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ABSTRACT

My goal in this dissertation is to start a conversation about the role of risk in the

decision-theoretic assessment of partial beliefs or credences in formal epistemol-

ogy. I propose a general theory of epistemic risk in terms of relative sensitivity

to different types of graded error. The approach I develop is broadly inspired

by the pragmatism of the American philosopher Charles Sanders Peirce and his

notion of the “economy of research.” I express this framework in information-

theoretic terms and show that epistemic risk, so understood, is dual to information

entropy. As a result, every unit increase in risk comes with a corresponding unit

decrease in information entropy and epistemic risk may be expressed in terms of

entropic change. I explain the significance of this for the selection of priors and

the Laplacian principle of indifference. I also extend this notion of epistemic risk

to the assessment of updating rules, where a similar duality between risk and in-

formation holds. In the dynamic context, epistemic risk is given by cross-entropic

change. Here I explore the relationship between risk, the Value of Knowledge

Theorem, dynamic coherence, and the role of expected accuracy in the selection

of update rules. Finally, I apply these considerations to a social institution where

attitudes to error are especially salient – namely, legal decision-making – and ar-

gue that considerations regarding the relative severity of different types of error

are central to understanding evidentiary burdens of proof and the probative value

of statistical evidence.
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CHAPTER 1

Introduction

Riskiness and attitudes to risk play a substantial role in ordinary rational choice. For in-
stance, the notion of risk aversion, captured in the standard framework in terms of dimin-
ishing marginal utility, is central to evaluating investments, understanding insurance, and
more generally shaping social policy. Recently, philosophers have applied rational choice
approaches to epistemology, using a decision-theoretic framework to understand and eval-
uate how we form our beliefs and revise them in light of new information. This theoretical
framework is known as epistemic utility theory. My goal in the substantive chapters of
this dissertation is to initiate a conversation about the role of risk in this framework. I will
motivate several important questions about epistemic risk, develop a general framework for
understanding and measuring epistemic risk, and apply some of these notions to a social
institution where attitudes to error are especially salient – namely, legal decision-making.
The approach I develop is broadly inspired by the pragmatism of the American philosopher
Charles Sanders Peirce and his notion of the “economy of research.” The more immediate
influences on this work are L.J Savage and E.T. Jaynes – the substantial influence of Sav-
age’s work on the elicitation of subjective probabilities and Jaynes’s information-theoretic
understanding of statistical inference will be obvious. What follows is a brief overview.

Chapter 1 is broadly introductory. I motivate the general notion of epistemic risk by
drawing on C.S. Peirce’s economic approach to scientific inquiry and I situate the project
within the contemporary epistemic utility framework. I explain what I mean by epistemic
risk – i.e., what exactly is at risk when an agent adopts one set of beliefs instead of another
– and I contrast my approach to existing literature on this topic (in particular, Duncan
Pritchard’s modal analysis of epistemic risk).

Chapter 2 will answer the following questions: What does it mean for one probability
distribution to be riskier than another? In particular: What makes it riskier? How do we
measure such risk? And how does risk relate to other properties of a probability distribu-
tion? The considerations in this chapter are all static. There is no temporal dimension yet,
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and we set aside learning and evidence-gathering for the moment. From a Bayesian per-
spective, this chapter is about the riskiness of an agent’s prior beliefs. Meanwhile, Chapter
3 is dynamic. Here I seek to answer the following questions: After an agent receives some
information, what does it mean for one update rule, or one posterior probability, to be
riskier than another? How do we measure such dynamic epistemic risk? And how does it
relate to our static measure of epistemic risk, as developed in Chapter 2?

Finally, Chapter 4 applies considerations of epistemic risk to legal decision-making. In
a nutshell, I argue that considerations regarding the relative severity of different types of
error are central to understanding legal burdens of proof.
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CHAPTER 2

The Economy of Inquiry

2.1 Introduction

I begin by drawing on the work of Charles Sanders Peirce and his notion of the “economy
of research” to motivate the basic idea that attitudes to risk of error play an important role
in scientific inquiry. Attitudes to risk of error are to be distinguished from Frequentist
error probabilities. It is best to think about the notion of epistemic risk I will develop here
by analogy to ordinary risk in economic theory: just as ordinary riskiness has something
to do with the range of monetary outcomes in a gamble, so epistemic riskiness will have
much to do with the range of accuracy outcomes in deciding what to believe. This is why
I develop the framework by drawing on the Peircian notion of the economy of research
and its central role in inference, rather than focusing on the ordinary error probabilities in
the [Neyman and Pearson(1933)] paradigm. Next, I give an overview of epistemic utility
theory, which is an application of ordinary rational choice theory to epistemology, and
situate my project within it. I also give a brief overview of the role of risk in ordinary
rational choice. Finally, I compare my approach to the existing literature on epistemic risk
that has been developed by, for example, [Pritchard(2017)].

2.2 C.S. Peirce and the truth-seeking economist

As [Rescher(1976)] puts it, Peirce “gave the place of pride to a theory – indeed a discipline
– of his own devising, namely to what he called the economy of research.” Indeed, he
adds, “to this idea of the economy of research . . . Peirce gave as central a place in
his methodology of science as words can manage to assign.” Unfortunately, the notion
has been completely neglected by subsequent developments in the philosophy of science.1

1“no other part of this great man’s philosophizing has fallen on stonier ground” [Rescher(1976)]. This
remains true today. Even the Stanford Encyclopedia of Philosophy entry on Peirce, while paying lip service
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Peirce concisely describes the basic idea as follows,

The doctrine of economy, in general, treats of the relations between utility and
cost. That branch of it which relates to research considers the relations between
the utility and the cost of diminishing the probable error of our knowledge.”
[Peirce(1879), 643]

The ‘probable error of our knowledge’ is a treacherous expression. In my framework it will
be understood in a very specific way and one that is different from how Peirce would have
understood it at the turn of the twentieth century. For Peirce, the probability of error is to
be understood roughly the way we would use a confidence interval today, and he goes on
to highlight the increasing sampling cost of marginal improvements in its precision.

The idea of characterizing scientific inquiry in terms of error costs was of course care-
fully developed by [Neyman and Pearson(1933)], and in the philosophy literature the cost
of false acceptance/rejection was explored by Kyburg, Levi and others in the context of bi-
nary theories of acceptance and belief [Levi(1974), Kyburg(1974)]. This is to be expected,
as there is a close relationship between a hypothesis test and a confidence interval. The
modern Frequentist confidence interval consists of all possible values of the unknown pa-
rameter under which the null would not be rejected. Rather than identifying all such values,
it is generally possible to invert the equation for the test statistic instead to find the bound-
ary points of the confidence interval. Since the significance threshold is typically set, for
better or for worse, by considering what we would consider to be tolerable observed false
positive and false negative error rates, Peirce’s use of probable error is quite close to the
error probabilities that emerged at the forefront of null hypothesis significance tests.

I will not use probable error quite this way, however. I build my approach on the central
insight that gradational attitudes to the possibility of being mistaken, and the severity of
the mistake should one be mistaken, affect the course of scientific inquiry. These are the
central phenomena that constitute what I will identify as ‘epistemic risk’. I will explain
these notions carefully, below. The central difference is that the kind of error I am interested

to the importance Peirce placed on economic considerations to scientific inquiry, fails to explain how those
considerations were supposed to affect the course of inquiry – their specific role in abduction, deduction, and
induction, their influence on Peirce’s thinking on probability, and his skepticism of so-called inverse inference
(what we now call Bayesian inference). The entry states, for example, that with respect to null hypothesis
significance testing, Peirce had “worked out the whole matter” before Neyman and Pearson. While the extent
to which Peirce anticipated null hypothesis significance testing is extremely impressive, he obviously had
not worked out the whole matter. One cannot find the Neyman-Pearson Lemma in Peirce, for example, the
relationship between power, significance, sample size, and error rates, the invertability of test statistics, or
their asymptotic behavior. Peirce did, however, explicitly setup the issue of what research to pursue as a linear
optimization problem, and derived its first order conditions well before contemporary econometric techniques
were ordinarily used. See, [Wible(1994), Wible(2008)].
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in is the probability of a parameter estimate being inaccurate, from the decision maker’s
perspective, rather than the probability of falsely rejecting a null hypothesis that is true or
erroneously failing to reject a false hypothesis. The latter are evaluated by computing the
probability of the data under the assumption that it is true/false. But on my approach, error
probabilities are evaluated in terms of self-expectation.

On the Peircian approach, and in its early/mid-twentieth century refinements, our at-
titudes are not themselves probabilities. Our attitudes are: reject or do not reject the null
hypothesis. However, many philosophers have recently moved away from the binary atti-
tudes of acceptance/rejection and belief/disbelief and toward modeling doxastic/belief-like
states using [Ramsey(1926)], [De Finetti(1937)] and [Savage(1954)]’s theory of subjective
probability. This is the approach I follow. It would be anachronistic to locate this in Peirce.
Peirce was one of the earliest philosophers to understand sampling theory and by some
accounts the progenitor of key results in the Neyman-Pearson paradigm. His conception of
probability was Frequentist, he often took a narrow view of empirical learning as given by
sampling, and he was a harsh critic of then prevailing Bayesian methods. He was, however,
one of the first scholars to work on elicitation of subjective probabilities in experimental
psychology [Stigler(1978)] and in that light one might suspect he may not have been such
a harsh critic of Bayesian methods as they have been developed in the second half of the
twentieth century.

In any case, the insight that we can understand inquiry in broadly economic terms is a
substantial one. As [Rescher(1976)] emphasizes, inference is, in Peirce’s view, crucially
dependent on economic considerations and reasonable assessment of the risk of different
types of error as well as the value of correct verdicts. This central insight, as I interpret
it, is my jumping off point – namely, that inquiry depends in part on considering the costs

and benefits of small changes in the probability of being mistaken. Indeed, there are two
central pillars to this Peircian insight as I understand it. The first is the notion of abduction
as model selection. While the related notion of inference to the best explanation plays a
significant role in realist approaches to philosophy of science, this way of thinking about
abduction will be novel. The second is the notion of induction as risk management. The
first of these insights corresponds to the ideas that will be developed in Chapter 2. The
second corresponds to the ideas that will be developed in Chapter 3.

2.2.1 Abduction as model selection

At a very general level, every approach to inference in the subjective or Bayesian tra-
dition must answer two very basic questions: (1) how shall I identify a prior distribu-
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tion of beliefs? (2) how shall I update that distribution after receiving new information?
[Gelman et. al.(2013)], for example, describe a trichotomy that requires identifying a joint
probability distribution (model), drawing inferences from the model, and model assess-
ment. While the third step is important, we will set it aside for now. Similarly, philosoph-
ical Bayesians focus on justifying particular ways of selecting priors and identify/defend
update strategies for processing new information.

In chapter 2, I will develop a theory of epistemic risk for the selection/assessment of
a prior distribution. For this, I draw on Peirce’s notion of abduction. In Chapter 3, I
will develop a dynamic characterization of epistemic risk for the assessment of an agent’s
update rule. This stage will draw on Peirce’s notion of drawing inferences by analogy to
insurance risk management.

Peirce coined the term ‘abduction’. In contemporary philosophy of science, this term is
often used synonymously with inference to the best explanation (IBE). [Harman(1965)], for
example, explicitly identifies IBE with abduction. Indeed, many commentaries on Peirce
refer to ‘abduction’ as a type of inference – suggesting that it is an alternative to induction.
Put this way, it appears that one has the option, in making an inference, of using IBE,
or abduction. But for Peirce this was precisely what abduction was not. Abduction and
induction are two independent stages of inference. IBE for Peirce would have belonged to
the inductive stage. Abduction comes earlier.

Peirce drew a distinction between abduction and induction in order to distinguish ab-
ductive processes from inferential ones in the context of a unified method of scientific
inquiry. For him, abduction is the process of forming an explanatory hypothesis. It is the
only logical operation which introduces any new idea (5.171-2) and it includes “all the op-
erations by which theories and conceptions are engendered ” (5.590).2 Induction, on the
other hand, is the subsequent process that is used to assess the hypotheses generated by the
abductive process.

So what is this process by which theories are engendered before they are assessed –
and in what way is it scientific? Indeed, we hear Peirce say that “abduction is an appeal
to instinct” (1.630) which critics take to question whether abduction could play a mean-
ingful part in a rational theory of inference. Commentators, such as [Frankfurt(1958)], for
example, focus on the fact that Peirce highlighted that abduction may be schematized: it
has a logical structure, therefore, it is scientific. For example: we observe some data X. If
theory H were true, X would be unsurprising. Therefore, we have some reason to suspect
H might be true. The schematic reads very much like IBE, which has led to abduction’s
frequent confusion with IBE. After attributing this characterization of abduction to Peirce,

2All parenthetical references are to [Peirce(1931-1958)].
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Frankfurt goes on to criticize it as insufficiently rational – i.e., there are too many degrees
of freedom in which ideas one introduces by this process and no limit on how many ideas
might be introduced. But this is not the way Peirce would have defended the rationality of
abduction. The emphasis for Peirce is not on the likelihood of H given X (which is what
subsequent commentators highlight), rather it is on the process of generating H to begin
with. If we had two competing theories, but one made the data more plausible, then IBE
may indeed tell us to choose the first theory. But abduction is not about adjudicating be-
tween competing theories in light of data. It is the selection method by which all candidate
theories are identified for consideration to begin with. By definition, we have to consider
the theory before learning that its likelihood is high under the observed data. But how is
this to be done?

For Peirce, the process of abduction was closely related to his pragmatism. He says, for
example,

If you carefully consider the question of pragmatism you will see that it is
nothing else than the question of the logic of abduction. That is, pragmatism
proposes a certain maxim which, if sound, must render needless any further
rule as to the admissibility of hypotheses to rank as hypotheses, that is to say,
as explanations of phenomena held as hopeful suggestions; and furthermore
this is all that the maxim of pragmatism pretends to do (5.196).

This is a bit of an overstatement in terms of the identification of pragmatism and abduction,
but nonetheless, it shows just how closely related these two ideas were for Peirce. But how
shall we put this into practice – what is the pragmatist process by which we establish “the
admissibility of hypotheses to rank as hypotheses”?

Peirce’s crucial insight, and one that is still overlooked even by commentators who rec-
ognize the distinction between abduction and IBE, is that this process is to be governed
by economic considerations:“in all cases the leading consideration in Abduction ... is the
question of Economy – Economy of money, time, thought, and energy” (5.600). For ex-
ample, he points out that we may want to include in our problem implausible hypotheses
because their truth-value may be easily settled. Critics point out that as a selection method
this is over-inclusive and inefficient. After all, we would not want to waste our time dis-
proving implausible hypotheses. But this (including easily disproved hypotheses) is not
a selection method. It is an application of a more general economic process of abduction.
The time and energy cost of including too many trivial hypotheses is precisely why Peirce’s
method would not recommend doing so. It is clear in Peirce that admissibility is governed
by considerations of expected utility. If the hypothesis is so implausible as to be not worth
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investigating, the low-cost of determining its truth-value will be insufficient to admit it into
our model.

Therefore, which hypotheses we consider to begin with is not an unadulterated epis-
temic question – it is a question for expected utility analysis. For example, if I want to
learn about the bias of an ordinary looking coin I could start from a stance of perfect neu-
trality, adopt a uniform distribution with respect to its limiting mean or objective bias, and
waste my time tossing the coin many times. If nothing serious turns on this, it is not a very
productive use of time. It is more efficient to start by assuming the coin is fair, and toss it a
few times to confirm what I strongly suspect. Meanwhile, if I had to bet my life on the coin,
or a lot of money, or a research grant, I might want to be more careful and start with a very
cautious prior. As a result, the Peircian considerations of time, money, thought, and energy
affect my assessment of the seriousness of the mistake that might be made. They reflect
my assessment of epistemic risk. And in turn, my assessment of epistemic risk affects the
prior I identify as appropriate. To paraphrase Rescher again, the process of induction is,
for Peirce, crucially dependent on prior intelligent deployment of economic considerations
at the abductive stage. Such normative considerations are therefore inseparable from sci-
entific inference. Attitudes to risk of error – epistemic risk – therefore affect an agent’s
selection of a suitable prior. But that is not their only role.

Before I move on, it is important to highlight here that Peirce was a critic of what was
then called inverse inference. Inverse inference roughly corresponds to Bayesian inference
today, but it is a particular type of Bayesian inference – it is Laplacian “objective Bayesian-
ism” as it is known today. Indeed, what Peirce took special issue with was the so-called
principle of indifference, because it substitutes absence of information for information of
equipossibility. Subjectivists relied on the principle since the central issue was how to as-
sign priors in the absence of information. Peirce found the principle to be arbitrary. But
had he applied the economy of research to the selection of priors he may have arrived at a
different conclusion. Indeed, this is what I hope to do. So while it would be anachronistic
to suggest that Peirce had a proto-theory for assigning prior probabilities I think his central
insight of characterizing abduction in terms of the economy of research can help us think
about the role of epistemic risk in identifying appropriate priors.

2.2.2 Induction as insurance brokerage

Induction for Peirce is the process of evaluating, on the basis of observed samples, hy-
potheses identified by the abductive process, including the economic considerations de-
scribed above. Indeed, he equates inductive reasoning with sampling. The crucial aspect of
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induction for Peirce is long-run error control. Rather than assigning probabilities to com-
peting hypotheses, we are interested in using a decision procedure which minimizes the
probability of mistaken verdicts in the long run. This is of course very familiar now from
[Neyman and Pearson(1933)]’s null hypothesis significance testing framework, but the ex-
tent to which Peirce anticipated many of the ideas in NHTS is remarkable. As mentioned
earlier, probability of error is what Peirce has in mind when he refers to reducing the “prob-
able error of our knowledge” – it is the probability of being mistaken on the assumption that
a hypothesis is true (a Frequentist notion) rather than the probability that the hypothesis is
false (a Bayesian notion). Indeed, Peirce uses likelihood to describe how we are comparing
hypotheses here. What I am interested in highlighting, in particular, is Peirce’s focus on
long-run error control. For example, Peirce says of induction,

we cannot say that the generality of inductions are true, but only that in the long
run they approximate to the truth ... In fact, insurance companies proceed upon
induction – they do not know what will happen to this or that policy-holder;
they only know that they are secure in the long run.

The insurance analogy for induction is what I want to highlight. On the Bayesian frame-
work I will develop, there are two central steps that will be addressed in this dissertation:
identifying a prior and drawing inferences from the prior. I explained in the previous sec-
tion how considerations of risk of error are relevant to the identification of a prior. This will
be the subject of Chapter 2. What I want to highlight here is that considerations of error
are just as relevant in drawing inferences after one has identified a prior. This will be the
subject of Chapter 3. Peirce takes the insurance analogy seriously. He says, for example,

by faithfully adhering to ... [induction], we shall, on the whole, approximate to
the truth. Each of us is an insurance company, in short. But, now suppose that
an insurance company, among its risks, should take one exceeding in amount
the sum of all the others. Plainly, it would have no security whatever.

There are many gaps to be filled here: are we all like insurance companies in the sense
that we diversify our portfolio of beliefs by making many conjectures in the long run?
This temporal dimension does not seem necessary. We can also diversify our portfolio by
adopting many beliefs at any given time. Peirce does not say. Just as importantly, what does
it mean to take a smaller or larger risk in the context of induction? How do we measure
the riskiness of inductive inference? What exactly makes one inductive process riskier than
another? Peirce does not say either. And finally, what would be the equivalent to leverage
in the context of inference? Once we pile up a stock of truths, is it permissible to be more
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reckless in the inferences we make? Or is it just as bad, perhaps even worse, to make a
mistake after one has established a strong reputation as a careful scientist? Peirce assumes
the former but I am doubtful this is the case.

These are all questions that will be addressed in Chapter 3, where the subject of epis-
temic risk will be the agent’s update strategy. I will explain what makes one update rule
riskier than another and provide a measure of epistemic risk for competing rules for up-
dating (or, equivalently, for posterior probabilities). I will also evaluate the asymptotic
behavior of inductive strategies with different degrees of riskiness. The idea, again, is not
so much to suggest that Peirce had worked out a contemporary problem of statistical in-
ference but rather that he identified a central insight – namely, to think about the process
of evaluating hypotheses in light of new evidence in the way that an insurance company
thinks about its policy-holders. The economic approach is just as valuable here as it is
in the abductive context and, again, it underscores the inevitability of the normativity of
statistical inference.

One concern here might be that my approach to inquiry seems obviously dependent
on many practical considerations. The agent’s choice of what to believe depends on both
practical and epistemic consequences: her resources, time, money, energy, and so forth.
My response is: it absolutely does. Indeed, I will further highlight the role of practical
considerations at almost every step of scientific inquiry. As we will see below, in order to
measure accuracy we need to identify a suitable loss function. I am skeptical one can do
this on purely epistemic grounds. [Leitgeb and Pettigrew(2010a)], for example, defend the
Brier score because of its symmetry. That is certainly an epistemic reason in favor of the
Brier score, though I am not sure how persuasive it is, but in using it we are forced to give
up the assumption that information loss is additive. But Shannon found additivity to be
essentially an a priori property of information, and it figures as an axiom in his characteri-
zation of entropy. Ultimately, I will argue, to identify an appropriate scoring rule we need
to consider the relevant risks of error. In a classification task where false positives and false
negatives are equal (distinguishing cats from dogs in image search, for example), a sym-
metric score function seems appropriate (as opposed to, say, a biomedical context where
the costs of different types of errors can be much different). Likewise, determining how
much epistemic risk is appropriate will depend on the circumstances of the case and the
agent’s degree of risk aversion. One can certainly construct an objective rule of inference
by adopting the maxim that epistemic risk ought to be minimized, and stipulating a par-
ticular loss function to be used for evaluating accuracy and measuring divergence between
distributions, but this is not rationally required.
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2.2.3 Micro or macro economy of research?

There are two ways to develop the Peircian project. One would be to start with a scientist’s
ordinary utility function and consider how the pursuit of truth interacts with other institu-
tional factors in the modern scientific community to affect her decision of which line of
research to pursue including, importantly, the values and behavior of other scientists. This
is the project that [Kitcher(1990)] and [Zollman(2017)], for example, develop. The focus
of this project is the institution of science within which individual agents interact and the
incentive structure that it generates. The focus is on strategic group interaction. We may
perhaps helpfully call this the macro-economy of research.

Another would be to take the agent and her pursuit of truth (the way she values truth
epistemically) as a starting point, and explore how other considerations affect it, what nor-
mative attitudes guide her inquiry, and so forth. The key to this project it that we start from
the individual scientist seeking truth or accuracy, and build up a more robust picture by
evaluating how other considerations affect her pursuits. The emphasis is on the rationality
of the individual from a decision-theoretic perspective. This is an individualistic, rational
reconstruction of what is going on in science whose focus is on eliciting the attitudes that
govern inquiry and providing a rationale for any particular individual. This is the micro-
economy of research.

The two approaches are related of course – there is no bright line distinction. The
general difference is in our aims and scope. The macro-economic philosopher of science
seeks to explain how a rational scientist will behave in her community by modeling the
whole group in terms of strategic interaction, highlighting game-theoretic equilibria, or
using agent-based networks, for example. The micro-economic philosopher of science
seeks to explain whether, for example, it is rational for an individual to hold a particular
set of priors, how much accuracy she might sacrifice for additional information, how much
risk is rationally permissible, and so forth. Her tools are similar to those of the ordinary
microeconomic theorist, focusing on convex optimization in a decision-theoretic context.
This dissertation may be thought of as a project in the micro-economy of research.

2.3 Epistemic utility theory

In this section I briefly describe epistemic utility theory, its relationship to ordinary rational
choice, and how it compares to traditional analyses of knowledge in epistemology.

The subject of ordinary epistemology is the binary doxastic mental state belief. With
respect to a proposition, an agent believes it, disbelieves it or, perhaps, is agnostic about
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it. In this context, the epistemic value at stake is ordinarily taken to be knowledge and,
by extension, truth and justification are central to the analysis of belief. Believing a false
proposition or holding an unjustified belief is epistemically bad because the agent fails to
know that proposition. It is natural to suppose, however, that our epistemic attitudes are
often not binary. For example: I am relatively confident that a six-sided die will land on an
even or prime number; I suspect it will not rain tomorrow; I am quite confident I will not
win the raffle.

To accommodate such finer-grained attitudes, many philosophers take a Bayesian decision-
theoretic approach inspired by [Ramsey(1926)], [De Finetti(1937)] and [Savage(1954)] and
replace the binary framework with a probabilistic one where credences or subjective prob-
abilities take the role of beliefs as the relevant doxastic attitude under analysis. A per-
son’s subjective probability in a proposition corresponds to her subjective degree of con-
fidence. To paraphrase [Joyce(2009)], credences are inherently gradational: the range of
their strength is continuous between complete certainty of the truth of a proposition to
complete certainty of its falsehood – depending on the evidence available to the agent.

On this approach, knowledge is typically not the guiding virtue. My belief that ‘the
die will land on an even number’ is either true or false. But my .5 credence that the die
will land on an even number is neither true nor false. It can, however, be more or less
accurate. Believing a true proposition to degree .9 or predicting an event which occurs with
.9 confidence, is better than doing either with, say, .3 confidence. On this approach, being
more accurate is better. So as a first pass we can say that in the context of fine-grained or
partial belief epistemology, it seems reasonable to hold accuracy as the guiding normative
virtue.3

However, we want to assess how well an agent is doing without knowing which propo-
sitions are true or false in advance. We want to say, for example, that from the agent’s
current evidential state, it is rational to hold the credences she holds. Similarly, we want
to say that she made a good or reasonable prediction given the evidence she had at the
time. The normative role that accuracy plays, therefore, is similar to the normative role of
ordinary utility in rational choice. We do not fault an agent for failing to maximize util-
ity – for example, for failing to make a reckless bet that against all odds would have paid
handsomely. We do, however, fault the agent for failing to maximize expected utility – for
failing to take the action that in expectation would have been best for her.

3I prefer to think of this as a modeling assumption rather than a fundamental truth of epistemology. In
economic theory, it is customary to assume that one’s utility is a function of money, but there is no reason why
tastes, values, altruistic desires, and so forth cannot affect an agent’s utility. The same goes for the epistemic
case. We will assume for now that epistemic utility is given in terms of accuracy, but it would be interesting
to consider how parsimony, explanatory power, verisimilitude, and other epistemic virtues may affect it.
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As a result, maximizing expected accuracy is a more accurate description of the govern-
ing normative virtue for the epistemology of partial beliefs. The approach is of course most
useful for assessing an agent’s doxastic state from the internal perspective – i.e., given her
evidential state – or from evaluating the quality of a prediction before we learn the actual
outcome. Indeed, it is a generalization of ordinary decision theory with accuracy assum-
ing the role of ordinary utility. We will adopt the useful fiction that an agent can choose
her credences and in order to evaluate an agent’s credences we will consider whether they
maximize expected accuracy (or minimize expected inaccuracy).

For this reason, I follow the literature and refer to this approach to epistemology – i.e.,
the graded approach originating in [Ramsey(1926)], [De Finetti(1937)], and [Savage(1954)]
– as epistemic utility theory.4 It is a decision theory for evaluating an agent’s choice of what
beliefs to hold, rather than which actions to take.

2.4 Risk and rational choice

From its earliest development, expected utility theory has been bound up with risk. In
1738, Daniel Bernoulli presented what has come to be known as the St. Petersburg Paradox
[Bernoulli(1954/1738)]. Bernoulli identifies a gamble with infinite expected value which
would be judged by nearly everyone as not reasonably worth more than a modest sum. The
puzzle identifies a mismatch between the expected value of a gamble and the amount that
a rational person would pay for it.

Bernoulli diagnoses the problem by pointing out that the marginal utility of money
diminishes as wealth increases and that our intuitions about the irrationality of paying ex-
cessively for the St. Petersburg gamble reflect an aversion to risk. This is the origin for
understanding attitudes to risk in terms of the curvature of a person’s utility function. A
risk averse person would not pay 1 dollar for a gamble that pays 0 or 2 dollars with equal
probability (a fair gamble) because from her perspective the utility of the expected value
is greater than the expected utility. The diminishment in wealth, if things go poorly, is
weighted more than the improvement, if things go well. This is of course an application of
the defining property of concave functions. IfX is a random variable and f is concave over
its support then f(E[X]) ≥ E[f(X)]. In the terminology of modern economic theory, an
individual with a concave utility function is risk-averse; an individual with a convex utility
function is risk-seeking; and an individual with a linear utility function is risk-neutral.

It is natural to suppose, then, that the degree of concavity of an agent’s utility function
reflects the extent to which she is risk-averse. This is precisely the insight that [Arrow(1965)]

4[Joyce(1998), Joyce(2009), Greaves and Wallace(2006), Pettigrew(2016a)].
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and [Pratt(1964)] exploit. We might start by taking the second derivative of the utility func-
tion as a measure of an agent’s aversion to risk. However, since von-Neumann Morgenstern
utility functions are unique only up to affine transformations5 we should divide the resulting
quantity by the first derivative so as to get a measure that is invariant to arbitrary changes in
slope and location. To get a number that increases in magnitude as concavity increases we
add a negative sign in front of the ratio of derivatives. This is the Arrow/Pratt coefficient of
risk aversion.

It became clear relatively early that this notion of risk aversion was extremely impor-
tant to economic analysis. Understanding attitudes to risk has important implications for
understanding the rationality of individual decision-making, market behavior, insurance,
and evaluating social policy. But it was never clear in all this what risk itself was. In other
words, Arrow and Pratt provide the starting point for an analysis of a decision maker’s at-

titudes to risk. The ratio of derivatives model provides a framework for explaining when
one person is more risk averse than another or how aversion to risk changes with wealth,
for example. But they leave open a more fundamental question: what is risk? When we say
that an agent is risk-averse what about the gamble is it she she is averse to? Can we line up
a set of gambles on a shelf, so to speak, and rank them according to their risk? This is the
question that [Rothschild and Stiglitz(1970)] take up.

Their answer, which improves upon the earlier mean-variance approach of
[Markovitz(1952)] and [Markovitz(1959)], is that one gamble is riskier than another if it is
a mean preserving spread of it. What risk averters are worried about, on their approach, is
the increase in the uncertainty of monetary outcomes. A gamble which pays 1 or 2 dollars
with equal probability is less risky than a gamble which pays 0, 1, 2, or 3 dollars with equal
probability. While they have the same expected value, the second is created from the first
by taking the probability mass from each outcome and spreading it over better and worse
outcomes in a way that keeps the mean fixed. Risk on this approach provides a partial
stochastic ordering of gambles. Importantly, [Rothschild and Stiglitz(1970)] show that if
one gamble is a mean preserving spread of another then a risk averse decision maker would
prefer the first to the second. This connects up the Arrow/Pratt coefficient of a decision
maker’s degree of risk aversion with the risk ordering of lotteries themselves.

These notions, both of risk and of attitudes to risk, have been central to the develop-
ment of the standard model of rational choice. However, considerations of risk are almost
nonexistent in the context of epistemic utility theory.6 My goal in the chapters to follow

5[von Neumann and Morgenstern(1944)].
6[Fallis(2007)] is really the only paper that explicitly addresses epistemic risk within the epistemic utility

paradigm, though the notion comes up in epistemology discussions more generally, e.g. [Maher(1993)] and
[Levi(1962), Levi(1974), Levi(1977)] and it also comes up implicitly in some of the literature in epistemic
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is to begin to develop a line of research regarding epistemic risk by, hopefully, framing a
number of fruitful questions, and developing an approach to epistemic risk that begins to
answer at least some of them.

2.5 Value at risk

In financial analyses the expression ‘value at risk’ denotes the quantity (in monetary terms)
that a firm or financial portfolio, say, stands to lose. I use the phrase more literally here to
ask what is the normative value that may be under risk in epistemic contexts? When we say
an agent is epistemically conservative, we presuppose she is being extra careful to avoid
some sort of loss. What that loss is will determine our analysis of epistemic risk. There
are two competing approaches to the epistemic value at risk: the alethic approach, which I
have hinted at above, which follows [Joyce(1998)], [Harman(1986)] and [Goldman(2002)],
among others, and the competing modal approach, developed by [Pritchard(2017)].

2.5.1 The alethic approach

I assume, following many others, that an epistemic agent should aim to believe truths and
avoid believing falsehoods. Truth seeking is the overarching goal in epistemology. As a
result, when we formulate a belief, we do so for the sake of an epistemic benefit – namely,
to hold a belief that is true – and despite a potential epistemic cost – namely, to believe
something that is false. For example, [Harman(1986)] defends epistemic conservatism –
the notion, roughly, that a reason for holding on to a set of beliefs is the fact that we
currently hold them. The value at risk here is truth – by changing our beliefs we risk
believing an additional falsehood or disbelieving an additional truth. The benefit we seek
when we form beliefs, therefore, is to believe the truth.

Meanwhile, in epistemic utility theory, when an agent identifies her credences, some-
thing is likewise at stake. Whatever that is – the relevant normative consideration when
we form beliefs or credences – will determine how we should proceed. Since the relevant
attitude on our approach will be a credence or subjective probability the relevant value is
graded accuracy.

Graded accuracy, as we will see, may be evaluated in terms of common families of
statistical loss functions. A common approach, for example, is the Brier score, which mea-
sures the squared distance between the true value and the assigned probability. An agent’s

utility theory, e.g. [Pettigrew(2016b)]. However, neither Pettigrew nor Fallis provide a measure of risk or a
stochastic ordering of credence functions of the sort that we find in economic theory.
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credence that a die will land on an even number is neither true nor false, but it can be more
or less accurate. Therefore, the probabilistic generalization of the veritistic perspective is
[Joyce(1998)]’s norm of gradational accuracy – an epistemic agent should aim to assign
high probabilities to truths and low probabilities to falsehoods. On the probabilistic ap-
proach, the risk we take when we adopt one credence function instead of another is the risk
of moving further from the truth. The value at risk, therefore, is truth in the categorical case
and graded accuracy in the probabilistic case. Both approaches are alethic.

2.5.2 The modal approach

Alternatively, we might prefer to think that what is at risk is not the risk of error – i.e.,
the potential of holding a false belief or inaccurate credence – but rather the risk of failing
to have knowledge – i.e., the risk of holding a belief that, while true, fails to constitute
knowledge. This approach emerges out of anti-luck approaches to epistemology, where
safety is central to justification. ‘Safety’ is a technical notion in modal approaches to
epistemology. For [Pritchard(2007)], for example, an agent’s belief is safe if it remains
true in most nearby possible worlds in which the agent holds the belief in the same way as
in the actual world.

In Hohfeldian terms, we might say, risk is a natural correlative to safety. Unsafe beliefs
are risky and conservative beliefs are safe. However, because overwhelmingly probable
beliefs can be unsafe, the value at risk cannot be the alethic value described above. Some
beliefs on modal accounts may well be overwhelmingly probable without being safe, as we
will see below. For someone who takes the value at risk to be truth or accuracy, such beliefs
cannot possibly be risky. So we must look elsewhere for the value at risk. This approach
to risk goes with the position that belief aims, not so much at truth, but at knowledge in
particular. The value at risk is not truth or gradational accuracy. It is knowledge. To say
that a belief is risky, therefore, is not to say that one risks believing something false, or
perhaps something inaccurate (in the case of graded beliefs). Rather, it means that one
risks having a true belief that fails to constitute knowledge. On knowledge first approaches
to epistemology, this is the main source of risk that believers face [Williamson(2000)].

The main problem with Pritchard’s approach from my perspective is that it fails to
guide epistemic behavior. It is, at best, a diagnosis of common failures of rationality. As
a diagnosis, however, it is not clear that it adds anything to our understanding of cognitive
biases beyond what the experimental literature in psychology already provides.
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2.5.3 Risk and normativity

[Pritchard(2017)] articulates a modal theory of epistemic risk on which attitudes to risk
come apart from probabilistic judgments and can be pretty clearly irrational. As he puts
it: “According to the modal account of risk, the level of risk involved is determined by
how modally close the target risk event is. In particular, where the risk event is modally
close, then it is high-risk (even if it is a probabilistically unlikely event), but where it is not
modally close, then it is low-risk” (pg. 13).

For example, people often judge airplane travel to be riskier than driving a car even
though statistically one is more likely to be hurt in a car than on an airplane. This attitude
may be explained on Pritchard’s modal account as follows: A car driver may be subject
to cognitive biases that make her conception of the actual world such that the possible
world in which she incurs serious injury while driving is not especially close, and hence
not a serious risk. For example, Pritchard says, she may be under the illusion of control
leading her to judge herself as much more competent than the average driver. Meanwhile,
the passenger on the airplane may be subject to a different set of cognitive biases that make
her conception of the actual world such that the possible world in which the plane crashes
is quite close. For example, the accessibility bias, coupled with the prevalence of reports
regarding airplane accidents.

Pritchard, therefore, assumes the task of vindicating such common judgments about
risk, as documented in the social psychology literature. I do not. He says, for instance:
“subjects might grant that the probabilistic likelihood of two events is broadly the same,
and yet nonetheless characterize one of them as being riskier than the other because they
regard this event as modally closer.” (pg. 11) Therefore, “While subjects will grant that the
probability of sustaining serious injury when, say, driving a car is much, much higher than
alternative forms of transport, such as taking the train, they nonetheless tend to judge that
car driving is not an especially risky activity.” (pg. 11)

I think of my project on epistemic risk as having a normative dimension. That is not
to say it is normative in the sense that I defend a unique attitude or set of attitudes to risk
(e.g., you should minimize it) but in the sense that if you think taking a plane is riskier
than driving a car, despite statistical evidence to the contrary, then you are mistaken about
the risks involved. Indeed, I would not want a theory on which it comes out to be true
that taking a plane is riskier than driving a car. If your insurer would not accept it as true,
neither should you, even if a plane crash is more salient to you so that you judge it to be
modally closer.

This does not mean that there is no degree of subjectivity on my account. As we will
see below, which set of beliefs minimizes epistemic risk will depend on how an agent
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measures inaccuracy. So it is possible on my account for two agents in the same evidential
circumstances to judge the same credence function differently in terms of risk. However,
they will at least be able to come to an agreement that the source of their disagreement is
normative – it is a disagreement about value. In particular, it is a disagreement about the
relative cost of moving in the direction of different types of error. On Pritchard’s account,
however, the disagreement does not seem to be a disagreement about value. We disagree
because we are irrational in different ways. I believe driving a car is safer than it really is
because of the illusion of control and you believe flying in an airplane is more dangerous
than it really is because of the accessibility bias. In other words, the source of disagreement
on the alethic approach is a difference in value (just how bad is it to make a false positive/
false negative error?), whereas the source of disagreement on the modal approach is a
difference in irrationality (which set of cognitive biases is one’s judgment predominantly
skewed by?).
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CHAPTER 3

Generalized Entropy and Epistemic Risk

3.1 Introduction

My goal in this chapter is to provide an account of epistemic risk that is analogous in
important respects to contemporary approaches to risk in expected utility theory. I develop
this approach within the framework of what has recently come to be called epistemic utility
theory, following [Joyce(1998)], [De Finetti(1974)] and, ultimately, [Ramsey(1926)]. In
particular, I assume that an agent’s selection of a subjective probability distribution (or
credence function) may be treated as an epistemic act and that the rationality of that act may
be evaluated using the tools of ordinary decision theory. To measure epistemic utility I use
a familiar class of statistical loss functions known as scoring rules.1 Whereas an ordinary
decision maker seeks to maximize expected utility, the epistemic agent seeks to minimize
expected inaccuracy. Accuracy, then, is our primary commodity, and epistemic norms –
such as probabilistic coherence, updating by Bayesian conditioning, and chance calibration
principles, for example – may be defended on the ground that they promote accuracy.2 This
basic idea originates with [Ramsey(1926)], [Savage(1971)], and [De Finetti(1974)], and it
has been developed in important respects by [Lindley(1982)] and [Schervish(1989)].

The risk measure I propose is inspired by [Rothschild and Stiglitz(1970)]’s approach to
economic risk. I motivate the idea that one subjective probability distribution is riskier than
another if it is a mean preserving spread of it and that the least risky probability assignment
is the one that guarantees a particular inaccuracy score regardless of the outcome. We will
see that mean preserving spreads may be measured in terms of changes in expectation, and
that a plausible measure of risk, therefore, is the difference in expectation from the risk-
free probability. Following [Grunwald(2000), Grunwald and Dawid(2004)], I use the term
‘general entropy’ to refer to the expected inaccuracy of a probability distribution evaluated

1See [Gneiting and Raftery(2007)] for an overview.
2See [Joyce(1998)], [Greaves and Wallace(2006)], and [Pettigrew(2012)], for an accuracy-based defense

of each, respectively.
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with respect to itself (we will see why, below) and as a result epistemic risk turns out to be
a measure of entropic change.

While the risk function is similar in spirit to the economic notion of risk, it has a
uniquely epistemic interpretation, which has its roots in [Peirce(1879)]’s “economy of re-
search”. In particular, the shape of the agent’s risk function reflects her attitude toward the
relative cost of increasing inaccuracy in the direction of false positive (Type I) mistakes
against the cost of increasing inaccuracy in the direction of false negative (Type II) mis-
takes. On larger sample spaces, the agent’s risk function reflects her attitude to increasing
inaccuracy in the direction of every possible outcome. Meanwhile, the curvature of the risk
function encodes attitudes toward marginal changes in inaccuracy and local sensitivity to
error.

From every risk function we may derive a unique scoring rule, and the agent’s atti-
tude to different types of error will determine the shape of her score. For example, if she
considers the different error costs to be equal, her score will evaluate equally changes in
inaccuracy in the direction of each outcome. If such an agent seeks to minimize epistemic
risk, she will identify a uniform prior by applying the principle of indifference. Plausibly,
then, one application of this approach is the selection of priors for Bayesian statistical in-
ference. However, the uniform prior minimizes epistemic risk only if the different types
of error are treated equally. More generally, the relationship between risk, error costs, and
general entropy suggests that there exists a family of indifference principles each reflecting
a different way of evaluating the error costs of a prospective probability distribution. This
highlights the normative commitments that come with endorsing an uninformative or flat
prior. These consequences follow from a central duality between epistemic risk and general
entropy – namely, the sum of risk and entropy is constant provided the associated scoring
rule is proper:

Risk + Entropy = k

This implies that risk is a scaled reflection of entropy. The agent’s risk profile, therefore,
is in an important sense epistemically central. Once we know what it is, we can determine
the appropriate measure of risk, the associated entropy, the scoring rule, and the measure
of divergence to be used for updating. For example, a logarithmic scoring rule will also
imply the Kullback-Leibler measure of divergence for updating, and from this perspective
Bayesian conditioning is optimal.

The chapter proceeds as follows. In Section Two, I describe the relevant formal con-
cepts. In Section Three, I develop the theory of epistemic risk for the simple case where
the agent is interested in a single proposition. In Section Four, I articulate the normative
attitudes to the cost of error implied by the location, shape, and curvature of an agent’s
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epistemic risk function. In Section Five, I develop the duality between risk and entropy,
and explain the conceptual difference between minimizing epistemic risk and maximizing
information entropy. While the duality between these two concepts shows that they are
often co-extensive, they are independently motivated. In Section Six, I extend the measure
of epistemic risk proposed to general sample spaces, both continuous and discrete with
any number of outcomes. In Section Seven, I explore in more detail the relationship be-
tween epistemic risk, the selection of priors, and the principle of indifference, especially as
defended by [Jaynes(1957a), Jaynes(1957b), Jaynes(2003)].

3.2 Background

In financial analyses, the expression ‘value at risk’ denotes the quantity in monetary terms
that a firm or, say, investment portfolio stands to lose. As I seek to develop a theory of
epistemic risk, the value at risk should be epistemic. While other considerations are often
at stake in inquiry – securing research funding, obtaining grants, achieving tenure, and
so forth – the epistemic cost is independent of these other commodities. As a result, I
develop an approach to epistemic risk within the framework of epistemic utility theory,
where accuracy is the primary source of value.

Following the literature, I adopt the useful fiction that an agent is able to choose between
competing credence functions. As a result, the credence function is the object of risk – it is
credence functions that can be more or less risky. By analogy to economic approaches to
risk, what makes one credence function riskier than another is that the agent stands to lose
more in terms inaccuracy or that variability in accuracy outcomes is greater. Unlike belief
or acceptance, accuracy is a graded notion. Therefore, the theory of epistemic risk I propose
is a theory of the alethic sensitivity to (big or small) changes in inaccuracy. This resembles
in some respects [Peirce(1879)]’s notion of the “economy of research”. While it would be
anachronistic to locate the germ of this framework in Peirce, he comes extraordinarily close
to developing the idea by applying notions of ordinary utility and the cost of error to the
epistemic context.3 I develop the notion of epistemic risk carefully below. The remainder
of this section provides a directed introduction to the relevant epistemic utility background.

3Peirce says, for instance: “The doctrine of economy, in general, treats of the relations between utility
and cost. That branch of it which relates to research considers the relations between the utility and the cost
of diminishing the probable error of our knowledge” (643). As [Rescher(1976)] emphasizes, inductive logic
is, in Peirce’s view, crucially dependent on economic considerations and reasonable assessment of the risk
of different types of error as well as the value of correct verdicts. The difference between Peirce’s approach
and the approach to be developed is that Peirce did not have at his disposal the notion of epistemic utility in
terms of graded accuracy. Subsequently, [Levi(1974)], [Maher(1990), Maher(1993)], and [Fallis(2007)] have
suggested similar approaches to epistemic risk.

21



I assume that an epistemically rational agent should adopt as her credence function
a probability distribution whose expected inaccuracy is at least as low as any alternative
distribution she might adopt. This is the norm of gradational accuracy.4 Therefore, mini-
mizing expected inaccuracy plays a similar role in epistemic utility theory that maximizing
expected utility plays in ordinary decision theory.5 To measure inaccuracy, we use a scor-
ing rule. This is a two-place function s : {0, 1} × [0, 1] → R, denoted by sv(p(h)), that
measures the inaccuracy of the probability assigned to h when the true outcome is v, where
v = 1 if h is true and 0 otherwise. I restrict my attention to coherent agents for whom the
credence function is a probability (the account can be modified to apply to non-ideal cases
as well).

Five properties of scoring rules will be relevant to my argument: additivity, truth di-
rectedness, continuity, propriety, and 0/1 symmetry. For additive scores, the overall inac-
curacy of a discrete credence function 〈p(h1), ..., p(hn)〉 is

∑n
i=1 sv(p(hi)) (for continuous

credence functions we integrate sv(p) over the sample space where p is a density). Notice
that it is possible to have a situation where the rule we use to evaluate the inaccuracy of one
proposition may be different from the rule we use to evaluate the inaccuracy of another one.
It may be that for every element in the partition a different score is applied. The overall
inaccuracy is still given by the sum of individual inaccuracies.

A minimal constraint on the functional form of scoring rules is that they be truth-
directed. Truth-directedness implies that s1(p) is a decreasing function of p and s0(p)

is an increasing function of p. Thus, moving closer toward the actual truth-value cannot
make an agent worse off. It is also typically assumed that s1 and s0 are continuous func-
tions of p, so as to avoid arbitrarily small changes in credence leading to big changes in
inaccuracy. Truth-directedness and continuity are generally accepted properties of an ap-
propriate measure of inaccuracy.

The expected inaccuracy of a probability distribution is the expectation of sv(p) evalu-
ated with respect to the agent’s beliefs, b = b(h). In the binary case this is,

Eb[sv(p)] = bs1(p) + (1− b)s0(1− p) (3.1)

If this equation is (uniquely) minimized at b = p the score is (strictly) proper. This
means that a coherent agent can do no better in expectation, from the perspective of mini-
mizing inaccuracy, than to adopt as her credence function the probability distribution that

4[Joyce(1998), Joyce(2009), Pettigrew(2012)].
5A thorough (and opinionated) development of epistemic utility theory may be found in

[Pettigrew(2016a)]. [Greaves(2013)] presents important objections to modeling epistemic rationality in deci-
sion theoretic terms.
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corresponds to her sincere degrees of belief. Finally, sv is 0/1 symmetric if, given two
probabilities for h, p(h) and q(h), that are identical except that p(h) = 1 − q(h), then
s1(p(h)) = s0(q(h)).

I assume that an agent’s normative attitudes to risk, if they are to be found anywhere,
must be reflected in the prior the agent deems appropriate. As a result, in developing a mea-
sure of epistemic risk we set aside for now considerations of updating and ask: regardless
of one’s evidence about a proposition, what structural features make one credence riskier
than another? Of course, it is also important to consider what makes one update riskier
than another. Equivalently, how much epistemic risk might be justified by the agent’s evi-
dence? These are questions about dynamic epistemic risk and I pursue them in a subsequent
project.6

3.3 Epistemic risk: the simple case

Consider an agent formulating a credence p(h) about a single proposition h. Regardless of
h’s content or epistemic import, we know that her inaccuracy decreases as her credences
get closer to the truth and that it increases as they get further away from it. Since s1 is
continuous and decreasing on [0, 1] with s1(1) = 0, and s0 is continuous and increasing
on [0, 1] with s0(0) = 0, the intermediate value theorem guarantees that there exists a p∗

for which s1(p∗) = s0(p∗). For 0/1 symmetric scores, this is .5. For asymmetric scores it
may be something else. The following figure illustrates this situation. Figure (3.1) depicts
a symmetric score whereas Figure (3.2) depicts an asymmetric one.

6Relatedly, [Buchak(2010)] uses ordinary attitudes to risk in epistemic contexts to argue
against [Good(1967)]’s principle that one should not turn-down cost free evidence. Similarly,
[Bradley and Steele(2016)] consider certain rare cases where an agent with imprecise credences seems to
be committed to the rationality of paying to avoid cost-free evidence.
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Figure 3.1: Risk-free probability (symmetric score)
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Figure 3.2: Risk-free probability (asymmetric score)

The point p∗ may be thought of as the least risky point in the following sense: if the agent’s
credence for h is given by p∗ her inaccuracy will be the same regardless of the actual truth-
value for h. As a result, she knows with certainty how inaccurate she will be even before
she learns whether h is true or false.

It is natural to think of a guarantee in one’s outcome as implying an absence of risk.
Indeed, this is the purpose of ordinary insurance: to charge a premium for guaranteeing
a particular outcome (and, in turn, removing risk) – hence the term ‘risk premium’. The
outcome in insurance contexts is given in monetary terms (e.g., one does not have to pay
out of pocket costs for a home repair). Here the same idea still applies, but our epistemic
commodity is accuracy and therefore the outcome is given in inaccuracy as measured by
a scoring rule. Informally, therefore, we might identify p∗ as the least risky probability in
the sense that it guarantees a certain inaccuracy score, regardless of the outcome. Since
the choice of scale in constructing a risk measure is arbitrary, we may call p∗ the risk-free
credence, and define it more formally as follows.

Risk-free credence. Given a single proposition h the risk-free credence p(h) =

p∗ satisfies the equation s1(p∗) = s0(p∗).

24



Now suppose that the agent has a credence for h that is more extreme than the risk-free
one, say p(h) = .8. Given this credence if h is true her inaccuracy will be very low, but
if h is false her inaccuracy will be quite high. Since p(h) = .8 creates an opportunity for
the agent – the probability of doing better – together with a corresponding potential cost
– the probability of doing worse – it is in this sense a riskier credence relative to p∗(h).
A natural measure for this increase in risk is the spread between s1 and s0, as depicted by
the shaded areas in the following figure, because this quantity increases monotonically with
shifts of probability to the tails of the risk-free distribution. Figure (3.3) depicts the increase
in risk from a 0/1 symmetric score’s risk-free credence whereas Figure (3.4) depicts the
increase in risk from an asymmetric score’s risk-free credence. Notice, however, that it is
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Figure 3.3: Symmetric measure of epistemic risk
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Figure 3.4: Asymmetric measure of epistemic risk

less sensible to speak about one credence function being riskier than another if we vary
the number of possible outcomes in the sample space. For example, with three outcomes
instead of two, the risk-free probability would occur where s1(p) = s2(q) = s3(1− p− q).
Assuming a 0/1 symmetric score this would be the uniform distribution p = q = 1/3. So to
compare the increase in risk of another distribution over three outcomes we should measure
the “spread” from the risk-free distribution for this larger space (we will see how to do this
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later). In light of these remarks, we can define a risk measure for the single proposition
case as follows.

Epistemic risk. Given a single proposition h and a risk-free credence p∗ the
risk associated with investing credence p < p∗ in h is,

R(p) =

∫ p∗

p

|s1(t)− s0(t)|dt

For p > p∗ the bounds of integration are reversed. For p = p∗, R(p) = 0.

Provided the scoring rule is continuous, the risk function will be likewise continuous. Its
local maxima maxpR(p) = sv(p

∗) will occur at p(h) = 0 and p(h) = 1. Since the scoring
rule must be monotonically decreasing as the credence approaches the true value, it is easy
to tell that risk monotonically increases away from the risk-free credence.

3.4 Risk and normativity

Any move away from the risk-free credence risks increasing inaccuracy by either increasing
confidence in h when it is false, or decreasing confidence in h when it is true. Whether
or not one deems the direction important reflects a substantial normative attitude toward
the cost of approaching different types of error. As p(h) goes up, one risks increasing
inaccuracy in the direction of a false positive (Type I) error. Meanwhile, as p(h) goes
down, one risks increasing inaccuracy in the direction of a false negative (Type II) error.
It is doubtful that the only correct attitude to these types of error is indifference. Being
solely concerned with the truth, as [Gibbard(2008)] points out, does not commit one to a
particular way of valuing accuracy. As a result, we want our measure of risk (and associated
scoring rule) to reflect different trade-offs that agents might make between moving toward
either type of error. This will enable us to evaluate the rationality of different attitudes to
epistemic risk.

For example, h could be the outcome of a coin toss, where unit increases in inaccu-
racy in the direction of falsely predicting h (heads) are about as bad as unit increases in
inaccuracy in the direction of falsely predicting its negation (tails). This set of attitudes
to error is adequately captured by a 0/1 symmetric score, such as the Brier score where
sv(p) = (v− p)2, because an ε > 0 increase in inaccuracy in the direction of either s1 or s0

from any point p(h) = k ∈ [0, 1] leads to a decrease in epistemic utility of (k− ε)2. Figure
(3.5) depicts this situation.
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Since the score is symmetric a unit move in either direction away from the risk-free
credence increases risk by the same amount. As a result, the risk of p(h) = .8 (the shaded
area to the right of the risk-free point) is equal to the risk of p(h) = .2 (the shaded area to
its left). Indeed, they are reflections of each other around the risk-free point. As a result,
an agent with this risk function is equally sensitive to unit increases in inaccuracy in the
direction of either false positive or false negative errors.
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Figure 3.5: Epistemic risk and graded error (symmetric)
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Figure 3.6: Epistemic risk and graded error (asymmetric)

Alternatively, h could be a very informative proposition that the agent is singularly
pursuing so that the relevant partition is simply h and its negation. In this case, falsely
believing h may be much better than falsely believing h. The latter may produce an enor-
mous epistemic opportunity cost that delays or more permanently inhibits her search for
the truth, whereas the former may take the agent on a misleading line of inquiry that can be
corrected through subsequent experimentation. In this example, unit increases in inaccu-
racy in the false negative error direction are worse than unit increases in inaccuracy in the
false positive error direction. In this and similar contexts, a 0/1 score is inappropriate.

Such attitudes to error are better captured by an asymmetric score whose risk function
puts more weight on false negative increases in inaccuracy. An example of this is the score
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considered in [Joyce(2009)], where s1(p) = (1− p)3 and s0(p) = (p2/2)(3− 2p). Like the
Brier score, this score is proper, continuous, and monotonic. But unlike the Brier score an ε
increase in inaccuracy in the direction of s1 from p(h) = k leads to a decrease in epistemic
utility of (k−ε)3 whereas an increase in inaccuracy in the direction of s0 leads to a decrease
in epistemic utility of ε2(3− 2ε). This situation is depicted in Figure (3.6). For this score, a
unit move away from the risk-free credence in the direction of a false positive error leads to
a smaller increase in risk (the shaded area to the right) than a correspondingly large move
away from the risk-free credence in the direction of a false negative error (the shaded area
to the left). As a result, the risk of p(h) = .8 is not equal to the risk of p(h) = .04 (nor for
that matter is it equal to p(h) = .2).7

The symmetry of the embedded scoring rule is encoded in the risk function itself – since
we capture risk by integrating the score’s absolute difference. In particular, it is reflected
by the risk function’s location. As figures (3.7) and (3.8) show, a risk function associated
with a 0/1 symmetric score will reach its minimum at p(h) = .5 (left panel) whereas if
the risk reaches its minimum elsewhere on the unit interval the embedded score must be
asymmetric (right panel). In the example depicted, the risk function in the right panel is
slightly shifted to the left.

7Note that there will be an equally risky point in the direction of a false negative mistake as p(h) = .8

– namely, the point p(h) = v where
∫ .42

v
(s1 − s0)dt =

∫ .8

.42
(s0 − s1)dt. But since this particular score is

relatively more sensitive to moving in the direction of a false negative error, v will be closer in probability to
the risk-free credence than .8 is to the risk-free credence. Therefore, permuting probabilities for symmetric
scores does not affect their risk. For asymmetric scores permuting probabilities does not preserve risk, though
there exist “risk preserving permutations” which reflect the agent’s relative sensitivity to different types of
error.
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Figure 3.7: Symmetric epistemic risk function
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Figure 3.8: Asymmetric epistemic risk function

I refer to risk functions such as the one in Figure (3.7) as symmetric: it reaches its min-
imum at p(h) = .5 and its shape on [0, .5) is a reflection of its shape on (.5, 1]. Symmetry
in the risk function is related to 0/1 symmetry of the scoring rule: A scoring rule is 0/1

symmetric only if its associated risk function is symmetric.
Therefore, we should distinguish at least two different ways of valuing accuracy: a

symmetric risk function corresponds to a way of valuing accuracy in which moving away
from the truth in either direction is equally bad whereas an asymmetric risk function implies
a way of valuing accuracy where unit changes in the direction of false positives/negatives
get weighted differently at different credal values. Indeed they may not be weighted equally
at any place. It is not enough, therefore, to claim as [James(1896)] does that we should
seek truth and avoid error. Such an epistemic norm is underspecified. We need to decide
further how to trade-off the potential costs of different types of mistakes. The epistemic
risk function is flexible enough to encode different ways of balancing the competing costs.

So far we have exploited only the location of the risk function. But the risk function in
Figure (3.8) is not just shifted to the left. Speaking picturesquely, it is also pressed against
the y-axis. As a result, there is both a within and between difference in its concavity: it is (a)
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steeper to the left of its risk-free point than it is to its right, and (b) it is not equally concave
as compared to the risk function in Figure (3.7), whose embedded score is symmetric.
These properties add further texture to the proposed measure of risk, reinforcing the idea
that risk is a measure of alethic sensitivity to error. To exploit the concavity of the risk
function, we need to introduce another quantity.

Let h(p) = s1(p) − s0(p). For example, when p = .8, h(p) is a measure of the length
of the dashed vertical line segment connecting s1 and s0 at .8. R(p) is the antiderivative
of h(p). As a result, our definition of epistemic risk implies that R′(p) is equal in absolute
value to h(p). This means that the rate at which risk increases as we move away from the
risk-free point reflects the increase, in absolute value, between the agent’s best and worst
outcomes. As a result, while the risk function itself reflects the agent’s relative sensitivity
to unit increases in inaccuracy in the direction of different types of error, its first derivative
reflects, instead, the agent’s local sensitivity to risk as a function of her current credence. It
is a measure of marginal increases/decreases in risk. For example, the derivative of the risk
associated with the Brier score is 2p − 1. As a result, marginal changes in credence away
from the risk-free point lead to a constant increase in risk, as Figure (3.9) shows.
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Figure 3.9: Constantly increasing epistemic risk aversion
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Figure 3.10: Unequally increasing epistemic risk aversion
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If we let ∆FP stand for marginal increases in false positive inaccuracy and ∆FN stand
for marginal increases in false negative inaccuracy then a symmetric risk function (such as
the Brier score’s) implies that ∆FP = ∆FN .

By comparison, the derivative of the risk associated with the asymmetric score we have
been considering is −(3/2)p2 + 3p − 1 (Figure 3.10). For this score, marginal changes
in credence away from the risk-free point in the direction of a false negative error lead
to bigger changes in risk relative to marginal changes in credence away from the risk-free
point in the direction of a false positive error. The agent applying this particular asymmetric
score is more worried about marginal increases in false negative inaccuracy than she is
about marginal increases in false positive inaccuracy. For this particular asymmetric risk
function, ∆FN > ∆FP . This corresponds to the example described above – where h is
so important that rejecting it leads to substantial epistemic opportunity cost.

Moreover, marginal increases in risk taper-off as the agent approaches categorical false
positive error. This makes sense from a Bayesian perspective of scientific inquiry, since
having credence .05 in a true and important proposition is not that different from having
credence .01 in the same proposition. In both cases, the agent will likely not pursue the idea
further. There is no hard “cut-off” point of the sort significance levels play in Frequentist
inference. Meanwhile, given her concern about false negative error, her anxiety in that
direction persists, leading to near constant marginal changes in risk across the whole [0, .42)

sub-interval.
We can see this dimension of the agent’s attitude to risk in the second derivative of

the risk function. R′′(p) is equal in absolute value to h′(p). This function, h′(p), is what
[Gibbard(2008)] identifies as an indicator of the urgency the believer ascribes to getting
credences right, by her lights, in the vicinity of p (9). For the Brier score R′′(p) = 2.
No matter where the agent’s credence is on the unit interval, her local sensitivity to being
mistaken remains the same. For our asymmetric score, R′′(p) = 3 − 3p. This is exactly
what we described in the previous paragraph. This is a constantly decreasing function from
0 to 1. The agent’s peak local sensitivity to error occurs at categorical false negative error
and slowly tapers off as she approaches false positive error. Given the sensitivity of this
particular score to false negatives that is to be expected because p(h) = 1 is where false
negatives are eliminated altogether.

One might wonder whether this is a reasonable attitude to false positive error. But this
example should not be taken as an endorsement of this particular risk function. Rather,
I use it to illustrate the flexibility of the proposed approach to capturing a wide range of
attitudes to epistemic risk. By comparison, consider a logarithmic risk function, whose
second derivative is 1/[p(1 − p)]. In this case, we have increasing marginal risk aversion
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as we move away from the risk-free point in either direction. The concavity of the risk
function resembles in some respects the Arrow/Pratt measure of risk aversion for ordinary
economic prospects, where the normalized second derivative reflects an agent’s relative
sensitivity to ordinary risk of monetary loss [Pratt(1964), Arrow(1971)].8

3.5 Risk and generalized entropy

When Equation (3.1) is minimized at b = p (i.e., the scoring rule is proper) it may be
re-written as follows,

Ep[sv(p)] = ps1(p) + (1− p)s0(1− p) (3.2)

Following [Grunwald and Dawid(2004)], I refer to this function, Eb[sv(p)] in which b = p,
as H(p), the general entropy. Let me explain why, as this will be relevant to extending
our measure of risk to larger sample spaces.

Suppose w(p) is a measure of information conveyed by learning that the event h occurs
with probability p. What conditions shouldw satisfy? This is the question [Shannon(1948)]
seeks to answer. His famous result is a representation theorem showing that the logarithmic
construction w(p) = k log(p) uniquely satisfies several intuitively plausible constraints on
a measure of information – namely, that w should be a decreasing, continuous, and additive
function of p. By the same token −w(p) measures a lack of information and Shannon
entropy, H , is the expectation of w(p) with k = −1.

In the binary case, Shannon entropy becomes −[p log(p) + (1 − p) log(1 − p)]. This
is equivalent to the expected inaccuracy of the additive log score, defined as

∑
S log(v −

p), which is proper. So Shannon entropy is the entropy associated with the log score in
particular. But we can think more generally about the entropy function H associated with
other proper scoring rules – the weighted average of a different function of the probability.
The notion of entropy is an important building block in epistemic utility theory because
[Savage(1971)] gives us a recipe for deriving proper scores from entropy by showing that
every twice differentiable concave entropy function corresponds to a proper scoring rule,
as follows,

sv(p) = H(p) + (v − p)H ′(p) (3.3)

where v is the 0/1 truth-value for the event in question. This relationship is extremely
8It has been noted in the literature that the convexity of a scoring rule implies aversion to epistemic risk in

the following sense: suppose an agent is offered a pill that would, with equal probability, raise or lower her
credence in h by k ∈ [0, 1]. If the scoring rule is convex, such a pill would look unattractive in expectation
because losses are weighted more heavily than gains [Joyce(2009)].
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useful. As long as we start from a twice differentiable H(p) concave on [0, 1] we can
derive a continuous, truth-directed, strictly proper score.

The entropy function H is closely related to our measure of epistemic risk, R. For
example, for the Brier score, risk is equal to p∗ − p(1 − p) whereas entropy is p(1 − p).
This relationship is depicted in Figure (3.11). Meanwhile, for our asymmetric score risk is
p∗ − p(p− 1)(p− 2) whereas entropy is p(p− 1)(p− 2). We can see this in Figure (3.12).
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Figure 3.11: Risk/entropy duality (symmetric)
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Figure 3.12: Risk/entropy duality (asymmetric)

The following theorem establishes that this duality between entropy and epistemic risk
holds for all strictly proper scoring rules.

Theorem 1. For strictly concave and twice differentiable entropy function H
and risk function R defined on [0, 1],

R(p) +H(p) = k where k = min
p
R(p) = max

p
H(p) (3.4)

Proof in Appendix.
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In other words, the sum of risk and entropy is constant. Or more informally,

Risk + Entropy = k

In general, therefore, entropy is a scaled reflection of epistemic risk around the risk-free
point p∗(h) = k, as figures (3.11) and (3.12) suggest. But the risk-free credence is also
the maximum entropy credence. That is, minpR(p) = maxpH(p). Therefore, rearranging
the duality equation suggests that epistemic risk may be expressed as a measure of entropic
change from the maximum entropy credence to the target credence: R(p) = H(p∗)−H(p).
We will use this definition below to develop a general measure of epistemic risk.

Since epistemic risk is dual to entropy one might question whether we need to intro-
duce a notion of risk, given the already large literature on entropic inference.9 Rather
than speaking in terms of increases in epistemic risk, we could instead describe the same
changes in terms of decreases in entropy. While this is true for proper scoring rules, with
the effect that risk and entropy are co-extensive, they are independently motivated. We saw
this while developing the notion of epistemic risk in terms of sensitivity to different types
of graded error. That is, I am not arguing that the risk-free distribution is risk-free because

it maximizes entropy. Rather, it is risk-free, as we saw, because it eliminates variability in
terms of epistemic outcome. Strictly proper scoring rules have the feature that these two
properties do not come apart. For many other scoring rules, we could eliminate variability
without maximizing entropy. In such cases, the duality would not apply and we could not
measure epistemic risk in terms of entropic change.

Therefore, even though risk and entropy are extensionally equivalent for proper scoring
rules, thinking in terms of risk minimization is conceptually very different from thinking
in terms of entropy maximization. An agent might prefer risk-free credences not because
they do not go beyond the evidence, even though that might be true, but because from her
perspective they give her the best balance of graded error costs, a uniquely epistemic con-
cern. There is a conceptual difference between thinking in terms of minimizing the amount
of information an agents brings into the inference problem (the entropic interpretation) and
identifying an appropriate trade-off between different types of potential mistakes (the risk
interpretation). As a result, we should not think of one concept being reducible to the other.
The duality theorem shows that entropy and risk are two different ways of conceptualizing

9For example, [Jaynes(1957a), Jaynes(1957b), Jaynes(2003)] defends maximum entropy methods for
identifying priors, whereas [Williamson(2010)] goes further and defends updating by maximizing entropy
as well. [Gaifman and Vasudevan(2012)] object to using entropic approaches to understand (dynamic) epis-
temic risk, using [Van Fraassen(1981)]’s Judy Benjamin Problem to argue that the maximum entropy poste-
rior is not least risky. [Seidenfeld(1986)] contains a thorough discussion of the relationship between Bayesian
epistemology and entropic methods.
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the same underlying epistemic facts.
Indeed, insofar as proponents of entropic methods reference risk, it is assumed that a

credence function is risk averse because it maximizes Shannon entropy. Jaynes is the most
vivid proponent of this position. For Jaynes, the maximum entropy distribution is the most
conservative distribution in the sense that it does not permit us to draw any evidentially
unwarranted conclusions because it is “as smooth and spread out as possible” subject to
the data [Jaynes(1963)]. But consider an entropy function that reaches its maximum at
p(h) = .9. An entropy maximizing agent with this function would not be conservative at
all in Jaynes’s sense. In the absence of any data, she would predict h’s occurrence with
high confidence. Therefore, for asymmetric risk functions the least risky distribution will
not be maximally uniform.

3.6 Epistemic risk: the general case

So far we have considered credence functions for a single proposition h. Now, let the
sequence {h}ni=1 form a partition on sample space S. The objects of epistemic risk are
probability distributions on S. The risk-free distribution becomes the distribution which
solves the equation sv(pi) = sw(pj) for all i, j and indicators of truth-value v, w. Since
this is difficult to visualize (and calculate) beyond three dimensions we will use Theorem
(??) to identify this point as the point of maximum general entropy. Since entropy is the
expected inaccuracy of a strictly proper scoring rule, expressing risk in terms of entropic
change enables us to harness helpful properties of expectation.10

To make use of these properties, we will need to introduce the notion of a random
variable and its cumulative distribution function (cdf). A cdf is just a different way of
expressing a probability distribution. Let X : S → R be a random variable that maps
outcomes in the sample space to the real numbers, and whose mass/density is given by
f(X = x). For example, if the random quantity X represents the numerical outcome of
a single toss of a die, then the realized outcome x may take on integer values from 1 to 6.
If the die is fair, then f(X = x) = 1/6 for every value of x. Meanwhile, for each value
of x the cdf, defined as F (X ≤ x), tells us the probability that X is less than or equal to
that value. That is, the cdf F (X ≤ x) =

∑
xi≤x f(x) (for discrete X) and

∫ x
−∞ f(t)dt (for

continuous X), where f(x) is the mass/density.
Notice that for our purposes every outcome may be described in terms of the agent’s

10As propriety is generally accepted in the literature, I proceed by limiting my attention to strictly proper
scoring rules. But we should keep in mind that the general approach to epistemic risk I have developed here
does not necessarily depend on propriety. Rather, these scoring rules have some nice simplifying properties
that enable us to express epistemic risk in terms of entropic change.
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inaccuracy if that outcome occurs, where inaccuracy is measured by a scoring rule. There-
fore, we can define outcomes in terms of random variables as follows: let X be a random
variable that maps outcomes from the sample space to the real numbers, where the real
numbers represent inaccuracy given by sv. For every valid probability distribution on S,
call it p(h), there exists an induced probability distribution on X , which we will call f(x),
that is likewise valid. f(x) is the ordinary mass/density function for random variable X .
The possible values of the random variable now represent inaccuracy scores. Many scoring
rules will take values on a small sub-interval of R. For example, under the Brier score all
outcomes are mapped to [0, 1].

Changing the underlying scoring rule will rescale the random variable. Therefore, when
evaluating distributions in terms of their epistemic risk, we need to identify a random vari-
able X which describes outcomes in terms of some particular measure of inaccuracy sv.
We can now define the risk-free cdf.

Risk-free probability distribution. Let W ⊆ R be the set of values that a
specific scoring rule sv can take. Given a random variable mapping outcomes
from the sample space S to inaccuracy given by sv, X : S → W , the risk free
cdf P ∗ satisfies arg maxF HF (X).

To simplify expression, I will denote the entropy of a distribution P as H(P ), keeping in
mind that this is the entropy ofX whose distribution is given by P . As I emphasized above,
P ∗ is not risk-free because it maximizes entropy. Rather, this is the probability assignment
that eliminates variability in terms of epistemic outcome, which is how we defined the risk-
free credence in the simple case. We can now extend our definition of epistemic risk as
follows.

General epistemic risk. Given a random variable X : S → W , where W is
defined as above, let P ∗ = arg maxP H(P ). Then Theorem (1) implies that
the epistemic risk of another cdf P is given by R(P ) = H(P ∗)−H(P ).

Recall that in the simple case, this definition was motivated as a measure of the “spread”
between the agent’s inaccuracy if the proposition is true, and her inaccuracy if the proposi-
tion is false. It remains to be shown that the general definition given here is motivated by
the same underlying conceptual framework.

To see that this is indeed the case, I draw on [Rothschild and Stiglitz(1970)]’s notion
of a mean preserving spread. Informally, one probability distribution is a mean preserving
spread of another if the second is a transformation of the first obtained by pushing proba-
bility mass/density to the tails of the distribution without affecting its expected value. In
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the case of ordinary economic lotteries, distributions are given in terms of wealth. For ex-
ample, a lottery that pays $0 or $10 with equal probability is a mean preserving spread of
one that guarantees a payment of $5.

In the epistemic context, however, the outcomes of a “lottery” can not be specified
exogenously. Rather, the scale (i.e., scoring rule) is exogenous, but the outcome, given
in terms of that scoring rule’s inaccuracy, depends on the probability assignment itself.
For example, assuming the Brier score, a credence p(h) = .8 in a single proposition h is
effectively an epistemic lottery that pays (1 − .8)2 = .04 if h is true and (0 − .8)2 = .64

if h is false (this is a lottery where less is more). Now consider a riskier credence like
p(h) = .9. The latter is a probabilistic spread of the former because it is a transformation
accomplished by taking the probability assigned to h and making it even more extreme
while at the same time taking the probability assigned to h and making it correspondingly
more extreme in the other direction. Assuming the agent is coherent, as we have been
doing, there is a quantity that is preserved every time we make a credence riskier as we just
did – namely, the simple mean given by 1/|S|, where |S| is the length of the partition. As
long as we keep this quantity fixed, every probabilistic spread as just described guarantees
an increase in risk. In this sense, a mean preserving spread of a credence function implies
an increase in that credence function’s epistemic risk. By expressing a credence function
in terms of its cdf, we can give a general definition of mean preserving spreads and prove
this relationship.

For example, suppose {h1, h2, h3} is a partition on S and we want to measure the epis-
temic risk of credence function p given by 〈1/5, 3/5, 1/5〉 under the Brier score. Since the
Brier score is 0/1 symmetric we know that its risk-free credence function p∗ is the uniform
〈1/3, 1/3, 1/3〉. To evaluate the spread of our target credence function from the risk-free
credences, we write the cdfs of both credence functions, P and P ∗, as follows.

P ∗ =


0 for x < (1/3)2

2/3 for (1/3)2 ≤ x < (2/3)2

1 for x ≥ (2/3)2

P =


0 for x < (1/5)2

4/5 for (1/5)2 ≤ x < (4/5)2

1 for x ≥ (4/5)2

Figure (3.13) below depicts the plot of each cdf. The arrows indicate the spread in prob-
ability generated by moving from P ∗ to P . This is harder to visualize for discrete cdfs.
To make the idea more intuitive, Figure (3.14) depicts two arbitrary cdfs of a continuous
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random variable X where one is a mean preserving spread of the other.
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Figure 3.13: Mean preserving epistemic spread (discrete)
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Figure 3.14: Mean preserving epistemic spread (continuous)

Notice that for any value of X , representing inaccuracy, the area underneath the dashed
(risky) curve is greater than or equal to the area underneath the solid (safe) curve. Fol-
lowing [Rothschild and Stiglitz(1970)], we can use this quantity to define mean preserving
epistemic spreads.

Mean preserving epistemic spread. Given a random variable X : S → W ,
where W is defined as above, let P and Q be two cdfs. Then Q is a mean
preserving epistemic spread of P if, for all x,

∑x
i=0 P (ti) ≤

∑x
i=0Q(ti) (if X

is discrete) and
∫ x

0
P (t)dt ≤

∫ x
0
Q(t)dt (if X is continuous).

In the single proposition case this implies that one probability q(h) is a mean preserving
epistemic spread of another probability p(h) if |s1(p) − s0(p)| < |s1(q) − s0(q)|. This
is consistent with our definition of epistemic risk in the simple case as the integral of the
absolute difference between s1 and s0. Therefore, by using mean preserving epistemic
spreads to measure risk, we measure the difference in area underneath the risk-free cdf and
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the target cdf. In Figure (3.15), below, this is the difference of the two rectangles labeled A
and B.
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Figure 3.15: Epistemic risk as entropic change

This measure of epistemic risk, in terms of the change in area underneath the cdf, devel-
oped by analogy to [Rothschild and Stiglitz(1970)]’s approach to ordinary risk, preserves
the motivation given for measuring epistemic risk in the simple case as sensitivity to ap-
proaching different types of error. In the general case, however, epistemic risk reflects an
agent’s sensitivity to graded inaccuracy with respect to any given outcome in the sample
space. As a result, we no longer have Type I and Type II errors only. Instead, we have n
error types for |S| = n possible outcomes.

We are now in a position to show that our definition of epistemic risk in terms of en-
tropic change corresponds to the general interpretation of epistemic risk given in terms of
mean preserving epistemic spreads. For any given cdf P , as the area underneath it, given
by
∑n

i=1 P (xi) (for discrete X) or
∫
X
P (x)dx (for continuous X), decreases, the quan-

tity 1 −
∑n

i=1 P (xi) (for discrete X) or 1 −
∫
X
P (x)dx (for continuous X), increases. In

Figure (3.15), for example, for each cdf, this is the area to its left and bounded above by
the line P (X ≤ x) = 1. This quantity, which is essentially the anti-cumulative given
by P (X > x), is equal to the expectation of X , ordinarily defined as

∑n
i=0 xip(xi) (for

discrete X) or
∫
X
xp(x)dx (for continuous X) where p is the ordinary mass/density. This

relationship is a consequence of Fubini’s Theorem. Importantly for us, since X maps out-
comes to inaccuracy scores, the expectation of a random variable X with cdf P is precisely
the entropy of P , H(P ), provided the underlying inaccuracy scale given by sv is proper.
Furthermore, on any given sample space S, the risk-free cdf will be the cdf that has the
smallest area underneath it. Equivalently, it will be the cdf that has the largest area to its
left. We can see this in Figure (3.15). In other words, the risk-free credence is the maxi-
mum entropy credence. Again, however, it is risk-free not because it maximizes entropy,
but rather because this is the point where the agent’s sensitivity to graded error in the di-
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rection of every possible outcome in the sample space is equal. And again it turns out, as
in the simple case, that for strictly proper scores this point is also the point that maximizes
entropy. Therefore, as measured in terms of mean preserving epistemic spreads, risk may
be given as the difference between the entropy of the risk-free cdf and the target cdf. This
is precisely the quantity A−B in Figure (3.15) and it corresponds exactly to how we have
defined epistemic risk, as H(P ∗) − H(P ). This leads to the following theorem, which is
now unsurprising.

Theorem 2. Given a random variable X : S → W , where the underlying
scoring rule sv is proper, and two cdfs P and Q, if P is a mean preserving
epistemic spread of Q then R(P ) > R(Q).

Proof in Appendix.

As a result, every mean preserving epistemic spread increases variability in the underlying
outcomes, increases risk, and (if sv is proper) decreases entropy.

For example, take the credences we have been considering on a sample space with
three outcomes, P ∗ and P , whose cdfs are given above. To measure the risk of P we first
determine the entropy of the risk-free P ∗. The area to the left of its cdf is a sum of two
rectangles: one of length 1/3 and width 2(1/3) and another of length 2(1/3) and width
1/3. This is 4/9. Next, we determine the entropy of P . Tracing the same approach, we get
8/25. Since risk is given in terms of entropic change the risk of P is 4/9−8/25 = .12. We
would get the same result by integrating the density between the scores.

Since the approach we have developed requires identifying an inaccuracy scale be-
fore evaluating the risk of a credence function, one might reasonably wonder how gen-
eral the risk ordering of credence functions will be. For example, suppose we have the
same two credence functions as in the previous paragraph, P ∗ = 〈1/3, 1/3, 1/3〉 and
P = 〈1/5, 3/5, 1/5〉, but we define epistemic outcomes logarithmically instead of quadrat-
ically. That is, the x-axis now measures inaccuracy in terms of the log score. The y-axis
remains the same. Would it still be the case that R(P ) > R(P ∗)? If so, would the risk
order be preserved for any arbitrarily chosen set of cdfs?

For most families of scoring rules considered in the literature, including some improper
scores, the risk ranking of credence functions will be consistent. This includes the Brier,
log, spherical, and absolute value scores. But it does not include the asymmetric score
we have been considering throughout. This is because the asymmetric score has a differ-
ent risk-free point and risk is measured in terms of deviation from the risk-free point. Of
course, if we take two asymmetric scores with the same risk-free point, wherever it hap-
pens to be, then it is very likely the risk ordering will be consistent between them. More
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generally, for any two scoring rules, if they reach their local minimum on the unit interval
at the same point (i.e., they have the same risk-free point), and their risk function is convex,
then the risk-order of credence functions between them will be consistent.

Theorem 3. Given a random variable X : S → W , where W ⊆ R contains
inaccuracy scores measured by a scoring rule sv, let V = {P1, ..., Pn} be a
set of cdfs for X . Given a random variable Y : S → W ∗, where W ∗ ⊆ R
contains inaccuracy scores measured by a different scoring rule s∗v, let U =

{Q1, ..., Qn} be a set of corresponding cdfs for Y . This means that for each
outcome h ∈ S, the probability assigned to h by Pi is equal to the probability
assigned to h by Qi, but whereas in the first case the outcome h is described
by sv in the second case it is described by s∗v. Suppose (1) sv and s∗v are
truth directed scoring rules, whose risk functions R and R∗ are such that (2)
R′′ > 0, R∗′′ > 0, and (3) arg minR = arg minR∗ on the unit interval. Then
R(Pi) > R(Pj) if and only if R(Qi) > R(Qj).

Proof in Appendix.

This result expands the reach of the approach to epistemic risk we have developed to the
vast majority of commonly considered families of scoring rules.

That is not to say, however, that all information encoded in the risk function will be
preserved across different scoring rule transformations of it. Take the Brier and log risk
functions, for example. While they are both convex and share the same risk-free point, their
derivatives look very different. As a result, while a Brier-to-log transformation preserves
an agent’s risk ordering it does not preserve their attitudes to unit changes in inaccuracy
nor does it preserve their local sensitivity to marginal changes in risk. We could have two
agents who rank two prospective credence functions equally in terms of risk, yet while one
agent finds that degree of risk tolerable, the other considers it to be inappropriate, because
of differences in the way in which they evaluate the potential cost of increasing graded
inaccuracy in the direction of any given outcome. This is to be expected, however. We
would not want a risk function that erases well-known differences between these scores.
As [Selten(1998)] emphasizes, the log score is hypersensitive in the sense that one’s inac-
curacy goes to infinity as the probability assignment goes to 0 or 1. This hypersensitivity is
reflected in the curvature of its associated risk function.
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3.7 Risk, priors, and the principle of indifference

By developing a theory of accuracy dominance [Joyce(1998), Joyce(2009)] gives us a pow-
erful tool for evaluating the quality of an agent’s beliefs. The theory of epistemic risk we
have developed here enables us to go further in terms of our understanding of the normative
dimensions of an agent’s doxastic state. One might ask how these attitudes to risk will man-
ifest themselves, however. After all, nearly everyone in the literature agrees that an agent
should choose the credence function that, in light of her evidence, minimizes her expected
inaccuracy. As a result, attitudes to risk are not going to play a direct role in one’s choice
(fictional or otherwise) of what to believe. But this is not the role of risk in ordinary utility
theory, either. We do not consult our sensitivity to risk in order to make a choice. Instead,
our choice reflects our attitudes to risk. Roughly the same is true in the epistemic case.
However, epistemic risk attitudes can play a more direct role at the beginning of one’s epis-
temic journey: in particular, they affect the agent’s selection of an appropriate prior. But
since an agent’s prior influences their subsequent beliefs, it is in this sense that the agent’s
attitudes to epistemic risk will ultimately affect the beliefs they hold at any given time –
though evidence will gradually dilute their effect.

Identifying an appropriate prior can be difficult, especially in the absence of any in-
formation. The so-called Laplacean principle of indifference (or, principle of insufficient
reason) is often given as a crude guide for selecting priors under conditions of ignorance:
if you do not have information to privilege one outcome over others given a partition of
the sample space, you should assign equal probability to each outcome. It is assumed,
therefore, that given an appropriate partition of the sample space the POI recommends the
uniform distribution. The most well-known problems with this principle stem from its as-
sociation with uniformity. In particular, the guideline is not partition invariant. The uniform
distribution over one partition may be logically inconsistent with the uniform distribution
over a simple transformation of that partition.11 Epistemic risk provides a new perspective
on the principle of indifference. In particular, whether or not the distribution recommended
by the POI is uniform depends, as I emphasize below, on the agent’s underlying risk func-
tion. By recasting the POI as a risk minimization principle we can identify the normative
commitments presupposed in its endorsement.

[Pettigrew(2016b)] argues for the POI from considerations of accuracy and a minimax
decision rule. In particular, he shows that if an agent seeks to minimize her worst case
inaccuracy under the Brier score, then in the absence of information she should apply the

11For example, as John Venn first observed a uniform distribution over X is not a uniform distribution
over X2. [Van Fraassen(1989)] makes this point vividly using the example of a box whose dimensions are
unknown and may be measured in terms of side length or volume.
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POI and select a uniform prior. On the approach we have developed, a more general result
follows. In particular: if an agent seeks to minimize a symmetric and convex epistemic
risk function then in the absence of information she too should apply the POI and adopt a
uniform prior. Our result holds not only for the Brier score but also for the log, spherical,
absolute value, and many other families of scoring rules. The proof of this is trivial. Risk-
free credences are minimax optimal, i.e., they minimize worst case inaccuracy, because
they guarantee a certain inaccuracy outcome. And a convex symmetric risk function im-
plies a scoring rule that minimizes risk at p(h) = 1/n for all h where n = |S|. Therefore,
for all such scores, the risk-free credence function will assign equal probability to every
outcome in the partition. But this is not an argument for the uniform prior in the absence
of information. Rather, it tells us that every epistemic risk function has its own scoring
rule and its own principle of indifference. Sometimes the POI endorsed prior is uniform,
other times it is not. Therefore, whether or not an agent identifies the uniform prior as op-
timal – where optimal can mean minimax optimal, risk-free, or more generally rationally
permissible – depends on the shape of her epistemic risk function.

Suppose we start with the asymmetric risk function we have been considering through-
out, given by p∗ − p(p − 1)(p − 2), and seek to identify an appropriate prior. Given this
risk function, the risk-free prior in a single proposition case, as we saw, is p(h) = .42. This

is the maximally non-committal prior for such an agent, because it guarantees a particular
outcome in terms of inaccuracy. If an epistemically risk averse agent has a risk function
that takes this form, she will not adopt a uniform prior. From the epistemic risk perspective,
therefore, having uniform credences is not the same as having maximally non-committal
credences. As a result, the agent’s attitudes toward epistemic risk will determine the prior
she deems appropriate and her interpretation of what the POI recommends. Uniformity
is a special case of agents with symmetric risk functions who do not discriminate among
mistakes. Such indifference between different ways of being mistaken is sometimes appro-
priate but more often it is not.

The notion, due especially to [Jaynes(1957a), Jaynes(1957b)], that the right prior is to
be found by identifying the maximum entropy distribution is a combination of two separate
normative principles: (a) that one ought to minimize epistemic risk, and (b) that one ought
to evaluate epistemic risk using a convex symmetric risk function. What I have done here
is to distinguish the two principles: even if we agree that minimizing epistemic risk is
desirable, the appropriate prior may not be uniform. Therefore, the Jaynesian commitment
to maximum entropy priors is a commitment to a particular attitude to how much risk is
rationally permissible (as little as possible) and how different types of errors are to be
evaluated (equally). These are very strong normative assumptions which, despite the size
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of the literature on the problem of the priors and the principle of maximum entropy, have
not been adequately addressed.
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CHAPTER 4

Dynamic Epistemic Risk

4.1 Introduction

In the preceding chapter, I argued that entropic change is a plausible measure of risk as-
sociated with a probability distribution. Let P be a probability distribution on a discrete
finite sample space S and p its density where it exists. Then P ’s riskiness is given by
H(P ∗)−H(P ) where H is a generalized measure of entropy and P ∗ is the corresponding
maximum entropy probability distribution.

In this chapter, I address a dynamic question: given a prior distribution P , what is
the least risky posterior probability Q, after undergoing some learning experience? More
generally, how can we measure the epistemic riskiness of an update rule or, equivalently,
the epistemic riskiness of a posterior probability relative to some fixed prior?

4.2 The formal framework

I investigate learning in the context of acquiring information about a simple binary process.
To fix ideas, suppose three agents, A, B, and C, are interested in formulating a credence
about the bias of a coin. Before seeing any evidence, they estimate the coin’s bias as 1/2

(i.e., they start with a weak assumption of fairness). However, while their valence about
the coin’s bias is the same, the resilience of their credence, as we will see below, may be
different. Moreover, while A updates by Bayesian conditioning, B and C apply a different
rule for updating beliefs.

Together, they will witness a sequence of coin tosses with a coin whose objective chance
of landing on heads or tails is unknown. We want to explore how prior information and
updating rules affect the riskiness of their learning procedures and their estimates of the
coin’s bias. We have not said what it means for learning or, more specifically, updating, to
be more or less risky yet. This remains to be seen.
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Suppose more generally that {Xn} is an independent and identically distributed (iid)
sequence of Bernoulli random variables that can take the value 0 (e.g., for heads) or 1 (e.g.,
for tails). Then Ω = {0, 1}n≥1 is the set of all possible sequences that might be observed.

One might object to the iid assumption. In general, this assumption will not be neces-
sary for the account of dynamic risk I intend to develop. Rather, I use it as a heuristic for
parametric modeling of stylized learning behavior. The model is not a realistic description
of learning, but it is useful for helping us to consider our judgment about different ways of
processing information. The iid assumption does, however, affect the asymptotic behavior
of different updating rules, as we will see below. We can, however, recover most of the
results with exchangeability alone.

In any case, let Y =
∑

iXi be a random variable that represents the sum of successes
(in this example, the frequency of tails). Then Y follows a Binomial(n, p) distribution.
Let A, B, and C be Bayesian agents endowed with coherent prior probability distributions
about the bias of the coin which they will revise in response to new evidence. The coin’s
bias corresponds to the limiting mean of the sampling distribution: EX → p in probability
as n → ∞. It is a consequence of DeFinetti’s representation theorem that this quantity
exists with probability 1 [Zabell(2005b)]. Therefore, the unknown parameter of interest θ
is equal to p in the binomial example we are considering. From here on, we will be talking
about estimating θ, which should be understood as the limiting mean of the sequence. Or
the true mean. Or the population mean. How we conceptualize the quantity to be estimated
depends on one’s metaphysical understanding of probability, but I would like to set that
aside for now. In any case, θ is the unknown quantity we wish to estimate.

There is a more important metaphysical issue, however. Extreme subjectivists often
avoid talk of estimating ‘true but unknown’ quantities altogether, and replace them with
inter-subjective agreement in degree of belief. I will not do this, but I do not think anything
in my argument turns on it. Another way of putting the objection might be to say that
a point estimate is conceptually not Bayesian. But we can imagine situations where a
Bayesian may need to make such an estimate: for example, an expert has tossed the coin
many thousands of times, and is offering A, B, and C a prize for making the most accurate
guess about the expert’s observed large sample mean. This way of framing the problem
treats objective chance as an expert, which is compatible with Bayesian characterizations
of the Principal Principle [Lewis(1980)]. In any case, our Bayesian estimator, θ̂, will be a
function of the posterior distribution. Our agents will each have an estimator, given by θ̂i
for agent i that gives their best estimate of θ. This gives us a very simple example to work
with.

The conditional distribution ofX given Y = y is equal to 1/
(
n
y

)
. This can be interpreted
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as the probability of tails on the next toss, given the proportion of heads that has occurred
up to now. This quantity does not depend on θ = p. Applying the Factorization Theorem,
Y is therefore a sufficient statistic for estimating θ [Halmos and Savage(1949)]. In general,
the Bayesian estimate given a sample of the data is equivalent to the Bayesian estimate
given a sufficient statistic of the data. Therefore, in thinking about how our agents will
revise their beliefs about θ, we can confine our attention to updating on Y . Indeed, the
claim that our estimate of θ can be made on the basis of Y is really a special case of W.E.
Johnson’s sufficientness postulate [Johnson(1924), Zabell(1982)].

This revision of beliefs will be the subject of our investigation. A will revise her beliefs
by Bayesian conditioning whereas B and C will apply a different update rule. Let πi(θ)
represent agent i’s prior distribution for θ (subscripts are omitted where unnecessary). Fur-
ther, let f(x|θ) represent the empirical distribution. Then,

πi(θ|x) ∝ f(x|θ)πi(θ) (4.1)

is agent i’s posterior distribution after seeing the data. A Bayesian agent’s estimate of the
coin’s bias after seeing the data is typically taken to be the posterior mean. This is the
ordinary Bayes estimator, given by,

θ̂ = E[θ|y] =

∫
θπ(θ|y)dθ (4.2)

It is worth investigating whether we should indeed apply the ordinary Bayes estimator, as
the usual justification for it is that it minimizes a quadratic loss function. Indeed, it is
well-known that if we do not square the loss function then the Bayes estimator would be
the median of the posterior distribution – this is to be expected. Since quadratic loss is
more sensitive to outlying/extremal observations those observations will drag the optimal
estimate up or down. But what happens if the loss function takes a different functional form
– such as the logarithmic distance? Perhaps unsurprisingly, we would still get the mean of
the posterior. Indeed, for all strictly proper scoring rules in a binary process the Bayes
estimator is the mean of the posterior. From an accuracy-theoretic perspective this makes
sense. The Bayes estimator is essentially the estimator that maximizes posterior expected
accuracy.

In any case, as we said earlier, the estimate produced by πi(θ|x) is equal to the estimate
produced by πi(θ|y). Since we are interested in a binary random process, it is reasonable
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to suppose that π(θ) ∼ Beta(α, β), given by,

π(θ) =
1

B(α, β)
θα−1(1− θ)β−1 (4.3)

where B(α, β) is the complete Beta function. If α, β ∈ N+ then B(α, β) = (α − 1)!(β −
1)!/(α + β − 1)!. We also know that the sampling distribution is,

f(y|θ) =

(
n

y

)
θy(1− θ)n−y (4.4)

The joint distribution is therefore,

f(y, θ) =

[(
n

y

)
θy(1− θ)n−y

][
1

B(α, β)
θα−1(1− θ)β−1

]
(4.5)

Applying Bayes’ rule, this means that the posterior is,

π(θ|y) =
1

B(y + α, n− y + β)
θy+α−1(1− θ)n−y+β−1 (4.6)

In the usual terminology, the beta prior is conjugate for the binomial – i.e., the posterior is
isomorphic to the prior and is given by Beta(y + α, n− y + β).

Takeaway: with a beta-binomial conjugate distribution, the hyperparameters of the
prior, (α, β), are equal to pseudo trials (e.g., imagined coin tosses) which determine the
valence and resilience of the agent’s credences before seeing any data. “Imagined” is not
quite the correct term here, though I hope it helpfully illustrates the point. It may be, in-
stead, that a person’s prior about this coin toss is informed by previous coin tosses she has
seen. This will depend on the context and on our judgment of whether previous experience
is relevant to the experiment about to be performed. In simple coin toss cases, it probably
is.

In any case, the posterior distribution is a beta distribution whose parameters are given
by the sum of pseudo and real successes (y + α) and pseudo and real failures (n− y + β).
The posterior credence for θ (i.e., the agent’s best guess about the coin’s bias after Bayesian
conditioning on the evidence) is then given by the posterior mean,

E[θ|y] =
y + α

α + β + n
(4.7)

This gives us a very easy way to think about Bayesian updating in the context of binary
sequences with Beta priors. If an agent starts with a uniform Beta(1, 1) prior, and observes
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two heads and three tails, then after Bayesian conditioning on the data she will end up with
a Beta(4, 3) posterior. Her initial estimate for θ would have been 1/2 whereas her new
estimate is that the coin has a 4/7 bias in favor of tails.

This also gives us a very transparent way of thinking about the resilience of a cre-
dence function. If we have two agents, A and B, one with a Beta(1, 1) and another with a
Beta(3, 3) distribution, they will agree in their estimate of the coin’s bias (1/2) (valence)
but they will not agree on how to revise that estimate after seeing an additional toss or
sequence of tosses (resilience). Indeed, A’s credence will be more sensitive (less robust)
to new evidence. If they see one additional toss, and it lands heads up, A will move from
θ̂A = .5 to θ̂A = .33 whereas B’s estimate will shift from θ̂B = .5 to θ̂B = .42. As we will
see below, α and β provide a very good measure of the resilience of the estimate.

4.2.1 Beta priors and Carnap’s continuum of inductive methods

The machinery we have developed here reflects Carnap’s continuum of inductive methods.
Note that the prior mean, i.e., the mean of the pseudo trials, is given by α/(α + β). Mean-
while, the mean of the empirical distribution is simply y/n. We can write θ̂ = E[θ|y] as
follows,

θ̂ =

(
α + β

α + β + n

)(
α

α + β

)
+

(
n

α + β + n

)(
y

n

)
(4.8)

Since the weights on the prior and sample mean sum to 1, the posterior mean is a convex
combination of the prior mean and the maximum likelihood estimator (MLE),1

θ̂ = λ

(
pseudo mean

)
+ (1− λ)

(
MLE

)
(4.9)

where λ ∈ [0, 1]. The pseudo counts determine how much weight we put on the prior –
i.e., they determine the value of λ. It is easy to see from the expression of the posterior
as a convex combination of the prior and the MLE how data washes out the prior. Let
S = α + β. Then λ = S/S + n. As n→∞, λ→ 0.

With good prior information λ should be high. With poor prior information, it should
be weak or uninformative. But we have a menu of options corresponding to all values on
the unit interval for determining how much weight to give to the prior. For every Beta
prior, there exists a value of λ in Carnap’s framework. Therefore, the pseudo trials of the

1Recall that f(x|p) =
∏n

i=1 p
xi(1−p)1−xi . The log likelihood is then l(p|x) = log p

∑n
i=1 xi+log(1−

p)(n −
∑n

i=1 xi), and the first derivative d
dp l(p|x) =

∑n
i=1 xi/p − (n −

∑n
i=1 xi)/(1 − p) which equals 0

at p = 1/n
∑n

i=1 xi = X . Checking the second derivative and boundary points will confirm this is indeed a
maximum.
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Bayesian’s prior essentially provide a smoothing function on the MLE. In other words,
there exists a function g : R2 → [0, 1] that assigns to every point in the 2-dimensional
α − β plane a unique value of λ in the unit interval. The proof of this is easy to see given
the expression above – λ is equal to the proportion of pseudo trials to all trials. For example,
if α = β = 1 then λ = 2/(2 +n). At every step in the sequence this is a determinate value.
For example, if n = 10, then λ = 1/6: a weak Beta prior is equivalent to a low λ value.
However, notice that g is not bijective. While it is true that for every value of S there is a
unique λ, it is still the case that there are many different ways to sum up α and β to any
particular value of S. So, for example, at n = 10 Beta(2, 2) and Beta(1, 3) assign the same
value to λ, namely 2/7. So the weight being put on the pseudo mean is the same. However,
the posterior is different because the pseudo mean itself is different.

The takeaway from this discussion is that if we want to vary the amount of weight we
put on the prior we need to vary the absolute value of S. The absolute value of S encodes
the resilience of the prior. In Carnap’s framework, therefore, λ corresponds to the resilience
of the prior. There is still no flexibility, on this approach, to vary the update rule.

4.2.2 A generalized Bayes estimator

But what if we want to vary the update rule? In other words, holding the pseudo mean
fixed, what if we want to update more or less quickly on the evidence, relative to Bayes’
rule?

This kind of framework would enable us to describe the behavior of imperfect Bayesian
agents: agents who shoot past the Bayesian update or fall short of it. Realistically, most
decision-makers do something like this, and while it is possible to explain the discrepancy
by postulating a difference in their priors, I want to investigate what happens if someone
applies a different rule of updating without attributing the difference to the prior. Indeed,
I will argue that different update rules can be more or less risky. Dynamically conser-
vative agents will be close to the Bayesian ideal whereas dynamically liberal agents will
significantly depart from it. I will introduce a measure for such risk, below.

So, focusing for now on the case of beta-binomial credence functions, how can we tune
the update rule? Consider again our characters A, B, and C. Suppose they each start,
at to, with a uniform Beta(1, 1) prior. So the number of pseudo tosses is fixed at S = 2

and α = β = 1. A updates by Bayes’ rule. Now suppose B does the following: for
every trial (i.e., every new data point in the sequence), B double counts it. So B is the
type of character who is too quickly persuaded by empirical evidence and jumps to hasty
conclusions. If they observe a success (tails) at t1 Amoves to a Beta(2, 1) posterior whereas
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B moves to a Beta(3, 1) posterior. I have used the term ‘pseudo’ to refer to prior trials but
we may suppose that what B does is for every trial she observes, she adds a matching
‘ersatz’ trial. Ersatz trials are different from pseudo trials because they are a function of
Y . They are super data. Meanwhile, C exhibits the opposite flaw – C is too dogmatic to
give the evidence enough weight. As a result, relative to A, C counts each toss for half the
weight. In the case above, C would move to a Beta(1.5, 1) posterior. C essentially adds
‘antidata’ to her sample, to borrow a phrase from [Rodriguez(2006)].

Let η (eta) represent ersatz successes and σ represent ersatz failures. Then the total
number of ersatz trials is given by W = η+σ. When W = 0, as in the case of A, the agent
is an ordinary Bayesian updater. When W > 0, as is the case for B, the agent is adding
ersatz trials (super data). Accordingly, we will call them a super-updater. When W < 0, as
is the case for C, the agent is likewise adding ersatz trials, but in the form of antidata. We
will call them a sub-updater.

All we are doing here is treating ersatz trials exactly how pseudo trials are treated. We
can now give the expression of a new, generalized Bayes estimator, as follows,

θ̂ =

(
S

S +W + n

)(
α

S

)
+

(
n+W

S +W + n

)(
y + η

n+W

)
(4.10)

This is a convex combination of the prior mean and the new empirical/ersatz hybrid mean.
So for B, the distribution of η is given by 2Y . Reasonably, one might wonder how we are
going to treat C? There is a natural extension, again in terms of Y . We will say that for C
the distribution of η is given by−1/2Y . Similarly, W = 2n for B and for C, W = −1/2n.
Suppose we see the following sequence of trials,

1, 0, 0, 1, 1, 0, 1, 1, 1, 0

(6 successes and 4 failures). Assuming each agent started with a uniform prior, A will
move to Beta(7, 5), B will move to Beta(13, 9) and C will move to Beta(4, 3).

Takeaway: re-parameterizing the Beta-binomial distribution with ersatz trials allows
us in effect to vary the update rule in Bayesian inference. This distribution should be
considered a generalization of the Beta distribution because, again, Bayesian updating is a
special case of it with W = 0. Indeed, the distribution takes the form Beta(y + η + α, n+

η − y + β), with the following density,

π(θ|y) =
1

B(y + η + α, n+ η − y + β)
θy+η+α−1(1− θ)n+η−y+β−1 (4.11)
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This expression still integrates to 1 and is a valid pdf. It is important to highlight the
following here: in Bayesian inference we are treating θ as random and the evidence Y
as fixed. In a sense, then, Y plays the role of a parameter. Since η is a function of Y ,
η is likewise a parameter in the posterior distribution. It is a parameter that tracks ersatz
evidence, whereas the hyperparameters α and β track pseudo evidence, and the “parameter”
Y tracks actual evidence. Every part of the distribution is, therefore, accounted for: we have
the random variable θ, the hyperparameters of the prior (α, β), the parameter of the sample
(Y ), and the ersatz parameters (η, σ). This gives us the sought after machinery and provides
more flexibility than was available either under Carnap’s continuum of inductive methods
or with the original beta-binomial framework: we can now tune the resilience of the prior
with the hyperparameters and we can tune the update rule with the ersatz parameters.

One might wonder whether the approach we have developed is still Bayesian. It is
certainly subjective but if we are no longer updating by applying Bayes rule in what sense
is this Bayesian? From a slightly different perspective, we can see that it is, by highlighting
that η plays a role that is analogous to Carnap’s λ. Recall that since λ = S/(S + n) when
we vary λ we end up with agents who are Bayesian conditioning on different priors. Now
consider η. For example, if η = 2Y , then the set of all possible paths that might be observed
is given by Ω = {0, 1}∞2n. More generally, Ω = {0, 1}∞n+W . This is still a σ-algebra. It is
the σ-algebra that corresponds to the generalized beta distribution we have developed. So,
when we talk about our Bayesian sub-conditioners and super-conditioners, another way to
describe them is to say that they are Bayesian conditioning on a different σ-algebra. So if
one wants to describe such agents in terms of Bayesian conditioning then we would say
that η is a tuning parameter for the underlying algebra of events. But it remains true that
from A’s perspective, B and C are not conditioning. And that is all we need to have a
discussion about the riskiness of different update rules: the fact that A can meaningfully
ask herself: should I condition? Or Should I do what B and C are doing?

4.2.3 Asymptotics of the generalized Bayes estimator

It is worth investigating what happens with the generalized Bayes estimator asymptotically.
We can write the ordinary Bayes estimator as follows,

θ̂ =
y + α

S + n
(4.12)

In other words, the posterior mean is the sum of pseudo and actual successes, over the total
number of pseudo and actual trials. As n goes to infinity y and n swamp α and S and by
the weak law of large numbers y/n converges to θ in probability.
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Meanwhile, the generalized Bayes estimator we have developed here will be the sum of
pseudo, actual, and ersatz successes over, again, the sum of all three types of trials, given
as,

θ̂ =
y + α + η

S +W + n
(4.13)

Asymptotically, this will approach (y+η)/(W+n). A necessary condition for convergence
is that W → 0 as n→∞. But W is not any scalar. It is a function of S. So letting η = ky

we can more helpfully write this expression, as follows,

θ̂ =
ky + α

S + kn
(4.14)

This will converge to ky/kn – i.e., to y/n. It must, because both estimators satisfy the
Martingale condition. For example, suppose we have an ordinary and super updater. Both
start from a Beta(1, 1) prior and their prior estimate is θ̂ = .5. The ordinary updater
may end up with a Beta(1, 2) or a Beta(2, 1) prior. The super updater may end up with
a Beta(1, 3) or a Beta(3, 1) prior. From their prior perspective, the two possibilities are
equiprobable. Therefore, their expected estimate after seeing the next toss – 2/4 and 3/6,
respectively – is equal in valence to their current estimate. Clearly, then, the generalized
Bayes estimator is consistent. It converges in probability to the true mean under the same
conditions as the ordinary Bayes estimator. (both estimators, by the way, are biased, and
the ersatz parameters of the generalized Bayes estimator introduce additional bias.)

However, for any finite n notice that the rate of convergence depends on the update
rule and the kind of evidence the agents will encounter. For example, suppose we have a
fair coin. And the evidence is minimally misleading in that the outcomes alternate between
heads and tails without exception. Then the agent for whom η > Y will accurately estimate
the population mean more confidently. The opposite occurs when η < Y . However, if the
agents encounter misleading evidence (for example, a sequence of all heads when a coin is
fair), then the agent for whom η > Y will also be misled more quickly. Again, the opposite
occurs when η < Y . In the limit, of course, the detours will wash out.

We can be more specific about the rate of convergence of the generalized Bayes esti-
mator. Applying Chebyshev’s inequality, we find that,

P (|kYn/nk − θ| ≥ ε) ≤ V ar(kYn/nk)

ε2
=

σ2

knε2
(4.15)

Which means that the estimator converges linearly in n. So the rate of convergence of the
super/sub updater is a linear function of the rate of convergence of the ordinary Bayes esti-
mator. From a slightly different perspective, we know from the Central Limit Theorem that
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√
n(Yn/n − θ)

d→ N(0, σ2) so Yn/n
d→ N(θ, σ2/n). This means that for the generalized

Bayes estimator, kYn/n
d→ N(θ, σ2/kn). In other words, it is likewise approximately nor-

mal with smaller (larger) variance. This is to be expected because the sample size has been
artificially inflated (deflated) with super data (antidata) to account for the rate of the update
rule. So depending on the size of k the generalized Bayesian is more/less sure of herself in
her estimate of the true mean at every finite point in the sequence.

Importantly, the following is true of super/sub updaters:

1. Potential gain: She stands to gain something: namely, faster conver-
gence under sufficiently non-misleading evidence or slower convergence
under sufficiently misleading evidence;

2. Potential loss: She stands to lose something: namely, slower conver-
gence under sufficiently misleading evidence or faster convergence under
sufficiently non-misleading evidence.

We have said before that this is the hallmark of increasing risk: namely, the prospect of
a gain coupled with a chance of loss. Indeed, the point has often been made that the most
conservative posterior probability is the one that moves as little as possible from the prior
subject to the constraints imposed by the observed evidence. As we will see, there is good
reason to take this to be the Bayesian posterior. As a result, sub- and super- updaters are
risk increasing transformations of the Bayesian updater.

Before we get there, though, does the asymptotic result imply that A, B, and C cannot
expect asymptotic inter-subjective agreement? Well, that depends. If agreement means
consensus then they cannot expect it. But for large enough n the valence of the credence
they assign to any value of θ is going to be very, very close. However, sinceB is essentially
doubling the sample size, the resilience of her credences will be stronger – she will have
a more sharply peaked distribution around the posterior mean. Meanwhile, C will exhibit
the opposite behavior – since she is diluting the evidence with antidata, her distribution
will be stronger tailed. Notice, however, that these are very small differences, appreciable
only at a very high resolution. They are, however, small differences that persist after a very
large body of evidence. So perhaps it is misleading to call this agreement at all. Despite
so much evidence to update on, they will still fail to see eye to eye on the coin’s bias. Of
course, this is just as true for any finite n in the case of the ordinary Bayes estimator. But
for the generalized Bayes estimator, as compared to the ordinary, the effect is even more
pronounced.

There is something we can say, however: for any group of agents, if they apply the
same update rule, then their estimators will converge in probability to the population mean.
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What we mean by ‘population’ will depend on the update rule the group is using. For
super-updaters, their population will include super data. For sub-updaters, their population
will include antidata. For ordinary Bayesian updaters, their population will include only
pseudo and actual data.

This completes our development of the basic framework. We can now turn more di-
rectly to considerations of epistemic riskiness in updating.

4.3 Dynamic epistemic risk and cross-entropy

The takeaway from GER was the following: epistemic risk is given by entropic change.
Our goal is, ultimately, to develop a general theory of epistemic risk. As a result, we
will now generalize this idea to a dynamic context, evaluating the riskiness of a posterior
probability (or, equivalently, of an update rule). It turns out, fortunately, that the concept I
seek to capture is again measurable in information-theoretic terms. The takeaway will be:
dynamic epistemic risk is given by cross-entropic change. As before, however, the notion
of risk will be motivated independently of its information-theoretic expression.

4.3.1 Measuring dynamic epistemic risk

Recall from earlier that where s is a score function for a probability distribution P the
general entropy is the negative expectation of s(P ) given by−EP [s(P )]. Where the under-
lying score is logarithmic and additive, this becomes the well-known Shannon measure of
information entropy.

Now suppose we want to compare the riskiness of an update rule – for example, we
want to compare the learning behavior of our ordinary, super and sub-conditioners, A, B,
and C. In other words, when it comes to processing information, who among them is
conservative? Who is reckless? Can we rank-order their update strategies in terms of risk?

A natural way to proceed would be as follows: (1) identify some benchmark “safe”
posterior distribution, relativized to a prior, and (2) measure the risk of the target posterior
in terms of some notion of comparative “distance” that encodes the severity of potential
gains/losses in accuracy, as described above. That is, if we want to know how risky A’s up-
date rule is, then we compare an appropriate divergence betweenA’s prior and her posterior
against the divergence between the safest, benchmark posterior from its prior.2

2As we will see below, the most common approaches to measuring the divergence between two probability
distributions are not proper distances.
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As we are now in a dynamic context, we first need an appropriate notion of diver-
gence between two probability distributions, P (for prior) and Q (for posterior). Following
[Savage(1971)], we will generate such a notion from the scoring rule itself. Notice that the
scoring rule is really a measure of divergence of a probability distribution from the true
distribution which assigns probability 1 to the true event.3 We have so far denoted it as
sv(p(x)) which is the accuracy score of p(x) when the true value is given by the indicator
v. The measure can be quadratic, as in the Brier score, logarithmic, as in the log score, or
it can take many other forms. As long as the underlying risk is convex the score will be
strictly proper.

Therefore, we can think at a very general level about the score sq(x)(p(x)), which is
the score of p(x) evaluated from the perspective of q(x) rather than the true value v. For
example, the Brier score is given by (v− p)2, the Squared Euclidean distance from the true
value. But we can also think about the Brier score between two distributions – i.e., their
squared Euclidean distance – given by D(P ||Q) =

∑n
i=1(pi − qi)

2 where P and Q are
probability vectors or

∫
χ
f(x)− g(x)dx where f and g are densities.

If we use the Euclidean norm to express such a “distance” we get the following expres-
sion,

DBrier(P ||Q) = ||P −Q||2

= ||P ||2 − ||Q||2 − 〈2P, P −Q〉
(4.16)

where 〈P,Q〉 is the inner product between P and Q. Since the derivative of ||p||2 is 2p the
term ||q||2 − 〈2p, p − q〉 is the value of the tangent line to ||p||2 evaluated at q. Squared
Euclidean distance is therefore the vertical distance at p between the graph of F (p) = ||p||2

and the tangent to the graph of F in q. If F is convex, this gives us a general definition of
a Bregman divergence.

Let F : W → R be a differentiable real-valued function defined on a convex set W .
Then the Bregman divergence is given by,

DF (P,Q) = F (p)− F (q)−∆F (p)T (q − p) (4.17)

It is the difference between the value of F at p and the value of the first-order Taylor
expansion of F around q evaluated at p, as shown in Figure (4.1), below.

3[Buja et al.(2005)Buja, Stuetzle, and Shen].
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Figure 4.1: Geometric expression of divergence

The solid green line is ||P ||2. The dashed red line is the tangent to ||P ||2 evaluated at Q.
The black vertical line segment is the Brier divergence from Q to P .

When F (P ) = ||P ||2 we get squared Euclidean distance between two distributions
(above). Now, if we let F (P ) = −H(P ) (Shannon entropy – i..e., re-scaled logarithmic
risk, as developed in GER) then the associated divergence is the Kullback-Leibler diver-
gence, given by,

DKL(P,Q) = E[logP − logQ|P ] (4.18)

In other words, KL is the expected difference in inaccuracy between P and Q with the
expectation taken under P . Of course we can think about divergences more generally in
this way, as expected differences in inaccuracy for every strictly proper score S, as follows,

DS(P,Q) = E[S(P )− S(Q)|P ] (4.19)

Since expectations of strictly proper scores are concave their risk, as developed previously,
is convex and it is the risk that is equal up to an additive constant to the F function in the
definition of a Bregman divergence. Therefore, if the score is strictly proper the risk is
convex and the associated divergence is a Bregman divergence. As a result, it is in keeping
with the risk approach previously developed to use Bregman divergences as a measure
of how “far apart” in terms of riskiness a posterior is from its prior, which is essentially
expected difference in inaccuracy using a strictly proper score. The greater the expected
difference in inaccuracy, the more salient the opportunity/chance of loss become with the
posterior distribution, which is how we have been motivating increases in epistemic risk.

Indeed, most statistical measures of divergence are Bregman divergences including,
for example, the commonly used Mahalanobis distance. The Bregman divergence is not
generally a metric. While it is true for all divergences thatDF ≥ 0, many are not symmetric
(as in KL distance), and while some are symmetric, like squared Euclidean distance, they
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do not satisfy the triangle inequality. In any case, we can now express our measure of
dynamic risk.

DRS(Q) = DS(P ||Q)−DS(P ||R) (4.20)

where R is the safest or risk-free posterior and S is the underlying scoring rule. In other
words, it is the ‘extra’ divergence that is required to go from Q to P instead of going the
minimum ‘distance’ from R to P . The following property of Bregman divergences will be
important. For all strictly proper scoring rules,

DS(P ||Q) =

∫
p(x)(s(p(x))− s(q(x)))dx

=

[ ∫
p(x)s(p(x))dx

]
−
[ ∫

p(x)s(q(x))dx

]
=

[
−
∫
p(x)s(q(x))dx

]
−
[
−
∫
p(x)s(p(x))dx

]
= H(P,Q)−H(P )

(4.21)

where H(P,Q) is the cross-entropy between P and Q – i.e., the entropy of Q evaluated
from P ′s perspective. Therefore, DS is a measure of the difference between prior entropy
and the entropy of the posterior from the perspective of the prior. Our measure can then be
simplified, as follows,

DRS(Q) = D(P ||Q)−D(P ||R)

=
[
H(P,Q)−H(P )

]
−
[
H(P,R)−H(P )

]
= H(P,Q)−H(P,R)

(4.22)

For all strictly proper scoring rules, DS ≥ 0. Dynamic epistemic risk as we saw is moti-
vated by measuring the extra divergence one needs to go, as measured from the perspective
of the prior, as against the divergence required to get to the risk-free posterior. As it turns
out, this is equivalent to cross-entropic change: the cross-entropy between the prior and the
target posterior against the cross-entropy between the prior and the risk-free posterior.

4.3.2 The risk-free posterior

I have so far avoided what is essentially the most important question: What is the risk-free
posterior? Measuring dynamic risk depends on a risk-free benchmark. I have suggested this
to be the Bayesian posterior without arguing for this claim. I will now give four arguments
for the normative claim that the Bayesian posterior ought to be set as least risky.
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4.3.3 An argument from accuracy

Suppose π(θ) is our prior. And supposeX1, ..., Xn is the data to be observed which follows
f(x|θ). Let π∗(θ) be our posterior. Let x1, ...xn be some observed evidence. In this case,
the evidence amounts to learning with probability 1 for each random variable which mem-
ber of a partition is true – i.e., what is the value that it in fact has taken on. For example, if
the evidence is three trials with the sequence 0 − 0 − 1 then the constraint allows all and
only posteriors that assign probability 1 to X1 = 0, X2 = 0, and X3 = 1.

There will be a set of distributions compatible with the evidence that has been observed,
namely, W = {π∗(θ|x) : m(X = x|θ) = 1} where m(x) =

∫
π(θ)f(x)dθ is the marginal

distribution of the evidence – i.e., the prior probability of the evidence. Again, in this
context the lower-case x are supposed to be values of X that have in fact been observed,
rather than hypothetically realized values of a sample.

It seems reasonable for an agent to adopt an updating rule which advises her to choose
as her posterior the distribution from W that she currently believes will maximize her
expected accuracy after learning that X = x. In other words, π∗(θ) = arg maxW Eπ[s(π∗)]

where s is the scoring rule. In other words,

π∗(θ) = arg max
π′∈W

∫
Ω

π(θ)s(π′(θ))dθ

= arg max
π′∈W

−H(π, π′)
(4.23)

This quantity is therefore the negative of generalized cross-entropy. So to maximize
posterior expected accuracy, we should minimize cross-entropy. That is, from an accuracy-
centered point of view, the safest posterior is the posteriorRwhich satisfies arg minP∈W H(P, ·).
Therefore, the risk-free posterior is the minimum cross-entropy posterior. As before, how-
ever, it is not risk-free because it minimizes cross-entropy. Rather, it is risk-free because
the agent stands to gain most by way of accuracy, in expectation, by adopting cross-entropy
minimization as her update strategy.

So what is the minimum cross-entropy posterior? It has been shown that under reason-
ably general conditions – namely, where W is a closed and convex set – then for all strictly
proper s, if the evidence will be observed with certainty and we stand to learn which ele-
ment of a partition is true, then π∗(θ) = π(θ|x) ∝ π(θ)f(x|θ).4 In other words, updating
by Bayesian conditioning maximizes one’s present expected accuracy of their posterior
credences. In the early literature, the accuracy dimension of cross-entropy was not empha-

4[Shore and Johnson(1980), Williams(1980)]. For more recent philosophical literature, see [Oddie(1997),
Greaves and Wallace(2006), Leitgeb and Pettigrew(2010b)].
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sized. [Shore and Johnson(1980)], for example, aim to give an axiomatic development of a
general information-theoretic method of inductive inference. This is in part because cross-
entropy is uniformly assumed to be cross Shannon entropy. I do not make this assumption.
Just as we can speak very generally about entropy we can speak just as generally about
cross-entropy – as the expected accuracy of one distribution evaluated under another.

[Oddie(1997)], [Greaves and Wallace(2006)], [Leitgeb and Pettigrew(2010b)], and
[Myrvold(2012)] develop the consequences of cross-entropy minimization explicitly in
accuracy-theoretic terms. Under reasonably general conditions on the scoring rule and
the type of learning experience, Bayesian conditioning indeed minimizes cross-entropy.
For this reason, from an accuracy maximizing perspective, the Bayesian posterior is least
risky.

4.3.4 An argument from the value of knowledge

[Good(1967)] shows that in an ordinary context, where the agent is deciding whether to
act now, or perform a cost-free experiment and act later, it always pays in expectation
to perform the experiment, provided she updates by Bayesian conditioning. That is, the
expected utility of acting now is less than or equal to our current expectation of the utility
of acting after performing the experiment.

It is straightforward to generalize this idea to the context of epistemic utility theory.
Since our agent is an expected accuracy maximizer she should identify the distribution
π(θ) in a way that maximizes expected accuracy, given by,

max
θ∈Ω

∫
Ω

s(π(θ))π(θ)dθ (4.24)

We already know from [Williams(1980)], among others, that Bayesian conditioning maxi-
mizes expected epistemic accuracy provided the constraint set is closed and convex and the
evidence is learned with probability 1. It should not be surprising, therefore, that it pays in
expectation to conduct an experiment and then produce one’s forecast, provided the cost of
the experiment is small enough. In this case, the cost will be given in terms of accuracy.

Suppose we are in a binary context again and our agent is given the chance to perform an
experiment and observe X = x, after which she will reevaluate her assignment of θ̂. Since
the case is binary, s(θ) is the agent’s score. Is it reasonable to perform the experiment
in expectation? To answer this question let m(x) =

∫
π(θ)f(x)dθ =

∫
f(x, θ)dθ be the

marginal distribution of X . If she identified θ̂ without observing X = x then her present
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expected epistemic utility can be re-written as follows,

θ̂old = max
θ∈Ω

E[s(θ)|π(θ)]

= max
θ∈Ω

∫
Ω

s(θ)π(θ)dθ

= max
θ∈Ω

∫
Ω

s(θ)

∫
χ

π(θ|x)m(x)dxdθ

= max
θ∈Ω

∫
Ω

∫
χ

s(θ)π(θ|x)m(x)dxdθ

= max
θ∈Ω

∫
Ω

∫
χ

s(θ)
π(θ)f(x)

m(x)
m(x)dxdθ

= max
θ∈Ω

∫
Ω

∫
χ

s(θ)π(θ)f(x)dxdθ

= max
θ∈Ω

∫
Ω

∫
χ

s(θ)f(x, θ)dxdθ

= max
θ∈Ω

∫
χ

∫
Ω

s(θ)f(x, θ)dθdx

(4.25)

Meanwhile, the post-experiment value of assigning θ̂ after observing X = x is given as
follows. Let θ∗ be the estimate after the learning experience.

θ̂new = max
θ∈Ω

E[s(θ∗)|π(θ|x)]

= max
θ∈Ω

∫
Ω

s(θ∗)π(θ|x)dθ
(4.26)

Therefore, the expected value now of θ̂new, i.e., θ̂old conditional on learning that X = x

becomes,

E[θ̂new|π(θ)] = max
θ∈Ω

E[s(θ∗)|π(θ]

= max
θ∈Ω

∫
Ω

s(θ∗)π(θ)dθ

=

∫
χ

m(x)dxmax
θ∈Ω

∫
Ω

s(θ)π(θ|x)dθ

=

∫
χ

max
θ∈Ω

∫
Ω

s(θ)π(θ|x)m(x)dθdx

=

∫
χ

max
θ∈Ω

∫
Ω

s(θ)f(x, θ)dθdx

(4.27)

By Jensen’s Inequality,
∫

maxt g(t)dt ≥ maxt
∫
g(t)dt. Therefore, E[θ̂new|π(θ)] ≥ E[θ̂old|π(θ)].

61



This means that it is always better in expectation to observe that X = x provided that after
making this observation one will update by Bayesian conditioning. As is clear above, the
proof relies on the fact that π(θ|x) = [π(θ)f(x)]/m(x) (Bayes’ Rule).

How much accuracy is it worth sacrificing to perform the experiment? Since the agent
is updating by Bayes’ Rule, letting P = π(θ) and Q = π(θ|x), the divergence between
the prior and the posterior will be given by DKL(P ||Q) = H(P,Q) − H(P ). There-
fore, it would be worth performing the experiment provided the cost does not exceed
δ = H(P,Q)−H(P ).

The argument from expected accuracy and the argument from the value of knowledge
are related. Making an observation is reasonable from an epistemic perspective if one is
going to condition on the evidence observed, since the update rule that maximizes the ex-
pected accuracy of one’s posterior credences is the update rule given by Bayes’ Theorem.
Therefore, her present expected accuracy is less than or equal her expectation of her pos-
terior accuracy. Using the language of entropy, the result comes to just this: the entropy
of the prior is less than or equal to the cross-entropy between the prior and the posterior.
This is true for all strictly proper scoring rules. Since their risk function is convex they
all induce a Bregman divergence between a prior and a posterior, which as we saw can be
decomposed into a difference of cross-entropy and entropy.

4.3.5 A prudential argument

It is well-known that an expected utility maximizer whose beliefs are probabilistically in-
coherent is vulnerable to accepting a set of bets which jointly leave her with a sure-loss.
This is the classic dutch-book argument, originating in [Ramsey(1926)]:

Any definite set of degrees of belief which broke [the laws of probability]
would be inconsistent in the sense that it violated the laws of preference be-
tween options . . . If anyone’s mental condition violated these laws . . . He
could have a book made against him by a cunning bettor and would stand to
lose in any event. (p. 41)

[Teller(1973)] introduces an argument scheme, which he attributes to David Lewis, show-
ing that an agent who fails to update by Bayes’ Rule leaves herself vulnerable, at least in
principle, to accepting a sequence of bets which lead to a sure-loss. This is the well-known
diachronic dutch book argument for Bayesian conditioning. In what follows, I describe the
diachronic dutch-book argument through a simple example then quickly sketch a more for-
mal version of this argument, owing to its presentation in [Skyrms(1987), Skyrms(1993)],
but using the parametric notation I have been using throughout.
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The diachronic dutch-book proceeds in terms of conditional and called off bets. For
example, suppose I offer you the following series of bets regarding a baseball game.

Bet 1: If the Tigers game is played tonight and the Tigers win you get 1 dollar.
If the game is played and the Tigers lose, you get nothing.

The price I offer you for Bet 1 is equal to your prior probability that the game is played and
the Tigers win.

Bet 2: If the game is not played, you receive a dollar amount equal to your prior
probability that the tigers win conditional on the game being played. Otherwise
you get nothing.

The price I offer you for this bet is equal to your prior probability that the Tigers win,
conditional on the game being played, multiplied by your prior probability that the game is
not played. Next,

Bet 3: If the game is played, you receive a dollar amount equal to your con-
ditional probability the Tigers win given that the game is played, minus your
(non-Bayesian) posterior probability that the Tigers will win after learning that
the game will be played. Otherwise you receive nothing.

Now, if the game is not played the value you end up with is proportional to the difference
between your conditional probability that the Tigers win given that the game is played and
your posterior probability that the Tigers win. If your actual posterior probability is less
than the Bayesian posterior probability you end up with a net loss. If, however, the game is
played, then I offer you the following final bet:

Bet 4: If the Tigers win you receive 1 dollar. Otherwise you receive 0.

The price of this bet is equal to your posterior probability that the game is played. Bets 1
and 2 jointly constitute a conditional bet on the Tigers winning, which is called off if the
game is not played. But even if the game is played you again suffer a net loss proportional to
the discrepancy between the Bayesian posterior and the posterior you are using. A similar
series of bets can be presented to an agent whose actual posterior probability is greater than
the Bayesian posterior probability that the Tigers win. Therefore, if an agent fails to update
by Bayesian conditioning, she leaves herself vulnerable to sure-loss.

More formally, the diachronic dutch-book argument proceeds as follows. Let P =

π(θ), Q = π(θ|x), and R = π∗(θ) where Q,R ∈ W . Suppose that π(θ|x) > π∗(θ) for
θ ∈ V ∩ Ω so that DKL(P ||Q) > DKL(P ||R). We will suppose that π(θ|x) = π∗(θ) for

63



θ ∈ V c ∩ Ω. That is, there is a subset of the parameter space where the alternative update
rule and Bayes’ Rule do not agree; in the remainder of the space they do agree. This is not
supposed to be a controversial assumption – it’s certainly possible that V c ∩ Ω = ∅ and if
V ∩ Ω = ∅ then π∗(θ) = π(θ|x). Let δ = π(θ|x) − π∗(θ). Then the bookie can offer our
agent the following sequence of bets.

Before observing that X = x, she will offer,

1. $1 if θ = k and X = x, 0 otherwise;

2. $π(θ = k|X = x) if X 6= x, 0 otherwise;

3. $δ if X = x, 0 otherwise.

After making the observation, she will offer,

4. if X = x, [$1 if θ = k, $0 otherwise] for its current fair price of π∗(θ) = π(θ|x)− δ.

Under this sequence of bets the agent will lose δ regardless of what happens. A simi-
lar argument demonstrates vulnerability to a sure loss if π(θ|x) < π∗(θ). From a prag-
matic perspective, therefore, if the agent seeks to avoid vulnerability to sure-loss, the
safest way to update is by Bayes’ Rule – i.e., by adopting the posterior Q which satisfies
minQ∈W DKL(P ||Q).

4.3.6 An information-theoretic argument

The preceding arguments seek to persuade the reader that the Bayesian posterior is the
least risky posterior on grounds that are conceptually independent from dynamic risk’s
information-theoretic expression. Of course, many authors have defended Bayesian updat-
ing explicitly on information-theoretic grounds.

Since entropy is a measure of expected uncertainty, evaluated with respect to itself, its
negative is often called expected self-information. It seems natural, therefore, to extend
this concept and evaluate the expected informativeness of a posterior distribution, from the
perspective of the prior distribution. For example, this might be the expected informative-
ness of a predictive distribution from the perspective of the data generating distribution in
a machine learning context. In the updating context, this lends itself to a reasonable rule
for processing information: we should move to the posterior that is consistent with the evi-
dence that has been observed, but that introduces as little additional information as possible
[Jaynes(1957a), Jaynes(1957b), Jaynes(1963)]. In other words, ifH(P,Q)−H(P ) = δ we
want an update rule from the constraint set W that minimizes δ. Naturally this amounts to
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minimizing the associated Bregman divergence. Minimizing a Bregman divergence from
Q to P with respect to Q is equivalent to minimizing the cross-entropy of P and Q, since
as we saw above H(P,Q) = H(P ) + DS(P ||Q). Provided the constraint set is closed,
convex and involves learning which element of a partition is true with probability 1, this is
the Bayesian posterior. It is the posterior that adds as little information as possible while
still being consistent with what has been learned. It is in this sense that we may think of it
as the most conservative update rule.

This mirrors nicely our earlier result, where we found that epistemic risk is given by en-
tropic change. So this is the key point: if we think about dynamic epistemic risk in terms of
actual KL divergence minus minimum KL divergence, then we get an account of epistemic
risk in terms of cross-entropic change. The least risky distribution under a strictly proper
score is the maximum general entropy distribution. Meanwhile, the least risky posterior un-
der a Bregman divergence induced by a strictly proper score is the minimum cross-entropy
posterior.

Notice, however, that the divergence is given in terms of the change in divergence
‘from Q to P ’ and ‘from R to P ’. We are measuring ‘distance’ from the perspective of the
posterior, and dynamic epistemic risk is given by the change from the ‘closest’ posterior
and the posterior whose dynamic risk we are interested in. We could have done it the other
way around, measuring divergence from the prior to the least risky posterior and the target
posterior. [Caticha and Giffin(2006)] suggest this alternative. If we did it this way, then
the dynamic risk of Q would be equal to H(R) −H(Q) + H(Q,P ) −H(R,P ). In other
words it is the sum of the static risk increase between Q and R (entropic change) and their
cross-entropic change. Or, we could take the sum of risk in both directions, in which case
we would get [H(P,Q)−H(P,R)] + [H(Q,P )−H(R,P )] + [H(R)−H(Q)]. That is,
it is the sum of changes in cross entropy in both directions and the difference in posterior
entropy. I do not presently have a way of adjudicating between these competing measures.
It is worth investigating further whether we should privilege one over the other.

4.4 Dynamic risk and the generalized beta distribution

Let us now return to our agents A, B, and C with beta-binomial distributions. We have es-
tablished that the risk-free posterior is the Bayesian posterior. In order to calculate dynamic
risk we also need to specify a scoring rule. I have argued that the score should be strictly
proper without privileging any particular form. To illustrate dynamic risk with some exam-
ples, however, we will have to pick one from the strictly proper class. So for convenience
let us assume that the applicable scoring rule is the additive log score which induces the
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KL divergence.
For a random variable X following a Beta distribution f in interval I , Shannon entropy

is given by,

H(X) =

∫
I

f(x) log f(x)dx

= −
∫
I

1

B(α, β)
xα−1(1− x)β−1 log

[
1

B(α, β)
xα−1(1− x)β−1

]
dx

= log(B(α, β))− (α− 1)
Γ′(α)

Γ(α)
− (β − 1)

Γ′(β)

Γ(β)
+ (α + β − 2)

Γ′(α + β)

Γ(α + β)

(4.28)

where Γ(n) is the Gamma function given by (n − 1)! for n ∈ N+. Meanwhile, given two
random variables X ∼ f(x) = Beta(α, β) and Y ∼ g(x) = Beta(α′, β′) the cross-entropy
is given by,

H(X, Y ) = −
∫
I

f(x) log g(x)dx

= −
∫
I

1

B(α, β)
xα−1(1− x)β−1 log

[
1

B(α′, β′)
xα
′−1(1− x)β

′−1

]
dx

= log(B(α′, β′))− (α′ − 1)
Γ′(α)

Γ(α)
− (β′ − 1)

Γ′(β)

Γ(β)
+ (α′ + β′ − 2)

Γ′(α + β)

Γ(α + β)

(4.29)

Let Z ∼ r(x) = Beta(α′′, β′′) be the distribution from which KL divergence to f(x) is
minimized. Then the risk of Y ∼ g is DR(Y ) = H(X, Y )−H(X,Z). This is,

DR(Y ) = log(B(α′, β′))− (α′ − 1)
Γ′(α)

Γ(α)
− (β′ − 1)

Γ′(β)

Γ(β)

+ (α′ + β′ − 2)
Γ′(α + β)

Γ(α + β)

− log(B(α′′, β′′))− (α′′ − 1)
Γ′(α′)

Γ(α′)
− (β′′ − 1)

Γ′(β′)

Γ(β′)

+ (α′′ + β′′ − 2)
Γ′(α′ + β′)

Γ(α′ + β′)

(4.30)

For example, suppose each of our agents starts with a Beta(1, 1) (uniform) prior. I will refer
to this prior asU . They observe six tosses: four tails and two heads. Amoves to a Beta(5, 3)

posterior, B moves to a Beta(3, 2) posterior, and C moves to a Beta(9, 5) posterior. Their
posterior distributions are depicted in Figure (4.2), below.
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Figure 4.2: Posterior beta distributions

In Figure (4.2), the posterior of A is depicted in black, B is dashed red, and C is dotted
green.
As expected, the least resilient distribution belongs to agent B, the agent who is adding
antidata to the empirical sample. Next is the Goldilocks Bayesian agent A, who adds
neither antidata nor super data to her sample. And finally we have C, the agent who is
adding super data. Notice that just from eyeballing the means, it appears that the extent
to which C deviates from A is greater than the extent to which B deviates from A. C’s
updating behavior is riskier than A’s. We will explore this insight further, below.

Let D be the 4×4DKL divergence matrix. We know that xii = 0 sinceDKL(P ||P ) = 0

and xij > 0 for i 6= j. Numerically, we find that,

D =


U A B C

U 0.00 1.25 0.56 2.34

A 0.44 0.00 0.06 0.11

B 0.24 0.08 0.00 0.45

C 0.69 0.07 0.22 0.00

 (4.31)

The way to read this matrix is as follows: DKL(i||j) = xij . So, for example,DKL(U ||A) =
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1.25 and DKL(A||U) = .44.5 Now we can compute their risks as follows,

DR(A) = DKL(U ||A)−DKL(U ||A) = 0

DR(B) = DKL(U ||A)−DKL(U ||B) = .69

DR(A) = DKL(U ||C)−DKL(U ||A) = 1.09

(4.32)

As suggested by Figure (4.2) the risk of B is lower than the risk of C. This is a product of
the asymmetry of the KL divergence.

Arguably, shooting past the evidence is riskier than failing to give the evidence enough
weight. The latter seems like skepticism bordering on dogmatism, which is not ideal, but
the former amounts to making up evidence, which does seem worse. To put this in our
previous terminology: adding antidata to a sample is not as bad as adding the same amount
of ersatz data to it.

On the other hand, the antidata/super data distinction does suggest a sort of parallel
between the riskiness of the super updater’s behavior and the riskiness of the sub updater’s
behavior. Why should it be a priori obvious that adding n observations is worse than adding
−n observations? Is not there a parity between these two ways of increasing risk? Perhaps
not. There is an additional substantive reason for thinking that adding super data is worse
than adding antidata: the super updater will be slower to respond to additional subsequent
evidence because her new prior will be more resilient. This seems like an additional risk
of error that the sub updater does not have to take – namely, making oneself less open
to changing beliefs at a subsequent time. In other words, the super-updater leaves herself
open to future dogmatism in a way that the sub-updater does not, which may increase the
probability of error after subsequent learning experiences.

It would be interesting to explore this further – i.e., whether diluting a sample is as bad
as overloading it – because the position we take here will reflect our attitude to different
types of scoring rules. If we wish to maintain that antidata is indeed as risky as ersatz
data then we need a symmetric Bregman divergence like squared Euclidean distance which
corresponds to the Brier score. If we reject the notion that there is a parity in riskiness
between the sub and super updater, and if we argue that the super updater is taking a bigger
risk, as I am inclined to do, then this suggests an asymmetric score like the additive log
score and the associated Shannon measure of entropy (and KL divergence).

It is also worth noting that with the KL divergence risk increases at an increasing rate.
Suppose we had a risk increasing transformation which adds more ersatz data than C, call
it C∗. So whereas C is speedy Bayes, C∗ is super speedy Bayes. For example, if C∗ is such

5The divergences are approximated by generating sequences of Beta distributed values for θ.
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that η = 3Y and σ = 3(1− Y ), then C∗ ends up with a Beta(13, 7) posterior (Figure (4.3))
, its risk is DR(C∗) = 3.08. While it is true that DR(C∗) > DR(C) > DR(A), as we
would like, the risk of super-speedy is almost three times as the risk of speedy even though
the pace of updating is only increased by 50%.

Figure 4.3: Posterior distribution of C∗

4.5 Multinomial dynamic epistemic risk

I developed the generalized Beta distribution as a way to model both the resilience and the
update rule that underwrite a Bayesian agent’s posterior credences. The two hyperparame-
ters, α and β, tune the resilience of the prior by tracking pseudo tosses and to this we add
η and σ, ersatz parameters for tuning the speed of updating. This was a case where the
possible number of outcomes K = 2. But suppose K ≥ 3, as in a die or a classification
problem with many possible discrete outcomes. For example, an algorithm must classify
an animal with known height and weight in to one of 100 numerically identified bins cor-
responding to different species. To model our Bayesian agent in the more general case, we
can generalize the multinomial analogue to the Beta prior – namely, the Dirichlet prior.

Consider, first, the kernel of the Beta density, given by θα−1(1 − θ)β−1. Clearly we
can generalize this notion for K ≥ 3 as

∏K
i=1 θ

αi−1
i for α1, ..., αK . Now consider the

normalizing constant 1/Beta(α, β) where Beta(α, β) = [Γ(α)Γ(β)]/Γ(α + β). We can
likewise generalize this as the product of Gammas divided by the Gamma of the sum by
letting Beta(α) =

∏K
i=1 Γ(αi)/Γ(

∑K
i=1 αi). Putting this together we have a valid density

for assigning prior probabilities for each θi outcome, given by,

π(θ|α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)

K∏
i=1

θαi−1
i (4.33)
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where θ is a vector of probabilities for each outcome. We say that θ follows a Dirichlet(K,α)

distribution where αi is the hyperparameter for the i-th outcome. For example, for a fair
three-sided die, θ = 1/3, 1/3, 1/3. If α1 = 2, α2 = 2, α3 = 2 then our prior is a three-
dimensional density concentrating around 1/3, which may be represented in the ordinary
2-simplex, as follows.

Figure 4.4: Dirichlet prior space for three-sided die

What about the empirical distribution of the outcomes? Recall that in a coin case, this was
given by the binomial f(x|θ) =

(
n
x

)
θx(1− θ)n−x.

Since x! = Γ(x+ 1), the binomial coefficient can be expressed in terms of the Gamma
function as Γ(n+ 1)/[Γ(x+ 1)Γ(n− x+ 1)]. We can generalize this to x1, ...xk outcomes
as Γ(

∑k
i=1 xi + 1)/

∏k
i=1 Γ(xi + 1). Even more intuitively, we can generalize the kernel of

the distribution as
∏K

i=1 θ
xi
i . This gives us the multinomial empirical distribution forK ≥ 2

outcomes, written as,

f(x|θ) =
Γ(
∑k

i=1 xi + 1)∏k
i=1 Γ(xi + 1)

K∏
i=1

θxii (4.34)
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Multiplying these together gives us the posterior,

π(θ|x) =

[∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)

K∏
i=1

θαi−1
i

][
Γ(
∑k

i=1 xi + 1)∏k
i=1 Γ(xi + 1)

K∏
i=1

θxii

]

=

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)

Γ(
∑k

i=1 xi + 1)∏k
i=1 Γ(xi + 1)

K∏
i=1

θαi−1
i

K∏
i=1

θxii

=

∏K
i=1 Γ(αi + xi + 1)

Γ(
∑K

i=1 αi + xi)

K∏
i=1

θαi+xi−1
i

(4.35)

Then the posterior above is Dirichlet(K,α+ x). Now we can apply the same approach
as before to develop a multinomial ersatz parameter to vary the speed of the update rule.
Let η = (η1, ..., ηk) be a vector of ersatz parameters, corresponding to each outcome. For
example, if our super updater observes x2, she also increases the value of η2 by one unit.
So the posterior distribution will be Dirichlet(W + K,α + x + η). Again where W = 0

this reduces to the ordinary Dirichlet posterior. Like the generalized Beta distribution the
generalized Dirichlet distribution is a valid pdf and exhibits the same asymptotic behavior.

Consider our agents, A, B, and C again. A is an ordinary updater, B is a super updater
that adds one ersatz success ηi for every real success xi (one unit of super data), and C is
a sub updater that subtracts half a success for every real success (one half unit of antidata).
Suppose we have a three-sided die whose bias is unknown and our agents start with a
uniform prior, given by Dir(1, 1, 1) Figure(4.5). Suppose our agents observe one toss of
the die, and it lands on 3.

Our sub updater will move toDir(1, 1, 3/2) Figure(4.6), the ordinary updater will move
to Dir(1, 1, 2) Figure(4.7), and the super updater will move to Dir(1, 1, 3) Figure(4.8).6

6The Python script for visualizing Dirichlet distributions in the 2-simplex is based on a script by Thomas
Boggs, available at http://blog.bogatron.net/blog/2014/02/02/visualizing-dirichlet-distributions/.
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Figure 4.5: Dir(1, 1, 1) posterior

Figure 4.6: Dir(1, 1, 3/2) posterior

Figure 4.7: Dir(1, 1, 2) posterior

Figure 4.8: Dir(1, 1, 3) posterior
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The Bayes estimator for the Dirichlet distribution has the same properties as the Bayes
estimator for Beta distributions. The bias now is given by the expected value of a toss of the
die. For a fair three-sided die, this is 6/3 = 2. To estimate unknown bias we use the same
logic as before. For example, super we start with a Dir(1, 1, 1) prior, observe one 3, and
update by ordinary Bayesian conditioning to a Dir(1, 1, 2) posterior. Then our Bayesian
estimate of the die’s bias is µ̂ = 9/4 – the die is estimated to be slightly biased in favor of
3. Notice that since the prior here is so weak even the ordinary updater’s estimate is quite
responsive to the evidence. For our super updater, her estimate of the bias here would have
been 12/5 = 2.4 and for our sub updater it would have been 2.14. In general,

µ̂ = E[θ|x] =

∑K
i=1 cixi + αi + ηi∑K
i=1 αi +W + n

(4.36)

where (c1, ..., ck) is the number of successes of (x1, ..., xk). This may again be written as a
linear combination of the pseudo expectation and MLE/ersatz hybrid expectation.

Now compare for illustration a case where we start with a much stronger prior. For
example, suppose we start with a Dir(10, 10, 10) prior. In this case, the valence of the
prior Bayes estimate is the same as it would have been with the uniform Dir(1, 1, 1) –
µ̂ = 2 – but the prior is now much stickier – as depicted by the concentration of density
toward the center of the simplex in Figure (4.9). Suppose we then observe ten tosses, as
follows:

1 2 1 3 2 3 1 3 2 3

(three 1’s, three 2’s and four 3’s). As we said, the prior estimate of the bias is 2 (the die was
assumed to be fair) and the maximum likelihood estimate after observing this sequence
is 2.2. We know that our agents’ estimates will be between these values – we expect to
find that 2 < µ̂B < µ̂A < µ̂C < 2.2. The ordinary Bayesian updater will move to a
Dir(13, 13, 14) posterior (Figure 4.11). Her estimate of the die’s bias will be µ̂ = 2.025 –
i.e. slightly biased toward three. The sub updater will move to Dir(11.5, 11.5, 12) (Figure
4.10) and her estimate of the bias will be µ̂ = 2.014. As we expect, she is less responsive
to the evidence. She moves away from her prior, but begrudgingly so. Meanwhile, the
super updater will move toDir(16, 16, 18) (Figure 4.12). Her estimate of the bias becomes
µ̂ = 2.04. Her update rule is most sensitive to evidence and she is quickest in moving
toward the MLE.
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Figure 4.9: Dir(10, 10, 10) posterior

Figure 4.10: Dir(11.5, 11.5, 12) posterior

Figure 4.11: Dir(13, 13, 14) posterior

Figure 4.12: Dir(16, 16, 18) posterior
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It is obvious from the figure here that the changes from a Dir(10, 10, 10) prior are much
more subtle as compared to the updating behavior of our agents when they started with a
Dir(1, 1, 1) prior. In each case, the posterior estimate satisfies,

µ̂π(θ) < µ̂B < µ̂A < µ̂C < µ̂MLE (4.37)

This is because of our update tuning parameter η. However, because the hyperparameters
(α1, α2, α3) are different in the two cases the distance between each agent’s prior and pos-
terior is greater in the Dir(10, 10, 10) case than it is in the Dir(1, 1, 1) case. For example,
in the former case, agent A moves from 2 to 2.25 after only observing one toss. In the
latter case, she moves from 2 to only 2.025 despite a ten-fold increase in the stock of her
evidence. She moves from a centered estimate of the bias to one that just slightly favors
3’s. This is not easy to see in the figure because the changes are so subtle, but consider for
example a Dir(10, 10, 50) posterior, in Figure (4.13), below.

Figure 4.13: Dir(10, 10, 50) density

Dir(10, 10, 10) credences are much more resilient than Dir(1, 1, 1) credences. There-
fore, as in the simple beta case, α tunes resilience and η tunes the speed of the update. The
only difference is that α and η are now vectors of length K.

The notion of dynamic epistemic risk is still given in terms of cross-entropic change
though I will avoid expressing it as it is really no longer feasible to compute by hand. The
mathematical machinery remains the same, however, as does the underlying conceptual
interpretation.
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4.6 Conclusion

This chapter builds on the preceding one by developing a measure of dynamic risk that
is analogous to the general theory of epistemic risk motivated in terms of sensitivity to
error and expressed in information-theoretic terms. Whereas static epistemic risk is given
by entropic change, dynamic epistemic risk is given by cross-entropic change. This gives
us a unified theory of epistemic risk for Bayesian inference – the static dimension for the
assessment of priors and the dynamic dimension for the assessment of updating procedures.
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CHAPTER 5

Adaptive Burdens of Proof

5.1 Introduction

Among the many apparent problems with statistical evidence in legal fact finding is that in
both real and hypothetical disputes judges and juries appear to ignore available and rele-
vant base rates in order to reach verdicts they consider to be morally appropriate.1 This is
a judgment that many legal commentators endorse even upon reflection.2 As a result, the
demands of morality seem to be incompatible with the requirements of epistemic rational-
ity. To act rightly as a legal fact finder one may have to believe irrationally. This is, for
example, the implication of [Nesson(1986)]’s argument. I develop a model of the burden
of proof which implies that a decision maker may avoid apparently morally inappropriate
decisions without ignoring base rates provided she is risk averse.

In addition, the model I propose can explain both why so-called taboo or forbidden base
rates of the sort discussed by [Tetlock et al.(2000)Tetlock, Kristel, Elson, Green, and Lerner]
are often inadmissible, even if accurate, and why DNA random match profiles are relatively
uncontroversial. In this sense, the model is significantly more robust to changes in the na-
ture of the statistical evidence in issue as compared to its alternatives.3 Indeed, while I
am most concerned with civil disputes, the approach is equally effective in the criminal
context.4

The model is very simple: from the decision maker’s perspective, the plaintiff has sat-
isfied her burden of persuasion with respect to an element of the prima facie case if the

1See e.g., [Wells(1992)].
2See e.g., [Tribe(1971)], [Nesson(1985)], [Wasserman(1991)], and for a more general overview

[Colyvan et al.(2001)Colyvan, Regan, and Ferson] and [Schauer(2003)].
3Competing models are developed in [Posner(1999)], [Kaplow(2014)], [Cheng(2013)], and

[Cheng and Pardo(2015)], among others.
4This is because the adaptive model has a flexible threshold that can take any value on the unit inter-

val. That threshold is determined by the agent’s tolerance to risk of error. Some values, of course, will be
obviously morally inappropriate.
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posterior odds exceed a threshold determined by a ratio of the decision maker’s error costs.
Developing this carefully will take some work, but that’s it. The model is adaptive because
the error parameters are not determined in advance. The model is risk eliciting because the
decision maker’s choice reflects her underlying attitudes to risk of error. What that attitude
ought to be will be context sensitive and determined in part by the factual circumstances of
the relevant dispute. The adaptive model is especially helpful for understanding mass expo-
sure cases, pharmaceutical class actions, and complex business litigation, where statistical
evidence is often unavoidable.5

This approach makes several empirically verifiable predictions. If I am correct, then
we should expect to see a strong correlation between a decision maker’s sensitivity to risk
of error – which may be elicited by presenting her with a sequence of increasingly risky
epistemic prospects, as I suggest in Chapter 2 – and her aversion to statistical evidence in
various hypothetical scenarios, such as those presented to the subjects in [Wells(1992)].6

Moreover, we may apply the adaptive model for the normative assessment of legal deci-
sions, by attending to the values to risk they elicit and considering their reasonableness.
Finally, the model may be used as a tool for predicting the resolution of future disputes (or,
more specifically, the admissibility of statistical evidence in such disputes).

The chapter proceeds as follows. First, I explain the relevant formal concepts, showing
how the likelihood ratio test and Bayesian hypothesis test are both related to the odds-
likelihood expression of Bayes’ Theorem (§2). Then, I explain what is typically taken to
be the problem of statistical evidence, situating it in the context of the treatment of proba-
bilities both in the case law and under the Federal Rules of Evidence (§§3.1). Next, I give
a genealogical presentation of the so-called blue bus puzzle (§3.2). As we will see, what
we call a paradox is essentially the same problem that [Kahneman and Tversky(1972)] and
[Bar-Hillel(1980)] used to illustrate the base rate fallacy. The relationship between their
presentation of the problem and the life it has taken on in legal scholarship has been signif-
icantly under appreciated.

In §4.1, I introduce a trichotomy that the statistician Richard Royall draws for making
sense of statistical inference. Royall distinguishes three separate questions we might ask
after making a set of observations: (Q1) what should we believe?, (Q2) what does the evi-
dence say?, and (Q3) what should we do? I argue that the reason statistical evidence cases
can appear paradoxical is because we have so far modeled burdens of proof as answering

5See [Rosenberg(1984)] for helpful examples. See also In re Agent Orange Prod. Liab. Litig., 597 F.
Supp. 740, 835-836 (E.D.N.Y. 1984), for a discussion of the inevitability of statistical evidence, and the need
for a model of the preponderance standard that accommodates it, in mass exposure litigation.

6There is some empirical support of a related relationship in the context of loss aversion and its effect on
interpretations of the burden of proof [Ritov and Zamir(2012)].
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Royall’s first or second questions, when we should be trying to answer his third question.
Indeed, it is (Q3) that even the classic [Neyman and Pearson(1933)] null hypothesis signif-
icance testing procedures are designed to answer. Once the focus is on (Q3) it becomes
clear that sensitivity to risk of error will be the key ingredient in constructing a decision
procedure for legal choice. As a result, in §§4.2-4.3, I extend a theorem initially developed
by [DeGroot and Schervish(2012)] to show that if our goal is to minimize a linear com-
bination of false positive and false negative error rates, we can do no better than to apply
a Bayesian hypothesis test. This is the mathematical justification for using the adaptive
model in legal fact finding.

In §5, I put the adaptive model to work. First, I explain how it can handle the usual
apparent paradoxes of statistical evidence and compare its performance to [Cheng(2013)]’s
likelihood ratio test (§§5.1-5.3). In §5.4, I evaluate the case law on statistical evidence to
show how well the adaptive model predicts the data we have and to suggest how easily it
could be used to predict the admissibility of statistical evidence in future disputes (§5.5).
[Koehler(2002)], for example, develops a four-fold taxonomy for when statistical evidence
is likely to be admissible. The adaptive model is much more efficient in its forecasting: all
we need to do is (a) consider the decision maker’s sensitivity to epistemic risk in light of (b)
the factual circumstances in issue. It enables us to make very specific predictions when the
information available to us would justify such specificity while at the same time making it
possible to put some bounds on our estimates when data is sparse.

In §6, I consider several concerns and objections. First, I distinguish Kaplow’s wel-
fare based interpretation of the rejection threshold from the adaptive model’s more general
interpretation of the costs of error (§6.1). As we will see, [Kaplow(2014)]’s approach is
a special case of the adaptive model. Second, I explain the difference between a model
that elicits the decision maker’s attitudes and a choice rule (§6.2). Finally, I clarify how
the adaptive model fits within the more general subjective expected utility optimization
approach to decision making by situating it in what I call a principal-agent choice environ-
ment (§6.3). By way of conclusion, I make some connections between the adaptive model
and evidence proportional theories of recovery as applied to, for example, DES manufac-
turers.7

7Sindell v. Abbott Labs., 26 Cal. 3d 588 (1980) (developing the notion of market share liability). See
[Rosenberg(1984)] for a general defense of proportional liability.
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5.2 Modeling burdens of proof

There is a substantial literature in economic and statistical analyses of evidence law on
modeling burdens of proof.8 Or, to be specific, the burden of persuasion.9 I am interested
in how these models handle statistical evidence and in particular the apparent paradoxes
generated by sensitivity to base rates. From that perspective, we can roughly divide exist-
ing models in two families: welfare-based and more generally economic approaches and
accuracy-first approaches. Both families are decision theoretic but they vary across several
important dimensions.

5.2.1 Economic vs. accuracy approaches

First, the welfare approach assumes that the only consideration in setting the burden of
proof should be its effect on social welfare, where social welfare is a function exclusively of
the utilities of the relevant individual decision makers. [Kaplow(2011)]’s model is paradig-
matic.10 For Kaplow, proportionality, autonomy, or retributive punishment, for example,
are not considered unless we have a preference for living in, say, a legal system which im-
poses punishments that approximately fit the wrong or crime.11 Other economic approaches
are more general and consider costs that, strictly speaking, may not be reducible to their
effects on individual utilities.12 On the accuracy-first approach, correctness of verdicts is
the overarching consideration.13 Since accuracy is the focus of these models, false positive
(Type I) and false negative (Type II) error rates tend to play a dominant role in setting the
optimal burden of proof. There are no uniform constraints on the costs of each type of
error. The costs could be effects on individual utilities, but they need not be.

Second, in most welfare and more generally economic models, behavior is assumed
to be endogenous.14 As a result, as [Kaplow(2012)] puts it, the optimal threshold is de-

8One of the earlier articles to take a decision theoretic approach to legal fact finding is the now classic
[Kaplan(1968)].

9For models that look at the burden of production instead, see e.g., [Hay and Spier(1997)].
10See also [Kaplow(2012)].
11See [Kaplow and Shavell(2001)], arguing that any non-welfarist approach of assessing gains and losses

may violate the Pareto principle, which implies that it could require deeming socially superior outcomes
under which all are worse off.

12See e.g., [Miceli(1990)] (considering the value of retribution and proportionality). Miceli builds pro-
portionality into the utility function. [Kaplow and Shavell(2001)] could do this too, but they only con-
sider it in the discussion following their model, as one among several ways in which their approach could
be relaxed. I suspect they do not take this possibility too seriously, though, since their primary aim in
[Kaplow and Shavell(2006)] is to argue against non-consequentialist approaches to the assessment of legal
standards.

13See e.g., [Cheng(2013)] and [Cheng and Pardo(2015)]; Cf. [Kaplow(1994)].
14That is, behavior changes in response to changes in the values of the parameters in the burden of proof
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termined by asking “how behavior will change as a function of a change in the evidence
threshold?” (378). The relevant perspective, therefore, is said to be ex ante because we are
interested in how setting a particular threshold will affect harmful and beneficial behavior.
A low evidence threshold deters harmful behavior (like anticompetitive business practices,
for example), but it also chills innocuous or beneficial behavior (such as entering into mu-
tually beneficial agreements). In accuracy models, meanwhile, we take behavior as given
and find the rule that performs best with respect to some tolerable error rate. The analysis
is said to be ex post or backward looking because the action already took place and our
goal is to try and avoid either error and make a correct decision.

Third, the models may be fixed or variable. [Cheng and Pardo(2015)] develop a fixed
standard of proof that applies uniformly to all cases within its scope. Meanwhile, economic
models tend to be flexible and vary from case to case. This is to be expected since different
cases will have different effects on subsequent behavior. The fixed standard, however, is
not required by any specific element of statistical decision theory. Rather, it is a product of
Cheng and Pardo’s philosophical commitments – that it would be unfair to shift the burden
of proof from case to case – and their political forecast – that a shifting burden would lead
to charges of political manipulation and illegitimacy within the legal system.

Fourth, and perhaps most importantly, in accuracy models either prior probabilities
tend to be set aside for normative reasons, as in [Cheng(2013)], or Type I and Type II er-
rors are assumed to be equally bad, which is then used as an argument to set aside prior
probabilities, as in [Cheng and Pardo(2015)]. In either case, the result is the same – prior
probabilities are deemed irrelevant in many legal decision making contexts. This is espe-
cially unfortunate given that the models take accuracy as their primary consideration and
ignoring priors can and often does, as we will see below, lead to inaccurate verdicts in both
real and hypothetical decisions.

Fifth, and finally, in both economic and statistical models of the burden of proof, the
model is put forward as a decision rule.15 In other words, the model is supposed to be
action-guiding: to the extent you are persuaded by the approach, you ought to believe that
we should reform the legal system accordingly. [Kaplow(2012)] asks, for example, “how
could the burden of proof be reformulated to attend more explicitly to welfare considera-

model. But see [Rubinfeld and Sappington(1987)] for an economic model of expected social losses from
errors in adjudication that takes behavior to be exogenous, focusing instead on the relationship between the
litigation effort of defendants and the judge’s ultimate assessment of their guilt.

15To be clear, it is not entirely clear where Cheng stands on this point. In [Cheng(2013)] the model is
clearly descriptive because, by his own admission, it constitutes a wrongheaded approach to inference (1267,
n. 24). In [Cheng and Pardo(2015)], he criticizes [Kaplow(2012)] for proposing a rule that is difficult to
apply in practice.
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tions?”16 But a model of the burden of proof can be normative without being action guiding.
While it is true that we often construct decision models as a guide to judgment and deci-
sion making, it is equally true that we often construct models in order to better understand
how people behave in a particular domain – in this case, it is the domain of legal decision
making. But that does not mean we would endorse the model as a decision rule.17

In particular, we may use the model as a framing tool in order to elicit particular
norms or values underlying choice behavior. This is in the spirit of [Ramsey(1926)],
[Savage(1971)] and [De Finetti(1937)]’s elicitation models for subjective probabilities. That
is, the model can help us extract clues that drive behavior of interest to us. But whereas
Ramsey, Savage and DeFinetti were interested in eliciting strengths of belief – often hold-
ing attitudes to risk constant – I will be interested in eliciting attitudes to risk – and will
hold dynamic probabilistic coherence constant. This is the purpose for which I propose the
adaptive model and the most significant way in which it differs from both economic and
accuracy approaches, as they have been articulated in the literature.

Table (5.1), below, summarizes the salient dimensions along which welfare and more
generally economic approaches may be compared with accuracy approaches.

Welfare models Accuracy models
Flexibility: Variable Fixed
Priors: Relevant Irrelevant
Perspective: Ex ante Ex post
Normative role: Decision rule Decision rule

Table 5.1: Modeling Burdens of Proof

I will develop a model of legal decision making with a shifting burden of proof, for
an accuracy-first theorist, that is sensitive to prior probabilities, as well as the costs and
benefits of a legal decision, which may well occur as a result of the decision itself. In other
words, I do not assume that behavior is exogenous nor do I focus exclusively on effects
that are reducible to social welfare, since I am interested in developing a model that can
help us better understand why people decide the way they do. For the evaluative model I
seek to develop, therefore, the ex ante/ ex post distinction is a false dichotomy. Instead, I

16Meanwhile, [Cheng(2013)] takes himself to vindicate the current preponderance standard because it is
implied by the accuracy approach. [Demougin and Fluet(2008)] reach a similar conclusion on the basis of
economic efficiency.

17Because, for example, the ideal decision rule may be exceedingly difficult to apply and approximating it
can be suboptimal, as suggested by results like [Lipsey and Lancaster(1956)]’s general theory of second best.
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ask, in light of the model, what kind of risk profile would vindicate the decision maker’s
choice, regardless of what she took the relevant costs to be?18 By paying attention to that
profile, we gain insights into the rationality of her decision. The elicited risk attitude is the
important part.

It is important because it can help us understand how legal decision makers reach ver-
dicts (in actual or hypothetical cases) that seem at odds with available base rates without
assuming that they ignore them. In other words, in the familiar paradoxical cases of sta-
tistical evidence the adaptive model I develop shows that we can be both moral and epis-

temically rational provided we are risk averse. By ‘moral’ I simply mean, very roughly for
now, we can avoid conclusions in statistical evidence cases that most people consider to be
inappropriate. Meanwhile, I take epistemic rationality to require probabilistic coherence
(i.e., conformity of an agent’s subjective degrees of belief to the Kolmogorov axioms) and
updating by Bayesian conditioning (which I often refer to as dynamic coherence).

5.2.2 The burden of proof as a hypothesis test

In this section, I develop a general decision theoretic expression of the burden of proof and
explain its relationship to Bayes’ Theorem. This section is intended in part as a directed in-
troduction to the formalism I rely on in the course of the argument to follow. The important
concepts will be conditional probability, Bayesian updating, prior and posterior odds, the
likelihood ratio test and, importantly, the odds-likelihood expression of Bayes’ Theorem.

Let L(X|H) represent the likelihood of seeing evidence X admitted at trial on the
assumption that hypothesisH is true. X is a vector of random variables 〈X1, ..., Xn〉 repre-
senting a string of information such as, for example, witness testimony, e-mail correspon-
dence, and a manufacturing record. For our purposes, each Xi is drawn from a discrete
binary distribution. The corresponding lowercase vector x = 〈x1, ..., xn〉 represents the
realized values of the random variables. So, for example, we might let X = 1 if a witness
identifies the defendant company as the manufacturer of an allegedly harmful prescription
drug and X = 0 otherwise. H is some statement about a contested element of the prima

facie case. More specifically, H is a statement about the value of an unknown parameter of
interest, θ. So, for example, we might have two hypotheses, H0 : θ = 0, standing for the
claim that the defendant company did not manufacture a drug whose origin is in dispute
(our ‘null’ hypothesis), and H1 : θ = 1, standing for the claim that the defendant com-

18We can also set aside the feasibility debate. Cheng’s objection to Kaplow’s model is that it would be
too difficult to execute. But again, since the model I will develop is a framing device to help us understand
legal choice behavior, feasibility is orthogonal. I will not argue that we should, for example, modify jury
instructions in a way that fits the adaptive model.
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pany did manufacture the drug (the alternative hypothesis). Our parameter space is then
Ω = {0, 1} and θ ∈ Ω.

In the expression L(X|H), the vertical bar simply indicates that the likelihood is pa-
rameterized by the hypothesis H . It is the likelihood of observing X on the assumption
that H is true. The difference between the probability distribution and the likelihood is
in the argument of the function. When we talk about likelihood, we are interested in how
plausible the data is under some hypothesis as a way of learning something about the plau-
sibility of that hypothesis. For example, suppose we have tossed a coin of unknown bias ten
times and it came up heads six times (data). We may want to consider which degree of bias
(parameter) would make this result most plausible. As a result, the likelihood is thought of
as a function of the parameter. Meanwhile, the distribution function is a function of (often
not yet generated) data. For example, we want to know how probable it is that if a fair coin
(parameter) is tossed ten times, it will land on six heads (data).19

Similarly, let L(X|H) stand for the likelihood of seeing the evidence admitted at trial
on the assumption that H (read ‘not H’) is true. We will typically assume that our two
hypotheses H and H partition the parameter space Ω in the context of legal fact finding, so
that one or the other must be true.20 A likelihood ratio test is a test that does not reject our
legal ‘null’ hypothesis H just in case the likelihood ratio exceeds some threshold k. That
is, we will not reject H if,

L(X|H)

L(X|H)
> k (5.1)

For example, we may think that in order to accept the Plaintiff’s claim, H should be twice
as likely as H . In other words, k = 2. The higher the likelihood ratio the more frequently
that X would be generated when the true state is H rather than H . For a preview of the

19We do not call the likelihood a probability because as a function of the parameter it may not sum or
integrate to 1. If we appropriately re-scale the likelihood over the parameter space, then it will give us the
probability of the hypothesis in interest.

20Whether or not to make this assumption is a hard question. On the one hand, a well designed hy-
pothesis test should partition the parameter space [Lehmann and Romano(2005)]. To see why, consider two
hypotheses: either the moon landing was staged or it was broadcast by giraffes from outer space. Suppose
our evidence better supports the first alternative (as it surely would) so that we find the support statistically
significant and thereby reject the space giraffe hypothesis. How much does this really tell us about whether
the moon landing was actually staged? Not much. I find this sufficiently problematic so I have decided to
partition the parameter space. [Kaplow(2014)] takes the same approach. [Cheng(2013)], however, decides
not to partition the parameter space so as to be more faithful to the way litigation practice usually proceeds
– namely, by considering the plaintiff’s narrative of the events against the defendant’s, which may not be
mutually exhaustive. After all, we usually require the defendant to put forward an alternative theory of the
case, rather than issuing a blanket denial of the plaintiff’s allegations. As a result, however, Cheng is forced to
make some ad hoc assumptions about the model’s applicability – for example, it may be that it only becomes
relevant after the plaintiff has survived a motion for summary judgment, after which point it is more likely
that her hypothesis is at least somewhat plausible.
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cases we will consider, we may have, for example, x = 〈x1, x2〉 corresponding to two
witnesses each identifying a bus as blue where the bus collided with plaintiff’s car and the
ownership of the bus is in dispute. It is of course more plausible to think that such evidence
is more likely to be generated if the bus were indeed blue than if it were, say, green. But
if our data consists instead of each witness identifying a bus, without indicating its color,
then the likelihood of such evidence would be insensitive to whether the bus was indeed
blue rather than green. Either hypothesis about bus color seems equally likely to generate
such testimony.

Now suppose that ninety nine percent of buses in town are green. But two witnesses
identify a blue bus. It seems reasonable to consider the frequency with which such testi-
mony would be generated in light of the extreme paucity of blue buses in town. Given these
assumptions it seems not implausible to consider, say, witness tampering as an alternative
explanation. But our likelihood ratio test, as stated in (5.1), is not yet sensitive to such
‘prior’ data.

If we are interested in accurate verdicts in the legal process we need to evaluate the
likelihood ratio in light of our prior estimate of the respective probabilities of the parties’
claims. Let P (H) and P (H) represent the prior probabilities of each hypothesis. A test
that is not blind to background information would look roughly like this: we will not reject
H if,

P (H)

P (H)

L(X|H)

L(X|H)
> k (5.2)

What we have done here is discount each likelihood by its respective prior probability.
This seems plausible, as a way of interpreting likelihood in light of what we know about
the hypotheses to begin with. Our test is now closely related to Bayes’ Theorem. The
Theorem states that the posterior odds are equal to the prior odds times the likelihood ratio.
That is,

P (H|X)

P (H|X)
=
P (H)

P (H)

L(X|H)

L(X|H)
(5.3)

This is what is sometimes called the odds-likelihood expression of Bayes’ Theorem. In
general, when the posterior odds of an event are n : m the probability of that event is
n/(n + m). So if we know that the posterior odds of H are 2 : 1, for example, we can
infer that the posterior probability of H is 2/3. This is just Bayes’ Theorem differently
expressed. But this expression is helpful to us for two reasons.

First, since the left hand side in (5.2) is just the posterior odds, factored into priors and
a likelihood ratio, it makes very explicit the pull that the priors have on the evidence. They
hold us back from jumping to conclusions. Second, what we have in (5.2) is a Bayesian
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hypothesis test, which consists of three principal components: prior odds, likelihood ratio,
and a rejection threshold. This is the general statement of a hypothesis testing procedure as
applied to legal burdens of proof. Everyone in the literature agrees that a legal hypothesis
test should have something like this form. Where we disagree is on which terms should
be fixed, and which should vary, as well as their proper interpretation. The first part of my
argument is now easy to state: all the terms should vary. What remains to be seen is why
they should vary and how we should interpret them. But before we get there let us see why
I am interested in modeling burdens of proof – namely, because of the so-called paradox of
statistical evidence.

5.3 Naked statistics: the phantom menace21

5.3.1 Probability and the rules of evidence

FED. R. EV. 401 is the starting point for determining the admissibility of evidence in the
federal courts. It states that evidence is relevant if it has “any tendency to make a fact more
or less probable than it would be without the evidence.” The definition of relevance, then, is
explicitly probabilistic. More than that, it incorporates each of the concepts discussed above
– prior probability, posterior or conditional probability, and comparative likelihood – in or-
der to define evidence explicitly in terms of incremental changes in probability. To see why
this is the case, notice that according to the definition,X is relevant if P (H|X)/P (H) > 1.
And we know from (5.3) that P (H|X)/P (H) is equal to L(H)/L(H).22 The likelihood
ratio is also known as the Bayes factor, precisely because it is a measure of incremental
change in probability. It is the term that, multiplied by the prior, gives us the posterior.

Indeed, courts now generally recognize, as [Posner(1999)] says, that “since all evidence
is probabilistic – there are no metaphysical certainties – evidence should not be excluded
merely because its accuracy can be expressed in explicitly probabilistic terms, as in the
case of fingerprint and DNA evidence” (1508). Indeed, in Branion v. Gramly, 855 F.2d
1256, 1263-64 (7th Cir. 1988) the court notes that “[a]fter all, even eyewitnesses are testi-
fying only to probabilities (though they obscure the methods by which they generate those
probabilities) – often rather lower probabilities than statistical work insists on” (internal

21The title is inspired by [Hershovitz(2002)].
22The comments to the rule make clear that the probabilistic language is intended: “The rule summarizes

[relevance] as a ‘tendency to make the existence’ of the fact to be proved ‘more probable or less proba-
ble.’ Compare Uniform Rule 1(2) which states the crux of relevancy as ‘a tendency in reason,’ thus perhaps
emphasizing unduly the logical process and ignoring the need to draw upon experience or science to vali-
date the general principle upon which relevancy in a particular situation depends.” NOTES OF ADVISORY
COMMITTEE ON PROPOSED RULES.
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citations omitted).23 Even in criminal cases, where the state has to establish guilt beyond a
reasonable doubt, courts realize that probabilities are inevitable. In Victor v. Nebraska, 511
U.S. 1, 14 (1994), for example, the Supreme Court found that “the beyond a reasonable
doubt standard is itself probabilistic.”24

So, then, how much disagreement could there be about the use of prior probabilities
in legal fact finding? A lot, it turns out, mostly revolving around the so-called paradox
of ‘naked’ statistical evidence. The purported paradox arises in connection with statistical
evidence of identity in civil litigation, especially in negligence torts. The apparent puzzle
presents situations where it seems both appropriate to have a high posterior probability
in the defendant’s guilt and inappropriate to hold the defendant legally responsible on the
basis of the evidence that justifies that probability.25 In other words, you should believe
that the defendant is liable and, at the same time, that it would be morally inappropriate to
hold her liable. The task, then, becomes one of attempting to reconcile these apparently
conflicting judgments.

One way out of the dilemma is to deny that one’s posterior probability should indeed be
high. But no one disputes the likelihood – i.e., no one has argued that we should, say, ignore
direct witness testimony. As a result, the way to bring down the posterior is by arguing that
we ignore the prior. Of course we cannot simply avoid it.26 Instead, what advocates of

23See also [Rosenberg(1984)]’s influential analysis (“[T]he entire notion that ‘particularistic’ evidence
differs in some significant qualitative way from statistical evidence must be questioned. The concept of ‘par-
ticularistic’ evidence suggests that there exists a form of proof that can provide direct and actual knowledge
of the causal relationship between the defendant’s tortious conduct and the plaintiff’s injury. ‘Particularistic’
evidence, however, is in fact no less probabilistic than is the statistical evidence that courts purport to shun
.... ‘Particularistic’ evidence offers nothing more than a basis for conclusions about a perceived balance of
probabilities.”) (870).

24 “In a judicial proceeding in which there is a dispute about the facts of some earlier event,” the Court
found, “the fact finder cannot acquire unassailably accurate knowledge of what happened. Instead, all the fact
finder can acquire is a belief of what probably happened.” Quoting In re Winship, 397 U.S. 358, 370 (1970)
(Harlan J. concurring); see also Turner v. United States, 396 U.S. 398, 415-17 (holding that although some
heroin is produced in the United States, the vast majority is imported and as a result, a jury may infer that
heroin possessed in this country is a smuggled drug, even under the beyond a reasonable doubt standard).

25The puzzle has been the subject of several waves of literature in law and philosophy. First,
in the late 60s early 70s, including the classics [Kaplan(1968)], and [Tribe(1971)]. Then in the
1980s, including [Cohen(1981)], [Nesson(1985)], and [Thomson(1986)]. And more recently, with
[Colyvan et al.(2001)Colyvan, Regan, and Ferson], [Schauer(2003)], [Redmayne(2008)], [Kaplow(2012)],
[Buchak(2014)], [Cheng(2013)] and [Cheng and Pardo(2015)]. A number of scholars offer a response to this
puzzle as part of a broader project on evidence law, including [Posner(1999)]. There are also several helpful
literature reviews and clarificatory articles, including [Brook(1985)], [Koehler(2002)], and [Wright(1988)].

26[Kaplow(2014)] makes a similar point: “Some have suggested in particular that Bayesian priors be
ignored in applying burdens of proof . . . the suggestion is obscure: how can one insist simultaneously
on applying a formula and on ignoring some of its elements? It is as if one was asked to choose the rectangle
with the greater area, but in so doing to ignore the length of the rectangles under consideration. What seems
to be meant, and is sometimes stated explicitly, is that fact finders should decide as if the ignored components
were equal.” (798).
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this position do, explicitly or otherwise, is set the prior odds to 1 despite evidence of their
inequality.27

Another common approach to the dilemma is to deny that the posterior probability itself
is relevant. The task then becomes one of identifying the appropriate alternative epistemic
attitude.28 This solution is more common in the philosophy literature since, as we saw, the
FEDERAL RULES explicitly define evidence in terms of incremental changes in probabil-
ity. An alternative solution is to suggest that probability in the legal context just means
something altogether different from mathematical probability. This is [Nesson(1986)]’s
approach.29 Fortunately, as I will argue, the more radical proposals are not necessary once
we take into account a decision maker’s sensitivity to risk of error, which already plays a
central role in the construction of statistical hypothesis tests.

5.3.2 One person’s fallacy is another’s puzzle

We can identify at least three distinct apparent paradoxes of statistical evidence in the law,
philosophy, and psychology literature. They are all variations on a seminal case in tort law,
Smith v. Rapid Transit, Inc. 317 Mass. 469 (1945).30 In each case, the intuitive judgment
reported by legal philosophers is widely accepted as a fallacy by psychologists. While the
cases involve the application of Bayes’ Theorem, it is important to understand that they are
not about Bayesian inference at all. The background information in each case is provided
in the form of a population frequency and any statistician (Bayesian or not) should agree
that we should condition on the evidence. So why are they paradoxical? In short, they are
not. The disagreement occurs because of a confusion in what is required for a high degree
of belief (the Bayesian posterior probability) and what is required to make a legal decision
on its basis (a procedure for when to accept/reject a proffered theory of the case, or a part
thereof).31

27See [Cheng(2013)] at 1267, for example.
28See e.g., [Thomson(1986)] (arguing that the right epistemic attitude is knowledge, which is not necessar-

ily equal to a high probability or even probability 1), [Enoch et al.(2012)Enoch, Spectre, and Fisher] (arguing
that we need modally sensitive beliefs, a philosopher’s term of art), [Redmayne(2008)] (arguing that we need
modally safe beliefs, another term of art) and [Buchak(2014)] (arguing that the right epistemic attitude is a
belief, which may not be reducible to any particular probability).

29This approach is not persuasive especially because mathematical probability enters through expert tes-
timony into most moderately complex disputes, and almost invariably in damages assessments. It would be
very unusual to have the expert’s use of the concept explicitly distinguished from legal uses of the term.

30I omit the details of the actual case, since the literature has grown around fictionalized variations of
it, which I consider in detail below. It is really not clear how much of the actual Smith case hung on the
admissibility of base rates.

31The only problem in this vicinity is the well-known reference class problem, but that is not what the
cases are about.
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The first case was made famous by Daniel Kahneman, Amos Tversky and Maya Bar-
Hillel in their studies of biases and heuristics in the context of judgment under uncertainty.32

It goes as follows.

Problem 1. Two bus companies operate in a given town, the Blue Bus Com-
pany and the Green Bus Company. Blue Bus Co operates only blue buses and
Green Bus Co operates only green buses. Blue Bus Co owns 80 percent of all
the buses in town and Green Bus Co owns the other 20 percent of buses. A
bus is involved in a hit and run accident late at night. A witness later identifies
the bus to be green. The court finds that under similar visibility conditions the
witness is able to correctly identify the color of the bus about 80 percent of the
time.

Suppose we introduce the witness’s testimony in a civil dispute between the victim and the
Green Bus Company. In cases like this, it is typically the plaintiff who bears the burden of
persuasion on every element required to establish a prima facie case, which is said to be
satisfied if the preponderance of the evidence favors the plaintiff’s theory. So is this enough
for the plaintiff to establish a prima facie case? Given this version of the problem, and a
preponderance standard, the Bayesian answer is no. Let P (G) and P (B) represent the
prior probability that a Green Bus Co or Blue Bus Co bus hit the victim, respectively, and
let L(g|G) and L(g|B) represent the likelihood that the witness identifies a green bus given
that a Green or Blue bus hit the victim, respectively. Since posterior odds = prior odds×
likelihood ratio (5.3), we have,

P (G|g)

P (B|g)
=
P (G)

P (B)
× L(g|G)

L(g|B)
=

1

4
× .8

.2
= 1 (5.4)

Therefore, the posterior probability that a Green Bus Co bus hit the victim given that the
witness identified a green bus is 1/2. The evidence is not preponderant.

In a large number of experiments, however, [Kahneman and Tversky(1972)] and
[Bar-Hillel(1980)], among others, report finding that the average value for P (G|g) among
their subjects is approximately .8, closely tracking the witness’s credibility and ignoring the
underlying frequency of green buses in the town’s bus market.33 Given that posterior, we
should indeed find for the plaintiff despite the above analysis. But that would be a classic
case of what Kahneman and Tversky called the base rate fallacy. Indeed, the problem was
originally introduced to illustrate the fallacy.

32[Kahneman and Tversky(1972)], [Bar-Hillel(1980)]. See generally [Kahneman and Tversky(1982)].
33For experimental evidence on legal hypotheticals in particular, see [Wells(1992)].
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What makes this judgment bias interesting to lawyers and philosophers however, is that
even upon reflection people stick with their inaccurate estimate and corresponding decision.
But more than that, many scholars themselves believe that the widely observed decision is
actually correct, at least in legal contexts – and that in cases analogous to the above, as we
will see, our judgment about whether or not the burden of proof has been met should not
correspond to the posterior probability. To see why some scholars draw this conclusion,
consider the following.

Problem 2. The Blue Bus Co owns 80 percent of the buses in town, all of
which are blue, and Green Bus Co owns 20 percent, all of which are green.
The witness testifies that a bus hit the victim (this fact is not disputed) but
cannot remember its color.

This is the problem as articulated in [Thomson(1986)] and [Nesson(1985)]’s seminal pa-
pers and as a result this is the version introduced in the legal (rather than behavioral eco-
nomics/ psychology) literature. On the basis of this evidence, should the plaintiff recover?
Well, the only difference between Problem 1 and Problem 2 is that the witness testimony
is now assumed to be undisputed and what the witness says is simply that she saw a bus.

Presumably, such evidence is not any more probable if the bus had been green than if
it were blue. As a result L(b|G) = L(b|B), which has the effect of making the likelihood
ratio equal to 1. But it is still the case that P (G|b)/P (B|b) ∝ 1/4 which means that
P (G|b) = 1/5. But now suppose we switch the case around, so that rather than bringing
a lawsuit against the Green Bus Co the plaintiff brought a lawsuit against Blue Bus Co.34

Since P (G|b) + P (B|b) = 1, P (B|b) = 4/5. The Bayesian answer is now, ‘yes, the
plaintiff should recover against Blue Bus Co.’

And this is the apparent paradox. While it is true that the posterior probability for
the claim that a Blue Bus Co bus caused the injury is .8 – well above any reasonable
interpretation of ‘preponderance’ – it seems morally inappropriate to hold Blue Bus Co
liable on this basis.35 The challenge, then, is to explain why statistical evidence cannot
underwrite a verdict against the defendant in cases like this.

But the only difference between Problem 1 and Problem 2 is that the likelihoods are
equal (i.e., the ratio is 1) in the latter case. As a result, the posterior odds in Problem 2 are
equal to the prior odds, which means that our priors carry all the weight, rather than only
some of it, as in Problem 1. This is what drives our strong moral intuitions in Problem 2.
But it is not clear why this ought to be morally relevant, and it is quite clear that it is not

34This is structurally identical to [Cohen(1981)]’s Paradox of the Gatecrasher.
35I am assuming here that Blue Bus Co does not introduce any evidence in rebuttal.
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epistemically relevant. Whether the priors carry some, all, or none of the weight should
not make a difference to our assessment. Before we move on, let us consider one more
common formulation.

Problem 3. The Blue Bus Co owns 80 percent of blue buses in town, and the
Green Bus Co owns 20 percent of blue buses in town. The witness testifies that
a blue bus hit the victim (this fact is not disputed).

This is the presentation of the problem as given in [Tribe(1971)]’s seminal article and it
is the version of the problem taken up in the more recent literature, by [Cheng(2013)] and
[Buchak(2014)], for example. If this is presented in court should the plaintiff recover?
The Bayesian answer is similar to the answer in Problem 2, except the likelihood now
corresponds to the witness testimony of a blue bus, rather than the witness testimony of
a bus. But the relevant base rate is now the proportion of blue buses owned by Blue Bus
Company, which is again 4/5, and the likelihoods are again presumably equal, since it is not
more likely that the witness would identify a blue bus if that blue bus belonged to the Blue
Bus Company than if the same blue bus belonged to the Green Bus Company. So we have,
again, a posterior probability of 4/5, which we will now denote by P (B|bl.). As in Problem
2, most people feel uncomfortable about concluding that the plaintiff could win, or even
make out a prima facie case, on the basis of the statistical evidence. Structurally, however,
the three problems are identical. In each case, likelihood is likelihood is likelihood. And
the uniformly correct solution is to be found by applying Bayes’ Theorem.

One worry we may have is that we would not want a judge or jury to come into a case
with a prior bias of who is more likely to win, since notions of fairness or impartiality in
the legal system require that we consider the competing accounts on an equal footing, so
to speak. One response to this would be to deny that this is indeed what we should do. If a
plaintiff comes to court with an absurd claim, we should not feign credulity for the sake of
impartiality.

For example, it seems plausible that when a plaintiff alleges being bitten by defendant’s
house cat, or having developed autism as a result of the defendant manufacturer’s flu vac-
cine, we should indeed approach the claim with some initial skepticism.36 But if the worry
is procedural – i.e., that a jury should not rely in their decision making on evidence not in
the record – we can simply assume that the fact finder does indeed begin with a uniform

36[Kaplow(2012)] says, for example, “it seems unlikely that [legal decision makers] would ignore, for
example, whether a characterization of events proffered by a party was a priori quite unlikely or bizarre
versus entirely ordinary human behavior.” See also [Diamond and Vidmar(2001)] (describing cases where
legal decision makers ordinarily incorporate prior information).
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prior, and that the base rates are then admitted into evidence.37 So consider the following
problem, which is again mathematically indistinguishable from problems 1-3.

Problem 4. Same as problem 3 except (a) the decision maker (judge or jury)
approaches the case with a uniform prior over the two hypotheses and (b) the
base rates are entered into evidence by the plaintiff at trial, followed by the
witness testimony.

Anyone who shares the intuition that statistical evidence cannot properly underwrite a legal
judgment should still share that intuition in Problem 4. After all, the disagreement is not
supposed to be about procedure. The apparent problem with statistical evidence is not just
that decision makers inappropriately rely on it when it is not in the factual record. It is that
even if it were in the factual record, it would not be morally appropriate to rely on it.

In problem 4 we have to update twice. In the first update, the equal priors cancel out,
leaving a likelihood ratio of 4/1 which means that the posterior probability that a Blue
Bus Company bus injured the plaintiff is 4/5. Now we introduce the eyewitness testimony,
which means that the likelihood ratio becomes the new prior odds and the problem becomes
identical to that in Problem 3. If the new likelihoods are equal, then they cancel out as well,
which means that the new posterior is equal to the new prior odds – namely, 4 : 1 – and the
probability that a Blue Bus Company bus hit the victim is again 4/5. This is all consistent
with starting the case out with the parties in equipoise, as [Cheng(2013)] puts it. Since
Bayesian conditioning is commutative we would get the same result if we reversed the
order of the updates.

Therefore, what should have been a case of mistaken reasoning (ignoring base rates)
came to form the basis for a family of apparent puzzles about evidence. In the sections
that follow, we will see how the adaptive model can help us make sense of cases where
statistical evidence seems inappropriate as well as their apparent counter examples (like
DNA random match profiles).

5.4 Royall’s three questions

In a classic monograph on statistical inference, Richard Royall distinguishes three related
questions about evidence: (Q1) What should I believe?; (Q2) What does this observation
tell me about the competing hypotheses?; and (Q3) What should I do after making an

37One might go further and argue that it is not even possible to make a decision without relying on infor-
mation outside the record. A judge or jury cannot evaluate admitted evidence from the perspective of a true
blank slate, as it were.
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observation? [Royall(1997)]. The problem, as we will see, with the literature on statistical
evidence is that most commentators assume the legal system is in the business of answering
(Q1) or (Q2) when instead the evidentiary process is characterized by a decision procedure
for dealing with (Q3).38

The first question may be answered with a Bayesian posterior probability. There is
no exception to this. If all you’re interested in is what you should believe – in epistemic
heaven, so to speak – then the optimal approach is the Bayesian posterior. This is because
in epistemic heaven the only thing you ought to care about is the accuracy of the beliefs
you hold. And in a dynamic context, where you will revise your beliefs in response to new
evidence, it seems sufficiently plausible that the only thing you ought to care about is the
accuracy of the beliefs you end up with. Provided this is true, then for a large class of
very plausible measures of probabilistic accuracy (including, basically, every measure used
in the forecasting literature),39 updating by Bayesian conditioning on one’s priors max-
imizes the expected accuracy of the posterior probabilities [Greaves and Wallace(2006)].
Bayesian conditioning, therefore, is optimal from the perspective of (expected) accuracy
and will in this sense always give the best answer to (Q1). But legal fact finding does not
take place in epistemic heaven. We engage in legal fact finding in order to figure out what
happened, so that we can grant relief where it is appropriate. This is the hallmark of the
evidentiary process – it is not just fact finding in the abstract. It is fact finding as the basis
for a subsequent practical decision.

How should we answer (Q2)? I mentioned above that the likelihood ratio is reckless
in its responsiveness to evidence. But if all we are interested in is evaluating the relative
strength of the evidence, full stop, then the likelihood ratio’s recklessness is a virtue. Sup-
pose that H : H is 2 : 1. Then what the evidence says is that the null hypothesis is twice
as plausible as the alternative.40 This approach – i.e., the approach to answering (Q2) –
easily lends itself to legal application. It seems reasonable to suggest that in civil litigation
we should decide in the plaintiff’s favor if the likelihood of the data under her hypothesis

38For example, [Thomson(1986)], [Buchak(2014)], and [Enoch et al.(2012)Enoch, Spectre, and Fisher]
assume that the burden of proof is defined by some fixed epistemic standard – such as a modally robust
belief (Q1). If that standard is met, liability is appropriate. Meanwhile, [Cheng(2013)] assumes that what
matters instead is the weight of the evidence only (Q2). If the plausibility of the plaintiff’s claim relative to
the defendant’s claim is high enough, liability is appropriate.

39The measures I am referring to are the so-called strictly proper scoring rules. See
[Winkler and Murphy(1968)], [Savage(1971)], [Schervish(1989)], and [Lindley(1982)] for classic dis-
cussions and [Gneiting and Raftery(2007)] for a contemporary overview. In studies of probabilistic
forecasting, [Brier(1950)]’s quadratic score is usually applied as a measure of accuracy. See e.g.,
[Merkle et al.(2016)Merkle, Steyvers, Mellers, and Tetlock] (applying the Brier score to evaluate geopolit-
ical probability judgments).

40See e.g., [Hacking(1965)] and [Sober(2008)] for a likelihoodist approach to evaluating evidence.
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is greater than the likelihood of the data under the defendant’s hypothesis. In other words,
find in favor of the plaintiff if,

L(X|H)

L(X|H)
> 1 (5.5)

This is effectively the proposal [Cheng(2013)] puts forth.41 It is equivalent to (5.1) with k =

1. But in a legal context we are not interested in merely evaluating the relative likelihood
of the evidence. The likelihood ratio is a measure of the degree to which the evidence
increases the posterior probability that the plaintiff is right. But it would be a mistake to
make decisions on the basis of facts about incremental increases in evidence rather that on
total evidence.

Suppose again the plaintiff alleges, implausibly, that she was bitten by the defendant’s
house cat, but the defendant chooses to respond by arguing, instead, that the bite mark was
caused by a third party’s goldfish. Since the denominator of this likelihood ratio will be
virtually zero, we are guaranteed to satisfy (5.5) no matter how improbable the house cat
theory is. But that does not mean we should accept the goldfish theory. Doing so would be
an instance of what [Spanos(2013)] calls the fallacy of rejection (misinterpreting evidence
against a hypothesis as evidence for the alternative). This fallacy arises in the example
because, by offering a specific theory in rebuttal, the defendant has chosen to respond in
a way that results in a non-partitioned parameter space. In a legal context, we want to
evaluate the evidence in light of what we know about the world and the underlying factual
circumstances so as to make our best guess about the most probable sequence of events
leading to the complaint.

As a result, in the context of legal decision making we need an answer to Royall’s
(Q3). Now it may seem like (Q3) has very little to do with statistical inference. But it is
really (Q3) that [Neyman and Pearson(1933)]’s classic null hypothesis significance testing
approach seeks to answer. In hypothesis testing, as in legal decision making, we need a
justifiable procedure for when to reject one or the other of the competing claims. What will
be especially important to us here, though, is not so much the particular procedure used in
NHST (the uniformly most powerful level α test) but rather the method by which such a
procedure is constructed and the normative assumptions presupposed in its development.

5.4.1 Hypothesis testing and epistemic risk

To construct a hypothesis test, we start by identifying a null hypothesis H0 and an alterna-
tive hypothesis H1, which are statements about θ ∈ Ω. For example, θ = 0 and θ 6= 0.

41Strictly speaking, Cheng’s model takes this form because he assumes that the prior odds are equal to 1.
I evaluate this assumption in detail in §5.1.
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To make this concrete, these might be statements about, say, the correlation between blood
pressure and sugar consumption, appropriately defined. A hypothesis testing procedure is
a rule that specifies the sample points for which H0 is accepted. This is our acceptance
region S0. And it specifies a set of sample points for which H0 is rejected. This is our re-
jection region S1. These two partition the sample space so that x ∈ S0 ∪ S1. The rejection
region is usually defined through a test statistic W (X), which is a function of the data. For
example, we may use the observed correlation, and agree that we will reject a hypothesis
of no effect (in the sugar example, correlation 0) if the correlation observed in the sample
is, say, ρ > |.25|.

The important question is the following: on what basis should we select such a testing
procedure? This is what we need to answer (Q3). In identifying a hypothesis test, there
are two important things to worry about. Notice that if we set the rejection threshold really
high, say .75 (recall that the range of the correlation coefficient is between −1 and 1), we
will almost certainly not reject the null hypothesis. So it is extremely improbable that we
will conclude that sugar affects blood pressure when in fact it does not. This is a very
conservative procedure. At the same time, however, by setting the threshold so high we are
taking a different kind of risk. Namely, the risk of failing to appreciate an effect between
sugar and blood pressure that in fact exists, though perhaps not to such a strong degree. To
increase the probability that we detect an effect when indeed it is there we should bring the
threshold down. But as we do this, of course, we also increase the probability of rejecting
our null hypothesis in response to sampling noise, which would be very probable if we set
it to, say, 0.0001.

The first kind of error is a Type I or false positive error. We will express its probability
as,

P (X ∈ S1|H0)

This is to be read as the probability that our observed data fall into the rejection region, on
the assumption that the null hypothesis is in fact true. The second kind of error is known
as a Type II or false negative error, whose probability is,

P (X ∈ S0|H1)

which is to be read as the probability that our observed data fall outside the rejection region
when in fact the null hypothesis should be rejected (i.e., the alternative is true). An ideal
test would eliminate the probability of error altogether. In practice this is impossible. As
a result, we have to select a test by choosing a tolerable level of both Type I and Type II
error rates. This is what is important to us here: the fact that a hypothesis test is selected
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by considering our tolerance to risk or error – or, epistemic risk. Equivalently, this implies
that every test reflects an implicit trade off between the different types of error rates.

So, then, what would be a reasonable level of epistemic risk to assume in the legal
context? Surely this depends on the circumstances: what is at stake for the parties who will
be bound by this decision? And how may we expect the decision to affect future conduct?
Under [Neyman and Pearson(1933)]’s NHST approach, however, such considerations are
generally not relevant. Instead, we identify some tolerable Type I error probability α and
then look for the test, among all level α tests, that minimizes the probability of Type II
error. Since α rarely varies from case to case, the test is not context sensitive. Moreover,
false positives are uniformly privileged. But this is not the only way to identify a hypothesis
test. In the next section, I will identify a more flexible selection procedure and apply it to
legal decision making.

5.4.2 Minimizing a linear combination of error rates

To balance the relevant consequences in identifying a decision procedure we need to pay
attention to the relative costs of the different types of error, including forgone benefits that
would have accrued if we rendered an accurate verdict. For example, we might agree with
the plaintiff that a product injuring them was defective when in fact it was not (perhaps
the plaintiff sustained injuries through misuse) – a Type I or false positive error. Or, we
might reject plaintiff’s allegation when in fact it is true – a Type II or false negative error.
We have significant room for judgment in designing evidential procedure so as to balance
the two types of error rates. For example, a system that awards damages to every plaintiff
who makes a colorable case by surviving a motion to dismiss would effectively eliminate
type II errors. On the other extreme, we have the standard in criminal cases – proof beyond
a reasonable doubt – which reflects significantly more concern for Type I errors. The
preponderance standard is typically taken to be somewhere between these two extremes.

Let δ refer to the evidential procedure in our venue. Then the Type I and Type II error
rates are functions of δ and we can refer to them as α(δ) and β(δ), respectively. In other
words,

α(δ) = P (Reject H0|H0) = P (X ∈ S1|H0)

β(δ) = P (Accept H0|H1) = P (X ∈ S0|H1)

Suppose δ is the evidential procedure that finds for every Plaintiff surviving a motion to
dismiss. Then α(δ) = 0. Meanwhile, where δ is, let’s say, an extremely strict version of
the beyond a reasonable doubt standard, β(δ) ≈ 0. Notice, however, that in the first case
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where α(δ) = 0, β(δ) will be high. Its precise value depends on the underlying distribution
of actually harmful acts among acts that are alleged to be harmful but if we assume for the
sake of this example that approximately half of the defendants have committed the act they
are accused of committing then β(δ) ≈ .5.42 Meanwhile, under the same assumption, in
the case where β(δ) ≈ 0, α(δ) ≈ .5.

It seems reasonable to suppose, then, that in order to identify a decision procedure and,
in turn, answer Royall’s (Q3), we should strike some balance between α(δ) and β(δ). My
argument here is very minimalist. I do not intend to argue for a particular way of striking
that balance. Rather, I simply suggest that in order to identify an appropriate procedure we
should consider what that balance ought to be. Or, to put this in evaluative terms, we can

assess legal decision making by reference to whether the balance that it reflects about the

relative costs of error of either sort is appropriate from a moral perspective.43

Here is a very general proposal. We have two types of error rates, α(δ) and β(δ), and
we necessarily have some costs associated with them, let us call these a and b, respectively.
It seems sensible that regardless of our attitude to risk of error of either kind, in the legal
context we should seek to minimize a linear combination of weighted error rates. Why
linear? Because it is effectively the least restrictive mixture of two quantities. An affine
combination is a linear combination that requires the weights to sum to 1 and a convex
combination is an affine combination with non negative weights. But a linear combination
of error rates puts no restrictions on the weights. Since I want to develop a broadly applica-
ble model of legal decision making, the fewer assumptions we make the better. Therefore,
we should identify the evidentiary procedure δ among the set of all available procedures ∆

which satisfies,
min
δ∈∆

aα(δ) + bβ(δ) (5.6)

This is a very general expression since we have not yet specified a value for any of these
parameters and there are no restrictions on the weights. Its generality is a strength. Our
attitude to risk of error in either direction may be affected by a number of factors. We
have already seen one such concern above – that is, we may think that the unfairness to an
innocent person who is wrongly convicted in a criminal case is worse than the unfairness
to the victim (or perhaps society) of having a guilty person falsely acquitted. This is a pre-
dominantly backward looking or ex post consideration. It may be reducible to its effect on
individual utilities (because, for example, we disprefer living in a society that puts innocent
people in jail at a greater rate than we disprefer a society that acquits guilty people) but

42Cf. [Laudan and Allen(2008)] (estimating the frequency of false exoneration in criminal trials).
43The most clear example of a decision procedure generated by considering the error ratio is in the criminal

context where the Blackstone dictum suggests that a Type I error is ten times as bad as a Type II error.
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it may not be. We may believe instead, as [Tribe(1971)] suggests, that there is a particu-
lar injustice to the autonomy of an individual by falsely punishing her on the basis of her
membership in a class.

For [Tribe(1971)] and [Wasserman(1991)], this is an injustice that goes beyond what
can be captured in the social welfare function. But that is not a problem for the linear com-
bination approach, because the view I defend is a more general version of [Kaplow(2014)]’s
economic model. It enables us to capture Tribe and Wasserman’s concerns because it im-
plies that the reason we may think false positives are so bad is not so much because of
the social consequences that the decision may produce (ex ante) but rather because of the
severe injustice that we accrue by violating an individual’s autonomy in punishing her on
the basis of class membership (ex post). If we constrain the model I propose by adding the
assumption that the only considerations permissible in determining the values of a and b are
considerations that affect the social welfare function, then the approach will be equivalent
to Kaplow’s. In other words, Kaplow’s model is a special case of the adaptive model with
the social welfare condition on the support of a and b.

It is also possible to maintain that none of this is relevant to the fact finding process
in legal trials, in which case a = b = 1. This is effectively what [Cheng(2013)] and
[Cheng and Pardo(2015)] propose. But as lawyers like to say, inaction is an act, so it is
worth keeping in mind that refusing to evaluate the relative normative importance of a
and b by setting them equal to each other is itself a choice reflecting a value judgment
about the permissible attitudes to risk of error. In any case, my main point here is that
whatever approach you prefer to setting the parameter values, the basic idea – that we
should minimize a weighted linear combination of error rates – is very plausible. If this
claim is right, then it provides a very strong justification for the model I defend – namely,
an adaptive Bayesian likelihood ratio test. We will now prove this.

5.4.3 Epistemic risk and the adaptive model

[DeGroot and Schervish(2012)] show that if our goal is to minimize (5.6) then the optimal
test will be in the form of a risk-weighted likelihood ratio. I will assume, as I mentioned
above, that our data is drawn from a binary distribution – for example, X = 1 if the
defendant company owns the bus that caused the accident and X = 0 otherwise. Since we
want to find the test δ that minimizes aα(δ) + bβ(δ), which is equal to

∑
x∈S1

af(x|H) +∑
x∈S0

bf(x|H), where f(·|H) is the probability distribution of the data under H , then, by
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rearranging this expression, we have to choose a critical region that minimizes,

b+
∑
x∈S1

[af(x|H)− bf(x|H)] (5.7)

In other words, we want the region that includes every point x for which af(x|H) −
bf(x|H) < 0 because every such point will decrease the overall sum. Therefore, the test δ∗

that minimizes the sum in (5.7) will reject the null hypothesis when af(x|H) > bf(x|H).
As a result, we will reject the null whenever the probability of the data under it, weighted
by the cost of falsely rejecting it, is less than the probability of the data under the alterna-
tive, weighted by the cost of falsely accepting it. Rearranging and expressing the statistic
as a function of the parameter, we get a weighted likelihood ratio test. That is, accept the
plaintiff’s claim H if,

L(X|H)

L(X|H)
≥ b

a
(5.8)

Notice that if we let k = b/a then (5.8) is equal to (5.1). What we get from
[DeGroot and Schervish(2012)], however, is an interpretation of k in terms of the risk of
error – i.e., the parameters a and b corresponding to Type I and Type II error costs, re-
spectively – and a proof for the claim that this is the test we need to use if our goal is to
minimize a linear combination of error rates, as I argued it should be.

I explained above that a likelihood ratio on its own is far too sensitive to the evidence
and in particular to evidential noise. We are looking for an answer to (Q3) whereas (5.1),
as we saw, gives us an answer to (Q2). But we can extend the proof to get what we need.
First, multiply both sides by P (H)/P (H), to get,

P (H)

P (H)

L(X|H)

L(X|H)
≥ P (H)

P (H)

b

a
(5.9)

Since there is no restriction on the cost parameters a and b, let b∗ = bP (H) and a∗ =

aP (H). Then the following test is likewise risk optimal.

P (H)

P (H)

L(X|H)

L(X|H)
≥ b∗

a∗
(5.10)

The left hand side should be familiar now – by (5.3) it is equal to the Bayesian posterior
odds P (H|X)/P (H|X). Strictly speaking b∗ and a∗ are now a different pair of constants,
but since there is no restriction on their range I will drop the asterisk, below.44

44This change in the value of the risk parameters in going from a pure likelihood ratio to a prior weighted
likelihood ratio does imply that if a Bayesian and a likelihoodist are to reach the same verdict in contested
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We now have an answer to Royall’s (Q3) and a recipe for constructing a legal standard
of proof: decide in favor of the plaintiff if and only if the risk-weighted posterior probability
of her hypothesis is greater than the risk-weighted posterior probability of the competing
hypothesis. That is, our optimal test δ∗ takes the following form: Accept plaintiff’s claim
if,

P (H|X)/P (H|X) > b/a (5.11)

This is identical to our statement of the adaptive model in (5.2), except now the rejection
threshold is finally defined in terms of a ratio of error costs and a statistical optimality proof
is given to justify the approach.45 Moreover, the test imposes a probability threshold on le-
gal decision making, in the sense that we decide for the plaintiff if the posterior probability
of her claim, P (H|X), exceeds b/(a+ b). But that threshold is conditional on the decision
maker’s tolerance for risk of error – that is, the relative magnitudes of a and b. What we
have added, therefore, is some substance to the parameters of our Bayesian hypothesis test.
The model is adaptive because it has a shifting rejection threshold. And that threshold shifts
in response to the decision maker’s sensitivity to risk of error, or epistemic risk. Each of the
three terms in the model – prior, likelihood, error rate – are variable. Let us now compare
this to [Cheng(2013)] and [Cheng and Pardo(2015)]’s alternative accuracy-first model.

5.5 Risk adaptive burdens of proof

To keep things as simple as possible, let p1/p2 denote the prior odds for H and H , respec-
tively, and let L1/L2 denote their respective likelihood ratio. Our Bayesian hypothesis test
then enjoins us to accept the plaintiff’s claim if (p1/p2)(L1/L2) > b/a, where a and b are
the weights of the Type I and Type II error rates, respectively. This is just a simplified
expression of (5.11).

5.5.1 The restrictive approach

The apparent puzzle in problems 2-4 is that since p1/p2 = 4 and L1/L2 = 1 we are
committed to the conclusion that we should find in favor of the plaintiff provided that
a = b = 1. This is the restriction. To say that we assume a and b are equal, given this model,
is equivalent to saying that we should decide in favor of the party with the comparatively
higher posterior probability. In other words, this is now the familiar threshold approach,

statistical evidence cases, such as problems 2-4, the Bayesian must be more sensitive, so to speak, to risk of
error. Spelling this out in detail would take us too far off field, however, as the core argument does not hang
on this remark.

45Whether we use a strict or non-strict inequality does not matter, since a and b are unrestricted constants.
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where we decide for the plaintiff if the probability of her theory of the case exceeds .5.
That is, decide for the plaintiff if (p1)(L1) > (p2)(L2).

But why should we set a and b equal to each other? Cheng argues that in civil litiga-
tion at least, it is plausible to assume that the cost of false positives is equal to the cost
of false negatives. [Posner(1999)] makes the same assumption. The idea here is simply
that a = b = 1 is the mathematical equivalent of assuming that the colloquial expressions
‘preponderant’ and ‘more likely than not’ are synonymous. But this apparently reason-
able assumption is what gave rise to the apparent puzzles of statistical evidence in §3.2.
Therefore, to avoid implausible verdicts in problems 2-4 while keeping a = b = 1, Cheng
stipulates that we artificially set the prior odds to p1 = p2 = 1 as well. “In civil tri-
als,” Cheng says, “the prior probabilities as a normative matter should arguably be equal”
(1267).

This is extremely important and it is a position he is forced into. After setting a =

b = 1, in order to capture what he takes to be a central property of the preponderance
standard, Cheng has to either concede that even extremely strong statistical evidence could
be insufficient for legal liability or, to counterbalance that move, he can set p1/p2 = 1 as
well. As [Posner(1999)] puts it: “If the prior odds are assumed to be 1 to 1, on the theory
that the jury begins hearing the evidence . . . without any notion of who has the better case,
then the posterior odds are equal to the likelihood ratio” (1508). That is exactly correct. As
I highlight below, Cheng’s approach is not so much a solution of the apparent paradox as it
is a mathematical restatement of it.

For [Cheng(2013)] and [Cheng and Pardo(2015)], therefore, both the prior odds p1/p2

and the rejection threshold b/a are fixed at 1. Both assumptions lead to an unduly restrictive
model of decision making. First, let us take up the assumption that a = b = 1. We are not
told what the normative reasons are that require such specificity in the treatment of the cost
parameters. Indeed, such specificity seems implausible. Consider mass exposure cases,
like asbestos litigation. One kind of error we could make is to hold a manufacturer liable in
a world where asbestos is harmless. This imposes a direct cost on the manufacturer. More-
over it imposes indirect costs on other manufacturers by setting a precedent for holding
them wrongly liable in subsequent disputes. The other kind of error is failing to hold the
manufacturer liable when in fact asbestos caused the plaintiff’s illness. This imposes a di-
rect cost on the plaintiff by making it impossible for her to recover the expenses associated
with her illness. Similarly, it imposes indirect costs by setting a precedent against recovery
from asbestos manufacturers. As a result, manufacturers continue to produce the harm-
ful substance, leading to debilitating illness and premature death across many generations.
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This analysis of course holds for mass exposure cases in general, not just asbestos.46 My
argument does not rely on convincing the reader that the latter cost is necessarily greater
than the former cost (though it probably is). My argument merely relies on denying that
we ought to stipulate in advance that these costs are exactly equal, whatever they happen
to be. That is, it strikes me as presumptuous to suppose that regardless of the case and its
factual circumstances, the two kinds of errors are necessarily equally important. But this is
what Cheng’s model of fact finding in the civil context commits us to.

Second, at this point the only thing left to vary in the model is the likelihood ratio. That
is, decide for the plaintiff if L1 > L2. Since L1 = L2 in the problems we have consid-
ered, Cheng is able to deliver the intuitive result – neither side would have preponderant
evidence. But the test is no longer a Bayesian hypothesis test. As Cheng says in one of
the footnotes to the above quoted text, “setting the prior odds to 1 for normative reasons
necessarily means that the expression no longer equals [the posterior odds] in the strict
mathematical sense” [?, ]1268, n. 26]Cheng2013. As a result, he is now stuck with all the
implausible verdicts that a simple likelihood ratio would generate. For example, if Blue
Bus Co. owned > 99% of buses in town we could still not hold it liable because that would
not affect the ratio L1/L2. The cure is worse than the disease. Cheng, I suspect, recognizes
that the likelihood ratio on its own is not a robust estimator. This is well-known, and it
leads to the following extremely important footnote: “Setting the prior odds at 1:1 may be
wrongheaded as a matter of inference . . . but that does not mean that courts do not do it”
[?, ]1267, n. 24]Cheng2013.

This is the trade off Cheng is forced to make – and that I would prefer to avoid. In
order to force a result that is consistent with the statistical evidence intuitions, he has to
build into his model of legal fact finding what, by his own admission, is a wrongheaded ap-
proach to inference – a model that requires us to commit the base rate fallacy – and impute
that approach to judges and juries. In other words, Cheng does not resolve the apparent
conflict between the demands of epistemic rationality and our moral obligations to the de-
fendant. Rather, he stipulates that in cases like problems 2-4, our normative commitments
supersede the requirements of epistemic rationality. Our moral commitments enjoin us to
be epistemically irrational.

[Cheng and Pardo(2015)], drawing on [Wald(1945)], argue that we should ignore prior
probabilities, not merely as a normative matter, but because that is the decision rule that
minimizes the maximum loss due to error. This is an improvement in the sense that the

46See e.g., [Rosenberg(1984)] (“Even a single instance of product defect, carelessness, or risk-taking may
increase for thousands or even millions of people of one or more generations the danger of contracting cancer
or some other insidious disease.”).
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assumption that we ignore prior probabilities is given a decision theoretic foundation. But
a likelihood ratio test will minimize maximum error loss (i.e., is minimax optimal) only if

we assume that the costs of Type I and Type II error rates are necessarily equal. This is
because a minimax optimal test asks us to consider the severity of our error, weighted by
its probability, if the plaintiff is correct, against the severity of our error, weighted by its
probability, if the defendant is correct. This test reduces to comparative likelihood only if
the weights of those errors are equal, because it is only under the assumption of equality that
the worst case outcome is either a false negative decision or a false positive decision. By
changing the weights asymmetrically, we can change the worst case outcome, in which case
the optimal test will require us to consider the likelihood of the plaintiff’s hypothesis against
some multiple of the likelihood of the defendant’s hypothesis. Such a test, of course, would
not be coextensive with [Cheng and Pardo(2015)]’s comparative likelihood approach.

So while their revised model gives an argument for the assumption that p1 = p2 = 1, it
does not defend the assumption that a = b = 1. Another way of putting this is to say that
on their revised model, if a 6= b then either p1 6= p2 or they cannot vindicate the familiar
judgments in statistical evidence cases. Their initial model ignores the priors only because
the costs of both error rates are assumed to be equal. The revised model gives an argument
for ignoring priors provided you agree that the costs of error rates are indeed equal.

More generally, the minimax approach is really a special case of the linear combination
of error rates model that I defend here. In particular, it is the linear combination of aα(δ) +

bβ(δ) with a = b = 1. So the adaptive model generalizes Cheng and Pardo’s minimax
loss model in allowing a and b to take on different values. And as we will see below, it
generalizes Kaplow’s approach in being more liberal about what sorts of considerations
can affect those values.

5.5.2 The adaptive alternative

Unlike Cheng and Pardo, I let everything in the model vary – the priors, the relative costs
of error and, of course, the likelihood. This approach helps us to understand why most
people are hesitant to find against the defendant in problems 2-4 without assuming that the
reasoning process of judges and juries is epistemically defective or wrongheaded from a
truth-seeking or inferential perspective. It also has another important advantage – namely,
it accommodates just as well apparent counter examples to the inadmissibility of statistical
evidence. In doing so, however, it exposes the inevitable encroachment of value judgments
– in particular, the relative sensitivity to epistemic risk – on legal fact finding. This is
extremely important for our understanding of the preponderance standard. The implication
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is that there is no one size fits all threshold even when the burden of proof is defined as

preponderance of the evidence. Rather, we have a Bayesian hypothesis significance test
whose parameter values are determined by the factual circumstances of the case. Hence,
the adaptive burden of proof. This is consistent with the empirical evidence on judges’
understanding of the preponderance standard. [McCauliff(1982)], for example, reports a
study of 175 judges where a significant number took ‘preponderance’ to mean anything
between .5 and .8 probability. While the median was .5, 63 judges understood it to require
a probability greater than .6, and six judges responded greater than .9.47

5.5.3 Epistemic risk and the phantom menace

Consider Problem 3, as that is the most popular statement of the puzzle (everything here
generalizes to the other descriptions). Applying the adaptive model to Problem 3, we get
the following expression: 4 > b/a or, more helpfully for us, b < 4a. Since the posterior
probability is greater than .5 if you share the intuition that a civil judgment is inappropriate
here, then you must be especially concerned about false negative errors – failing to find the
bus company liable when in fact its bus injured the victim. But we can do better than that
– since the posterior probability is equal to .8 we can put a precise bound on your relative
concern for Type II error.

If you share the judgment that in Problem 3 statistical evidence is inappropriate, then
you are denying that b < 4a which in turn implies you must think that b ≥ 4a. And
that is why you do not want to let yourself be pushed by the priors to find the company
liable – they are just not strong enough given your particular degree of sensitivity to error.
Now consider even more extreme examples. For instance, if the prior odds had been 7 : 1

then the implication would be that for someone who still believes they should not be used
b ≥ 7a. This trade-off is starting to look irrational. In other words, we can understand
what seem to be commonly held judgments about statistical evidence by evaluating the
decision maker as if she were implicitly setting the weights to be less than or equal to
the reciprocal of the prior odds. That is, b/a ≤ 1/(p1/p2) or, equivalently, bp1 ≤ ap2.
The latter expression makes explicit what we are modeling the decision maker as doing
– namely, discounting the prior probability that the plaintiff’s hypothesis H is true by the
weight we put on false negative (Type II) errors and comparing that to the probability that

47Interestingly, the distribution was so left skewed that zero judges gave an answer less than .5. This is
exactly what the adaptive model predicts. If we think of a/b = 1 as the epistemically risk neutral position in
legal decision making and a/b > 1 as risk avoidant, then a/b < 1 would be a risk seeking attitude. A judge
who believes that preponderance implies a threshold of less than .5 would then be a risk seeking decision
maker which would be very odd in this context.
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the alternative hypothesis H , discounted by the cost of a false positive (Type I) error, is
true.

But the point of the model is not merely to accommodate just about any judgment.
Rather, because the agent’s decision reflects a particular normative attitude – their degree
of sensitivity to error – we can use the reasonableness of the implied attitude to assess
the quality of the fact finder’s decision. In other words, the adaptive model sharpens the
normative considerations at stake. At b ≥ 4a, this may still be a reasonable attitude to risk.
At b ≥ 7a, it is less clearly reasonable. At b ≥ 1, 000, 000a it is definitely irrational.

Here is the especially nice part. DNA random match profiles are often highlighted as
a counter example to the normative irrelevance of base rates as evidence of identity, since
virtually everyone agrees that DNA evidence, despite being inherently statistical, should
be used in legal fact finding [Zabell(2005a)]. On Cheng’s approach, it is really not clear
how we can make room in our model for such exceptions to the rule, since he requires us
to to set the prior odds to 1 in advance. Since this value is fixed, there is no longer any
room for a base rate, even when everyone agrees it is a good one. But what happens on the
adaptive model? Well, DNA evidence is usually indeed quite extreme. If the defendant is
identified by DNA the prior odds will be at least 1, 000, 000 : 1. If you still think that this
is not enough for a verdict then what this says about your attitude to epistemic risk is that
in fact b ≥ 1, 000, 000a which, again, is clearly irrational in legal decision making. While
I argued above that it is inappropriate to assume that false positives are exactly as bad as
false negatives, it is equally obvious that whatever their relative cost, it cannot be that false
negatives are a million times worse than false positives. We can assume that much.

So the adaptive model not only captures what are taken to be the hallmark problem
cases (i.e., problems 2-4) but it also captures what are taken to be the hallmark exceptions
to the usual diagnosis (e.g., DNA evidence).48 Cheng does not think, and neither do I,
that our models should form the basis for reforming the legal system. He wants a model
that captures the way courts currently approach problems like this. As do I. Where we
disagree is on the conclusion to draw from problems like 2-4 because of the discrepancy
in how we parameterize our models. Cheng is forced to assume that judges and jurors are
epistemically irrational. But, he suggests, such epistemic irrationality may be mandated
by the nature of the legal system. Meanwhile, I conclude that legal decision makers are
very risk sensitive. So perhaps that leaves us with competing trade offs. But the tie breaker
in my benefit, I think, lies in the adaptive model’s ability to accommodate countervailing
judgments (such as in the case of DNA profiles).

48See e.g., United States v. Bonds, 12 F.3d 540, 551-68 (6th Cir. 1993) (allowing overtly probabilistic
evidence concerning DNA profiles to be submitted to the jury).

105



5.5.4 The adaptive model in action

It is usually supposed in the literature on statistical evidence that the case law is compati-
ble with popular intuitions in problems 2-4: namely, even high posterior probabilities are
inappropriate evidence in support of identity or more generally causation when they de-
pend exclusively or almost exclusively on base rates. This is simply not true. Sometimes
statistical evidence is excluded but very often it is not. Whether or not statistical evidence
is permissible varies from context to context. And the adaptive model helps us understand
(and predict) when such evidence would be admitted.

[Koehler(2002)], for example, suggests that courts are more likely to view base rates as
relevant when they arise in cases he describes as having a statistical structure. The idea is
that some people think intuitively about probability in terms of repeated sampling, and this
is more appropriate in some contexts than others. When it comes to evidence of identity
in torts or crimes, courts are likely to find it especially inappropriate to think about the
defendant or the trial as a randomly selected point from a random sample of similar defen-
dants or trials. The thought, mirroring [Tribe(1971)] and [Wasserman(1991)]’s arguments,
is that we owe it to the defendant to adjudicate her case as an autonomous individual. In-
deed, [Tetlock et al.(2000)Tetlock, Kristel, Elson, Green, and Lerner] suggest that people
think of some base rates as morally forbidden.

Some cases fit this profile very well. In State v. Claflin, 690 P.2d 1186, 1190 (Wash.
Ct. App. 1984), the court found that testimony that 43% of child molestations were com-
mitted by father-figures, in a case where the defendant was a father-figure, was “extremely
prejudicial and should not have been admitted.” This is a classic case of what Tetlock et.
al. have in mind as a taboo or forbidden base rate – i.e., the proportion of child molesters
who are also father figures. And the result is predictable under the adaptive model because
it is precisely under circumstances like this – i.e., circumstances of morally circumspect or
taboo base rates – that we should be especially worried about the cost of falsely convicting
a defendant on the basis of their membership in an otherwise innocuous class (i.e., the class
of father figures).

So suppose a = 10b. This seems perfectly reasonable in a case where someone might
go to jail because they belong to a class consisting of father figures. Our rule, then, is to
convict only if (p1/p2)(L1/L2) > 10. If we assume that L1/L2 = 1, then we will convict
only if p1 > 10p2. In other words, the base rate would have to be p1 > .91 (i.e. 10/11ths)
– more than twice the base rate that the court rejected in the actual case – if the evidence is
not to be excluded as unduly prejudicial (or, as the case may be, on other grounds).

Meanwhile, in the context of Title VII disparate impact claims, where the prima facie

case requires the plaintiff to produce evidence in support of the claim that a facially neutral
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practice has produced a pattern of discrimination, courts have held that statistical evidence
alone may be sufficient. In Bridgeport Guardians, Inc. v. City of Bridgeport, 933 F.2d
1140, 114647 (2d Cir. 1991), for example, the court found that “[t]his showing may be
made through statistical evidence revealing a disparity so great that it cannot reasonably be
attributed to chance.”49 Even more directly, the EEOC guidelines on employee selection
state that “adverse impact may be inferred where, assuming not too small a sample, the
members of a minority group are selected at a rate that is less than four-fifths of the rate
at which the majority group is selected.”50 The EEOC guidelines effectively identify what
the parameter values should be in the adaptive model: namely, a = 4 and b = 1.51

Another area where courts consistently admit statistical evidence is, as I mentioned
above, forensic base rates in the form of DNA or fingerprint profiles. At least in the case
of DNA, such evidence is almost uniformly held to be admissible.52 [Koehler(2002)]’s
explanation of this is that the evidence is offered to rebut a chance hypothesis (i.e., getting
a DNA match by chance would be extraordinarily unlikely). I suspect, rather, that courts’
comfort with DNA evidence has more to do with its extremely high probability than with
the fact that the alternative explanation would be chance. Indeed, there exists an alternative
chance explanation in every dispute, legal or otherwise. Fortunately we now have a better
diagnosis. DNA evidence is usually deemed admissible because the prior probability of
H is so high that the discrepancy between a and b, as we saw, would have to be patently
unreasonable to cancel out the prior odds. The adaptive model predicts the admissibility
of DNA evidence by simply putting some obvious bounds on the rationality of different

49See also Hazelwood School District v. United States, 433 U.S. 299, 307-08 (1977) (“gross statistical
disparities ... may in a proper case constitute prima facie proof of a pattern or practice of discrimination”);
Castaneda v. Partida, 430 U.S. 482, 496-97 (1977) (using analysis of variance (ANOVA) to make an infer-
ence about the underlying practice); Bazemore v. Friday, 478 U.S. 385, 400-01 (U.S. 1986) (noting that an
inference based on linear regression may satisfy the preponderance standard); Smith v. Liberty Mut. Ins. Co.,
569 F.2d 325, 329 (5th Cir. 1978) (“This Court has always recognized the strong probative value of statistics
in proving race discrimination cases.”).

50EEOC UNIFORM GUIDELINES ON EMPLOYEE SELECTION PROCEDURES, 29 C.F.R. §1607.4D.
51But perhaps you are suspicious that what courts have in mind here is statistical evidence put forth pre-

cisely in support of the causal element. To be sure that is indeed the case, consider Watson v. Fort Worth
Bank & Trust, 487 U.S. 977, 995 (1988), where the court notes that to establish a prima facie case, statistical
disparities “must be sufficiently substantial that they raise ... an inference of causation.” See also E.E.O.C. v.
Joint Apprenticeship Comm. of Joint Indus. Bd. of Elec. Indus., 186 F.3d 110, 117 (2d Cir. 1999) (“a plaintiff
may establish a prima facie case of disparate impact discrimination by proffering statistical evidence which
reveals a disparity substantial enough to raise an inference of causation.”). It is pretty clear from Watson and
its progeny that statistical evidence may support a finding of causation, which is what opponents of statisti-
cal evidence often categorically deny. See e.g., [Wright(1988)] (arguing incorrectly that statistical evidence
could not be evidence of causation).

52NAT’L RESEARCH COUNCIL, COMMITTEE ON FORENSIC DATA TECHNOLOGY: AN UPDATE, THE
EVALUATION OF FORENSIC DNA EVIDENCE 185 (1996). See also [Zabell(2005a)] for a helpful overview,
including a discussion of the difference between the probative value of DNA evidence, on the one hand, and
fingerprints, on the other.
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attitudes to risk. For example, by assuming that 1, 000, 000b > a.53

Perhaps the strongest support of my hypothesis that what really matters is the relation-
ship between the posterior probability and the ratio of error rates may be found in Kaminsky

v. Hertz Corp., 288 N.W.2d 426 (Mich. Ct. App. 1980). In that case, the plaintiffs sus-
tained personal injuries when their car was struck by a large piece of ice that fell from the
top of a yellow truck bearing the distinctive Hertz logo. The plaintiffs put forward evidence
showing that Hertz owned 90% of Hertz labeled yellow trucks. Now this might remind you
of Smith and its stylized versions, as presented in problems 1-4. If it does, you’re not in-
correct – it is because Hertz is almost exactly like Smith. In Hertz, however, the appellate
court ruled that the 90% base rate was not only relevant evidence for the plaintiff, but that
it established a rebuttable presumption of ownership sufficient to preclude summary judg-
ment for the defendant. This case is rarely mentioned in the literature spawned by Smith,
even though it suggests the exact opposite conclusion than what many philosophers and
legal scholars want to draw on the basis of Smith.

One might suspect that I must be cherry-picking in highlighting Hertz, but it is far
from an outlier. For example, in Kramer v. Weedhopper of Utah, Inc., 490 N.E.2d 104
(Il. App. Ct. 1986) (quoted in [Koehler(2002)]), the plaintiff was injured by a bolt from
Weedhopper’s model aircraft kit. It was shown in court that Weedhopper received its bolts
from two companies – 90% from Lawrence and 10% from Hughes. On this basis, an
Illinois appellate court reversed a trial court’s summary judgment in favor of Lawrence,
arguing that “[t]his evidence, while circumstantial, permits the inference that the . . .
[bolts] supplied to Kramer were purchased from Lawrence” (105-108).

From Cheng’s perspective, there is no way to capture cases like Hertz and Kramer.
If preponderance requires setting the prior odds to 1 then what happened here? On the
adaptive model, not only can we accommodate Hertz and Kramer but we can explain the
discrepancy between Hertz/Kramer, on the one hand, and stylized versions of Smith, on
the other. Suppose that a = 4b, a plausible trade-off between the competing costs. On
this conjecture, a decision maker would indeed reject the Plaintiff’s claim in all stylized
versions of Smith while accepting a prima facie case in Hertz and Kramer. Indeed, there is
a real case closer to stylized versions of Smith than Smith itself, namely Guenther v. Arm-

strong Rubber Company, 406 F.2d 1315 (3d Cir. 1969), where the court ruled in favor of
the defendant’s motion for summary judgment despite evidence that the defendant manu-
factured 75-80% of tires sold at the Sears store where the plaintiff purchased her defective
tires. With a = 4b, this is exactly what we would expect. We can understand both pairs

53I avoid taking a stand here on an underlying theory of practical rationality, but any theory that has as its
consequence that a ≥ 1, 000, 000b should be treated as suspect.
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of judgments which seem, initially, to be completely at odds, by simply considering what
kind of attitude to risk might be reflected by the decision makers’ choices in these situa-
tions. And there is a perfectly acceptable attitude that accommodates both pairs of cases,
namely, a = 4b.54

The last area I want to highlight is mass exposure cases, where courts have embraced
base rates in part due to necessity – that is, because direct evidence is often unavailable.
In In re Agent Orange Prod. Liab. Litig., 597 F. Supp. 740, 835-836 (E.D.N.Y. 1984),
Judge Weinstein provides a very sophisticated discussion of statistical evidence and its
relationship to the preponderance standard. The issue in that case was whether plaintiff
Vietnam war veterans could use market share data as evidence of likelihood that a particular
chemical manufacturer produced the deadly Agent Orange herbicide (used pervasively by
the U.S. military as part of its herbicidal warfare program during the Vietnam War) that
caused their injuries. The court distinguishes two versions of the preponderance rule. A
strong all-or-nothing version, under which statistical evidence alone is not sufficient for
identity, and a weak version, which “would allow a verdict solely on statistical evidence”
(835).55 Judge Weinstein then explains that while there would “appear to be little harm
in retaining the requirement for ‘particularistic’ evidence of causation in sporadic accident
cases” where “such evidence is almost always available,” in mass exposure cases, “where
the chance that there would be particularistic evidence is in most cases quite small, [and] the
consequence of retaining the requirement might be to allow defendants who, it is virtually
certain, have injured thousands of people and caused billions of dollars in damages, to
escape liability” the ‘weak’ version of the preponderance rule “appears to be the preferable
standard to apply.” What Judge Weinstein calls the weak standard has been applied in a
number of mass exposure cases including, most notably, in the formulation of the market
share liability doctrine for DES manufacturers.56

Judge Weinstein’s discussion is extremely important to my argument. It is not simply
that the discussion is compatible with the adaptive model I propose. Rather, he articulates
the very concerns that prompted me to develop such a model. Whether or not statisti-
cal evidence is appropriate, Judge Weinstein suggests, depends on the underlying factual

54Compare, for example, [Buchak(2014)]’s diagnosis. Buchak argues that the conclusion to draw from
Smith is that legal judgments require a belief, which is an altogether different doxastic attitude from a pos-
terior probability, and indeed that there is no probabilistic threshold above which we can say the posterior
constitutes a belief. But such a diagnosis, like [Cheng(2013)]’s, cannot make sense of cases like Hertz and
Kramer together with those like Smith and Guenther.

55The all-or-nothing version is not an inherent component of the preponderance rule and has not been
thought of as such for decades. See C. MCCORMICK, MCCORMICK’S HANDBOOK OF THE LAW OF EVI-
DENCE §31 at 118 (1935).

56See Sindell v. Abbott Labs., 26 Cal. 3d 588 (1980) (developing the notion of market share liability).
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circumstances, including what is at stake and whether alternative methods of proof are
available.

We can think about the adaptive model I develop as a generalized version of Judge
Weinstein’s approach from In re Agent Orange. What he does is, first, distinguish two
evidential interpretations of the preponderance rule – a strong rule and a weak rule – and,
second, argue that which of the two applies depends on the costs of error in the case at hand.
I generalize this by having the parameters a and b transform the rule into a continuum,
from the strongest to the weakest, where the relative strength is determined by the factual
circumstances of each case.

5.6 Concerns and objections

In this section I consider some potential concerns and objections. First, I explain the differ-
ence between Kaplow’s welfare based notion of optimality and my accuracy based notion
of optimality, as it is important not to confuse the two approaches. Second, I articulate the
difference between an elicitation model of the burden of proof and a decision rule for legal
fact finding. And third, I use a principal-agent framework to argue that the adaptive model,
properly understood, is compatible with the general subjective expected utility framework
of [Savage(1954)] or [von Neumann and Morgenstern(1944)].

5.6.1 Social welfare and epistemic risk

Like the adaptive model, [Kaplow(2014)]’s approach is similarly flexible in that his deci-
sion procedure enjoins a judge or juror to compare the ratio of posterior probabilities to a
ratio of losses to gains. However, the only considerations permitted in Kaplow’s model are
those that could affect the individual utilities and in turn the social welfare function. This is
made explicit in [Kaplow(2011)]. Now suppose you believe, as many legal scholars do, that
falsely punishing someone on the basis of their membership in a reference class alone con-
stitutes a moral wrong that cannot be reduced to its impact on individual utilities.57 This is
a cost that cannot enter into Kaplow’s decision model. He is explicit about this because any
weighting that is not reflected in the individual utilities implies a non consequentialist nor-
mative objective that could lead to outcomes which are in conflict with the Pareto Principle
[Kaplow and Shavell(2001)]. For opponents of social welfare, however, this begs the ques-
tion.58 Their main point is that the Pareto Principle and more generally the social welfare

57See e.g., [Tribe(1971)] and [Wasserman(1991)].
58See e.g., [Ferzan(2004)] (“[Kaplow and Shavell] define fairness as principles that do not advance welfare.

They then walk the reader through hypotheticals to demonstrate that fairness, so defined, does not advance
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approach fail to capture salient moral considerations. This disagreement is part of a broader
debate about the moral foundations of legal institutions [Kaplow and Shavell(2006)].

Fortunately, the adaptive model enables us to sidestep this debate. I want to capture
how people actually make decisions and undoubtedly some people do so by taking into
account considerations irreducible to welfare. For example, [Diamond and Vidmar(2001)]
describe videotaped jury deliberations in negligence disputes containing frequent refer-
ences to plaintiffs insurance coverage and attorney fee arrangements, as part of a broader
concern for whether the plaintiff is made whole or treated fairly. In particular, I want to
understand how if at all legal decision makers – including those whose substantive nor-
mative views differ from Kaplow and Shavell’s, such as some of the subjects described in
[Diamond and Vidmar(2001)] – could take high posterior probabilities to be insufficient for
liability (as in problems 2-4) without being epistemically irrational. The adaptive model
shows that provided you agree we should minimize a linear combination of error rates,
high posterior probabilities could be insufficient if the decision maker is correspondingly
risk averse. Therefore, I offer a well epistemically motivated template that helps us to
understand legal choice behavior regardless of the decision maker’s underlying normative
commitments.

5.6.2 Elicitation models and decision rules

Kaplow proposes the optimal social welfare model as a decision rule. In [Kaplow(2012)],
for example, he considers explicitly how we might incorporate considerations of social
welfare into burden of proof rules, including a discussion of how we might reformulate jury
instructions to make ex ante considerations more salient. Unlike Kaplow I do not propose
the adaptive model as a decision rule. That is, I do not argue that we should instruct judges
and juries on how to use the adaptive model in order to improve legal decision making. My
approach is descriptive and the model I propose is attitude eliciting.

I propose the model as a way of learning something about what decision makers value
when they decide the way they do. Judges and juries will probably not apply Bayes’ The-
orem explicitly, and they will probably not explicitly consider their relative preference for
avoiding Type I and Type II error rates. But the decision they ultimately make tells us
something important about their attitudes to risk of error – that is, it enables us to learn
something about their relative assessment of the relevant epistemic costs. In this sense, the
model elicits or reflects the decision maker’s underlying values.

welfare. But what does this ... unabashed tautology ... prove? My dog will always be better than your cat, if
the test is whose pet can bark.”).
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In statistical decision theory, we are often interested in estimating a decision maker’s
subjective probability. Following [De Finetti(1937)] and [Savage(1971)], it is common to
assume that subjective probabilities are marginal rates of substitution between contingent
claims. To operationalize this idea, scoring rules are used to convert an agent’s forecast
into a lottery. For example, under the common quadratic score, a report of p would lead
to a payoff that is some monotonic function f of the quadratic distance of p from the true
outcome, which is (1−p)2 if the outcome occurs and p2 if it does not. By evaluating pairs of
lotteries that an agent is indifferent between, we can infer what her subjective probabilities
should be.

There are two ways to interpret the elicitation exercise. On the more extreme inter-
pretation, subjective probabilities are nothing more than the observable behavior they are
correlated with. To have a belief of .5 in a coin’s bias toward Heads, on this interpretation,
just is to be indifferent between receiving $1 for sure and taking a bet that pays $0 on Heads
and $2 on Tails on a single toss of the coin. [Ramsey(1926)] comes close to this extreme.
On a less behaviorist interpretation, observable behavior provides us with an imperfect clue
about the true underlying doxastic attitude.

In either case, however, the inference we make from observable behavior to the under-
lying belief will be precise only if we assume the agent is risk neutral. For example, if an
agent declines to pay $1 for a bet that pays $0 on Heads and $2 on Tails on a single coin
toss, it might be either because she believes that the coin is Heads biased or because her
utility function is concave so that the expected utility of the bet is lower than the utility of
the sure thing. Risk attitudes interfere with our ability to discern underlying beliefs.

As a result, a common simplifying assumption in the elicitation literature is to assume
the agent is risk neutral. By screening off risk, we can draw precise inferences about belief.
In reality, the best we can expect is something like an interval based estimate about an
agent’s beliefs bounded by the information we have about her degree of risk aversion.

My approach in this chapter reverses this process. By assuming that agents update their
probabilities efficiently by applying Bayes Theorem we are able to learn something about
their attitudes to risk in the context of legal decision making. So in Problem 3, for example,
when an agent declines to find the defendant liable, where the prior odds are 4 : 1, it may
be either because her error rates are equal to or greater than 1 : 4, or because her subjective
posterior odds are less than 4 (i.e., she has failed to some extent to update correctly).

The efficient updating assumption is a simplifying one, and by taking into account the
extent of the agent’s dynamic incoherence we would get at most an imprecise interval for
the values they assign to a and b. For example, it may be that given our best estimate of
the divergence of the agent’s posterior from the correct Bayesian posterior in Problem 3,
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3.5 < a < 4.5. In subsequent research, it would be interesting to develop a finer grained
model that considers decision making under imperfect updating or perhaps even under
probabilistic incoherence.

The adaptive model also makes several empirically verifiable predictions. If I am cor-
rect we should expect a strong correlation between people’s sensitivity to risk of error
and their responses to hypothetical cases involving statistical evidence. Further, because
I suggest that the risk parameters will be context sensitive, we should expect variation in
responses to statistical evidence as we change the underlying factual circumstances (from,
say, mass exposure class actions to slip and fall cases).59 It would be worth directly test-
ing these predictions in subsequent empirical work as a way of learning how attitudes to
risk of error affect legal decision making. If the adaptive model is correct, it would help
us understand why there is so much variation among judges and juries in understanding
burdens of proof, as reported in [McCauliff(1982)], for example. Since decision makers
vary widely in their attitudes to risk, if the adaptive model is correct it should not be a sur-
prise that their interpretations of evidentiary standards are correspondingly variable. There
is some promising preliminary experimental evidence on the effect of loss aversion, a rel-
ative to risk aversion, to legal decision making that strongly supports the adaptive model
[Ritov and Zamir(2012)]. In subsequent research, it would be worthwhile to put the model
to a more direct empirical test.

5.6.3 The principal-agent choice environment

One might worry that Royall’s trichotomy, and in turn my approach here, is fundamentally
anti-Bayesian. From [Savage(1954)]’s perspective, the answers to Royall’s three questions
are not separable in the way I have separated them here. For example, what you should do
depends on what you believe and what you believe depends in part on what we assume you
value which means that what the evidence says depends in part on both our assumptions
about your beliefs and how you value outcomes. And I certainly do not want to stake out a
position here that is incompatible with Savage’s approach.

However, the legal context is not an ordinary decision making context and I think it is
especially appropriate for drawing Royall’s distinction in a way that is not incompatible
with the general Bayesian decision making framework. The adaptive model exists in what
we may perhaps helpfully call a principal-agent (P-A) environment of choice. The basic
idea is that we are often in a position of having to choose, as principals, on behalf of

59Current empirical evidence indirectly supports this conjecture. In addition to [McCauliff(1982)], dis-
cussed in §5.2, supra, [Solan(1999)] describes a wide range of probabilities that juries associate with different
forms of the “beyond a reasonable doubt” jury instruction, as it varies from context to context.
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someone else, the agent. These contexts vary in the scope of the principal’s authority. On
one extreme, we have cases where the agent delegates so much of the decision process that
the principal effectively uses her own preferences in place of the agent’s. So, for example, a
wealthy art patron with little understanding of aesthetic value may hire a curator and tell her
“find me something good.” In this case, the curator uses her own preferences about what
makes good art. On the other extreme, the principal is forced to substitute her preference
for someone else’s. Suppose we are meeting for dinner and I am running late. I may say,
“please order me a nice seafood meal.” You might hate seafood, but you still have to try and
place yourself in the shoes of someone that likes seafood and identify a preference ranking
over the available meals from their perspective.

The nice thing for us about the P-A environment is that it makes room for a variety of
attitudes to risk in the context of Bayesian expected utility optimization. For example, as
a hedge fund manager, a client may tell you: “I only care about my exposure to loss and I
request that you rank investment decisions on that basis alone.” Your own decision making
is still governed by maximizing expected utility, but when it comes to decisions on behalf
of this particular client, the way to maximize expected utility is to rank options exclusively
on the basis of her exposure to loss.

In the context of legal decision making, the judge or jury is the principal and the agents
are, collectively, the group of people bound by the institution. The cost parameters, then,
should be evaluated by reference to whether those bound by the institution (the agents)
would find them appropriate. So, again, each individual decision maker is going to choose
however they choose. They probably will not apply Bayes’ Theorem, and they probably
will not explicitly attempt to maximize expected utility. But we can represent them as if
they were doing so. This is what the expected utility theorem enables us to do. And we
can evaluate their individual or collective decisions by considering the values they reflect.
This is what the adaptive model enables us to do. As a result, thinking about the adaptive
model as embedded in a P-A choice environment brings together each of its features: (i)
it is Bayesian; (ii) it is compatible with expected utility theory; (iii) it is flexible; (iv) it is
preference eliciting; and (v) it does not presuppose that legal decision making takes place
in epistemic heaven.

5.7 Conclusion

In this chapter I developed an adaptive model of the burden of proof as a true Bayesian
hypothesis test under which every decision is governed by a comparison of posterior odds
to a rejection threshold determined by the ratio of error costs. As I said, this does not
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mean that that is how legal decision makers actually approach a choice problem. Rather,
this gives us a helpful way of framing the legal decision making process. We can better
understand legal fact finding by modeling our decision makers as if they were applying
the adaptive model. When they appear to ignore strong statistical evidence, for example,
the conclusion we draw is not that they are epistemically irrational but rather that they are
highly risk sensitive. As a result, we may also apply the adaptive model for the normative
assessment of legal decisions, by attending to the particular values to risk they elicit and
considering their reasonableness. Finally, the model may be used as a tool for predicting
the resolution of future disputes. To make a prediction we use our best judgment to estimate
from the circumstances what the relative cost parameters might be. This is not as difficult
as may first appear. As we saw above, the plausible conjecture that a = 4b explains much
of the relevant case law. Moreover, our estimate does not need to be precise. It is usually
enough to guess an inequality.

Finally, my approach is compatible with proposals like [Rosenberg(1984)]’s for ex-
tending the proportionality approach to civil liability from the very specific DES context
for which market share liability was initially fashioned to mass exposure cases more gener-
ally, including harmful chemicals like Asbestos, Agent Orange, Tobacco, PCB, PBB, BPA,
etc., and pharmaceuticals and medical devices like DES, Vioxx, silicone breast implants
and many others. The only addition we would need to make to the adaptive model is to
make the proportion of recovery a positive linear function of the posterior odds. If we want
true proportionality (rather than discrete cut offs) that function should be continuous.
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APPENDIX A

Appendix of Proofs

Theorem 1. For strictly concave and twice differentiable entropy function H and risk
function R defined on [0, 1],

R(p) +H(p) = k where k = min
p
R(p) = max

p
H(p)

Proof.

Recall that h(p) = s1(p) − s0(p) and P (p) =
∫ p∗
p
|h(t)|dt where p∗ arg maxp∈[0,1]H(p).

As a result, H(p∗) = k, H ′(p∗) = 0 and H ′′(p∗) < 0.

Existence of risk free point.

Since s1(p) is continuous and decreasing on [0, 1] with s1(1) = 0, and s0(p) is continuous
and increasing on [0, 1] with s0(0) = 0, the intermediate value theorem guarantees that
a risk free point p∗ exists. Alternatively, since H(p) is closed and bounded on [0, 1], the
extreme value theorem guarantees that p∗ exists.

Duality of risk and entropy.

Recall [Savage(1971)] shows that we can express sv(p) in terms of H(p) as follows,

s1(p) = H(p) + (1− p)H ′(p) s0(p) = H(p)− pH ′(p)

As a result, we can expand h(p) in terms of the entropy H(p),

h(p) = [H(p) + (1− p)H ′(p)]− [H(p)− pH ′(p)]

= (1− p)H ′(p) + pH ′(p)

= H ′(p)
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Therefore, ∫ p∗

p

h(t)dt =

∫ p∗

p

H ′(t)dt = H(p∗)−H(p)

This implies that,

R(p) =

∫ p∗

p

|h(t)|dt

Which we can evaluate in parts.

For s1(p) > s0(p),

R(p) =

∫ p∗

p

h(t)dt

= H(p∗)−H(p)

= k −H(p)

For s0(p) > s1(p),

R(p) = −
∫ p

p∗
h(t)dt

= −[H(p)−H(p∗)]

= k −H(p)

For s0(p) = s1(p),

R(p) =

∫ p∗

p

h(t)dt

= k − k = 0

�

Theorem 2. Given a random variable X : S → W , where the underlying scoring rule sv
is proper, and two cdfs P and Q, if P is a mean preserving epistemic spread of Q then
R(P ) > R(Q).

Proof.

Suppose P is a mean preserving epistemic spread of Q. Then H(Q) > H(P ). Let P ∗ be
the risk-free probability so that H(P ∗) = R(P ∗) = 0. By Theorem (1), H(P ∗)−R(Q) >

H(P ∗)−R(P ). Therefore, R(P ) > R(Q). �
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Theorem 3. Given a random variable X : S → W , where W ⊆ R contains inaccuracy
scores measured by a scoring rule sv, let V = {P1, ..., Pn} be a set of cdfs for X . Given
a random variable Y : S → W ∗, where W ∗ ⊆ R contains inaccuracy scores measured
by a different scoring rule s∗v, let U = {Q1, ..., Qn} be a set of corresponding cdfs for Y .
This means that for each outcome h ∈ S, the probability assigned to h by Pi is equal to the
probability assigned to h by Qi, but whereas in the first case the outcome h is described
by sv in the second case it is described by s∗v. Suppose (1) sv and s∗v are truth directed
scoring rules, whose risk functions R and R∗ are such that (2) R′′ > 0, R∗′′ > 0, and
(3) arg minR = arg minR∗ on the unit interval. Then R(Pi) > R(Pj) if and only if
R(Qi) > R(Qj).

Proof.

Sufficiency: assume R(Pi) > R(Pj) for arbitrary i 6= j. Recall that R(P ) = E[P ∗]−E[P ]

where P ∗ = maxP∈V E[P ] is the risk-free cdf. Conditions (2) and (3), together with the
extreme value theorem, imply that P ∗ exists. Condition (3) implies that P ∗ = Q∗. Finally,
condition (1) implies that if E[Pi] > E[Pj] then E[Qi] > E[Qj]. Therefore,

R(Pi) > R(Pj)

↔ E[P ∗]− E[Pi] > E[P ∗]− E[Pj]

↔ E[P ∗ − Pi] > E[P ∗ − Pj]

↔ E[Q∗ − Pi] > E[Q∗ − Pj]

→ E[Q∗ −Qi] > E[Q∗ −Qj]

↔ R(Qi) > R(Qj)

Necessity: The procedure above is reversible. Everything we have said remains true if we
swap Q’s for P ’s and W for V . �
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Yrjõ Jahnsson Sããtiõ.
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