resistance, surface carrier density, and mobility) have evolved by first changing from the Hall

bar geometry to the Corbino disk geometry, and then preparing the samples carefully without

subsurface cracks. We will summarize at the end how our estimated transport parameters

have changed.

As an instructive example, we consider two of our magnetotransport results that were

taken before and after we were aware of subsurface crack conduction. In 2013, when we were

not aware of subsurface crack conduction, the Corbino disk sample was prepared by final

polishing with a SiC polishing pad with an average grit size of 2.5 µm [40]. In 2015, the

Corbino disk sample was prepared by final polishing with an Al2O3 oxide with a particle size

of 0.3 µm.

The resistance vs. magnetic field, fixed at different angles, is shown in Fig. (3.7). The

2015 data is identical to the result shown in Fig. (3.4). The extraction through fitting of

this data results in mobility of 104.5 cm2/(V·sec) and the carrier density of 2.71×1013 cm−2.

Comparing to the 2015 experiment, the measurement taken in 2013 shows a smaller sheet

resistance at zero magnetic field. This is consistent with the subsurface cracks existing in

the samples that are not prepared carefully enough. In addition, the 2013 data set shows a

weaker angle dependence. If we assume that the subsurface cracks are randomly oriented,

the carriers in the subsurface cracks will feel a weaker Lorentz force on average than the

surface carriers on the crystalline surface. This will effectively weaken the angle dependence

of resistance at magnetic fields. The weaker angle dependence results in a smaller estimation

of mobility, which is 61 cm2/(V·sec), and because the sheet resistivity is smaller, a larger

carrier density is estimated, which is 2×1014 cm−2.

We summarize in Table (3.1) how our transport parameter estimations have evolved.

From Hall bar geometry to the Corbino disk geometry, and then further carefully preparing

the surface, our estimation of transport-related values has changed. The sheet resistance

and mobility became higher, and carrier density became lower. Although our most recent

mobility estimation is higher than what we had originally estimated, this value is small

compared to high-quality 2DEG systems. We believe this is why SdH oscillations are not

yet observed. Just by relying on classical magnetotransport analysis, we did not observe
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Figure 3.7: Comparing magnetotransport of Corbino disk on a (001) surface of SmB6 from
2013 [72] and 2015. The temperature is at 0.35 K, and the magnetic field is swept while the
angle of the magnetic field is kept fixed. In preparation for submission to a journal.
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Figure 3.8: (001) surface of SmB6. (a) The three Fermi pockets of the BZ on the (001)
surface. The solid red lines indicate the X-pockets, and the solid black line indicates the
Γ-pocket. The dotted lines indicate how the Fermi surfaces deform if the electric field is
applied in the kx-direction. (b) The surface transport parameter space of SmB6 in the (001)
direction. The gray area (region I and II) are the forbidden regions where the parameters
cannot exist. The dotted line indicates the mobility of 1/(93 T). In region III, it is shown in
a gradient color, and the darker area indicates that the transport parameters would be less
likely to exist at higher mobilities. In preparation for submission to a journal.

clear signatures of the existence of multiple channels from magnetotransport in contrast to

other experimental reports such as ARPES and dHvA that report on multiple pockets. In

the following section, we discuss why our magnetotransport does not show signatures of

multiple channels based on the low mobility of the surface carriers.

Year Geometry R� (Ω) n2D (cm−2) µ2D (cm2/V·sec)

2012 Hall bar [40] 9.1 1.0×1018 6.90×10−1

2013 Corbino Disk [72] 570 2.0×1014 6.1×10
2015 Corbino Disk (in prep.) 2200 2.71×1013 1.05×102

Table 3.1: Surface transport parameter estimation from measurements at different years.
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3.6 Constructing the Transport Parameter Space of

Each Channel

The 3D topological Kondo insulator theory predicts that three surface Fermi pockets

exist, each surrounding a high symmetry point in the Brillouin zone (BZ) [70, 77]. In par-

ticular, on the (001) crystal surface, theory predicts that one of the Fermi pockets should

surround the Γ-point (or Γ-pocket in short), and the other two should surround the X-point

(or X-pocket in short), as shown in solid red in Fig. (3.8) (a). If SdH oscillations are ob-

served, the verification of each pocket would have been possible. As mentioned previously,

SdH was not observed up to 93 T, and therefore our analysis is based on classical transport.

The quadratic fit of R(B)/R// at a fixed angle and a cosine square fit of R(θ)/R// at a fixed

magnetic field relying on Eq. (3.2) assumes that only a single channel (or Fermi pocket)

exists in the BZ.

In our magnetotransport results shown in Fig. (3.4), the reason we were not able to

observe distinct signatures of multiple channels can be explained if the mobilities of each

channel are small. Being consistent with the picture of Fig. (3.8) (a), if an electric field is

applied in the +kx direction in the BZ, the Fermi surfaces will change such as the dotted

lines. We can treat each pocket with the relaxation-time approximation in the Boltzmann

equation, as introduced in Chapter 2. We simplify the case that the top and bottom X-

pockets contribute equally as the left and right X-pockets by assuming that the associated

scattering time does not depend on the direction of crystal momentum. Then the total

conductivity (σt) corresponding to two channels, σΓ and σ2X , add together as the total

conductivity:

σt = σΓ + σ2X . (3.3)

Furthermore, when a magnetic field is applied, we assume the carrier density and mobility

that we find from experiment is an effective parameter (neff and µeff) from the two pockets,

i.e., σt = neffeµeff . The magnetoconductivity can also be expressed in terms of the transport

parameters of the two pockets:

neffeµeff

1 + µ2
effB

2 cos2 θ
=

nΓeµΓ

1 + µ2
ΓB

2 cos2 θ
+

n2Xeµ2X

1 + µ2
2XB

2 cos2 θ
, (3.4)

where nΓ (n2X) is the surface carrier density of the Γ-pocket (two X-pockets), and µΓ (µ2X)

is the mobility of the Γ-pocket (two X-pockets). R(B)/R// at a fixed angle or R(θ)/R// at a

fixed magnetic field would be inversely proportional to Eq. (3.4). The inverse of Eq. (3.4)
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can be expanded in a series, and dividing by R// (= 1/σt) is:

R(B, θ)

R//
= 1 + µ2

effB
2 cos2 θ + (

σΓ

σt
− (

σΓ

σt
)2)(µ2

Γ − µ2
2X)2B4 cos4 θ + · · · , (3.5)

where,

µeff =

√
(µ2

Γ − µ2
2X)(

σΓ

σt
) + µ2

2X . (3.6)

From Eq. (3.5), we can see that as long as any of the mobilities (µΓ and µ2X) from the

channels are much smaller than 1/B, the third order term or higher in Eq. (3.5) will be

overwhelmed by the second order term, and Eq. (3.5) will be indistinguishable from the

magnetotransport for the single channel equation, Eq. (3.2). Therefore, we will not be able

to tell if there are two channels from magnetotransport. Also, Eq. (3.6) is the effective

mobility from fitting our data. Furthermore, the effective carrier density is:

neff =
σt
eµeff

=
(nΓµΓ + n2Xµ2X)3/2

(nΓµ3
Γ + n2Xµ3

2X)1/2
. (3.7)

We have so far explained why our magnetotransport of a Corbino disk fails to resolve

signatures of multiple pockets. In the following subsections, we will show that the transport

parameters from each pocket can only be existing in a constrained space. Furthermore,

together with our (effective) surface carrier density and mobility results, we will further

corner the range (or area) of the parameter spaces, where each pocket should exist. This

result will be used to compare with other experimental reports.

3.6.1 Forbidden Parameter Space

In a 2D transport, there are two fundamental limits that constrain the parameter space.

First, the size of the Fermi pocket cannot be larger than the defined surface Brillouin zone of

the material. When a periodic boundary condition (Born-von Karman) is chosen to describe

the system of interest in quantum mechanics, there is a relation of occupied area (or volume)

in k-space to the associated density of particles (carriers). In a two-dimensional system, this

relation is:

n2D =
s

(2π)2
AFS, (3.8)

where AFS is the area of the Fermi pocket, and s is the spin degeneracy (s = 2 for typical

materials, s = 1 when the spin degeneracy is split). The maximum allowed surface carrier

density is then, of course, related to the total area of the BZ. The maximum carrier density

allowed on the (100) surface of SmB6 is nmax = 5.86×1014 cm−2 when there is no spin
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degeneracy (in a true 3D TI case). Therefore, any carrier density larger than this value

is forbidden. In Fig. (3.8) (b), the surface transport parameter space, which we plot the

mobility and surface carrier density in a log-log graph, this forbidden region indicated as

region I, shaded in gray color.

Next, in 2D transport, it is well known that a system undergoes a metal-to-insulator

transition when R� becomes larger than the quantum of resistance, h/e2 (Ioffe-Regel crite-

rion). Therefore, R� larger than the quantum of resistance must be forbidden. The diagonal

line in Fig. (3.8) (b) represents R� = h/e2 (or quantum conductivity: σs = e2/h), and region

II, the gray shaded region that is below the diagonal line is the forbidden region.

The absence of SdH oscillation up to 93 T, as shown in Fig. (3.1), also provides a con-

straint to the pockets in the parameter space. First, we revisit the Lifshitz-Kosevich (LK)

formalism very briefly. The conductivity oscillates with a damping factor that is related to

the scattering of the carriers. This is the Dingle damping factor (DD), and it is related to

the mobility. The Dingle damping factor is:

DD = exp(− π

µQB
), (3.9)

where µQ = eτQ/m
∗ is the quantum mobility. In the semi-classical approach, τ is estimated

by the Fermi-golden rule where the scattering potential is multiplied by an extra factor,

(1 − cos θ), so that it does not include the forward scattering [78, 79]. This factor is not

included in the τQ (quantum scattering time) in quantum oscillations and can differ from

τ found from our classical (or semiclassical) transport approach. We will re-visit the LK

formalism when comparing our transport to the dHvA results [60].

From the dingle factor (DD), we see that the onset of quantum oscillations would be

at higher magnetic fields if the mobility of the carrier is lower. Of course, the exact onset

magnetic field estimation would depend on the sensitivity of the measurement, how we model

the broadening of the Landau levels due to disorder, and the prefactor of the quantum

scattering time, etc. A crude estimate of the onset of quantum oscillations is when µB ≈ 1,

or B ≈ 1/µ. Therefore, the absence of SdH up to 93 T, which is the highest magnetic field

ever applied on the SmB6 (001) surface, tells us that the magnetic field requirement for the

onset of SdH oscillations must be higher, and therefore the mobility would be in the vicinity

of 1/(93 T) or less. In Fig. (3.8) (b), the mobility of 1/(93 T) is shown as a horizontal dotted

line, and the area above is indicated in region III. The transport parameters would be less

likely to exist at a higher mobility, although strictly not forbidden. To graphically show this

in the figure, region III is shown in a gradient color that becomes darker at higher mobility

ranges.
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Figure 3.9: The surface transport parameter space of SmB6 on the (001) surface. In prepa-
ration for submission to a journal.

Excluding the regions of I and II, and since the high mobility far above 1/(93 T) is less

likely, the Fermi pockets must be in or near the white triangular region in Fig. (3.8) (b).

Next, we continue with the effective mobility and carrier density found from our Corbino

disk magnetotransport, we constrain the parameter space regions where each pocket can be

allowed.

3.6.2 Cornering the Transport Parameter Space Region for Each

Pockets from Corbino Magnetotransport

In this subsection, we construct a parameter space region where each channel (Γ and

2X) can be located in the (001) surface from our magnetotransport result. The magneto-

transport result of surface carrier density and mobility (neff = 2.71×1013 cm−2 and µeff =

104.5 cm2/(V·s)) from the Corbino disk is shown in the transport parameter space as a black

triangular symbol in Fig. (3.9). If we assume that our magnetotransport is a result of two

channels, we use Eq. (3.3):

σt = σt = neffeµeff = σΓ + σ2X . (3.10)
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In the transport parameter space, carrier density and mobility pair of each channel should

be represented as a point. The corresponding conductivities of each two points must add up

and result in the conductivity corresponding to the triangular point (effective parameters).

The two points that represent the transport of each channel is somewhere in the triangular

region of Fig. (3.8) (b) or the allowed parameter space. Also, to be consistent with Eq. (3.3)

– Eq. (3.7), one of the mobilities must be larger while the other mobility must be smaller

than µeff (detailed justification is in Appendix A). Then, the allowed parameter space of

the channel with the small carrier density (Γ-pocket), and the channel with the large carrier

density (2X-pocket) should be in the regions that are indicated in Fig. (3.9). Although

we cannot specify the exact carrier density and mobility values, the small carrier density

channel must be in region Γ, and the large carrier density channel must be in region 2X.

In the following section, we compare our constructed parameter space to other experimental

reports such as Hall, dHvA, and ARPES.

3.7 Comparison with other Experiments

In this section, we compare our constructed transport parameter space from the previous

section to other experimental reports on the SmB6 (001) surface.

Before we compare our transport parameters space to other experiments, we must know

how to estimate the carrier density and mobility from non-transport experiments. In the

following subsections, we briefly review how.

3.7.1 Quantum Oscillation (dHvA) Interpretation

When the area of the Fermi surface in the BZ has a size of AFS, the associated frequency

of quantum oscillations, F , follow the Onsager relation:

F (T ) =
~

2πe
AFS. (3.11)

Also, since the carrier density (n) and AFS are related (Eq. (3.8)), the relation between n

and F can be found as:

n2D = s
e

h
F (T ), (3.12)

where s is the spin degeneracy (s = 2 for typical materials, s = 1 when the spin degeneracy

is split).

According to the LK formula, the amplitude of the oscillations is damped by two factors.

The temperature damping factor (DT ), and the Dingle damping factor (DD), which was
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introduced previously (Eq. (3.9)). The two damping factors are given by:

DD = exp(− π

µQB
), (3.13)

DT =
2π2(kBT/~ωc)

sinh(2π2(kBT/~ωc))
, (3.14)

where ωc (=eB/m∗) is the cyclotron frequency. From the temperature dependence of the

amplitude of quantum oscillations, the effective mass, m∗, can be found. From the magnetic

field dependence of the amplitude at a fixed temperature, the dingle damping factor (DD)

can be used to find µQ.

3.7.2 ARPES Interpretation

In ARPES, the momentum and energy resolved intensity data (I(k, ω)) is measured and

is understood by the spectral density function, S(k, ω), associated with removal of electrons

from photons, with energy ω [80, 81]:

I(k, ω) = f(E)S(k, ω), (3.15)

where f(E) is the Fermi-Dirac distribution and S(k, ω) is given by:

S(k, ω) = − 1

π

Im(Σ)

[ω − E(k)− Re(Σ)]2 + Im(Σ)2
. (3.16)

where Σ is the self energy. Notice from Eq. (3.15) that I(k, ω) becomes weak above the

Fermi energy because of f(E). Also notice that when the photon energy approaches to,

ω → E(k)−Re(Σ), the magnitude of I(k, ω) enhances. Therefore, ARPES can measure the

energy dispersion below the Fermi energy and slightly above at finite temperatures, with the

momentum dependence. By resolving different momentum directions at the Fermi energy,

EF (k), the size(s) and shape(s) of the Fermi pocket(s) can be found. The size of the Fermi

pockets can be converted to carrier density from Eq. (3.8). From the slope or curvature of the

dispersion E(k) below the Fermi energy, the effective mass (m∗) can be found. Furthermore,

the spectral broadening is related to the momentum relaxation, and the associated scattering

time, τp, is:
1

τp
= −2Im(Σ). (3.17)

Therefore, the mobility can be found by µ = eτp/m
∗.

54



(b)(a)

Figure 3.10: Comparison of surface transport parameters of SmB6 on the (001) surface. (a)
Comparison in a large transport range. (b) Comparison near the cornered parameter space.
The triangular points are the transport reports. The square points are from the dHvA
quantum oscillation. The circular points are from the ARPES X-pockets. The arrow is the
carrier density estimation of the Γ-pocket from ARPES. In preparation for submission to a
journal.

3.7.3 Comparison Studies in the Parameter Space and Discussion

Now with these conversion relations that we have reviewed, we plot the reported trans-

port, ARPES, and dHvA studies on the (001) surface of SmB6 in the transport parameter

space, as shown in Fig. (3.10). We note that because it is too crowded to plot all of the

transport parameters in this figure, we also provide a table of the transport, as shown in

Table (3.2), and the table of APRES, as shown in Table (3.3), that also includes the data

points that are omitted in the graph. The transport reports, including our Corbino magneto-

transport, is shown in triangular symbols. The early Hall effect data shows very high surface

carrier density, which some of them even exceed the maximum carrier density associated with

the BZ area. The very large carrier density tendency of these data points is consistent with

our old estimation from the Hall geometry measurement. The dHvA quantum oscillations

by G. Li et al. [60] report two Fermi pockets that originate from the (001) surface, plotted

in hollow-square symbols. The dHvA results show the highest mobility and lowest carrier

density in the transport parameter space. We note that the mobility estimated from the

dHvA oscillations is the quantum mobility (µQ). Typically, µQ and µ differ slightly. Next,

the ARPES reports of the X-pockets are plotted in circular points. All the ARPES reports

that agree with the existence of the surface states, see a very large X-pocket. Among these

reports, two of them from J. Denlinger et al. [62], and N. Xu et al. [64] report the Im(Σ),
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and therefore the mobility of the X-pocket can be estimated. There are three groups who

report the existence of the Γ-pocket [64–66], but none of them have reported corresponding

Im(Σ). Since we can only estimate the surface carrier density from the area of the pocket,

we show one of the conversion from N. Xu et al. [64] as an (orange) arrow pointing to the

corresponding carrier density.

When we compare with our constructed parameter space that is shown in Fig. (3.9) to

the data sets shown in Fig. (3.10), only the ARPES reports from the X-pocket are within

the constructed parameter space (2X region). The dHvA reports do not agree with our

constructed parameter space because both carrier densities of the two pockets cannot have

higher mobilities than the effective mobility we find from magnetotransport(See Appendix

A for reasoning).

Finally we briefly mention the Cambridge results, although our study does not aim to

re-interpret the bulk origin claim to the surface. There has been a study that re-considers

the quantum oscillations from the Cambridge group by Tan et al. [61] as a surface origin

instead of a bulk origin [63]. The corresponding Fermi surface area of the high frequencies is

consistent with the X-pocket observed by ARPES. When comparing the Cambridge quantum

oscillations with our transport, the corresponding carrier density is also consistent with the

2X parameter space that we constructed. However, the associated mobility for the onset of

those high-frequency quantum oscillations is far too high to be consistent with our transport

parameter space and the ARPES reports.

Report Geometry n2D (cm−2) µ2D(cm2/V·sec)

Y.S. Eo et al. (2015) (in prep.) Corbino 2.71×1013 104.5
S. Wolgast et al. (2013) [72] Corbino 2.0×1014 6.1×10

P. Syers et al.(2015) [82] Corbino 1.0×1018 6.8×103

S. Thomas et al. (2013) [83] Hall* 2.0×1014 133
S.H. Lee et al. (2013) [84] Thin Film Hall 1.86×1016 4.27

S. Adhikari et al. (2015) [85] Hall 2.0×1018 9
J.W. Allen et al.(1979) [25] Hall* 1.34×1015 8.82

Table 3.2: Summary of the transport parameters from transport experiments. *The carrier
density and mobility are estimated naively by the Hall coefficient, thickness, and resistivity
without the exact geometry information

3.7.4 Estimation of Mobility of ARPES Fermi Pockets

In this subsection, by comparing our effective transport parameters from the Corbino

disk magnetotransport with the ARPES reports, we can further estimate what the mobility
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Report Pocket n2D (cm−2) µ2D(cm2/V·sec)

J. Denlinger et al. (2013) [62, 63] 2X 1.67×1014 13
N. Xu et al. (2013) [64] 2X 1.74×1014 15.2
N. Xu et al.(2013) [64] Γ 8.61×1012 N/A

J. Jiang et al. (2013) [65] 2X 1.92×1014 N/A
J. Jiang et al. (2013) [65] Γ 6.45×1012 N/A

M. Neupane et al. (2013) [66] 2X 3.01×1014 N/A
M. Neupane et al.(2013 [66]) Γ 9.39×1012 N/A

Table 3.3: The transport parameters estimated from ARPES.

value of each pocket should be. Here we review two equations, Eq. (3.3) and Eq. (3.4).

σt = σΓ + σ2X , (3.18)

Furthermore, when a magnetic field is applied, we assume the carrier density and mobilty

we find from experiment is an effective parameter (neff and µeff) from the two pockets, i.e.,

σt = neffeµeff . The magnetoconductivity is then:

neffeµeff

1 + µ2
effB

2 cos2 θ
=

nΓeµΓ

1 + µ2
ΓB

2 cos2 θ
+

n2Xeµ2X

1 + µ2
2XB

2 cos2 θ
. (3.19)

Here the known parameters are neff and µeff , where we use our magnetotransport results,

and nΓ and n2X from the ARPES reports in Table (3.3). Using the two equations above, we

can solve for µΓ and µ2X . We report the results in Table (3.4).

Our results predict that the µΓ to be in the ∼150 cm2/V·s range. A smaller Γ-pocket

area requires a larger µΓ to be consistent with our magnetotransport report.

Report µΓ (cm2/V·sec) µ2X(cm2/V·sec)

N. Xu et al. (2014) [64] 168.36 9.11
J. Jiang et al. (2013) [65] 148.73 4.78

M. Neupane et al.(2013) [66] 152.96 8.71

Table 3.4: Estimation of mobility of the Fermi pockets ARPES after comparing with the
Corbino magnetotransport.

3.8 Conclusion

In this chapter, we have studied the surface transport of SmB6 using high-field magneto-

transport at low temperatures. We have not been able to observe SdH quantum oscillations
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in our studies, and therefore we were not able to see signatures of multiple Fermi pockets.

To properly characterize the surface without SdH oscillations, we have discussed the im-

portance of employing the proper transport geometry and the surface preparation for the

surface transport studies. From our estimated carrier density and mobility, we were able to

corner the parameter space of the possible carrier density and mobility values of each Fermi

pocket (each channel). Our constructed parameter space is consistent with only the ARPES

X-pocket reports.
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Chapter 4

Inverted Resistance Measurement

4.1 Introduction

1In the previous chapter, we presented our surface transport studies of SmB6 at temper-

atures below 3 – 4 K (bulk-to-surface crossover temperature). We were able to study the

surface because the bulk was truly insulating. For a truly bulk insulator, the conductivity of

the bulk becomes smaller at lower temperatures because there are fewer thermally activated

carriers in the conduction band. At temperatures above 3 – 4 K, the current flows mostly

through the bulk because the bulk conductivity is much higher than the surface conductivity.

Below 3 – 4 K, this is no longer true, and the current flows mostly through the surface.

This truly insulating bulk is already fascinating, especially when it is compared to the

bulk of weakly correlated 3D TIs such as Bi1−xSbx, Bi2Se3, and Bi2Te3. In these 3D TIs,

the bulk conduction by unintentional impurities is large enough to overwhelm the surface

conduction at all temperature ranges. Therefore, surface studies of these materials are

commonly done on ultrathin films and rely on quantum oscillations.

Therefore we raise the question: Why is the bulk of SmB6 so immune to impurities and

disorder in the first place? In addition to this question, the truly insulating bulk behavior

itself needs to be investigated in more depth. There are many bulk studies on the thermally

activated bulk behavior of SmB6 above the crossover temperature, but not below. The

activation energy is reported in the range of 3 – 4 meV. However, it is not clear whether

this thermally activated bulk behavior will continue below this temperature. Measuring the

bulk property below the crossover temperature seems almost impossible because the current

flows mostly on the surface and almost no current flows through the bulk.

When there is a challenging experiment, sometimes a new method must be invented

1This work has been posted on ArXiv [86]. The author and his collaborators are preparing a manuscript
for submitting to a peer-reviewed journal that will contain contents in this chapter.
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first. To that end, we invented a new transport strategy, called the inverted resistance mea-

surement. This chapter is devoted to explaining our new invention of transport geometries

and measurement techniques that employ this inverted resistance measurement. An actual

demonstration and further bulk studies on SmB6 and its systematically-grown disordered

samples (SmB6 grown with less Sm) will be presented in the following chapters.

4.2 Resistivity Ratio and its Limitations

In the case of isotropic three-dimensional crystals, the conductivity can be found using

four-terminal resistance measurements. The measured resistance is inversely proportional

to the conductivity of the material with a prefactor that depends on the geometry of the

sample and the position of the contacts. Except for special cases such as a long wire or

a thin film, this geometric prefactor can only be determined by numerical calculations.

Researchers, especially in the correlated electron community, sometimes perform transport

measurements on raw crystals that have irregular shapes. Commonly they do not supplement

the transport measurements with numerical calculations needed to determine the geometric

prefactor because of the complicated details of the geometry. Instead, they report the bulk

resistivity normalized to the room temperature resistivity, ρ(T )/ρ(300K), because this can

be found easily by the measured resistance ratio, R(T )/R(300K). In most cases, the material

can be identified as either a conductor or an insulator by extrapolating ρ(T )/ρ(300K) to T

= 0 K. When the material under investigation is purely a bulk conductor, the reporting of

the resistance ratio is a useful practice. On the other hand, resistance ratios are meaningless

for a 3D TI when the material has both surface and bulk conduction.

Electrical characterization of 3D TIs is challenging, as they are expected to have both

bulk and surface conduction at finite temperatures. Resistance measurements from standard

transport geometries do not provide information about the fraction of current flow through

surface and bulk of the material. Furthermore, in situations where the surface conduc-

tion is significant, the bulk resistivity ratio, ρ(T )/ρ(300K), cannot be obtained from using

R(T )/R(300K) because the prefactor now also changes with temperature. Therefore, the

physics community should stop the practice of using resistance ratios in characterizing such

materials.

4.3 Formalism for Resistance

In this section, we introduce a general formalism for understanding resistance measure-

ments in an isotropic 3D material with both bulk and surface conduction, such as a 3D
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topological insulator. In this formalism, any four-terminal resistance can be expressed in a

suitable dimensionless function that depends on the ratio of the bulk and surface conduc-

tivities. We further consider this dimensionless function in two extreme regimes, σbl � σs

and σbl � σs, using a series expansion, where l is the characteristic length parameter. We

will propose a generic transport geometry with a four-terminal resistance configuration that

allows us to access the bulk conductivity even while the surface dominates the conduction.

4.3.1 Perturbative Approach of Scalable Resistance

In general, any resistance measurement, say R, of a 3D material is a function of the bulk

(σb) and surface conductivity (σs) for a given transport geometry, i.e., R = R(σb, σs). The

bulk and surface conductivity have different units of 1/(Ω · m) and 1/Ω, respectively. The

resistance can be rewritten in the following form:

R =
1

σs
f(x) and x =

σbl

σs
, (4.1)

where f(x) is a dimensionless function that depends on the current distribution for the trans-

port geometry, and l is some characteristic length that depends on the transport geometry.

The parameter, x, is also dimensionless, and it is defined by the ratio between σb and σs mul-

tiplied by l. Resistance is determined by the spatial dependence of the current or electrical

potential of the transport geometry. This spatial dependence is uniquely determined by the

boundaries, i.e., bulk/surface interface, and therefore the ratio between the surface and bulk

conductivity determines f(x). When x remains constant, R scales with either 1/σb or 1/σs.

In Eq. (4.1), we choose 1/σs so that the function f(x) becomes a dimensionless function.

We have now expressed the resistance in a form that depends on σs and x, instead of on

σb and σs. Expressing the resistance in the form of Eq. (4.1) is powerful when we consider

a 3D topological insulator in two extremes: the bulk-dominated regime (σbl � σs) and the

surface-dominated regime (σbl� σs). Both regimes can also be considered in the asymptotic

limits of the dimensionless function, f(x): the bulk-dominated regime can be studied in the

x→∞ limit, and the surface-dominated regime can be studied in the x→ 0 limit.

In the bulk-dominated regime, the case when current flows mostly in the bulk, we can

expand the function f(x) in powers of 1/x, f(x) = C−1(1/x) +C−2(1/x)2 + · · · , where C−1,

C−2, . . . are coefficients that depend on the geometry of the transport. The resistance is

therefore:

R =
C−1

σbl
+

C−2

(σbl)2
σs + · · · . (4.2)

The first order term in Eq. (4.2) only depends on the bulk properties, and this term usually
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Figure 4.1: Schematic diagram of a generic inverted resistance measurement. In such a
measurement, R1,2;3,4, current lead 2 must fully enclose lead 1, and the voltage leads must be
placed outside of the loop defined by lead 2. In preparation for submission to a journal [86].

overwhelms the higher order terms in resistance measurements of conventional transport

geometries. The higher order terms, which contain σs, are therefore difficult to measure.

In the surface-dominated regime, the case when the current flows mostly on the surface,

we can use the following asymptotic form f(x) = C0 + C1x+ C2x
2 + · · · , where C0, C1, C2,

. . . are coefficients. Thus, the resistance is:

R =
C0

σs
+
C1

σ2
s

σbl + · · · . (4.3)

In Eq. (4.3), the first order term depends only on surface properties, and this term usually

overwhelms the higher order terms in conventional transport measurements. Note that

the bulk conductivity only arises in higher order terms. Although measuring the higher

order terms is desirable for accessing the bulk conductivity, this is usually not possible in

conventional transport measurements since the first term dominates.

Note that both asymptotic equations, Eq. (4.2) and Eq. (4.3), fail to cover the range near

x ≈ 1, which is the bulk-to-surface crossover regime, where the bulk and surface conduction

are comparable. However, if the temperature dependence of σs is weak compared to σb, we

can make use of the standard two-channel model that experimentalists conventionally use to

cover this range. When the sample is sufficiently thin, the following relation holds for most

conventional resistance geometries: R ∝ 1/(σs + σbl). This relation is useful in connecting

the bulk and surface dominated regimes when extracting the bulk conductivity.
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4.3.2 Inverted Resistance Measurement

In this subsection, we introduce a new non-local transport measurement that is extremely

powerful for characterizing a 3D TI with a small bulk conductivity. The bulk conductivity

can be extracted in the surface-dominated regime, σbt� σs (for convenience we choose l = t,

t is thickness), by totally suppressing the first order term (surface term) in Eq. (4.3).

This new transport measurement configuration consists of two current leads, one fully

enclosing the other as shown in Fig. (4.1). Since the current contact 2 forms a closed loop,

it separates the surface into two regions: I and II. Terminal 1 is in region I, terminal 2 is on

the loop, and the other two terminals are in region II. We consider a resistance measurement

in this transport geometry as the following: while passing current between terminal 1 and

2, the voltage is measured between terminals 3 and 4 (i.e., R1,2;3,4 = V3,4/I1,2). This defines

the inverted resistance measurement.

Let us first consider what happens if we employ this geometry to characterize a two-

dimensional electron gas or a thin film. When we connect leads 1 and 2 to the current source

as shown in Fig. (4.1), current will flow only in region I. Here, the metallic loop (contact

2) would act like a two-dimensional Faraday cage blocking all the electric field from inside

and thus there would be no current flow or electric field in region II. If the voltage leads are

placed in region II, then V3,4 = 0. Because of this, such an inverted resistance measurement

is not useful as R1,2;3,4, would always be zero, regardless of the surface conductivity, and thus

cannot be used to characterize a two-dimensional electron gas or thin film.

Because lead 2 acts as a Faraday cage only for the surface, if one employs this inverted

resistance measurement on a bulk conductor, current will flow everywhere in the sample.

Thus, one would expect a small but a measurable V3,4. However, this geometry would not

be used to measure bulk conductivity, since it would require numerical calculations of fringe

fields and would not offer any benefits over conventional transport measurements.

On the other hand, in the case of a 3D TI, where one needs to characterize both surface

and bulk conductivities, this type of inverted resistance measurement can provide information

that cannot be accessed by conventional resistance measurements. To illustrate the power of

this method when applied to a 3D TI, let us consider this measurement using the formalism

introduced in the previous subsection. If the bulk conductivity is sufficiently low that the

3D TI is in the surface-dominated regime (σbl� σs), even for a sample with finite thickness,

R1,2;3,4 suppresses the leading order (surface term) term of Eq. (4.3), and therefore the second

term dominates (R ∝ σbt/σ
2
s). Notice that the second order term in Eq. (4.3) is proportional

to the bulk conductivity.

To justify why the first term vanishes, let us first consider the case when σb = 0. In

σb = 0, every term vanishes except the first term in Eq. (4.3). In Fig. (4.1), the loop
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(terminal 2) must capture the entire current from terminal 1, since the surface is the only

current path available. Inside region I, the electric potential drop is proportional to 1/σs,

whereas the entire region II must be equipotential to terminal 2 (V = 0 when grounded).

Then, V3,4 = 0. Therefore, we find that C0 = 0 in Eq. (4.3). When σb 6= 0, this resistance

measurement, RInv (inverted resistance) can be written as:

RInv = 0 +
C1

σ2
s

σbt+ · · · . (4.4)

Thus, we conclude that whenever a transport geometry on a 3D TI utilizes a closed loop on

the surface, and the voltage is measured outside of that loop, then the highest order term

(surface term) in Eq. (4.3) is suppressed and the next leading order term, which contains

the bulk conductivity, dominates. Therefore, the inverted resistance measurement can be

used to access the bulk conductivity in situations where the surface conduction dominates

the bulk.

In this subsection, we have introduced the inverted resistance measurement, which pro-

vides the bulk conductivity information even in the presence of strong surface conduction.

When we combine this inverted resistance measurement with conventional transport experi-

ments, we can extract bulk and surface conductivities. In the following section, we introduce

specific sample geometries and present the geometric factors that are found by numerical

calculations. We also introduce strategies to implement the inverted resistance and the

numerical results in experiment to extract the conductivities.

4.4 Transport Geometries for Inverted Resistance Mea-

surements

Before we introduce transport geometries that allow inverted resistance measurements,

we discuss a simple geometry, the Corbino disk, which employs a closed circular current loop

shown in Fig (4.2) (a). To remind the reader of the standard Corbino disk measurement, the

current flows from the center to the outer loop radially, and the voltages are measured either

at the two current terminals (two-terminal resistance) or at two points within the transport

region whose radii are rin (inner radius) and rout (outer radius) (four-terminal resistance).

The two-terminal Corbino resistance measurement configuration is shown in Fig (4.2) (b).

In a perfect 2D transport case, where current only flows on the surface (σb = 0 and σs 6= 0),
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Figure 4.2: A standard two-terminal Corbino disk on a sample. (a) Top view: the sample
is shown in gray and the highly conductive contacts are shown in yellow. (b) Side view:
the current and voltage amplifier that is needed to perform the resistance measurements are
connected to terminals 1 and 2. In preparation for submission to a journal [86].

the functional form of this standard resistance is well known:

RCorbino =
1

2π
ln(

rout

rin

)
1

σs
. (4.5)

In the presence of both bulk and surface conduction (σb 6= 0 and σs 6= 0), the two-channel

model is a good approximation for the standard Corbino resistance:

RCorbino ≈
1

2π
ln(

rout

rin

)
1

σs + σbγ
, (4.6)

where γ is the effective thickness of the sample. γ depends on how the current flows in the

defined geometry. We study numerically how the effective thickness changes as a function

of true sample thickness by performing finite element analysis calculations using Comsol

Multiphysics AC/DC module. The results from the bulk-dominated regime are shown in a

solid blue line in Fig (4.3). In the thin sample limit, where the thickness of the sample is

much smaller than both the inner radius and the annular region (surface transport region)

of the Corbino disk (rin � t and rout− rin � t), γ approximates to the true thickness of the

sample, t. In the very thick limit (rin � t and rout − rin � t), γ is independent of t.
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Figure 4.3: Effective thickness, γ, in the two-channel model vs. real sample thickness, t, for
a standard Corbino disk. Both axes are divided by the inner radius (rin = 150 µm). The
solid red line is the numerical calculation in the surface-dominated regime when only the
top surface contributes. When the thickness is very large, γ/rin asymptotically approaches
0.627. The solid blue line is the numerical calculation in the bulk-dominated regime. At
large thickness, γ/rin asymptotically approaches 0.566. The effective thickness approaches
to the true thickness of the sample when the sample thickness is sufficiently thin (γ = t). In
preparation for submission to a journal [86].

It is important to note that for a given sample, the effective thickness can be slightly

different in the bulk- or surface-dominated transport regimes. To illustrate this, we have

performed a series of numerical calculations by adding a surface channel with a broad range

of conductivity on the top surface of the sample. The result is shown in a solid red line,

which is similar, but not identical, to the results of the bulk-dominated regime. In the very

thick limit, the effective thickness is again independent of t, but with a value that is about

10% larger than that of the bulk-dominated regime. In the following subsections, continuing

to use finite element analysis numerical calculations, we will consider different extensions of

Corbino disk geometries that are suitable for inverted resistance measurements.

4.4.1 Single-Sided Four-Terminal Corbino disk

In this subsection, we consider a transport geometry consisting of a Corbino disk with

two metallic rings in the annular region, as shown in Fig. (4.4). This transport geometry can

be realized by a single step of lithography. The top view of the sample, the surface where the

Corbino disk is patterned, is shown in Fig. (4.4) (a). On top of the sample surface (shown in

gray), the transport geometry pattern is defined by highly conductive metal contacts such
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Figure 4.4: Four-terminal single-sided Corbino disk. The sample is shown in gray and the
highly conductive contacts are shown in yellow. (a) Top view. (b) Side view and resistance
configuration of the lateral configuration. (c) Side view and the resistance configuration of
the inverted measurement configuration. We choose the dimensions: r1 = 100 µm, r2 = 800
µm, rin = 200 µm, rout = 300 µm, and W = 75 µm. In preparation for submission to a
journal [86].

as gold (shown in yellow). In addition to the inner- (terminal 1) and outer- (terminal 4)

circular metallic regions, there are two metallic rings (terminals 2 and 3), each with width, W .

The side views of two different measurement configurations are shown in Fig. (4.4) (b) and

Fig. (4.4) (c). In the lateral configuration shown in Fig. (4.4) (b), the resistance is measured

by passing current between terminals 1 and 4 and measuring the voltage between terminals

2 and 3, i.e., RL = V2,3/I1,4. This measurement is equivalent to the standard measurement

of a conventional Corbino disk. In the inverted configuration shown in Fig. (4.4) (c), the

resistance is measured by passing current between terminals 1 and 2 and measuring the

voltage between terminals 3 and 4, i.e., RInv = V3,4/I1,2. Recall that C0 = 0 in Eq. (4.4) in

this inverted resistance measurement, and therefore RInv = (C1t/σ
2
s)σb.
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Figure 4.5: The potential distributions of the single-sided four-terminal Corbino disk. The
bulk and on the surface is calculated in the surface-dominated transport regime (σs � σbt); t
= 100 µm, σb=0.0013 1/(Ω·m), and σs = 0.005 1/Ω. The equipotential values are normalized
by the potential at the current source (V1). (a) Potential distribution in the bulk when the
current is connected to the lateral configuration. (b) Potential distribution on the surface as
a function of radial position when the current is connected to the lateral configuration. (c)
Potential distribution in the bulk when the current is connected to the inverted configuration.
(d) Potential distribution on the surface as a function of radial position when the current
is connected to the inverted configuration. The surface region in r < rin is plotted in a
linear scale, and r > rin is plotted in a logarithmic scale. In preparation for submission to a
journal [86].

When the current flows only on the surface, the lateral resistance, RL, is identical to

Eq. (4.5). We rely on the numerical studies, using a finite element analysis software (Comsol

Multiphysics AC/DC module), for the case when the current also flows in the bulk (σb 6= 0

and σs 6= 0). The numerical calculations are performed for a 100 µm thick sample for both

resistance configurations (RL and RInv). The solution of electrical potential resulting from

the current flow in the lateral configuration is shown for the bulk and surface in Fig. (4.5) (a)

and Fig. (4.5) (b), respectively. In Fig. (4.5) (a), the equipotential lines are coded in color.

The bulk current flows normal to those equipotential lines. In Fig. (4.5) (b), on the surface,

the potential drops from the source to the ground on the surface logarithmically, except for

in the metallic ring region, where the potential remains constant.

For the inverted resistance measurement, the electrical potential that is calculated nu-

merically is shown for the bulk and surface in Fig. (4.5) (c) and Fig. (4.5) (d), respectively.

The inverted resistance is expected to be much smaller than the lateral resistance as it results
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Figure 4.6: Example of numerical results of a single-sided Corbino disk. RLσs (blue) and
RInvσs (red) as a function of x (= σbt/σs) when t = 1000 µm. The dotted lines represent
the asymptotic values from the first order term from Eq. (4.2), Eq. (4.3), and Eq. (4.4). In
preparation for submission to a journal [86].

from the fringe field created near the outer part of the enclosed loop. The fringe fields are

difficult to visualize in Fig. (4.5) (c). However, the effect from the fringes can be seen when

the potential on the surface is plotted on a logarithmic scale, as shown in Fig. (4.5) (d). The

plot indicates that the potential is gradually increasing as the distance from the terminal 2

ring increases.

We have performed these numerical calculations for different ratios of bulk to surface

conductivity. In Fig. (4.6), we plot the dimensionless function, f(x) = Rσs, for both the

inverted (RInvσs) and the lateral resistance (RLσs) as a function of x (= σbt/σs). Most

importantly, we find that RLσs ∝ 1/x when x→∞, and RInvσs ∝ x when x→ 0. Therefore,

in those two limits, the leading order terms in Eq. (4.2) and Eq. (4.4) dominate. Furthermore,

the flat line in RLσs when x→ 0 agrees with Eq. (4.5) and the leading order term of Eq. (4.3)

(C0 = 0.0645 and C0 � C1, C2, . . . ).

By iterating the numerical calculations for different thicknesses, the transport coefficients,

C−1 and C1, are found as a function of thickness. Fig. (4.7) (a) shows the coefficient, C−1,
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Figure 4.7: The transport coefficients for the single-sided four-terminal Corbino disk ge-
ometry as a function of sample thickness. (a) C−1 of the lateral resistance RL in the bulk-
dominated regime (σbt� σs). (b) C1 of the inverted resistance RInv in the surface-dominated
regime (σs � σbt). The thickness is dividing by r1 (= 100 µm). The dotted lines indicate the
transport coefficients when they are independent of thickness. In preparation for submission
to a journal [86].

for the lateral measurement (RL) in the bulk-dominated regime (σbt � σs) plotted as a

function of dimensionless thickness (t/r1). Fig. (4.7) (b) shows the coefficient, C1, for the

inverted measurement (RInv) in the surface-dominated regime (σbt� σs). Note that at very

large thicknesses, C1 ∝ 1/t, and C−1 ∝ t, which means the resistances become independent

of thickness. In the following chapter, we will demonstrate this transport geometry on a

SmB6 sample, and use the results in Fig. (4.7) to find the bulk conductivity. In the following

subsection, we consider a more advanced transport geometry design that results in a larger

C1 value and better confines the transport region.

4.4.2 Double-Sided Two-Terminal Corbino disks

In the previous subsection, we have considered a transport geometry defined on a sin-

gle surface, and showed that the inverted resistance originates from the small fringe effects

created near the enclosed loop. In this subsection, we consider a more advanced transport

geometry, where we employ two coaxially aligned Corbino disks on opposite surfaces. We

show that in this case, there is an inverted resistance measurement configuration that mea-

sures the current reaching the opposite surface, and this contribution can be much larger

than the fringe effects on a single surface. Furthermore, since there are two Corbino disks

placed on opposite surfaces, this geometry would allow us to measure the conductivity of
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Figure 4.8: Double-sided two-terminal Corbino disk. The sample is shown in gray, and the
highly conductive contacts are shown in yellow. (a) Top and bottom surface view. (b)
Side view and the lateral resistance configuration. (c) Side view and the radial resistance
configuration. The blue and red lines are jumper wires. (d) Side view and the vertical
resistance configuration. (e) Side view and the hybrid resistance configuration. The hybrid
measurement is an inverted resistance measurement in the surface-dominated regime (σs �
σbt). We choose the Corbino dimensions as r1 = 150 µm and r2 = 300 µm. In preparation
for submission to a journal [86].
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both surfaces. This can also be a powerful geometry for characterizing a wide range of 3D

topological insulators in which the contribution of conducting surface states has not been

studied yet.

A schematic diagram of the coaxially-aligned double Corbino disk geometry is shown in

Fig. (4.8). This transport geometry can be realized by two steps of lithography performed

on opposite sides of the sample. One surface (since both surfaces are identical) of the

sample is shown in Fig. (4.8) (a). The disk shapes are defined by highly conductive metal

contacts (shown in yellow) used as terminals for resistance measurements. We note that the

measurement configurations that will be discussed in the following will include both two-

and four-terminal resistance measurements.

The two-terminal resistance measurements where the current and voltage leads share the

same terminal should only be used when the contact resistances are negligible. One example

of the two-terminal resistance measurement is shown in Fig. (4.8) (b), where resistance

is measured between the inner-metallic circle (terminal 1) and the outer-metallic region

(terminal 2), or RL = V1,2/I1,2. When the current flows only on the surface (σb = 0 and

σs 6= 0), this is identical to Eq. (4.5): RL = RCorbino.

The two-terminal resistance can also be measured using both the top and bottom Corbino

disks in parallel using the radial configuration as shown in Fig. (4.8) (c). In the radial

configuration, terminals 1 (2) and 3 (4) are connected with a low resistance jumper wire

shown in blue (red). These jumper wire connections ensure that the top and bottom surfaces

have identical electric potential profiles. In addition, the wire that connects terminals 2 and

4 (shown in red) prevents the current from flowing on the side surfaces of the sample. When

σb = 0 and σs 6= 0, the radial resistance is equivalent to two resistors, corresponding to each

Corbino lateral resistance measurement, connected in parallel:

RR =
1

2
× 1

2π
ln(

rout

rin

)
1

σs
. (4.7)

Another two-terminal resistance measurement, which we will call the vertical configura-

tion, can be performed on such a device as shown in Fig. (4.8) (d). This configuration also

shorts terminals 2 and 4 with a low resistance jumper wire (shown in red), which eliminates

the current flow on the side surfaces. The vertical resistance is measured between the two

inner-metallic circles, or RV = V1,3/I1,3. In the bulk-dominated regime (σbt� σs), the cur-

rent chooses a vertical path through the bulk between the two circular plates 1 and 3. In the

surface-dominated regime (σbt� σs), the current flows first radially on the surface through

the top Corbino disk, then passes through the jumper wire, and finally converges radially

through the bottom Corbino disk. The approximate functional forms of resistance can be
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found in those two limits. In the σbt� σs case, RV can be found by a derivation analogous

to finding the capacitance between two parallel plates. If the sample is thin, we can assume

the current density is in the vertical direction and uniform in the region of center contacts,

so the resistance is:

RV ≈
t

πr2
1

1

σb
, (4.8)

where t is the thickness of the sample. In the other extreme, σbt � σs, we can regard each

Corbino disks as resistors that are connected in series:

RV = 2× 1

2π
ln(

rout

rin

)
1

σs
. (4.9)

Especially in the vertical measurement, because RV can be dramatically different in the two

extremes, σbt� σs and σbt� σs, and can be evaluated without numerical simulations, this

configuration can provide strong evidence for experiments that are in the stage of verifying

the existence of the surface states.

The last configuration that we consider is a four-terminal measurement, which we will call

it the hybrid resistance measurement, as shown in Fig. (4.8) (e). In the hybrid configuration,

the current flows between terminals 1 and 2, and the voltage is measured using terminals 3

and 4, which are on the opposite side, i.e., RH = V3,4/I1,2. Since current lead 2 fully encloses

lead 1, the hybrid resistance is an inverted resistance measurement. Because of the proximity

of the voltage and current contacts, the inverted resistance signal in this double-sided device

is expected to be much larger than that of the single-sided inverted resistance measurement

discussed previously.

We have solved this geometry numerically for different resistance configurations using

finite element analysis (Comsol Multiphysics AC/DC module). In Fig. (4.9), we plot the

dimensionless resistance f (= Rσs) for all four resistances as a function of x (= σbt/σs).

Indeed, as we expect, our hybrid resistance results in, RHσs ∝ x when x → 0 in the

inverted resistance measurement. In the opposite limit when x → ∞ , Rσs ∝ 1/x for all

four resistances as expected. In particular, RV σs approaches to Eq. (4.9). Furthermore,

the asymptotic flat lines in RLσs, RRσs, and RV σs when x → 0 agrees with Eq. (4.5)

(C0 = 0.0645), Eq. (4.7) (C0 = 0.032), and Eq. (4.9) (C0 = 0.129), respectively.

We have also solved C−1 and C1 iteratively for different thicknesses. In Fig. (4.10),

we present our results for C−1 and C1 as a function of dimensionless thickness (t/r1). In

experiments, RL, RR, and RV may suffer from the presence of contact resistances. To address

this potential problem, we present C−1 from the RH , which is a four-terminal measurement.

Comparing to Fig. (4.10) (a) and Fig (4.7) (a), when the sample is thin (t < r1), C1 from

the hybrid measurement is a few orders of magnitude larger than the inverted measurement
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Figure 4.9: Example of numerical results for a two-terminal double-sided Corbino disk.
Numerical result of RLσs (blue), RRσs (magenta), RV σs (green) and RInvσs (red) vs. x
(= σbt/σs) when the thickness is t = 100 µm. The dotted lines indicate the asymptotic
values from the equations. In preparation for submission to a journal [86].

74



Figure 4.10: The transport coefficients for the double-sided two-terminal Corbino disk ge-
ometry by varying the sample thickness. The solid black line shows the transport coefficient
when the two Corbino disks are coaxially aligned, and the solid green line shows the trans-
port coefficients when the two Corbino disks are misaligned by 150 µm. The thickness is
expressed in a dimensionless form by dividing by rin (= 150 µm). (a) C−1 of the hybrid
resistance, RH , in the bulk-dominated regime (σbt � σs). (b) C−1 of the lateral resistance,
RL, in the bulk-dominated regime (σbt � σs). (c) C1 of the hybrid resistance, RH , in the
surface-dominated regime (σs � σbt). In preparation for submission to a journal [86].
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from the single-sided 4-terminal Corbino disk case. Therefore, this transport geometry can

be better in extracting a smaller bulk conductivity.

However, there can be a practical difficulty when preparing a double-sided transport

geometry: the two Corbino disks may be misaligned. This type of misalignment would be

expected to change the values of C−1 and C1. To understand how the misalignment impacts

the resistance measurements, we have repeated the calculations for the case where there is

a 150 µm misalignment between the top and bottom Corbino disks. The coefficients C−1

and C1 calculated with such a misalignment are shown in green. Our numerical calculations

indicate that the hybrid resistance measurement is most vulnerable to misalignment. In the

following subsection, we consider a transport geometry that allows similar measurements,

but all four measurements are in a 4-terminal configuration.

4.4.3 Double-Sided Four-terminal Double Corbino Disk

The single-sided four-terminal Corbino disk geometry (in subsec. 4.4.1) has the limitation

in that the RInv may be too small to measure in the surface-dominated regime (σbt � σs).

The coaxially aligned double Corbino disk geometry (in subsec. 4.4.2) can give a larger mag-

nitude from the RH if the sample is thin, but the other three resistances (RL, RR, and RV )

may suffer from contact resistances in the bulk-dominated regime (σbt� σs). In this subsec-

tion, we consider a transport geometry that incorporates advantages of the two geometries,

so that both issues can be eliminated. The configuration consists of two coaxially aligned

four-terminal Corbino disks placed on both sides of the sample as illustrated in Fig. (4.11).

The advantages of having multiple leads on both sides should be clear: we now have more

than enough 4-terminal resistance configurations, including inverted measurements, that can

be used to extract the bulk conductivity. Even without using any jumper wires, such an

8-terminal transport geometry would allow us to perform a total of 70 independent inverted

resistance measurements. We will only discuss a few that are similar to what was discussed

in the previous sections. In addition, we will provide an example of how to apply a ratio

method to extract the two conductivities.

A schematic diagram of the sample is shown in Fig. (4.11) (a). The disk shapes are

defined by highly conductive metal contacts (shown in yellow). This type of sample can

be realized by two separate steps of lithography. The conductive metal regions are used

as terminals for resistance measurements. We choose the dimensions of the Corbino disks

with two rings to be identical to the earlier Corbino disk structure shown in Fig. (4.4).

Therefore, the single-sided 4-terminal Corbino disk results can be used for this geometry as

well. Because of this, we will omit the resistance configurations that uses contacts from a
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Figure 4.11: Four-terminal double-sided Corbino disk. The sample is shown in gray and the
highly conductive contacts are shown in yellow. (a) Top and bottom view of the sample. (b)
Side view of the sample and the radial configuration. (c) Side view of the sample and the
vertical configuration. We choose the Corbino disk dimensions identical to the single-sided
four-terminal Corbino disk shown in Fig. (4.4): r1 = 100 µm, r2 = 800 µm, rin = 200 µm,
rout = 300 µm, W = 75 µm. In preparation for submission to a journal [86].
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single side, and instead, we will discuss three new measurement configurations that require

the contacts from both top and bottom surfaces.

We first discuss the radial measurement configuration (RR) shown in Fig. (4.11) (b).

Terminal pairs of (1, 5), (2, 6), and (3, 7) are connected with a low-resistance jumper wire

shown in blue. These jumper wire connections help to enhance the radial flow of current in

the bulk. In addition, the wire that connects terminals 4 and 8 (shown in red) prevents the

current from flowing on the side surfaces of the sample. When the current only flows on the

surface (σs 6= 0 and σb = 0), the radial resistance is:

RR =
1

2
RL =

1

2
× 1

2π
ln(

rout

rin

)
1

σb
, (4.10)

where RL is the lateral resistance that was introduced in Eq. (4.5).

Next, we consider the vertical configuration shown in Fig. (4.11) (c). Similar to the radial

configuration, terminals 4 and 8 are connected with a low resistance jumper wire shown in red

in order to eliminate the current flowing on the side surfaces. In the bulk-dominated regime

(σbt � σs), current flows mostly vertically through the bulk. The resistance is thickness

dependent and can be expressed in the form of RV σs ≈ C−1(σbt/σs)
−1, which is the leading

order term of Eq. (4.2). In the surface-dominated regime (σbt � σs), where the current

flows mostly on the surfaces, first the current flows radially outwards on the top surface, and

then the current flows to the other surface through the jumper wire and converges radially

inwards. In this case, we can regard every possible conduction path of the Corbino disks as

a resistor and add them in series:

RV = 2× 1

2π
ln(

rout

rin

r2

r1

rin −W
rout +W

)
1

σs
. (4.11)

For the hybrid configuration, as shown in Fig. (4.11) (d), while terminals 4 and 8 are

connected with a low resistance jumper wire (shown in red) to ensure that the side surface

contribution is eliminated, the current leads are connected to terminals 1 and 4, and the

voltage leads are connected to terminals 6 and 7, i.e., RH = V6,7/I1,4. When the current

chooses its path mostly on the surface (σbt � σs), this is indeed the inverted measurement

in that the Corbino disk on the top surface corresponds to the enclosed loop that captures

the current flowing on the surface and the bottom Corbino disk corresponds to the voltage

measurement external to that loop and measures the current path contributing from the

bulk.

Similar to the previous transport geometries discussed above, we calculated the relevant

transport coefficients for this sample geometry numerically using finite element analysis
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Figure 4.12: Transport coefficients for the four-terminal double Corbino disk geometry at
different thicknesses. (a) C−1 for the radial resistance, RR, in the bulk-dominated regime
(σbt� σs). (b) C−1 for the hybrid resistance, RH , in the surface-dominated regime (σbt �
σs). The thickness is expressed in a dimensionless form by dividing by r1 (= 100 µm). In
preparation for submission to a journal [86].

(Comsol Multiphysics AC/DC module). We present C1 for the hybrid measurements and

C−1 for radial measurements as a function of thickness in Fig. (4.12). If the top and bottom

Corbino rings are significantly coaxially misaligned, we recommend using C−1 from the lateral

measurements (Fig. (4.7) (a)) instead of using C−1 from the radial measurement.

4.5 Solution for Anisotropic Bulk

The work in this chapter so far has been done under the assumption that the bulk con-

ductivity is isotropic. Although not related to SmB6, which is a cubic crystal and can be

regarded as having an isotropic bulk conductivity, we will discuss the possibility of expand-

ing this study on materials with anisotropic bulk conductivity. We know that many 3D

topological insulators are in fact anisotropic in such a way that the material has a different

conductivity in one specific crystal direction. If we prepare a double-sided Corbino disk sam-

ple where the axis is aligned with that specific direction, then in principle, we can use the

bulk conductivity measurement strategies developed in the previous sections by theoretically

mapping the anisotropic sample to an isotropic sample with a different thickness.

For a material with anisotropic bulk conductivity, we define the direction that is tan-

gential to the surface as r, and normal to the surface as z. We also define σtn as the bulk

conductivity tangential to the surface, and σn as the bulk conductivity normal to the surface.
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Then, the potential in the bulk is determined by

σtn
∂2V

∂r2
+ σn

∂2V

∂z2
= 0, (4.12)

with the appropriate boundary conditions at the interface of bulk and surface. By redefining

the normal direction, z, to ζ =
√
σtn/σnz, we can re-write Eq. (4.12) as:

∂2V

∂r2
+
∂2V

∂ζ2
= 0, (4.13)

Thus, we have mapped our problem into an isotropic bulk conductivity case. When we map

the problem as above, the thickness of the sample, t, is also mapped to a different thickness,

τ , with the relation: τ =
√
σtn/σnt.

σtn can be found if we know the correct C1(τ) and C−1(τ) values. If τ is not found

correctly, σtn in the surface-dominated regime and the bulk-dominated regime will be mis-

matched. If we start with the bulk conductivity from C1(t) and C−1(t), which is mismatched

initially, and change those values to C1(τ) and C−1(τ), where the bulk conductivity in two

regimes are continuous, this corresponds to σtn. Finally, σtn and τ can be used to find the

bulk conductivity in the normal direction:

σtn = σn(
t

τ
)2. (4.14)

However, we should warn the reader that this strategy for anisotropic conductivities can

only be useful for samples that are prepared with extremely high precision. As we have

learned from our transport measurements on SmB6 samples, a mismatch between the bulk

conductivity extracted from bulk- and surface-dominated regimes using different 4-terminal

resistance measurements can easily occur because of small imperfections in the transport

geometries.

4.6 Conclusion

In this chapter, we have introduced our newly invented transport method, the inverted

resistance measurement, that can measure the bulk conductivity below the bulk-to-surface

crossover temperature. After explaining how the inverted resistance works with the resistance

formalism for two conducting channels, we have also introduced various transport geometries

that utilize the inverted resistance. In the following chapter, we realize this new measurement

on SmB6 samples experimentally. Also, with this new transport method, we will report some
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of our systematic studies on disordered SmB6 samples to understand the bulk behavior.

81



Chapter 5

Realizing the Inverted Resistance

Experimentally

5.1 Introduction

1In the previous chapter, we showed how the inverted resistance method works based

on our resistance formalism for a 3D TI (Eq. (4.1)). We also discussed several transport

geometries that utilize this inverted resistance measurement.

In this chapter, we will realize some of the transport geometries on SmB6, and verify

usefulness and strength of our new invention. Previous transport experiments indicate that

the bulk resistivity of SmB6 is activated in the form of R ∝ exp(Ea/kBT ), with an activation

energy, Ea, of about 3 – 4 meV. The activated behavior of the bulk transport is difficult to

study using standard transport experiments below 4 K because at that temperature, current

starts to flow mostly through the surface. In contrast, inverted resistance measurements

can be used to measure the bulk conductivity of SmB6 at temperatures below 4 K. Our

demonstrations, which will be presented in this chapter, show that the activated behavior

continues below 4 K. In the following chapter, we will use this new method for further studies

of the bulk of SmB6.
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Figure 5.1: Pictures of the single-sided four-terminal Corbino disk on SmB6. (a) Focused view
of Corbino disk before wires are connected. (b) Entire view of the sample. In preparation
for submission to a journal [86].

5.2 Single-Sided Four-Terminal Corbino Disk on SmB6

5.2.1 Sample Preparation

We prepared a transport geometry on a polished SmB6 surface using the dimensions

shown in Fig. (4.4). The SmB6 crystal used in this study was grown in an aluminum flux.

The grown crystal was first thinned with a SiC polishing pad that has grit size of 15.3 µm.

It was then polished with a SiC polishing pad of 2.5 µm. Fine polishing was performed on

polishing cloth (TexMet C) using an aluminum oxide slurry with a particle size of 0.3 µm.

After cleaning the surface with diluted HCl, we performed photolithography on the polished

surface with a mask design of the 4-terminal Corbino disk pattern. We exposed the surface

where we wanted to evaporate a highly conductive metal and covered it with photoresist on

the regions that we want to expose later. We then evaporated Ti/Au 20 Å/1500 Å, and

lifted off the photoresist in acetone. The sample was cleaned again with diluted HCl and

then attached to a silicon piece with an insulating SiO2 layer using Torrseal. We used a

wire bonder to attach aluminum wires (1 mil) to the terminals. We performed low-frequency

resistance measurements at temperatures ranging from 16 to 1.7 K using the quantum design

1This work has been posted on ArXiv [86]. The author and his collaborators are preparing a manuscript
for submitting to a peer-reviewed journal that will contain contents in this chapter.
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PPMS system connected to an external lock-in amplifier (SR830). The prepared sample is

shown in Fig. (5.1)

5.2.2 Experimental Results

The experimental results, plotted as resistance vs. temperature, are shown in Fig. (5.2) (a).

As temperature is decreased from 16 K, both the lateral resistance, RL (shown in blue), and

the inverted resistance, RInv (shown in red), increases. In this temperature range, the sam-

ple is in the bulk-dominated regime (σbt � σs). Then around 3.5 K, RInv reaches a peak

and starts to decrease, while RL plateaus. The sample at this low temperature is in the

surface-dominated regime (σbt � σs). According to Eq. (4.5), the surface conductivity is

σs = 3.3 × 10−4 S. Meanwhile, RInv continuously drops toward 0 until it is too noisy to

measure. The resolution of our electronics allowed us to measure RInv down to ∼2.5 K.

To extract the bulk conductivity from the data in Fig. (5.2) (a), we use leading order terms

in the series expansion in the surface- and bulk-dominated regimes (Eq. (4.2) – Eq. (4.4)), and

the two-channel model (Eq. (4.6)). For each temperature range, we converted the resistance

measurements to bulk conductivity as described in the following.

High temperature range (bulk-dominated regime): At temperatures above ∼3.6 K, the

lateral resistance can be used to find the bulk conductivity. In this bulk-dominated regime

(σbl� σs), Eq. (4.2) can be used to understand the resistance behavior (we replaced l with

thickness, t). The contribution of the current that flows on the surface is extremely small,

so we keep only the first order term. With this first order term, and using C−1 found in

Fig. (4.7) (a), the bulk conductivity is:

σb(T ) =
C−1

t

1

RL(T )
. (5.1)

The result is shown in Fig. (5.2) (b) as a solid blue line.

Intermediate temperature range (bulk-to-surface crossover regime): In the temperature

range, 3.3 - 3.6 K, the sample undergoes a bulk-to-surface crossover, so the bulk and surface

conductions are comparable. This regime is where the expansion of the f(x), cannot be

expanded in series in either extremes of x because x ≈ 1. Instead, we make use of Eq. (4.6)

from the two-channel model to convert RL to bulk conductivity. This can be re-formulated

as:

σb(T ) =
1

γ
(

C0

RL(T )
− σs). (5.2)

The result is shown in Fig. (5.2) (b) as a solid green line. We have shown in Fig. (4.3) that

the calculated effective thickness is slightly different for the bulk-dominated and the surface-
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Figure 5.2: Experimental results and bulk conductivity analysis on a single-sided 4-terminal
Corbino disk on a SmB6 sample with thickness, t = 300 µm. (a) Resistance vs. temperature
of the lateral and inverted measurements. (b) The bulk conductivity converted from the
measured resistance. The dotted lines indicate the bulk conductivity conversion applied
beyond the appropriate regime. (c) The result of the extracted bulk conductivity after
adjustment of mismatch. In preparation for submission to a journal [86].
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dominated regimes. In this particular experiment, we estimate the effective thickness from

γ = C0t/C−1. It is fortunate that the temperature dependence of the surface conductivity

in SmB6 is weak enough that it can be approximated as constant.

We warn the reader that Eq. (5.2) should not be used alone in samples with a surface

conductivity that is strongly temperature dependent. For characterizing such a material, in

this intermediate temperature range, it is important to use multiple four-terminal resistance

measurements that put different emphasis on surface and bulk conductivity, Luckily the

double-sided Corbino geometry allows one to perform a vertical measurement (RV ), which

would put greater emphasis on bulk conductivity. Thus, the combination of lateral and

vertical measurements may provide a better strategy for extracting the bulk conductivity in

this temperature regime.

We expect that the process of extracting the conductivities from the measured resistances

would have been much more challenging if the surface conductivity was also strongly tem-

perature dependent. In such a case, the full numerical simulation must be done and then

compared to the measured resistances.

According to Eq. (4.1), one can measure the resistance, R, easily, but not f(x) if σs has

a strong temperature dependence. One may implement an approach that would rely on the

ratios of the two different resistance measurements. For example, if we take the ratio of

the conventional resistance, RC , to the inverted resistance, RInv, we can directly compare to

the ratios of the dimensionless functions, f(x), of the corresponding resistances, fC(x) and

fInv(x):
RC

RInv

=
fC
fInv

= h(x). (5.3)

where the fC(x) is the dimensionless resistance for RC , fInv(x) is the dimensionless resistance

for RInv, and we define the ratio as h(x). From Eq. (5.3), we can compare the experimental

data and numerical results directly, and find x. The surface conductivity can then be found

by:
RC

fC
=

1

σs
or

RInv

fInv

=
1

σs
. (5.4)

After σs is found, σb can be found from x that was found from Eq. (5.3):

σb =
σsx

t
. (5.5)

Low temperature range (surface-dominated regime): For temperatures below ∼3.3 K, the

sample is in the surface-dominated regime. The inverted resistance measurement can be used

at this temperature range to extract the bulk conductivity. In the surface-dominated regime,

the inverted resistance can be expressed by Eq. (4.4). C1 can be found from Fig. (4.7) (b), and
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σs can be found from Eq. ( 4.5) and the plateau value of RL(T ). Then the bulk conductivity

is:

σb(T ) =
σs(T )2

t

RInv

C1

. (5.6)

The result is shown in Fig. (5.2) (b) as a solid red line.

Notice that there is a noticeable mismatch of about a factor of ∼3 between the two plots

(solid blue line and the solid red line) near the bulk-to-surface crossover in Fig. (5.2) (b).

We have also tested five other SmB6 samples, and found mismatch factors ranging from

0.85– 3.5. The mismatch indicates that the geometric coefficients (C−1, C1, etc.) do not

correspond to the actual sample geometry. There are numerous possibilities that may have

caused this mismatch. For SmB6, one should worry about the quality difference between

the top and bottom surface. This can greatly influence the inverted resistance measurement

since the RInv ∝ 1/σ2
s . Aluminum inclusions that are known to be possibly present in flux

grown samples can influence the current path in the bulk, and result in a different geometric

coefficient.

Even in the case where the top and bottom surfaces have identical transport properties

and the sample is free from inclusions, a slight difference of dimensions between the realized

sample geometry and the numerically-simulated geometry can result in a large mismatch

as above, especially for the inverted resistance measurement. The inverted resistance mea-

surement depends greatly on the fringe currents in the bulk, and measurements that involve

these current paths are highly sensitive to the details of the geometry. For example, a similar

discrepancy also occurs in conventional transport geometries such as van der Pauw measure-

ments. In van der Pauw measurements performed on cleaved square samples, they typically

result in different 4-terminal resistance values depending on the direction of the current paths

as in vertical and horizontal resistance measurements. The significant difference of these two

measurements arises from small deviations from a perfect square shape of the sample. In

fact, to obtain the true resistivity of the material, one needs to take the average value of the

two measurements.

The discrepancy of the bulk conductivity obtained from the inverted and lateral resistance

measurements is similar to the discrepancy that occurs from the horizontal and vertical

resistance measurements obtained from a van der Pauw measurement. Since the inverted

resistance measurement is much more vulnerable to imperfections of the sample geometry,

we recommend adjusting the C1 value in such a way that inverted measurement matches the

lateral measurement at around 3.3 K.

After adjusting and combining the three plots in Fig. (5.2) (b), we obtain the bulk

conductivity that covers the entire temperature range shown in Fig. (5.2) (c). From this
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Figure 5.3: Double-sided two-terminal Corbino disk. (a) Top view. (b) Side view. In
preparation for submission to a journal [86].

exercise, we have demonstrated that the bulk conductivity can be found even in the surface-

dominated regime. Also, we have shown that the bulk conductivity of SmB6 continues to

exhibit a thermally excited behavior according to σb ∝ exp(−Ea/kBT ), where we find the

activation behavior of Ea = 3.84 meV.

5.3 Double-Sided Two-Terminal Corbino Disk on SmB6

In the previous subsection, we measured the inverted resistance, RInv, successfully down

to 2.5 K. According to Eq. (4.6), the magnitude of the RInv is inversely proportional to σ2
s .

For samples that have a higher surface conductivity, the magnitude of RInv will be smaller

in general, and therefore the measurement may fail at higher temperatures. To overcome

these limitations, we instead use a transport geometry that allows larger C1 values.

5.3.1 Sample Preparation

In this subsection, we demonstrate the bulk conductivity extraction from the coaxially

aligned two-terminal double Corbino disk geometry that is shown in Fig. (4.8). We use

SmB6 crystals from the same batch to make this double-sided sample. The top and bottom

surfaces of the sample were first polished by using a SiC polishing pad of 15.3 µm. Then, the

surfaces were polished by finer grit sizes of SiC pads: 5.5 µm and 2.5 µm. The polishing was

finalized by using a polishing cloth (TexMet C) with 0.3 µm Al2O3 slurry. We performed

photolithography on each of the polished surfaces with a mask design with identical dimen-

sions to the two-terminal Corbino disks shown in Fig. (4.8) (a). We evaporate Ti/Au (20 Å
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/1500 Å), and then lifted off the photoresist on the regions where we intend to expose the

surface. We attached the sample with GE varnish on a silicon piece with native oxide so

that both surfaces were exposed. We used copper wires (2 mils), and attached them with

silver paste. The sample that is prepared is shown in Fig. (5.3).

5.3.2 Experimental Results

The sample was characterized using standard low frequency lock-in measurements from

room temperature to cryogenic temperatures (300 K – 2.5 K). We measured the resistances

of the four different configurations shown in Fig. (4.8) (b) – (e) (RL, RR, RV , and RH).

The experimental results of resistance vs temperature for all four measurements are shown

in Fig. (5.4) (a). At temperatures below 3.6 K, in the surface-dominated regime, resistance

plateaus are observed in RL, RR, and RV . By comparing the magnitudes, the relations

RR = 1/2RL (Eq. (4.7)) and RV ≈ 2RL (Eq. (4.9) holds, which verifies the existence of the

conducting surface. From, RR, we find the surface conductivity, σs = 1.1 × 10−3 S. This

value is more than three times higher than the SmB6 sample in the previous demonstration

(σs = 3.3× 10−4 S). In the hybrid measurement, RH , drops toward 0 Ω as the temperature

is lowered below 3.6 K.

To extract the bulk conductivity from Fig (5.4) (a), we converted the resistance measure-

ments to bulk conductivity by the following, similar to the single-sided 4-terminal Corbino

disk case in the previous section.

High temperature range (bulk-dominated regime): At high temperatures, above 5.2 K,

the lateral resistance data is used to extract the bulk conductivity. Using C−1 found in

Fig. (4.10) (b) and Eq. (5.1), the bulk conductivity is found, as shown in the solid blue line

in Fig. (5.4) (b).

Intermediate temperature range (bulk-to-surface crossover regime): At intermediate tem-

peratures, ranging from 3.5 K – 5.2 K, we again use the lateral resistance measurement and

use Eq. (5.2) with γ = C0t/C−1, which was derived from the two-channel model. The result

is shown in the solid green line in Fig. (5.4) (b).

Low temperature range (surface-dominated regime): At low temperatures, below ∼3.5 K,

the sample is in the surface-dominated regime. Here, we use the hybrid resistance measure-

ment to find the bulk conductivity. Eq. (5.6) can be used to convert the hybrid resistance

to bulk conductivity. σs can be found from the plateau value of RL, and C1 can be found

from Fig. (4.10). We used both the C1 values when the top and bottom Corbino disks are

perfectly aligned and when the two disks are misaligned by 150 µm. The solid black line is

the bulk conductivity when the two disks are perfectly aligned, the solid red line is the bulk
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Figure 5.4: Experimental results and bulk conductivity analysis of the double-sided 2-
terminal Corbino disk on a SmB6 sample with thickness, t = 210 µm. (a) Resistance vs.
temperature of the lateral, vertical, radial, and the hybrid measurement (inverted measure-
ment). (b) The bulk conductivity converted from the measured resistance shown in (a).
The dotted lines indicate the bulk conductivity conversion applied beyond the appropriate
regime. (c) The result of the bulk conductivity after adjustment of mismatch. In preparation
for submission to a journal [86].
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conductivity when the two are misaligned by 150 µm.

Similar to the previous example, there is a mismatch between the bulk conductivity

at low temperatures and the bulk conductivity at intermediate temperatures. The reason

for this mismatch is identical to the reason for the mismatch present in the single-sided

four-terminal demonstration in that the geometric coefficients may not correspond to the

actual sample geometry. In addition to the reasons mentioned in the previous subsection,

the misalignment of the top and bottom Corbino disks must also be considered. After

the fabrication process, we find an unintentional misalignment of ∼150 µm; however, even

if we consider this misalignment, the corrected bulk conductivity still does not account

the matching of the bulk conductivity found from the lateral resistance measurement at

intermediate temperatures.

Again, we adjust the bulk conductivity curve at low temperatures (solid red line) to

match the conductivity at intermediate temperatures (solid green line). The result of bulk

conductivity is shown in Fig. (5.4) (c). We note that in this particular sample the inverted

resistance measurements allowed us to measure bulk conductivity down to 2.5 K when 99.9%

of the current was flowing on the surface of the sample. We plan to present the bulk transport

properties of SmB6 and related materials and the implications of these measurements within

the context of topological Kondo insulators in Chapter 6.

5.4 Discussion and Conclusion

We have introduced a new type of transport measurement, which we call the inverted

resistance measurement. Together with a conventional transport measurement, it allows us

to characterize materials that have both bulk and surface conduction, such as TIs. The

inverted resistance measurement is powerful in the regime where the surface conduction

dominates the bulk. The inverted resistance is proportional to σb/σ
2
s , and therefore the

bulk conductivity, σb, is accessible even in the regime where surface conduction is dominant,

making this measurement powerful. This inverted resistance measurement requires a loop as

a current lead that encloses the other current lead, and two voltage leads placed outside of

the current loop. We have analyzed different transport geometries that utilize this inverted

measurement. The most ideal transport geometry for this inverted measurement is when

two Corbino disks are coaxially aligned on two opposite surfaces. If the sample is thick, the

inverted measurement can also be performed using a single-sided four-terminal Corbino disk

geometry. We note that this type of measurement is not suitable for characterizing purely

2D systems or thin films as we expect the inverted resistance would be zero, regardless of

the conductivities of the material.
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The geometric prefactors (C−1 and C1), which are used for converting from resistances

to conductivities, were found using finite element analysis simulations. Experimentally, we

have successfully realized the transport geometries on SmB6 samples, and measured the

resistances at different temperatures. SmB6 turns out to be an ideal material for test-

ing our transport method because the bulk has a thermally activated behavior and nearly

temperature-independent surface conductivity. By performing the experiments from 2 – 20

K, we extracted the bulk conductivity, which includes both the bulk-dominated and surface-

dominated regimes. We note that the numerically found geometric prefactors were used

to extract the bulk conductivity, and a noticeable discontinuity between the results from

the bulk-dominated regime and the surface-dominated regime existed, suggesting there is

likely a discrepancy in the dimensions between the ideally suggested transport geometry and

the realized samples. However, the activation energy, or the slope of the bulk conductivity

vs. 1/T , are consistent in the two regimes, suggesting that they can be patched together

by adjusting the prefactors. We recommend adjusting the prefactor corresponding for the

inverted resistance measurement. Using these methods, we have found the bulk conductiv-

ity of SmB6, extending about two extra orders of magnitude compared to the conventional

resistance measurement.

We expect our newly proposed method of transport can be used in a broad range of

materials beyond SmB6. For these new materials, we hope that the community does not

rely on the conventional transport methods such as residual-resistance ratios that can be

problematic in the presence of two-channels, and instead, employ our transport methods.

In the following chapter, we will employ this inverted resistance measurement to further

study the bulk of SmB6.
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Chapter 6

Bulk Studies of SmB6: Role of

Disorder

6.1 Introduction

1In the previous chapter, we have demonstrated that the inverted resistance measure-

ment indeed works well for finding the bulk conductivity below the bulk-to-surface crossover

temperature. Now we are equipped to study the bulk of SmB6 and related materials in a

wider temperature range.

SmB6 is known as a Kondo insulator, a material in which a small band gap forms by the

hybridization between the 5d-conduction electrons and the 4f -localized electrons, and the

Fermi energy is located in this gap. To be more precise, SmB6 is a mixed valence system in

that the samarium ions exist both in the Sm2+(4f 6) and the Sm3+(4f 55d) states with a 3:7

ratio [10].

The role of the valence states in the insulating bulk gap has been an important question

to the researchers. In particular, to understand this role, researchers have studied transport

on SmB6 by systematically changing the doping level (including the level of Sm vacancies)

[27,87–91].

Recently, doped SmB6 has also been studied for understanding the surface. One impor-

tant study is transport on magnetically doped SmB6 samples. This is important for verifying

the topological Kondo insulator (TKI). TKI predicts that the topologically-protected surface

states can only exist if the system preserves time-reversal symmetry. Since magnetic impuri-

ties can break the time reversal symmetry of the material system, experimental studies have

tested if the surface states disappear in magnetically doped SmB6 samples [90, 91].

1The author and his collaborators are preparing a manuscript for submitting to a peer-reviewed journal
that will contain contents in this chapter.
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Figure 6.1: Previous transport reports on vacancy and Eu-doped SmB6 Samples (a) Re-
sistivity data by T. Kasuya et al. reported in 1977. With permission of Springer [27].
(b) Resistivity data reported by S. Yeo et al. in 2012. Reprinted figure with permission
from [88], and also additional kind permission from the first author. Copyright (2012) by
the American Physical Society.

To fully understand the role of substitution of atoms for such doped SmB6 studies, one

must also take into account the role of disorder. However, this aspect remains quite elusive.

Some early Sm vacancy SmB6 studies, such as the one from T. Kasuya et al. [27], do attempt

to interpret their data in terms of disorder, but the researchers at the time were attempting

to interpret the resistivity plateau that is now believed to originate from the surface. In fact,

the Sm-vacant SmB6 report by T. Kasuya et al. challenges the existence of the conducting

surface state picture. Their data is shown in Fig. (6.1) (a). At high temperatures, the slope

of the resistivity (or resistance ratio) changes at different Sm vacancy levels. In addition,

the magnitude of the resistance plateau at low temperatures becomes lower when the Sm

vacancy concentration increases. This is the opposite behavior of what we would expect

with the conducting surface state in mind. We would expect the surface conductivity to be

independent of the bulk resistivity rise. More importantly, when disorder increases, we would

expect the mobility to be smaller, and therefore the surface resistance to increase. In other

reports, this trend is different. For example, Yeo et al. [88], report ρ(bulk resistivity) vs. T

on Eu-doped SmB6 samples, shown in Fig. (6.1) (b). The data shows that the resistivity

magnitude does not follow consistently with the doping level. Unfortunately, many of the

other transport reports on doped SmB6 report the resistance ratio (R(T )/R(300 K)) that
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make it impossible to compare this trend.

For the resistivity at the high temperatures, where the bulk is dominating, we would

also expect significant consequences due to the change of disorder. For example, a large

concentration of impurities that are positioned randomly can result in in-gap impurity states

with hopping conduction that follows a resistivity behavior of, ρ ∝ exp(T0/T )(1/4) [92].

To distinguish the thermally activated behavior from hopping conduction through random

impurities, a large extension of resistivity magnitude for a wide temperature range must be

measured. Also, if the role of disorder is significant, this can have consequences at low energy

scales (at low temperatures). Because the surface state dominates at low temperatures, this

was believed to be impossible to explore by transport in the past. But now, thanks to our

newly invented inverted resistance measurement, this is now possible.

In this chapter, before we present our experimental work, a theory work done by our group

will be introduced that does not involve the existence of the impurity states in the gap. This

will be related to the experimental studies in this chapter. Within the in-gap impurity state

picture, if the impurities are dilute, one may expect a hydrogen-like impurity state in the

standard semiconductor picture. We point out that these hydrogenic impurities cannot be

justified because the effective Bohr radius is too small. Next, we review a model that we

recently proposed (A. Rakoski et al. [93]), as a possible alternative scenario for the bulk of

SmB6, where the gap is clean, and the bulk bands bend due to the existence of the surface

states. This model can explain the difference between the transport and the spectroscopy

gap. In addition, the model is able to explain a small hump feature in resistance and Hall

resistance that exist around 10 K, which is observed very commonly by many researchers.

After the introduction of our clean gap model, we present our experimental work. First,

we point out that even the bulk transport studies can be wrongly studied if the sample is

not prepared carefully enough. Then, we use our inverted resistance measurement, which

allows us to study the bulk of SmB6 at temperatures below the bulk-to-surface crossover.

We use the double-sided transport geometry that is similar to the ones that we used in the

previous chapter. By additionally using an instrumentation amplifier during our transport

measurement, we were able to measure the pure SmB6 to even lower temperatures (down

to around 1.9 K). To study the role of disorder, we also measure the inverted resistance

on systematically disordered SmB6 samples. These samples are intentionally grown with

less samarium, expecting the disorder to be introduced. We find that the bulk resistivity

changes by 10 orders of magnitude with a consistent thermal activation energy of ∼4 meV.

This large magnitude verification provides evidence of the clean bulk gap. Inconsistent

with the previous studies, we also find that the disordered samples show an almost identical

thermal activation energy, with also a large resistivity magnitude change. Surprisingly, SmB6
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Figure 6.2: Dispersion of the bulk bands of SmB6 along the Γ-X-Γ direction. (a) Band
structure before hybridization. (b) Band structure after hybridization of the d band with
one of the f bands. (c) Simplified band structure that is used in the model. Reprinted figure
with permission from [93], and additional kind permission from the first author. Copyright
(2017) by the American Physical Society.

samples grown with more than 25 % percent Sm deficiency show a mysterious plateau of

bulk resistivity.

6.2 Clean Gap Model

In this section, a new bulk gap model based on the recent work of A. Rakoski et al.

from our group will be introduced. Most importantly, this model does not involve the in-gap

impurity states. Only a summary of this model and its consequences are explained in this

section. A more detailed description can be found in the published work [93].

The original motivation for introducing this clean gap model for SmB6 is to explain the

difference between the transport gap and the spectroscopy gap, which was a big mystery

to the SmB6 community. Photoemission and tunneling spectroscopy measurements show a

gap of 16 – 20 meV. On the other hand, many transport experiments report the activation

energy from resistivity or Hall resistance as a function of temperature in the range of 3 – 4

meV. This difference is puzzling, because if the Fermi energy is at the middle, the transport

gap should be measuring ∼10 meV instead. Various scenarios have been proposed to resolve

this energy-difference issue. One popular scenario is the possibility of the existence of the

impurity states in the gap [94]. Another possibility is the presence of an indirect band gap,

resulting from the standard Kondo gap formation [81].

Before introducing the new clean gap model, the standard formalism that describes the

localized impurity states, especially for semiconductors, will be reviewed. It turns out that
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this formalism is problematic when it is applied to SmB6. The standard way to understand

the impurity states is by using the effective mass approximation. When an impurity is present

in the material, we can normally treat this problem by adding an impurity potential to the

single electron Hamiltonian. We then further simplify the Hamiltonian by assuming that the

lattice potential felt by the electron can be treated as a background. This lattice potential

information can be absorbed into the kinetic energy part of the electron by replacing the

electron mass (m) with the effective mass (m∗). Specifically for an ionized impurity potential,

we can treat it as a Coulomb potential in a dielectric material. Then, the problem is identical

to a hydrogen atom Hamiltonian, except that the electron mass is replaced with m∗, and

the Coulomb potential is modified for the material by replacing the vacuum permittivity

with the dielectric constant (κ). However, in SmB6, there is a danger in using this approach.

Even after the f - and d- orbitals hybridize and form a gap, as shown in Fig. (6.2) (a) to

Fig. (6.2) (b), the hybridized bands still have almost flat f -like characteristics near the Fermi

energy. For the ionized impurity case, the effective mass approximation indeed fails, and it

can be seen explicitly by calculating the effective Bohr radius,

a∗B =
4πκε0~2

m∗e2
=

κ

m∗/m
(0.53 Å), (6.1)

To treat the lattice potential as a background, aB must be much larger than the lattice

constant, which is a = 4.13 Å for SmB6. The estimation of aB results in a range of 0.5

– 4 Å, which is comparable to the lattice constant or even smaller. Therefore, our initial

assumption that the impurity potential is slowly varying compared to the lattice potential

is not valid, and the in-gap states cannot be treated as a hydrogenic-like problem in SmB6.

While still relying on the standard gap physics, we find an alternative way to explain

the discrepancy between the spectroscopy and the transport gap magnitude. Instead, we

introduce a gap model that does not involve any in-gap impurity states. We assume the gap

is clean, and this full gap magnitude is ∼20 meV. Without any impurity states in the gap,

the Fermi energy will be positioned exactly at the middle of this gap. What is special about

this model is that, because the material is presumed to be intrinsic, the bands can bend by

the existence of the surface states2 easily with an associated pinning energy (Epin).

This band bending effect has been calculated numerically across a sample by solving the

Poisson equation self consistently. The result is shown in Fig. (6.3) (a) at 8 K, when the

Epin = 5.5 meV. The bands bend near the boundaries (surface) remain almost unbent at

the middle of the sample. Because the band bending of the conduction band and the valence

band is identical, only the conduction band bending at different temperatures is shown in

2The origin does not necessarily have to be TI surface states to result in the band bending effect.
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Figure 6.3: The numerical result of band bending in the clean gap of SmB6. Epin = 5.5meV
and the sample thickness is 200 µm(a)Band structure result at T = 8 K. The relationship
among the activation energy Ea, the built-in potential eVbi, the pinning energy Epin, and
the gap Egap are all shown. (b) Calculated bulk conduction band at different temperatures.
Reprinted from [93] with kind permission from the first author. Copyright (2017) by the
American Physical Society.

Fig. (6.3) (b). This result shows that at high temperatures (higher than 10 K), the conduction

band is unbent at the middle of the gap, which is Egap/2 from the Fermi energy. However,

at lower temperatures, the conduction band bending effect is large enough to influence the

middle of the geometry. Eventually, the conduction band becomes flat throughout the entire

geometry, located about 4 meV above the Fermi energy instead of Egap/2. This result can

explain the difference between the transport gap and the spectroscopy gap. Transport at

low temperatures will measure the gap between the Fermi energy and the bent conduction

band, whereas the spectroscopy gap will remain with the full 20 meV gap.

This model involves two energy scales. At high temperatures, the pure bulk effect dom-

inates the transport. At low temperatures, the bulk bands that are bent by the surface

dominate the transport. This model results in a crossover between these two regimes at

around 10 – 12 K. Simulating transport, using the simplified band model in Fig. (6.2) (c),

this crossover manifests a hump feature that has seen by many researchers in the past. A

comparison of the numerical results and the experimental reports are shown in Fig. (6.4).

According to the model, this hump feature depends on the geometry of the sample, espe-

cially on the thickness. Further experimental studies on the effect of varying the thickness

are currently under investigation.

In the following section, we discuss the importance of preparing the sample carefully
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Figure 6.4: Simulation of Hall coefficients for samples of different thickness, and comparison
with the reported Hall data [25,59,87,95–97]. Reprinted from [93] with kind permission from
the first author. Copyright (2017) by the American Physical Society.

and choosing the correct transport geometry. We show that studying the bulk activation

behavior between the range of the hump feature around ∼10 K, and a resistance plateau

can be narrow when the sample is not carefully polished, and therefore a wrong activation

energy will be estimated.

6.3 Sample Preparation and Transport Geometry De-

pendence

In Chapter 3, we have emphasized that choosing the proper transport geometry and care-

fully polishing the sample is very important for properly characterizing the surface of SmB6.

Here, we show that proper transport geometry and sample preparation is also important for

characterizing the bulk.

Fig. (6.5) (a) shows the resistance as a function of inverse temperature measured by a

Corbino disk (the one used here is part of a double-sided Corbino disk that is later used in

the inverted resistance measurement) after carefully polishing the surface and a sample with

standard 4-point contacts without any surface preparation. The two samples are from the

same crystal growth batch, which is intentionally grown with 10 % less samarium. Consistent

with what we learned from Chapter 3, depending on the transport geometry and surface

preparation, the resistance plateau at low temperatures changes greatly. The Corbino disk

geometry, shown in a solid blue line, reaches up to ∼100 Ω, whereas the 4-point geometry,
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Figure 6.5: Comparison of transport results for different geometries on a sample grown with
10 % Sm deficiency. (a) Resistance vs. 1/T of SmB6 samples grown with 10 % less samarium
from two different transport geometries. The solid blue line is the data taken from the four-
terminal Corbino disk, and the solid red line is the data taken from a 4-point contact on a
raw sample (unpolished). (b) Picture of a four-terminal Corbino disk. The dotted lines are
examples of how a researcher might incorrectly fit the slope to analyze the bulk resistivity.
(c) Picture of a 4-point contact configuration on a raw sample. In preparation for submission
to a journal.

shown in a solid red line, reaches up to a to ∼1 Ω.

Now let us compare the resistance features of the two data sets in the bulk-dominated

regime. The high-temperature ranges from 0 – 0.5 K−1 seem to be parallel to each other,

although the range is too small to be decisive. Below that temperature range, the two data

sets show the hump feature near ∼0.1 (1/K), which is predicted in the model by A. Rakoski

et al. [93], introduced in the previous section. However, the two sets of data have a slightly

different magnitude and position. The resistance from the 4-point geometry (solid red line)

shows the hump feature at 10 – 12 K extends in a more broader range. In fact, this feature

is almost to the resistance plateau. Therefore, the 4-point geometry does not show a good

range for analyzing the bulk activation energy. In Fig. (6.5) (a), we also show how one might

fit the resistance data for extracting the bulk activation energy in dashed lines. The data

from the four-point geometry shows that the extracted bulk activation energy would not be
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correct.

Therefore, we must prepare the sample that results in a high resistance plateau magnitude

such as the solid red line in Fig. (6.5) (a). However, even this Corbino disk geometry

only provides the thermally bulk-activated region of about three orders of magnitude of

resistivity. Also, we would like to know how the bulk behaves below the bulk-to-surface

crossover temperature, where the resistance plateau dominates. Since we are now capable

of extracting the bulk behavior even in the plateau region from our new inverted resistance

measurement, we can investigate the bulk resistivity at lower temperatures.

6.4 Inverted Resistance Measurement of Samples Grown

with Sm deficiencies

6.4.1 Sample Preparation and Transport Geometry

In this section, we briefly explain how we prepared our samples for bulk transport studies,

and how they are measured.

The SmB6 samples were grown by a flux method in an aluminum solution. In addition to

the pure SmB6 sample, other samples were grown with intentionally less samarium. Samples

were grown with 10 %, 25 %, and 40 % less samarium when compared to the pure SmB6

growth (or nominal Sm0.9B6, Sm0.75B6, and Sm0.6B6 samples). We do not necessarily expect

the crystals to have the Sm vacancy level (point defect concentration) identical to these

composition ratios, but we do expect the disorder to increase when the Sm is less in the

crystal growth.

The samples were polished on both sides. The samples were first thinned with a SiC

polishing pad that has a grit size of 15.3 µm. The final thicknesses of the samples result in

the range of 200 – 400 µm. All of the samples were finally polished with an Al2O3 slurry

with a 0.3 µm particle size on a polishing cloth (TexMetC). Any remaining aluminum flux

inclusions were thinned away or etched with dilute HCl.

We performed standard photolithography to acquire the transport geometries that allow

the inverted resistance measurement. The pure SmB6 sample was measured on a single sur-

face as shown in Fig. (6.6) (a). For the rest of the samples that were grown with less Sm,

we prepared a double-sided geometry, for which all of the surface diagrams are shown in

Fig. (6.6) (a), (c), and (e). Here we note that the transport geometry has a four-terminal

Corbino disk on one side and a two-terminal Corbino disk on the other side. We performed

standard photolithography by covering the pattern of the annular shaped region with pho-

toresist, and expose the pattern where we want to evaporate the highly conductive metal.
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Figure 6.6: Transport geometry and device on a sample grown with a 40 % Sm deficiency
(nominal Sm0.6B6). (a) The top view of the transport geometry. (b) Picture of the top
view of the 40 % samarium-deficient grown sample. (c) Side view of the transport geometry.
(d) Picture of the side view. (e) Bottom view of the transport geometry. (f) Picture of
the bottom view of the nominal Sm0.6B6 sample. The dimensions are: r1 = 100 µm, r2 =
800 µm, rin = 200 µm, rout = 300 µm, W = 75 µm, r3 = 165 µm, and r4 = 290 µm. In
preparation for submission to a journal.
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We evaporated Ti/Au 20 Å/1500 Å, and lifted off the remaining photoresist with acetone.

This entire process was done on each surface (top and bottom) at a time. We then attached

aluminum wires (1 mil) using a wire bonder on one side. The sample was then mounted

vertically on a sapphire glass with GE varnish, as shown in Fig (6.6) (d). Gold wires (1 mil)

were connected on the other remaining surface by hand with silver paste. We also present

pictures of one of our prepared samples in Fig. (6.6) (b), (d), and (f), next to the schematic

diagrams for comparison.

We measured our sample from 300K – 1.7 K in the Quantum Design PPMS system.

To measure the resistance of the samples, we use our own external electronics that are

connected to the sample through the PPMS system. We performed low-frequency lock-

in measurements using an external lock-in amplifier (SR830), together with a home-built

instrumentation amplifier that has a common-mode rejection ratio performance of 120 dB.

We enumerated the terminals in the side view that is shown in Fig. (6.6) (c). The lateral

resistance measurement is measured by sending current from terminal 1 to 4 (I1,4), and

measuring the voltage between terminal 2 and 3 (V2,3), i.e., RL = R1,4;2,3. The inverted

resistance measurement is measured by two ways. The inverted resistance of pure SmB6 is

measured on a single surface by sending current from terminal 1 to 2 (I1,4), and measuring

the voltage between terminal 3 and 4 (V3,4), i.e., RInv = R1,2;3,4. The inverted resistance

on the other samples that are Sm-deficient grown are measured by sending current from

terminal 5 to 6 (I5,6), and measuring the voltage on the opposite surface between terminal

2 and 3 (V2,3), i.e., RInv = R5,6;2,3.

6.4.2 Experimental Results

In this subsection, we discuss our transport results on the pure SmB6 and the samples

grown with less Sm. The resistance as a function of temperature are shown in Fig. (6.7)

(a) – (d). In the lateral resistance measurement, shown in blue lines, the resistance plateau

appears at low temperatures with magnitudes of 100 – 200 Ω. This corresponds to a sheet

resistance of 2 – 3 kΩ. This is inconsistent with the previous reports shown in Fig. (6.1). We

do not see a clear trend of the sheet resistance values. In the high-temperature region, above

∼4 K, the resistance increases when the temperature is lowered. This is consistent with the

conventional resistance found from the series expansion of the two-channel resistance in the

bulk-dominated regime (σs � σbt) when the bulk conductivity is thermally activated by

σb ∝ exp(−Ea/kBT ), where Ea is the activation energy:

RC =
C−1

σbt
, (6.2)
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where σb is the bulk conductivity, t is the thickness. Notice that each of the blue lines show

a weak hump feature around ∼10 K, consistent with the previous transport reports and the

prediction from the band bending discussed in the previous section [93].

In the inverted resistance measurements, shown in red lines, the magnitude first increases

by lowering the temperature. The lines are almost parallel with the lateral resistance (blue

lines), except for the hump features. Although a more thorough investigation is needed, this

may be related to how we measure the resistance, where the corresponding effective thickness

can be different between a lateral measurement and an inverted resistance measurement. Be-

low ∼4 K, the bulk-to-surface crossover temperature, the resistance starts to drop, which is

consistent with the inverted resistance found from the series expansion of the two-channel re-

sistance in the surface-dominated region (σs � σbt) when the bulk conductivity is thermally

activated:

RInv =
C1

σ2
s

σbt, (6.3)

where σs is the surface conductivity, and C1 is the transport coefficient for the inverted

resistance found by numerical simulations. In the pure SmB6 sample, shown in the red

line in Fig. (6.1) (a), the resistance approaches to zero as the temperature is lowered. At

even lower temperatures, below 1.9 K, the resistance starts to fluctuate between a positive

value and a negative value because the measurement has reached the limit of the amplifier

performance (common-mode rejection ratio). Here, we only present data that is meaningful,

which is higher than that performance limit.

In the SmB6 samples grown with less Sm, the resistance shows a plateau feature instead

of approaching zero. The nominal Sm0.9B6 sample is too noisy to notice whether there is

a plateau, but the plateau appears to be more pronounced in the nominal Sm0.6B6 sample

than the nominal Sm0.75B6 sample. In the following section, after converting the data shown

in Fig. (6.7) to bulk resistivity, these small features will show a bulk resistivity plateau at

low temperatures.

6.4.3 Analysis

In this subsection, we convert the resistance data to the bulk resistivity of the pure SmB6

sample and the SmB6 samples that are grown with less Sm.

We extract the bulk resistivity from the resistance data sets that are shown in Fig. (6.7).

The method of extraction is identical to the demonstrations in Chapter 5. The transport

coefficients for the used transport geometry, C1 and C−1, are shown in Fig. (6.8). The

bulk resistivity above ∼4 K is found from the lateral resistance measurement, and the bulk

resistivity below ∼4 K is found from the inverted resistance measurement. A two-channel
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model (Eq. (4.6)) was used to find the bulk resistivity from the lateral resistance in the bulk-

to-surface crossover regime. Similar to the demonstrations of bulk resistivity extraction in

Chapter 5, the bulk resistivities in the bulk-dominated regime and the surface-dominated

regime were mismatched in magnitude by a few factors. We adjust the bulk resistivity from

the surface-dominated regime since the corresponding transport coefficient (C1) is more

vulnerable than the one for the bulk-dominated regime (C−1).

The plots of bulk resistivity as a function of temperature are shown in Fig. (6.9) (a), and

the same resistivity data as a function of inverse temperature are shown in Fig. (6.9) (b).

For the pure SmB6 bulk resistivity, shown in black, the thermally activated behavior in

the surface-dominated regime and the bulk-dominated regime are identical. The activation

energy is Ea = 4.01 meV, which is consistent with the earlier reports [40, 62, 82]. The

magnitude of the bulk resistivity changes by ∼10 orders of magnitude. For the samples

grown with less Sm, the bulk resistivities above ∼2K show a thermally activated behavior,

and the activation energies are almost identical to the pure SmB6 sample. The bulk resistivity

of samples that are grown with a deficiency of Sm shows almost identical thermally activated

behavior as the pure SmB6 sample. Below ∼2 K, a strange resistivity plateau develops. The

plateau is most pronounced in the nominal Sm0.6B6 sample, which was grown with the least

Sm.

6.5 Discussion

For the pure SmB6 sample, the large resistivity change is surprising when comparing to

well-known narrow-gapped insulators (semiconductors). Typically, the temperature depen-

dence of the resistivity of a semiconductor exhibits an intrinsic behavior at high temperatures,

and then an extrinsic behavior at low temperatures. The extrinsic regime is dominated by

the impurity states in the gap, and the resistivity is nearly flat over a certain tempera-

ture range. In order to extend the intrinsic regime over wider temperatures, the impurity

concentration must be lowered. Certain applications in semiconductors require a very low

impurity concentration. Integrated circuit applications, for example, require a silicon purity

of 99.99999999 %, which corresponds to an impurity concentration of 5× 1014 cm−3. When

the semiconductor is heavily doped, variable range hopping dominate the transport with a

temperature dependence of ρ = ρ0 exp(T0/T )1/4. For even higher levels of doping (degenerate

semiconductors), the impurities form extended states, and the material transitions from an

insulator to a metal. In fact, in most 3D TIs, the bulk conductivity overwhelms the surface

conductivity because the impurity concentration levels are in the heavily-doped regime. For

example, in Bi2Se3 and Bi2Te3, the required impurity density level is ∼1014 cm−3 to avoid
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hopping conduction and metal transition [98]. However, because of technical difficulties, the

highest quality samples still have impurity levels that are a few orders of magnitude higher

than this critical level [98].

Surprisingly, the bulk resistivity of SmB6 (pure) neither exhibits the extrinsic regime

of a low-doped semiconductor nor the variable range hopping behavior. Instead, the bulk

resistivity exhibits a thermally activated behavior consistent with a clean gap over the entire

temperature range that was measured. For the samples grown with less samarium, we expect

to observe signatures of very large disorder. These samples also exhibit a large resistivity

change with almost identical activation energies before the resistivity plateau appears. This

indicates that disorder, which we expect to be induced by missing samarium sites in the

lattice, does not play a role in the temperature dependence of the bulk resistivity. Instead, it

is possible to expect point defects to disturb the density of states that are far away from the

gap. A similar example is the BCS gap of a superconductor. Usually the superconducting

state is immune to certain amount of alloying (i.e., large disorder) because the density of

state is only perturbed far away from the BCS gap [99,100].

The bulk resistivity plateaus observed in the SmB6 samples grown with less Sm are also

a surprise. They imply that at low temperatures, in the surface-dominated regime, a very

small bulk channel is present while the surface conduction dominates. We note that the

associated number of carriers are too small to explain the exotic bulk quantum oscillations

seen by Tan et al [61]. Our current speculation is that these plateaus develop due to higher

order defects than point defects, such as dislocations that might not be uniformly distributed,

but may exist sporadically with length scales that extend throughout the bulk of the sample.

If SmB6 is a 3D topological insulator, one possibility is that these higher order defects may

accompany topologically protected conduction paths. For future studies, this mysterious bulk

conduction channel must be studied in more depth, including studies with other variously

doped SmB6 samples. Also, these possible defects must be visualized by probing methods

such as tunneling electron microscopy (TEM).

6.6 Conclusion

In this chapter, the bulk transport of pure and Sm-deficient-grown SmB6 was studied

through the new inverted resistance measurement. A bulk model that does not involve in-gap

impurity states was first introduced. We then showed experimentally, using the double-sided

transport geometry, that the pure SmB6 sample shows a robust thermally activated behavior.

We also studied bulk transport on samples that are intentionally disordered by growing with

substantially less samarium. Surprisingly, these samples show identical thermally activated
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behavior compared to the pure SmB6 until an unexpected resistivity plateau develops. Our

results suggest that the bulk of SmB6 is immune to disorder originating from point-like

defects, but may be influenced by higher order defects.
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Figure 6.7: Resistance vs. temperature of pure and Sm–deficient grown SmB6 samples.
The blue lines are results from the lateral resistance, and the red lines are results from the
inverted resistance. (a) Pure SmB6. (b) SmB6 grown with 10 % less Sm.(c) SmB6 grown
with 25 % less Sm. (d) SmB6 grown with 40 % less Sm. In preparation for submission to a
journal.
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(a)

(b)

Figure 6.8: The transport coefficients that were used to extract the bulk resistivity of the va-
cancy SmB6 samples. (a) Transport coefficient for the lateral resistance at high temperatures.
(b) Transport coefficient for the inverted resistance at low temperatures. In preparation for
submission to a journal.
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Figure 6.9: Temperature dependence of bulk resistivity of pure SmB6 and samples grown
with less Sm. (a) Bulk Resistivity vs. temperature of SmB6 and samples grown with less
Sm. (b) Bulk Resistivity vs. 1/Temperature of SmB6 and samples grown with less Sm. In
preparation for submission to a journal.
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Chapter 7

Conclusions and Outlook

7.1 Summary

Motivated by the theoretical predictions that SmB6 is a topological Kondo insulator,

and the experimental discovery of the conducting surface states [40], the surface and bulk of

SmB6 were investigated by using electrical transport in this dissertation.

We studied the surface of SmB6 using magnetotransport. We were not able to observe

SdH oscillations even at high magnetic fields up to 93 T, and therefore we were not able to

separate the contribution of each Fermi pocket. We, therefore, relied on classical magneto-

transport and extracted the (effective) carrier density and mobility. During the studies, we

found that the transport geometry and surface preparation can significantly impact the sur-

face transport experiments. By choosing a Corbino disk geometry instead of using standard

Hall bar geometry, our estimated carrier density has changed from an unphysically large

value to an acceptable value. Also, we have noticed that subsurface cracks and boundaries

of a polycrystal can conduct as well as the crystalline surface, and therefore can lead to an

overestimation of the carrier density. With the careful considerations of these issues, our

estimated carrier density and mobility on the SmB6 (001) crystal surface is 2.71×1013 cm−2

and 104.5 cm2/(V·sec), respectively. Using these values, we constructed a parameter space

of where each carrier density and mobility of the Fermi pockets (Γ and 2X) can be located.

Among many experimental reports that can be compared with surface transport, only the

X-pocket ARPES reports are consistent with our transport parameter space.

To study the bulk of SmB6, including at low temperatures where the surface conduction

dominates, we invented a new transport method, which we call the inverted resistance mea-

surement. The bulk resistivity can be found at low temperatures by measuring the voltage

outside of the Corbino disk loop, while the current flows conventionally through the loop.

To optimize the performance of this method, we have developed several transport geome-
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Figure 7.1: TEM image of the 40% Sm-deficient grown SmB6 sample. The line features can
either be local line defects or subsurface cracks created by the final polishing step. Figure
courtesy of A. Rakoski.

tries, including Corbino disks that are coaxially aligned on two opposite surfaces. We have

demonstrated that this transport geometry works well experimentally, and also showed that

this double-sided Corbino disk transport geometry could be used as an alternative to the

non-local transport geometry that Wolgast et al. [40] used for discovering the surface states

of SmB6. We expect our new transport geometries to be used in materials that are predicted

to have surface states similar to SmB6.

We have studied the bulk of both pure SmB6 and SmB6 samples that were grown in-

tentionally with less Sm using our inverted resistance measurement. We find that the bulk

resistivity of SmB6 is an ideal insulator that continues to be thermally activated with an

activation energy of 4.01 meV. The bulk resistivity result that includes both the bulk- and

surface-dominated regimes extends to about ten orders of magnitude, which is exception-

ally large even comparing it with other high-quality intrinsic semiconductors. For the bulk

resistivity results on samples grown with Sm-deficiency, we also find a thermally activated

behavior that is not significantly different from the pure SmB6 results. From this, we believe

that the gap of SmB6 is robust against disorder and impurities. In addition, at low tempera-

tures, we find that the highly Sm-deficient samples show a bulk resistivity plateau, which has

not been seen by anyone because the surface conduction dominates in conventional transport

geometries. To the best of our knowledge, this bulk resistivity plateau cannot be explained

by our conventional understanding of conduction through regular carriers or hopping through

impurities.
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7.2 Future Work

Our study of the bulk of SmB6 suggests that the role of disorder and impurities may be

very different from what we understand in conventional materials. To understand this aspect

further, we expect that future inverted resistance measurements on doped SmB6 with both

nonmagnetic and magnetic atoms may provide further excitement and insights. We speculate

that conduction through higher order defects that may extend throughout the entire sample

may be the cause of the low-temperature bulk-resistivity plateau that we observe in the 25

% and 40 % Sm-deficient samples.

Using a transmission electron microscope (TEM), our group is currently investigating

if 1D defects or higher dimensional defects that extend throughout the bulk exist in the

samples we measured. So far, we tried to probe through thin specimens that were cut

from the active transport region of the 40 % Sm-deficient SmB6 sample that was used for

the double-sided Corbino disk transport measurement in the previous chapter, as shown in

Fig. (7.1). Interestingly, we have found small imperfections near the surface. However, these

features only exist near the surface of the active region of the Corbino disk. Also, the position

and the length scales of these features are in the order of 0.1 µm, which is the same order of

magnitude of the Al2O3 particles (0.3 µm) that were used in our final polishing procedure.

This suggests that these features are subsurface cracks rather than line dislocations. Further

investigation is needed if conduction through 1D (or higher dimensional) defects are the very

cause of the bulk resistivity plateaus.
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Appendix A

More Details on the Parameter Space

Construction

In this appendix, we discuss more details about constructing the parameter space of

Fig. (3.9).

A.1 Considering Mobilities

For the reader, it may not be clear why one of the channel (Γ) requires a higher mobility

than the effective mobility (the mobility we find from the surface Corbino magnetotrans-

port experiment), while the other channel (2X) requires a lower mobility than the effective

mobility.

In the presence of two mobilities from each channels Γ and 2X, say µΓ and µ2X , suppose

they are both higher value than the effective mobility, µeff , i.e., µΓ > µeff and µ2X > µeff .

We can express Eq. (3.6) as:

µ2
eff = (µ2

Γ − µ2
2X)(

σΓ

σt
) + µ2

2X =
σΓµ

2
Γ + σ2Xµ

2
2X

σt
, (A.1)

We first consider the condition of µΓ > µeff . This requires:

µ2
Γ >

σΓµ
2
Γ + σ2Xµ

2
2X

σt
. (A.2)

Eq. (A.2) can be rearranged as

(σt − σΓ) µ2
Γ > σ2X µ2

2X . (A.3)
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Since σt = σΓ + σ2X , we can write Eq. (A.3) as:

σ2X µ2
Γ > σ2X µ2

2X . (A.4)

Since the conductivity is always positive, we can cancel the conductivity without changing

the inequality sign. This reduces to:

µ2
Γ > µ2

2X . (A.5)

Also, the mobility is always positive, so the square root will not change the inequality:

µΓ > µ2X . (A.6)

Next we consider µ2X > µeff . We can again use Eq. (A.1):

µ2
2X >

σΓµ
2
Γ + σ2Xµ

2
2X

σt
. (A.7)

Then similar to the steps Eq. (A.2) - Eq. (A.6), Eq. (A.7) can be expressed as:

µ2X > µΓ. (A.8)

Eq. (A.8) is in contradiction to Eq. (A.6), so µΓ > µeff and µ2X > µeff cannot be satisfied

at the same time.

Next, we consider when at least one of the mobilities is the same as the effective mobility,

µΓ = µeff or (and) µ2X = µeff . We consider µΓ = µeff case first. From, Eq. (A.1), this

condition requires:

µ2
Γ =

σΓµ
2
Γ + σ2Xµ

2
2X

σt
. (A.9)

Then, from the similar calculations above, Eq. (A.2) result in:

µΓ = µ2X . (A.10)

Similarly, from condition µ2X = µeff , we get the identical result. Because Eq. (3.3),

σt = σΓ + σ2X , must also satisfy, nΓ = n2X . This result is meaningless in that we have just

split one pocket into two pockets with identical properties.

Therefore, in the presence of two channels, one of the mobilities has to be larger than

the effective mobility (µΓ > µeff), and the other has to be smaller (µ2X < µeff):
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µ2X < µeff < µΓ. (A.11)

A.2 Considering Carrier Densities

Next, we consider the carrier densities of each pocket in the parameter space. For the

reader, it may also not be clear why one of the channel (Γ) requires a higher carrier density

than the effective carrier density (the carrier density we find from the Corbino magneto-

transport), while the other channel (2X) has to occupy the lower right part of the paramter

space region.

Notice because the total conductivity is the sum of the conductivities of each channel,

the conductivity of each channel must be smaller than the total conductivity, σt > σΓ and

σt > σ2X .

We first consider the condition of σt > σΓ. This requires:

neffµeff > nΓµΓ. (A.12)

Then, we can express this as:

µeff

µΓ

>
nΓ

neff

. (A.13)

Since µeff/µΓ must be smaller than 1 from what we found from the previous section,

nΓ/µeff must also be smaller than 1. Then we find:

neff > nΓ. (A.14)

Next, for the carrier density for the 2X channel, since σ2X > (e2/h), and µeff > µ2X , we

have the following inequality:

n2X >
e

h

1

µ2X

>
e

h

1

µeff

. (A.15)

Therefore, n2X > 2.3 × 1012 cm−2. Together with µeff > µ2X , this corresponds to the

lower right region of Fig. (3.9).
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Appendix B

Instrumentation Amplifier

In this appendix, we introduce an instrumentation amplifier that was used for measuring

small resistance values in the inverted resistance measurements. The circuit is shown in

Fig. (B.1). Normally, when subtracting two voltage signals, we use a differential amplifier,

which is equivalent to part II in the figure. When R1 is equal to R2, and R3 is equal to R4,

the output voltage, Vout, is the differential signal, VA − VB, multiplied by the gain:

GII = −R3

R1

. (B.1)

However, in reality, even if R1 (R3) and R2 (R4) are slightly different, there can be a sig-

nificant common mode signal, VA + VB, with a common mode gain, GC . This signal can be

significant when measuring small signals. If we pre-amplify before the differential amplifier

using the circuit as shown in part I in Fig. (B.1), we can overwhelm the common-mode

signal. From part I, the differential signal can be amplified by a gain of:

GI =
RA +RB +RC

RC

. (B.2)

The total gain of the circuit shown in Fig. (B.1) when R1 = R2, R3 = R4, and RA = RB is:

GTotal = −(
2RA

RC

+ 1)
R3

R1

. (B.3)
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Figure B.1: Instrumentation Amplifier.
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