
Improving Application QoE with Flow-Level,
Interface-Level, and Device-Level Parallelism

by

Yihua Guo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2017

Doctoral Committee:

Professor Z. Morley Mao, Chair
Professor Jason N. Flinn
Assistant Professor Feng Qian, Indiana University
Professor Ji Zhu

Yihua Guo

yhguo@umich.edu

ORCID iD: 0000-0001-9562-5481

c
� Yihua Guo 2017

All Rights Reserved

To Yiji, my grandparents, and my parents

ii

ACKNOWLEDGEMENTS

Pain is inevitable. Suffering is optional.

Say you’re running and you think, Man, this hurts, I can’t take it

anymore. The hurt part is an unavoidable reality, but whether or

not you can stand anymore is up to the runner himself.

HARUKI MURAKAMI

Translated by PHILIP GABRIEL

Pursuing a Ph.D. is a marathon: the runner needs to motivate him or herself continu-

ously to reach the finish line. This process requires enormous efforts. I am humbled to be

one of those who accomplish the journey, with this dissertation as the finale. For me, the

support of many individuals is indispensable to the birth of this dissertation. They make

my journey much more enjoyable.

My advisor, Z. Morley Mao, provided endless support, inspiration, and foresight in

my five years of Ph.D. study. I still remember her relentless efforts on editing our draft

and focusing on every detail for my first paper submission in 2014. Her guidance has

laid the foundation of my research, writing, and presentation skills. In research meetings,

she always inspired me to think out of the box with her unique perspective on networking

systems. Her candid feedbacks helped me overcome my weaknesses in the research; her

insights, like lighthouses in the storm, helped me see the big picture. I’m appreciative of

her belief in my research capability even in many times when it seemed like I might never

finish, and I’m honored to work with her along to push the boundaries of the knowledge

base of computer science.

iii

I would like to thank my other committee members, Jason Flinn, Feng Qian, and Ji Zhu,

for their insightful comments and valuable suggestions. They raise important questions on

several aspects in this dissertation, asking me to focus on clarity and soundness. With their

effort, this dissertation becomes complete and thorough.

Through remote collaboration, I greatly benefited from Feng Qian and Subhabrata

(Shubho) Sen during my research career. They are engaged in every research discussion

for most of my research projects. As a former AT&T Labs researcher and an Assistant Pro-

fessor at Indiana University since 2015, Feng has edited all my papers from the research

projects. I often discussed research questions with him for his advice. His devotion to

research set an excellent example of the combination of passion, wisdom, and persistence

for me. Shubho has inspired me in both research and life. I still remember the time when

Shubho and I took a walk on the beach at Santa Monica, talking about my multipath project

and his life experience. It’s also a pleasure working with Feng and Shubho in person during

my internship at AT&T in the summer of 2014.

Since Morley values the research collaboration with industry partners, I had the great

opportunities of working with wonderful researchers from many companies besides AT&T.

During my first year, I collaborated with Ulas Kozat, a then Docomo researcher, on improv-

ing cellular network performance. He introduced me to the world of cellular network re-

search. In my fourth year, I got the chance of working on improving the VoLTE call quality

with T-Mobile. The great researchers at T-Mobile including Jie Hui, Alex Yoon, Antoine

Tran, and Kranthi Sontineni have expanded my vision into real problems in production

networks. I have also received valuable perspective and suggestion on my multipath net-

working projects from Mondira Pant at Intel. I would like to express my gratitude to all of

them.

I am very fortunate to have a few internship experiences in five years. During these

internships, I have been working with knowledgeable and excellent researchers and en-

gineers, including Mario Baldi, Sung-Ju Lee, Stanislav Miskovic, and Bruno Nardelli at

iv

Narus (Sunnyvale, 2013), Vijay Gopalakrishnan, Emir Halepovic, and Oliver Spatscheck at

AT&T Labs – Research (Bedminster, 2014), Andreas Terzis and Krishna Sayana at Google

(Mountain View, 2015), Vinoth Chandar, Rajesh Mahindra, and Christopher Brauchli at

Uber (San Francisco, 2017). I have enjoyed working with them. Many of their words have

shaped my perspective on industrial research and product engineering.

My colleagues and friends at Michigan always make me feel like home here. Qiang

Xu mentored me during my first year. He taught me many research basics. Junxian Huang

included me in his in-depth study of LTE. It is my pleasure to work with him and make

an important contribution to one of his major publication. Qi Alfred Chen and I entered

the doctoral program at Michigan at the same time. I am grateful to be a friend of him,

who elegantly combines idealism and realism. We always had a lot of things to chat about

(his car’s electrical system even shut down during midnight before we realized, after hours

of discussion on research between us in his vehicle without the engine running!). I’ve

had many other excellent graduate student collaborators as well, including Yuanyuan Tracy

Zhou, Mehrdad Moradi, Ke David Hong, Sanae Rosen, Ashkan Nikravesh, Yunhan Jack

Jia, and Xiao Shawn Zhu. I learned a lot from their different characters: Yuanyuan’s cre-

ativity, Mehrdad’s meticulousness, David’s modesty, Sanae’s enthusiasm, Ashkan’s en-

durance, Jack’s improvisation, and Xiao’s diligence, to name a few.

My thanks also go to my other friends and colleagues at Michigan, including, but not

limited to: Haokun Luo, Mark Gordon, Hongyi Yao, Amir Rahmati, Earlence Fernandes,

Shichang Shawn Xu, Yuru Roy Shao, Yikai Lin, Chao Kong, Jie You, Jeremy Erickson,

Yulong Cao, Yucheng Yin, Shengtuo Hu, etc. I benefited from their insightful comments.

We also shared happiness and sorrow together, in research and life. I remember happy

times with many of them in SIGBAAAAA, our foosball fun club. I am thankful for my

other friends and people outside Michigan for appearing in and shaping my life: Zhe Wang,

Xiaozhou Che, Wen Ma, Jingxing Wang, Yuxuan Zhang, Xiaoxiang Wang, Meng Wang,

Tianyi Ma, Xiaofei Wen, Yushu Ma, Zhiyun Lu, Kuan Liu, Siji Quan, Yanrong Kang,

v

Xiaoyong Wu, Wei Li, Chunxu Xu, Yu Su, Hua He, Da Li, Sen Yang, Yu Xiang, Zheng

Wang, Jian Zhang, Jie Jiang, Jacky Jiang, etc. In my spare time, I found a lot of joy playing

the piano, with excellent guidance from my piano teacher, Daniel Drummond, since 2014.

It is hard for me to forget my undergraduate research advisor in Tsinghua University,

Yong Cui. Professor Cui introduced me to the academic research, especially the research

in computer networking. To prepare me with a necessary research background, he allowed

me to participate in his graduate-level wireless networking course and research projects. I

owe my special thanks to him for the great research experience I had in his research group

and his strong recommendation of me to Morley.

Ann Arbor is the place I lived and worked for five years. The Computer Science and

Engineering at Michigan is a great place for learning and research. The CSE staff makes

everything smooth in the department. Their names include Dawn Freysinger, Ashley An-

dreae, Stephen Reger, Karen Liska, etc. I thank their efforts on making administrative

things less concern for me during my doctoral study. I will remember people at CSE, the

vibrant campus, and the Michigan Spirit. Always Leading, Forever Valiant.

Finally, I would like to express my deepest thanks to my dearest grandparents, Zhen-

quan Guo, Zhuo Cao, Deguang Chen, and Zhilin Wang, and my beloved parents, Fan Guo

and Yi Chen for their unconditional support and love throughout my life. Your words and

deeds have a lifelong impact on me. Yiji, you are always for me, during the highs and

lows of my doctoral study. You are my friend, my love, and my life. This dissertation is

dedicated to all of you.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . xi

LIST OF TABLES . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Addressing Flow-Level Parallelism: Reducing Cross-Traffic Inter-
ference on Mobile Devices . 5

1.2 Leveraging Interface-Level Parallelism: Improving Multipath
Transport with Flexible Architecture and Optimized Scheduler . . 7

1.3 Embracing Device-level Parallelism: Designing Wearable Net-
work Management under Mobility for Real-Time Apps 9

1.4 Thesis Organization . 10

II. Background . 12

2.1 Multipath Networking . 12
2.1.1 Multipath over Mobile Networks 12
2.1.2 Multipath TCP and its Schedulers 13

2.2 Android Wear OS . 13

III. Understanding and Solving On-Device Bufferbloat in Cellular Networks 15

3.1 Introduction . 15
3.2 Experimental Methodology . 19

3.2.1 Controlled Local Experiments 19

vii

3.2.2 Network Traces from a User Study 20
3.3 Upload Traffic Measurement . 20

3.3.1 Traffic Volume . 20
3.3.2 Flow Duration . 21
3.3.3 Flow Rate . 22
3.3.4 Flow Concurrency . 23
3.3.5 RTT Dynamics . 24
3.3.6 Impact of Upload on Download Latency 24
3.3.7 Summary . 25

3.4 On-device Queuing Delay of Upload Traffic 25
3.4.1 Overall Delay Characterization 26
3.4.2 Root Cause of On-device Queuing 28
3.4.3 Prevalence across Carriers & Devices 31
3.4.4 Uplink Throughput Measurement 31

3.5 Impact of Upload on Mobile Application Performance 33
3.5.1 Impact of Upload on Bulk Download 33
3.5.2 Impact on Web Browsing 35
3.5.3 Impact on Video Streaming and VoIP 36

3.6 QCUT: Solution for On-device Bufferbloat 37
3.6.1 Inadequateness of Existing Solutions 37
3.6.2 QCUT Design . 38
3.6.3 QCUT Implementation 44

3.7 Evaluation . 45
3.7.1 Existing Solutions . 45
3.7.2 Evaluation of QCUT 49

3.8 Discussion . 53
3.9 Summary . 53

IV. Improving Multipath Architecture for Mobile Networks 55

4.1 Introduction . 55
4.2 MPFlex: A Flexible Architecture For Mobile Multipath 57

4.2.1 The MPFlex Architecture 57
4.2.2 MPFlex Design and Implementation 60
4.2.3 MPFlex Use Cases . 63

4.3 Evaluation of MPFlex . 65
4.3.1 File Download . 66
4.3.2 Web Browsing . 67
4.3.3 Applying Multipath Policies 68
4.3.4 Plugging-in Custom Schedulers 69
4.3.5 Impact of Proxy Location 70
4.3.6 System Overhead . 72

4.4 Summary . 72

viii

V. Accelerating Multipath Transport through Balanced Subflow Com-
pletion . 74

5.1 Introduction . 74
5.2 Background and Motivation . 78

5.2.1 Can We Further Improve MinRTT? 78
5.2.2 Ensuring Simultaneous Subflow Completion and its

Challenges . 80
5.3 The DEMS Algorithm . 81

5.3.1 Chunk-based Data Transfer 81
5.3.2 Simultaneous Subflow Completion 82
5.3.3 Handling Variable Network Conditions 86
5.3.4 Adaptive Reinjection 88
5.3.5 Put Everything Together 90

5.4 System Design . 92
5.5 Implementation . 94
5.6 Evaluation . 95

5.6.1 Experimental Setup and Methodology 96
5.6.2 Stable Network Conditions 97
5.6.3 Varying Network Conditions 100
5.6.4 Field Test under Real-World Settings 103
5.6.5 Compare with Other Schedulers 105
5.6.6 Web Browsing Performance 106
5.6.7 System Overhead . 108

5.7 Discussions . 109
5.8 Summary . 110

VI. A First Look at Android Wear Networking Performance under Mobility111

6.1 Introduction . 111
6.2 Poor Handover Performance . 113

6.2.1 Impact of Handover on Real-time Apps 113
6.2.2 Root Cause Analysis 118

6.3 WearMan: Improving Handover Performance 120
6.3.1 Solution Overview . 120
6.3.2 Implementation . 122
6.3.3 Evaluation of WearMan 124

6.4 Summary . 125

VII. Related Work . 126

7.1 Improving TCP Performance over Cellular Networks 126
7.2 Improving Multipath Transport 128
7.3 Wearable Networking . 129

ix

VIII. Conclusion and Future Work . 130

8.1 Future Work . 132
8.1.1 New Types of Applications: Beyond DEMS and Multi-

path over TCP . 132
8.1.2 New Types of Devices: from Smartwatch to Internet of

Things (IoT) and Autonomous Vehicles (AVs) 133

BIBLIOGRAPHY . 135

x

LIST OF FIGURES

Figure

1.1 Dissertation organization. 5

3.1 Traffic volume distribution of user sessions. 21

3.2 Flow duration distributions. 22

3.3 Flow rate distributions. 22

3.4 TCP concurrency distribution. 23

3.5 Delay distributions. 24

3.6 On-device bufferbloat (in thick blue). 26

3.7 Overall latency characterization for a single TCP upload flow under two
network conditions. 27

3.8 Packet processing and transmission on Android devices. 29

3.9 On-device queuing delay on diverse devices and cellular carriers. 31

3.10 Uplink throughput measurement error at different layers. 32

3.11 Impact of uplink traffic on downlink TCP/UDP throughput. 34

3.12 Impact of upload on PLT. The web browsing session begins �t after up-
load starts. “X” indicates the upload is completed before the web page is
fully loaded. 36

3.13 The QCUT design. 39

xi

3.14 Uplink throughput prediction error at different layers with 20ms predic-
tion interval. 40

3.15 Radio firmware buffer occupancy estimation. 42

3.16 Impact of firmware buffer occupancy threshold of QCUT-B. The best
threshold in each plot is in bold blue text. 43

3.17 Impact of TCP send buffer sizes on upload performance. 46

3.18 Impact of different TCP small queue (TSQ) sizes on upload. 46

3.19 Impact of different TCP CC on upload (with TSQ=128KB). 47

3.20 Effectiveness of CoDel on reducing latency. 48

3.21 Effectiveness of jointly applying multiple mitigation strategies on upload. 48

3.22 Compare TCP upload performance of different schemes. 50

3.23 Improvement of application performance brought by QCUT. 52

4.1 The MPFlex architecture. 58

4.2 Components within an MPFlex endpoint. 60

4.3 Single file download over MPTCP and MPFlex (best SPTCP results
shown only for small downloads). 66

4.4 Transfer many short flows over MPTCP and MPFlex. 67

4.5 Fetch web pages over MPTCP and MPFlex. 68

4.6 Case study: MPTCP applies multipath to all traffic, while MPFlex does
that selectively based on user policy. 69

4.7 Performance of MinRTT vs. TxDelay scheduler when the RTT difference
between the two paths is large (20ms vs. 70ms). 70

4.8 Performance impact of the MPFlex proxy location. 71

5.1 Compare chunk download time (M: MinRTT, O: Optimal). 79

5.2 Compare subflow completion time on receiver (M: MinRTT, O: Optimal). 79

xii

5.3 Key design decisions of DEMS. 81

5.4 Achieve simultaneous subflow completion (sender-side view). 84

5.5 Choose a subflow with an earlier estimated data arrival time (sender-side
view). 85

5.6 Impact of inaccurate �OWD estimation. 86

5.7 A simple reinjection scheme. 87

5.8 The adaptive reinjection scheme. All OWD values are exaggerated in the
plot for illustration purpose. 89

5.9 System diagram of DEMS. 92

5.10 Compare performance between DEMS and MinRTT on downloading
files with different sizes (laptop, emulation). The WiFi and LTE band-
width are 7040kbps and 9185kbps respectively. 98

5.11 Compare redundant data between DEMS-S and DEMS-F (laptop, emu-
lation). 99

5.12 Compare subflow completion time difference (laptop, emulation, WiFi
RTT 50ms, LTE RTT 270ms). 99

5.13 Download time reduction brought by DEMS-F compared to MinRTT un-
der 36 bandwidth combinations (laptop, emulation, WiFi RTT 50ms, LTE
RTT 70ms). 101

5.14 Compare different scheduling algorithms under varying network condi-
tions (laptop, trace-driven emulation). 102

5.15 Compare performance of different scheduling algorithms (smartphone,
real WiFi/LTE at five locations). 103

5.16 Downlink throughput of real WiFi and LTE at five locations. 104

5.17 Relative OWD and prediction error of real WiFi and LTE networks at five
locations. 104

5.18 Compare performance among DEMS-F and four other schedulers (lap-
top, emulation). 105

xiii

5.19 Compare web page load time when using DEMS-F and MinRTT (smart-
phone, real WiFi/LTE). 107

5.20 Example waterfall diagrams for MinRTT and DEMS-F (some objects are
omitted for better illustration). 108

6.1 Wearable measurement testbed. 115

6.2 Impact of BT-WiFi handover on the QoE of tinyCam security camera app
on Huawei Watch. 117

6.3 Breakdown of handover delay. 119

6.4 BT download throughput under different signal strength. The zero
throughput of 5th percentile for BT RSSI above -90dBm is due to BT
sniff mode. 121

6.5 Download throughput of RTApp when using BT under different BT dis-
covery settings. 123

6.6 Download throughput of RTApp when using WiFi under different BT
discovery settings. 123

6.7 Comparison of network interruption time during handover under different
handover strategies. 124

xiv

LIST OF TABLES

Table

1.1 Parallelism in mobile networking. 2

3.1 Impact of upload on download performance on different devices, vendors,
and networks (C1, C2, and C3 refer to Carrier 1, 2, and 3 respectively). . 34

3.2 Summary of solutions for reducing queuing delay for upload traffic.
“(3)” means only limited support. 38

4.1 Comparison of three multipath proxy solutions. 59

4.2 Implementation overhead of different MPFlex plug-ins. 63

xv

ABSTRACT

Smart device usage has witnessed rapid growth in the recent years, fueled by new mo-

bile applications, faster mobile networks, and different form factors. There are three levels

of parallelism in this growth that increase the diversity of mobile networking: (1) flow-

level parallelism from a mix of both download and upload from multiple applications on

the same device, (2) interface-level parallelism with which a mobile device can simulta-

neously use multiple network paths such as cellular and WiFi to accelerate data transfer,

and (3) device-level parallelism where network communication on emerging wearable de-

vices usually involves multiple smart devices for forwarding the network traffic. Despite

seemingly bringing benefit to mobile applications at first glance, these levels of parallelism

incur rather complex interactions with applications due to diverse traffic patterns and QoE

requirements, potentially leading to severely degraded application QoE. My dissertation fo-

cuses on addressing this challenge, aiming at designing a networking stack on mobile sys-

tems that can efficiently use diverse network resources to improve application QoE without

modifying the applications, based on the better understanding of the complex interactions

between three levels of parallelism and applications.

Specifically, to understand the interference from flow-level parallelism, we conduct

a comprehensive characterization of cellular upload traffic and investigate the on-device

bufferbloat frequently incurred by uploads under diverse types of cellular networks on mo-

bile devices. To mitigate this problem, we propose a system called QCUT to control the

cellular firmware buffer, which incurs excessive queuing, from the OS kernel. To better

leverage the interface-level parallelism, we propose a flexible software architecture called

xvi

MPFlex for multipath over mobile networks, which strategically employs multiplexing to

improve multipath performance. Based on this flexible multipath architecture, we pro-

pose DEMS, a new multipath scheduler aiming at reducing the data chunk download time.

DEMS is robust to diverse network conditions and brings significant performance boost

compared to the default MPTCP scheduler. We also investigate the networking perfor-

mance under mobility on a popular smartwatch OS, Android Wear, to understand the multi-

device networking under device-level parallelism. Motivated by the finding that passive

network switching and insufficient protocol support lead to undesirable handover perfor-

mance, we further propose WearMan, a wearable network manager to switch networks

proactively and provide seamless handover performance under mobility.

xvii

CHAPTER I

Introduction

Smart device usage has witnessed rapid growth, fueled by new mobile applications,

faster mobile networks, and different form factors. Mobile network connection speeds

grew more than 3-fold in 2016, and there were 325 million wearable devices in the same

year, contributing to 63% growth of mobile data traffic over that period [4]. We observe

three levels of parallelism in this growth that increase the diversity of mobile networking,

summarized in Table 1.1:

• Flow-level parallelism – The mobile traffic paradigm is undergoing a shift from be-

ing dominated by download to a mix of both download and upload from multiple

applications on the same device. The increasing upload is due to a wide range of

emerging apps enabling user-generated traffic such as media content upload to social

networks (e.g., Facebook videos), cloud-based offloading, HD live video stream-

ing, machine-to-machine (M2M) communication, etc. The prevalence of upload is

further fueled by increasingly ubiquitous access to LTE networks, which provides

uplink bandwidth of up to 20Mbps [78]. Besides, the frequent use and rich func-

tion of mobile devices give rise to multi-tasking, which enables users to interact with

multiple applications at the same time (a.k.a. “multi-window”). Even without multi-

tasking, a single foreground app can still trigger multiple concurrent TCP flows. A

recent study [78] shows that around 28% of the time for each mobile user there are

1

Level of par-
allelism

Definition Example Challenge

Flow-level
parallelism

Multiple TCP
flows of down-
load and upload
transfer data on
mobile networks
at the same time.

One TCP flow down-
loads web pages for
web browsing
while another TCP
flow uploads user-
generated videos in
the background.

The on-device queuing
is sometimes outside the
direct control of mobile
OS, which makes reducing
cross-flow interference
difficult.

Interface-
level paral-
lelism

A mobile device
simultaneously
uses multiple net-
work interfaces,
i.e., multipath,
to download and
upload data.

A smartphone uses
both WiFi and LTE
network at the same
time to stream 1080p
YouTube videos.

Flexible configuration of
multipath usage and effi-
cient multipath scheduler
capable of adapting to dif-
ferent network scenarios
and application require-
ments are not well sup-
ported in current MPTCP
implementation.

Device-level
parallelism

Multiple devices
share all the net-
work resources
they have access
to, in which one
device depends
on another de-
vice to forward
network traffic.

A smartwatch runs
a stand-alone app
on its CPU and
memory while
leveraging paired
smartphone’s WiFi
network through
Bluetooth connec-
tion for accessing
the Internet.

Multiple devices introduce
new ways of utilizing
diverse networks and
increase the diversity of
device configuration and
application requirements,
making network selection
complex for different
applications.

Table 1.1: Parallelism in mobile networking.

2

concurrent TCP flows.

• Interface-level parallelism – Simultaneously using multiple network paths such as

cellular and WiFi to accelerate data transfer is an attractive feature on mobile devices.

It is supported by many commercial products such as Apple Siri [12], Gigapath by

Korean Telecom [31], and Samsung Download Booster [19]. Researchers have also

devised multipath strategies for applications such as file download [84, 104], web

browsing [68, 69], and video streaming [52, 70, 133]. Currently, the most widely

used multipath solution is MPTCP [58], which enables unmodified applications to

leverage multipath by adding a shim layer to the TCP interface. MPTCP establishes

a subflow over each network path. The MPTCP sender distributes the data onto the

subflows; the receiver reassembles the data into the original byte stream and delivers

it to the app transparently.

• Device-level parallelism – Network communication on emerging wearable and IoT

devices usually involves both the smart device and another networked device for

forwarding the network traffic. Both categories of devices can handle computation

and network communication independently while sharing all the network resources

they have. For example, a smartwatch is capable of pairing with another smartphone

using Bluetooth to leverage the phone’s WiFi or cellular networks, while running

stand-alone watch apps. This is due to constrained resources on wearable and IoT

devices, e.g., limited battery capacity, close-range wireless communication, etc. The

smartwatch can also choose to use WiFi or even cellular networks directly if the

phone is out of range. Beside network communication, computation on wearable

and IoT devices such as data processing can also be offloaded to the phone or back-

end servers. It aims at improving the app performance of smart devices by leveraging

all sources of computation, not limited to single-device execution [62].

While seemingly bringing benefit to mobile applications at first glance, different levels

3

of parallelism require proper management in mobile networks and otherwise degrade appli-

cation QoE if they are blindly used. Flow-level parallelism requires proper queuing man-

agement to prevent severe cross-flow interference. This is difficult as the on-device queuing

is sometimes outside the direct control of mobile OS. Interface-level parallelism requires

flexible configuration of multipath usage and efficient multipath scheduler to adapt to differ-

ent network scenarios and application requirements, which are missing in current MPTCP

implementation. Device-level parallelism requires proper coordination among multiple de-

vices that share all the network resources. This is because multiple devices introduce new

ways of utilizing diverse networks and increase the diversity of device configuration and

application requirements. Coordinating network utilization among multiple devices is even

more complicated than managing single-device multipath.

In reality, the flow-level, interface-level, and device-level parallelism incur rather com-

plex interactions with applications due to their diverse traffic patterns and QoE metrics.

Thus, application QoE can be severely degraded under such diverse mobile networking en-

vironment. We find that concurrent upload in cellular networks incurs significant user ex-

perience degradation on real applications, including web browsing (219% to 607% increase

of page load time with concurrent upload), and video streaming (57% reduction of playback

bitrate and numerous stalls), due to cross-traffic interference on device [63]. Based on our

study, the widely-used multipath solution, MPTCP, provides suboptimal performance due

to poor interaction with short flows, a lack of infrastructure support for multipath policy,

and inefficient scheduling algorithm (up to 7.5x download time increase, 49% median in-

crease compared to optimal scheduling in real-world networks) [64, 104]. Even worse, we

observe that the handover between Bluetooth and WiFi on smartwatches takes a long time

(more than 40 seconds) and interrupts network communication, when the watch moves out

of the phone’s Bluetooth coverage, due to poor network selection on two devices [95].

My dissertation is to address this challenge for mobile applications, demonstrating

that with a better understanding of the complex interaction between the flow-level,

4

1. Addressing	Flow-
Level	Parallelism

Reducing	Cross-Traffic	
Interference	on	Mobile	

Devices

LTE

WiFi

2. Leveraging	Interface-
Level	Parallelism

Improving	Multipath	
Transport	with	Flexible	

Architecture	and	
Optimized	Scheduler

Bluetooth

3. Embracing	Device-
Level	Parallelism	

Designing	Wearable	
Network	Management	
under	Mobility	for
Real-Time	Apps

WiFi/LTE

Internet

Figure 1.1: Dissertation organization.

interface-level, device-level parallelism and applications, the networking stack on mo-

bile systems can efficiently use diverse network resources to improve application QoE

without modifying the applications. We design an application-transparent networking

stack that improves QoE of mobile applications by addressing complex interactions with

applications incurred by flow-level, interface-level, and device-level parallelism paradigms.

As shown in Figure 1.1, I elaborate the contributions of my dissertation in the following

three sections.

1.1 Addressing Flow-Level Parallelism: Reducing Cross-Traffic Inter-

ference on Mobile Devices

Understanding the impact of flow-level parallelism on cellular traffic paradigm is the

first necessary step towards addressing the potentially complex interaction between them.

To achieve this goal, we conduct to our knowledge the first comprehensive, quantitative,

5

and cross-layer measurement study of cellular upload traffic and its interaction with concur-

rent traffic, using combined approaches of analyzing large network traces and conducting

controlled lab experiments [63].

We characterize the cellular upload traffic by measuring its volume, duration, rate, con-

currency, and impact on latency from a large network trace collected from an IRB-approved

user study1 involving 15 users for 33 months. We find that although the majority of today’s

smartphone traffic is still download, the upload traffic can be significant. We also find

that large upload tends to have higher RTT, and upload traffic may also increase the RTT

experienced by concurrent download.

For cellular upload, we find a significant fraction of the end-to-end latency occurs on the

end-host device instead of in the network, due to the large buffer inside the mobile device.

Specifically, we make two key observations. First, our findings suggest that bufferbloat for

upload traffic can frequently occur on mobile devices accessing diverse types of networks

(HSPA, LTE, and even Wi-Fi), across different devices. On-device bufferbloat can cause

significant latency increase up to 4 seconds, or 100x of the network RTT, on off-the-shelf

Android devices. This implies that when an upload is in progress, the on-device queuing

delay, in fact, eclipses the network delay. We quantitatively demonstrate that concurrent

upload incurs significant user experience degradation on real applications, including web

browsing (219% to 607% increase of page load time with concurrent upload), video stream-

ing (57% reduction of playback bitrate and numerous stalls), and VoIP.

Second, we identify the root cause of such excessive on-device queuing. It can happen

at different layers including application buffer, OS TCP buffer, and the Queuing Discipline

(Qdisc) in the OS kernel. In particular, we find excessive queuing also frequently happens

at the cellular firmware buffer, whose occupancy can, for example, reach up to 300KB

while accounting for 49% of the end-to-end delay when the uplink bandwidth is 2Mbps.
1This study was conducted entirely with data collected from active and passive measurements at the

University of Michigan and was approved by the University of Michigan IRB (Institutional Review Board)
approval number HUM00111075.

6

More importantly, the cellular firmware buffer distinguishes itself from other on-device

buffers in that its occupancy plays a role in the cellular control plane which in turn affects

base station’s scheduling decision and achievable uplink throughput. Mobile OS does not

usually have direct control over the firmware buffer, making it difficult to carry out queuing

management.

Due to the uniqueness of on-device bufferbloat, we find that existing mitigation solu-

tions, such as changing TCP congestion control, tuning TCP buffer size, reducing Qdisc

sizes [23], prioritizing delay-sensitive traffic, and applying Active Queue Management

(e.g., CoDel [101] and PIE [109]), are not capable of effectively mitigating the excessive

buffering. This is because (i) they cannot be directly implemented in the cellular device

driver, and (ii) they are unaware of the interplay between the driver buffer and the cellular

control plane.

Therefore, we design and implement a new solution called QCUT to control the

firmware buffer occupancy from the OS kernel [63]. QCUT is general (independent of

a particular driver implementation), lightweight, and effective. Our lab experiments show

that QCUT effectively reduces the cellular firmware queuing delay by more than 96% while

incurring little degradation of uplink throughput. We deploy QCUT on a user study involv-

ing 5 users for one week. The results indicate QCUT significantly improves the application

QoE when concurrent upload is present.

1.2 Leveraging Interface-Level Parallelism: Improving Multipath

Transport with Flexible Architecture and Optimized Scheduler

On mobile devices, besides flow-level parallelism, simultaneously using multiple net-

work paths, i.e., interface-level parallelism, has become increasingly popular. A well-

known multipath solution, MPTCP, promises to bring better network performance to mo-

bile devices. However, existing work found out that MPTCP suffers from a few limitations:

7

poor interaction with short/small flows, a lack of infrastructural support for multipath pol-

icy, and MPTCP extension often being blocked by middleboxes [48, 54, 104]. As a first step

of improving multipath transport on mobile devices, we propose a flexible software archi-

tecture of mobile multipath called MPFlex that overcomes all the above limitations [104].

MPFlex has several prominent features. First, it performs transparent multiplexing for

application traffic over multipath. Our multiplexing scheme reduces the number of hand-

shakes from many (one per path) to zero, leading to significant improvement of bandwidth

utilization for small flows. Second, MPFlex decouples the high-level scheduling algorithm

and the low-level OS protocol implementation. Such a framework dramatically simplifies

the development, deployment, and maintenance of multipath features. Third, MPFlex has

visibility of all traffic on an end host, and thus provides an ideal vantage point for applying

user-specified multipath policies. Fourth, MPFlex is middlebox-friendly as it does not use

any Layer 3 or 4 protocol extensions which may be blocked by ISPs.

Compared to MPTCP, MPFlex reduces single file transfer time by up to 49%, improves

bundled short flows’ transfer time by up to 63%, and boosts real web page load speed by up

to 20%, while incurring negligible overhead. We also demonstrate MPFlex’s capability of

flexibly plugging-in new features such as buffer-aware scheduling, smart packet reinjection,

and per-application policies, which can be implemented in less than 70 lines of user-level

code.

Besides designing a flexible multipath architecture for mobile devices, we also look into

an important component of MPTCP, the schedulers. A multipath scheduler takes packets

from applications and determines on which subflow to transmit each packet. The default

scheduler, MinRTT, attempts to deliver the data as soon as possible by choosing a subflow

with the smallest RTT unless its congestion window is full. We found that MinRTT does

not achieve the optimal performance of downloading data chunks due to different subflow

completion time at the receiver side. Based on this insight, we design, implement, and eval-

8

uate DEMS (DEcoupled Multipath Scheduler2), a new multipath packet scheduler aiming

at reducing the data chunk download time over multipath [64]. The key idea behind DEMS

is to achieve simultaneous subflow completion at the receiver side through strategic packet

scheduling over decoupled subflows in order to minimize the chunk download time.

The key design decisions of DEMS include the following: (1) DEMS leverages a

heuristic that treats all data in the meta buffer as a chunk, and it strategically decouples

the paths for chunk delivery; (2) DEMS ensures simultaneous subflow completion at the

receiver side by carefully introducing a timing offset at the sender side; (3) DEMS allows a

path to trade a small amount of redundant data for performance. We implement DEMS on

smartphones and evaluate it over both emulated and real cellular/WiFi networks. DEMS

is robust to diverse network conditions and brings significant performance boost compared

to the default MPTCP scheduler (e.g., median download time reduction of 33%–48% for

fetching files and median loading time reduction of 6%–43% for fetching web pages), and

even more benefits compared to other state-of-the-art schedulers.

1.3 Embracing Device-level Parallelism: Designing Wearable Network

Management under Mobility for Real-Time Apps

Wearable devices are becoming popular and common in addition to smartphones in our

daily lives. Smartwatches have become the most popular smart wearables in the market.

According to IDC, by volume, smartwatches account for the largest part of smart wearables

and are expected to reach a total value of $17.8 billion dollars in 2020 [28]. Being network-

connected devices, smartwatches promise to keep users connected with a wide range of

features and apps such as receiving notifications, taking phone calls, monitoring fitness,

remotely controlling the paired smartphone to take photos, etc. Wearable networking is

different from, for example, smartphone networking that has been well studied in the past
2Note here “decoupled scheduling” is different from the decoupled congestion control in MPTCP.

9

decade. Due to the short range of Bluetooth (BT), network handover frequently occurs on

a wearable: when it moves away from the phone, the BT session will be torn down, and the

wearable has to use standalone WiFi or LTE to communicate with the external world.

Despite the promise, there lacks a thorough understanding of how smartwatch network-

ing stack performs for smartwatch applications, especially under mobility. Motivated by

this, we conduct to our knowledge a first investigation of the networking performance of

Android Wear under mobility. Android Wear is one of the most popular OSes for wear-

ables, which is a version of Android OS tailored to small-screen wearable devices. Our key

finding is that, surprisingly, there exist serious performance issues under mobility regarding

aforementioned aspects that distinguish wearable networking from smartphone networking.

Due to passive network switching and insufficient protocol support for handovers, the BT-

WiFi handover that frequently occurs on wearables may last more than 40 seconds, leading

to significant disruption of application performance. To solve this problem, we propose

a proactive handover approach, WearMan (Wearable Network Manager), by performing

preemptive handovers using the changes of BT signal strength as an indicator that tells in

advance when a handover needs to be performed. WearMan ensures almost seamless han-

dovers between BT and WiFi for our custom Android Wear app by strategically enabling

and switching networks.

1.4 Thesis Organization

This dissertation is structured as follows. Chapter II provides sufficient background of

multipath and Android Wear OS. In Chapter III, we describe our comprehensive character-

ization of cellular upload traffic and investigation of its interaction with other concurrent

traffic. Motivated by the observations from this measurement study, we further systemat-

ically study a wide range of solutions for mitigating on-device bufferbloat and propose a

system called QCUT to control the firmware buffer occupancy from the OS kernel. Then

in Chapter IV, we move on from addressing flow-level parallelism to leveraging interface-

10

level parallelism on mobile networks, presenting a flexible software architecture for mobile

multipath called MPFlex, which strategically employs multiplexing to improve multipath

performance. Based on this flexible multipath architecture, we propose DEMS, a novel

multipath scheduler aiming at reducing the data chunk download time in Chapter V. Next,

in Chapter VI, we conduct the first in-depth investigation of the networking performance

under mobility on Android Wear, one of the most popular OSes for wearables, and propose

WearMan, a wearable network manager to switch networks proactively and provide seam-

less handover performance under mobility. We discuss related work in Chapter VII before

concluding the thesis in Chapter VIII.

11

CHAPTER II

Background

This chapter provides sufficient background of multipath and Android Wear OS.

2.1 Multipath Networking

We first give a brief overview of the multipath over mobile networks and then describe

multipath scheduler, the key component in multipath transport.

2.1.1 Multipath over Mobile Networks

Simultaneously using multiple network paths such as cellular and WiFi to accelerate

data transfer is an attractive feature on mobile devices. It is supported by many commercial

products such as Apple Siri [12], Gigapath by Korean Telecom [31], and Samsung Down-

load Booster [19]. Researchers have also devised multipath strategies for applications such

as file download [84, 104], web browsing [68, 69], and video streaming [52, 70, 133]. Cur-

rently the most widely used multipath solution is MPTCP [58], which enables unmodified

applications to leverage multipath by adding a shim layer to the TCP interface. MPTCP

establishes a subflow over each network path. The MPTCP sender distributes the data onto

the subflows; the receiver reassembles the data into the original byte stream and delivers it

to the app transparently.

12

2.1.2 Multipath TCP and its Schedulers

Multipath TCP (MPTCP [58]) enables simultaneous usage of multiple network paths

(a.k.a. subflows). In the remainder of this dissertation, we primarily focus on two paths, as

they correspond to the most common mobile multipath usage scenarios: jointly using WiFi

and cellular on a smartphone or WiFi and Bluetooth on a wearable.

MPTCP has a complex transport protocol stack consisting of several components: sub-

flow management, packet scheduling, congestion control, flow control, etc., among which

we focus on optimizing the schedulers. A multipath scheduler takes packets from ap-

plications (stored in the “meta buffer”) and determines on which subflow to transmit each

packet. MPTCP currently supports three schedulers: round-robin, ReMP (sending the same

data to all subflows for better reliability), and MinRTT. Among them, MinRTT is the de-

fault scheduler aiming at reducing the overall data transfer time. As long as the congestion

window allows, MinRTT favors the subflow with the smallest RTT so that the packet can

be delivered as soon as possible. The MinRTT scheduler is simple and robust, and has

registered wide usage in practical systems [12, 31].

2.2 Android Wear OS

Wearable devices are becoming popular and common in addition to smartphones in our

daily lives. Smartwatches have become the most popular smart wearables in the market.

Android Wear is one of the most popular OSes for wearables, which is a version of Android

OS tailored to small-screen wearable devices. It is used by a wide range of smartwatches

and potentially other wearables. The latest Android Wear 2.0 provides multiple networks

for applications to access the Internet.

When close to the smartphone and within its Bluetooth (BT) coverage, the smartwatch

can connect to the smartphone with a BT connection and use it as a “gateway” to access

the Internet. In Android Wear, this transmission mechanism is called COMPANION PROXY

13

mode. Some latest smartwatches also have standalone WiFi or cellular networks, with

which the smartwatch can directly access the Internet without proxying traffic through a

smartphone. To preserve the energy of network transmission, Android Wear proxies all

application traffic through the smartphone if the BT connection is available, regardless

of the connectivity of standalone WiFi, which is much more energy consuming. From a

recent smartwatch user study, such a gateway mode accounts for 84% of the day time usage

period [95].

To provide easy access to different networks including BT, WiFi, and cellular on the

smartwatch, the latest Android Wear 2.0 OS provides a set of APIs for Wear applications to

use active network interfaces and automatically handles transitions between networks [34].

Specifically, the ConnectivityManager [32] on Android Wear provides the information

of the available and active networks. Applications can request access to an appropriate

network based on its network requirement.

14

CHAPTER III

Understanding and Solving On-Device Bufferbloat in

Cellular Networks

In this chapter, we start by understanding the impact of flow-level parallelism on cellu-

lar traffic paradigm. We provide an in-depth understanding of cross-flow interference from

on-device bufferbloat, a performance problem we identify that is unique in cellular net-

works. As to be shown, on-device bufferbloat has an adverse impact on application QoE.

To address this problem, we design, implement, and evaluate QCUT in the networking

stack, a firmware-independent on-device queueing management system.

3.1 Introduction

The explosive growth of mobile devices and cellular networks shows no sign of slowing

down. We notice two important trends not well explored in previous work, namely user-

generated traffic and multi-tasking.

On one hand, the mobile traffic paradigm is undergoing a shift from being dominated

by download to a mix of both download and upload, due to a wide range of emerging

apps enabling user-generated traffic such as media content upload to social networks (e.g.,

Facebook videos), background synchronization, cloud-based offloading, HD video chat,

machine-to-machine (M2M), and device-to-device (D2D) communication, etc. The preva-

15

lence of upload is further fueled by increasingly ubiquitous access to LTE networks, which

provides uplink bandwidth of up to 20Mbps.

On the other hand, the frequent use and rich function of mobile devices give rise to

multi-tasking, which enables users to interact with multiple applications at the same time.

Previously, due to the limitation of mobile operating system and the device processing

power, older phones and Android systems only support a single application at foreground

interacting with the user. Newer phones allow users to use multiple apps simultaneously

(a.k.a. “multi-window”). Even without multi-tasking, a single foreground app can still

trigger multiple concurrent TCP flows. A recent study [78] shows that around 28% of the

time for each mobile user there are concurrent TCP flows.

Motivated by the above, in this chpater, we conduct to our knowledge the first com-

prehensive, quantitative, and cross-layer measurement study of cellular upload traffic and

its interaction with concurrent traffic, using combined approaches of analyzing large net-

work traces and conducting controlled lab experiments. Our contributions consist of the

following.

Characterization of upload traffic (§3.3). We characterized the cellular upload traf-

fic by measuring its volume, duration, rate, concurrency, and impact on latency from a

large network trace collected from an IRB-approved user study1 involving 15 users for 33

months. We found that although the majority of today’s smartphone traffic is still down-

load, the upload traffic can be significant. Upload can last for up to 11 minutes with 226

MB of data transferred. In particular, the upload speed can achieve up to 12.8Mbps (me-

dian 2.2Mbps for 10MB+ flows) in today’s LTE networks, facilitating many applications

that upload rich user-generated traffic. We also found that large upload tends to have higher

RTT, and upload traffic may also increase the RTT experienced by concurrent download.

An anatomy of on-device queuing for upload traffic (§3.4.1-§3.4.3). For cellular up-
1This study was conducted entirely with data collected from active and passive measurements at the

University of Michigan and was approved by the University of Michigan IRB (Institutional Review Board)
approval number HUM00111075.

16

load, we found a significant fraction of the end-to-end latency occurs on the end-host device

instead of in the network, due to the large buffer inside the mobile device. Specifically, we

made two key observations. First, contrary to the common understanding [82, 125] that

(i) excessive queuing delay (a.k.a. “bufferbloat”) happens mostly inside the network (or

near-edge network elements), and (ii) cellular upload traffic is less likely to incur queuing

delay due to its low data rate, our findings suggest that bufferbloat for upload traffic can

frequently occur on mobile devices accessing diverse types of networks (HSPA, LTE, and

even Wi-Fi), across different devices. On-device bufferbloat can cause significant latency

increase up to 4 seconds, or 100x of the network RTT, on off-the-shelf Android devices.

This implies that when an upload is in progress, the on-device queuing delay in fact eclipses

the network delay.

Second, we identified the root cause of such excessive on-device queuing. It can happen

at different layers including application buffer, OS TCP buffer, and the Queuing Discipline

(Qdisc) in the OS kernel. In particular, we found excessive queuing also frequently happens

at the cellular firmware buffer, whose occupancy can, for example, reach up to 300KB

while accounting for 49% of the end-to-end delay when the uplink bandwidth is 2Mbps.

More importantly, the cellular firmware buffer distinguishes itself from other on-device

buffers in that its occupancy plays a role in the cellular control plane which in turn affects

base station’s scheduling decision and achievable uplink throughput.

Accurate achievable uplink throughput estimation (§3.4.4). The excessive buffering

at various layers makes accurate estimation of achievable cellular uplink throughput chal-

lenging. We found that surprisingly, using the same algorithm, the throughput estimated at

upper layers (TCP and Qdisc) deviates from the lower-layer throughput estimation by 136%

and 70% on average. We proposed a method that accurately infers the uplink throughput

by leveraging lower-layer information from cellular control-plane messages.

Quantifying the impact of uplink bufferbloat (§3.5). We illustrated that large upload

traffic significantly affects the performance of concurrent TCP download, whose average

17

RTT is increased by 91% and average throughput is reduced by 66%. We found such severe

performance degradation is predominantly caused by on-device buffers, because the uplink

ACK stream of TCP download shares the same Qdisc and cellular firmware buffers with

concurrent upload, and is thus delayed mainly due to the on-device bufferbloat. We fur-

ther quantitatively demonstrated that concurrent upload incurs significant user experience

degradation on real applications, including web browsing (219% to 607% increase of page

load time with concurrent upload), video streaming (57% reduction of playback bitrate and

frequent stalls), and VoIP.

Mitigating on-device bufferbloat (§3.6,§3.7). Due to the uniqueness of on-device

bufferbloat, we found existing mitigation solutions, such as changing TCP congestion con-

trol, tuning TCP buffer size, reducing Qdisc sizes [23], prioritizing delay-sensitive traffic,

and applying Active Queue Management (e.g., CoDel [101] and PIE [109]) are not capable

of effectively mitigating the excessive buffering. This is because (i) they cannot be directly

implemented at the cellular device driver, and (ii) they are unaware of the interplay between

the driver buffer and the cellular control plane. We therefore design and implement a new

solution called QCUT to control the firmware buffer occupancy from the OS kernel. QCUT

is general (independent of a particular driver implementation), lightweight, and effective.

Our lab experiments show that QCUT effectively reduces the cellular firmware queuing de-

lay by more than 96% while incurring little degradation of uplink throughput. We deploy

QCUT on a user study involving 5 users for one week. The results indicate that QCUT

significantly improves the application QoE when concurrent upload is present.

Although we identified the on-device bufferbloat problem in today’s HSPA/LTE net-

works, we anticipate it continues to affect future wireless technologies, whose uplink band-

width will remain below the downlink bandwidth (e.g., 50Mbps vs. 150Mbps for LTE

Advanced [11]) causing the cellular uplink to often remain the end-to-end bottleneck link.

More importantly, higher network speed and cheaper memory facilitate device vendors

and cellular carriers to deploy larger buffers that exacerbate on-device (and in-network)

18

bufferbloat.

Chapter Organization. After describing the experimental methodology in §3.2, we

conduct a measurement study of today’s upload traffic in §3.3. We reveal the on-device

queuing problem in §3.4, and quantify the impact of upload on mobile apps in §3.5. We

then describe how QCUT mitigates on-device queuing in §3.6 and evaluate QCUT as well

as existing mitigation strategies in §3.7. We conclude this chapter in §3.9.

3.2 Experimental Methodology

To comprehensively study cellular upload traffic, we carried out controlled lab experi-

ments (§3.2.1) and analyzed data collected from a user study with 15 participants (§3.2.2).

3.2.1 Controlled Local Experiments

We conduct controlled experiments using off-the-shelf smartphones and commercial

cellular networks. Our devices consist of the following: (i) Samsung Galaxy S3 running

Android 4.4.4 with Linux kernel version 3.4.104, using Carrier 1’s LTE network2, (ii) Sam-

sung Galaxy S4 running Android 4.2.2 with Linux kernel version 3.4.0, using Carrier 1’s

LTE network, (iii) Samsung Galaxy S3 running Android 4.0.4 with Linux kernel version

3.0.8, with access to Carrier 2’s 3G network and (iv) Nexus 5 running Android 6.0.1 with

Linux kernel version 3.4, using Carrier 1’s LTE network. We also set up dedicated servers

located at the University of Michigan with 64-core 2.6GHz CPU, 128GB memory, 64-bit

Ubuntu 14.04 OS for experiments. Both mobile phones and the servers use TCP CU-

BIC [66], the default TCP variant for Linux/Android, unless otherwise mentioned. We

conducted the experiments during off-peak hours. For each setting, we repeat the experi-

ment for at least 10 times and report the average metrics unless otherwise noted.

For TCP throughput and RTT measurement, the mobile device first establishes a TCP

connection to one of the dedicated servers. Then this TCP connection is used to transfer
2We anonymized three large U.S. cellular carriers’ names as Carrier 1, 2, and 3.

19

random data without interruption. For bidirectional data transfer (i.e., simultaneous upload

and download) experiments, the mobile device establishes two TCP connections to two

servers, one for download and the other for upload to eliminate server-specific bottlenecks.

To measure throughput, we ignore the first 10 seconds to skip the slow start period and

calculate the throughput every 500ms from transferred data.

3.2.2 Network Traces from a User Study

We also leveraged network traces collected from an IRB-approved smartphone user

study by distributing instrumented Samsung Galaxy S3 phones to 15 students. Each of the

15 participants was also given unlimited LTE data plan. The phones were instrumented

with data collection software (with very low runtime overhead). It continuously runs in the

background and collects full packet traces in tcpdump format including both headers and

payload. We collected 900GB of data in total from January 2013 to October 2015. We used

an idle timing gap of 1 minute to separate user sessions of the same device.

3.3 Upload Traffic Measurement

In this section, we perform a measurement study of upload traffic in today’s cellular

networks, using the traces collected from our user study (§3.2.2).

3.3.1 Traffic Volume

Figure 3.1 plots the distributions of download, upload, and overall traffic volume of

user sessions. We only consider TCP/UDP payload size when computing the session size.

Today’s mobile traffic is dominated by download, whose average size is about one order of

magnitude larger than that of upload. About 2.2% of user sessions carry more than 1MB of

downlink bytes, while only 0.4% upload more than 1MB data in the user study trace. We

notice a major source of user-consumed traffic is video, which accounts for about half of

download traffic.

20

 0

 0.25

 0.5

 0.75

 1

 0.001 0.01 0.1 1 10 100

C
D

F

Session size (MB)

Upload
Download

Upload + Download

Figure 3.1: Traffic volume distribution of user sessions.

However, we observed that the fraction of upload bytes is indeed non-trivial. Within

the top 20% of user sessions (in terms of their overall transferred bytes), the 25th, 50th, and

75th percentiles of the fractions of upload traffic are 9%, 20%, and 42%. Across all user

sessions, the corresponding fractions are higher, i.e., 19%, 50%, and 57%. The upload of

one user session even lasts for 11 minutes with 226 MB of data transferred. We expect that

in the future, the fraction of upload traffic will keep increasing because of the increasingly

popular user-generated traffic. Compared to smartphones, wearable and IoT devices may

incur even more upload traffic, due to their ubiquitous sensing capabilities.

3.3.2 Flow Duration

We use inter-packet arrival time to divide a TCP flow into multiple segments with a

threshold of 1 second. We also use the threshold of 1 second to eliminate idle period

of a TCP flow. We then divide these segments into upload bursts that only have TCP

payload in uplink, and download bursts with only TCP downlink payload, based on the

direction of transferred TCP payload. Given a TCP flow, we define its upload duration

as the total duration of all uplink bursts. Similarly, the download duration is the total

duration of all downlink bursts. Figure 3.2(a) plots the upload durations for flows with large

upload traffic volume (100KB to 1MB, 1MB to 10MB, and at least 10MB). As expected,

larger flows tend to be longer in duration. For flows with large download traffic volume, as

21

 0

 0.25

 0.5

 0.75

 1

 0.01 0.1 1 10 100 1000

C
D

F

Upload duration (s)

0.1-1 MB
1-10 MB
> 10 MB

(a) Large upload

 0

 0.25

 0.5

 0.75

 1

 0.01 0.1 1 10 100 1000

C
D

F

Download duration (s)

0.1-1 MB
1-10 MB
> 10 MB

(b) Large download

Figure 3.2: Flow duration distributions.

 0

 0.25

 0.5

 0.75

 1

 0.001 0.01 0.1 1 10 100

C
D

F

Flow rate (Mbps)

Upload
Download

(a) UL vs. DL

 0

 0.25

 0.5

 0.75

 1

 0.001 0.01 0.1 1 10

C
D

F

Upload rate (Mbps)

0.1-1 MB
1-10 MB
> 10 MB

(b) Large upload

Figure 3.3: Flow rate distributions.

shown in Figure 3.2(b), their download duration exhibits distributions qualitatively similar

to those of upload duration, yet with the main difference being that the download duration

is statistically shorter, largely due to the higher downlink bandwidth compared to the uplink

bandwidth, as to be measured next.

3.3.3 Flow Rate

We compute the upload (download) rate of a TCP flow by dividing the total bytes of

all upload (download) bursts by its upload (download) duration that is defined above. We

only consider flows whose upload/download duration are longer than a threshold, which is

empirically chosen to be 3 seconds, as the “rate” of a very short flow is not very meaningful.

Figure 3.3(a) compares upload and download rates for the user study trace. Statistically,

22

 0

 0.25

 0.5

 0.75

 1

 0 2 4 6 8 10
C

D
F

TCP Concurrency (# of conns)

Figure 3.4: TCP concurrency distribution.

download is faster than upload, largely due to their differences in the underlying channel

rates of the LTE radio access network. On the other hand, Figure 3.3(b) indicates larger

upload flows (larger than 1MB) tend to have higher rates. In the user study dataset, for

flows that upload 1 to 10 MB data, their 25%, 50%, and 75% percentiles of upload rates are

about 1.4Mbps, 2.4Mbps, and 3.8Mbps, which are comparable or even higher than those of

today’s many residential broadband networks. For 10MB+ flows, the maximum achieved

throughput are 12.8Mbps for the user study traces. Such high upload speed provides the

infrastructural support for user-generated traffic.

3.3.4 Flow Concurrency

We explore the concurrency of TCP flows per user. The result is shown in Figure 3.4.

For every one-second slot in each user session, we count the number of TCP flows that are

transferring data. For the user study trace, for 28.2% of the time (i.e., 28.2% of the one-

second slots across all user sessions), there exist at least two TCP connections that perform

either upload or download. The results indicate that concurrent TCP transfers are quite

common on today’s mobile devices. Motivated by this, we study the interplay between

uplink and downlink traffic, a previously under-explored type of concurrency, in §3.5.

23

 0

 0.25

 0.5

 0.75

 1

 0.01 0.1 1

C
D

F

RTT increase (s)

UL < 5 KB
UL 5-100 KB
UL > 100 KB

(a) RTT increase of upload

 0.8

 0.85

 0.9

 0.95

 1

 0.01 0.1 1

C
D

F

On-device Delay (s)

UL < 5 KB
UL 5-100 KB
UL > 100 KB

(b) On-device delay ofdownload

Figure 3.5: Delay distributions.

3.3.5 RTT Dynamics

We next study the RTT dynamics of cellular upload from the user study trace. The

RTT is measured by timing the timestamp difference between each uplink TCP data packet

and its corresponding ACK packet captured by tcpdump. We then study the fluctuation of

upload RTT using the following methodology. First, we split each user session into one-

second slots and discard slots without uplink traffic. We also discard slots whose download

traffic volume is non-trivial (using 5KB as a threshold). The purpose is to eliminate the

impact of concurrent download on upload. Second, for each one-second slot s, we compute

its RTT increase I(s) = meanp{RTT(p) � minRTT(p.flow)} over all data packets {p}

within the slot. RTT(p) is the measured RTT, and minRTT(p.flow) is the minimum RTT

of upload stream of the TCP flow that p belongs to. Third, we plot in Figure 3.5(a) the

distributions of I(s) across all slots grouped by their upload size. As shown, the upload

RTT is indeed highly “inflatable”, and larger upload tends to incur much higher RTT. This

resembles the “bufferbloat” effect that is well studied for download [82, 125], and motivates

us to conduct a comprehensive investigation of bufferbloat for cellular upload in §3.4.

3.3.6 Impact of Upload on Download Latency

We are also interested in how upload impacts download latency, which is quantified

as follows. We first generate one-second slots using a similar way as employed in Fig-

24

ure 3.5(a), but this time we only keep slots with both upload and download traffic. Then for

every slot, we compute the average on-device delay of download. Note that since our user

study traces were collected on client devices, we are only able to measure the on-device

component of the download RTT i.e., t1 shown in Figure 3.6(b). Next, in Figure 3.5(b), we

plot the distributions of the on-device download delay grouped by the size of per-slot up-

load size as is also done in Figure 3.5(a). We clearly observe that concurrent upload affects

the on-device download delay because the ACK stream (for download) and the data stream

(for upload) share several on-device buffers. We will conduct an in-depth investigation on

this in §3.4 and §3.5.

3.3.7 Summary

Overall, we found that although the majority of today’s smartphone traffic remains to

be download, the upload traffic can still be large. In particular, the median upload speed

is 2.2Mbps for 10MB+ flows and can achieve up to 12.8Mbps in today’s LTE networks,

enabling many applications to upload rich user-generated traffic. We also found that large

upload tends to have higher RTT, and upload traffic may also increase the RTT experienced

by concurrent download. Furthermore, it is quite common that multiple TCP flows are

transferring data concurrently on a mobile device, leading to complex interactions possibly

among uplink and downlink flows to be investigated soon.

3.4 On-device Queuing Delay of Upload Traffic

We conduct a thorough analysis of the latency characteristics for cellular upload traffic.

We found a significant fraction of the latency happens on the end-host device instead of

in the network (§3.4.1). In particular, in §3.4.2, we discover the root cause of large Qdisc

and firmware buffers playing major roles in causing the excessive on-device delay, whose

prevalence across devices and carriers are shown in §3.4.3. We also found in §3.4.4 that

on-device queuing may significantly impact accurate uplink throughput estimation.

25

TCP
Appli-
cation

Qdisc
Radio

Firmware
UE/Network

Boundary
Server

RTTB
RTTF

RTTQ

TF

TQ
TTTA

Data

ACK

(a) Bulk upload

TCP
UE/Network

Boundary

Data

ACK

(b) Download when another bulk
upload flow exists in background

Server

tsA tsT tsQ
tsF

tsN t1

t2

Figure 3.6: On-device bufferbloat (in thick blue).

3.4.1 Overall Delay Characterization

When a mobile device is uploading data, its packets will traverse various buffers in the

protocol stack, as illustrated in Figure 3.6: TCP buffers, link-layer buffers (Linux queuing

discipline), radio firmware buffers. Each buffer may incur queuing delay. As a result, we

may get different RTT values if we conduct measurements at different layers. In this work,

we focus on three RTT measurements defined bellow.

• RTTB consists of only the delay a packet experiencing in the network. It does not

include any delay caused by on-device buffer (B stands for “base”).

• RTTF includes RTTB and the delay incurred by the buffer in the radio firmware, which

usually resides on the cellular chipset of a mobile device (F stands for “firmware”).

• RTTQ includes RTTF , plus the delay incurred by the queuing discipline (Qdisc), the

link-layer buffer in the main memory managed by the OS (Q stands for “Qdisc”).

Similarly, we can also define RTTs measured at higher layers (TCP, application). Nev-

ertheless, RTTB, RTTF , and RTTQ are our particular interests, because their correspond-

ing network path or buffers are shared by multiple applications. As we will show in §3.5, if

upload and delay sensitive traffic coexist, the former may severely interfere with the latter

due to the shared nature of lower-layer buffers. In contrast, the higher-layer buffers are

usually not shared.

26

 1

 0.04

 0.4

 4

 0 2 4 6 8 10

R
T

T
 (

s)
 (

lo
g

 s
ca

le
)

Data sent (MB)

RTTQ

RTTF

RTTB

(a) Uplink BW 2Mbps

 0.6
 1

 0.04

 0.4

 4

 0 2 4 6 8 10

R
T

T
 (

s)
 (

lo
g

 s
ca

le
)

Data sent (MB)

RTTQ

RTTF

RTTB

(b) Uplink BW 8Mbps

Figure 3.7: Overall latency characterization for a single TCP upload flow under two net-
work conditions.

We now measure RTTB, RTTF , and RTTQ by performing bulk data upload over TCP

on Samsung Galaxy S3, using Carrier 1’s LTE network. RTTQ and RTTF can be di-

rectly measured by tcp probe [24] and tcpdump, respectively. RTTB can only be in-

directly estimated. For a given upload trace, we keep track of the buffer occupancy and

enqueue/dequeue rates of the firmware buffer. We then use them to estimate the firmware

queuing delay3. RTTB is then calculated by subtracting RTTF measured from tcpdump

trace by the estimated queuing delay. The results of two representative experiments with

different uplink bandwidth (2Mbps and 8Mbps, which are 50% and 98% percentiles of up-

load rates measured from Figure 3.3(b), respectively) are shown in Figure 3.7. Note the Y

axes are in log scale.

As shown in both plots of Figure 3.7, at the beginning of the TCP upload, RTTF in-

creases steadily, and quickly outweighs RTTB. When the uplink bandwidth is 2Mbps

(8Mbps), after 2MB (4MB) of data has been sent out, RTTF is increased to around 1.3s

(330ms), which is much larger than RTTB maintaining stably at around 50ms. Meanwhile,

RTTQ starts to exceed RTTF , and becomes twice as large as RTTF after another 2MB of
3The detailed methodology of firmware buffer occupancy estimation is described in §3.6.2. Since the

radio firmware we use only reports firmware buffer occupancy of up to 150KB, we validate our methodology
when the occupancy is smaller than 150KB and then use it to infer the buffer occupancy at any time in the
trace.

27

data is uploaded. The absolute difference between RTTQ and RTTF is as high as 3s and

680ms in Figure 3.7(a) and 3.7(b), respectively.

Overall, we found that for cellular upload, surprisingly, the RTT observed by mobile de-

vices’ TCP stack (RTTQ) can be significantly larger than the RTT perceived by tcpdump

(RTTF), which further far exceeds the pure network RTT (RTTB). Depending on the

uplink bandwidth, RTTQ and RTTF can be 22x⇠100x and 6x⇠24x of RTTB, respec-

tively, during the steady phase of TCP bulk upload. We call such a phenomenon on-device

bufferbloat since it is caused by excessive queuing delay on the mobile device, as opposed

to the network, which is regarded as the main source of excessive queuing for cellular

downlink traffic [82]. As we will demonstrate later, on-device bufferbloat has deep impli-

cations on, for example, uplink bandwidth estimation, multi-tasking performance, uplink

scheduling algorithms, and on-device buffer management.

3.4.2 Root Cause of On-device Queuing

We now explore the root cause of the excessive on-device queuing delay. We begin with

an overview of how outgoing TCP packets on the sending path traverse the Linux kernel

(also used by Android) and radio chipset. As shown in Figure 3.8, an application invokes

the send() system call at time tsA and the data is put into TCP buffer by kernel through

TCP sockets at time tsT . Note tsT may be later than tsA if the socket is blocked. In Linux,

a packet is stored in a data structure called skb. A TCP packet is encapsulated into skb

(with its TCP header being added) and sent to IP layer in tcp transmit skb() at time

tsQ. After being processed at the IP layer, the skb with TCP/IP header is subsequently

injected to the queuing discipline (Qdisc) when dev queue xmit() is called. When the

driver is ready to transmit more data, dev hard start xmit() is called by the kernel to

dequeue the packet from Qdisc to the driver buffer at time tsD. Similarly, when the radio

firmware of the chipset is ready to receive a packet from the driver, ndo start xmit()

will be called to enqueue the packet to the firmware buffer at time tsF . The kernel usually

28

App1 App2 AppN
Application

Layer

Transport
Layer

Application data into TCP sockets

. . .

tcp_transmit_skb()

ACK

Linux
Qdisc

Qdisc enqueue: dev_queue_xmit()

Queueing Discipline

dev_hard_start_xmit()

TQ =
RTTQ - RTTF

Device
Driver

Radio
Firmware

ndo_start_xmit()

Driver buffer

tcpdump

TD ≈ 0

PHY Modulation and Coding

tsT

tsQ

tsD

tsF

tsN
t

TCP buffer
(per connection)TT

 Firmware bufferTF =
RTTF - RTTB

Kernel
space

User
space

Radio
chipset

Network

tsA

Figure 3.8: Packet processing and transmission on Android devices.

does not have direct control over the logic of radio firmware, which determines when to

actually transmit the packet at time tsN .

As mentioned in §3.4.1, in this study we focus on the queuing delay below the trans-

port layer, as lower-layer buffers are usually shared, causing potential interference across

multiple apps. We now describe lower-layer queuing in details.

In-kernel Queuing. To identify where on-device queuing occurs exactly in the ker-

nel, we use Linux kernel debugging tool jprobe to log timestamps of the aforementioned

function calls. We found that the queuing delay in the queuing discipline (Qdisc), denoted

as TQ, is almost identical to the difference between RTTQ and RTTF . Besides, the delay

between tcp transmit skb() and dev queue xmit(), as well as the driver queuing de-

lay (TD) are negligible. This indicates that when sending out traffic in cellular networks,

packet queuing in Qdisc dominates the on-device queuing delay in the kernel. Also, as an-

29

other validation, we observe a strong correlation (around 0.86) between the queuing delay

and the amount of traffic in Qdisc.

Firmware Queuing. In LTE uplink, the data to be transmitted from applications is

processed and queued in the RLC (Radio Link Control) buffer4, which is physically located

in the cellular chipset firmware. The amount of data available for transmission on the UE

(i.e., the firmware buffer occupancy) is provided to the eNodeB through control messages

called Buffer Status Reports (BSR). BSR can report 64 levels of buffer size with each level

representing a buffer size range [30]. The highest level of BSR is 150KB or above. Based

on BSR from all UEs, the eNodeB uplink scheduler assigns network resources to each

UE for uplink transmission in a centralized manner. The eNodeB sends control messages

called Scheduling Grants to inform a UE of the scheduling decision. A UE is only allowed

to transmit on the physical uplink shared channel (PUSCH) with a valid grant.

We observed that the BSR quickly increases to the highest level (150KB+) when there

is large LTE upload traffic. Also there exists a strong correlation (around 0.73) between

RTTF and buffer level in BSR. Leveraging the BSR information, we measured that the

actual firmware buffer occupancy can reach several hundreds of KBs (using a more accurate

algorithm described in §3.6.2), and the firmware queuing delay (TF) can reach 400ms with

8Mbps uplink. By subtracting the RTTF by the firmware queuing delay, we can estimate

RTTB, which is constantly low (e.g., around 50ms for Carrier 1), as shown in Figure 3.7.

Overall, the above findings have two important implications. First, cellular uplink

scheduling is performed in a centralized manner, different from that in Wi-Fi networks

where clients autonomously sense the wireless channel to transmit data and avoid collision

in a distributed way. Second, the firmware buffer distinguishes itself from other on-device

buffers in that its occupancy plays a role in the cellular control plane which in turn affects

eNodeB’s scheduling decisions and the achievable uplink throughput.
4In the remainder of this chapter, we use the general term “firmware buffer” to refer to the RLC buffer.

30

 1

 10

 100

 1000

SGS3
 Carrier 1

LTE

SGS3
Carrier 1
HSPA+

SGS3
Carrier 2

LTE

SGS3
Carrier 2
HSPA+

SGS3
Carrier 3

LTE

HTC One S
Carrier 1
HSPA+

D
e
la

y
(m

s)

TQ

RTTF

Figure 3.9: On-device queuing delay on diverse devices and cellular carriers.

3.4.3 Prevalence across Carriers & Devices

We show the prevalence of on-device bufferbloat in Figure 3.9 by repeating the up-

load experiments on various networks using two different devices. For each setting, we

report the 5th, 25th, 50th, 75th, and 95th percentiles of TQ and RTTF . We observe on-

device bufferbloat on all settings in LTE, with median TQ larger than 200ms. Regarding

the HSPA+ network, TQ is small (around 20ms) for SGS3 using Carrier 2. This is because

the TCP sending buffer size is configured to be small by Carrier 2 on this device (we will

discuss the impact of TCP buffer size in §3.6.1). Yet across all settings, we found that the

RTTF is much larger than the estimated RTTB, indicating that excessive firmware queuing

happens on all devices and carriers.

3.4.4 Uplink Throughput Measurement

Often applications (e.g., real-time multimedia apps) need to know the instantaneous

network throughput. The lower-layer information provided by firmware enables accurate

cellular throughput measurement. Recall in §3.4.2 that the UE can only send the amount

of data up to the scheduling grant. If a portion of the grant is not used, the firmware uses

padding to indicate the unused part. The padding size is also reported by the firmware.

Therefore, by subtracting the scheduling grant by the padding size, we can calculate the

31

 0

 0.25

 0.5

 0.75

 1

-100 -50 0 50 100

C
D

F

Estimation error (%)

App
TCP

Qdisc

(a) Measurement error with 20ms interval

 0

 0.25

 0.5

 0.75

 1

-100 -50 0 50 100

C
D

F

Estimation error (%)

App
TCP

Qdisc

(b) Measurement error with 100ms inter-
val

Figure 3.10: Uplink throughput measurement error at different layers.

amount of data sent out from the device, as well as the uplink throughput (the padding is

not transmitted).

Since the above approach directly utilizes lower-layer information from the cellular

control plane, it gives the ground truth of cellular uplink throughput. An interesting ques-

tion is, compared to this ground truth, how accurate is the throughput measured at upper

layers? We quantify this in Figure 3.10, which plots the measurement error at Qdisc, TCP,

and application layer where we use a slide window of 100ms and 20ms to estimate up-

link throughput during a bulk upload. The results indicate that the throughput estimation

at higher layers are highly inaccurate, with the root mean square being 141%, 136%, and

70% at the application layer, the transport layer, and the Qdisc, respectively, when the es-

timation interval is 100ms. Reducing the interval further worsens the accuracy. The root

cause of such inaccuracy is again the on-device bufferbloat: when a higher layer delivers

a potentially large chunk of data into large low-layer buffers, the higher layer thinks the

data is sent out but the data will stay in the buffer for a long time. In fact the higher layer

has no way to know when the data actually leaves the device. As indicated in Figure 3.10,

as the location of measurement moves to higher layers, the overall on-device buffer size

increases, leading to worse estimation accuracy.

32

3.5 Impact of Upload on Mobile Application Performance

This section quantifies the impact of upload on some popular applications’ perfor-

mance: file download, web browsing, video streaming, and VoIP. We compare user-

perceived application performance in two scenarios: without and with concurrent upload.

The experiments in this section were conducted on a Samsung Galaxy S3 phone using

Carrier 1’s LTE network unless otherwise mentioned. We use a single TCP connection to

generate upload traffic in controlled experiments.

3.5.1 Impact of Upload on Bulk Download

When upload and download exist concurrently, upload traffic can affect download traf-

fic in two ways: in-network and on-device. The former is well-known [139]: upload data

shares the same network link with TCP ACK packets of download data, leading to poten-

tially delayed uplink ACK for download. This can cause the server to retransmit download

data and reduce the congestion window size, ultimately leading to lower download through-

put. On the other hand, the on-device queuing delay triggered by upload can also severely

affect download by delaying its ACK packets (shown as t1 in Figure 3.6(b)), since when

download and upload traffic coexist, uplink TCP ACKs share the same queues (e.g., Qdisc

and firmware buffers) with uplink data, as detailed in §3.4.2.

We carried out experiments of running a one-minute TCP download flow with and with-

out a concurrent TCP upload flow on different devices and carriers with the setup described

in §3.2.1. Table 3.1 quantifies the impact of upload on download in four aspects, using bulk

download in absence of upload as the baseline: (i) decrease of the average (AVG) download

throughput, (ii) increase of the relative standard deviation (RSD)5 of download throughput,

(iii) increase of AVG RTT, and (iv) increase of RSD of RTT. All carriers exhibit perfor-

mance degradations in various degrees. In particular, large fluctuation of throughput and

RTT exists when there is background upload, posing challenges for user-interactive appli-
5Relative standard deviation (RSD) = standard deviation / mean.

33

Throughput RTT
Setup % AVG % RSD % AVG % RSD

decrease increase increase increase
SGS3 C1 LTE 66 253 91 37

SGS3 C1 HSPA+ 8 25 7 9
SGS3 C2 LTE 10 36 10 20
SGS3 C3 LTE 80 192 86 42

HTC One S C1 HSPA+ 22 260 10 91

Table 3.1: Impact of upload on download performance on different devices, vendors, and
networks (C1, C2, and C3 refer to Carrier 1, 2, and 3 respectively).

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25

C
D

F

Download Throughput (Mbps)

TCP DL+UDP UL
UDP DL+UDP UL

TCP DL only

Figure 3.11: Impact of uplink traffic on downlink TCP/UDP throughput.

cations. We also compare the in-network and the on-device impact of upload on download

traffic, by computing t1/t2 in Figure 3.6(b). The mean and median values of the fractions

of t1 in t2 are as high as 63% and 74%, indicating the on-device queuing delay dominates

the overall RTT of download traffic.

Next, we show that when uplink and downlink traffic are both present, the uplink ACK

packets being delayed is the dominating cause of degraded download performance. Fig-

ure 3.11 plots the download throughput distributions in three scenarios using Carrier 1’s

LTE network: (i) TCP download only, (ii) TCP download with concurrent UDP upload,

and (iii) UDP download with concurrent UDP upload. Figure 3.11 indicates that (i) and

(iii) exhibit similar download performance (scenario (iii) is even slightly better because it

uses UDP for download) while the throughput in Scenario (ii) is much lower. Since the

34

key difference between (ii) and (iii) is whether the uplink ACK stream exists, the results

indicate that the degraded download performance is almost solely associated with TCP’s

upstream ACKs, whereas in the underlying radio layer, uplink and downlink use differ-

ent channels and can be performed independently. Similar results are observed for upload

performance.

3.5.2 Impact on Web Browsing

We next examine the impact of upload traffic on web browsing. We picked ten popular

websites from Alexa top sites, and loaded each of them in Google Chrome browser on

a Samsung Galaxy S3 phone in two settings: without and with concurrent upload. We

repeat the test of each website for 5 times in a row and report the average results. We

performed cold-cache loadings for all sites, and measured the page load time (PLT) using

QoE Doctor [46, 105].

We found that upload traffic significantly inflates most delay components. For example,

the connection setup delay, which usually takes only one round-trip, increases by 64% to

509% due to on-device bufferbloat as the dominating factor. A similar case happens to

HTTP requests, which can typically fit into one single TCP packet. HTTP responses that

carry downlink data are also affected due to the explanations described in §3.5.1. The

response duration inflates by up to 3464%. Overall, the increase of PLT across the 10

websites ranges from 219% to 607%. The results indicate when concurrent upload is in

progress, on-device bufferbloat can significantly affect short-lived flows.

Next, we show that even a medium-sized upload can cause significant degradation of

user experience. Figure 3.12 repeats the above experiments but uses a finite size of upload

starting at �t seconds before the web browsing session begins. In each subfigure, a heatmap

block (x, y) visualizes the PLT inflation caused by an upload of size x for website y. An

“X” mark indicates the upload is completed before the page is fully loaded or even started

to load so the measured PLT increase is an under-estimation. We observe two trends. First,

35

#1
#2
#3
#4
#5
#6
#7
#8
#9

#10

1 2 4 8 16

S
ite

 #

Background upload
size (MB)

X
X X

X
X

X X X
X

(a) �t = 0

1 2 4 8 16

Background upload
size (MB)

X X X
X X X
X X
X X
X X X
X X X
X X X
X X X X
X X X
X X

(b) �t = 4s

1 2 4 8 16

Background upload
size (MB)

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X X
X X X X
X X X X

 0

 50

 100

 150

 200

P
a
g
e
 L

o
a
d
 T

im
e

In
cr

e
a
se

 (
%

)

(c) �t = 8s

Figure 3.12: Impact of upload on PLT. The web browsing session begins �t after upload
starts. “X” indicates the upload is completed before the web page is fully
loaded.

a larger upload incurs a higher impact on PLT. Second, the PLT impact also becomes higher

as �t increases (for blocks without “X”). This is because a larger �t allows more time for

the on-device queue to build up, and thus worsens the on-device bufferbloat condition when

the web browsing session starts.

3.5.3 Impact on Video Streaming and VoIP

Video Streaming. We randomly chose 10 popular videos of various lengths (from 40

seconds to 6 minutes) from YouTube and played them over LTE on a Samsung Galaxy S3

phone. The playback software is ExoPlayer [6], which uses the standard DASH streaming

algorithm. When the signal strength is above -98dBm, the average playback bitrate across

10 videos is 0.93Mbps without any stall when no concurrent traffic is present. With con-

current TCP upload, the average bitrate is reduced by 57% to only 0.39Mbps, with 15.3

stalls (total stall duration 103s) for each video on average. Even when periodical upload is

in progress (upload 5MB data every with 5s idle time between consecutive uploads), half

of the videos exhibit playback bitrate degradation by up to 19%.

VoIP. We make Skype voice calls from a Samsung Galaxy S3 phone to a desktop in

three settings (3 runs each setting): (i) Skype call only, (ii) Skype call with concurrent TCP

36

upload, and (iii) Skype call with periodical TCP upload of 5MB with 5s idle time between

uploads. The experiments were conducted over Carrier 1’s LTE network. For each call,

we play the same pre-recorded audio (90 seconds) as the baseline and record the audio at

the receiver. To quantify the user experience, we use an existing tool [13] to compute the

PESQ MOS (Perceptual Evaluation of Speech Quality, Mean Opinion Score) [14] metric.

When upload is not present, the average PESQ MOS score is 4.08. With continuous TCP

upload, the average PESQ MOS score drops to 1.80. Even for scenario (iii), the average

PESQ MOS score is only 1.77.

3.6 QCUT: Solution for On-device Bufferbloat

Given the severity of on-device bufferbloat, we propose our solution called QCUT to

mitigate it.

3.6.1 Inadequateness of Existing Solutions

In the literature, numerous solutions have been proposed to mitigate in-network

bufferbloat, and some do work with on-device buffers. Table 3.2 lists representative so-

lutions: changing TCP buffer size, changing TCP congestion control (CC), TCP Small

Queue (TSQ), Traffic Prioritization (TP), and Active Queue Management (AQM). How-

ever, they all have limitations on reducing on-device queuing delay. Changing TCP buffer

size and CC are transport layer solutions that adjust TCP behaviors to reduce the delay.

However, they do not work with buffers below the transport layer; also they do not provide

cross-flow control as each TCP connection has a separate buffer. TSQ, a newly introduced

Linux kernel patch, only limits the Qdisc occupancy on a per-connection basis. TP works

across flows and improves user experience by prioritizing delay-sensitive traffic. However,

it only partially reduces the queuing delay as will be evaluated in §3.7.1. The AQM ap-

proaches (e.g., CoDel and PIE) also work across flows. But they do not help reduce the

buffer occupancy at the firmware buffer. In §3.7.1, we quantitatively compare all above ap-

37

Bufferbloat mitigation Reducing queuing delay Cross-flow
solution Qdisc Driver Firmware control
Change TCP buffer size (3) (3) (3)
TCP Congestion Control (CC)
[66, 43, 40]

(3) (3) (3)

TCP Small Queue (TSQ) [23] 3

Traffic prioritization (TP) 3 3

Active Queue Management
(AQM) [101, 109]

3

Byte Queue Limit (BQL) [3] 3

QCUT 3 3 3 3

Table 3.2: Summary of solutions for reducing queuing delay for upload traffic. “(3)”
means only limited support.

proaches. We also show that jointly applying them may further incur unexpected conflicts,

causing additional performance degradation.

We emphasize that none of the above solutions can be realized at the firmware buffer,

which is usually proprietary hardware making it difficult to incorporate different queue

management algorithms. As new wireless technologies and radio chipsets emerge (e.g., 5G

and IoT devices), modification to all firmware to solve the on-device queuing is impracti-

cal. Also, as shown in §3.4.2, the cellular firmware buffer differs from upper-layer buffers

in that it plays a role in the cellular control plane (i.e., the BSR affects uplink schedul-

ing and the LTE uplink throughput). Therefore, even ignoring the implementation issues,

naı̈vely applying existing bufferbloat mitigation solutions on the firmware buffer may lead

to unexpected results or performance degradation.

3.6.2 QCUT Design

Motivated by the above, we design and implement a new approach called QCUT to

reduce the on-device queuing delay. Here we focus on optimizing cellular uplink but the

general concept of QCUT applies to other networks. As illustrated in Figure 3.13, QCUT

has three prominent features.

38

Kernel Cellular Firmware

QCut

Traffic ShapingTraffic
Differentiation

Throughput Estimation

Buffer Estimation
Prioriti-
zation

Classifi-
cation

Scheduling
Grant

Padding
Statistics

MAC &
PHY TXC P

Buffer Status
Report

From
eNB

To
eNB

Qdisc

Figure 3.13: The QCUT design.

• Realized as a general OS service, QCUT is independent of firmware implementation.

Therefore it can address the on-device queuing problem on any radio firmware, where

no modification is needed. QCUT operates in the kernel space and takes as input only

information of buffer occupancy and transmission statistics, which is exposed by most

cellular radio firmware from Qualcomm and likely other vendors.

• Since directly limiting the firmware buffer occupancy is difficult, QCUT controls the

firmware queuing delay indirectly in the kernel by controlling how fast packets from Qdisc

flow into the firmware buffer. QCUT estimates the radio firmware buffer occupancy and

queuing delay to decide the transmission of packets to the firmware dynamically.

• QCUT is flexible on traffic classification and prioritization. By (indirectly) limiting the

amount of data in the firmware, packets are queued in the Linux Qdisc, where QCUT can

flexibly prioritize packets based on the application requirements. For example, when back-

ground upload and interactive traffic co-exist, the latter can be prioritized and transmitted

without Qdisc queuing. By contrast, directly realizing fine-grained traffic prioritization in

the firmware is impractical and inflexible.

QCUT aims at reducing the on-device queuing delay. When there is no on-device queu-

ing, QCUT does not incur additional delay to RTTB or other runtime overhead.

As shown in Figure 3.13, QCUT comprises of two components: traffic differentiation

39

 0

 0.25

 0.5

 0.75

 1

-100 -50 0 50 100

C
D

F
Estimation error (%)

App
TCP

Qdisc
Firmware

Figure 3.14: Uplink throughput prediction error at different layers with 20ms prediction
interval.

and traffic shaping. Traffic differentiation classifies packets from applications, and prior-

itizes certain traffic in the Qdisc (e.g., delay-sensitive traffic) based on applications’ re-

quirement. The traffic shaping module (i) performs accurate throughput prediction, which

is then used to (ii) estimate the buffer occupancy in the firmware. Based on that, the module

(iii) controls how fast packets from Qdisc flow into the firmware buffer, in order to limit

the firmware buffer occupancy. We describe each component in details below.

3.6.2.1 Achievable Physical Layer Throughput Prediction

Based on recent lower-layer throughput values measured from scheduling grant and

padding (§3.4.4), we perform throughput prediction using Exponentially Weighted Moving

Average (EWMA) with ↵ = 0.25 (empirically chosen). The prediction interval is 20ms.

Note that we need to predict the throughput because the lower-layer firmware information is

not provided in real time so the throughput measurement is delayed, as we explain shortly.

The “firmware” curve in Figure 3.14 plots the prediction error distributions under 20ms

prediction interval, in our controlled bulk upload experiments with -95dBm RSRP (8Mbps

uplink bandwidth). The ground truth is the lower-layer throughput measured with a delay

(⇠100ms later). The results indicate that compared to other curves in Figure 3.14 where

we perform throughput estimation at higher layers using the same EWMA algorithm, using

40

lower-layer information for throughput prediction is much more accurate.

3.6.2.2 Buffer Occupancy Estimation

For a wide range of cellular firmware, their buffer occupancy level can be directly read

from the buffer status report (BSR). However, a practical issue we found is that, BSR is

not reported in real time to allow accurate buffer occupancy estimation. On both Samsung

Galaxy S3 and Nexus 5 devices, although BSR is reported to eNodeB every 5ms, there is on

average around 100ms delay before this information is reported to the kernel due to various

overheads. During this period, the firmware buffer dynamics may fluctuate considerably.

To overcome this issue, we propose to combine the BSR and the predicted throughput

to derive accurate firmware buffer occupancy. The basic idea is the following: since we

know both the accurate enqueue rate (measured from Qdisc) and dequeue rate (from uplink

throughput) of the firmware buffer, we can use them to refine the rough buffer occupancy

estimation from delayed BSR. More specifically, let S0 be the most recently reported BSR

generated by the firmware at t0, which can be obtained from a BSR’s timestamp field.

Let Ruplink be the predicted uplink throughput at t0. Also we keep track of packets {Pi}

(i=1,2,...) leaving Qdisc after t0 by recording their sizes {Si} and timestamps {ti} of

leaving Qdisc. Given the above information, the firmware buffer occupancy B(tcurr) at

timestamp tcurr can be calculated as follows:

B(tcurr) = B(tn+1) (3.1)

B(ti+1) = B(ti) + Si+1 � STX(i), i 2 [0, n] (3.2)

STX(i) = min(B(ti), Ruplink ⇥ (ti+1 � ti)), i 2 [0, n]; (3.3)

where t0 < t1 < .. < tn  tn+1 = tcurr, Sn+1 = 0.

The buffer occupancy is estimated in an iterative manner as shown in Equation (3.2),

where Si+1 and STX(i) are the number of bytes enter and leave the firmware buffer since

41

t

Ra
di

o
fir

m
w

ar
e

bu
ffe

r
oc

cu
pa

nc
y
B(
t)

Timestamp of
most recent BSR

Current
timestamp

Packets transmitted
from Linux Qdisc

Estimated
Buffer

Occupancy

t0 tcurr=tn+1tnt1 ti

Si+1
STX(i)

Figure 3.15: Radio firmware buffer occupancy estimation.

ti, respectively. STX(i) is computed in Equation (3.3) using the predicted throughput. The

process is illustrated in Figure 3.15.

3.6.2.3 Qdisc Dequeue Control

QCUT limits the queuing delay in the radio firmware by throttling the Qdisc in the

kernel, i.e., strategically controlling whether a packet should be dequeued from Qdisc into

the radio firmware. To realize this, a simple way is to use a fixed threshold of the firmware

buffer occupancy, which we refer as QCUT-B (B stands for “bytes”). We evaluated this

approach by repeating one-minute TCP uploads five times with different thresholds on a

Nexus 5 phone using Carrier 1’s LTE network, under different signal strength conditions.

As shown in Figure 3.16, different QCUT-B thresholds incur different tradeoffs between

throughput and latency (quantified by RTTF). However, it is difficult to find a threshold

that works for all network conditions. The best threshold that achieves low latency without

sacrificing the throughput depends on the signal strength: 2KB for -110dBm, 20KB for

-98dBm, and 50KB for -85dBm. In particular, a small threshold (e.g., 2KB) works well

when the signal strength is low. However, at high signal strength, it causes bandwidth

under-utilization. As described in §3.4.2, this is attributed to the very nature of cellular

uplink scheduling: the firmware buffer occupancy reported in BSR is used for determining

42

 0

 0.5

 1

 1.5

 60 1000 2000 3000 4000

Bet
te

r

U
p
lin

k
th

ro
u
g
h
p
u
t

(M
b
p
s)

RTTF (ms)

2
K

B
5

K
B

1
0

K
B

2
0

K
B

5
0

K
B

1
0

0
K

B

N
o

 li
m

it

(a) Signal strength -110dBm

 0

 5

 60 200 350 500

Bet
te

r

U
p
lin

k
th

ro
u
g
h
p
u
t

(M
b
p
s)

RTTF (ms)

2K
B5K
B10

KB20
K
B

50
KB

10
0K

B

N
o

lim
it

(b) Signal strength -98dBm

 0

 5

 10

 15

 60 120 200 280

U
p
lin

k
th

ro
u
g
h
p
u
t

(M
b
p
s)

RTTF (ms)

2K
B5K

B10
KB20
KB

50
K
B

10
0K

B

N
o

lim
it

Bet
te

r

(c) Signal strength -85dBm

Figure 3.16: Impact of firmware buffer occupancy threshold of QCUT-B. The best thresh-
old in each plot is in bold blue text.

uplink bandwidth allocation; the base station thus regards a small buffer occupancy as an

indicator that the client does not have much data to transmit, thus allocating small uplink

bandwidth for the mobile client.

To overcome the above limitation, we propose another scheme called QCUT-D (D

stands for “delay”). It instead uses the firmware queuing delay (TF) as a threshold. The

queuing delay is computed from the estimated throughput and the buffer occupancy. If

the delay is above the threshold, QCUT-D does not allow a packet to be dequeued to the

firmware from Qdisc. Thus, QCUT-D is adaptive to diverse network conditions by dynam-

ically adjusting the firmware buffer occupancy. We empirically found that using 20ms as

the delay threshold on LTE networks works reasonably well in diverse network conditions:

43

it leads to low firmware buffer queuing while incurring very small impact on the uplink

throughput, as to be evaluated in §3.7.2. This threshold can also be empirically chosen for

other types of networks.

3.6.2.4 Traffic Differentiation

To meet the performance requirement of different applications, QCUT uses the priority

queuing in Linux Qdisc for traffic prioritization. For example, the background upload and

interactive traffic such as web browsing are put into different queues in Qdisc. As a result,

interactive traffic does not experience high queuing delay in Qdisc caused by bulk upload.

Also, thanks to the aforementioned traffic shaping module in QCUT, the delay-sensitive

traffic also undergoes very low queuing delay in the firmware, thus leading to an overall

small on-device queuing delay and thus good user experience. QCUT uses existing traffic

classification mechanism on Linux to allow applications and users to flexibly configure

priorities for different traffic through the standard tc interface.

3.6.3 QCUT Implementation

We implemented QCUT on Android Linux kernel. Our testing devices consist of

Samsung Galaxy S3 and Nexus 5 running Android 4.4.4 and 6.0.1 with Qualcomm ra-

dio chipset. We expect QCUT to also work with other phones and tablets with cellular

firmware from the same vendor. Note that QCUT does not require any special equipment

such as QXDM [16].

Traffic shaping and differentiation are implemented as a Linux packet scheduler mod-

ule in 600 LoC. QCUT keeps track of transmitted packets from Qdisc since the most recent

BSR. The traffic shaping module is implemented in the function call enqueue() of the

Qdisc operation data structure Qdisc ops. In enqueue(), the queuing delay in firmware

is estimated based on the information from the radio firmware. More specifically, we use

the /dev/diag interface on the Android phones with Qualcomm radio chipset to extract

44

the uplink scheduling grant, padding statistics, and BSR from the logs of LTE uplink trans-

port blocks. The online parsing of the logs is implemented in a C++ program in the user

space. Each log record has a timestamp of the firmware. The timestamps between kernel

and the firmware need to be synchronized. The user-space program sends time request

periodically and uses the response, which contains the firmware timestamp, to perform the

synchronization.

3.7 Evaluation

We comprehensively assess how a wide range of solutions help mitigate the on-device

bufferbloat problem, focusing on existing solutions (§3.7.1) and then QCUT (§3.7.2). For

all the following experiments, we conducted on a Samsung Galaxy S3 on Carrier 1’s LTE

network unless otherwise mentioned. We expect the experimental findings to be general as

none of the solutions depends on a specific carrier or vendor.

3.7.1 Existing Solutions

We consider existing bufferbloat-mitigation solutions discussed in §3.6.1. We demon-

strate in this section that they can reduce excessive on-device queuing to various de-

grees. However, they suffer from various limitations, and are all incapable of reducing

the firmware buffer occupancy. We conduct bulk upload experiments at two locations with

different signal strengths measured by RSRP (Reference Signal Received Power): good

signal (RSRP of -69 to -75 dBm) and fair signal (RSRP of -89 to -95), using a Samsung

Galaxy S3 on Carrier 1’s LTE network.

Changing TCP buffer sizes. The TCP send buffer (tcp wmem) on device imposes a

limit on the TCP congestion window (cwnd). As shown in Figure 3.17, under good signal,

shrinking the send buffer effectively reduces RTTQ that is dominated by device-side queu-

ing at Qdisc and firmware. However, the penalty is severely degraded upload throughput,

in particular when tcp wmem is smaller than the bandwidth-delay product (BDP). Since

45

 0

 0.5

 1

 1.5

 2

 2.5

default
(1192)

16 64 256 1024 3072
 0

 2

 4

 6

 8

 10

Y
1

:
R

T
T

 (
s)

Y
2

:
U

p
lo

a
d

 t
h

ro
u

g
h

p
u

t
(M

b
p

s)

Device-side TCP write buffer limit (KB)

RTTQ (Y1)

Throughput (Y2)

Figure 3.17: Impact of TCP send buffer sizes on upload performance.

 0

 0.5

 1

 1.5

 2

2 8 32 128
(default)

512

D
e
la

y
(s

)

TSQ size (KB)

TQ / Good
TQ / Fair

RTTF / Good
RTTF / Fair

Figure 3.18: Impact of different TCP small queue (TSQ) sizes on upload.

BDP constantly fluctuates in cellular networks [131], a fixed configuration of TCP buffer

size does not fit all network conditions.

Changing TCP small queue (TSQ) size. As a newly introduced Linux kernel patch,

TSQ [23] limits per-connection data in Qdisc using a fixed threshold. By reducing the

threshold, we observe smaller Qdisc queuing delay (TQ = RTTQ � RTTF in Figure 3.8)

under both network conditions, as shown in Figure 3.18. Yet Linux’s default TSQ threshold

is too large to eliminate the Qdisc queuing. However, Figure 3.18 also indicates that TSQ

has negligible impact on the firmware queuing delay (TF = RTTF � RTTB), because TSQ

only controls the bytes in Qdisc. Further, TSQ limits Qdisc occupancy on a per-connection

basis so the Qdisc occupancy can still be high when concurrent flows exist.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Cubic
Westwood

Vegas
LP

 0

 2

 4

 6

 8

 10

 12

 14

Y
1
:
R

T
T

 (
s)

Y
2
:
U

p
lo

a
d
 t
h
ro

u
g
h
p
u
t

(M
b
p
s)

RTTQ / Good (Y1)
RTTQ / Fair (Y1)

Throughput / Good (Y2)
Throughput / Fair (Y2)

Figure 3.19: Impact of different TCP CC on upload (with TSQ=128KB).

Changing TCP congestion control. Congestion control (CC) affects the aggres-

siveness of TCP. We consider two representative CC categories: loss-based CC (TCP

CUBIC[66] and Westwood[99]) and delay-based CC (TCP Vegas[43] and LP[86]). Gen-

erally speaking, lost-based CC, which uses packet loss as congestion indicator, is more

aggressive than delay-based CC that treats increased delay as a signal of congestion. We

found even with TSQ enabled, loss-based CC incurs severe on-device queuing, measured

by RTTQ, as shown in Figure 3.19. For delay-based CC, regardless of TSQ setting, on-

device queuing is almost always negligible. However, such low on-device queuing delays

are achieved by sacrificing up to 80% of the throughput.

Active Queue Management is a major in-network solution to reduce queuing delay

and network congestion by strategically dropping packets in a queue. We considered two

well-known and recently proposed AQM algorithms, CoDel [101] and PIE [109]. Both

approaches use a target threshold to control the queuing delay. Under both signal strengths,

CoDel effectively keeps the Qdisc queuing delay below the target threshold. However,

Since CoDel does not apply to the firmware buffer, it only slightly reduces RTTF by 10%

to 20%, as indicated in Figure 3.20. This is the result of TCP cwnd reduction triggered by

packet losses injected by CoDel. The performance of PIE is even worse than CoDel.

Jointly applying multiple strategies. In many case, several mitigation strategies can

47

 0

 200

 400

 600

 800

 1000

No
CoDel

1 5 25

R
T

T
F
 (

m
s)

Target threshold (ms)

Good signal
Fair signal

Figure 3.20: Effectiveness of CoDel on reducing latency.

 0

 20

 40

 60

 80

 100

Across 10 Sites

P
a

g
e

 lo
a

d
 t

im
e

 (
s) WB only

WB + BG UL
CoDel

CoDel+TSQ
 CoDel+Vegas

(a) Web browsing with concur-
rent upload

 0

 200

 400

 600

 800

 1000

 1200

Default CoDel CoDel
+TSQ

 0

 2

 4

 6

 8

 10

Y
1

:
D

e
la

y
(m

s)

Y
2

:
T

h
ro

u
g

h
p

u
t

(k
b

p
s)Y1: RTT

Y1: On-device latency
Y2: Upload Throughput

(b) Single upload stream

Figure 3.21: Effectiveness of jointly applying multiple mitigation strategies on upload.

be jointly applied to better balance various tradeoffs. We study two representative sce-

narios. In Figure 3.21(a), when concurrent upload is present, jointly applying CoDel and

Vegas on upload reduces web browsing PLT to almost the minimum (i.e., close to the PLT

without upload). CoDel effectively complements delay-based CC by controlling queuing

delay across all connections in an aggregated manner.

However, we find that jointly using several approaches may also incur unexpected con-

flicts, causing performance degradation. For example, when CoDel (with target threshold

5ms) and TSQ (with queue size 4KB) are jointly applied to a single upload flow, RTTF

actually increases by 37% compared to using CoDel alone (figure not shown). This is ex-

plained as follows. A small Qdisc achieved by TSQ can reduce the effectiveness of CoDel,

48

since the small on-device queuing delay allows CoDel to drop very few packets compared

to a large queue does. This causes TCP cwnd to increase faster, leading to more noticeable

in-network queuing delay. Such an observation is also confirmed in Figure 3.21(a), which

shows CoDel+TSQ incurs higher PLT than CoDel does, when upload and web browsing

coexist.

Traffic prioritization. All above solutions focus on reducing on-device queuing for

bulk upload. When concurrent upload and download exist, an alternative approach is to

prioritize uplink ACK packets over upload data traffic to mitigate the impact of upload on

download (§3.5.1). Our experiments indicate that when uplink ACKs are prioritized, their

Qdisc queuing delay is reduced significantly from 1363ms to 86ms at -95dBm. However,

prioritization can only be realized at Qdisc, causing the uplink ACK stream still to inter-

fere with uplink data at the firmware buffer. As a result, compared to the case where no

concurrent upload exists, applying prioritization still increases RTTF by 112ms. We will

demonstrate in §3.7.2 that by combining Qdisc prioritization with firmware queuing delay

reduction, QCUT can effectively mitigate on-device bufferbloat.

3.7.2 Evaluation of QCUT

We conduct a thorough evaluation of QCUT to demonstrate that it outperforms existing

solutions. First, we show QCUT can significantly reduce RTTF that mainly consists of

the firmware queuing delay. We then conduct a crowd-sourced user study to assess the

effectiveness of QCUT under real workload (web browsing and video streaming) when

bulk upload is present.

3.7.2.1 Reducing Excessive Firmware Queuing

Using the workload of a single TCP upload, we compare the performance of five

schemes: TCP CUBIC, TCP Vegas, TSQ, CoDel, and QCUT. Each experiment thus con-

sists of five back-to-back TCP uploads (one minute each) using Carrier 1’s LTE network.

49

 0

 1

 2

 3

 60 120 240 480 960 1920

Bet
te

r

U
p
lin

k
th

ro
u
g
h
p
u
t

(M
b
p
s)

RTTF (ms)

CUBIC

Vegas

CoDelTSQ
QCut-B
(5KB)

QCut-B
(20KB)

QCut-D
(20ms)

(a) Signal Strength -110dBm

 0

 2

 4

 6

 8

 60 120 240 480

Bet
te

r

U
p
lin

k
th

ro
u
g
h
p
u
t

(M
b
p
s)

RTTF (ms)

CUBIC

Vegas

CoDel

TSQ

QCut-B
(5KB)

QCut-B
(20KB)

QCut-D
(20ms)

(b) Signal Strength -95dBm

Figure 3.22: Compare TCP upload performance of different schemes.

We repeat the experiment for 10 times at two locations with stable signal strength of -

95dBm and -110dBm, respectively. We calculate the throughput every 500ms and measure

RTTF using tcpdump traces. For each scheme, we report the average result at each loca-

tion.

Since the five schemes achieve different tradeoffs between throughput and latency, we

visualize the results on a two-dimensional plane in Figure 3.22. The X and Y axes cor-

respond to RTTF and measured throughput, respectively. A good solution should appear

in the upper-right corner of the plane. The results indicate that except for QCUT and TCP

Vegas, none of the five solutions is capable of reducing RTTF because they do not work

at the firmware layer. For TCP Vegas, in Figure 3.22(b), it achieves low latency at the cost

50

of very low throughput, with the reason explained in §3.7.1. On the other hand, QCUT

effectively reduces the firmware queuing with little or small sacrifice of the throughput.

Recall in §3.6.2 that we devised two QCUT schemes: QCUT-B and QCUT-D, which use

the firmware buffer occupancy and delay as the threshold to limit the firmware buffer oc-

cupancy. We found QCUT-D works reasonably well at both locations since it is adaptive

to different throughput, while it is a bit difficult to pick a fixed threshold for QCUT-B for

different throughput.

3.7.2.2 Improving Application Performance

To assess how QCUT improves real applications’ performance, we deployed QCUT

on five Samsung Galaxy S3 phones used by real users. The phones run crowd-sourced

measurements supported by Mobilyzer [106] for a week under diverse network conditions.

This user study has been approved by IRB.

We consider two workloads: (1) load five popular webpages, and (2) stream a 2-min

YouTube video. For each workload, we run back-to-back measurements under four differ-

ent settings: (i) no background upload, (ii) concurrent upload without bufferbloat mitiga-

tion, (iii) concurrent upload with CoDel on Qdisc, and (iv) concurrent upload with QCUT-

D. For web browsing, we collect the page load time (PLT) of each webpage; for video

streaming, we record initial loading time, playback bitrate and rebuffering events. Note we

only triggered these measurements when the phone is idle, so the experiment is not inter-

fered with other user traffic. To mitigate the impact of the varying signal strength within

the same experiment that consists of four back-to-back measurements, we discard the en-

tire experiment if the LTE RSRP changes by more than 4dBm. Overall we conducted 1266

and 549 successful experiments for web browsing and video streaming, respectively.

The results are shown in Figure 3.23. In each plot, we show two groups of results

corresponding to weak signal strength (LTE RSRP<-99dBm) and strong signal strength

(LTE RSRP�-99dBm), respectively. As shown in Figure 3.23(a), due to concurrent up-

51

 1

 10

 100

Weak Signal
Strength

Strong Signal
Strength

P
a
g
e
 lo

a
d
 t
im

e
 (

s)

No Upload
Upload

Upload + CoDel
Upload + QCut

(a) Web browsing

 1

 10

Weak Signal
Strength

Strong Signal
Strength

In
iti

a
l l

o
a
d
in

g
 t
im

e
 (

s) No Upload
Upload

Upload + CoDel
Upload + QCut

(b) Video streaming: initial loading time

 0

 0.5

 1

 1.5

 2

 2.5

 3

Weak Signal
Strength

Strong Signal
Strength

V
id

e
o
 b

itr
a
te

 (
M

b
p
s)

No Upload
Upload

Upload + CoDel
Upload + QCut

(c) Video streaming: bitrate

Figure 3.23: Improvement of application performance brought by QCUT.

load, the median PLT across 5 sites increases by 78% and 159% for strong and weak signal

strength, respectively, leading to significantly degraded user QoE. Applying CoDel does

not help mitigate the additional ACK delay (of webpage download) incurred by the bulk

upload, in particular when the signal strength is weak: the median PLT increases are still

as large as 75% and 171% for strong and weak signal strength, respectively, compared to

52

the no-upload cases. QCUT-D, on the other hand, effectively reduces the PLT to the base-

line (i.e., no-upload). For video streaming, we consider two QoE metrics: initial buffering

time and playback bitrate, whose results are shown in Figure 3.23(b) and 3.23(c), respec-

tively. Again, QCUT significantly outperforms CoDel on improving the video streaming

QoE when concurrent bulk upload is present.

As described in §3.6.2, the effectiveness of QCUT is attributed to two reasons. First, it

reduces the firmware buffer occupancy (TF). But doing that alone is not sufficient because

delay sensitive traffic can still be interfered by upload traffic at Qdisc. QCUT addresses this

by performing prioritization at Qdisc, resulting in reduced TQ for delay sensitive traffic.

3.8 Discussion

The firmware of cellular radio chips from major baseband modem vendors, such as

Qualcomm [1, 17], is closed-sourced today [26]. Under such scenario, QCUT solves on-

device bufferbloat as long as the radio firmware reports the necessary information to the

kernel. If radio firmware allows modification, some components in QCUT can be integrated

into the firmware to better control the queuing delay in the firmware. Besides traffic differ-

entiation in the kernel, the firmware should also differentiate network traffic with priority

queues instead of a single FIFO queue, based on application types and connections indi-

cated by the kernel. Thus, a packet from interactive apps can be prioritized in both Linux

Qdisc and firmware queue. Traffic shaping can be implemented in the firmware instead to

guarantee that each packet in every queue experiences the low delay before transmitted to

the network.

3.9 Summary

We carried out to our knowledge the first comprehensive investigation of cellular up-

load traffic and its interaction with concurrent traffic. Our extensive measurement using

53

33-month crowd-sourced data indicates the contribution of upload is large, and the up-

load speed is high enough to enable applications to upload user-generated traffic. We then

comprehensively investigated the on-device bufferbloat problem that incurs severe perfor-

mance impact on applications. We identified a major source of on-device bufferbloat to be

the large firmware buffer, on which existing bufferbloat mitigation solutions are ineffec-

tive. We then propose a general and lightweight solution called QCUT, which controls the

firmware buffer occupancy from the OS kernel. We demonstrate the effectiveness of QCUT

through in-lab experiments and real deployment.

54

CHAPTER IV

Improving Multipath Architecture for Mobile Networks

In this chapter, we move on from addressing flow-level parallelism to better leveraging

interface-level parallelism. We propose a flexible multipath architecture for multipath over

mobile networks to address the limitations of MPTCP, the most widely used multipath

solution.

4.1 Introduction

Despite existing efforts of understanding and improving multipath transport, there still

remain numerous challenges for effectively and efficiently using mobile multipath. To

name a few, first, originally designed for data center networking [115], MPTCP may in-

cur unexpected cross-layer interactions when used on mobile devices [54, 68]. Second, as

shown later, MPTCP often incurs additional energy overhead, but may not always boost

(sometimes even worsen) application performance. Therefore, applications should use

multipath only when its benefit outweighs its incurred overhead. Such decision logic is

largely missing or done naı̈vely in practice. Third, protocols such as MPTCP are complex

with numerous configurations, and it is unclear how to tune them in an optimal way. Fourth,

from a system architectural perspective, MPTCP’s “everything in kernel” scheme may not

be suitable for mobile multipath to support a rich set of application-specific policies.

In this chapter, we explore the following unanswered question: How to improve the

55

system architecture for mobile multipath? The measurement results from existing work in-

dicate that MPTCP suffers from a few limitations: poor interaction with short/small flows,

a lack of infrastructural support for multipath policy, and MPTCP extension often being

blocked by middleboxes [54, 68, 104]. We propose a flexible software architecture of mo-

bile multipath called MPFlex that overcomes all the above limitations. MPFlex has several

prominent features:

• First, it performs transparent multiplexing for application traffic over multipath. Our

multiplexing scheme reduces the number of handshakes from many (one per path) to zero,

leading to significant improvement of bandwidth utilization for small flows.

• Second, MPFlex decouples the high-level scheduling algorithm and the low-level OS

protocol implementation. This is realized by maintaining most of MPFlex’s logic in the

user space, which obtains lower-layer information (e.g., latency and congestion window)

from kernel through a unified API. Such a framework dramatically simplifies the develop-

ment, deployment, and maintenance of multipath features.

• Third, MPFlex has visibility of all traffic on an end host, and thus provides an ideal

vantage point for applying user-specified multipath policies.

• Fourth, MPFlex is middlebox-friendly as it does not use any Layer 3 or 4 protocol

extensions which may be blocked by ISPs.

Compared to MPTCP, MPFlex reduces single file transfer time by up to 49%, improves

bundled short flows’ transfer time by up to 63%, and boosts real web page load speed by up

to 20%, while incurring negligible overhead. We also demonstrate MPFlex’s capability of

flexibly plugging-in new features such as buffer-aware scheduling, smart packet reinjection,

and per-application policies, which can be implemented in less than 70 lines of user-level

code.

56

4.2 MPFlex: A Flexible Architecture For Mobile Multipath

MPTCP has several limitations: its interplay with short-lived flows can be further

improved; it is important but currently difficult to incorporate application policies into

MPTCP; the MPTCP extension is often blocked by middleboxes; MPTCP apparently does

not work with other protocols such as UDP; MPTCP also incurs unexpected interaction

with CDN.

We realize that many of these challenges stem from the origin of MPTCP, which was

originally developed for improving the performance and robustness for datacenter net-

works [115]. Datacenters are “closed” ecosystems where latency is small, long-lived flows

are common for intra-datacenter traffic, and administrators have full control over all ap-

plications and network elements. The mobile ecosystem, however, is drastically different,

making naı̈vely porting MPTCP to mobile devices suboptimal.

4.2.1 The MPFlex Architecture

Motivated by the above, we attempt to address an important research question: what is

a better system architecture for mobile multipath? To this end, we design, implement, and

evaluate a flexible software architecture of mobile multipath called MPFlex. As illustrated

in Figure 4.1, MPFlex is a proxy-based solution. It is transparent to both client applications

and servers, with several prominent features.

• MPFlex employs multiplexing to consolidate multiple (potentially short-lived) connec-

tions into two long-lived connections: one over WiFi and the other over cellular. The Mul-

tiplexed Connections (MC), shown in Figure 4.1, are persistent and are by default shared

by all applications. They cover the “last-mile” links that are usually the bottleneck. This

design overcomes MPTCP’s key limitation when dealing with short-lived flows due to fol-

lowing reasons.

First, in MPFlex, since MCs are pre-established, an application connection (shown in

57

Client Host

The
Internet

MPFLEX Proxy

Multiplexed
Connections (MC)

App Policies

M
PFLEX

M
PF
LE
X

Figure 4.1: The MPFlex architecture.

dashed lines) only needs one handshake over usually the fastest path to inform the proxy

to create the corresponding connection with the remote server, instead of handshakes for

every subflow in MPTCP. This allows all subflows to be usable sooner, thus improving the

bandwidth utilization. This handshake can be eliminated by applying the idea of TCP fast

open [114], resulting in zero-RTT handshake over multipath between the device and the

proxy.

The second benefit of multiplexing is, as an MC is persistent and long-lived, it can

preserve the congestion window. This avoids the bandwidth probing (e.g., TCP slow start).

Note this advantage also exists in single-path, but it is more prominent in multipath by

improving all subflows. When a long-lived MC has no data to transmit or receive, the radio

interface switches to the IDLE state to save energy, while maintaining the TCP state.

Multiplexing has been employed by other application protocols such as SPDY [128],

HTTP/2 [42], and QUIC [18]. MPFlex instead performs multiplexing at the transport layer

while being transparent to upper-layer protocols. In particular, unlike a SPDY or HTTP/2

proxy that needs to be man-in-the-middle for SSL/TLS sessions (thus breaking the end-to-

end security), MPFlex can transparently work with SSL/TLS.

• MPFlex decouples the high-level scheduling algorithm and the low-level OS protocol

implementation. This is realized by implementing most of MPFlex’s logic in the user space

(unlike MPTCP’s “all-in-kernel” approach), which obtains lower-layer information such as

58

Multipath Solution MPTCP Proxy HTTP/2 Proxy + MPTCP MPFlex
Multiplexing No Yes Yes
Good Short Flow Performance No No Yes
Protocol Applicability TCP only HTTP only Any protocol
User or Kernel Mostly kernel Kernel + user Mostly user
Transparent To SSL/TLS Yes No Yes
Middlebox-friendly No No Yes
Application Policies No No Yes

Table 4.1: Comparison of three multipath proxy solutions.

latency and congestion window size from kernel through a unified API. This dramatically

simplifies the development and deployment of multipath features (§4.2.3).

• MPFlex is a flexible framework. Unlike MPTCP, MPFlex is provided as an OS service

and can transparently provide multipath support for non-TCP protocols. An MC can be

realized by a wide range of transport protocols such as TCP, reliable UDP, and SCTP [124],

enabling continuous transport-layer innovation. Both features are realized through a pair

of MPFlex modules deployed on both the client and the proxy. They not only perform

(de)multiplexing, but also transparently intercept application packets (at the client), and

serve as end points of MCs.

• MPFlex has visibility of all client traffic, making it an ideal vantage point for applying

user-specified multipath policy based on application usage, performance, cellular data us-

age, and energy. Realizing such a policy framework by MPTCP itself is difficult unless a

centralized traffic manager similar to MPFlex is introduced.

• MPFlex is middlebox-friendly. Since the multiplexing protocol runs above the trans-

port layer, it does not require any network-layer or transport-layer extensions such as the

MPTCP extension [58] that might not be recognized by today’s firewalls and middleboxes.

Table 4.1 compares three multipath proxy solutions: MPTCP proxy, MPFlex, and HTTP/2

proxy with MPTCP.

59

OS Protocol Stack

Protocol Info Reader (kernel module)

SchedulersMultipath
Manager

MP Policy
Engine

MUX and
DEMUX

User Interface

SchedulersSchedulers

Standard Socket API

Ke
rn
el

Us
er

Figure 4.2: Components within an MPFlex endpoint.

4.2.2 MPFlex Design and Implementation

We implement MPFlex as follows. Multiplexing is performed in a way similar to that in

SPDY and HTTP/2, but across TCP connections instead of HTTP transactions (an approach

similar to [112]). On the client side, uplink TCP data from applications is segmented

and encapsulated into messages, which are then distributed onto MCs. Each message has

a small header containing its application connection ID, length, and message sequence

number. Upon the reception of a message, the proxy performs demultiplexing by extracting

the data and forwarding it to the remote server based on the connection ID. Downlink

traffic is handled similarly but in the reverse direction. TCP SYN, FIN, and RST are also

encapsulated into control messages to realize application connection management.

Based on the above basic multiplexing infrastructure, we developed MPFlex by adding

three critical new components shown in Figure 4.2: multipath manager, schedulers, and

policy engine. We currently implemented two types of MC: TCP and UDP (for multipath

UDP). We only describe TCP here due to space constraints.

MPFlex is implemented in C++ with about 5K LoC on Nexus 5 with Android 4.4.4

as the client host and a commodity server as a MPFlex proxy. On the client side, we

implemented a lightweight Linux kernel module using netfilter hooks to intercept uplink

TCP packets and redirect them to the MPFlex userspace program, which manages MCs,

application connections, and makes scheduling decision for uplink traffic. The MPFlex

60

proxy performs similar operations for downlink traffic. Our implementation allows MPFlex

to transparently provide multiplexing over multipath, so all applications can immediately

benefit from MPFlex without modification.

4.2.2.1 Multipath Manager

Multipath manager provides basic multipath support. At client host, MPFlex configures

local routing tables, and sets up two regular TCP connections to the MPFlex proxy over the

WiFi and cellular interface, respectively, as MCs. An MC is long-lived, unless its network

interface is down. In that case multipath multiplexing falls back to single-path. The MC

is reestablished when its interface becomes alive. Extending MPFlex for supporting more

than two interfaces is also straightforward.

When an application connection issues a TCP SYN handshake, the client-side MPFlex

module intercepts it, and sends a control message, containing the server IP and port, to the

proxy-side MPFlex module over one MC selected by the scheduler (described below). The

proxy then establishes the connection to the remote server. This differs from MPTCP’s

connection establishment where every path needs to perform its own handshake. A sim-

ilar situation happens when closing the connection. The handshake message is treated as

transport-layer payload, not bound to a particular path. Therefore, if WiFi is congested

while LTE is active but less loaded, the handshake is performed over LTE. Also as men-

tioned before, MPFlex allows the handshake to be piggybacked with the uplink user data

(of up to a threshold of n bytes) to achieve 0-RTT handshake over multipath.

4.2.2.2 Schedulers

Schedulers determine how to distribute data across multiple paths (MC in MPFlex). A

key architectural design decision is to realize the scheduling logic at user level as much

as possible. Toward this goal, we implement a small Linux kernel module that exposes

a few in-kernel metrics such as RTT, TCP congestion window size, and TCP bytes-in-

61

flight to the user space. The kernel module has very simple logic. It does not modify any

state in the kernel, and remains unchanged once deployed in a specific kernel. We then

build the actual schedulers in user space by utilizing the above kernel information API.

Our design dramatically simplifies the scheduler implementation by decoupling the high-

level scheduling algorithm and the low-level OS protocol implementation. In contrast, in

MPTCP, they are tightly coupled, and upgrading MPTCP requires upgrading the entire

kernel (tens of MB download). We have replicated two MPTCP schedulers: minimum

RTT (MinRTT) and round robin in MPFlex. Other schedulers (including those for non-

TCP protocols) can be developed and plugged into MPFlex. To demonstrate the flexibility

of MPFlex, we also designed two new schedulers to be described in details in §4.2.3.

4.2.2.3 Policy Engine

Policy engine provides a higher-level abstraction of determining when and how to use

multipath according to user-defined policies. In our current implementation, a policy is an

ordered list of rules specifying what kind of traffic should use which multipath scheme,

such as “multipath with MinRTT scheduler is only used by browsers and YouTube, and

single-path is used in all other cases”. User-defined policies are applied at a per-process

basis. For a given traffic flow, MPFlex finds its corresponding process name using the

methodology described in previous work [113]. For uplink traffic, the client-side MPFlex

module can execute the policy by itself. For downlink traffic, instead of letting the proxy

perform traffic classification, the client directly instructs the proxy on how to apply multi-

path by attaching a one-byte label to an uplink message. The proxy then applies the policy

to the downlink traffic according to the label.

The policy engine can be extended to consider cellular billing (e.g., disable multipath

when the monthly data plan has less than 100MB left), energy (e.g., disable multipath when

the battery is low), and performance (e.g., for YouTube, use cellular as the secondary path

only when WiFi cannot provide 1Mbps throughput). We plan to realize such metrics in our

62

Plug-in for MPFlex User-level LoC in C++
MinRTT Scheduler of MPTCP 70
Round-robin Scheduler of MPTCP 15
Buffer-aware Scheduler (§4.2.3, §4.3.4) 30
Smart reinjection (§4.2.3, §4.3.4) 60
Realization of a simple policy (§4.3.3) 20

Table 4.2: Implementation overhead of different MPFlex plug-ins.

future work.

MPFlex can integrate QCUT to address kernel and radio firmware queuing on each

network interface. When there is bulk data transfer, packets can be queued in the kernel and

firmware buffers, after being transmitted to a specific network interface by the multipath

manager in MPFlex. The path selection decision of these packets cannot be changed even

the multipath policy of the traffic is modified, leading to delayed policy switching. The

multipath manager and policy engine in MPFlex can interact with the traffic differentiation

and traffic shaping in QCUT to guarantee low queuing delay on each path and provide

responsive switching between different multipath policies, e.g., from multipath to single-

path WiFi for VoIP apps.

4.2.3 MPFlex Use Cases

Besides the performance benefit, a major advantage of MPFlex is flexibility. Develop-

ers can easily design multipath schedulers or realize custom policies at user-level by using

a common API to get the kernel information. Such flexibility is demonstrated in Table 4.2,

which summarizes the implementation efforts we made for different plug-and-play compo-

nents to be discussed and evaluated in §4.3. Here we describe two examples in detail.

4.2.3.1 Buffer-aware Scheduling

Recall that for small flows, MPTCP may perform worse than SPTCP in the following

scenario. Suppose WiFi has a much smaller RTT than LTE. When WiFi’s cwnd is fully

63

utilized but LTE has available cwnd space, MPTCP’s default scheduler always uses LTE

regardless of its large latency. The optimal scheduling decision, however, is to buffer data

at WiFi subflow’s socket buffer unless it is full.

Inspired by this, we modify the MinRTT scheduler to let it consider both the network

latency and the local buffering latency. Let srtt be the (smoothed) RTT estimated by TCP.

Recall the MinRTT scheduler picks a subflow that (1) has available cwnd space and (2)

has the minimum srtt. Our modified scheduler, called TxDelay, instead picks a subflow

that has the minimum srtt + Q regardless of its cwnd status. Q quantifies how long it

takes to drain the sender buffer. It can be estimated by Q = B
cwnd⇤mss/srtt where B is the

TCP sender buffer occupancy and mss is the TCP maximum segment size. It is worth

highlighting that thanks to MPFlex’s user-level realization, it takes only 30 lines of user

level code to implement the TxDelay scheduler.

4.2.3.2 Smart Reinjection

Reinjection is a MPTCP feature allowing the same data to be sent over multiple sub-

flows [73]. It helps reduce receiver side buffering due to out-of-order packets, leading to

improved throughput when one or a subset of paths encounter performance degradation

such as high loss rate or long latency caused by weak signal strength. MPTCP employs a

static and fixed policy for reinjection: reinject packets when a subflow is terminated or its

receiver buffer is full. We found for mobile multipath, MPTCP’s default reinjection policy

is often too conservative. For example, if a packet loss occurs on WiFi, the reinjection does

not happen until the packet times out.

We propose to make the reinjection policy dynamic and configurable. For example,

the sender can perform proactive reinjection based on different packet loss signals, such as

duplicate ACKs and/or the receiver window occupancy (recvWin) embedded in the ACK

packet. To realize this in MPFlex, the Protocol Info Reader (Figure 4.2) provides informa-

tion such as recvWin and event callback such as TCP timeout and duplicate ACK, which

64

are utilized by the user-level proxy to make smart reinjection decisions. A large recvWin

indicates a large number of out-of-order packets are buffered at the receiver side, because

packets with smaller sequence numbers (likely being transferred over the path with perfor-

mance degradation) are not received. Therefore, reinjection of unacknowledged packets

when recvWin is large helps eliminate the sequence number gap and thus improve the

performance. We have implemented the following proof-of-concept reinjection policy. A

message1 transmitted on one path is reinjected to the other path in either of the two condi-

tions: (1) its underlying packet experiences a TCP timeout, or (2) an ACK from the receiver

indicates that the receiver buffer occupancy exceeds ⌘% of the total buffer size. Note in case

(2) each unique ACK triggers reinjection of at most one unacknowledged message, and ⌘

is a threshold determining the reinjection aggressiveness. We empirically set it to 75%.

4.3 Evaluation of MPFlex

We conduct extensive evaluation of MPFlex. For performance, we compare MPFlex

with MPTCP v0.89.5 (the latest version of MPTCP available for Android) with default set-

tings. To support MPTCP with unmodified apps, we transparently tunnel all user traffic

using Socks5 proxying (using shadowsocks [21]). We set up a multipath proxy running

MPTCP v0.90 and redirect all the traffic to this MPTCP proxy. The Socks5 protocol [87]

only adds a very small header to each packet so its impact on the traffic pattern is negli-

gible. We also verified Socks5 incurs very small runtime overhead. All experiments were

conducted using real WiFi and LTE networks on a Nexus 5 phone with Android 4.4.4.

We use tc to apply bandwidth throttle and to add extra delay on both paths2 based on re-

cent large-scale measurements of metropolitan LTE [79] and WiFi [123] users. The same

configurations were used by another recent MPTCP study [68]. For apples-to-apples com-
1Recall in §4.2.2 that a message is the atomic transfer unit in MPFlex. We configure its maximum size to

be the TCP MSS.
2WiFi: uplink 2020kbps, downlink 7040kbps, RTT 50ms; LTE: uplink 2286kbps, downlink 9185kbps,

RTT 70ms.

65

�
����
���
����

�

��� ���� ����� ��� ���� ����
�
��
�
��
��
��

�
��

��
��
�
���

�
�������� ����

���� �����
���������

����������
������

Figure 4.3: Single file download over MPTCP and MPFlex (best SPTCP results shown only
for small downloads).

parison, MPFlex and MPTCP employ the same MinRTT scheduling algorithm, the same

congestion control (decoupled Cubic i.e., each path runs TCP Cubic independently), and

the same proxy server unless otherwise noted. We next describe the evaluation results.

4.3.1 File Download

Download a single file. Figure 4.3 compares single file download time under three

schemes: cellular-primary MPTCP, WiFi-primary MPTCP, and MPFlex, for different file

sizes. Compared to the best MPTCP scheme, MPFlex reduces the download time by 11%

to 49%, because of its simplified handshake procedure that makes better utilization of both

paths.

Handling multiple short flows. We wrote a custom benchmark tool that generates small

flows sequentially or concurrently. Figure 4.4 plots the overall download time for MPTCP

and MPFlex under eight traffic patterns. Compared to downloading a single file, when

handling multiple short flows, the advantage of MPFlex is more phenomenal with download

time reduction ranging from 13% to 63%. As mentioned in §4.2.1, this is attributed to two

features brought by MPFlex’s strategic multiplexing: simplified handshake (same as the

66

�

��

��

��

��

� � � �

�
��

��
��
�
���

�
��
��
��
��
�
��
�

� �� ���������� ����

������� ��� ���
������� ��� ���

Figure 4.4: Transfer many short flows over MPTCP and MPFlex.

single file download case) and being capable of maintaining the congestion window3 for

multiple connections arriving in a bundle. We also note that the savings reduces a bit when

the concurrency becomes higher due to improved bandwidth utilization of concurrent flows.

4.3.2 Web Browsing

How much performance gain can MPFlex offer under realistic applications and traffic

patterns? To answer this question, we pick seven diverse websites and load their landing

pages automatically with QoE Doctor [46] on Chrome browser on Nexus 5. To overcome

frequent content change and server-side load fluctuation for some sites, we use Google

Page Replay [10] to take a snapshot of each site, and host it on our replay server. To further

make our setup realistic, we measure the RTT from proxy (MPTCP or MPFlex) to the real

servers, and set the same RTT for the link between the proxy and our server when replaying

each website.

The results are shown in Figure 4.5. Compared to Figure 4.4, the page load time (PLT)

reduction is less, mostly due to the additional browser-side overhead (rendering page, pars-

ing JavaScript etc.) and inter-object dependencies that often shift the bottleneck from net-

work to local computation [127]. Nevertheless, the improvements are still impressive: com-
3Similar to a regular TCP connection, multiplexed connections in MPFlex still conservatively perform

slow start after idle period.

67

�
���
���
���
���
�

����
�������

�����
��������

���
��������

�����
�
��
�
��
��
��

��
�

����� ������

Figure 4.5: Fetch web pages over MPTCP and MPFlex.

pared to MPTCP proxy, MPFlex reduces the PLT by 7% to 20%. We also expect MPFlex

will exhibit more advantages on newer mobile devices or tablets where computation is less

likely to become the bottleneck.

4.3.3 Applying Multipath Policies

As described in §4.2.2, we have implemented a framework that allows applying differ-

ent multipath policies at a per-process basis. We demonstrate its effectiveness of saving

energy by conducting a case study as follows. We consider four apps: YouTube (playing

a 150-second 1080p video), Skype (2-min VoIP call), Google Play (downloading a 50MB

app), and Facebook Messenger (sending a message every 30 seconds). We enforce the

following policy: use multipath for YouTube and Google Play, and single-path (WiFi) for

Skype and Messenger. We compare the radio energy consumption of system-wide MPTCP

(applied to all four apps) and MPFlex with the above application-aware multipath policy.

As shown in Figure 4.6, MPFlex reduces the radio energy consumption for Skype and

Facebook Messenger by 34% and 78%, respectively, while incurring no QoE degradation.

The policy framework can be extended to consider other factors such as billing and

battery life. MPFlex can also enforce the policy at a finer granularity. Consider two use

cases. (1) Let Chrome browser to use multipath only for cnn.com. (2) Disable multipath

68

�

�

�

�

�

� �� ��� ��� ��� ��� ��� ��� ���

�������
�������
���� �����

�����
�������
���� ����

��� ��
�������
���� �����

���������
�������
���� ����

��
�
��
��

�

���� ���

����� ������

Figure 4.6: Case study: MPTCP applies multipath to all traffic, while MPFlex does that
selectively based on user policy.

for all ad traffic. Both use cases can be realized by controlling multipath usage at a per-

HTTP-session basis without modifying the apps. First, for an incoming HTTP session, the

client-side MPFlex module obtains its associated domain name. This can be realized by

examining directly the HTTP request or the TLS/SSL certificate for HTTPS. Second, it

consults a local policy database to determine which multipath scheme to use. Third, the

MPFlex client informs the proxy of the policy for this HTTP session using a small label

attached to the multiplexed message (§4.2.2).

4.3.4 Plugging-in Custom Schedulers

We evaluate the two MPFlex plugins described in §4.2.3.

Buffer-aware Scheduling. We evaluate the performance of our TxDelay scheduler by

comparing it with the MinRTT scheduling algorithm. As shown in Figure 4.7, when WiFi

RTT is much smaller than LTE RTT, TxDelay significantly outperforms MinRTT by reduc-

ing the file download time by 21% to 54%. TxDelay essentially makes multipath performs

at least as well as single-path for small files (assuming RTT estimation is accurate). On the

other hand, when RTT of both paths are similar, TxDelay exhibits similar performance as

MinRTT.

69

�

��

��

���

���

�� �� ��

�
��

��
��
�
���

�
��
��

�������� ���� ����

������ ������
������ �������

Figure 4.7: Performance of MinRTT vs. TxDelay scheduler when the RTT difference be-
tween the two paths is large (20ms vs. 70ms).

Smart Reinjection. We compare our smart reinjection with the default MPTCP and

MPFlex without reinjection. The workload is to download a 1MB file hosted at a server

near the MPFlex proxy (4ms RTT between proxy and server, as to be justified in §4.3.5).

We consider two network conditions: increased LTE latency (WiFi 10Mbps/50ms, LTE

9Mbps/150ms) and increased WiFi latency (WiFi 12Mbps/300ms, LTE 9Mbps/70ms). We

use the public WiFi network in our office building. We made two observations. First,

during the entire course of our experiment, the default MinRTT scheduler never triggers

reinjection, which is done very conservatively as described in §4.2.3. As a result, MPFlex

without reinjection performs similarly compared to MPTCP. Second, smart reinjection re-

duces the overall download time by 10%±5% (over 12 runs) at the cost of reinjecting only

about 1.5% of the total bytes, in both network conditions. The aggressiveness of reinjection

can further be tuned by adjusting the buffer occupancy threshold.

4.3.5 Impact of Proxy Location

Existing work indicates the location of a CDN server (in our case here, the MPFlex

proxy) may affect the network performance in particular for multipath [104]. To quantify

this, we deployed the MPFlex proxy at 4 different locations referred to as A, B, C, and

D. Their physical distances from our client smartphone are 3, 420, 3300, and 6700 km,

70

 0

 1

 2

 3

Single small
download

(64KB)

Single large
download
(16MB)

Multiple small
downloads

(4*16*64KB)

N
o

rm
a

liz
e

d
 d

o
w

n
lo

a
d

 t
im

e

 5

 6 MPTCP/WiFi (server near proxy A)
MPTCP/LTE (server near proxy A)

MPFlex proxy A (Univ A)
MPFlex proxy B (Univ B)

MPFlex proxy C (EC2 CA)
MPFlex proxy D (EC2 EU)

Figure 4.8: Performance impact of the MPFlex proxy location.

respectively. We also measured the minimum WiFi RTT between the mobile client and

them to be 27, 44, 81, and 131ms, respectively, and the corresponding cellular RTTs are

49, 66, 100, and 148ms, respectively. We fix the RTT between the proxy and the server

to be 4ms, by assuming the server is a nearby CDN node. A recently study measured the

median RTT between a mobile carrier gateway and 30 popular content providers’ servers

to be ⇠4ms [112]. We also evaluate a non-proxy configuration by letting the client directly

connect to the server near Proxy A, which has the smallest latency from the client, using

the default MPTCP.

We consider three workloads shown at the bottom of Figure 4.8. As shown, for small

file download(s) whose performance is latency-sensitive, the proxy location matters. Nev-

ertheless, despite being further away, Proxies B and C still achieve better or similar per-

formance compared to the default MPTCP configuration, because the benefits of MPFlex

outweigh the penalty of additional latency for B and C. Proxy D exhibits low performance

because it is located at a different continent. The transoceanic link shifts the bottleneck

from the last mile to the Internet. For a single large download, since bandwidth is more im-

portant than latency, Proxy A, B, and C exhibit very similar performance. Also, because the

file size is large and no multiplexing is needed for a single application connection, MPFlex

71

provides little benefit beyond what can be achieved by the vanilla MPTCP.

4.3.6 System Overhead

Despite being realized mostly at user level, MPFlex itself incurs negligible runtime

overhead. We monitor CPU usage of a Nexus 5 phone with MPFlex enabled. Compared

to the default MPTCP, no noticeable CPU usage increase was observed when downloading

large files at high speed (⇠30Mbps). The MPFlex protocol overhead, defined as the total

message header size divided by the size of all transferred messages, is measured to be less

than 1% across 20 Android apps we tested. Multiple instances of MPFlex proxy can be

deployed in geographically distributed clouds to achieve scalability.

Since the MCs in MPFlex are long-lived, periodic keep-alive messages may need to be

exchanged between a client and the proxy. Their periodicity should be no longer than the

minimum NAT/firewall timeout of either path (usually the cellular path). To quantitatively

measure the radio energy overhead incurred by MPFlex, we conduct an experiment on a

Nexus 5 phone by sending keep-alive messages over the cellular pipes every 10 minutes for

24 hours. We use the hardware energy profiling interface (provided through the sysfs file

system) of Nexus 5 to measure the energy consumption. We then compare the total energy

with the scenario where MPFlex is not running for the same duration of 24 hours. The

incurred radio energy is 0.18Wh, only about 2.5% of a typical smartphone’s battery capac-

ity. Since most cellular carriers’ NAT/firewall timeout is longer than 10 minutes [129], the

incurred energy overhead can be further reduced by increasing the keep-alive periodicity.

4.4 Summary

We contribute to mobile multipath research with MPFlex, a flexible software architec-

ture for multipath over mobile networks. We introduce the concept of multiplexing and

customized policy in multipath transport to address the limitations of MPTCP. Through

experimental evaluation, we demonstrate that MPFlex reduces the download time of short

72

flows and easily customizes the multipath usage of different mobile applications to save

energy while guaranteeing good application QoE.

73

CHAPTER V

Accelerating Multipath Transport through Balanced

Subflow Completion

MPTCP (or any transport-layer multipath scheme) has a complex protocol stack, con-

sisting of several components: subflow management, packet scheduling, congestion con-

trol, flow control, etc.. The system design, implementation, and evaluation of MPFlex in

the previous chapter have shown that MPFlex improves multipath performance by (i) mul-

tiplexing application data over long-lived subflows, i.e., better subflow management, and

(ii) adapting multipath usage to application traffic patterns, i.e., customized multipath pol-

icy. In this chapter, we focus on optimizing the schedulers, which determine how the data

is distributed onto the subflows.

5.1 Introduction

MPTCP supports different types of schedulers. For example, the MinRTT scheduler

attempts to deliver the data as soon as possible by choosing a subflow with the smallest

RTT unless its congestion window is full; the ReMP scheduler [59] boosts the reliability

by duplicating packets over all subflows. There also exist schedulers that consider other

dimensions such as energy efficiency [90], path priority [70] and receiver buffer occu-

pancy [85].

74

Despite these efforts, we found that the multipath scheduler design is far from being

optimal. In a pilot experiment conducted in §5.2, we observe that surprisingly, under repre-

sentative WiFi/LTE network conditions, the MinRTT scheduler inflates the download time

for a medium-sized file by up to 33% compared to the optimal scheduling decision derived

offline. In real-world networks with fluctuating bandwidth or latency, MinRTT may per-

form even worse (up to 7.5x download time increase, 49% median increase compared to

optimal scheduling) as shown in §5.6. Regarding the root cause, our key insight is that

for such a file download, oftentimes the subflows do not complete at the same time at the

receiver side. This inevitably leads to suboptimal performance: if Subflow A completes

earlier than Subflow B, one could achieve a shorter overall download time by offloading

some of the traffic from Subflow B to A. Therefore, achieving simultaneous subflow com-

pletion is a necessary condition for minimizing the data transfer time.

The key contribution of this chapter is the design, implementation, and evaluation of

DEMS (DEcoupled Multipath Scheduler1), a new multipath packet scheduler aiming at

reducing the data chunk download time over multiple paths. A data chunk is simply a

block of application-defined bytes, which is a very common data transfer workload in a

wide range of applications, e.g., fetching an image, JavaScript, MP3 file, or video chunk.

The key idea behind DEMS is to achieve simultaneous subflow completion at the receiver

side through strategic packet scheduling over decoupled subflows in order to minimize the

chunk download time. Accomplishing this seemingly straightforward task, however, faces

several challenges. First, MPTCP by default treats the user data as a continuous stream

without even knowing the chunk boundary, letting alone performing any optimization for

it. Second, the scheduler works at the sender side while we need to balance the flow

completion time at the receiver side so there exists a “visibility gap” between the sender

and receiver. Third, the task is further complicated by the fluctuating network conditions

in wireless networks. Our judicious design addresses all above challenges as follows.
1Note here “decoupled scheduling” is different from the decoupled congestion control in MPTCP.

75

• As a first prerequisite for optimizing the chunk download time, DEMS is aware of the

boundary of a chunk. Since how the data within a chunk is delivered does not matter (as

long as the chunk can be reassembled correctly), DEMS can employ flexible and efficient

schemes to split the chunk over subflows. For example, if only two paths are involved, one

path can send data from the beginning in the forward direction, and the other path sends

data from the end in the backward direction. Doing so simplifies our design and facilitates

the performance by decoupling the subflows (§5.3.1).

• We devise a technique to ensure simultaneous subflow completion on the receiver side.

To achieve this, at the sender side, DEMS strategically introduces a timing offset between

the two subflows with different RTTs so that the last packets across all subflows will arrive

at the receiver at the same time. The timing offset is dynamically determined based on the

network latency and bandwidth dynamics (§5.3.2).

• The fluctuation of bandwidth and latency may still cause some differences in completion

times across the subflows. To minimize this negative performance impact, DEMS performs

data reinjection: if one subflow finishes earlier, it can “help” other subflows by transmitting

a small portion of data (typically towards the end of the chunk download) that was already

assigned to another subflow. Such data may be redundant (i.e., transferred twice over two

subflows) but it helps further reduce the overall download time (§5.3.3). We develop a

method that adaptively determines the amount of the redundant data to strike a sweet spot

between the performance and the additional data transmission due to reinjection (§5.3.4).

DEMS can work with any data transfer size and/or traffic pattern. The ideal workload

on which DEMS yields the highest benefits is downloading application data chunks, which

are very common to mobile traffic workloads. A wide range of mobile applications such as

web browsing and video streaming involve downloading such data chunks (e.g., an HTTP

object or a video segment).

We integrated the DEMS components into a holistic system (§5.4) and implemented

it on commodity mobile devices (§5.5). We conducted extensive evaluations over both

76

emulated and real cellular/WiFi networks. The results indicate that DEMS is robust to

diverse network conditions (including challenging multipath environments) and oftentimes

brings significant performance boost compared to the state-of-the-art. Below highlights

some key results.

• In stable network conditions, compared to MinRTT, DEMS reduces download time by up

to 74%, 57% and 21% for 256KB, 1MB and 4MB download, respectively, under different

combinations of delay/bandwidth of the paths. DEMS exhibits even better performance

compared to ReMP, round-robin, and the best single path approach (§5.6.2, §5.6.5).

• In changing network conditions, DEMS reduces the median download time of 256KB

and 1MB files by 12% to 46%, compared to MinRTT. Meanwhile, our adaptive reinjection

scheme effectively reduces the redundant bytes by 48% to 86% compared to the naı̈ve

reinjection scheme while maintaining similar performance (§5.6.3).

• We conducted field tests at 5 real-world locations such as a parking lot and a grocery

store. DEMS reduces the download time by up to 88%, 83% and 77% for 256KB, 1MB

and 4MB file, respectively, compared to MinRTT (the median reductions are 33%, 48%,

and 42%, respectively). The real-world results are even better than the in-lab emulation

results. Compared to wired networks, wireless networks like WiFi and cellular can some-

times exhibit high delay and bandwidth dynamics [78, 82]. Our evaluation demonstrates

that compared to existing multipath schedulers, DEMS is able to robustly handle such en-

vironments (§5.6.4).

• DEMS reduces the median web page load time (across 10 popular websites) by 6% to

43% (median: 25%) under real network conditions, compared to MinRTT (§5.6.6).

Overall, our findings indicate that strategically performing decoupled packet schedul-

ing with balanced subflow completion can significantly improve the multipath transport

performance, which translates into better user QoE and improved energy efficiency (due to

shortened radio-on time [77]). The remaining sections will focus on the motivation (§5.2),

algorithm design (§5.3), system integration (§5.4), implementation (§5.5), and evaluation

77

(§5.6) of DEMS. We discuss limitations in §5.7.

5.2 Background and Motivation

We reveal the performance inefficiency caused by MPTCP’s scheduling algorithm

in §5.2.1, which leads to the key principle of DEMS in §5.2.2: ensuring simultaneous

subflow completion.

5.2.1 Can We Further Improve MinRTT?

Consider the common task of downloading a data chunk, which can be an image, a

Javascript, an audio snippet, or a video chunk, over multipath. Our apparent goal is to

minimize the download time. We conduct a pilot experiment to demonstrate (1) the impact

of the scheduler on the download time, and (2) the potential room for improving MinRTT.

The experiment was conducted on a laptop with both WiFi and Ethernet connectivity,

which emulate WiFi and LTE networks respectively using Linux tc. The network charac-

teristics were chosen based on recent large-scale measurements of metropolitan LTE [78]

and WiFi [123] users2. We use our user-level multipath testbed (to be described in §5.5) to

provide the multipath support for the laptop.

We use the above setting to download a medium-sized file of {256KB, 1MB} using

the MinRTT scheduler and an optimal scheduling computed offline as follows. We down-

load p% of the file over WiFi and 1 � p% over cellular. To find the best p that leads to

the shortest (i.e., optimal) download time, we perform an “exhaustive search” by conduct-

ing many experiments covering the full range of p 2 [0, 100]. We also vary the latency

difference between the two paths by inflating the emulated LTE path, as it is common to

have diverse path characteristics in mobile networks [54]. Note that except for the schedul-

ing algorithm, the MinRTT and the optimal schemes share the same configurations (e.g.,
2WiFi: uplink 2020kbps, downlink 7040kbps, RTT 50ms; LTE: uplink 2286kbps, downlink 9185kbps,

RTT 70ms.

78

�
���
���
���
���

� ��� ��� ����
��

��
��
�
���

�
��
�

����� ����� ��
�������� ��� ���� ����

�������
�������

�����
�����

Figure 5.1: Compare chunk download time (M: MinRTT, O: Optimal).

�
���
���
���
���
���

� ��� ��� ���

��
��
��

��
�
��
��
��
�
���

�
��
���
��
��
�
��

��
��
��
��
��
��

����� ����� ��
�������� ��� ���� ����

�������
�������

�����
�����

Figure 5.2: Compare subflow completion time on receiver (M: MinRTT, O: Optimal).

the initial congestion window and congestion control algorithm) to ensure apples-to-apples

comparison.

The results are shown in Figure 5.1. As shown, the scheduling decision clearly impacts

the performance. Surprisingly, compared to the optimal case, MinRTT increases the down-

load time by up to 33%. Note our experiment assumes stable network condition, whereas

in real-world networks with fluctuating bandwidth or latency, the gap between MinRTT

and the optimal case can be even larger (up to 7.5x download time increase, 49% median

increase compared to optimal scheduling) (§5.6). Also note that researchers have proposed

other MPTCP schedulers such as deadline-aware scheduler [70], energy-efficient sched-

uler [90], real-time content scheduler [122], and buffer-blocking-aware scheduler [85].

79

They usually sacrifice chunk download time performance for other properties such as path

priority and energy consumption, so we do not compare with them here.

By examining the results at the packet timing level, we identified a key reason why

MPTCP yields suboptimal performance to be that the subflows do not complete at the same

time at the receiver side. Figure 5.2 plots the two subflows’ completion time difference

when using the two schedulers. For MinRTT, the difference ranges from 100ms to 450ms

while in the optimal scheme, the last bytes on the two subflows almost always arrive at the

receiver simultaneously.

5.2.2 Ensuring Simultaneous Subflow Completion and its Challenges

Having all subflows complete at the same time at the receiver side is a necessary condi-

tion for achieving the optimal performance. The reason can be easily shown through proof

by contradiction: suppose in an optimal scheme, Subflow A finishes earlier than Subflow

B; in that case Subflow B can further “offload” some bytes to Subflow A, leading to an

even shorter download time. But why cannot the MinRTT scheduler achieve this same-

time-completion property? The reasons are multi-fold as explained below.

• When making a scheduling decision, MinRTT only considers the latency of each subflow

without taking into consideration the bandwidth. Oftentimes, despite one subflow having a

higher RTT than other subflows or even having a full congestion window (so it is temporar-

ily unavailable), its higher bandwidth allows it to drain data from its sender buffer quickly.

As a result, choosing the higher-RTT subflow can actually lead to lower end-to-end latency.

• Under practical network conditions (wireless in particular), the RTT and bandwidth are

often highly fluctuating, leading to unbalanced subflow completion time. This factor is

largely not taken into account by MinRTT.

• MinRTT is stateless in that the scheduling decision of the current packet does not ex-

plicitly depend on the previous packets. We will show that by strategically leveraging the

information of previously transmitted packets, the scheduling decisions and thus the overall

80

Data Chunk

Subflow 1 Subflow 2

Data Chunk

T1

Data Chunk

Chunk-based
Decoupled Data Transfer

Simultaneous
Subflow Completion

Handle Variable Network
Conditions through
Reinjection

T2=

Figure 5.3: Key design decisions of DEMS.

performance can be improved.

5.3 The DEMS Algorithm

We propose DEMS, a new scheduling algorithm for reducing the data chunk download

time over multipath. As shown in Figure 5.3, the key design decisions of DEMS include

the following. (1) DEMS is aware of the chunk boundary, and it strategically decouples the

paths for chunk delivery (§5.3.1). (2) DEMS ensures simultaneous subflow completion at

the receiver side (§5.3.2). (3) DEMS allows a path to trade a small amount of redundant

data for performance (§5.3.3, §5.3.4). We next elaborate them in this section.

5.3.1 Chunk-based Data Transfer

In DEMS, by default, data is delivered to the application on a per-chunk basis. A (data)

chunk consists of a block of bytes defined by the application, which can be, for example,

an image, a Javascript, an audio snippet, or a video chunk. At the sender side, after the

sender app pushes the chunk to the multipath meta buffer, DEMS treats all data in the

meta buffer as a chunk by default, thus being fully transparent to applications. At the

receiver side, when the chunk is fully received, it is then delivered to the application. We

will describe in §5.4 implementation alternatives for making DEMS aware of the chunk

boundaries informed by applications through a simple API.

81

As long as a chunk can be correctly reassembled, bytes within the chunk can be de-

livered in any order. The data chunk is thus split into different parts that are distributed

onto different paths for delivery. For the common scenario involving two paths, we de-

sign a “two-way” splitting approach: the two paths transfer the data in opposite directions,

one from the beginning and the other from the end; when they “meet” each other, the

chunk is fully downloaded. This approach is intuitive and parameterless. Furthermore, it

helps improve the multipath performance by decoupling the two subflows. In conventional

MPTCP, subflows are tightly coupled; a stall (e.g., due to packet loss) in one subflow may

slow down other subflows due to their limited and shared meta receive window whose size

is difficult to set [104]. DEMS, on the other hand, decouples the two subflows by allowing

each subflow to freely and independently transfer the data until the very end when subflows

meet and merge. The receive window (16 MB by default) is configured to be larger than

a typical chunk size so it will not become a performance bottleneck during a chunk trans-

mission [104]. In rare cases when the application data is larger than the receive window,

the data will be split into multiple chunks for transmission.

5.3.2 Simultaneous Subflow Completion

Now let us consider how to simultaneously complete subflows at the receiver side.

Recall that the high-level idea is to introduce a timing offset at the sender to compensate

the heterogeneous delay across both subflows.

Let us first assume that the one-way delay (OWD) of both subflows can be accurately

predicted. Let OWD1 and OWD2 be the OWD of Subflow 1 and 2, respectively, where

OWD2 > OWD1. Let ts1 and ts2 be the time when the last byte is transmitted over Subflow

1 and 2, respectively. Let tr1 and tr2 be the time when Subflow 1 and 2 receives the last

byte, respectively, i.e., the subflow completion time at the receiver. If no packet reordering

or loss happens, we have:

tr1 � ts1 = OWD1 + toffset (5.1)

82

tr2 � ts2 = OWD2 + toffset (5.2)

where toffset is the clock difference between the sender and receiver (handling network con-

dition fluctuation caused by packet losses/reordering will be discussed in §5.3.3 and §5.3.4).

Thus, the subflow completion time difference is:

tr2 � tr1 = (ts2 � ts1) + (OWD2 �OWD1) (5.3)

Clearly the receiver-side subflow completion time difference depends on both the

sender-side transmission completion time difference denoted as �ts = ts2 � ts1 and the

forward-path one-way delay difference denoted as �OWD = OWD2 � OWD1. To en-

sure simultaneous subflow completion i.e., tr2 = tr1, we need:

ts1 � ts2 = OWD2 �OWD1 = �OWD (5.4)

Namely, at sender side, the subflow with a larger OWD must finish transmission �OWD

earlier than the other subflow.

Recall that DEMS employs the “two-way” data split scheme where the two subflows

start from the two ends of the chunk and move towards each other. This process is illus-

trated in Figure 5.4, which plots the sender-side view of the data transfer progresses at both

subflows (the X axis is time and Y axis is the sequence number). Assuming the constant

bandwidth, the data transfer curves are linear. Subflow 2 stops transmission at ts2. Sub-

flow 1 then spends �OWD time to transmit all its data, finishing at ts1. To translate this

into the receiver-side view is easy: by shifting the two curves towards the right by OWD1

and OWD2 respectively, they will meet at ts1 + OWD1 = ts2 + OWD2, indicating they

complete simultaneously at the receiver side.

Now we describe how to incorporate the above idea into the DEMS scheduler design,

which needs to handle two tasks: assigning each packet (with its byte range) to a subflow

83

Subflow 2 (OWD2, BW2)

Subflow 1
(OWD1, BW1)

SEQ

t
(sender)ts2 ts1

OWD2 > OWD1

 ts = OWD2 - OWD1

Figure 5.4: Achieve simultaneous subflow completion (sender-side view).

and deciding when to stop a subflow at the sender. The former is trivial as the chunk has

already been split in “two-way”. So we focus on the latter task. The basic idea is as follows.

When the subflow with a larger OWD can transmit a packet over the network, we estimate

its arrival time over both subflows, and then choose the subflow with an earlier packet

arrival time for actual transmission. We next show that this strategy will make the large-

OWD subflow stop transmission when Equation (5.4) holds, thus resulting in simultaneous

subflow completion shown in Figure 5.4.

Consider a general scenario depicted in Figure 5.5 where Subflow 2 with a larger OWD

can now transmit a byte whose sequence number is i = SEQ2. Should this byte be imme-

diately transmitted over Subflow 2 (marked as À) or later over Subflow 1 (marked as) so

that Subflow 2 can stop now? If we choose Subflow 2, the byte’s estimated arrival time at

the receiver side is:

est(tr2i) = ts2i +OWD2i + toffset (5.5)

where ts2i is the current sender-side timestamp and OWD2i is the current estimation of

OWD2. Now consider choosing Subflow 1 to transmit SEQ2. Since Subflow 1 is currently

working on a byte with a smaller sequence number SEQ1, SEQ2 has to be buffered in

the meta buffer and gets transmitted at after all bytes from SEQ1 to SEQ2 � 1 are

84

Subflow 2 (OWD2, BW2)

Subflow 1
(OWD1, BW1)

SEQ

t (sender)

ts2i ts1i

D = SEQ2 - SEQ1
i=SEQ2

SEQ1

OWD2 > OWD1

 tsi = D / BW1

12

Figure 5.5: Choose a subflow with an earlier estimated data arrival time (sender-side view).

transmitted (over Subflow 1). Therefore, the estimated arrival time of SEQ2 over Subflow

1 is:

est(tr1i) = ts2i +�tsi +OWD1i + toffset (5.6)

The buffering delay, �tsi, is computed as:

�tsi =
SEQ2 � SEQ1

BW1i
(5.7)

where BW1i is Subflow 1’s current bandwidth estimation.

As said, we stop Subflow 2 and choose Subflow 1 when the estimated byte arrival time

of the larger-OWD subflow (Subflow 2) is later than the smaller-OWD subflow (Subflow

1) i.e., est(tr2i) > est(tr1i). In this situation, we have:

�tsi = ts1i � ts2i < OWD2i �OWD1i (5.8)

This is the same criteria as that in Equation (5.4), which guarantees the same receiver-side

subflow completion time. Next, plugging Equation (5.7) into (5.8) yields:

D = SEQ2 � SEQ1 < (OWD2i �OWD1i)BW1i (5.9)

85

Subflow 2

Subflow 1

SEQ

t (sender)

OWD2 > OWD1

 OWD

SEQ

t (receiver)

 OWDreal - OWD

(a) Sender-side subflow
balancing with OWD

(b) Receiver-side view with
actual OWDreal > OWD

Figure 5.6: Impact of inaccurate �OWD estimation.

D corresponds to the number of bytes remaining to be transmitted in the meta buffer (imag-

ine SEQ1 and SEQ2 as two “pointers” moving towards each other). We use Equation (5.9)

in our system to determine when to stop the transmission for the larger-OWD subflow as

the two-way chunk download approaches to its end. Note the small-OWD subflow can

always transmit new packets before meeting with the large-OWD subflow, as long as the

congestion window allows.

5.3.3 Handling Variable Network Conditions

So far we assume that both subflows’ OWD and the smaller-OWD subflow’s bandwidth

(i.e., those on the right-hand side of Equation (5.9)) can be accurately predicted. Appar-

ently this assumption does not always hold in practice in particular for wireless networks.

Figure 5.6 illustrates the impact of inaccurate network condition estimation. At the sender

side shown in Figure 5.6(a), DEMS makes scheduling decisions based on its estimated

�OWD. Now assume Subflow 2’s OWD increases over time, causing the sender to under-

estimate �OWD. In consequence, at the receiver side shown in Figure 5.6(b), the actual

data reception time over Subflow 2 (in solid line) deviates from the expected time shown

in the dashed line. As a result, Subflow 1 completes early than Subflow 2, leading to sub-

optimal chunk download time. Similar reasoning can be made for �OWD overestimation

86

SEQ

t(sender)

Subflow 1

Subflow 2

RTT2

RTT1

ts2R ts1R

Reinj.

Figure 5.7: A simple reinjection scheme.

and inaccurate bandwidth estimation.

DEMS tolerates unbalanced completion of subflows under variable network conditions.

It also takes a key design decision of performing reinjection: instead of having a full stop

when all bytes of a chunk are transmitted, a subflow may further “overshoot” its portion

by sending a small number of bytes that are beyond the meeting point of the two subflows,

as illustrated in Figure 5.7. These bytes are redundant because they have already been

transmitted over the other subflow. The purpose of reinjection is to trade redundant data for

better performance: under uncertain network conditions, if the reinjected (redundant) data

arrives earlier than its original copy, the overall download time is reduced.

A key challenge here is to carefully control how many bytes to reinject: reinjecting too

little data incurs suboptimal performance, while reinjecting too much causes unnecessary

battery drain or data plan usage (for cellular networks). In the extreme case adopted by

MPTCP’s redundant scheduler (ReMP) that duplicates every byte onto the secondary flow,

MPTCP falls back to the “best single path” approach.

In DEMS, reinjection only occurs near subflows’ meeting point. We first present a sim-

ple reinjection approach that gives a reasonable “upper bound” for the number of reinjected

bytes. In this approach, after the two subflows meet, they perform reinjection in their cor-

responding directions until all bytes of the chunk are either acknowledged or reinjected. As

shown in Figure 5.7, Subflow 2 keeps reinjecting data until ts2R when it hits the byte that

87

was transmitted and acknowledged over Subflow 1 (it takes RTT1 for the ACK to arrive).

Similarly, Subflow 1 stops reinjection at ts1R when the remaining data has been acknowl-

edged by Subflow 2. At ts1R, any byte within the chunk has either been acknowledged

(shown as thick lines in Figure 5.7, or has a redundant copy in flight (shown as thin lines).

By analyzing the “X” shape in Figure 5.7 (assuming the last byte on each subflow is not

lost or reordered), we can compute the total number of reinjected bytes to be:

Reinj =
BW1BW2

BW1 +BW2
(RTT1 +RTT2) (5.10)

where BW1 and BW2 are the bandwidth of the subflows. Note they are the slopes of the

two lines in Figure 5.7.

Equation (5.10) gives a reasonable upper bound of the reinjection overhead, which

however is still too high as to be evaluated in §5.6. More importantly, this reinjection ap-

proach is not adaptive in that the reinjection behavior remains the same regardless of the

network condition fluctuation. Ideally, when the fluctuation is low (high), we should rein-

ject less (more) data given that the subflow completion time balancing technique introduced

in §5.3.2 is more (less) reliable.

5.3.4 Adaptive Reinjection

We design a scheme that performs adaptive reinjection while maintaining good per-

formance. Let us first consider a scenario where �OWD is underestimated: its real

value, denoted as �OWDREAL, is �OWD (the estimated version) plus �. We use OWD1

and OWD2 to denote the estimated OWD for each subflow, and use OWD1,REAL and

OWD2,REAL to denote their real values, respectively. Since what really matters is the pre-

diction accuracy of the difference between OWDs (i.e., �OWD), without loss of generality

we assume OWD1,REAL = OWD1 and OWD2,REAL = OWD2 + �, for the ease of presen-

tation.

88

Subflow 2

Subflow 1

SEQ

t (sender)

 OWD = OWD2 - OWD1

OWD2,REAL = OWD2 + δ
OWD1,REAL = OWD1

 OWD

SEQ

t (receiver)
(a) Sender-side View (b) Receiver-side View

OWD2,REAL

OWD1

 OWD + δ

tA tB tC tD

δ

tE tF tG

Reinj.

Figure 5.8: The adaptive reinjection scheme. All OWD values are exaggerated in the plot
for illustration purpose.

Under the above setting, let us first examine the sender side illustrated in Figure 5.8(a).

Based on the completion time balancing technique introduced in §5.3.2, Subflow 1 and

2 would stop at tC and tB respectively where tC � tB = �OWD. However, �OWD is

underestimated. As a result, if we switch to the receiver’s view in Figure 5.8(b), we will see

that Subflow 1 completes � time units before Subflow 2. This is because (assuming there is

no clock drift between sender and receiver) tE = tC +OWD1 and tG = tB +OWD2,REAL,

so tG�tE = (OWD2,REAL�OWD1)�(tC�tB) = �. Now let us consider how to perform

reinjection. In Figure 5.8(b), to minimize the download time, Subflow 1 only needs to keep

reinjecting data until it meets Subflow 2. The reinjected portion is highlighted in bold.

Now we derive the sender-side reinjection policy by shifting the reinjected portion back to

Figure 5.8(a). When Subflow 1 reinjects the last byte at tD, the byte’s original transmission

time (by Subflow 2) is tA. As shown, tD� tA = (tB� tA)+ (tC� tB)+ (tD� tC) = (tG�

tF)+(tC� tB)+(tF � tE) = �OWD+ �, which is the threshold for stopping reinjection.

In other words, when �OWD is underestimated by �, the smaller-OWD subflow keeps

reinjection until the to-be-reinjected byte was transmitted more than �OWD + � time

units ago. That is (using the notions introduced in §5.3.2):

�tsi = ts1i � ts2i > OWD2i �OWD1i + � (5.11)

89

Let the number of the reinjected bytes be r. By examining the gray triangle in Fig-

ure 5.8(b), we have r/BW1+r/BW2 = �, which leads to r = �BW1BW2/(BW1+BW2)

where BW1 and BW2 are the subflows’ bandwidth.

The counterpart scenario of �OWD overestimation can be derived in a similar way

(proof omitted): when �OWD is overestimated by �, the larger-OWD subflow keeps doing

reinjection until the to-be-reinjected byte was transmitted less than �OWD� � time units

ago, which is:

�tsi = ts1i � ts2i < OWD2i �OWD1i � � (5.12)

The reinjection overhead is also r = �BW1BW2/(BW1 + BW2). In reality we can

only estimate (with a certain level of confidence) that �OWDREAL falls in the range of

[�OWD � �,�OWD + �]. DEMS thus lets both subflows to reinject according to Equa-

tion (5.11) and (5.12). The overall reinjection overhead is:

Reinj = 2�
BW1BW2

BW1 +BW2
(5.13)

These redundant bytes also help tolerate the inaccurate bandwidth prediction for the

smaller-OWD subflow, as well as help recover from packet losses (within the reinjected

byte range) quickly. Compared to (5.10), Equation (5.13) is usually much smaller. It is

also adaptive as it is a function of � that can be configured based on the predictability of

the network condition. For example, � can be set to k · StdDev(�OWD).

5.3.5 Put Everything Together

We now walk through Algorithm 1, which combines chunk-based transfer (§5.3.1), sub-

flow completion time balancing (§5.3.2), and adaptive reinjection (§5.3.4). The scheduling

algorithm works at the sender side (the receiver-side logic is trivial). The input consists of

the two network paths and a meta buffer that stores the packetized chunk data to be trans-

mitted. The algorithm is invoked whenever either subflow can transmit a packet (i.e., has

90

Algorithm 1: The DEMS scheduling algorithm
Input: subflow i 2 {1, 2} that can transmit packet, packets in the meta buffer

metaBuf [j], j 2 [0,m].
Output: packet packet to transmit over subflow i.

1 packet GetNextUnAckedPacketOnThisSubflow(i);
2 smallOwdNo GetSmallOWDSubflowNo();
3 largeOwdNo GetLargeOWDSubflowNo();
4 �OWD Get�OWD();
5 � Get�OWDVar();
6 trans false;
7 if i == smallOwdNo then
8 if not packet.tx [i] then
9 trans true;

10 else
11 delay ts � packet.ts [largeOwdNo];
12 if delay  �OWD + � then
13 trans true;

14 else
15 bw GetSubflowBW(smallOwdNo);
16 thres (�OWD� �) ⇤ bw;
17 if GetUntransmittedSize(metaBuf) � thres then
18 trans true;

19 if trans then
20 Transmit(packet);
21 packet.ts [i] GetCurrTimestamp();

22 else
23 packet NULL;

some empty congestion window space). It makes a decision of transmitting a new packet,

reinjecting a previously transmitted packet, or withholding transmission. Also note it only

processes unacknowledged packets.

Line 7–13 handles the subflow with a smaller OWD. Recall that in §5.3.2, the default

behavior is to always transmit a new packet over a small-OWD subflow whenever possi-

ble. Line 11–13 deals with the reinjection scenario according to Equation (5.11). Line

15–18 processes the subflow with a larger OWD. According to Equation (5.9), we may

need to skip the large-OWD subflow to achieve simultaneous subflow completion. Line 16

91

OWD/BW
Measuring

OWD/BW Measuring
and Prediction

Receiver
Meta Buffer

In-order
Delivery

Data
To

App
Sender

Meta Buffer

Subflow 1

Subflow 2

Packet
Scheduler

Data
From
App

Reinjection
Manager

Optional hint
API for setting

chunk size
Left: receiver side
Right: sender side

Figure 5.9: System diagram of DEMS.

performs adaptive reinjection over the large-OWD subflow according to Equation (5.12).

5.4 System Design

We now elaborate on how to integrate the DEMS algorithm into a real system. Fig-

ure 5.9 plots the system diagram. At the sender side (right), the chunk data coming from the

application is stored in the meta buffer, and is then split, scheduled, and transmitted by the

packet scheduler. Working with the packet scheduler, the reinjection manager keeps track

of packets’ transmission states and makes decisions on adaptive reinjection. We also de-

sign a module for measuring and predicting network conditions (�OWD and bandwidth).

The application can also optionally specify the chunk size through an API (to be elaborated

next). The receiver side logic is much simpler. It passively receives/acknowledges the data,

reassembles it in the receiver-side meta buffer, and delivers the in-order data to the applica-

tion. Note that data over the (decoupled) subflows are acknowledged separately using the

per-subflow ACK numbers. Meanwhile, similar to MPTCP, at the receiver meta buffer, the

global sequence number carried by each packet is used to mark which portion within the

chunk has been received. While Figure 5.9 illustrates one-way data transfer, our system

supports full-duplex data transmission.

Interaction with Applications. DEMS provides applications with an optional hint API

(through a socket option) to specify the chunk boundary, allowing DEMS to work on the

92

chunks sequentially and to minimize the download time for each of them. Alternatively, if

no hint is provided, DEMS leverages a heuristic that treats all data in the meta buffer as a

single chunk. One issue here is that more data may arrive at the tail of the meta buffer from

the app when the transmission is in progress. To handle this, we modify the packet fetch

function (Line 1 in Algorithm 1) to let one subflow always fetch unacknowledged packets

from the head of the meta buffer and the other subflow fetch from the tail of the meta buffer.

The meta buffer is realized using a circular queue to allow efficient space reuse. In this way,

DEMS is fully transparent to both the client-side and server-side applications. When there

are multiple connections transmitting data simultaneously, DEMS can use a separate meta

buffer for each connection and take bytes from each meta buffer in a round robin manner

so that each connection is given a fair share of the network bandwidth. Other scheduling

strategies such as flow prioritization can also be realized in DEMS.

�OWD Measurement and Prediction. OWD measurement requires cooperation be-

tween the sender and the receiver. The sender records the timestamp of each outgoing

packet; the receiver records the reception time and sends it and the sequence number back

to the sender through an encapsulated control message (§5.5). OWD is then estimated at the

sender using exponential weighted moving average (EWMA) with ↵ empirically chosen to

be 0.25. Note that estimated OWD contains the sender-receiver clock drift, which is nev-

ertheless cancelled out when a �OWD sample is calculated between two network paths.

Since DEMS requires �OWD between two paths instead of the actual OWD on each path

to make multipath scheduling decision as mentioned in §5.3, DEMS is not affected by the

the sender-receiver clock drift. Also, in wireless networks (cellular in particular), network

latency is often correlated with the number of bytes-in-flight (BIF) [63, 82, 138]. We thus

bin OWD samples for each subflow separately using measured BIF with a bin size of 10KB.

The samples in each bin are processed separately using EWMA to facilitate a more accurate

OWD estimation for each subflow at different BIF levels.

We set �, the parameter controlling adaptive reinjection (§5.3.4), to be the variance of

93

�OWD. For each network path, when the sender receives an OWD sample, a delay differ-

ence sample is calculated between this OWD sample and the estimation of OWD based on

the corresponding BIF of this path. Similar to OWD estimation, the sender uses EWMA

with ↵ empirically chosen to be 0.25 over the delay difference samples to estimate the

variance of OWD on the corresponding network path. The variance of �OWD is then

estimated by the average of the variance of OWD of two network paths over time. The

subflow bandwidth is also estimated using EWMA over measured samples. Note DEMS

only needs the bandwidth estimation for the subflow with a smaller OWD (see Equation

(5.9)). DEMS can also incorporate more sophisticated prediction methods (e.g., those tak-

ing special consideration of network uncertainties [75]) to improve the prediction accuracy.

Congestion Control and Packet Losses. DEMS is compatible to any congestion con-

trol (CC) algorithm such as decoupled CC, LIA [132] and OLIA [84]. In our experiments

we use decoupled CC that mobile multipath typically uses [68, 104]. Also, DEMS is robust

to packet losses. Since the network condition prediction is performed in an online manner,

delay or bandwidth fluctuation caused by (real or spurious) packet losses can be quickly

picked up and reflected in the scheduling decision changes. We demonstrate in §5.6.4 that

DEMS works well under diverse real-world scenarios including those with poor network

conditions.

5.5 Implementation

DEMS can be directly integrated into MPTCP as a new scheduler. However, from

the perspective of conducting real-world evaluations, MPTCP has two issues: first, most

of today’s commercial Internet servers do not yet support MPTCP, making testing real

workload difficult; second, MPTCP uses special TCP options that are often blocked by

commercial cellular middleboxes [104].

To facilitate real-world test, we implemented a multipath TCP proxy infrastructure in

C/C++. Between the proxy and the client host, multipath is realized as multiple con-

94

ventional TCP connections each corresponding to a subflow established over a network

path. For uplink traffic, at the client side, an application TCP connection’s data is trans-

parently split over the subflows using a custom light-weight encapsulation protocol (as op-

posed to using special TCP options); the data is then merged at the proxy and delivered to

the server over conventional single-path TCP to ensure server transparency (assuming the

client-proxy paths are the bottleneck). The downlink traffic is handled symmetrically. We

have replicated MPTCP’s three schedulers: MinRTT, round-robin, and ReMP by precisely

following their algorithms. Compared to MPTCP, our proxy-based approach offers similar

performance (based on our lab test3) while providing server transparency and middlebox

friendliness.

We then implemented DEMS on our multipath proxy infrastructure. Most of the

scheduling logic is implemented in the user space. Some low-level functionalities such as

OWD/bandwidth measuring and prediction are implemented in the kernel through a light

kernel module. Overall DEMS is lightweight: our implementation (not including the base

proxy system) consists of 970 LoC (450 LoC for the scheduler and 520 LoC for network

condition measurement/prediction). DEMS is generally compatible with Linux-based sys-

tems.

5.6 Evaluation

We systematically evaluate DEMS under various settings including different network

setups (emulated vs. real networks), different network conditions (stable vs. fluctuating),

different workload (raw chunk download vs. real application workload), different clients

(smartphone vs. laptop), etc.
3In the test, the server is co-located with the proxy to ensure MPTCP and our approach traverses the same

network paths.

95

5.6.1 Experimental Setup and Methodology

We study three variants of DEMS: DEMS-B, DEMS-S, and DEMS-F. They all employ

chunk-based data transfer, decouple the subflows in the “two-way” manner, and attempt

to ensure simultaneous subflow completion (§5.3.1 and §5.3.2). Their differences are the

reinjection policy. DEMS-B (“Basic”) does not perform reinjection; DEMS-S (“Simple

reinjection”) employs the naı̈ve reinjection strategy described in §5.3.3; DEMS-F (“Full”)

performs the adaptive reinjection described in §5.3.4.

Our evaluation focuses on file download (upload can be handled by DEMS symmet-

rically). We set up our multipath proxy (developed in §5.5) on a commodity server with

4-core 3.6GHz CPU, 16GB memory, and 64-bit Ubuntu 16.04. The meta buffers at both

the proxy and the receiver side are configured to be sufficiently large to avoid performance

degradation due to limited buffer size. For apples-to-apples comparison, all schedulers use

the same decoupled TCP congestion control (TCP CUBIC) and same subflow-level TCP

send/receiver buffer sizes (8MB by default). Unless otherwise noted, the application server

(hosting a file or web contents) is near the proxy, and uses only single-path. The RTT

between the proxy and the app server is configured to be 4ms, which is the median RTT

between a mobile ISP gateway (where our proxy can be deployed) and 30 popular con-

tent providers’ servers based on a recent measurement study [112]. The client-proxy paths

covering the “last-mile” wireless hops are thus the bottleneck.

We evaluated DEMS over both emulated and real multipath environments of WiFi and

cellular. For emulation, we use Linux tc to throttle the bandwidth and to add extra delay on

the client-proxy paths. By default, we use the network condition profiles from large-scale

measurements of metropolitan LTE [78] and WiFi [123] users (same numbers as those used

in §5.2.1). To emulate in-network buffering, we keep a 50ms bottleneck buffer for WiFi

and a 500ms bottleneck buffer for LTE (set based on [82]) using tc.

We use two devices for evaluation: a laptop and a smartphone. The laptop is an HP

EliteBook 840 with 1.90GHz dual-core CPU and 8GB memory, running Linux 3.18. When

96

doing emulations over the laptop, we use Ethernet to emulate the LTE network, and use

WiFi as it is. The smartphone is a Nexus 6P running Android 7.0 on Linux 3.10. We use

its WiFi and cellular interfaces for experiments.

Recall in §5.4 that an application can interact with DEMS either using or not using a hint

API. We adopt the non-API mode so DEMS is fully transparent to our applications. Finally,

note that all evaluations were conducted on our multipath proxy infrastructure instead of

MPTCP (recall in §5.5 that we replicated all MPTCP’s schedulers on our infrastructure).

5.6.2 Stable Network Conditions

We first study the performance of DEMS under stable network conditions using emu-

lation. The workload is file download. For each test, we repeat the download for 10 times

and report the average value. We consider different delay differences and bandwidth of the

two paths. Unless otherwise noted, we use MinRTT, the default MPTCP scheduler, as the

comparison baseline.

Different Delay Differences. Figure 5.10 compares the download time across the three

DEMS variants and MinRTT for different file sizes. We consider three RTT combinations

to cover different subflow delay differences. All three DEMS variants outperform MinRTT.

Among the three variants, DEMS-S achieves the highest download time reduction (15% to

38% compared to MinRTT) for medium-sized files (128KB to 1MB) because of its aggres-

sive reinjection behavior. The performance gain brought by DEMS-F decreases slightly

in most cases. However, Figure 5.11, which compares the size of reinjected data incurred

by DEMS-S and DEMS-F, clearly indicates that DEMS-F strikes a much better balance

between the performance and the reinjection overhead: compared to DEMS-S, DEMS-F

reduces the reinjected data size by 23% to 100%. Regarding DEMS-B, it slightly falls

behind DEMS-F by up to 8%. The difference is small because the network conditions are

stable here.

97

���

����

�

���� ���������� ��� ��� ���

�
��
�
��
��
��

��
�
��
��
�

���
�
��
��
��
�
���
�
��
��

�������� ����

������
������

������
������

(a) WiFi RTT 50ms, LTE RTT 70ms

���

����

�

���� ���������� ��� ��� ���

�
��
�
��
��
��

��
�
��
��
�

���
�
��
��
��
�
���
�
��
��

�������� ����

������
������

������
������

(b) WiFi RTT 50ms, LTE RTT 270ms

���

����

�

���� ���������� ��� ��� ���

�
��
�
��
��
��

��
�
��
��
�

���
�
��
��
��
�
���
�
��
��

�������� ����

������
������

������
������

(c) WiFi RTT 50ms, LTE RTT 470ms

Figure 5.10: Compare performance between DEMS and MinRTT on downloading files
with different sizes (laptop, emulation). The WiFi and LTE bandwidth are
7040kbps and 9185kbps respectively.

Figure 5.10 indicates that DEMS brings more download time reduction as the two

paths’ RTT difference becomes larger. This is because a larger RTT difference usually

indicates a larger �OWD that leads to more room for DEMS to balance the subflow com-

pletion time. Figure 5.10 also shows that DEMS’s benefits are maximized when the file

98

�
��
���
���
���
���
���
���
���
���

���� ���������� ��� ��� ����
��
��
��
��
��
��
��
��

�������� ����

������ ������

(a) WiFi 50ms, LTE 70ms

�
��
���
���
���
���
���
���
���
���

���� ���������� ��� ��� ����
��
��
��
��
��
��
��
��

�������� ����

������ ������

(b) WiFi 50ms, LTE 270ms

Figure 5.11: Compare redundant data between DEMS-S and DEMS-F (laptop, emulation).

�
���
���
���
���
���
���

���� ���������� ��� ��� �����
��
��

��
�
��
��
��
�

���
�
��
���
��
��
�
��
��

�������� ����

������
������

������

Figure 5.12: Compare subflow completion time difference (laptop, emulation, WiFi RTT
50ms, LTE RTT 270ms).

size is small or medium. For large files such as 8MB, all four schemes exhibit similar per-

formance. The reason, as mentioned in §5.7, is that the subflow completion time difference

is dwarfed by the long download duration. Nevertheless, we do expect that for future faster

networks such as 5G network, DEMS will benefit large transfers. For the 64KB file down-

load in Figure 5.10(c), all four schemes have the same performance because in this case the

best strategy is to use the best single path.

99

Figure 5.12 plots the subflow completion time difference (measured at the receiver) be-

tween the two paths when three schedulers are used. It confirms that our algorithm in §5.3.2

effectively achieves simultaneous subflow completion, which leads to shorter chunk down-

load time compared to MinRTT.

Different Bandwidth Combinations. To understand the impact of the paths’ bandwidth

on DEMS, We compare the download time of DEMS-F and MinRTT under 6⇥6=36 band-

width combinations of WiFi and emulated LTE networks, for three file sizes (256KB,

1MB, and 4MB). The bandwidth of each path varies from 2.5Mbps to 27.5Mbps. The

heat maps in Figure 5.13 visualize the download time reduction brought by DEMS-F com-

pared to MinRTT. We observe two trends. First, as the WiFi bandwidth increases, the

overall download time decreases. Therefore the optimizable portion of DEMS (i.e., the

two subflows’ completion time difference) becomes more prominent, leading to more per-

ceived performance enhancement. Second, increasing the LTE bandwidth also shortens

the download time. However, it also reduces the in-network queuing delay and henceforth

reduces �OWD. Therefore when fixing the WiFi bandwidth and increasing the LTE band-

width, the download time reduction incurred by DEMS is not prominent. Overall, DEMS-F

achieves up to 74%, 57%, and 21% of download time reduction for 256KB, 1MB and 4MB

download, respectively, compared to MinRTT.

5.6.3 Varying Network Conditions

We next evaluate how DEMS performs under changing network conditions. We con-

sider fluctuating latency and bandwidth separately.

Varying Latency. We conduct experiments at a location on our campus where the RTTs

of both WiFi and LTE experience high variance (the stddev of RTT is up to 40% and 50% of

the mean for WiFi and LTE, respectively) while the bandwidth is sufficiently high. We then

throttle the bandwidth to 7040kbps and 9185kbps for WiFi and cellular respectively before

100

���
���
����
����
����
����

��� ��� ����������������

��
�
��
��
�
��
��

��
��
��

���� ��������� ������

�
��
��

��
��

���

�
��

��
��
�
���

�
��
��
��
��
�
��
�

(a) 256KB download

���
���
����
����
����
����

��� ��� ����������������

��
�
��
��
�
��
��

��
��
��

���� ��������� ������

�
��
��

��
��

���

�
��

��
��
�
���

�
��
��
��
��
�
��
�

(b) 1MB download

���
���
����
����
����
����

��� ��� ����������������

��
�
��
��
�
��
��

��
��
��

���� ��������� ������

�
��
��

��
��

���

�
��

��
��
�
���

�
��
��
��
��
�
��
�

(c) 4MB download

Figure 5.13: Download time reduction brought by DEMS-F compared to MinRTT under
36 bandwidth combinations (laptop, emulation, WiFi RTT 50ms, LTE RTT
70ms).

launching the file download experiments (256KB and 1MB, each repeating 10 times). The

results are the following. DEMS-F and DEMS-S achieve similar download time that is 14%

to 27% lower compared to MinRTT, respectively. However the reinjected data incurred by

DEMS-F is much smaller – only 15% to 53% compared to DEMS-S. Also DEMS-B’s

download time is 12% worse compared to DEMS-F due to the reinjection performed by

DEMS-F, which is particularly useful when it is difficult to accurately predict the network

101

 0.5

 1

 1.5

256KB 1MBN
o
rm

a
liz

e
d
 d

o
w

n
lo

a
d

tim
e
 (

Y
-a

xi
s

fr
o
m

 0
.4

)
Size

MinRTT
DEMS-B

DEMS-S
DEMS-F

(a) BW Profile 1: download time

 0
 50

 100
 150
 200
 250
 300
 350
 400

256KB 1MB

R
e
d
u
n
d
a
n
t
d
a
ta

 (
K

B
)

Size

DEMS-S
DEMS-F

(b) Profile 1: redundant data

 0.5

 1

 1.5

256KB 1MBN
o
rm

a
liz

e
d
 d

o
w

n
lo

a
d

tim
e
 (

Y
-a

xi
s

fr
o
m

 0
.4

)

Size

MinRTT
DEMS-B

DEMS-S
DEMS-F

(c) BW Profile 2: download time

 0
 100
 200
 300
 400
 500
 600
 700

256KB 1MB

R
e
d
u
n
d
a
n
t
d
a
ta

 (
K

B
)

Size

DEMS-S
DEMS-F

(d) Profile 2: redundant data

Figure 5.14: Compare different scheduling algorithms under varying network conditions
(laptop, trace-driven emulation).

condition.

Varying Bandwidth. We take a “record and replay” approach to realistically emulate

the varying bandwidth. We collect 5-minute bandwidth traces of both paths from two

campus locations. The bandwidth at both locations is highly variable, with their stddev

being up to 54% and 92% of the mean bandwidth for WiFi and LTE, respectively. The first

location has overall lower bandwidth compared to the second. We then replay (emulate)

the two bandwidth traces in our lab while maintaining stable baseline RTT. The results are

plotted in Figure 5.14. Compared to MinRTT, DEMS-F reduces the median download time

by 12% to 46% for the two bandwidth profiles, as shown in subplot (a) and (c). DEMS-

S only marginally outperforms DEMS-F, at the cost of reinjecting much more data (1.9x

to 7.1x) as shown in subplot (b) and (d). Also both DEMS-F and DEMS-S yield better

results than DEMS-B, again because reinjection helps absorb the uncertainty of the varying

network conditions.

102

 0

 1

 2

 3

 4

256KB 1MB
Residence

4MB 256KB 1MB
Office

4MB 256KB 1MB
Library

4MB 256KB 1MB
Parking

4MB 256KB 1MB
Grocery

4MB

D
o
w

n
lo

a
d
 t
im

e
 (

s)

Size and location

MinRTT DEMS-F

Figure 5.15: Compare performance of different scheduling algorithms (smartphone, real
WiFi/LTE at five locations).

5.6.4 Field Test under Real-World Settings

We now perform field test to assess DEMS under real-world settings. We went to five

locations: residential apartment, office, campus library, parking lot, and grocery store to

conduct experiments of downloading files of different size (256KB, 1MB, and 4MB). For

each file size, we used the Nexus 6P smartphone to repeatedly perform file download us-

ing DEMS-F and MinRTT back to back for 5 minutes over multipath (cellular network

provided by a large U.S. carrier and commercial WiFi). The results are shown in Fig-

ure 5.15, which indicates that the network conditions at the five locations are indeed very

diverse. Overall we obtained encouraging results: compared to MinRTT, DEMS-F reduces

the download time by up to 88%, 83%, and 77% for 256KB, 1MB and 4MB download, re-

spectively; the median download time reduction is 33%, 48%, and 42%, respectively. The

download time variance is also reduced by DEMS-F.

The above improvements are attributed to the different path characteristics between

WiFi and cellular networks that are not handled well by MPTCP. Compared to wired net-

works, wireless networks like WiFi and cellular can sometimes exhibit high delay and

bandwidth dynamics [78, 82] that pose challenges to multipath schedulers. To illustrate

this, Figure 5.16 shows the downlink throughput of each subflow calculated every 200ms

when downloading 4MB files. As shown, at many locations, WiFi and LTE networks ex-

103

 0
 20
 40
 60
 80

 100
 120
 140
 160

ResidenceOffice Library Parking Grocery

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Location

WiFi
LTE

Figure 5.16: Downlink throughput of real WiFi and LTE at five locations.

-1

-0.5

 0

 0.5

 1

 1.5

 2

256KB
Residence

4MB 256KB
Office

4MB 256KB
Library

4MB 256KB
Parking

4MB 256KB
Grocery

4MB

L
a

te
n

cy
 (

s)

Size and location

WiFi relative OWD
LTE relative OWD

WiFi OWD prediction error
LTE OWD prediction error

Figure 5.17: Relative OWD and prediction error of real WiFi and LTE networks at five
locations.

hibit different and highly variable bandwidth that can affect their OWD and the OWD pre-

diction accuracy. As shown in Figure 5.17, oftentimes the relative OWD of WiFi and LTE

are indeed highly variable, and larger file downloads have even higher variabilities. The

fluctuation of bandwidth and delay makes it hard to accurately predict OWD. For example,

when downloading 4MB files at the Residence location, the relative OWD of LTE ranges

from 100ms to 1.3s, causing its prediction error to reach up to 800ms. DEMS does not

fully rely on such predictions and instead employs adaptive reinjection described in §5.3.4

to more robustly handle the performance variability of many wireless network settings.

104

���
����

�
����
���
����

�
����
���

���� ����� ��� ��� ����
��
�
��
��
��

��
�
��
��
�

���
�
��
��
��
�
���
�
��
��

�������� ����

���� ��
������

��

����
������

(a) Stable condition: WiFi 50ms, LTE 70ms

���
����

�
����
���
����

�
����
���

���� ����� ��� ��� ����
��
�
��
��
��

��
�
��
��
�

���
�
��
��
��
�
���
�
��
��

�������� ����

���� ��
������

��

����
������

(b) Stable condition: WiFi 50ms, LTE 270ms

 0.5

 1

 1.5

 2

256KB 1MBN
o
rm

a
liz

e
d
 d

o
w

n
lo

a
d

tim
e
 (

Y
-a

xi
s

fr
o
m

 0
.4

)

Size

Best SP
MinRTT

RR
ReMP

DEMS-F

(c) Replay Bandwidth Profile 1

Figure 5.18: Compare performance among DEMS-F and four other schedulers (laptop, em-
ulation).

5.6.5 Compare with Other Schedulers

Besides studying MinRTT, We further compare DEMS-F with three other scheduling

approaches: round-robin, ReMP [59], and using the best single path to download a file.

Figure 5.18(a) and (b) compare the file download time using the five schemes for two

emulated stable network conditions. Figure 5.18(c) conducts a similar comparison under

105

varying network condition (replaying Bandwidth Profile 1 collected in §5.6.3).

We observe that DEMS-F outperforms all other four schedulers. Besides this, in most

cases, MinRTT achieves similar performance compared to round-robin (RR). This is likely

explained by two reasons. First, in our implementation, the round-robin selection starts

with the low-RTT path; starting from the high-RTT path will inflate the download time

for small files. Second, since we are performing bulk data transfer, it is unlikely that both

paths have empty congestion window space at the same time. So during most of the time

both MinRTT and RR have only one choice for path selection. Figure 5.18 also indicates

the apparent limitation of the best single-path approach: compared to using multipath,

using only one path significantly inflates the download time due to insufficient bandwidth.

Regarding ReMP, it blindly duplicates every byte onto all subflows, making it essentially

fall back to the “online” version of the best single-path approach. While ReMP and DEMS-

F both transmit redundant data, DEMS-F’s reinjection strategy is much more adaptive and

strategic. For a 4MB file transfer, DEMS-F only transmits 2% of the redundant bytes sent

by ReMP.

5.6.6 Web Browsing Performance

All experiments so far use file (raw data chunk) download as the workload. We now

investigate how DEMS helps improve the QoE of web browsing, one of the most popular

applications on mobile devices. A typical web page may consist of tens of objects, and

downloading them faster would improve the QoE. We conduct web page loading experi-

ments using off-the-shelf Chrome browser (53.0.2785.124) on our Nexus 6P smartphone.

We picked 10 popular websites and use their mobile-version landing pages as the target

web pages. The 10 websites cover diverse categories including news, education, travel,

shopping, and government. We use the page load time (PLT), which is programmatically

measured by the Chrome debugging interface, as the QoE metric. To make the experiments

reproducible, we use Google Page Replay [10] to take a snapshot of each landing page and

106

 0

 0.25

 0.5

 0.75

 1

 0 2 4 6 8 10 12 14

C
D

F

Page load time (s)

MinRTT
DEMS-F

Figure 5.19: Compare web page load time when using DEMS-F and MinRTT (smartphone,
real WiFi/LTE).

host it on our web server that is near the multipath proxy (§5.6.1). We compare the PLT

of the 10 landing pages loaded by DEMS-F and by MinRTT under real-world network

condition. The experiments were performed at a location on our campus where the RTTs

and bandwidths of both WiFi and LTE experience high variance, similar to the network

condition described in §5.6.3. We load each web page for 10 times and report the median

PLT. As shown in Figure 5.19, compared to MinRTT, DEMS brings the per-page median

PLT reduction of 6% to 43% across the 10 pages (median: 25%). The results indicate that

DEMS can significantly improve the web QoE under real-world settings.

To understand why DEMS helps reduce the PLT, we take a closer took at the web object

transmission pattern. Figure 5.20 exemplifies two waterfall diagrams for the same webpage

when MinRTT and DEMS-F are used as the multipath scheduler. As shown, DEMS-F

effectively reduces the reception duration (i.e., download time) for many objects. Since

many of them are on the critical path for web page loading, the overall PLT is effectively

reduced. Also note that one key difference between file download and web page loading is

that for the latter, computation and network activities are interleaved. Therefore, although

the entire web page may be large, the web server has to intermittently feed data to the

transport layer. This naturally forms many small/medium-sized chunks that can be well

optimized by DEMS.

Recall in §5.4 that an application can interact with DEMS either using or not using a

107

...png(10K)
...html(3K)
...css(15K)

...js(11K)

...js(55K)
...widgets(108K)

....js(26K)
...js(54K)

...jpg(30K)
...png(144K)

...js(5K)
...js(85K)
...js(38K)
...js(25K)
...js(85K)

...css(12K)
(url)(0K)

 0 5 10 15 20

O
b
je

ct
s

Time (s)

Connect
Send
Wait

Receive

(a) MinRTT

...png(10K)
...html(3K)
...css(15K)

...js(11K)

...js(55K)
...widgets(108K)

....js(26K)
...js(54K)

...jpg(30K)
...png(144K)

...js(5K)
...js(85K)
...js(38K)
...js(25K)
...js(85K)

...css(12K)
(url)(0K)

 0 5 10 15 20

O
b
je

ct
s

Time (s)

Connect
Send
Wait

Receive

(b) DEMS-F

Figure 5.20: Example waterfall diagrams for MinRTT and DEMS-F (some objects are
omitted for better illustration).

hint API. Since it is challenging to modify the Chrome browser source code, we adopt the

non-API mode in our experiments. In reality, since an HTTP(S) persistent connection may

carry multiple web objects back to back, we thus envision that using the hint API to inform

DEMS of the boundary between objects can provide additional benefits of minimizing the

delivery time of each object. We leave this as future work4.

5.6.7 System Overhead

We compared CPU utilization across the three schedulers: DEMS-F, MinRTT, and

ReMP by running them on the smartphone. The workload is to upload a large file as fast

as possible, with the aggregated bandwidth being around 50Mbps. Compared to the other

two simpler schedulers, the additional CPU overhead incurred by DEMS-F is unnoticeable.

For download traffic, since the mobile device acts as a receiver, the overhead is even more
4In HTTP/2, objects might be multiplexed together. To handle this, multiplexed objects can be treated as

one chunk.

108

negligible.

5.7 Discussions

Integration with MPTCP. While we implement DEMS on our own multipath TCP

proxy infrastructure, DEMS can also be directly integrated into MPTCP. Since MPTCP

provides a modular scheduler framework [108], the core logic of DEMS can be imple-

mented as a new scheduler module. To facilitate OWD measurement (§5.4), the receiver

side can leverage MPTCP options in TCP headers to carry necessary information used for

estimating OWD at the sender side. The network prediction functionality can be imple-

mented as a general API in MPTCP for all schedulers to use.

Applicability. DEMS can work with diverse traffic patterns and transfer sizes despite the

ideal usage scenario being chunked data transfer, a very common workload as mentioned

in §5.1. As DEMS shows the most promise for small-to-medium-size downloads, it can

benefit a wide range of today’s mobile applications (e.g., video streaming) that involve

downloading chunks from a few hundreds KBs to a few MBs. For very large files (e.g.,

tens of MBs), when the network bandwidth is limited (a few Mbps), the subflow completion

time difference is dwarfed by the long download duration, leading to overall small relative

improvement brought by DEMS. Nevertheless, we do expect for future faster networks

such as 5G with bandwidth of hundreds of Mbps, DEMS will significantly benefit large

transfers.

Limitation. We discuss some limitations of DEMS. First, our current design focuses on

two subflows. This was driven by realistically the most common mobile multipath use

cases today. Nevertheless, the core concepts of DEMS (e.g., chunk-based transfer, simul-

taneous flow completion, and adaptive reinjection) are also applicable to more than two

paths, though involving more complexities. For example, instead of using the “two-way”

109

splitting, each subflow can transmit packets in an interleaved (but still decoupled) manner.

To achieve simultaneous subflow completion, a subflow can decide to stop transmission

if the remaining data in the meta buffer can be delivered earlier by some other subflows

with smaller OWD (some coordination algorithms need to be developed). In this way, at

the sender side, the subflow with the largest and the smallest OWD will be the first and

the last finishing subflow, respectively. This can compensate the delay differences among

the subflows, leading to simultaneous subflow completion at the receiver side. We leave

fleshing out the details on this to future work.

Second, the current DEMS design focuses primarily on improving download time, a

critical factor impacting user QoE. In the future, we plan to explore additional dimensions

like energy and limiting data usage on a particular subflow. This could possibly be done

by adopting concepts from other special-purpose schedulers such as energy-aware [90] and

subflow-priority-aware [70] schedulers.

5.8 Summary

Compared to single-path, multipath transport brings more complexities due to not only

more involved paths but also their sophisticated interactions. Through judicious algorithm

design, system integration, and extensive evaluation, we demonstrate that by strategically

scheduling the packets, we can improve the multipath performance significantly (e.g., me-

dian download time reduction of 33%–48% for fetching files and median loading time

reduction of 6%–43% for fetching web pages under real-world settings compared to Min-

RTT). In our future work, we plan to extend DEMS in several aspects (§5.7).

110

CHAPTER VI

A First Look at Android Wear Networking Performance

under Mobility

Chapter III, IV, and V address performance problems and improve application QoE

with the flow-level and interface-level parallelism on a single device, i.e., a smartphone.

In this chapter, we embrace the device-level parallelism by providing a first look at the

wearable network management under mobility, where the wearable device needs proper

coordination with the smartphone to access the Internet.

6.1 Introduction

Smart wearable devices have become an important member of the mobile computer

family. According to IDC, by volume, smartwatches account for the largest part of smart

wearables and are expected to reach a total value of $17.8 billion dollars in 2020 [28].

In the literature, several efforts have been made towards understanding and improv-

ing the OS execution performance [92, 93], power management [95], graphics and dis-

play [100], storage [76], and user interface [47, 134] of wearable OSes. In this chapter, we

investigate an important yet under-explored component: the wearable networking stack.

We conduct to our knowledge the first investigation of the networking performance of An-

droid Wear under mobility.

111

Wearable networking is important. Take smartwatches as an example. One may argue

they only incur light traffic such as push notifications. This is indeed true for the current

smartwatch ecosystem where traffic flows are largely small, short, and bursty [95]. How-

ever, we envision that future wearable apps will involve much heavier network activities fu-

eled by new hardware, OS support, and applications. For example, the latest speaker/LTE-

capable watches such as Samsung Gear S3 Frontier allow users to directly make hands-free

VoIP calls; the latest Android Wear 2.0 allows standalone apps on watches; also, many

emerging applications incur heavy network traffic such as continuous computer vision on

smart glasses [50, 65], remote camera preview, and multipath collaboration between phone

and watch [97].

Wearable networking is also different from, for example, smartphone networking that

has been well studied in the past decade. First, wearables often do not directly access

the Internet; instead, it uses its paired smartphone as a “gateway” over Bluetooth (BT),

which, if not carefully designed, may incur additional performance degradation. Such a

gateway mode accounts for 84% of the daytime usage period as measured by a recent user

study [95]. Second, due to BT’s short range, network handover frequently occurs on a

wearable: when it moves away from the phone, the BT session will be torn down and the

wearable has to use standalone WiFi or LTE to communicate with the external world.

In this chapter, we conduct controlled experiments using a commodity Android Wear

smartwatch and Android Wear applications. Our key finding is that, surprisingly, there ex-

ist serious performance issues under mobility regarding aforementioned aspects that distin-

guish wearable networking from smartphone networking. Due to passive network switch-

ing and insufficient protocol support for handovers, the BT-WiFi handover that frequently

occurs on wearables may last more than 40 seconds, leading to significant degradation of

application performance.

We find that the above performance inefficiencies are caused by poor design of the

networking stack of Android Wear OS due to a lack of thorough understanding of the

112

cross-layer interactions. To summarize, our study makes two contributions.

• Discovery of network performance issues of Android Wear OS under mobility based

on thorough in-lab measurements using commodity devices and identification of their root

cause and impact on application performance.

• Design improvement for networking subsystems of future wearable OSes. We propose

WearMan, a wearable network manager to perform preemptive handovers using changes

of BT signal strength as an indicator that tells in advance when a handover needs to be

performed.

6.2 Poor Handover Performance

We explore the performance of Android Wear real-time application when the watch

moves away from or closer to the smartphone, i.e., handovers between Bluetooth (BT) and

WiFi. We highlight the issues of current Android Wear networking framework on handling

mobility.

6.2.1 Impact of Handover on Real-time Apps

Real-time applications on wearables provide rich functionalities. The latest smart-

watches such as Samsung Gear S3 Frontier enables hands-free VoIP calls for users to di-

rectly make phone calls from the smartwatch. There are a few Android Wear apps that

currently support real-time content delivery. To name a few, the Wear Camera Remote

app [38] streams image previews from the phone camera to the smartwatch in real time;

the tinyCam Monitor PRO app [37] allows the user to monitor real-time video from the

security camera on the smartwatch; there are also music and radio streaming apps [33, 35]

for Android Wear. All these applications require continuous network connectivity on the

wearable to deliver satisfying application QoE, even if the user moves around with the

wearable.

113

While WiFi networks may be often available for the smartwatch to use for data trans-

fers, Android Wear by default prefers BT for network transmission because the energy con-

sumption of BT is much smaller than that of WiFi. As shown in a previous measurement

study [95], the power consumption of WiFi is more than three and five times the power

consumption of BT for actively receiving and transmitting network data, respectively, on a

state-of-the-art smartwatch, LG Watch Urbane. Since real-time apps usually continuously

transmit and receive network data and may not require high bandwidth, using BT when

available can significantly reduce energy consumption on the smartwatch. It is important

for Android Wear to properly handle network switching between WiFi and BT to achieve

both energy saving and good performance.

Due to BT’s short range, when a wearable moves away from the phone, network han-

dovers are very likely to occur from BT to standalone WiFi or cellular network to provide

continuous Internet access. When a wearable is connected to WiFi and moves to the range

of smartphone BT, the wearable can choose to switch the active network to BT and turn

off WiFi to reduce network energy consumption. Compared to smartphone handovers be-

tween cellular network and WiFi, smartwatch handovers happen more frequently as the

user moves and require careful handling as the wearable can lose BT connectivity in short

time under mobility.

6.2.1.1 Experimental Setup

We set up a testbed shown in Figure 6.1 to understand the networking performance of

Android Wear. The network access for the smartwatch includes communicating locally

with the phone over BT, accessing the Internet with direct WiFi, as well as surfing the

Internet via the smartphone as the gateway. Our experiments are performed on a cutting-

edge smartwatch: Huawei Watch with Android Wear 2.0. The phone we use is a Nexus 6P

with Android 7.0. The server we use is an HP desktop running Ubuntu 16.04 with Linux

kernel 4.4.0.

114

Internet

WiFi AP

Smartwatch

Smartphone

WiFi

Bluetooth

Figure 6.1: Wearable measurement testbed.

To understand the impact of network handovers on Android Wear 2.0, we study the

application performance and QoE metrics of the tinyCam security camera app [37] during

handovers. Since most smartwatches have both BT and WiFi, we focus on understanding

the handovers between BT and WiFi. We paired a Huawei Watch with Android Wear 2.0

to a Nexus 6P phone with Android 7.0 over BT. Both the smartwatch and smartphone

are configured to connect to the same WiFi network. To stream security cam videos, we

connect a Samsung SNH-V6414BN SmartCam [36] to the same WiFi network and make it

accessible to the tinyCam app on the Huawei watch through either BT or WiFi.

We define two QoE metrics to understand the performance of tinyCam app: (1) frame

one-way delay (OWD), which refers to the time to transmit a video frame from the security

camera to the smartwatch and display it in the tinyCam app, and (2) network throughput,

which is the actual data transmission rate to the smartwatch. To measure the frame OWD,

we use the same Nexus 6P phone to display constantly increasing timestamps to the Smart-

Cam, and use an iPhone 7 Plus to record the screens of Nexus 6P and Huawei Watch with

30 fps. We record the screen of Nexus 6P for a few second and retrieve the timestamp, ti, of

each displayed frame i with a timestamp in the recorded video. We also record the screen

of Huawei Watch during handovers and manually parse the recorded video to get the times-

tamp, t0i, for each received frame with the same displayed timestamp on the smartwatch.

Thus, t0i � ti is the frame OWD delay. We calculate the BT and WiFi throughput from

BT snoop logger and tcpdump traces, respectively. We keep both BT and WiFi enabled

115

in the settings on the smartwatch and let the Android Wear OS use the default network

management policy to choose the network.

Besides tinyCam app, we also write our own Android Wear app called RTApp to un-

derstand how application logic affects the performance during handovers. Our app imitates

the traffic pattern of the tinyCam app, i.e., downloading a data chunk of 3KB every 160ms

from our server using TCP socket, generating 150kbps downlink traffic. Each data chunk

has a sequence number. For each new TCP connection initiated by the app, the app first

sends a request with the sequence number which the app expects to receive next, and the

server starts sending data chunks from the corresponding sequence number. Whenever the

active network switches, e.g., from BT to WiFi, the app establishes a new TCP connection

to the server and resumes chunk downloading. A new TCP connection is initiated only

after a previous connection encounters data transfer error and the new network is ready to

transmit data. We install this app on the same smartwatch as above and deploy the server

in the same local network so that the RTT between the smartwatch and the server is below

5ms.

6.2.1.2 BT to WiFi Handover Performance

Figure 6.2 shows the QoE metrics of tinyCam app over time when the smartwatch

is moving out of the BT coverage. Contrary to our expectation of reasonable handover

performance, the application QoE of tinyCam app is severely degraded during the BT-

to-WiFi handover. At around t = 6s, the app stops receiving security video from the

SmartCam, and the BT throughput drops to zero. The video frame transmission resumes

over WiFi after around 72.5s, with high frame OWD at the beginning. We repeat this

experiment under the same settings for five times and the average handover delay during

which the app cannot receive any video is 70.0s. This shows that tinyCam app experiences

poor performance during BT-to-WiFi handovers.

We also look at how RTApp performs under the same handover setting. The average

116

�
���
�

���
�

���
�

�
��
���
���
���
���
���

�� �� �� ��

���������� ��������

��
��

��
��

��
�

��
��
��
��
��
��
��
��
��
������ ��� ����

��������� ���������� ����
���� ���������� ����

�� �������
��������� �������
���� ��� �������

���� �������

� �� �� �� ���
��
�
��
�
��
��
�

���� ���

Figure 6.2: Impact of BT-WiFi handover on the QoE of tinyCam security camera app on
Huawei Watch.

handover delay of 5 repeating experiments is 43.6s, during which RTApp cannot receive

any data chunk from the server side. This clearly shows that the current network switching

management in Android Wear 2.0 during handovers is far from satisfaction.

6.2.1.3 WiFi to BT Handover Performance

We next look at the performance of tinyCam and RTApp when the smartwatch is mov-

ing towards the coverage of smartphone BT network. In the beginning, the smartwatch is

located in a place where BT is out of range and only WiFi network is available. We let

the app first use WiFi network to download application data. After the app continuously

downloads data, we move the smartwatch closer to the smartphone so that the smartwatch

initiates BT connection. We repeat each app for five times. During this process, the av-

erage handover delays, i.e., network interruption time when no data can be transferred, of

tinyCam and RTApp are 17.7s and 0.98s, respectively, which are much smaller compared

to the handover delay of BT-to-WiFi handovers. We understand the root cause of handover

delays in the next section.

117

6.2.2 Root Cause Analysis

To understand the root cause, we write another Android Wear app to capture addi-

tional network information from the ConnectivityManager in the background on the

smartwatch. For every 200ms, the app asks the ConnectivityManager to return a list of

currently tracked networks on the smartwatch. For each monitored network, the app logs

whether the network is possible to use by applications, i.e., available or not, and whether

the interface provides actual network connectivity, i.e., connected or not, through Android

NetworkInfo APIs. For example, the standalone WiFi on the smartwatch can be possible

to use, but there is no actual network connectivity during the connecting state. We thus use

this information from Android Wear OS to understand its behavior of network switching.

6.2.2.1 Networking Switching Delay from Android Wear OS

We break down the overall interruption time of BT-to-WiFi handover into 4 periods,

as shown in Figure 6.2 as an example: (P1) BT connected but data cannot be actually

transmitted, (P2) No network available, (P3) WiFi available but not connected, i.e., WiFi

connecting period, and (P4) WiFi connected but no application data transmission. Under

the default network management policy, WiFi is not available when BT is connected, even

if the smartwatch is under the coverage of both BT and WiFi. In this case, when the smart-

watch moves away from BT coverage, the Android Wear OS needs to first determine when

the BT cannot transmit application data (P1), then enable WiFi (P2) and connect to an

available AP (P3). While trying to save energy by passively turning on WiFi when neces-

sary, this procedure, however, rather incurs an extended period of no network connectivity.

As shown in Figure 6.3, across five repeated runs, the average time of P1, P2, and P3 for

tinyCam (RTApp) are 12.9s (21.1s), 15.5s (11.9s), and 8.3s (4.9s), during which the app

data cannot be transmitted over the network, accounting for 52% (87%) of the overall han-

dover delay. When we keep WiFi always connected during the handover, the average time

of P1 is 13.3s across another five runs of the tinyCam app, still large enough to degrade

118

 0

 20

 40

 60

 80

Total
inter-

ruption

BT conn.
no data

(P1)

No net
avail.
(P2)

WiFi
conn’ing

(P3)

WiFi conn.
no data

(P4)
T

im
e
 (

s)

tinyCam app
RTApp

Figure 6.3: Breakdown of handover delay.

application QoE, while P2 and P3 are minimized. The results show that Android Wear

OS needs better network management during BT-to-WiFi handovers to prevent application

QoE degradation.

6.2.2.2 Insufficient Protocol Support for Applications

We next look at how an application uses the network provided by Android Wear OS.

For BT-to-WiFi handovers, under the default network management policy, even after WiFi

gains network connectivity (confirmed by looking at tcpdump trace), the tinyCam app still

takes around 33.3s on average to use WiFi for data transmission (P4). Surprisingly, if we

keep WiFi always connected on the smartwatch during handovers, we observe an even

larger period of P4, 57.0s on average, and overall similar handover delay, 70.2s on average.

In Figure 6.3, compared to tinyCam, RTApp only takes 5.6s on average to start chunk

downloading after WiFi is connected (P4). The large time difference of P4 between two

apps contributes to the discrepancy of total interruption time.

For WiFi-to-BT handovers, similarly, we find that network disruption (17.7s) experi-

enced by tinyCam app happens after the BT connection can transmit data, whereas RTApp

barely experiences data interruption (0.98s). This shows that the application’s specific logic

on resuming data transmission after handovers also affect the performance. Since Android

Wear does not provide protocol or API support, such as MPTCP, on seamlessly migrating

119

data transfers between networks, the Android Wear application require the implementation

of their customized data transfer migration at the application layer. It is hard for the app

developers to handle such scenarios properly and achieve the satisfying handover perfor-

mance.

6.3 WearMan: Improving Handover Performance

The handover results in §6.2 suggest that considerable improvements need to be made

to improve WiFi-BT handovers on wearables.

6.3.1 Solution Overview

As discussed in §6.2, ill-timed network switching and insufficient protocol support lead

to undesirable handover performance to Android Wear applications. To solve this problem,

first, the OS should account for the network switching delay and choose the right timing

to switch the active network to avoid any network interruption. For BT-to-WiFi handover,

this means that the OS needs to start network switching to WiFi much earlier before the

smartwatch is out of BT range. For WiFi-to-BT handovers, the BT connection must only be

used as the active network when it provides sufficient bandwidth. Second, the OS should

provide a default abstract API to transfer data from networks without requiring the apps to

handle network switching and ask for a particular network interface. If necessary, an app

only needs to choose an active network to use if other aspects are considered, such as high

bandwidth requirement.

To understand the right timing for handovers between BT and WiFi, we first measure

the BT download performance of a smartwatch at different relative distances to the paired

smartphone. We use the same devices as mention in §6.2. For each location, we first

measure the average BT received signal strength from the smartphone, i.e., RSSI, on the

smartwatch using BT discovery for 30 seconds. We then keep the smartwatch at the same

location and download a large file for 1 minute from our server in the same local network

120

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

-100-90-80-70-60-50-40-30

D
o

w
n

lo
a

d
 t

h
ro

u
g

h
p

u
t

(M
b

p
s)

Bluetooth RSSI (dBm)

25-75% 5-50-95%

Figure 6.4: BT download throughput under different signal strength. The zero throughput
of 5th percentile for BT RSSI above -90dBm is due to BT sniff mode.

as the smartphone. We calculate the BT download throughput every 200ms from the BT

snoop logger trace captured on the smartwatch.

Figure 6.4 shows the relationship between the BT download performance and RSSI

on the Huawei Watch. The BT download throughput has the same distribution when the

RSSI is above -90dBm. When the RSSI is below -90dBm and the smartwatch is far away

from the smartphone, the BT download throughput has high variance, and the smartwatch

may experience intermittent network connectivity. This shows that we can use BT signal

strength to indicate BT performance and choose the right timing for network switching.

We propose a proactive handover approach, WearMan (Wearable Network Manager),

by performing preemptive handovers using the changes of BT signal strength as an indi-

cator that tells in advance when the OS should performance a handover. Our approach

continuously monitors BT RSSI over time and decides the active network to use:

• When BT is the active network to transmit application data, if BT RSSI is below a

threshold RSSIth1, WearMan prepares WiFi for the app and starts a new TCP connection

over WiFi when the WiFi network can transmit application data.

• When WiFi is the active network to transmit application data, if BT RSSI is above a

threshold RSSIth2, WearMan prepares BT for the app and starts a new TCP connection

over BT when it is ready to migrate application data transfer from WiFi to BT.

121

Before the new TCP connection can transmit data, previous TCP connection continues

to transmit data so that the app still has network connectivity.

There are two approaches of how WearMan prepares a particular network for the app.

The first approach is on-demand network enabling, by only enabling the alternative network

besides the active network when necessary and disabling a network when not used. This

reduces energy consumption of network interfaces but incurs additional waiting time for

the alternative network to be ready, which can be very long for WiFi network (§6.2). The

second approach is always-active networking, by always keeping both networks ready to

transmit data. This helps to dramatically reduce the time to switch to another network

but potentially increases energy usage. For real-time applications, the second approach is

usually better because small network interruption time is more valuable for this type of

applications.

6.3.2 Implementation

Since there is no method to modify Android Wear OS or transparently intercept ap-

plication network traffic on Android Wear to our knowledge, we prototype WearMan in

RTApp by providing the proactive handover approach to download data chunks over time.

In Android Wear, the OS does not provide any API to retrieve BT RSSI when a BT device

is connected. To get the BT RSSI, we leverage BluetoothAdapter in Android Wear to

trigger BT discovery and get one received signal strength sample from each discovery. We

periodically trigger BT discovery on the smartwatch over time to continuously retrieve BT

RSSI. We envision that Android Wear will add APIs to get BT RSSI for BT connected de-

vices in the future to help develop a better network management system on the smartwatch.

However, we find that such approach of retrieving RSSI has a negative impact on both

WiFi and BT throughput. To find a strategy of triggering BT discovery over time to achieve

a good tradeoff between RSSI reporting delay and throughput degradation, we explore two

types of BT discovery strategies with different parameter settings: (1) start BT discovery

122

 0
 50

 100
 150
 200
 250
 300

No BT
disc.

Every
1s

Every
2s

On 1s
+ off 1s

Every
5s

On 2s
+ off 3s

A
p

p
 d

o
w

n
lo

a
d

th
ro

u
g

h
p

u
t

(k
b

p
s)

Different BT discovery settings

BT throughput

Figure 6.5: Download throughput of RTApp when using BT under different BT discovery
settings.

 0

 50

 100

 150

 200

 250

No BT
disc.

Every
5s

Every
10s

On 5s
+ off 5s

On 5s
+ off 10s

A
p

p
 d

o
w

n
lo

a
d

th
ro

u
g

h
p

u
t

(k
b

p
s)

Different BT discovery settings

WiFi throughput

Figure 6.6: Download throughput of RTApp when using WiFi under different BT discovery
settings.

every x seconds, and (2) start BT discovery, wait for y1 seconds (BT discovery on), stop

BT discovery, and wait for y2 seconds (BT discovery off). We measure the app download

throughput of RTApp for 2 minutes with different strategies and parameters under both

WiFi and BT. As shown in Figure 6.5, for BT download, triggering BT discovery every

2s achieves a good tradeoff. Figure 6.6 shows that, for WiFi download, a different strat-

egy, starting and canceling BT discovery every 5s, achieves a good tradeoff. We thus use

these two different strategies in WearMan and RTApp according to the type of network that

transmits data.

As discussed in §6.3.1, we use -90dBm for the threshold RSSIth1 which determines the

handover from BT to WiFi. We use a different value, -85dBm, for the threshold RSSIth2

which determines the handover from WiFi to BT, to avoid frequent network handovers

123

 0

 20

 40

BT to WiFi
handover

WiFi to BT
handover

N
e

tw
o

rk
 in

te
r-

ru
p

tio
n

 t
im

e
 (

s)

H1: Default (reconn. when error)
H2: on-demand WiFi

H3: always-on WiFi

Figure 6.7: Comparison of network interruption time during handover under different han-
dover strategies.

around such signal strength.

While we build our prototype of WearMan in RTApp, WearMan can also be imple-

mented in Android Wear OS and incorporated with existing network protocols to provide

seamless handovers. We can further apply multipath TCP (MPTCP) to wearables, using

MPTCP’s backup mode that allows seamless fallback from a primary path to a backup

path. MPTCP provides an additional benefit of keeping the application view consistent

before and after a handover.

6.3.3 Evaluation of WearMan

We use RTApp to evaluate the performance of WearMan in the same settings described

in §6.2. The baseline (H1) we compare WearMan with is the default handover handling

strategy in Android Wear. In this strategy, the app only reconnects to the server when

it encounters R/W error to the TCP socket. We also consider two network management

strategies in WearMan discussed in §6.3.1, and focus on how to enable WiFi network as

it severely affects BT-to-WiFi handover performance: (1) H2: enabling WiFi only when

necessary, (2) H3: always keeping WiFi enabled when the app is transmitting data on

either network.

For BT-to-WiFi handovers, As shown in Figure 6.7, both H2 and H3 significantly re-

duces the average network interruption time, by 85% and 100% respectively, compared

124

to H1. However, we still see network interruption time of 6.5s on average for H2, where

the WiFi network is enabled on demand. This is because even if WearMan proactively

starts enabling WiFi when it observes poor BT RSSI, the app may still get disconnected

when the user moves out of the BT range before WiFi network is ready to transfer data.

Compared to H2, when making WiFi always enabled (H3), the WiFi connection can be

established immediately after the BT RSSI is smaller than the threshold RSSIth1, result-

ing in near-zero network interruption time. For WiFi-to-BT handovers, we observe similar

performance across all schemes, as WiFi is transmitting data before BT network becomes

ready to migrate data transfer.

6.4 Summary

We find that BT-WiFi handovers that occur on wearables last more than 40 seconds

on current Android Wear OS, due to passive network switching and insufficient protocol

support for handovers. To address this problem, We design and prototype WearMan, a

wearable network manager to perform preemptive handovers. WearMan significantly re-

duces handover delay by improving network selection mechanism and providing seamless

handover experience.

125

CHAPTER VII

Related Work

7.1 Improving TCP Performance over Cellular Networks

Measuring cellular performance. Several prior efforts focus on characterizing cellu-

lar performance at various aspects. Studies [56, 104, 118, 121] collect data from deployed

user trials to understand smartphone performance at different layers. To name a few, Som-

mers et al. leveraged speedtest data to compare cellular versus Wi-Fi performance for

metro area mobile connections [123]. Huang et al. examined LTE bandwidth utilization

and its interaction with TCP [78]. Shafiq et al. conducted a study of cellular network

performance during crowded events [119]. Liu et al. measured performance of several

TCP variants on 3G EvDO networks [96]. Rosen et al. studied the impact of RRC state

timers on network and application performance [116, 117]. Jia et al. performed a sys-

tematic characterization and problem diagnosis of commercially deployed VoLTE (Voice

over LTE) [80]. None of the above studies deeply examined cellular upload traffic that is

becoming increasingly popular.

Improving transport protocols. Over the past 30 years, researchers have produced a

large body work on improving TCP. We already mentioned many TCP congestion control

algorithms in §3.6.1, such as [40, 43, 44, 57, 60, 66, 83, 86, 88, 94, 99]. Some recent pro-

posals such as TCP-RRE [89], Sprout [131], Verus [138] and TCP ex Machina [130] lever-

age throughput forecasts or machine learning to find the optimal data transmission strategy.

126

All these approaches face the problem of balancing between throughput and latency, which

is a key factor to be considered when selecting the desired CC given the application re-

quirement. Other solutions like RSFC [136] and DRWA [82] uses receive buffer to limit

the queuing impact. However, transport-layer solutions do not provide cross-flow control,

which may not fully eliminate interference between flows. Compared to these transport-

layer solutions, QCUT uses accurate throughput estimation based on the information from

the firmware and explicitly reduces on-device queuing in cellular networks.

Understanding excessive queuing delay (“bufferbloat”). The bufferbloat problem is

known in both wired and wireless networks. Gettys et al. presented an anecdotal study [61]

on large queuing delay of interactive traffic. The study focuses on the scenario of concur-

rent bulk data transfers in cable and DSL networks. Using real network traces, Allman

argued that although bufferbloat can happen, the problem happens more in residential than

non-residential networks and the magnitude of the problem is modest [39]. However, the

issue is indeed severe in cellular networks that usually employ deep buffers, as shown in

a study conducted by Jiang et al., who explored the bufferbloat problem of downlink traf-

fic in 3G and LTE networks [82]. Recent work by Xu et al. indicates that some newer

smartphones seem to buffer packets in the kernel when UDP packets are transmitted con-

tinuously [137]. However, they did not study TCP or consider how application is affected.

In contrast, we carry out comprehensive measurements to quantitatively understand (i) on-

device bufferbloat caused by TCP upload traffic and its impact on applications, (ii) the

interaction between upload and other traffic patterns, (iii) the interplay between TCP and

lower layer queues, and (iv) the effectiveness of a wide range of mitigation strategies at

different layers.

Mitigating bufferbloat. Besides those evaluated in §3.7, there exist other proposals for

reducing excessive queuing delay. Dynamic Receive Window Adjustment (DRWA) [82] is

a receiver-side solution to reduce the queuing delay by adjusting the TCP receive window.

Originally it is deployed on mobile devices to reduce the latency for downlink traffic. For

127

the uplink case, DRWA needs to be deployed at server side that serves both cellular and

non-cellular clients, thus posing deployment challenges. Byte Queue Limits (BQL) [3] is

another proposal that puts a cap on the amount of data waiting in the device driver queue.

It does not apply to Qdisc that contributes the majority of the on-device latency. Moreover,

BQL needs driver support.

7.2 Improving Multipath Transport

Characterization of Mobile Multipath. Several prior efforts focus on characterizing the

multipath performance over mobile networks. Chen et al. [48] studied the file download

performance using MPTCP over 3G/4G and WiFi. Deng et al. [54] compared the perfor-

mance between single-path and multipath in the mobile context. Han et al. [68] inves-

tigated the interaction between MPTCP and web protocols such as HTTP/1.1 and SPDY.

Nika et al. [103] characterized the energy efficiency and performance of radio bundling

(i.e., multipath) in outdoor environments. Some other recent studies examined MPTCP

performance [51] and its impact on applications [104] through crowd-sourced measure-

ments.

Multipath Schedulers have been experimentally shown to affect download perfor-

mance [103, 108, 110]. Several multipath scheduling algorithms have been proposed for

different application scenarios. ECF makes scheduling decision using both congestion win-

dow size and RTT to avoid undesirable idle transmission periods and achieve higher aggre-

gate throughput [91]. Compared to ECF, DEMS relies on chunk-based data transfer to de-

couple subflows and employs adaptive reinjection to combat variable network conditions.

MPRTP focuses on real-time content delivery over multipath by adapting to the changing

path characteristics [122]. DAPS aims at reducing receiver’s buffer blocking time over

multiple wireless networks [85]. ReMP duplicates the same packet onto all paths to reduce

latency and to improve reliability [59]. eMPTCP takes energy consumption into consider-

128

ation when making scheduling decisions [90]. Another energy-aware MPTCP scheduling

algorithm was proposed in [111]. Compared to the above work, DEMS aims at reducing

the download time for data chunks through a set of novel techniques.

Applications of Mobile Multipath. Previous studies have leveraged the MPTCP API

extension to support enhanced socket options [71], fine-grained control on transport behav-

ior [72], and multipath over UDP [41]. Some other studies investigated how to better use

multipath for different applications, such as video streaming [49, 52, 70, 133], web brows-

ing [69], smooth handover [53], and traffic sharing across users [102]. In contrast, DEMS

is a general-purpose multipath scheduler that can benefit a wide range of applications.

7.3 Wearable Networking

Liu et al. analyzed the execution of Android Wear OS and identified several ineffi-

ciencies [92, 93]. Liu et al. conducted a user study to understand smartwatch usage in the

wild [95]. Chauhan et al. [45] characterized smartwatch apps. Hester et al. [74] designed an

multi-application wearable platform. There also exist studies on other aspects of wearable

systems including display [100], storage [76], user interface [47, 134], energy [67], and

security [98, 126]. Researchers have also designed new sensing applications [107, 120]

using wearables. In contrast, our work focuses on the networking aspect of commercial

wearable OS.

129

CHAPTER VIII

Conclusion and Future Work

Despite seemingly bringing benefit to mobile applications at first glance, the flow-level,

interface-level, and device-level parallelism incur rather complex interactions with appli-

cations due to the diverse traffic patterns and QoE metrics of these applications, potentially

leading to severely degraded application QoE. My dissertation addresses this challenge,

demonstrating that with a better understanding of the complex interaction between the

flow-level, interface-level, device-level parallelism and applications, the networking stack

on mobile systems can efficiently use diverse network resources to improve application

QoE without modifying the applications.

Specifically, to address the interference incurred by flow-level parallelism, we conduct

a comprehensive characterization of cellular upload traffic and investigate the on-device

bufferbloat problem frequently incurred by upload traffic accessing diverse types of cellular

networks on mobile devices. Our findings suggest that this problem leads to significant

performance degradation on real mobile applications, e.g., 66% of download throughput

degradation and more than doubling of page load times. We further propose a system

called QCUT to control the firmware buffer occupancy from the OS kernel to mitigate this

problem. We demonstrate the effectiveness of QCUT through in-lab experiments and real

deployment.

To better leverage the interface-level parallelism, we propose a flexible software archi-

130

tecture for mobile multipath called MPFlex, which strategically employs multiplexing to

improve multipath performance (by up to 63% for short-lived flows). MPFlex decouples

the high-level scheduling algorithm and the low-level OS protocol implementation, and

enables developers to flexibly plug-in new multipath features. MPFlex also provides an

ideal vantage point for flexibly realizing user-specified multipath policies and is friendly

to middleboxes. Based on this flexible multipath architecture, we propose DEMS, a novel

multipath scheduler aiming at reducing the data chunk download time. DEMS is robust

to diverse network conditions and brings significant performance boost compared to the

default MinRTT scheduler (e.g., median download time reduction of 33%–48% for fetch-

ing files and median loading time reduction of 6%–43% for fetching web pages), and even

more benefits compared to other state-of-the-art schedulers.

To embrace the device-level parallelism, we explore the wearable networking system

where the interaction between the wearables and the smartphone is essential. We inves-

tigate the networking performance under mobility on a popular smartwatch OS, Android

Wear, to understand multi-device networking under device-level parallelism. We observe

that BT-WiFi handovers on Android Wear smartwatch can last more than 40 seconds, due

to passive network switching and insufficient protocol support. Motivated by the observa-

tions and insights, we further propose WearMan, a wearable network manager to switch

networks proactively and provide seamless handover experience under mobility.

In summary, my dissertation indicates the importance of all of the following:

• Understanding the application requirements, network traffic patterns, and the

interaction between the application and networking stack thoroughly in various

settings;

• Designing practical and deployable network systems to solve problems and con-

sidering important factors, e.g., highly changing network conditions in mobile

networks;

131

• Carefully combining the application-transparent design and the application

hint API depending on the targeted scenarios.

8.1 Future Work

In the course of my research, I have learned that the in-depth understanding of the com-

plex interaction between mobile applications and different levels of parallelism in mobile

networking helps design the application-transparent network stack and improve applica-

tion QoE. In the near future, using this guideline, I am interested in extending my research

works by designing flexible networking systems for new types of applications and devices.

8.1.1 New Types of Applications: Beyond DEMS and Multipath over TCP

Different mobile apps exhibit various traffic patterns, from video playback to real-time

streaming. While DEMS targets at reducing data chunk download time over multiple paths,

some apps such as on-demand video streaming download multiple chunks at the same time

and may require priority among multiple downloads. In video streaming such as HTTP

adaptive streaming (HAS), the video player usually downloads multiple small video chunks

of a few seconds in a burst [135]. To improve QoE of this type of apps, the multipath sched-

uler can prioritize video chunks that are going to be played first. DEMS can be extended

to take such hints and prioritize the usage of different paths for different chunks. DEMS

can also incorporate multipath policies to enable the tradeoff between the performance and

energy consumption.

Besides applications that use HTTP and TCP for network transfers, an increasing num-

ber of applications and protocols use UDP as the underlying network transport today, such

as video conferencing, VPN, RTP, and QUIC. These applications and protocols have vari-

ous requirements. Video conferencing applications, e.g., Skype [22], Google Hangouts [8],

and Zoom [29], which use UDP, need both high bandwidth and low latency. VPN over UDP

also benefits from high bandwidth as well. RTP is designed to deliver video and audio con-

132

tent with low latency. The latest UDP-based protocol QUIC targets at improved bandwidth

usage and no head-of-line blocking for web browsing. All these usage scenarios can benefit

from using multipath. However, applications and protocols using UDP do not benefit from

MPTCP, as the design of MPTCP couples multipath and TCP together. MPTCP is designed

and implemented to support multipath over TCP, which provides reliable data transfer with

higher bandwidth, a network transport that may be different from what is necessary for the

above usage scenarios. Supporting multipath over UDP is a promising direction to further

improve QoE of apps that use UDP-based protocols.

There remain three main challenges in designing a multipath UDP transport: (i) how

to make multipath scheduling decision among UDP sessions over multiple paths to satisfy

different application requirements, (ii) how to react to packet loss and proactively prevent

packet loss on a single path, since some apps like video conferencing may not necessarily

need retransmission of video data as to prioritize the transmission of the latest video frames,

and (iii) how to make multipath UDP transport be aware of the application adaptation logic,

such as video bitrate adaptation.

8.1.2 New Types of Devices: from Smartwatch to Internet of Things (IoT) and Au-

tonomous Vehicles (AVs)

The future belongs to connected devices. Besides wearable devices, there are two types

of connected devices that have gained much attention in recent years.

The first is the Internet of Things (IoT). According to the research from International

Data Corporation (IDC), the worldwide IoT market will grow from 655.8 billion dollars in

2014 to 1.7 trillion dollars in 2020 [7]. IoT devices, such as voice controller, smart bulb,

smart thermostat, and smart lock, have enabled smart remote control through a centralized

control device like a smartphone, making life much easier. Third-party developers can

build applications to realize advanced control on a number of these smart devices. Existing

IoT platforms, e.g., Apple HomeKit [2], Samsung SmartThings [20], and Google Brillo

133

and Weave [9], have already gained much popularity among consumers today.

The second is Autonomous Vehicles (AVs). AVs have witnessed rapidly increasing in-

terest from academic research [55, 81], government [5], and tech companies [15, 25, 27].

One key component in AVs is the network connectivity. AVs receive navigation informa-

tion, updated map tiles and information of surrounding environment when necessary to

help self-driving for example. AVs can also interact with the smart transportation system

and other AVs by using the network access, e.g., receiving traffic signals, acquiring traffic

congestion information, and sending emergency messages or calls.

All types of connected devices including the smartphone, wearables, IoT, and AVs re-

quire network connectivity for different applications to function. While most of these de-

vices have direct network access by connecting to existing WiFi or cellular network infras-

tructure, these devices can share their network resources to have Internet access together.

For example, wearables and IoT devices can gain Internet access from the paired smart-

phone over Bluetooth to save energy when they are close to each other. AVs with cellular

connectivity can act as WiFi APs for the user with a smartphone to access the Internet in the

vehicle. Multiple devices thus from a Personal Mesh Network (PMN) to share network

resources, which I believe is one of the future research directions for connected devices.

In PMN, at least one of the devices connects to the Internet and acts as a gateway to

share Internet access to all of the devices. The device which acts as a gateway may change

over time as the user moves from one location to another. PMN also enables device-to-

device communication among multiple personal devices. To support such multi-device

networking scheme, we need an integrated underlying networking stack that is general to

diverse types of devices. To start with, we need an in-depth understanding of the require-

ment of IoT and AV applications and how these applications interact with the networks.

Based on the insights, we plan to design a flexible networking stack for PMN that supports

dynamic device-to-device network connection establishment and flexible network manage-

ment.

134

BIBLIOGRAPHY

135

BIBLIOGRAPHY

[1] 2016 LTE Baseband Winners Announced: Intel, HiSilicon, MediaTek,
Samsung LSI and Spreadtrum Gain Share reports Strategy Analytics.
http://www.walb.com/story/35671441/2016-lte-baseband-winners-
announced-intel-hisilicon-mediatek-samsung-lsi-and-spreadtrum-
gain-share-reports-strategy-analytics.

[2] Apple HomeKit. https://www.apple.com/ios/home/.

[3] Byte Queue Limit. https://lwn.net/Articles/454390/.

[4] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date, 20162021 White Paper. http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/mobile-
white-paper-c11-520862.html.

[5] Connected and Automated Vehicles and New Technology White Paper, Michigan
Department of Transportation. http://www.michigan.gov/documents/mdot/
2040_SLRP_CAV_NewTech_readyforweb_40816_521014_7.pdf.

[6] ExoPlayer. http://developer.android.com/guide/
topics/media/exoplayer.html.

[7] Explosive Internet of Things Spending to Reach $1.7 Trillion in 2020, Accord-
ing to IDC. http://www.businesswire.com/news/home/20150602005329/en/
Explosive-Internet-Things-Spending-Reach-1.7-Trillion.

[8] Google Hangouts. https://hangouts.google.com/.

[9] Google takes on IoT with Brillo and Weave. http://internetofthingsagenda.
techtarget.com/feature/Google-takes-on-IoT-with-Brillo-and-Weave.

[10] Google Web Page Replay Tool. https://github.com/chromium/web-page-
replay.

[11] Introduction to LTE Advanced. http://www.
androidauthority.com/lte-advanced-176714/.

[12] iOS: Multipath TCP Support in iOS 7. https://support.apple.com/en-us/
HT201373.

136

[13] OPTICOM, PESQ - perceptual evaluation of speech quality. http://www.
opticom.de/technology/pesq.php.

[14] P.862: Perceptual evaluation of speech quality (PESQ).
https://www.itu.int/rec/T-REC-P.862-200102-I/en.

[15] Pittsburgh Offers Driving Lessons For Uber’s Autonomous Cars. http:
//www.npr.org/sections/alltechconsidered/2017/04/03/522099560/
pittsburgh-offers-driving-lessons-for-ubers-autonomous-cars.

[16] Qualcomm eXtensible Diagnostic Monitor. https://goo.gl/LODgRY.

[17] Qualcomm Still Standing Tall in Baseband Despite Intel, Says Wells Fargo.
http://www.barrons.com/articles/qualcomm-still-standing-tall-in-
baseband-despite-intel-says-wells-fargo-1490959969.

[18] QUIC Protocol. https://www.chromium.org/quic.

[19] Samsung Download Booster. http://www.samsung.com/uk/support/skp/faq/
1061358.

[20] Samsung SmartThings. https://www.smartthings.com/.

[21] Shadowsocks Socks5 Proxy. https://shadowsocks.org.

[22] Skype: Free calls to friends and family. https://www.skype.com/en/.

[23] TCP Small Queues. https://lwn.net/Articles/507065.

[24] tcp probe. http://www.linuxfoundation.org/
collaborate/workgroups/networking/tcpprobe/.

[25] Tesla Autopilot. https://www.tesla.com/autopilot.

[26] The secret second operating system that could make every mobile phone insecure.
https://www.extremetech.com/computing/170874-the-secret-second-
operating-system-that-could-make-every-mobile-phone-insecure.

[27] Waymo. https://waymo.com/.

[28] Worldwide Smartwatch Market Will See Modest Growth in 2016 Before Swelling
to 50 Million Units in 2020, According to IDC. http://www.idc.com/getdoc.
jsp?containerId=prUS41736916.

[29] Zoom: Video Conferencing, Web Conferencing, Webinars, Screen Sharing. https:
//zoom.us/.

[30] 3GPP TS 36.321: Medium Access Control (MAC) protocol specification (V10.3.0),
2011.

137

[31] In Korean, Multipath TCP is pronounced GIGA Path. http://blog.multipath-
tcp.org/blog/html/2015/07/24/korea.html, 2015.

[32] Android ConnectivityManager. https://developer.android.com/reference/
android/net/ConnectivityManager.html, 2017.

[33] myTuner Radio App - Free FM Radio Station Tuner. https://play.google.com/
store/apps/details?id=com.appgeneration.itunerfree&hl=en, 2017.

[34] Network Access and Syncing on Android Wear 2.0. https://developer.
android.com/training/wearables/data-layer/network-access.html,
2017.

[35] Pandora Music. https://play.google.com/store/apps/details?id=com.
pandora.android&hl=en, 2017.

[36] Samsung SmartCam HD Plus 1080p Full HD Wi-Fi Camera. http:
//www.samsung.com/us/smart-home/security/cameras/smartcam-hd-
plus-1080p-full-hd-wi-fi-camera-snh-v6414bn/, 2017.

[37] tinyCam Monitor PRO. https://play.google.com/store/apps/details?id=
com.alexvas.dvr.pro&hl=en, 2017.

[38] Wear Camera Remote For Android Wear. https://play.google.com/store/
apps/details?id=net.dheera.wearcamera&hl=en, 2017.

[39] M. Allman. Comments on Bufferbloat. ACM SIGCOMM Computer Communication
Review, 43(1):30–37, 2013.

[40] A. Baiocchi, A. P. Castellani, and F. Vacirca. YeAH-TCP: Yet Another Highspeed
TCP. In Proc. PFLDnet, volume 7, pages 37–42, 2007.

[41] M. Bednarek, G. Barrenetxea, M. Kühlewind, and B. Trammell. Multipath Bonding
at Layer 3. In ANRW, pages 7–12, 2016.

[42] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540, 2015.

[43] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion Avoidance on
a Global Internet. Selected Areas in Communications, IEEE Journal on, 13(8):1465–
1480, 1995.

[44] C. Caini and R. Firrincieli. TCP Hybla: a TCP Enhancement for Heterogeneous
Networks. International Journal of Satellite Communications and Networking,
22(5):547–566, 2004.

[45] J. Chauhan, S. Seneviratne, M. A. Kaafar, A. Mahanti, and A. Seneviratne. Charac-
terization of Early Smartwatch Apps. In Pervasive Computing and Communication
Workshops (PerCom Workshops), 2016 IEEE International Conference on, pages
1–6. IEEE, 2016.

138

[46] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni, and K. Lau.
QoE Doctor: Diagnosing Mobile App QoE with Automated UI Control and Cross-
layer Analysis. In Proceedings of the 2014 Conference on Internet Measurement
Conference, pages 151–164. ACM, 2014.

[47] X. Chen, T. Grossman, D. J. Wigdor, and G. Fitzmaurice. Duet: Exploring Joint
Interactions on a Smart Phone and a Smart Watch. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 159–168. ACM, 2014.

[48] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley. A
Measurement-based Study of MultiPath TCP Performance over Wireless Networks.
In Proceedings of the 2013 conference on Internet measurement conference, pages
455–468. ACM, 2013.

[49] Y.-C. Chen, D. Towsley, and R. Khalili. MSPlayer: Multi-Source and multi-Path
LeverAged YoutubER. In CoNEXT, 2014.

[50] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann, and M. Satya-
narayanan. Early Implementation Experience with Wearable Cognitive Assistance
Applications. In Proceedings of the 2015 workshop on Wearable Systems and Ap-
plications, pages 33–38. ACM, 2015.

[51] Q. D. Coninck, M. Baerts, B. Hesmans, and O. Bonaventure. A First Analysis of
Multipath TCP on Smartphones. In 17th International Passive and Active Measure-
ments Conference, volume 17. Springer, March-April 2016.

[52] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon. Cross-layer
Scheduler for Video Streaming over MPTCP. In Proceedings of the 7th International
Conference on Multimedia Systems, page 7. ACM, 2016.

[53] A. Croitoru, D. Niculescu, and C. Raiciu. Towards WiFi Mobility without Fast
Handover. In NSDI, pages 219–234, 2015.

[54] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan. WiFi, LTE, or Both?
Measuring Multi-Homed Wireless Internet Performance. In Proceedings of the 2014
Conference on Internet Measurement Conference, pages 181–194. ACM, 2014.

[55] Y. J. J. Ding Zhao, Yaohui Guo. TrafficNet: An Open Naturalistic Driving Scenario
Library. In Proceedings of the IEEE 20th International Conference on Intelligent
Transportation System Conference (ITSC’17), Yokohama, Japan, October 2017.

[56] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin.
Diversity in Smartphone Usage. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, pages 179–194. ACM, 2010.

[57] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, 2003.

[58] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824, 2013.

139

[59] A. Frommgen, T. Erbshäußer, A. Buchmann, T. Zimmermann, and K. Wehrle. ReMP
TCP: Low Latency Multipath TCP. In Communications (ICC), 2016 IEEE Interna-
tional Conference on, pages 1–7. IEEE, 2016.

[60] C. P. Fu and S. C. Liew. TCP Veno: TCP Enhancement for Transmission over
Wireless Access Networks. Selected Areas in Communications, IEEE Journal on,
21(2):216–228, 2003.

[61] J. Gettys. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing,
15(3):96, 2011.

[62] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M. Mao. Accel-
erating Mobile Applications through Flip-Flop Replication. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Ser-
vices, pages 137–150. ACM, 2015.

[63] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen. Understanding On-device
Bufferbloat for Cellular Upload. In Proceedings of the 2016 ACM on Internet Mea-
surement Conference, pages 303–317. ACM, 2016.

[64] Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen. Accelerating Multipath
Transport through Balanced Subflow Completion. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking. ACM, 2017.

[65] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards
Wearable Cognitive Assistance. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, pages 68–81. ACM, 2014.

[66] S. Ha, I. Rhee, and L. Xu. CUBIC: a New TCP-friendly High-speed TCP Variant.
ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[67] M. Ham, I. Dae, and C. Choi. LPD: Low Power Display Mechanism for Mobile and
Wearable Devices. In USENIX Annual Technical Conference, pages 587–598, 2015.

[68] B. Han, F. Qian, S. Hao, and L. Ji. An Anatomy of Mobile Web Performance over
Multipath TCP. In Proceedings of the 11th ACM Conference on Emerging Network-
ing Experiments and Technologies, page 5. ACM, 2015.

[69] B. Han, F. Qian, and L. Ji. When Should We Surf the Mobile Web Using Both
Wifi and Cellular? In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges, pages 7–12. ACM, 2016.

[70] B. Han, F. Qian, L. Ji, V. Gopalakrishnan, and N. Bedminster. MP-DASH: Adaptive
Video Streaming Over Preference-Aware Multipath. In CoNEXT, pages 129–143,
2016.

[71] B. Hesmans and O. Bonaventure. An Enhanced Socket API for Multipath TCP. In
Proceedings of the 2016 Applied Networking Research Workshop, pages 1–6, 2016.

140

[72] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and O. Bonaventure. SMAPP: Towards
Smart Multipath TCP-enabled APPlications. In Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments and Technologies, page 28. ACM,
2015.

[73] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure. A First Look at Real Mul-
tipath TCP Traffic. In International Workshop on Traffic Monitoring and Analysis,
pages 233–246. Springer, 2015.

[74] J. D. Hester, T. Peters, T. Yun, R. A. Peterson, J. Skinner, B. Golla, K. Storer,
S. Hearndon, K. Freeman, S. Lord, et al. Amulet: An Energy-Efficient, Multi-
Application Wearable Platform. In SenSys, pages 216–229, 2016.

[75] B. D. Higgins, K. Lee, J. Flinn, T. J. Giuli, B. Noble, and C. Peplin. The Future
is Cloudy: Reflecting Prediction Error in Mobile Applications. In Mobile Comput-
ing, Applications and Services (MobiCASE), 2014 6th International Conference on,
pages 20–29. IEEE, 2014.

[76] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale. WearDrive: Fast and
Energy-Efficient Storage for Wearables. In USENIX Annual Technical Conference,
pages 613–625, 2015.

[77] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A Close
Examination of Performance and Power Characteristics of 4G LTE Networks. In
Proceedings of the 10th international conference on Mobile systems, applications,
and services, pages 225–238. ACM, 2012.

[78] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck.
An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on
Performance. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 363–374. ACM, 2013.

[79] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based
Approach to Rate Adaptation: Evidence from a Large Video Streaming Service.
ACM SIGCOMM Computer Communication Review, 44(4):187–198, 2015.

[80] Y. J. Jia, Q. A. Chen, Z. M. Mao, J. Hui, K. Sontinei, A. Yoon, S. Kwong, and
K. Lau. Performance Characterization and Call Reliability Problem Diagnosis for
Voice over LTE. In Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, pages 452–463. ACM, 2015.

[81] Y. J. Jia, D. Zhao, Q. A. Chen, and Z. M. Mao. Towards Secure and Safe Appified
Automated Vehicles. In Proceedings of the 28th IEEE Intelligent Vehicle Symposium
(IV’17), Redondo Beach, US, June 2017.

[82] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling Bufferbloat in 3G/4G Networks.
In Proceedings of the 2012 ACM conference on Internet measurement conference,
pages 329–342. ACM, 2012.

141

[83] T. Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Networks.
ACM SIGCOMM computer communication Review, 33(2):83–91, 2003.

[84] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec. MPTCP is not
Pareto-Optimal: Performance Issues and a Possible Solution. In Proceedings of the
8th international conference on Emerging networking experiments and technologies,
pages 1–12. ACM, 2012.

[85] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli. DAPS:
Intelligent Delay-aware Packet Scheduling for Multipath Transport. In Communi-
cations (ICC), 2014 IEEE International Conference on, pages 1222–1227. IEEE,
2014.

[86] A. Kuzmanovic and E. W. Knightly. TCP-LP: A Distributed Algorithm for Low
Priority Data Transfer. In INFOCOM 2003. Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications. IEEE Societies, volume 3, pages 1691–
1701. IEEE, 2003.

[87] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol
Version 5. RFC 1928, 1996.

[88] D. Leith and R. Shorten. H-TCP: TCP for High-speed and Long-distance Networks.
In Proceedings of PFLDnet, 2004.

[89] W. K. Leong, Y. Xu, B. Leong, and Z. Wang. Mitigating Egregious ACK Delays in
Cellular Data Networks by Eliminating TCP ACK Clocking. In Network Protocols
(ICNP), 2013 21st IEEE International Conference on, pages 1–10. IEEE, 2013.

[90] Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J. Gibbens, and E. Cecchet.
Design, Implementation and Evaluation of Energy-Aware Multi-Path TCP. In Pro-
ceedings of the 11th ACM Conference on Emerging Networking Experiments and
Technologies, page 30. ACM, 2015.

[91] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. ECF: An MPTCP Path
Scheduler to Manage Heterogeneous Paths. In Proceedings of the 2017 ACM SIG-
METRICS/International Conference on Measurement and Modeling of Computer
Systems, pages 33–34. ACM, 2017.

[92] R. Liu, L. Jiang, N. Jiang, and F. X. Lin. Anatomizing System Activities on Interac-
tive Wearable Devices. In Proceedings of the 6th Asia-Pacific Workshop on Systems,
page 18. ACM, 2015.

[93] R. Liu and F. X. Lin. Understanding the Characteristics of Android Wear OS. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services, pages 151–164. ACM, 2016.

[94] S. Liu, T. Başar, and R. Srikant. TCP-Illinois: A Loss- and Delay-based Congestion
Control Algorithm for High-speed Networks. Performance Evaluation, 65(6):417–
440, 2008.

142

[95] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen. Characterizing
Smartwatch Usage in the Wild. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, pages 385–398. ACM,
2017.

[96] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang. Experiences in a 3G
Network: Interplay between the Wireless Channel and Applications. In Proceedings
of the 14th ACM international conference on Mobile computing and networking,
pages 211–222. ACM, 2008.

[97] X. Liu, Y. Yao, and F. Qian. Rethink Phone-Wearable Collaboration From the Net-
working Perspective. In Proceedings of the 2017 Workshop on Wearable Systems
and Applications, pages 47–52. ACM, 2017.

[98] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang. When Good Becomes Evil:
Keystroke Inference with Smartwatch. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 1273–1285. ACM,
2015.

[99] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In Proceedings
of the 7th annual international conference on Mobile computing and networking,
pages 287–297. ACM, 2001.

[100] H. Miao and F. X. Lin. Tell Your Graphics Stack That the Display is Circular. In
Proceedings of the 17th International Workshop on Mobile Computing Systems and
Applications, pages 57–62. ACM, 2016.

[101] K. Nichols and V. Jacobson. Controlling Queue Delay. Communications of the
ACM, 55(7):42–50, 2012.

[102] C. Nicutar, D. Niculescu, and C. Raiciu. Using Cooperation for Low Power Low La-
tency Cellular Connectivity. In Proceedings of the 10th ACM International on Con-
ference on emerging Networking Experiments and Technologies, pages 337–348.
ACM, 2014.

[103] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y. Zhao, and H. Zheng.
Energy and Performance of Smartphone Radio Bundling in Outdoor Environments.
In Proceedings of the 24th International Conference on World Wide Web, pages 809–
819. International World Wide Web Conferences Steering Committee, 2015.

[104] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen. An In-depth Understanding
of Multipath TCP on Mobile Devices: Measurement and System Design. In Pro-
ceedings of the 22nd Annual International Conference on Mobile Computing and
Networking, pages 189–201. ACM, 2016.

[105] A. Nikravesh, D. K. Hong, Q. A. Chen, H. V. Madhyastha, and Z. M. Mao. QoE
Inference Without Application Control. In Internet-QoE@ SIGCOMM, pages 19–
24, 2016.

143

[106] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao. Mobilyzer: An Open
Platform for Controllable Mobile Network Measurements. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Ser-
vices, pages 389–404. ACM, 2015.

[107] S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim. Typingring: A Wearable Ring
Platform for Text Input. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, pages 227–239. ACM, 2015.

[108] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental Evaluation of
Multipath TCP Schedulers. In Proceedings of the 2014 ACM SIGCOMM workshop
on Capacity sharing workshop, pages 27–32. ACM, 2014.

[109] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and
B. VerSteeg. PIE: A Lightweight Control Scheme to Address the Bufferbloat Prob-
lem. In High Performance Switching and Routing (HPSR), 2013 IEEE 14th Inter-
national Conference on, pages 148–155. IEEE, 2013.

[110] B. Partov and D. J. Leith. Experimental Evaluation of Multi-path Schedulers for
LTE/Wifi Devices. In Proceedings of the Tenth ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation, and Characterization, pages
41–48. ACM, 2016.

[111] Q. Peng, M. Chen, A. Walid, and S. Low. Energy Efficient Multipath TCP for Mobile
Devices. In Proceedings of the 15th ACM international symposium on Mobile ad hoc
networking and computing, pages 257–266. ACM, 2014.

[112] F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and O. Spatscheck. TM3: Flexible
Transport-layer Multi-pipe Multiplexing Middlebox Without Head-of-line Blocking.
In Proceedings of the 11th ACM Conference on Emerging Networking Experiments
and Technologies, page 3. ACM, 2015.

[113] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Profiling Resource
Usage for Mobile Applications: a Cross-layer Approach. In Proceedings of the 9th
international conference on Mobile systems, applications, and services, pages 321–
334. ACM, 2011.

[114] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. TCP Fast Open. In
Proceedings of the Seventh COnference on emerging Networking EXperiments and
Technologies, page 21. ACM, 2011.

[115] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Im-
proving Datacenter Performance and Robustness with Multipath TCP. In ACM SIG-
COMM Computer Communication Review, volume 41, pages 266–277. ACM, 2011.

[116] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Discovering
Fine-grained RRC State Dynamics and Performance Impacts in Cellular Networks.
In Proceedings of the 20th annual international conference on Mobile computing
and networking, pages 177–188. ACM, 2014.

144

[117] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Under-
standing RRC State Dynamics through Client Measurements with Mobilyzer. In
Proceedings of the 6th annual workshop on Wireless of the students, by the students,
for the students, pages 17–20. ACM, 2014.

[118] S. Rosen, A. Nikravesh, Y. Guo, Z. M. Mao, F. Qian, and S. Sen. Revisiting Network
Energy Efficiency of Mobile Apps: Performance in the Wild. In Proceedings of the
2015 ACM conference on internet measurement conference, pages 339–345. ACM,
2015.

[119] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, S. Venkataraman, and J. Wang. A First Look
at Cellular Network Performance during Crowded Events. In ACM SIGMETRICS
Performance Evaluation Review, volume 41, pages 17–28. ACM, 2013.

[120] S. Shen, H. Wang, and R. Roy Choudhury. I am a Smartwatch and I can Track my
User’s Arm. In Proceedings of the 14th annual international conference on Mobile
systems, applications, and services, pages 85–96. ACM, 2016.

[121] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. LiveLab: Measuring
Wireless Networks and Smartphone Users in the Field. ACM SIGMETRICS Perfor-
mance Evaluation Review, 38(3):15–20, 2011.

[122] V. Singh, S. Ahsan, and J. Ott. MPRTP: Multipath Considerations for Real-time
Media. In Proceedings of the 4th ACM Multimedia Systems Conference, pages 190–
201. ACM, 2013.

[123] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance of Metro Area Mobile
Connections. In Proceedings of the 2012 ACM conference on Internet measurement
conference, pages 301–314. ACM, 2012.

[124] R. Stewart. Stream Control Transmission Protocol. RFC 4960, 2007.

[125] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford, and
A. Pescapè. Broadband Internet Performance: A View from the Gateway. In ACM
SIGCOMM Computer Communication Review, volume 41, pages 134–145. ACM,
2011.

[126] H. Wang, T. T.-T. Lai, and R. Roy Choudhury. Mole: Motion Leaks through Smart-
watch Sensors. In Proceedings of the 21st Annual International Conference on Mo-
bile Computing and Networking, pages 155–166. ACM, 2015.

[127] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. Demystify-
ing Page Load Performance with WProf. In NSDI, pages 473–485, 2013.

[128] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How Speedy
is SPDY? In NSDI, pages 387–399, 2014.

145

[129] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold Story of Middleboxes
in Cellular Networks. In ACM SIGCOMM Computer Communication Review, vol-
ume 41, pages 374–385. ACM, 2011.

[130] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-generated Conges-
tion Control. In ACM SIGCOMM Computer Communication Review, volume 43,
pages 123–134. ACM, 2013.

[131] K. Winstein, A. Sivaraman, H. Balakrishnan, et al. Stochastic Forecasts Achieve
High Throughput and Low Delay over Cellular Networks. In NSDI, pages 459–471,
2013.

[132] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, Implementation and
Evaluation of Congestion Control for Multipath TCP. In NSDI, volume 11, page 8,
2011.

[133] J. Wu, C. Yuen, B. Cheng, M. Wang, and J.-L. Chen. Streaming High-quality Mobile
Video with Multipath TCP in Heterogeneous Wireless Networks. IEEE Transactions
on Mobile Computing, 15(9):2345–2361, 2016.

[134] J. Xu, Q. Cao, A. Prakash, A. Balasubramanian, and D. E. Porter. UIWear: Easily
Adapting User Interfaces for Wearable Devices. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking. ACM, 2017.

[135] S. Xu, Y. J. Jia, Z. M. Mao, and S. Sen. Dissecting HAS VOD Services for Cellular:
Performance, Root Causes and Best Practices. In Proceedings of the 2017 ACM on
Internet Measurement Conference. ACM, 2017.

[136] Y. Xu, W. K. Leong, B. Leong, and A. Razeen. Dynamic Regulation of Mobile
3G/HSPA Uplink Buffer with Receiver-side Flow Control. In Network Protocols
(ICNP), 2012 20th IEEE International Conference on, pages 1–10. IEEE, 2012.

[137] Y. Xu, Z. Wang, W. K. Leong, and B. Leong. An End-to-End Measurement Study
of Modern Cellular Data Networks. In PAM, pages 34–45. Springer, 2014.

[138] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg. Adaptive Congestion
Control for Unpredictable Cellular Networks. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 509–522. ACM, 2015.

[139] L. Zhang, S. Shenker, and D. D. Clark. Observations on the Dynamics of a Conges-
tion Control Algorithm: The Effects of Two-way Traffic. ACM SIGCOMM Com-
puter Communication Review, 21(4):133–147, 1991.

146

