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ABSTRACT

Using cosmological hydrodynamic simulations, researchers are making rapid progress

in reproducing different types of galaxies and various global scaling relations. One

important step has been to recognize the importance of feedback mechanisms that

suppress the excess of star formation activities. Although many feedback processes

have been explored, the star formation prescription has remained unchanged for over

two decades.

To model star formation in a more realistic way, in my thesis, I develop a new

implementation in cosmological simulations, continuous cluster formation (CCF) , by

considering star clusters as a unit of star formation, inspired by observations that most

stars form in clusters. In CCF, a cluster particle grows its mass through gas accretion

within a star-forming sphere. The accretion is terminated by its own feedback, thus

the final mass is set self-consistently. I also introduce the initial bound fraction, fi, to

estimate the mass fraction that is remind bound to the cluster when it emerges from

the giant molecular clouds (GMCs). I implement CCF in the Adaptive Refinement

Tree code and perform a series of simulations of Milky Way-sized galaxies.

I find that the global star formation history (SFH) of the main galaxy is sensitive

to the feedback parameter. Varying the star formation efficiency per free-fall time εff ,

on the other hand, has no systematic effect on SFH.However, εff has a dramatic effect

on the properties of modeled star clusters, which can be used to calibrate the star

formation and feedback models on a scale that is compatible with the size of GMCs.

I find that the cluster initial mass function is best described by the Schechter

function. The cutoff mass scales with the star formation rate of the host galaxies,
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suggesting that cluster formation depends strongly on galactic environments. I find fi

increases strongly with cluster masses, irrespective to the global galactic environment.

However, fi is very sensitive to the choice of εff : the higher the εff , the larger the fi.

This trend also leads to a positive correlation between the maximum cluster mass

and εff . I measure the integrated cluster formation efficiency and find it correlates

with star formation rate surface density. Moreover, I find a clear trend that cluster

formation timescale is shorter with higher εff . Future observations of this timescale

in the nearby star formation regions can be used as another powerful diagnostic to

constrain εff .

Based on CCF, I implement a new algorithm to model the tidal disruption of

clusters along their orbits around the galaxies. I find that various disruption processes

significantly changes the shape of the mass function from Schechter-like to log-normal,

which suggests young massive clusters formed at high-z are promising candidates of

the progenitor of globular clusters (GCs). To better understanding the formation and

evolution of GCs, I construct a semi-analytical model onto the halo merger trees in

Millennium-II simulations. This model successfully reproduces the observed multi-

modal metallicity distribution of GCs in a wide range of host galaxy masses in the

Virgo cluster.
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CHAPTER I

Introduction

How did the Universe evolve from an extremely hot and dense fireball to the

current complex structure with galaxies, stars, planets, and even human beings liv-

ing with it? This multifaceted question has puzzled our ancestors for centuries and

many of the best minds in history have contributed their whole lives to pursue the

true nature of the Universe. From the ancient Chinese view of a square earth and

a canopy-like heaven ( ), to the current widely accepted Λ-CDM cosmology,

studies of the Universe have been transformed from pure philosophical speculations

to accurate scientific measurements. It is not surprising that Time magazine ranked

“the origin of the Universe” as one of the top ten most important problems for the

21st century. Fortunately, we are living in the so-called “golden age” of cosmology,

where the understanding of the origin and evolution of the Universe are developing

rapidly, thanks to state-of-the-art astronomical observational techniques as well as

ever-increasing computing power. However, the road leading to our current achieve-

ments has been riddled with false starts and dead ends, and is marked by several

important paradigm shifts.

In this introduction, I provide a short overview of the general consensus of the

current model of cosmic evolution and describe the use of numerical simulations as the

most important tool to tackle the problems of galaxy formation. After highlighting
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Figure 1.1: Pictorial sketch of the evolution of the Universe along cosmic time with some
highlights to monumental epochs, such as recombination and the formation of Pop III stars.

some theoretical challenges that we currently face, I will demonstrate how my thesis

work contributes to the quickly evolving field of galaxy formation.

1.1 A brief history of the Universe

And God said, “Let there be light,” and there was light.

Genesis 1:3

The commonly accepted picture of the evolution of the universe is elegantly sum-

marized in Figure 1.11. From the leftmost singularity epoch in this figure, our cosmic

voyage starts with an extremely fast expansion ∼ 13.7 billion years ago, in a state of

enormous density and pressure. During the first picosecond, the universe experiences

60 e-folds of expansion (Kolb & Turner, 1990) and the initial quantum fluctuations are

stretched to larger scales (Guth & Pi, 1982). Mathematically, the stretching of space

can be described by a time-dependent scale factor, a(t), so that the position measure-

ments r(t1) at time t1 and r(t2) at time t2 follow the relation R = r(t2)/t2 = r(t1)/t1,

where R is the comoving distance.

As the Universe expands, both the density and temperature start to decline. As

soon as the temperature cools to < 13.6 eV, hot electrons and protons start to bind

1Credit: NAOJ; https://www.eso.org/public/images/eso1620a/
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together to create Hydrogen atoms, causing the ionization fraction of the Universe

to drop dramatically. At the same time, with the decline of the density of charged

particles, the optical depth of Thomson scattering also drops and photons decouple

from baryonic matter. Detailed calculations suggest that the decoupling temperature

is around Tdec ≈ 0.26 eV (see Mo et al., 2010). This represents the last scattering

surface of photons, where the Cosmic Microwave Background (CMB) emerges.

In the late 1940s, George Gamow first predicted that the Universe should be filled

with the relic of the CMB as homogeneous and isotropic blackbody radiation (Gamow,

1946). Later in 1950, based on some early results of cosmic nucleosynthesis, Ralpha

Alpher and Robert Herman estimated the temperature of this relic radiation to be

5 K (Alpher & Herman, 1950). Unfortunately, these science-fiction like predictions

have been largely forgotten since the then far-fetched idea of the Big Bang theory

was not accepted by the mainstream scientists at that time - at least until Penzias

& Wilson (1965) discovered an isotropic background radiation at 7.5 cm wavelength

with antenna temperature 3.5 ± 1.0 K, which helped the two researchers to win the

1978 Nobel Prize.

Later satellite observations confirmed this emission as the most perfect blackbody

spectrum with T = 2.73 K with a NEARLY isotropic spatial distribution (Mather

et al., 1990). A more careful examination revealed a slight anisotropy on the order

of 10−5 (Smoot et al., 1992), which reflects the density fluctuation of the Universe

at the last scattering surface. Why is this miniature anomaly worth another Nobel

Prize in 2006 2? It is this tiny deviation from perfect that provides the seeds of the

hierarchical structures that were later developed to create galaxies and stars.

If we put aside the tiny anisotropy for a while, another important implication

from the CMB observations is that our Universe acts in the simplest way possible: it

2“The Nobel Prize in Physics 2006 was awarded jointly to John C. Mather and George F. Smoot
for their discovery of the blackbody form and anisotropy of the cosmic microwave background radi-
ation”
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satisfies the so-called “cosmological principle” (Coles & Lucchin, 2002) which states

that the universe is homogeneous and isotropic on large scales with a flat geometry.

It is quite surprising that the “cosmological principle” that was once criticized for

making “our lack of knowledge a principle of knowing something” 3 actually reflects

the true nature of the Universe.

The theoretical description of an expanding, homogeneous, and isotropic Universe

with a flat geometry is straightforward. With the cosmological principle and gen-

eral theory of relativity, the evolution of the Universe is described by the Friedman

equation (Friedmann, 1922)

(
ȧ

a

)
≡ H2(t) =

(
Ωma

−3 + Ωγa
−4 + ΩΛ

)
H2

0 , (1.1)

where H0 =
√

8πGρcrit,0/3 is the Hubble’s Constant at present, Ωm, Ωγ, and ΩΛ

are the density fractions of matter, radiation, and dark energy components with

respect to the critical density, respectively. The expansion history of the Universe

can be solved for a given set of cosmological parameters described above. Most recent

observations of CMB, supernova (SN) Ia, and clustering of galaxies jointly give a very

good constraint on these cosmological parameters with high precision. This is why

we are in the era of precise cosmology. In this thesis, I adopt a Λ-CDM cosmology

with Ωm = 0.304, Ωb = 0.048, Ωγ ≈ 0, ΩΛ = 0.696, H0 = 68.1 km/s/Mpc, which is

consistent with the most recent Planck results (Planck Collaboration et al., 2016).

It can be noticed from the fiducial values of the cosmological parameters that the

Universe is now dominated by a repulsive energy called dark energy, the main driver

that keeps the Universe expanding in acceleration. For the rest matter component,

the ordinary baryonic matter only contributes to ∼ 16% of the total matter budget

and most of the matter is “dark”, which does not interact with photons and therefore

3A letter by Karl Popper to Helge Kragh at 10 June 1994, probably one of Popper’s last, to reply
some questions in a then-preparing book about the history of modern cosmology (Kragh 1996)
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cannot be detected by photon-collected telescopes. Rather, dark matter acts as a

dominant gravitational source that strongly influences the dynamics of the galaxies,

such as the rotation curve of the HI disks, the velocity dispersion of galaxies in galaxy

clusters, and the dynamical transition from disk to bulge (Zwicky, 1933; Roberts &

Rots, 1973; Ostriker & Peebles, 1973; Rubin et al., 1980; Begeman, 1989)

As I described above, small perturbations embedded in CMB evolve in response

to gravity. Overdense regions become denser by accreting materials from underdense

regions, while underdense regions gradually become voids. Here, I define the over-

density at a given position r as:

δ(r) =
ρ(r)

ρ̄
− 1, (1.2)

where ρ̄ is the average energy density of the Universe. Because it is not possible to

map any individual density fluctuation from the CMB to a single galaxy at present,

the main idea is to study the statistical properties of the hierarchical structure and

compare the ensemble average of the model predictions to observations. The best way

to quantify the large scale spatial distribution of the density fluctuation is the two-

point correlation function ξ(r), or its Fourier pair, the power spectrum P (k), which

expresses the possibility of a given overdensity surrounded by other overdensities

within a specific length scale r or wave number k. Inflation theory predicts that

the quantum fluctuation follows a Gaussian random field with a simple primordial

power-law power spectrum P (k) ∝ k. This power spectrum is usually called “scale-

invariant” because fluctuations of all wavelengths have the same amplitude when

they enter the event horizon of the Universe. As soon as fluctuations reach a critical

density δcrit where gravity wins over the cosmic expansion, these structures start

to experience run-away collapse and create dark matter halos that potentially host

individual galaxies. Given the shape of the primordial power spectrum, linear growth
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of the fluctuation, and spherical collapse, Press & Schechter (1974) first estimated the

halo mass function at different redshifts as a power-law with an exponential cutoff,

so called “Schechter function”:

dN

dM
=

√
2

π

ρm
M

−d lnσ(M)

dM

δcrit(z)

σ(M)
e−(δcrit(z)/σ(M))2/2, (1.3)

where σ(M) is the standard deviation of the Gaussian random field.

As soon as the gravitational bound halos form, the density in the central region

becomes so large that the cooling timescale of the baryonic gas becomes much smaller

than the Hubble time. Eventually the gas is compressed sufficiently to form stars

(Gunn & Gott, 1972; Rees & Ostriker, 1977; White & Rees, 1978). Small galaxies

continue to accrete materials from the ambient medium, merge with one another, and,

gradually, build up into larger and larger structures. This “bottom-up” structure

formation scenario is one of the main predictions of the Λ-CDM paradigm.

1.2 Current status of cosmological simulations

The purpose of computing is insight, not numbers.

Richard Wesley Hamming

The above story line sets the conceptual framework of the hierarchical structure

formation of the Universe, but it is important to turn stories into scientific predictions

and compare them with observations. Although some analytical models of structure

formation I mentioned above can shed light on a small number of statistical proper-

ties of the galaxy distribution, their limitations are obvious. First, all of the above

predictions are based on linear perturbation theory that assumes the growth of the

fluctuation is smaller than unity. As the fluctuation grows into non-linear regime,

δ > 1, the linear theory is no longer valid and future evolution is generally too com-

plex to solve analytically. Second, the hierarchical structure growth and the internal
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structure of dark matter halos are strongly influenced by halo mergers that associate

with phase mixing and violent relaxation. This many-body problem is very compli-

cated and depends strongly on the initial conditions of halo mergers, which can only

be calculated via N-Body simulations (e.g. White, 1978; Aarseth & Binney, 1978; May

& van Albada, 1984). Finally, and most importantly, the gas and stellar components

of the galaxies evolve under huge degrees of freedoms that are governed by baryonic

physics of gas accretion, cooling, and heating. This is why numerical simulations are

essential to tackle these complex non-linear, non-equilibrium processe (Bertschinger,

1998).

Thanks to the development of numerical algorithms and ever-increasing computing

power (Moore’s Law), today numerical simulations have become the main, if not the

only, tool to study the detail process of galaxy formation and evolution. If the COBE

observations mark the golden age of precise cosmology, the uses of supercomputers to

solve galaxy formation problems mark the golden age of modeling galaxy formation.

Current cosmological simulations that incorporate many relevant physical processes

enable us overcome a huge dynamical range from the large scale structures of the

cosmic web all the way down to individual star-forming regions. One striking example

of the improvements in modeling galaxy formation during the last several decades is

a comparison between simulations of galaxy merger in the early 1970s and in the

2010s shown in Figure 1.2. In Toomre & Toomre (1972), the simulated galaxy was

represented by a handful of mass points that interact with each other via only gravity,

while in Renaud et al. (2015), the merging galaxy was resolved by millons to billions

of gas, star, and dark matter elements with sub-pc spatial resolution.

1.2.1 Numerical techniques

As we saw in Section 1.1, on very large scales, the space-time evolution is governed

by the Friedman equation; on smaller scales, the dynamics and structures of the dark
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Figure 1.2: Numerical simulations of galaxy merger for Toomre & Toomre (1972) (upper
panels) and Renaud et al. (2015) (lower panels). For each series of simulation snapshots,
the time evolution of the merging system is shown from left to right.

matter halos are controlled by gravity; within each halo, the properties of the ISM

are determined by the gas dynamics of the baryonic matter. Therefore, the whole

process can actually be calculated by a combination of the Friedman, Poisson and

Eulerian equations.

The Eulerian equations are a set of hyperbolic equations that describe the con-

servation of mass, momentum and energy:

∂ρ

∂t
+∇· (ρu) = 0, (1.4)

∂u

∂t
+ (u· ∇)u = −∇Φ− ∇P

ρ
, (1.5)

∂E

∂t
+∇· [(E + P )u] = −ρu· ∇Φ + (Γ− L), (1.6)

where ρ is gas density, u is velocity, P is gas pressure, E = ρ(ε+u2/2) is the total gas

energy density, ε is the specific internal energy of the gas, Γ and L are the heating and
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cooling rates per unit volume, Φ is the gravitational potential. The three equations

above are closed by the equation of state of the gas and the Poisson equation:

ε =
1

γ − 1

P

ρ
, (1.7)

∇2Φ = 4πGρtot − Λ, (1.8)

where γ is the gas polytropic index and ρtot is the total density including both baryonic

and dark matter components.

The dark matter component is usually represented by collisionless particles in

the cosmological simulations that evolve under the influence of gravity only. The

kinematics of the i-th dark matter particle located at xi with velocity uI can be

described by the weak-field approximation of general relativity:

dxi
dt

= ui;
dui
dt

= ∇Φ. (1.9)

Although seemingly simple, the above set of equations are computationally ex-

pensive due to the huge dynamical range (from the Mpc large scale structure to the

pc scale star-forming regions), large number of resolution elements (from millions to

several billions), and complex physical processes (gravity, hydrodynamics, radiation,

star formation and feedback). Even pure N-body simulations that treat all matter

as collisionless particles require sophisticate algorithms to efficiently and accurately

estimate the gravitational interactions of all particles.

The first generation of N2 particle-particle codes were developed in the 60s to 70s

(Aarseth, 1963; Peebles, 1970; Groth et al., 1977). Since then the algorithms have

been advanced dramatically and are typically classified into different categories: tree-

based solvers (Barnes & Hut, 1986), mesh-based solvers (Klypin & Shandarin, 1983),

and some adaptive refinement methods that extend the dynamical range without
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Figure 1.3: Numerical techniques for solving hydrodynamics: mesh-based with adaptive
mesh refinement (left) vs. smoothed particle hydrodynamics (right) (Loeb & Furlanetto,
2013).

significantly increasing computational costs (Kravtsov et al., 1997; Bryan & Norman,

1998; Knebe et al., 2001). Since then, great advances in N-body simulations have

been made to study the internal structure of the dark matter halos (or the NFW

profile; Navarro et al., 1996) and the spatial distribution of galaxy clustering (Conroy

et al., 2006; Springel et al., 2006)

Solving hydrodynamic equations are also categorized into different groups: e.g.

particle- vs. mesh-based methods. A sketch of the two techniques is shown in Fig-

ure 1.3. In particle-based methods, or smoothed particle hydrodynamics (SPH), as

implemented in the pioneering work done by Evrard (1988), the gas elements are

treated as gas particles whose motion follows the gas flow. The density, momentum,

and energy field are reconstructed via kernel density estimation by convoluting par-

ticle attributes with specific kernels. Alternatively, for all simulations present in this

10



thesis, I use the mesh-based Adaptive Refinement Tree (ART) code (Kravtsov et al.,

1997; Kravtsov, 1999, 2003; Rudd et al., 2008) to solve the hydrodynamics of the

galaxies. In ART, gas elements are treated as gas cells and mass flows are described

by exchanging material through cell interfaces. To achieve high spatial resolutions

in dense region, cells whose density becomes sufficiently high are divided into 8 chil-

dren. This refinement process is done iteratively until cells at all levels have similar

masses. Both SPH and mesh-basd codes have their own advantages and limitations.

Comparing SPH and mesh-based methods is beyond the scope of this thesis, and I

would like to refer the reader to some excellent review articles that address this issue

(e.g. Springel, 2010; Teyssier, 2015). Following the philosophy of distinguishing the

numerical evil from the physical reality, several efforts have been made to compare

simulations performed with different codes from the same initial conditions, such as

the Santa Barbara Cluster Comparison Project (Frenk et al., 1999) and the most

recent AGORA project that I’m involved in (Kim et al., 2014, 2016). It is important

to keep in mind that knowing exactly which results are physical and which are merely

numerical artifacts are crucial to the interpretation of simulation outcomes.

1.2.2 Uncertainties of sub-grid models

The most important goal of cosmological simulations is to understand the evolu-

tion of galaxies, which are most commonly observed from their starlight. Therefore,

simulations must take into account the process of star formation in which cold and

dense gas in galaxies becomes stars. Following their formation, stars, especially mas-

sive ones, quickly deposit a large amount of mass, momentum, energy, radiation, and

metals into the ISM during their lifetime. This so-called “stellar feedback” as well as

star formation processes happens on sub-pc scales that are far from being spatially

resolved by current cosmological simulations with box sizes larger than several Mpc.

Therefore, these processes have to be taken into account by alternative numerical
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implementations called “subgrid models”.

Stars are formed in cold and dense GMCs. In cosmological simulations, the basic

sub-grid model for star formation converts a fraction of star-forming gas into star

particles at a rate that is calibrated by either observed KS relations or motivated by

theoretical estimation of the gas free fall:

ρ̇∗ =
εffρgas

τff

, (1.10)

where τff ∝ ρ−0.5
gas is the local free-fall time, and εff is a free parameter that controls

the star formation efficiency per free-fall time. This type of sub-grid model was first

implemented by Katz (1992) and is little changed since then, with only some small

variations taking into account different criteria for creating star particles or functional

forms of Eq. (1.10).

Stellar feedback follows the formation of stars. Sub-grid models that mimic the

stellar feedback process is another key ingredient in cosmological simulations. Katz

et al. (1996) first attempted to model the feedback from supernovae (SNe) by deposit-

ing 1051 erg thermal energy per SN to the surrounding medium. They soon realized

that this has almost no effect on either the properties of the ISM or the suppression

of star formation, since the thermal energy from SNe is quickly radiated away by

the rapid cooling of the dense gas cells around star particles. Because the inefficient

feedback cannot counteract rapid cooling, gas that falls into the dark matter halo

is quickly converted into stars. Therefore, given a constant baryonic fraction of the

Universe, the stellar mass function of the simulated galaxies has the same shape of

the halo mass function I described in Eq. (1.3), which is fundamentally different from

observations in terms of both shape and normalization, see Figure 1.4. Besides the

inconsistent stellar mass functions, other problems of the previous generations of sim-

ulations with inefficient feedback include: the absence of extended stellar disks but
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Figure 1.4: Galaxy stellar mass functions for a compilation of recent large-scale cosmolog-
ical hydrodynamic simulations using different feedback schemes described in Section 1.2.
The observed stellar mass functions from Li & White (2009) and Bernardi et al. (2013) are
overplotted for reference. The dashed line shows the derived galaxy mass function from
halo mass function in Eq. (1.3) with a constant baryonic fraction.

a large bulge component at the center of the z=0 galaxies, a centrally peaked rota-

tional velocity profile, and overproduction of stars at high-z that leads to incorrect

characterizations of cosmic star formation history (Katz et al., 1996; Somerville &

Primack, 1999; Springel & Hernquist, 2003b; Kereš et al., 2009).

In response to these problems, many groups have developed various ways of ef-

fectively injecting feedback energy in cosmological simulations. Stinson et al. (2006)

developed a blastwave feedback scheme, where radiative cooling is turned off for gas

that is presumably swiped by SNe during the Sedov phase. With this delayed cooling

model, star formation activities are significantly suppressed and disk-dominated sys-

tems emerge (Governato et al., 2007; Guedes et al., 2011), although this method is
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often criticized for being nonphysical. Recently, a more physical-oriented superbubble

feedback scheme has been introduced to partially justify the delayed cooling process

(Keller et al., 2015).

Another widely used scheme proposed by Dalla Vecchia & Schaye (2012) and

adopted by the EAGLE simulations (Schaye et al., 2015) is stochastic energy deposi-

tion. This method is used in many SPH simulations, where the gas particles receiving

feedback from adjacent star particles have a small probability to be heated to a much

higher temperatures than the mean value, which dramatically increases the cooling

timescale. As an alternative to thermal energy deposition, Navarro & White (1993)

introduced a momentum feedback scheme that add momentum to gas elements. This

idea was later implemented in GADGET-2 by Springel & Hernquist (2003a) and was

used in the Illustris simulations (Vogelsberger et al., 2014). Specifically, in the Illus-

tris simulations, a new particle type called wind particles is introduced to mimic SNe

shocks kicking the ambient medium. Assuming momentum-driven winds with a mass

loading factor that scales with the velocity dispersion of the galaxies, wind particles

can travel freely across the galactic disks and deposit mass and energy at larger radii,

which mimics the behavior of the large scale galactic winds/outflows.

Besides SNe, there are other types of feedback from massive stars, such as stellar

winds and radiative pressure. Indeed, the lifetime of GMCs in observations is typically

smaller than a couple of free-fall times, even before the first SN explosions. This

critical information inspired an exploration of early feedback from other sources prior

to SNe. Agertz et al. (2013) estimated the energy budgets from stellar luminosity,

winds, and SNe from a single stellar population with a Kroupa (2001) initial mass

function, and found that the momentum injection rate from all three sources are

comparable. They found that early feedback from radiative pressure and stellar wind

reduces the gas density around star particles and enhances the effects of subsequent

SN explosions. Similar results were also found in the FIRE simulations (Hopkins
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et al., 2014), where the effects of feedback from different sources add non-linearly so

that a full accounting of feedback sources is required to reproduce the various global

properties of galaxies. Moreover, feedback schemes from non-thermal components,

such as cosmic ray, have also been actively explored (Uhlig et al., 2012; Booth et al.,

2013; Salem & Bryan, 2014).

As seen in the above description, promising progress has been made through

explorations of various sources and numerical implementations of stellar feedback.

It is now widely accepted that stellar feedback is indeed a remedy to excessive star

formation and bulge-dominated galaxies. But a remedy is not a panacea. The idea

that “feedback controls everything” is overly optimistic and misleading. It should be

noted that the general agreement with the global properties of the observed galaxies

from different simulations is attributed to the fine-tuning of the normalizations and

scalings of the feedback models. It is actually troublesome that a surprisingly broad

range of feedback models claim to match the same galactic properties, which limits

the predictive power of the current cosmological simulations in different perspectives

(Naab & Ostriker, 2016), see Figure 1.4.

It seems there are two main issues. First, typically subgrid models are calibrated

by comparing the global properties of galaxies on scales larger than kpc scales, such

as stellar mass functions, star formation history, stellar mass-halo mass relations,

and KS relations. Even though some global relations can be reproduced by these

simulations, it is still unknown whether the subgrid models they used are appropriate

for capturing the physical properties of the ISM on smaller scales. As the spatial

resolution of current simulations is approaching the pc scales (Hopkins et al., 2014;

Read et al., 2015; Wetzel et al., 2016), it is critical to develop systematic methods to

calibrate the sub-grid models on a similar scale.

Second, in contrast to the active exploration of stellar feedback schemes, the star

formation prescriptions have not changed markedly for more than two decades since
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the pioneering work of Katz (1992). I emphasis here that stellar feedback processes

largely rely on star formation prescriptions. Inappropriate star formation prescrip-

tions can lead to incorrect results, even when equipped with the most sophisticated

feedback models. For example, Agertz & Kravtsov (2015) have already shown that

only by changing the value of εff , the star formation history as well as the morphology

of the galaxies changes drastically.

Fortunately, this problem has recently been realized in the galaxy formation

community and progress is begining to be made to achieve realistic modeling of

the star formation process. A series of works by Gnedin et al. (2009); Gnedin &

Kravtsov (2010, 2011) developed a phenomenological model of the formation and dis-

ruption of H2 and showed that an H2-dependent star formation recipe can explain

the steepening of the Kennicutt-Schmidt relation in the low surface density regime

(Σgas < 100M�pc−2). Governato et al. (2007, 2010); Guedes et al. (2011) found

that using higher density thresholds for star formation with higher spatial resolutions

leads to more concentrated star formation and more effective feedback that signifi-

cantly improve the ability to produce realistic galaxy disks. In other work, Semenov

et al. (2015) implemented a subgrid scale turbulence model in ART and implemented

a turbulence-based εff model. This model predicted a wide range of εff ∼ 0.1− 10%,

which is consistent with observed variations of εff in local star-forming regions in the

Milky Way (Heiderman et al., 2010; Lada et al., 2010; Murray, 2011; Evans et al.,

2014).

It can be seen from the above narrative that all significant improvements in nu-

merical modeling of galaxy formation are inspired by observational advances: the

inefficient star formation in high-z galaxies leads to the exploration of strong feed-

back schemes; the observed short lifetime of GMCs implies the importance of early

feedback prior to SNe. To deal with current issues in modeling star formation in

cosmological simulations, we should step outside of the ivory tower of theoretical
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Figure 1.5: Left: The Antennae galaxies in collision by the Hubble Space Telescope. Right:
Initial mass function of young clusters in different galaxies (Portegies Zwart et al., 2010).

speculations again and survey current observational advances in star formation.

1.3 Properties of young massive star cluster

Observation and theory get on best when they are mixed together, both helping one

another in the pursuit of truth. It is a good rule not to put overmuch confidence in a

theory until it has been confirmed by observation.

Sir Arthur Stanley Eddington

Look at the optical image of the Antennae galaxies taken by the Hubble Space

Telescope in the left panel of Figure 1.5. It can be seen that the blue starlight coming

from the youngest stars is far from evenly distributed. Instead, these young stars

formed in clusters, each of which contains hundreds to even millions of stars. Why

do stars form in this way? What are the properties of these clusters? How do these

clusters with the size of several pc relate to cosmological simulations of Mpc scales?
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These questions will be answered in this section.

In Sec. 1.1, I sketched a brief history of the Universe from the Big Bang to the

formation of dark matter halos. Compared to the structure formation in the early

Universe, the star formation process occurred later is far more complicated due to

the complex interactions among dark matter, radiation, and gas. Pulled by the

gravitational potential of the dark matter halo, gas is accreted along filaments. Gas

that flows from different directions clashes and converts its kinetic energy into thermal

energy so that the halo gas asymptotically approaches a quasi-virialized state. The

halo gas dissipates its thermal energy via radiative cooling, loses its pressure support,

and gradually falls into the center of the dark matter halos. Its angular momentum,

however, cannot be dissipated, thus inducing the formation of the gas disk with a size

that is determined by the intrinsic halo spin (Mo et al., 1998). Under the Toomre

instability (Toomre, 1964) and spiral density waves (Lin & Shu, 1964), some densest

parts of the disk fragment into GMCs. Each GMC is threaded by complex webs of

dense filaments, whose intersections produce individual molecular cores. The cold and

dense core starts run-away collapsing once its mass reaches the Jeans mass (Jeans,

1902), and individual stars or star multiples emerge. The Jeans mass is defined as:

MJ ≈ 700M�

(
T

200K

)3/2 ( nH

104cm−3

)−1/2

, (1.11)

where T is the gas temperature and nH is the number density of the hydrogen atoms.

The formation of stars requires that gravity overcome the resistant forces of gas pres-

sure, turbulent motions, and magnetic fields. It is not surprising that star formation

is one of the most complicated and intriguing problems. Putting aside many details

that are not relevant to this thesis, recent observations and theoretical investigations

of nearby star-forming regions have led to some general consensus that can poten-

tially be used as a guide to future exploration of sub-grid models and/or as a test
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of these models. Indeed, recent observations of star-forming regions in the Milky

Way and other nearby galaxies reveal a large number of cluster samples within which

the information of their formation environment is embedded (Portegies Zwart et al.,

2010).

Most stars are not formed in isolation, but in clustered environments (Lada &

Lada, 2003). Quantitatively, the rate of star formation that occurs in clusters for the

Milky Way is ∼ 3×103M�Myr−2kpc−2, comparable to the star formation rate surface

density of the Galaxy (Miller & Scalo, 1979). This suggests that cluster formation

is the dominant mode of star formation in the galaxy. On large scales, the efficiency

of star formation in our galaxy is only a few percent (Zuckerman & Evans, 1974;

Kennicutt, 1998; Evans, 1999; Evans et al., 2009). For a long time, it was believed

that this low star formation efficiency is the result of a collective of low efficient star-

forming regions, which is due to slow gravitational collapse hindered by magnetic

field or turbulence (Krumholz & McKee, 2005; Krumholz & Tan, 2007). However,

this quasi-equilibrium scenario of star formation is challenged by recent observations

of star-forming regions.

Herbig et al. (1986) performed a systematic search for T Tauri stars that are

presumably at least 1-3 Myr old in the GMCs and found none. Briceno et al. (1997)

used X-ray surveys and found no “post-T Tauri stars” in their samples, suggesting

that the GMCs they examined produce stars in less than 10 Myr. Hartmann (2009)

compiled recent observations of cloud lifetime in his Table 2.1. It is striking that

the typical lifetime of star-forming clouds in the solar neighborhood is in general

shorter than 10 Myr. Ballesteros-Paredes & Hartmann (2007) found that young star

clusters of ages ∼ 10 Myr are commonly free of dust extinction, suggesting that their

natal molecular clouds are dispersed very rapidly. Further, recent observations of

nearby star-forming regions reveal a very short age spread of stars in many young

star clusters, only a few Myr or a couple of free-fall timescale (Mac Low & Klessen,
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2004; Hartmann et al., 2012; Hollyhead et al., 2015), suggesting that cluster formation

is rapid, too.

This then raises the question of how such a rapid star formation process can lead

to the low star formation efficiency observed in many nearby galaxies. It has recently

been recognized that, while the star formation efficiency is low on global scales, many

localized regions with high virial parameter tend to have much higher efficiencies,

sometimes even reach more than 50% to produce bound star clusters (Murray, 2011).

The current understanding of the origin of the low global star formation efficiency

and long gas depletion time is caused by a combination of multiple SF-FB cycles and

a relative large and wide range of efficiency within individual clouds (Semenov et al.,

2017).

Similar to star formation efficiency, the mass of star clusters also presents a wide

range spanning from ∼ 100M� for typical open clusters to larger than 106M� for

young massive clusters (Portegies Zwart et al., 2010). The initial mass function of

young clusters formed in the galaxies can be described by a Schechter function with a

power-law slope and an exponential cutoff at high mass. The right panel of Figure 1.5

shows the CIMF of clusters in different galaxies. The power-law slopes of these mass

functions are close to −2 and the cut-off mass correlates well with the star formation

intensities of the host galaxies.

Here, I summarize some of the key observational indications that can shed light

on improving the star formation prescription in cosmological simulations.

• Stars are formed in cluster environments.

• Star formation efficiency of individual GMCs varies dramatically from εff = 0.1%

to ∼ 50%.

• Cluster formation is a rapid and dynamical process with ∼ Myr cluster forma-

tion timescale.
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• CIMF shows a universal Schechter-like shape with a -2 power-law slope.

The above observations highlight the need for a new star formation prescription

that considers the mode of cluster formation. Instead of a fixed εff that is used in

current cosmological simulations, the new prescription needs to consider an efficiency

that varies based on the cloud properties. The rationale of the model and choice of

model parameters should be indicated by whether it can reproduce the properties of

clusters in observations, such as a short cluster formation timescale and Schechter-

like CIMF. In Chapter II, I introduce my new implementation of a continuous cluster

formation (CCF) prescription. In this prescription, a cluster particle grows continu-

ously through gas accretion from its natal GMCs, at a rate determined by the cell gas

properties. This work is published in Astrophysical Journal (Li et al., 2017). In Chap-

ter III, I compare the model clusters with observations to constrain different choices

of star formation and feedback parameters. This work is to be submitted. I also

calculate the dynamical evolution of the model clusters and explore the connection

between young massive clusters and globular clusters in Chapter IV.

1.4 From young massive clusters to globular clusters

The same as using the properties of young star clusters (YMCs) as testbeds to the

modeling of galaxy formation, globular clusters (GCs) are thought for a long time to

preserve fossil information on the assembly history of their host galaxies, due to their

old age and compact structure (Harris, 2001). For example, the observed bimodal

metallicity distribution of GCs in the Milky Way and nearby galaxies provide hints

on the chemical composition of their host galaxies in the early Universe (Zinn, 1985;

Harris, 1996; Larsen et al., 2001; Peng et al., 2006). The mass-to-light ratio of GCs

indicates their dynamical evolution along their orbits around the galaxies (Vesperini

& Heggie, 1997; Baumgardt & Makino, 2003; De Marchi et al., 2007; Kruijssen &

21



Mieske, 2009). However, compared to the concrete observational properties of YMCs,

the use of GCs as a tracer of galaxy formation is not straightforward because of

both the observational challenges and theoretical uncertainties. Observationally, for

example, because of the age-metallicity degeneracy of the isochrone fitting (Worthey,

1994), determining an accurate age or metallicity of the GCs is challenging (e.g.

Leaman et al., 2013; Forbes et al., 2015). Theoretically, revealing the mysteries of GC

formation requires the understanding of stellar astrophysics, ISM physics, hierarchical

structure formation, and cosmology. Therefore, although GC systems have been

known for almost four centuries 4, their formation and evolution is still one of the most

challenging unsolved problems in the interface among all major fields of astrophysics

(e.g. Brodie & Strader, 2006).

Many theories have attempted to explain the physical origin of GC in the early

time of the Universe. Peebles & Dicke (1968) modeled GC formation at the epoch after

recombination when the cosmological Jeans mass of the largest structure is similar

to the mass of GCs ∼ 106M�. Later, Fall & Rees (1985) connected the formation

of GCs with the thermal instability of the hot gas in the mini-halos during the very

early stages of galaxy formation. The dark matter halos of these GC progenitors

might be stripped and the central clusters survive because of their compact structure

(Peebles, 1984). Unfortunately, there are two problems. First, GCs formed in this

scenario from individual halos will have rotations much faster than the observed ones

in the Galaxy. Second, models of this type cannot explain the existence of younger

and metal-rich sub-population of GCs.

As many theoretical speculations continued in the 1990s, one of the key observa-

tions is the discovery of a large number of YMCs using the Hubble Space Telescope in

the Antennae galaxies (Whitmore et al., 1999), see Figure 1.5, and other galaxies (e.g.

Portegies Zwart et al., 2010). The CIMF in the Antennae galaxies shows a high-mass

4A German astronomer, Abraham Ihle, discovered a galactic globular cluster, M22, while observ-
ing Saturn in 1665.
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tail that extends to a cluster mass as high as ∼ 3× 106M�, which is massive enough

to survive across cosmic time. The existence of such intense star formation activities

in the current Universe offers the possibility that YMCs can potentially act as the

progenitors of GCs, suggesting that the formation of GC systems may not require

unique conditions that only exist in the early Universe. Recent observations in the

Hubble Frontier Field reveals a lensed galaxy that contains many stellar clumps of a

size < 100 pc with very high star formation rates at z > 2 (Johnson et al., 2017b).

These sites can potentially host massive star clusters that become the progenitors of

GCs observed today. Moreover, the presence of a large number of YMC in Antennae

galaxies, an actively merging galaxy system, implies that YMC formation is likely

triggered by strong shocks and/or high pressure environments in the ISM that usu-

ally happens during major mergers of two galaxies (Kruijssen, 2014), thus linking the

origin of GCs to the hierarchical structure formation of the Universe.

The pioneering work of Ashman & Zepf (1992) first proposed that GCs are formed

during the gas-rich major-merger events and predicted the bimodality of the GC

metallicity distribution even before observations. To explore GC formation in the

cosmological framework, Kravtsov & Gnedin (2005) post-processed snapshots of cos-

mological simulations and assigned GCs at the density peaks of the resolved GMCs.

They found a roughly linear correlation between the total mass of GC and the mass of

their host galaxies, which is later confirmed by observation of GC systems in different

galaxies (e.g. Hudson et al., 2014). Since these simulations can only be carried out

at high redshifts, the formation of GCs at later epochs and their evolution cannot

be captured. Thus, based on several empirical observed scaling relations, Muratov

& Gnedin (2010) built a semi-analytical model upon N-body simulations that reach

z = 0 and reproduced the bimodality of GC metallicity distribution in the Milky

Way.

GC systems have been found not only in our Galaxy but also various types of
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galaxies from dwarf spheroids to giant ellipticals. Recent observations of Virgo galax-

ies reveal a commonly-existed multimodal GC color distributions over a wide range

of galaxy masses (Peng et al., 2006). A natural extension to the work Muratov &

Gnedin (2010) is to apply this semi-analytical framework to more halo merger trees

and explore systematically the origin of the multimodality of GC colors in different

galactic environments. This work is presented in Chapter V, which is a recompilation

of the published version in Astrophysical Journal (Li & Gnedin, 2014).
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CHAPTER II

Star Cluster Formation in Cosmological

Simulations.

We present a new implementation of star formation in cosmological simulations,

by considering star clusters as a unit of star formation. Cluster particles grow in mass

over several million years at the rate determined by local gas properties, with high

time resolution. The particle growth is terminated by its own energy and momentum

feedback on the interstellar medium. We test this implementation for Milky Way-

sized galaxies at high redshift, by comparing the properties of model clusters with

observations of young star clusters. We find that the cluster initial mass function is

best described by a Schechter function rather than a single power law. In agreement

with observations, at low masses the logarithmic slope is α ≈ 1.8−2, while the cutoff

at high mass scales with the star formation rate. A related trend is a positive correla-

tion between the surface density of star formation rate and fraction of stars contained

in massive clusters. Both trends indicate that the formation of massive star clusters

is preferred during bursts of star formation. These bursts are often associated with

major merger events. We also find that the median timescale for cluster formation

ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation

efficiency. Local variations in the gas density and cluster accretion rate naturally lead

to the scatter of the overall formation efficiency by an order of magnitude, even when
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the instantaneous efficiency is kept constant. Comparison of the formation timescale

with the observed age spread of young star clusters provides an additional important

constraint on the modeling of star formation and feedback schemes.

2.1 Introduction

One of the most important problems in astrophysics is understanding the forma-

tion and evolution of galaxies. Although the Λ cold dark matter paradigm shows

great success in reproducing observations on large scales and builds a solid theoret-

ical framework (Planck Collaboration et al., 2014; Vikhlinin et al., 2009; Springel

et al., 2006), many galaxy formation questions, especially those that involve baryonic

physics, are not yet answered.

A self-consistent way of modeling the baryonic component of galaxies is to run

simulations that include all relevant physics such as gravity, hydrodynamics, star

formation, radiation transport, etc. This approach has already proved to be a very

important tool. Current simulations are making rapid progress in reproducing dif-

ferent types of galaxies and global scaling relations, such as the Kennicutt-Schmidt

relation and star formation history, by realizing the importance of stellar feedback in

shaping the properties of interstellar medium (ISM; for a recent review, see Somerville

& Davé, 2015). Various stellar feedback mechanisms suppress star formation activity

at high redshifts and retain a gas reservoir for star formation at low redshifts. This

feedback loop allows the self-regulation of star formation in galaxies.

Although many processes of stellar feedback have been explored (e.g. Katz, 1992;

Navarro & White, 1993; Stinson et al., 2006; Governato et al., 2007, 2012; Scannapieco

et al., 2008; Hopkins et al., 2011; Hummels & Bryan, 2012; Booth et al., 2013; Agertz

et al., 2013; Stinson et al., 2013; Ceverino et al., 2014; Salem & Bryan, 2014; Hopkins

et al., 2014; Keller et al., 2015), the star formation prescription has not changed

for over two decades since Katz (1992) and Cen & Ostriker (1992). In most of the
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current cosmological simulations, star particles are formed in cold and dense gas,

with the rate that is calculated by assuming a fixed efficiency per free-fall time, εff .

One exception is the recent implementation of the turbulence-based εff by Semenov

et al. (2016). Star particles are created by a Poisson process, with their masses set

beforehand and therefore, unrelated to the feedback they produce. Yet, the efficiencies

of star formation and feedback are closely interrelated, as both affect key properties of

galaxies (Agertz & Kravtsov, 2015, 2016), and thus must be treated self-consistently.

One possible solution is to grow stellar particles over time and let their own feed-

back terminate star formation locally. This causes a number of issues that need to

be resolved: How to choose the size of a star-forming region? How to treat interac-

tions of neighboring regions? How to tell if the continuous model is more realistic

than the instantaneous particle creation? Important constraints on these come from

observations of clustering of young stars.

Most stars form in clusters and associations, which can be considered as building

blocks of the stellar component of galaxies (e.g. Lada & Lada, 2003). Star clusters

follow a well-defined initial mass function (CIMF), analogously to the mass function of

individual stars. It follows an approximate power law at low masses but has a steeper

falloff at high mass, which can be described by the Schechter function (e.g. Portegies

Zwart et al., 2010). The maximum cluster mass scales with the star formation rate

of its host galaxy. Clusters form within the dense parts (cores and clumps) of giant

molecular clouds (GMCs). Stars in the youngest clusters, still partially embedded in

the molecular gas, show a spread of ages of only a few Myr (Mac Low & Klessen,

2004; Hartmann et al., 2012; Hollyhead et al., 2015). Even though resolving the

sizes of young clusters (∼ 1 pc) is still beyond capabilities of current cosmological

simulations, resolving GMC structure is within reach (e.g. Hopkins et al., 2014; Read

et al., 2015; Wetzel et al., 2016). Therefore, the implementation of star formation can

be made more realistic if stellar particles corresponded directly to individual clusters
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forming within GMCs. The observed properties of young star clusters, such as the

CIMF and the cluster formation timescale, can serve as tests of the star formation

and feedback prescriptions on a scale much smaller than what is typically used in

galaxy formation simulations (∼ 1 kpc).

In this paper, we develop a new model for implementing star formation by con-

sidering star cluster as a unit of star formation. In contrast to all other cosmological

simulations where stellar particles are formed instantaneously, the formation of a

stellar particle in our model is resolved in time over a period of a few Myr and ter-

minated by its own feedback. The final cluster masses are set self-consistently, given

the implemented physics of stellar feedback. We show that the shape of the model

CIMF is consistent with observations of young star clusters, but the cluster formation

timescale decreases systematically with increasing local efficiency of star formation

and strength of stellar feedback.

We also show that this model leads to the scatter of the cluster formation efficiency

by an order of magnitude, even when the instantaneous efficiency per free-fall time

is kept constant. This scatter is caused by local variations in the gas density and

cluster accretion rate, which are affected by the cluster feedback. The variation

of the efficiency is predicted by analytical models of star formation in supersonic

turbulent GMCs (e.g. Krumholz & McKee, 2005; Padoan & Nordlund, 2011; Federrath

& Klessen, 2012; Hennebelle & Chabrier, 2013), although detailed comparison with

our results is beyond the scope of this paper. Small-scale simulations of turbulent

cascade also predict systematic variation of εff with the virial parameter (e.g., Padoan

et al., 2012; Kritsuk et al., 2013; Federrath, 2015). Observational constraints on εff

on the GMC scale vary from ∼ 0.01% to ∼ 10% (e.g., Murray, 2011; Evans et al.,

2014; Vutisalchavakul et al., 2016). Although estimates for some clouds reach values

as high as εff ∼ 30%, these values may be artificially inflated by different evolutionary

phases of the GMC (Feldmann & Gnedin, 2011). The fact that our implementation
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naturally leads to scatter of cluster formation efficiency paves the way towards more

realistic modeling of star formation in the turbulent galactic ISM.

In Section 2.2, we describe the simulation setup and detailed implementation of

this sub-grid model. In Section 2.3, we examine the global star formation history of

the simulated galaxies. In Section 2.4, we investigate the shape of the cluster initial

mass function and its environmental dependence, and compare them with observa-

tions of young massive star clusters in nearby galaxies. In Section 2.5, we demonstrate

an important effect of the star formation efficiency on the cluster formation timescale.

In Section 2.6, we discuss the origin of CIMF in the turbulent ISM and compare our

implementation with previous models. Finally, we summarize our conclusions in Sec-

tion 2.7.

2.2 Simulation Setup

The simulations were run with the Eulerian gasdynamics and N-body Adaptive

Refinement Tree (ART) code (Kravtsov et al., 1997; Kravtsov, 1999, 2003; Rudd et al.,

2008). The latest version of ART includes several new physical ingredients that make

it suitable for investigating the detailed star formation processes in a cosmological

context. It includes an updated version of three-dimensional radiative transfer of ion-

izing and ultraviolet radiation using the Optically Thin Variable Eddington Tensor

approximation (Gnedin & Abel, 2001). Both the local ionizing radiation from star

particles (Gnedin, 2014) and the extra-galactic background (Haardt & Madau, 2001)

are considered as the ionization sources that feed into the radiative transfer solver.

The ionization states of various species of hydrogen (HI, HII, H2) and helium (HeI,

HeII, HeIII), as well as the cooling and heating rates, are calculated based on the

non-equilibrium chemical network. Finally, a phenomenological model of H2 forma-

tion and self-shielding on dust grains (Gnedin & Kravtsov, 2011) allows us perform

a more realistic modeling of star formation based on local molecular component. Re-
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cently a subgrid-scale (SGS) model for the numerically unresolved turbulence was

implemented in the ART code. Turbulence, generated by gravitational instabilities

as well as kinetic feedback from stars and AGN, is an important ingredient for star

formation (McKee & Ostriker, 2007). This SGS model has been tested in isolated

disk simulations (Semenov et al., 2016) and in this paper it is applied to cosmological

simulations.

We run cosmological simulations in a periodic box of size Lbox = 4 Mpc comoving.

The initial condition is selected and tested by collisionless runs so that the central

galaxy has total mass M200 ≈ 1012M� at z = 0. There are also a few satellite galaxies

with halo masses in the range 1010 − 1011M�.

This initial condition has a non-zero “DC mode” that corrects the deviation of

the cosmological evolution due to the difference between the average matter density

in the box and the average matter density in the whole universe (Gnedin et al.,

2011). A constant parameter ∆DC, which represents the density fluctuation level of

the current box, determines the relationship between the expansion rate of the box

and the expansion rate of the universe:

abox =
auni

[1 + ∆DCD+(auni)]1/3
, (2.1)

where abox and auni are the scale factors of the simulation box and the global universe,

respectively. D+(a) is the linear growth factor of density perturbation at scale factor

a. Our initial condition has ∆DC = −1.02, that is, a slightly underdense region.

The ART code uses adaptive mesh refinement, which increases spatial resolution

in high density regions during simulation runtime. All of our simulations start with

a 1283 root grid, which gives the mass of dark matter particle mDM = 1.05× 106M�

and size of the root cell 31.25 kpc comoving. We allow a maximum of ten additional

refinement levels, which gives us spatial resolution of L10 = 4× 106/128/210 ≈ 30 pc
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Table 2.1: Model Parameters

Models SFE10 (fiducial) SFE20 SFE100 LOWRHO TURB50 TURBSF TURBSF2

ρcrit(cm−3) 1000 1000 1000 10 1000 - -

Tcrit(K) 20000 20000 20000 20000 20000 - -

fH2,crit 0.5 0.5 0.5 0.5 0.5 - 0.5

εff 0.1 0.2 1.0 0.1 0.1 - -

fturb 0.1 0.1 0.1 0.1 0.5 0.5 0.5

Note. Other fixed parameters for all models: τmax = 15 Myr; Mth = 103M�; DGMC = 10 pc;
feedback speed ceiling vceiling

fb = 5000 km/s; feedback temperature ceiling T ceiling
fb = 108 K.

comoving. At z ≈ 4, the physical size of a 10th level cell is about 6 pc, smaller than a

typical size of a giant molecular cloud. We employ a combination of the Lagrangian

refinement criteria (both DM and gas mass) and the Jeans refinement criteria in the

simulation. The cell will be refined if either criteria is fulfilled. For the Lagrangian

refinement criteria, the cell will be refined if either the DM mass of the cell exceeds

3ftolmDMΩm/ΩDM, or the gas mass exceeds 3ftolmDMΩb/ΩDM, where the refinement

split tolerance ftol = 0.6. For the Jeans refinement criteria, cells larger than twice the

local Jeans length λJeans will be refined. The local Jeans length λJeans is defined as

λJeans = vgasτff ≈

√
π(c2

s + σ2
v)

Gρgas

, (2.2)

where cs is the sound speed of the cell, and σv is the local gas velocity dispersion

computed by the root mean square value of the velocity differences between a given

cell and its six immediate neighbors.

We adopt a ΛCDM cosmology with Ωm = 0.304, Ωb = 0.048, h = 0.681, and

σ8 = 0.829 that is consistent with the most recent Planck result (Planck Collaboration

et al., 2016).
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2.2.1 Continuous Cluster Formation

We introduce a new model for the formation of stellar particles in cosmological

simulations: continuous cluster formation. In this prescription, cluster particles are

formed within a spherical region of fixed physical size, DGMC ∼ 10 pc. This setup

can avoid sudden changes of cell size by mesh refinement and gradual changes due to

the expansion of the Universe.

In most of our runs, cluster particles are created only in cold (T < Tcrit), dense

(ρ > ρcrit) cells with high molecular fraction (fH2 > fH2,crit)
1. Also, we allow particle

creation only when the spherical cluster formation region is located at the local density

maximum by comparing the density of a given cell with its 6 immediate neighbors.

Once created, cluster particles are labeled “active” and will grow during the cluster

formation timescale τmax = 15 Myr. Clusters with age older than τmax will be labeled

“inactive” and stop growing, because the observed age spread in young star clusters is

typically below 15 Myr. Another constraint on cluster formation is that new cluster

particle can be created only in a cell that does not already contain another active

particle. Otherwise, we will grow the existing cluster instead of creating a new one.

All cluster particles in our simulations are considered to be collisionless elements,

which go into the gravity solver. The Poisson equation is solved by FFT at the

root level, and by the relaxation method at all refinement levels. These particles are

mapped to Eulerian grids; therefore, they experience the same potential irrespective

of their masses.

Since the resolution of the simulations can reach 30 comoving pc, a sphere of

physical diameter 10 pc can be larger than a single cell at high redshifts. In this case,

the neighboring cells that are covered by the sphere should also participate in cluster

formation. We developed an algorithm that returns gas properties of central, as well

1In contrast to the fixed εff runs, the turbulence-based εff runs does not require an ad hoc density,
temperature, or molecular fraction threshold for star formation, as εff is naturally suppressed in warm
diffuse gas (see Semenov et al., 2016) .
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as 26 neighboring cells, and calculates the total star formation rate (SFR) within the

sphere. But the volume participating in cluster formation cannot be larger than the

27 cells.

The particle growth rate is calculated as follows. The SFR density of the central

cell is:

ρ̇∗ = εff
fH2ρ

τff

, (2.3)

where τff =
√

3π/32Gρc is the free-fall time of the central cell, εff is the star forma-

tion efficiency per free-fall time, and fH2 is calculated based on the non-equilibrium

chemical network that is described in Gnedin & Kravtsov (2011). The total mass

accumulation rate within the sphere is the sum of the contributions from the central

as well as 26 neighboring cells:

Ṁ =
∑
i

fsp,iViρ̇∗,i =
εff
τff

∑
i

fsp,iVifH2,iρgas,i, (2.4)

where Vi is the volume of cell i, and fsp,i is the fraction of Vi that is located within

sphere. Here the SFR density of the neighboring cells is estimated by the free-fall time

of the central cell, since the collapse of the whole spherical cluster formation region

is dominated by the central cell. The mass increment during simulation timestep ∆t

is then Ṁ∆t.

The star formation efficiency εff in model SFE10 (fiducial) is set to be ten percent.

Model SFE20 (εff = 20%) and SFE100 (εff = 100%) test the influence of the star

formation efficiency on the global SFR as well as cluster particle properties. Recently,

Padoan et al. (2012) found a relationship between εff and cloud virial parameter

(αvir) by analyzing MHD simulations of turbulent GMCs. Semenov et al. (2016)

implemented a SGS turbulence model in the ART code to study the influence of

turbulence on gas dynamics and explore the turbulence-based star formation efficiency

in isolated disk simulations. In this paper, we setup a simulation TURBSF to test
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this model in cosmological runs. The SFR density is evaluated as ρ̇∗ = εff(αvir)ρ/τff .

We also apply this turbulence-based εff on molecular gas (TURBSF2) by adding the

molecular fraction fH2 in the above rate: ρ̇∗ = εff(αvir)fH2ρ/τff . The parameters of

the runs are listed in Table 2.1.

For all simulations discussed in this paper, we take 10 pc, a typical size of dense

clumps in GMCs (e.g., Murray, 2011), as the diameter of the cluster formation sphere,

DGMC. This value is consistent with the size of massive cluster-forming clouds that are

observed in the recent sub-mm ATLASGAL survey (Urquhart et al., 2014). The range

of the effective radius for massive proto-cluster candidates in that survey is about 5-

10 pc. The value of DGMC is tightly constrained. Any small sphere size would not

contain enough material to form massive clusters, while a significantly larger sphere

size could include several regions that should be forming separate clusters.

Because DGMC is an important parameter in our model, we test its influence on

the formation of cluster particles by varying its value around 10 pc. In the case of

DGMC = 5 pc, the sphere is small enough so that it completely resides within the

central cell and cannot reach any neighboring cells, for all redshifts of interest z < 11.

We find that the masses of the model clusters are smaller than those in the case of

DGMC = 10 pc by a factor of 1.8−2.0. The CIMF exhibits a systematic shift to lower

masses so that clusters with mass larger than several million solar mass are seldom

formed. We have done additional test runs with DGMC increasing from 5 to 15 pc,

and found that the CIMF first extends to higher masses, and then gradually saturates

at DGMC > 10 pc. This suggests that a sphere with DGMC = 10 pc contains majority

of the molecular gas that will collapse into a single cluster-forming region.

However, when the size of the sphere is much larger than the gas cell, DGMC >

3Lcell, the sphere will cover more than one layer of neighboring cells. Extracting

gas properties of all cells within the sphere makes the book-keeping complicated and

significantly reduces the computation efficiency. Therefore, we only allow cluster

34



particles to grow their mass from the gas within the closest 27 cells. With the choice

of DGMC = 10 pc, the cell at the 10th level has size smaller than DGMC/3 at z > 8.

In this case, some fraction of the material in the sphere that lies beyond the 27

cells cannot participate cluster formation. For this reason, we control the refinement

criteria so that the smallest cell size is always larger than DGMC/3. This suggests

that gas cells are not allowed to reach the 10th level of refinement until z . 8.

We also explored the possibility of varying sphere size based on the observed mass-

size relation of local GMC (e.g. Larson, 1981). However, it requires several iterations

to obtain the appropriate cloud size and sometimes fails to converge. Another un-

certainty comes from the normalization of the mass-size relation for GMCs in high-z

environment. Therefore, we did not apply it in our current simulations.

As we mentioned above, if there exists an active cluster particle in a cell, the cluster

mass will grow with the rate given by Eq. (2.4). The momentum and metallicity

increment will also be added to the active particle accordingly. If there are more

than one active cluster particle in a cell, we only grow the one with the smallest

velocity relative to the host cell. This method prevents adding mass to unrelated

cluster particles that occasionally fly through the cell. We also explored an alternative

scenario of treating multiple active particles in a single cell by merging them into one

active cluster. We found that the CIMF is no longer a power-law shape, but highly

inclined toward high masses. This is possibly because that active clusters that fly

from other cluster formation regions are absorbed by the main cluster, and clusters

in different cluster formation clouds are merged.

Before creating a new cluster particle, we predict its mass accumulated over the

timescale (τmax) by assuming a constant SFR: Mest = τmaxṀ . If this mass is smaller

than the threshold mass Mth, the cluster particle will not be formed in order to

avoid small-mass particles. After each global timestep, we remove all inactive cluster

particles if their masses are smaller than Mth, and recycle their mass and momentum
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back to the gas cells. To justify this process, we compare the scientific results and

the computational efficiency with and without particle removal. We found that these

inactive low-mass clusters contain only 3-5% of the stellar mass and have a negligible

effect on the overall stellar component of the simulated galaxies, but they contribute

∼40% in paricle number and slow down the code. Therefore, it is appropriate to

recycle such particles to improve the computational efficiency.

We would like to understand the accretion history of cluster particles. The typical

timestep in our simulations is about 1000 years 2. The active cluster formation period

can be resolved by several thousand steps. Since it is not practical to store each

local timestep, we record two integral timescales that characterize the mass accretion

history. The first is the total duration of a star-forming episode, τdur, from the time

of creation of the cluster particle to the last time before it becomes inactive. The

second is the mass-weighted cluster formation timescale:

τave ≡
∫ τdur

0
t Ṁ(t) dt∫ τdur

0
Ṁ(t) dt

, (2.5)

where Ṁ(t) is the mass accumulation rate of a given cluster at time t, measured from

the moment of particle creation. By construction, the duration τdur cannot exceed

the maximum formation time τmax. If the mass accumulation history is a power-law,

Ṁ(t) ∝ tn, the relationship between τave and τmax can be estimated as τave = τmax
n+1
n+2

.

For example, a time-independent Ṁ gives τave = τmax/2. If Ṁ decreases over time, as

a result of self-feedback of newly formed stars, we expect τave < τmax/2. We discuss

the accumulation history of star clusters in Section 2.5.

2 For a gas cell with size Lcell ≈ 10 pc, Courant-Friedrichs-Lewy condition requires a timestep
smaller than ∆t < Lcell/vgas = 104yr (Lcell/10 pc) (vgas/1000 km/s)−1. Due to the discreteness of
the timestep refinement among various levels, the timestep at the highest level is even shorter if it
is passed from lower level cells with high velocity and high temperature. We find that the typical
timestep for our fiducial run is about 1000 yr.
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Figure 2.1: Gas density projection plots of the fiducial run centered on the main galaxy at
z ≈ 3.3. The physical sizes of box for the three panels, from left to right, are 400 kpc, 40
kpc, and 4 kpc, respectively.

2.2.2 Dynamical Disruption of Star Clusters

Above we described the detailed implementation of the creation and growth of

cluster particles. Another key ingredient, especially for the study of globular clusters,

is their subsequent dynamical evolution. Star clusters suffer tidal dissolution during

the early stage when they are located within the gaseous disk, and experience gradual

evaporation of stars after they escape to the galaxy halo. We create a new variable,

the bound fraction fbound, to represent the fraction of mass that is still bound to the

cluster particle at a given time, and update fbound based on the local tidal field as

well as the rate of internal evaporation (Gnedin et al., 2014). We assume that the

unbound part remains near the cluster, so that the overall stellar mass distribution

is unaffected by cluster disruption. Since this paper focuses mainly on the formation

process of young star clusters, we will not discuss here the details of calculating cluster

evolution, and leave this topic to a follow-up paper.

2.2.3 Stellar Feedback

The creation of cluster particles is followed by stellar feedback that returns mass,

momentum, and energy into the surrounding medium. The feedback process has been
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demonstrated to be crucial in maintaining steady star formation activity.

The sub-grid stellar feedback model used in our simulations is similar to that

described in Agertz et al. (2013). It includes the injection of thermal energy, momen-

tum, metals, and ionization radiation from supernova (SN) explosion, stellar winds,

stellar luminosity, and radiative pressure onto surrounding gas and dust. The SN

rate of a given cluster particle is calculated by assuming the Kroupa initial mass

function (Kroupa, 2001), and the injected energy and momentum are calibrated by

Padova stellar evolution models (see details in Agertz et al., 2013). An analytical

fit by Gnedin (2014) is used to account for the time evolution of the ionization ra-

diation from young stars. During the growth of active cluster particles, we use the

mass-weighted age as the age of the stellar population, which determines the amount

of feedback. We also include the SGS turbulence model that treats the unresolved

turbulent energy as a separate hydrodynamic field. This field is similar to the “feed-

back energy variable” in Agertz et al. (2013), but in addition to isotropic non-thermal

pressure support it includes anisotropic production of the SGS turbulence by cascade

from the resolved scales, turbulent diffusion and dissipation of turbulence over local

crossing time rather than fixed rate of decay assumed in Agertz et al. (2013) (see

details in Semenov et al., 2016; Schmidt et al., 2014).

The momentum exerted from stellar particles is distributed evenly to 26 nearest

neighbors surrounding the parent cell of the stellar particles. The feedback momen-

tum is added directly into the cell if it has the same direction with the momentum of

that cell. Otherwise, the feedback momentum is subtracted from the cell momentum

and the kinetic energy associated with the canceled momentum is converted to ther-

mal energy and added to the cell internal energy. When adding feedback energy or

momentum onto a given cell, we also check whether the temperature (or velocity) of

the cell is larger than T ceiling
fb = 108 K (or vceiling

fb = 5000 km s−1). To avoid creating

unrealistic hot and fast flow, feedback does not add to cells whose temperature or
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velocity has already reached the ceiling value.

Although the feedback model contains many physical ingredients from various

sources, it should be noted that the only adjustable parameter is the fraction of SN

energy that is converted into turbulent energy, fturb. In the fiducial run, we set

fturb = 10% and we vary this factor to 50% in TURB50 model to test the effect of

turbulence on our results.

2.3 Global properties of simulated galaxies

The simulations stall at low redshift because of the very short timestep. Our

fiducial run has reached z = 3.3 and most of the results about it are from that

snapshot. We use the ROCKSTAR halo finder (Behroozi et al., 2013c) to identify

halos and substructures in the whole simulation box, and construct halo merger trees

by the consistent-tree algorithm (Behroozi et al., 2013d).

Figure 2.1 shows the gas density projection plots of the main galaxy for the fiducial

run at z ≈ 3.3 in three different scales from 400 kpc to 4 kpc. The filamentary

structure that connects galaxies is clearly seen in the left panel. In the central panel,

the gaseous disk of the main galaxy is shown in a face-on view, with obvious spiral

patterns. There are also substructures orbiting the main galaxy, including significant

tidal streams. In the right panel, the simulation is zoomed in to 4 kpc, and the

discreteness of outer gas cells becomes visible. In the outer edge of the galaxy, the

density is low and the mesh is coarse, while at the center, the highest refinement level

is reached due to the high density.

We also find that gas fragmentation due to gravitational instability generates a

large number of dense clouds along the spiral arms. Massive star clusters are formed in

these clouds. Their radiation ionizes the gas nearby, and some fraction of the radiation

escapes the host galaxy and contributes to the extragalactic UV flux that reionized

the universe at high redshift (e.g., Gnedin, 2016). The high spatial resolution and
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three-dimensional radiative transfer implemented in our simulations make it possible

for us to study the escape of radiation from young clusters, and in particular, estimate

the escape fraction in the inner few hundred parsecs of the galaxy. Since the main

goal of this paper is to study the properties of star clusters, we present a preliminary

analysis of the escape fraction in Appendix.

Figure 2.2 shows the star formation histories (SFH) of the main progenitor for

different models, compared to the SFH of an average Mvir(z = 0) = 1012M� halo

derived from the abundance matching technique (Behroozi et al., 2013b). The star

formation rate is calculated from the cluster particles within the main galaxy at each

snapshot and smoothed over 50 Myr.

A similar feature of all SFHs is the general rise towards lower redshift, with pe-

riodic bursts of star formation. Two noticeable bursts at z ≈ 6 − 7 and z ≈ 4 − 5

coincide with two major-merger events that are identified from the merger trees. The

star formation rates reflect a particular mass assembly history encoded in the initial

conditions of our simulations, but also depend on the model parameters such as εff

and fturb. For example, the peaks of the bursts shift to later times with decreasing

εff and increasing fturb, and the fiducial run shows significant reduction of SFR after

the second burst.

It also appears that the feedback in our simulations is not strong enough to match

the average SFR predicted by Behroozi et al. (2013b). It could be due to the imple-

mentation of feedback processes, or the specific initial condition we chose for these

runs. As we described in Section 2.2.3, subgrid turbulence in our simulations de-

cays over the local crossing time. For strongly turbulent cells, this timescale can be

much shorter than 10 Myr, a constant dissipation time that was assumed in Agertz &

Kravtsov (2015). As a result, the sub-grid turbulence decays faster in our model and

the turbulent pressure becomes insufficient to push the gas away from the cluster-

forming regions. Therefore, the dynamical effect of the sub-grid turbulence in our
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simulations is not as significant as that in Agertz & Kravtsov (2015). In addition,

even simulations with stronger feedback implementation, such as FIRE (Hopkins

et al., 2014), show a larger range of SFH variation than predicted by the abundance

matching. For example, their run m12q has higher SFR at high redshift due to a

particular choice of ”quiescent” initial conditions.

2.4 Cluster initial mass function

2.4.1 Power law vs. Schechter function

One of the most fundamental properties of young star clusters is the CIMF. Ob-

servations of nearby galaxies have found that CIMF follows the Schechter function

form: a power-law distribution with an exponential cutoff at Mcut (see Portegies

Zwart et al., 2010, and references therein):

dN

dM
∝M−α exp (−M/Mcut). (2.6)

The power-law index lies in a fairly narrow range α ≈ 1.8 − 2.2, gradually getting

steeper for less massive galaxies. The cutoff mass varies significantly more from galaxy

to galaxy and scales most strongly with the star formation rate of the host galaxy.

The typical value of Mcut for Milky Way-sized spiral galaxies is about 2×105M� (e.g.

Gieles et al., 2006), increasing to Mcut > 106M� for luminous interacting galaxies

(Bastian, 2008).

Figure 2.3 shows the model CIMF in the main galaxy for the fiducial run. The

CIMF exhibits the Schechter function-like shape with a power-law slope similar to

the observed. The normalization and cutoff mass vary with cosmic time, increasing

at least until z = 4. Both variations are correlated with the galaxy SFR. All of these

trends are consistent with the observations of young star clusters, which means our

implementation of cluster formation, at least in its general features, is realistic.
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To investigate the relation between SFR and the high mass end of the CIMF at

different epochs, we make bins of clusters formed within 50 Myr of each other. As this

interval is more than three times the longest cluster formation time, we can treat each

bin as a roughly independent measurement. For each bin, we estimate the average

SFR, maximum cluster mass Mmax, the best-fit power-law slope α, and cutoff mass

Mcut. The average value of the best-fit slope for all bins is α ≈ 1.8, similar to the

observed.

Figure 2.4 shows a strong correlation between the SFR and Mmax, as well as Mcut,

for bins with SFR > 1M�/yr. The best-fit power law relationship between SFR and

Mcut is:

Mcut ≈ 1.4× 104M�

(
SFR

1M�/yr

)1.6

, (2.7)

and the relationship between SFR and Mmax is:

Mmax ≈ 8.8× 104M�

(
SFR

1M�/yr

)1.4

. (2.8)

At SFR < 1M�/yr, the small samples of clusters may hinder accurate determination

of the mass function shape.

Theoretically, for samples drawn from a given mass function, the maximum mass

can be calculated by the integral equation: N(≥ Mmax) = 1. Comparing the esti-

mated Mmax with the actual value can help us validate or rule out specific functional

forms of dN/dM . The normalization of CIMF comes from the total mass of clusters

formed within our chosen time interval, which is simply Mtot = SFR× 50 Myr. Then

it is only the shape of CIMF that determines the maximum cluster mass.

For the case of a pure power-law, dN/dM ∝ M−α, with 1 < α < 2 and Mmin �

Mmax, simple integration gives Mmax ≈ 2−α
α−1

Mtot. From Figure 2.4, we can see that

this theoretical Mmax overestimates the actual maximum cluster mass in the simula-

tions by more than one order of magnitude.
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Alternatively, for the case of the Schechter function CIMF as described by Eq. (2.6),

the relationship between Mtot and Mmax is

Mtot =
Γ(2− α,Mmin/Mcut)− Γ(2− α,Mmax/Mcut)

Γ(1− α,Mmax/Mcut)
Mcut, (2.9)

where Γ(s, x) is the upper incomplete Gamma function. Taking α = 1.8, Mmin =

103M�, and the mean relation between SFR and Mcut from Eq. (2.7), the expected

Mmax can be obtained by solving Eq. (2.9) numerically. The result is shown by solid

black line in Figure 2.4. An approximate solution isMmax ≈Mcut ln (Mtot/Mcut/Γ(2− α)).

This value is much less sensitive to the total mass than the power-law CIMF, and is

closer to the cutoff mass.

It should be emphasized that the black line in Figure 2.4 is not the best-fit relation

between SFR and Mmax, but the expected Mmax calculated from the above procedure.

The similarity between this expected Mmax and the one obtained from the simulations

suggests that the Schechter function is an excellent representation of the CIMF in

our simulation, while a pure power-law distribution is ruled out.

2.4.2 Spatial variation

Another important aspect of CIMF is its spatial variation. Recently, Adamo et al.

(2015) examined the mass function of young star clusters in M83 using multiband

Hubble Space Telescope imaging data. They split the whole cluster sample into four

radial bins and found significant steepening of the CIMF in the outer bins, as well

as decrease in the maximum cluster mass. Both trends were related to the steady

decrease of the surface density of SFR with radius.

Following a similar procedure, we divide our main galaxy at z ≈ 3.3 by four

concentric circles so that each annulus contains the same number of star clusters with

age younger than 100 Myr. The CIMF of each bin is shown in Figure 2.5. The
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mass function no longer has a universal shape, but presents a spectrum of power-

laws with various slope: the inner bins (R < 100 pc) have α < 2, while the outer

bins (R > 100 pc) have α > 2, in the mass range 104 − 106M�. The trend of the

CIMF steepening with galactocentric distance is consistent with the spatial variation

of CIMF in M83. Moreover, the maximum mass of clusters in the inner bins is much

higher than that in the outer ones. The SFR density for the four bins from inner to

outer ones is 460, 14, 0.06, and 0.02 M� yr−1 kpc−2, respectively. It is clear that the

gradient of CIMF correlates with the local SFR density. It is a local manifestation of

the same global trend shown in Figure 2.4.

2.4.3 Dependence on models of star formation and feedback

We now explore the variation of CIMF under different model parameters. In

Figure 2.6, we show the CIMF of all models in the main galaxy at the same epoch.

It is a higher redshift (z ≈ 5.3) than previous plots for the fiducial model (z ≈ 3.3)

because the other runs did not advance as far in time, for reasons of computational

efficiency.

Models SFE20 and TURBSF present similar CIMF to the fiducial run, indicating

that our cluster formation prescription is not sensitive to model parameters when they

are in a reasonable range. In detail, the slope at M < 105M� steepens somewhat

with increasing εff and, for the one model we explored (TURB50), with increasing

fturb. In all these cases the range of α is consistent with observations of different

nearby galaxies. At high cluster masses the models converge even closer.

The only exception is Model SFE100, with 100% star formation efficiency per

free-fall time, which has a dramatically different CIMF. It deviates from a power-

law distribution at low mass, and has the truncation mass that is much lower than

the other runs. Although the inability to create massive clusters with a very high

star formation efficiency seems counter-intuitive, it reflects the complex nature of the
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interplay between star formation and feedback: very high star formation efficiency

leads to an early starburst; stellar feedback from this burst is strong enough to destroy

molecular gas and expel material from the star-forming region; in a short time, the

cluster growth is terminated and the final cluster mass is determined only by the

first starburst episode. This scenario is confirmed by the analysis of cluster formation

timescales in Section 2.5.

The differences between the low-SFE (TURBSF, TURBSF2) and high-SFE runs

(SFE10, SFE20, TURB50) are reinforced at later times. These five runs have the last

common output epoch at z ≈ 4.3. The high-SFE runs have a slightly steeper slope

α > 2 at M > 104M�, which gradually turns over at lower cluster mass and reaches

α = 2 at M ≈ 103M�. The low-SFE runs show the turnover of the slope to α < 2

already at M ∼ 105M�. Lower SFE and weaker feedback runs also reach larger

maximum cluster mass, up to a factor of two. These differences are consistent with

the overall trend that more extended star formation events lead to larger eventual

cluster mass.

2.4.4 Dependence on galaxy mergers

To investigate the environmental dependence of CIMF, we plot in Figure 2.7 the

relationship between the star formation history of the main galaxy and the major

merger events of its host halo. The SFR is split in two parts, contributed by low-

mass and high-mass clusters. The merger ratio is defined as the differential increase

of the main halo mass between adjacent snapshots: Rm ≡ (Mh,i −Mh,i−1)/Mh,i−1,

where Mh,i is the mass of the main halo in the ith snapshot. The progenitor and

descendant information of the main halo is extracted from the merger tree calcu-

lated by ROCKSTAR. Only mergers with Rm > 0.3 are shown in the Figure, and

the durations of the two merger events are determined by visual inspection of the

dark matter density distribution across several snapshots. Quantitatively, we set the
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starting point of a merger as the time when the host-satellite separation becomes less

than ∼ 30 kpc, following Behroozi et al. (2015) who found systematic enhancement

of SFR for galaxy pairs with projected separation smaller than about 60 kpc, but not

at larger separations.

We can verify indeed that the last merger with mass ratio Rm = 0.6 at z ≈ 4− 5

triggers starbursts with SFR peaks around 30M� yr−1, and creates a large fraction

of massive clusters. There are several distinct bursts, at least 5, in the time interval

of about 400 Myr that it takes to complete the merger. They are likely associated

with two orbital passages of the merging galaxies and gravitational instabilities in the

new combined gaseous disk. The first merger at early times (z ≈ 7) does not produce

many massive clusters, as the galaxies are still too small to contain sufficient amount

of cold gas. Some massive clusters also form in the quiescent period following the

last merger, when the galactic disk still holds large gas reservoir, and so the merger

activity and associated potential perturbations are not unique requirements to create

massive clusters. Still, our results show that the rate of cluster formation is enhanced

during the periods of gas-rich major mergers.

To investigate possible differences in the shape of CIMF during major mergers

versus quiescent periods, we split the model clusters into merger-generated (tcreation =

1250 − 1400 Myr) vs. non-merger-generated (tcreation = 900 − 1200 Myr) groups.

Figure 2.8 shows that the cluster mass distribution has higher cutoff mass during

the major merger event. This can be understood using the empirical SFR −Mcut

relation described by Eq. (2.7): Mcut ∝ SFR1.6. In the non-merger case, the typical

SFR is about 5M� yr−1 and the corresponding cutoff mass is 1.8× 105M�, whereas

in the merger case, Mcut = 1.7× 106M� for SFR = 20M� yr−1. The ratio of the two

cutoff masses is almost exactly (20/5)1.6. Physically, this trend is consistent with the

picture of the formation of massive star clusters in high-pressure environment that is

produced by major mergers (e.g., Muratov & Gnedin, 2010; Kruijssen, 2014; Renaud
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et al., 2015).

2.4.5 Dependence on density of star formation rate

Analytical models of cluster formation predict that the fraction of clustered star

formation increases with the intensity of star formation; specifically, with the SFR

per unit area, ΣSFR, not just the total SFR in a given galaxy. In order to investigate

the relationship between SFR density and the cluster fraction, Γ, we need to define Γ

in the simulation analogously to how it is measured in observations. This is hard to

do, because we represent all stellar distribution as clusters of various mass, whereas in

observations clusters are typically determined using group-finding algorithms applied

to continuous stellar maps. As a proxy for Γ we choose the fraction of all star

formation contained in clusters more massive than a given mass Mcl:

Γsim ≡
SFR(M > Mcl)

SFR
. (2.10)

It is not the same quantity as the observed Γ, and therefore, comparison between the

two should be treated with caution. Our goal is to study the trend of Γsim with ΣSFR,

and only loosely related it to the observed range of Γ.

We split the main and satellite galaxies into concentric circular bins, as we did to

study the spatial variation of CIMF in Section 2.4.2. We calculate ΣSFR by dividing

the SFR by the area of the annulus. We calculate the SFR by counting all cluster

particles in a given annulus with ages between 15 to 50 Myr and use Mcl = 104M�.

This is a compromise value for the different choices used in the studies of star clusters

in M83 (roughly M > 103M�) by Adamo et al. (2015) and seven other nearby galaxies

(roughly M > 104.7M�) by Goddard et al. (2010). Including the cluster disruption

would not affect our calculation, as the mass loss over only 50 Myr is expected to be

minimal for all clusters more massive than 103M�.
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Figure 2.9 shows the relationship between the SFR surface density and Γsim for

the fiducial run at z ≈ 3.3. The trend that higher ΣSFR leads to higher Γsim is

reproduced in our model over a large range of ΣSFR from 10−3 to 103M� yr−1 kpc−2.

To test the robustness of this result, we vary Mcl from 5×103M� to 105M� and find

that, although the absolute value of Γsim changes with Mcl, the positive correlation

remains. We also find that, for the same galaxy, both ΣSFR and Γsim are higher in the

inner annuli than in the outer ones. This is consistent with the spatial variation of

CIMF, as we discussed in Section 2.4.2. The shallower slope and higher cutoff mass

of CIMF in the inner annuli naturally lead to higher cluster fraction.

2.5 Cluster formation timescale

Observations of star-forming regions in the Galaxy suggest that cluster formation

process is quick (Lada & Lada, 2003; Mac Low & Klessen, 2004). Hartmann et al.

(2012) compile age information of young stars in the Orion Nebula Cluster and find

the age spread as short as only a few Myr. Such a narrow spread presents an additional

test of the implementation of cluster formation and feedback.

We investigate the formation timescale and mass accretion history of model clus-

ters by analyzing the distribution of two characteristic timescales, τdur and τave, de-

fined by Eq. (2.5) in Section 2.2.1. The first is the full duration of the cluster forma-

tion episode, from the first star to the last. The second timescale is weighted by star

formation rate and more closely corresponds to the observed age spread.

Figure 2.10 shows the cumulative probability distribution of τdur and τave of all

cluster particles in the main galaxy for all models at the last common epoch, z ≈ 5.3.

As can be seen from the left panel, more than half of the cluster particles stop accretion

completely within 10 Myr for models SFE10, SFE20, SFE100, and TURB50. For

model SFE100, majority of the cluster particles become inactive within only 2 Myr.

This is because feedback from active cluster particles heats up and removes the gas

48



from their natal GMCs and changes the cell properties so that one or more star

formation criteria are violated. For two turbulence-based star formation efficiency

models, TURBSF and TURBSF2, star clusters are not able to completely shut down

accretion within the maximum allowed time τmax = 15 Myr, because there is no

density threshold that is assigned to turn off star formation. So, even if the feedback

from a cluster particle has already blown out majority of the nearby molecular gas,

there is still a trickle of mass that can be added to the cluster particle.

A more useful estimate of the formation timescale is the mass-weighted value, τave,

which contains information on the mass accretion history of an individual cluster.

The right panel of Figure 2.10 shows that the timescales of TURBSF and TURBSF2

models are much shorter, and more than 50% of the cluster particles assemble their

masses within 5 Myr. For the fiducial run, most of the cluster particles have τave

smaller than 4 Myr, consistent with observations.

An important feature, illustrated by the plot, is a systematic dependence of the

cluster formation timescale on the star formation efficiency and strength of stellar

feedback. It is clear in both panels that, the higher εff the faster the clusters are

formed. Therefore, comparison of the formation timescale of model clusters with the

observed age spread of young star clusters would provide additional constraints on

the local efficiency of star formation and feedback schemes.

Although it is impractical to store mass increments of all cluster particles at

every local timestep, ∼ 103 yr, we randomly select 10% of active clusters at the last

epoch and output their mass growth history M(t). The goal is to check whether

the conclusions drawn from the distributions of τdur and τave are consistent with this

detailed output. We normalize the mass evolution of each cluster by its final mass

Mfinal, split τmax into 100 intervals of equal duration, and calculate the 25th and 75th

percentiles of M(t)/Mfinal at each interval. These quartile ranges for models SFE10,

SFE100, and TURBSF, are shown in Figure 2.11. We find that most of the clusters
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reach their maximum mass within 15 Myr. Especially, in SFE100 runs, clusters

finish accretion in only 3 Myr. This is consistent with the distribution of τdur in the

left panel of Figure 2.10, and suggests that feedback from young stars extinguishes

star formation effectively. We also find decreasing cluster formation timescale with

increasing star formation efficiency, which is again consistent with the conclusion

drawn from the distribution of τave.

For all three models, the mass histories correspond to either constant or decreasing

growth rate. None of them shows a linearly increasing rate, Ṁ ∝ t, as suggested

by Murray & Chang (2015) for the collapse of a self-gravitating cloud. This is likely

because stellar feedback slows down gas accretion as the mass of the cluster increases.

The overall shape of the mass history distribution appears to be linear for the most

part, with a slower-increasing tail over the last few Myr. We can quantitative assess

how close Ṁ is to a constant. If the growth rate of each cluster in a given run was

truly linear, Ṁ = const, then it would reach its final mass in a time tfinal = Mfinal/Ṁ .

The median time for the whole sample, tmed
final, would then be equivalent to the median

duration timescale τdur (because of linearity of M(t)), which in turn would be twice

the mass-weighted timescale: τdur = 2τave. The median mass accumulated within

τave would be half of the final mass. The values of tmed
final or τave would differ from

model to model, according to the trend with star formation efficiency and feedback.

Figure 2.11 demonstrates that the actual median mass M(τave) is not exactly half of

Mfinal, but is not too different from it, for the three models shown. Thus, clusters

spend most of their formation period accreting at a steady rate.

From the large variation of the cluster formation history shown in Figure 2.11,

we conclude that different clusters have dramatically different growth history during

their active period. This reflects the intrinsic variation of the physical conditions in

different star-forming regions, as well as the complex interplay between gas accretion

and stellar feedback. This variation is also reflected in the large scatter of the resulting
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star formation efficiency, as we will discuss in Section 2.6.5.

2.6 Discussion

2.6.1 Comparison with other implementations of star formation

Most cosmological simulations model star formation in a way that is similar to

Katz (1992): a fraction of cold and dense gas is converted to star particles with

a constant efficiency. Some simulations adopt a fixed star particle mass and create

particles with a Poisson random process at each timestep, while others use a relatively

long sampling timescale (typically several Myr) and create star particles with varying

masses. One of the few alternatives, Cen & Ostriker (1992) grow star particles over

the galaxy dynamical time, according to a priori chosen star formation law. Moreover,

in all of the above methods, star particle masses are determined before their feedback

processes begin to influence the ambient environment. In contrast, in our model,

cluster particles grow their mass continuously at each local timestep until their own

feedback terminates the star formation episode. The mass accumulation history is

resolved by a large number of timesteps, and the final particle mass is obtained self-

consistently so that it can be considered a good proxy to the mass of a given cluster

formation region.

In contrast to full galactic simulations, small-scale simulations of star and planet

formation create collisionless sink particles that accrete matter over time. This ap-

proach has been used both in SPH (e.g. Bate et al., 1995) and grid codes (Krumholz

et al., 2004; Federrath et al., 2010). Sink particles are created in local density peaks

if the gas is Jeans-unstable and gravitationally bound. The particles continue to ac-

crete gas as long as these criteria are satisfied, which leads to a significant fraction

of all gas in the simulation box to be converted into stars. Such simulations model

small gas clouds, typically under 103M�, which do not produce many massive stars.
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Therefore, even when feedback is included, it does not drive strong outflows that

would terminate a star formation episode. In this regard, our simulations differ as

they model continuous inflow of gas onto large clouds, which generate many massive

stars with stronger feedback.

Also, the sink particle approach usually requires that the accretion region be

resolved by many cells, in order to determine the flow convergence and mass increment

at each timestep. In a cosmological simulation, however, resolving cluster-forming

regions requires a sub-parsec cell size, which is still computationally challenging.

Instead, stellar particles in our model grow over a period of time, parametrized by εff

and based on observations of individual GMCs on scales comparable to our spatial

resolution (Krumholz et al., 2012).

2.6.2 On the shape of CIMF

In Section 2.4, we examined the model CIMF in different galaxies at various epochs

and found that it can be well described by the Schechter function. The cutoff at high

mass is related to the overall amount of cold dense gas available for star formation

and therefore depends on the environment and evolutionary stage of the host galaxy.

The power-law slope at low mass is much more stable, with only a limited range of

variation between α ≈ 1.8− 2.0. It is encouraging that this range is consistent with

observations of young star clusters. We can now investigate the physical origin of

this CIMF slope within our model, and the connection between the cluster mass and

physical properties of the ISM.

We calculate the molecular gas mass within each cluster-forming sphere by sum-

ming over the contributions of the central cell as well as the 26 neighbors: Msp =

Σfsp,iVifH2,iρgas,i. We also estimate the mass function of individual gas cells to com-

pare it with the distribution of Msp. Since all clusters in our model accrete gas from

spheres of fixed volume Vsp = πD3
GMC/6, to make a fair comparison, we rescale the
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total (or molecular) cell mass to match the same volume: ρgasVsp (or fH2ρgasVsp).

Figure 2.12 shows that the distribution of the rescaled total and molecular cell

mass exhibits a steep slope at low masses, α > 3. In contrast, the mass function of

Msp has a slope closer to that of the CIMF. This implies that our method in which

the sphere encloses gas cells with various density is a more realistic way of modeling

star cluster formation, than using simply the properties of the central cell.

However, the power-law slope of the mass function of Msp is still steeper than

α = 2 and the maximum sphere mass is only ∼ 2 × 106M�, several times smaller

than the most massive model clusters. This discrepancy may stem from the fact that

the instantaneous mass of the cluster-forming sphere does not contain the information

of the evolving accretion rate due to feedback.

In order to connect the mass function of the spheres and CIMF, we present a

simple cluster formation model by assuming a power-law mass accumulation history:

Ṁ(t) = Ṁ0 (t/t0)m, where t0 is the time over which a cluster maintains the initial

growth rate Ṁ0 = εffMsp/τff . The expected cluster mass in this model is:

M =

∫ τmax

0

Ṁ(t) dt =
8εff G

1/2

πD
3/2
GMC

τm+1
max

(m+ 1) tm0
M3/2

sp . (2.11)

The value of the index m does not affect the scaling with the initial sphere mass or

density. Instead, the scaling M ∝M
3/2
sp reflects the dependence of the star formation

rate on the free-fall time.

In Figure 2.11, we find that the median cluster formation history in the SFE10

run is generally described by a decreasing growth rate, roughly as Ṁ ∝ t−0.5. We

estimate the distribution of the expected cluster mass from the mass function of Msp

using Eq. (2.11), with m = −0.5, εff = 0.1, DGMC = 10 pc, t0 = 1 Myr, and τmax = 15

Myr. Other choices of the index m would only slightly affect the normalization of

the mass function, but not its slope. We find that the slope of the expected cluster
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mass function (α ≈ 1.9) is very similar to that of the CIMF. Also the maximum

expected mass can reach as high as 107M�, similar to the maximum cluster mass in

the simulations. This consistency indicates that the origin of CIMF is a combination

of the mass function of GMCs and the accretion history within the cluster-forming

regions.

In the expected cluster mass function, the power-law shape extends to very high

mass and there exists no clear cutoff as seen in the CIMF. The high mass cutoff in the

simulation may be caused by strong feedback from the most massive cluster particles.

This feedback may result in more variation of the growth history than assumed in

our simple estimate.

2.6.3 On the similarities and differences with the constant-density-threshold

model

Kravtsov & Gnedin (2005) proposed a different scheme for forming massive star

clusters, using post-processing of cosmological simulations. Those simulations were

run with an earlier version of the ART code, with a traditional star formation recipe

and a relative low threshold density for creating stellar particles. Even though the

spatial resolution was 9 times lower than in our present simulations, it was sufficient

to resolve the structure of largest gas clouds within a galactic disk at the same epoch,

z ≈ 3.3. The pressure within the clouds was dominated by turbulent motions, with

an approximately flat velocity dispersion profile. This means that although the clouds

were not strictly isothermal because the thermal pressure was negligible compared to

the turbulence, they still had roughly ρ(r) ∝ r−2 density profiles. Adopting these

profiles for the unresolved inner structure of the clouds, Kravtsov & Gnedin (2005)

suggested that the central regions above a particular very high density could be

forming massive star clusters. In order to produce a gravitationally bound cluster,

the fraction of the dense gas turning into stars had to be above 50% (and was taken
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to be 60%); the rest of the gas is likely to be quickly blown out of the region by

the winds and radiation of the young stars. The remaining stars would expand to a

new hydrostatic equilibrium, and the final half-mass radius of the cluster Rh could

be estimated as the size of the region above the threshold density, corrected for the

expansion. The value for the high density threshold (ρCSF = 104M� pc−3) was taken

such that after the expansion, the final half-mass density would match the median

observed density of Galactic globular clusters (≈ 3×103M� pc−3). In that sense, the

model had no free adjustable parameters.

Analysis of several outputs of that simulation showed a consistent shape of CIMF,

similar to a power law with α ≈ 2, and also a sharper cutoff at high mass. An equally

good fit was provided by a log-normal function.

What is similar and what is different in that model and our new model? In terms

of technical execution, the old model was simpler, implemented on a few discrete

outputs rather than in run-time, and based on a less sophisticated simulation. These

differences aside, below we focus on the analysis of the results of the two models, as

they relate to the origin of CIMF.

In the old model, the constant density threshold implies that the average density,

M/R3
h, is the same for all model clusters. The half-mass radius is set by the condition

ρ(Rh) = ρCSF = const, or ρcell(Lcell/Rh)
2 = const, which means it scales as Rh ∝ ρ

1/2
cell,

and the cluster mass scales as M ∝ ρ
3/2
cell. In the new model, the cluster mass scales

with cell density in exactly the same way, M ∝ ρ3/2, but for a different reason

– because of the dependence of the SFR on the free-fall time. Of course, the time

evolution of the cluster accretion rate in the continuous model can modify this scaling,

but the overall dependence on cell density should still be similar in the two models.

Thus, if the distribution of cloud density was the same in both simulations, the two

models would result in the same CIMF.

At the highest densities in the old simulation, the probability distribution function
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could be fit by a single power law, dN/d log ρ ∝ ρ−n, with n ≈ 1.4. Given the scaling

of cluster mass on density described above, this results in the CIMF obeying a power

law dN/d logM ∝M−1−2n/3. The value of the slope α = 1 + 2n/3 ≈ 2.

In the new simulations the slope of the density PDF is steeper and changes,

as shown by Figure 2.12, from n ≈ 3.3 for ρ ∼ 103mp cm−3 to n ≈ 2 for ρ >

104mp cm−3. The ART code now incorporates substantially revised physics of gas

heating and cooling and includes transfer of ionizing radiation through the ISM.

Thus the differences in the density PDF are not surprising. Applying the old model

to the new simulations would result in a steeper CIMF (α ≈ 2.3 − 3.2). This again

emphasizes the need for a continuous model of cluster accretion that we developed in

this paper.

The advantage of the Kravtsov & Gnedin (2005) model was the ability to estimate

cluster size, in addition to mass. In our new simulations we can only set an upper limit

on the cluster size being smaller than the radius of the sphere, DGMC/2. With this

limit, we can estimate the lower limit on the average cluster density in our continuous

model,

ρav =
M

4π/3 (DGMC/2)3
∝ ρ3/2,

and compare it with the central cell density. Calculating all the coefficients results in

ρav

ρ
≈ 0.48

( εff
0.1

)( τmax t0

15 Myr2

)(
ρ

103mp cm−3

)1/2

.

At low densities, this estimated ρav can be lower than the cell density, because the local

efficiency of star formation εff is low and only fraction of the gas is being converted into

stars. Conversely, at densities above ρ ∼ 4×103mp cm−3, the cluster accretes enough

material to compensate for low εff and becomes dense than the initial cloud. Note

that the actual half-mass density may be a factor of few higher than our estimate,

because of additional dissipation on sub-grid scales during cluster formation.
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2.6.4 On the high mass end of CIMF

Although various observations of young massive clusters in nearby galaxies suggest

a roughly power-law mass function, it is still debated whether there exists a high mass

cutoff in the CIMF and whether the cutoff mass is environment-dependent.Larsen

(2002) found a correlation between SFR and the V-band magnitude of the bright-

est clusters and suggested that cluster formation is a stochastic process in which the

maximum cluster luminosity can be explained by statistical sampling from a universal

CIMF, the so-called “size-of-the-sample” effect. Other observations in various envi-

ronments suggest that the variation of the high mass end of the CIMF may reflect

different physical condition of their host galaxies (e.g. Bastian, 2008; Goddard et al.,

2010; Adamo et al., 2015). More recently, Sun et al. (2016) analyzed the cluster

mass-galactocentric distance relation in four galaxies and concluded that, at least

statistically, it is hard to rule out the environment-independent cluster formation

scenario.

In our simulations, we have a large number of cluster samples formed at different

epochs in different galaxies. Therefore, we can study the influence of environment on

the model CIMF. First, we find a strong correlation between the fraction of massive

clusters Γsim and the SFR surface density, ΣSFR, shown in Figure 2.9. If the shape

of the CIMF does not change with environment and the most massive clusters are

formed merely due to the “size-of-the-sample” effect, average Γsim will be constant

for different SFR and have larger scatter for lower SFR cases. However, the apparent

positive correlation between Γsim and ΣSFR suggests that massive clusters are prefer-

entially formed in starbursts. This in turn implies an environment-dependent cluster

formation process and disfavors the stochastic scenario. Second, there exists a positive

correlation between the cutoff mass Mcut and SFR of the host galaxy, which directly

reveals environmental dependency of CIMF. The maximum cluster mass would be

largely overestimated by assuming a pure power-law CIMF, but it is in agreement
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with the predicted value when assuming a Schechter function with Mcut that is in-

ferred from the empirical Mcut-SFR relation. All these results validate a Schechter

function fit with the environment-dependent cutoff mass as best description of CIMF.

2.6.5 On the variation of star formation efficiency

Recent observations of star-forming complexes suggest that the star formation

efficiency on GMC scales varies significantly over 2-3 orders of magnitude (e.g. Lada

et al., 2010; Murray, 2011; Evans et al., 2014; Vutisalchavakul et al., 2016). Such a

large scatter may come from either the variation in cloud properties (e.g. Krumholz

& McKee, 2005; Padoan & Nordlund, 2011; Federrath & Klessen, 2012; Hennebelle &

Chabrier, 2013), or the time-evolution of self-gravitating clouds (Feldmann & Gnedin,

2011; Lee et al., 2015), or both. Realistic modeling of star formation in galaxy

formation simulations should be able to reproduce this range of variation. Here we

examine how the differences in the formation history of each model cluster affect the

value of the efficiency that would be inferred for it at the time it begins star formation.

We define the integral efficiency εint such that the final cluster mass, M , can

be obtained by a constant growth rate εintMsp,0/τff,0 over the mass-weighted cluster

formation timescale τave:

εint ≡
M/τave

Msp,0/τff,0

. (2.12)

Here Msp,0 is the initial mass of the cluster-forming sphere, and τff,0 is the free-fall

time when the cluster particle is created.

Figure 2.13 shows the distribution of εint, normalized by the intrinsic star formation

efficiency εff , for both fixed εff and turbulence-based εff runs. A mass-weighted average

εff ≈ 1.4% is used for TURBSF run. The median values of εint/εff for all models are

smaller than unity. This is possibly due to the outflows from the cluster-forming

region caused by stellar feedback, which reduce the amount of gas available for star

formation. More importantly, we find a large variation of εint around the median.
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For the fixed εff runs (SFE10, SFE20, SFE100), εint varies over more than 2 orders

of magnitude. This variation is a natural consequence of the evolution of properties

of cluster-forming spheres caused by the continuous gas accretion, cluster formation,

and stellar feedback. The variation is even larger in TURBSF run, where εff is re-

evaluated at each timestep during the cluster formation period. Although we cannot

compare distributions of efficiencies in our simulations and observations directly, the

large variation shown by the models in Figure 2.13 is in good qualitative agreement

with observational estimates. This demonstrates that modeling continuous formation

of star cluster particles in galaxy formation simulations results in a more realistic

distribution of cluster masses.

2.6.6 On the origin of globular clusters

Very massive star clusters, with M & 2×105M�, have lifetime comparable to the

age of the Universe (e.g., Muratov & Gnedin, 2010). Therefore, they can be considered

as progenitors of present-day globular clusters (GCs). Studying the formation of

these clusters at high redshift gives us an opportunity to investigate the origin of GC

populations. For example, Ashman & Zepf (1992) proposed a model of GC formation

in the gas-rich major mergers. Muratov & Gnedin (2010) and Li & Gnedin (2014)

incorporated this scenario in the semi-analytical model to study GC properties in the

Milky Way and the Virgo Cluster galaxies, and successfully reproduced the multi-

modal metallicity distributions of their GC systems.

Following the idea that cluster formation is a strong environment-dependent pro-

cess, there are two requirements for the formation of massive clusters. First, the CIMF

needs to have a high cutoff mass so that the probability of sampling massive clusters

is not too low. For instance, in order to obtain Mcut = 106M�, the corresponding

SFR needs to reach as high as 14M� yr−1, based on Eq. (2.7). The SFR of this

level is hard to achieve during the quiescent evolutionary stage of a Milky Way-sized
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galaxy, but it can be reached when the galaxy experiences major mergers. Second,

to form such massive clusters, the host galaxy needs to have a large reservoir of cold

gas. Indeed, as we can see from Section 2.4.4, massive clusters in our simulations are

preferentially formed during the gas-rich major merger events.

Another possible dynamical effect of major mergers on GC formation is that the

merger kicks massive clusters out of their birthplace in the galactic disk with high gas

and stellar density, and places them into the halo where the tidal field is weak. This

process helps to protect the newly formed clusters from being quickly destroyed by

the intense tidal field of the disk. Such a two-stage formation and evolution scenario

(Kravtsov & Gnedin, 2005; Kruijssen, 2015) can be tested in our model by analyzing

the evolution of cluster bound fraction, as discussed in Section 2.2.2. In a follow-up

paper we will investigate the transition from young massive clusters at high redshift

to the GCs that we observe in the local Universe.

2.7 Summary

We introduced a new star formation implementation, in which star cluster is

considered a unit of star formation and cluster particles accumulate mass from a

fixed sphere similar in size to GMC clumps. The mass growth of a given particle is

terminated by its own feedback, so that its final mass is obtained self-consistently

and represents the actual mass of a newly formed star cluster within the GMC. We

implemented this cluster formation model in the ART code, and performed several

high-resolution cosmological simulations of a Milky Way-sized galaxy under different

model parameters. We analyzed the properties of young massive clusters in the

simulated galaxies at high redshift (z > 3) and the main results are summarized

below.

• The CIMF is best described by a Schechter function, with a power-law slope
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α ≈ 1.8, in agreement with observations of young massive clusters in nearby

galaxies. The shape of the CIMF is not sensitive to the model parameters,

except for model SFE100. The CIMF of SFE100, with 100% star formation

efficiency per free-fall time, has a cutoff mass that is much smaller than the

other models and is inconsistent with observations.

• We find a positive correlation between the SFR and the cutoff mass: Mcut ∝

SFR1.6. The maximum cluster mass also increases with the SFR, Mmax ∝

SFR1.4, consistent with the value expected for a Schechter-like CIMF. We also

find a tight correlation between the SFR surface density and the fraction of star

formation contained in massive star clusters. The maximum mass decreases

with distance from the galaxy center, as the SFR density decreases. All these

trends suggest that cluster formation is a local process that strongly depends

on the galactic environment. The scenario that clusters are formed solely by

stochastic sampling from a universal CIMF is ruled out.

• Maximum cluster mass in a given galaxy reaches 107M� when SFR> 10M� yr−1,

but falls below 106M� when SFR< 3 M� yr−1.

• Feedback from young stars extinguishes star formation in a GMC within 4 Myr,

consistent with the observed age spread of young star clusters. The cluster

formation timescale decreases systematically with increasing local efficiency of

star formation, εff , to a minimum of 0.5 Myr. This systematic trend indicates

that cluster formation is strongly influenced by its own feedback. The power-

law slope of the CIMF arises from a combination of the mass function of GMC

clumps and the feedback-regulated mass accretion history.

• We show that our cluster formation model leads to a large variation of the

integral star formation efficiency (Eq. 2.12) even when εff is kept constant.

The range of this variation spans about two orders of magnitude, similar to
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recent observations of star formation efficiency within GMCs. It is a natural

consequence of the evolution of gas density in star-forming regions, caused by

continuous gas infall, cluster formation, and stellar feedback.
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Figure 2.2: Simulated star formation history of the main galaxy, smoothed over 100 Myr
bins, for different models (see legend). The star formation history for a Mvir(z = 0) =
1012M� halo from the abundance matching technique (Behroozi et al., 2013b) is overplotted
by shaded regions. The dark and light regions show the one- and two-sigma confidence
intervals, respectively. Red horizontal bars show the epochs of two major-merger events
(with mass ratio larger than 0.3) that are identified from the merger trees of the main halo.
The span of the bar represents the duration of each merger, see Sec. 2.4.4 for detailed
description.
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Figure 2.3: Cluster initial mass function for different cluster age bins in the main galaxy
for the fiducial run. Cluster disruption is not included. A power-law distribution with slope
of 2 is plotted by a dashed line. The mass functions exhibit a stable shape across a large
range of cosmic time, and both the power-law slope and the high mass cutoff are consistent
with observed cluster samples in nearby galaxies.
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Figure 2.4: SFR vs. maximum cluster mass (Mmax) and cutoff mass (Mcut) for the fiducial
run. The SFR is averaged over 50 Myr and Mmax is chosen from the clusters found in
the same time interval. The initial mass function of clusters in each interval is fitted by
Eq. (2.6), and both the power-law slope and cutoff mass are obtained. The red solid
line shows the best-fit relation between Mcut and SFR for samples with SFR > 1M� yr−1.
The theoretical maximum masses for given SFRs for both pure power-law and Schechter
mass function are shown by dashed and solid black lines, respectively (See Section 2.4.1 for
detailed calculations). Note that the black solid line is not the best-fit between SFR and
Mmax, but the expected Mmax by assuming the Schechter CIMF with α = 1.8 and Mcut

that is estimated by the empirical Mcut-SFR relation (red line).
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Figure 2.5: Initial mass function of young clusters (¡100 Myr) in four radial bins of equal
cluster number, for the main galaxy in the fiducial run. The mass functions show clear
steepening from the inner annulus (blue line) to the outer ones as well as the decreasing
maximum cluster mass with radius.
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Figure 2.6: Cluster initial mass function of all seven models (see legend for color codes)
in the main galaxy at the same epoch (z ≈ 5.3). The grey shaded region around the black
line is the 95% confidence interval of the CIMF constructed by bootstrap resampling for
the SFE10 model (fiducial).
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Figure 2.7: Star formation history of the main galaxy split into massive (blue shaded;
M > 5× 104M�) and less massive clusters (gray shaded; M < 5× 104M�) for the fiducial
run. Instead of calculating SFR of the main galaxy at each snapshot as in Section 2.3, here
we calculate the formation history of all cluster particles located within the main galaxy at
the last snapshot. The SFR is smoothed over 15 Myr. Two major merger events with mass
ratio larger than 0.3 are labeled by red bars. The duration of merger is represented by the
horizontal length of the bar, while the merger mass ratio that is indicated by the vertical
position of the bar according to the scale on the right y-axis.
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Figure 2.8: Cluster initial mass function split by merger activity: the mass function during
major merger (black) and between mergers (red). Each band shows the standard deviation
of the mass functions around the mean value of models SFE10 SFE20, TURB50, TURBSF,
and TURBSF2.
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Figure 2.9: SFR density vs. fraction of young massive star clusters (M > 104M�) in both
main and satellite galaxies for the fiducial run at z ≈ 3.3. The red and blue points represent
the clusters in the main and the second largest galaxies, respectively. Black points show
the other satellite galaxies. Dashed line shows the empirical relation for the observed star
cluster populations in 7 nearby galaxies by Goddard et al. (2010), while the pink shaded
region shows the envelope that covers the data points compiled in Adamo et al. (2015).
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Figure 2.10: Cumulative distribution function of the cluster formation duration τdur (left
panel) and the mass-averaged cluster formation timescale τave (right panel). Different colors
correspond to the different models described in legend. The cluster samples are selected
within the main galaxy at z ≈ 5.3 for all models.

71



0 3 6 9 12 15

t (Myr)

0.0

0.2

0.4

0.6

0.8

1.0
M

(t
)/
M

fi
n
al
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Figure 2.11: The quartile (25-75 percentile) ranges of mass growth history for active clusters
in SFE10 (black), SFE100 (blue), and TURBSF (red) runs, respectively. Median mass-
averaged cluster formation timescales, τave, for each model are shown as vertical dashed
lines. If the mass growth of all clusters was exactly linear, Ṁ = const, these lines would
intersect the median mass track at M(τave)/Mfinal = 1/2. The actual points at which they
intersect vary from 0.29 to 0.67. A linearly increasing mass growth history, Ṁ ∝ t, predicted
by Murray & Chang (2015) for the collapse of self-gravitating turbulent cloud is overplotted
for comparison.
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Figure 2.12: Mass functions of gas cells (black), cluster-forming spheres (red), and star
clusters (blue) within the virial radius of the main galaxy at z ≈ 3.3. Dotted and dashed-
dotted black lines show the distribution of total and molecular gas mass in simulation cells,
rescaled to the volume of the cluster-forming sphere. Red dashed line is the mass function of
molecular gas within the spheres. Red solid line shows the expected distribution of cluster
mass from a simple growth model discussed in Section 2.6.2. Blue solid line shows CIMF
for all clusters younger than 100 Myr. We choose this longer time interval to accumulate
sufficient cluster number to characterize CIMF, but this means the normalization of CIMF
differs from the other displayed mass functions. The plot illustrates only the differences in
the shape of the mass functions. Dynamical disruption of clusters would also reduce the
normalization of CIMF. The best-fit slopes of all mass functions in the range 103− 105M�
are shown in the lower left corner with the corresponding line styles.
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Figure 2.13: Distribution of the integral star formation efficiency εint for four models with
different local efficiency εff . We show the ratio εint/εff to emphasize the spread of values
resulting from different accretion histories. Vertical lines represent the median and the
25-75 percentile range for each distribution.
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CHAPTER III

Effects of Star Formation Efficiency and Stellar

Feedback

3.1 Introduction

With the advance of observational discoveries, such as the anisotropy of the cosmic

microwave background (e.g. Komatsu et al., 2011; Planck Collaboration et al., 2016)

and the large-scale galaxy clustering (e.g. Geller & Huchra, 1989; Bond et al., 1996;

Gott et al., 2005), the Λ-Cold Dark Matter cosmology and hierarchical structure

formation framework have been widely accepted and served as the starting point of

theoretical investigations of galaxy formation. Among all theoretical methodologies,

numerical simulations have become the main tool to study the formation and evolution

of galaxies (see Somerville & Davé, 2015).

Built upon the first generation of N -body only simulations that explored the

growth of large-scale structure under gravity (Springel et al., 2005; Boylan-Kolchin

et al., 2009a; Stadel et al., 2009; Klypin et al., 2011), recent cosmological hydrody-

namical simulations with state-of-the-art suites of physical ingredients and numerical

techniques started to reproduce various stellar and gaseous properties of the observed

galaxies, such as the stellar mass-halo mass relation, the average star formation his-

tories (SFHs), and Kennicutt-Schmidt relations (KSRs), not only at z ≈ 0 but also at
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high redshifts (e.g. Agertz et al., 2013; Vogelsberger et al., 2014; Schaye et al., 2015;

Hopkins et al., 2014). This success is achieved partly with the accurate numerical

treatments of complex baryonic physics, such as gravity, gasdynamics, and radiative

heating and cooling, but largely due to novel implementations of sub-grid models that

describe the star formation and stellar feedback processes that cannot be spatially

or temporally resolved in these simulations (e.g. Katz, 1992; Cen & Ostriker, 1992;

Navarro & White, 1993; Katz et al., 1996; Springel & Hernquist, 2003a).

During the last two decades, great efforts have been made to explore the sources

and implementations of stellar feedback processes in cosmological simulations (Stinson

et al., 2006; Governato et al., 2007; Scannapieco et al., 2008; Agertz et al., 2011, 2013;

Guedes et al., 2011; Aumer et al., 2013; Booth et al., 2013; Ceverino et al., 2014; Keller

et al., 2014; Roškar et al., 2014). These works have demonstrated the important

role played by the energetic feedback to suppress star formation at high redshift

and launch galactic winds (e.g. Muratov et al., 2015). However, it is troublesome

that a surprisingly broad range of feedback models claims to match the same global

properties of galaxies by fine-tuning parameters of feedback prescriptions, reducing

the predictive power of galaxy formation modeling (Naab & Ostriker, 2016). Yet, it is

still unknown whether the implementations used in these simulations are appropriate

for capturing the physical properties of the interstellar medium (ISM) on smaller

scales. As the spatial resolution of current simulations is approaching the scales of

individual star-forming regions (e.g. Hopkins et al., 2014; Read et al., 2015; Wetzel

et al., 2016), it is critical to develop systematic methods to calibrate the sub-grid

models on a similar scale.

In Li et al. (2017, hereafter, Paper I) we have introduced a new prescription

for modeling star formation by considering star clusters as a unit of star formation,

following the general consensus that most stars form in cluster environments (Lada

& Lada, 2003). In this prescription, a cluster particle grows continuously through

76



gas accretion from its natal giant molecular cloud (GMC). The growth of a cluster

particle is resolved in time and is terminated by its own energy and momentum

feedback. Thus, the final particle mass is set self-consistently and can be considered

as the mass of a single star cluster formed within the GMC. Since the cluster growth

is determined by both the efficiency of star formation and the strength of stellar

feedback, comparing key properties of model clusters with observations provides us

with a unique opportunity to constrain these sub-grid models on scales of cluster-

forming regions, instead of the kpc scales.

Recent observations of star-forming regions in the Milky Way and other nearby

galaxies reveal a large number of cluster samples that contain the information about

their formation environment (Portegies Zwart et al., 2010). Star clusters follow a

well-defined initial mass function (CIMF) that can be described by the Schechter

function with a power-law slope of ∼ −2 and an exponential cutoff at high mass end.

Indeed, as we have shown in Paper I, the slope of the CIMF reflects the slope of the

density PDF of the star-forming gas, modulated by the feedback effects. Moreover,

the high mass cutoff is also related to the intensity of star formation activity of the

host galaxies (e.g. Larsen, 2002; Adamo et al., 2015; Johnson et al., 2016).

For a long time, it has been believed that the galaxy-wide low star formation

efficiency was caused by the delay of gravitational collapse by magnetic or turbulent

support (Krumholz & McKee, 2005; Krumholz & Tan, 2007). However, recent ob-

servations reveal a very short age spread of stars, a few Myr or a couple of free-fall

timescale, in many young star clusters (Mac Low & Klessen, 2004; Hartmann et al.,

2012; Hollyhead et al., 2015), suggesting that cluster formation is a rapid and dy-

namical process. The cluster formation timescale is determined by both the speed of

gas accretion and the intensity of stellar feedback, thus providing an additional test

of the star formation and feedback implementation in the simulations.

In this paper, we further revise and improve the cluster formation model. We
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describe the major updates to the model in Section 3.2, and present results from new

set of simulations in Section 3.3. We perform simulations with a wide range of the

sub-grid model parameters: local star formation efficiency and boost of supernova

momentum feedback. The CIMF, the fraction of star formation in bound clusters,

and the age spreads present new constraints on the sub-grid parameters, which we

discuss in Section 3.4. We summarize our results and conclusions in Section 3.5.

3.2 Simulations

3.2.1 Overview of cluster formation

The full description of the simulation setup is presented in Paper I. Here we first

briefly summarize the common aspects and then describe the improvements to the

model. Most of the simulations in this paper are new and have distinct features from

those discussed in Paper I.

The simulations are run with the Eulerian gasdynamics and N -body Adaptive

Refinement Tree (ART) code, which includes several key physical ingredients, such as

three-dimensional radiative transfer, non-equilibrium chemical network, phenomeno-

logical molecular hydrogen formation and destruction, and a subgrid-scale turbulence

model. We run the cosmological simulations from the initial condition that contains

a main halo with the total mass M200 ≈ 1012M� at z = 0, in a periodic box of 4

comoving Mpc in size. All simulations start on a 1283 root grid, which sets the dark

matter particle mass mDM = 1.05×106M�. High dynamic range of spatial resolution

is achieved by adaptive mesh refinement, where additional cell levels are added to the

root grid. We apply a Lagrangian refinement criteria for both dark matter and gas

components so that the mass of all gas cells varies only within a narrow range at all

times. In addition, we also adopt a Jeans refinement criterion with which cells larger

than twice the local Jeans length will be refined.
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In Paper I, we have developed a novel algorithm for the formation of star clusters

in cosmological simulations: continuous cluster formation (CCF). In CCF, each star

particle represents a single star cluster, formed at a local density peak of the molecular

gas. In order to avoid dependence on the time-variable physical size of a cell, Lcell,

the cluster particle is allowed to grow its mass via gas accretion within a spherical

region of fixed physical size. We interpret this sphere as the dense part of a GMC

that would form a bound stellar system in free-fall collapse. The optimal value of

the sphere size was investigated in Paper I, RGMC = 5 pc, which is similar to the

sizes of observed massive cluster-forming clouds (e.g. Urquhart et al., 2014). We will

henceforth refer to this star-forming sphere as the ”GMC”.

At the highest refinement level, the GMC sphere fully includes the peak-density

(”central”) cell and partially overlaps with its 26 neighbor cells from a 3× 3× 3 cube

configuration. Accessing more than these immediate neighbors is computationally

prohibitive in the ART code. The growth rate of a given cluster depends on the H2

density of the overlapping cells:

Ṁ =
∑
cell

fGMC Vcell ρ̇∗ =
εff
τff

∑
cell

fGMC Vcell fH2 ρgas, (3.1)

where Vcell is the volume of each neighbor cell, fGMC is the fraction of Vcell that

overlaps with the GMC, fH2 is the mass fraction of hydrogen in molecular phase, ρgas

is the total gas density, and εff is the star formation efficiency per free-fall time. The

free-fall time is defined as

τff ≡
(

32Gρ

3π

)−1/2

≈ 1.6 Myr
( nH

103 cm−3

)−1/2

, (3.2)

where nH is the total number density of hydrogen. The mass growth of the cluster

particle is calculated and added to the particle mass at each local timestep, typically

∆t ∼ 100 yr. The mass accumulation history of each cluster is thus temporally
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resolved with many thousands of steps.

Cluster formation is allowed only in cells above the number density nH,th =

103 cm−3. This is close to the observational estimate by Kainulainen et al. (2014)

of the H2 density threshold for star formation in nearby GMCs of ∼ 5 × 103 cm−3.

In addition, to avoid the creation of very small and numerous clusters, new particles

are created only if their expected final mass is above threshold Mth. The expected

mass is calculated as the initial rate Ṁ times the maximum allowed formation time,

τmax = 15 Myr. Since the actual duration of cluster formation is significantly shorter

in the new runs, we discuss and revise Mth in Section 3.2.2.4.

3.2.2 Improvements to Paper I methodology

3.2.2.1 Gas cell refinement

In Paper I, we employed quasi-Lagrangian refinement criteria, which keep the

mass of all cells (except for cells at the finest level) within a similar range. We

examined the influence of RGMC on CIMF by varying RGMC from 2.5 to 7.5 pc and

found that the physical size of the gas cells (Lcell) involved in star formation should

be comparable to the size of the GMC sphere. Therefore, we tune the refinement

strategy such that the physical size of gas cells at the finest refinement level remains

around RGMC = 5 pc. Initially, we allow 9 refinement levels on the 1283 root grid at

high redshift until z ≈ 9. As simulations run toward lower redshift, the 10th, 11th,

and 12th refinement levels are added at auni ≈ 0.1, 0.2, and 0.4, respectively. This

refinement method keeps Lcell of the finest level in the range between 3 and 6 pc at

all cosmic times of interest in this paper.

3.2.2.2 Redshift-independent star formation efficiency

The mass accretion rate of a cluster is given by Equation (3.1), which contains

parameter εff . However, the meaning of εff is quantitatively different from what
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is commonly used in galaxy formation simulations. In the traditional prescription,

stellar particles are given the mass calculated as the star formation rate density ρ̇∗

times the volume of the cell containing the particle. The cell size is fixed in comoving

coordinates but expands in proper physical coordinates, so that for the same gas

density (typically, near the threshold for star formation) the particle mass increases

with time. In contrast, in our model, each star cluster grows its mass over several

million years by accreting material within a cloud of fixed physical radius, RGMC.

Our εff is applied to a fixed volume and does not vary with cosmic time. This is an

important improvement.

We can connect our value of εff with that on the scale of a cell via the differences

in volume. Consider the case when the diameter of a GMC sphere is smaller than a

star-forming cell, and therefore the GMC is completely embedded in the cell. The

smaller volume allowed to participate in star formation translates into the smaller

efficiency for the whole cell:

εff,cell =
VGMC

Vcell

εff =
4π

3

(
RGMC

Lcell

)3

εff . (3.3)

For example, the seemingly high value εff = 50% in our CCF model is equivalent to

εff,cell ≈ 1% for a cell of 30 pc, a typical size for current highest-resolution cosmological

simulations.

We allow cluster formation at the three finest refinement levels, which is consistent

with our adopted star formation density threshold: ncrit = 103 cm−3. The average

number density of hydrogen plus helium atoms for cells at level l and redshift z in

our simulation box is:

n(z) ≈ 900 cm−3 × 8l−9

(
1 + z

3

)3

. (3.4)

We can see that at z = 2, cells at level 9 (the third finest level at that time) have
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the average density close to ncrit. Cells create new clusters as soon as they exceed

the density threshold, which usually happens already at the third finest level. The

physical cell size at that level is in the range Lcell = 12− 24 pc, which is larger than

2RGMC. Thus, the corresponding cell efficiency is εff,cell = (0.038− 0.30) εff .

This is an important point for the comparison with the low inferred efficiency per

free-fall time in Galactic star forming regions, εff ≈ 1% (Kennicutt, 1998; Krumholz

et al., 2012). In our model, clusters begin forming with a similar efficiency. As the

gas continues to collapse in free fall, the density increases and cells are refined to the

highest level. Then the effective εff,cell increases as well, in agreement with results of

Murray (2011). As in every numerical simulation, at the highest refinement level we

are not properly resolving gas collapse, and therefore underestimate the density and

overestimate the free-fall time. This numerical effect also requires adopting larger

value of εff to maintain the same ratio εff/τff .

3.2.2.3 Restriction on creation of new clusters near existing active clus-

ters

In Paper I, cluster particles were seeded in cold dense cells that contain local

density peaks. We follow the same procedure here, but with addition algorithmic

improvements.

As we discussed in Section 3.2.2.1, the physical size of gas cells at the finest

refinement level is always kept in the range of 3 − 6 pc. This means that clusters in

the smallest cells can accrete gas from all 27 cells that overlap with the GMC sphere

(see Figure 3.1). To be consistent with our interpretation that the peak-density cell

represents the star-forming part of a single GMC, the neighboring cells should not

produce new clusters that would compete for gas supply with an existing cluster.

Therefore, we prohibit a cell from creating a new particle if it already has an actively

growing cluster in a neighbor cell.
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Figure 3.1: Sketch of the star-forming GMC sphere laid out on the gas cell structure in
the simulations.

This restriction makes sense only for the finest refinement level cells. If cluster

particles are formed in coarser cells, which enclose a large fraction of volume of the

GMC sphere, then there is no competition with neighboring cells. In this case, we

allow new clusters to be created.

We also do not apply this restriction to the finest-level cells that are separated by

more than one cell size from the central cell. These are the diagonal cells in the cube.

Thus, the only cells that are prohibited from creating new clusters are the six ones,

“face-touching” the central cell.
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To describe the above criterion for cluster seeding more quantitatively, we define

an overlap fraction, fover, of the volume of a given “face-touching” neighbor that

is occupied by the central GMC sphere. If a given cell satisfies the star formation

criterion but has any “face-touching” neighbor with a significant overlap, fover > 20%,

that already contains an actively growing cluster, the above cell is not allowed to

create a new particle. If the overlap fraction is small, fover < 20%, we do not apply

this restriction.

All these checks are meant to minimize the impact of the neighbor restriction as

much as is reasonable. However, we show in Section 3.3 that it still has a significant

impact on the shape of the CIMF, relative to the results in Paper I.

3.2.2.4 No removal of low-mass clusters

In the Paper I algorithm, any inactive cluster particles less massive than threshold

mass Mth = 103M� were recycled to speed up the simulations. Recycling meant that

the material converted into stars was returned to the ISM and available for future

star formation. However, some amount of energy and momentum from the stars of

these failed clusters was deposited into the surrounding gas while the clusters were

forming and their final mass was unknown, and this feedback could not be undone.

That is, failed clusters produced some feedback that was not real. The contribution

of these low-mass clusters to the stellar mass budget and overall galaxy dynamics was

negligible, and therefore we can expect the impact of their feedback to be small.

With a stronger stellar feedback implementation described below in Section 3.2.2.8,

both the galaxy stellar mass and the number of cluster particles are significantly re-

duced. Therefore, the recycling of low-mass clusters is not needed. In the new runs

in this paper we have eliminated it.

We also boosted Mth from 103M� to 6 × 103M�, because the effective cluster

formation duration is much shorter than the maximum time τmax that is used to
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predict the mass of a cluster before its formation. Although the effective timescale for

individual clusters varies, we show in Section 3.3.7 that τave = 2.5 Myr is a good upper

limit for clusters less than ∼ 105M�. Therefore, the minimum formation rate Ṁmin =

103M�/15 Myr in Paper I produced clusters with typical mass ∼ Ṁmin × 2.5 Myr, a

factor of 6 below out intended threshold. With the new value Mth = 6× 103M� we

eliminate most of small clusters with final mass below 103M�.

3.2.2.5 No molecular fraction threshold for continuing cluster growth

In Paper I, we employed a threshold on molecular fraction of hydrogen so that

clusters could only form and grow in cells with high molecular fraction fH2 > 50%.

This meant that if the molecular fraction of a given cell fell below 50%, not only new

clusters were not allowed to form, but also an existing active cluster in the cell was

not allowed to continue to grow.

After detailed analysis of the growth history of individual cluster particles, we

found that this molecular fraction threshold leads to intermittent gas accretion for

some clusters, when fH2 oscillates around the threshold value. It also generates many

gap periods without any mass growth, especially for the most massive clusters. These

gaps affect the calculation and interpretation of the cluster formation timescales.

Indeed, we found that the long formation timescales of some massive clusters in Paper

I were not due to slow star formation but due to the cessation of star formation by

this molecular threshold.

Here we revise the implementation of molecular threshold by adopting it only

as the criterion of initial particle creation. Once a cluster is formed, its subsequent

accretion is no longer affected by the molecular fraction. Thus, active clusters can

continue to grow their mass at the rate that is proportional to the molecular fraction,

via Equation (3.1), until the gas density drops below the threshold ncrit = 103cm−3.
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3.2.2.6 Gap elimination

As we described above, imposing molecular fraction threshold to active clusters

can lead to gaps in their mass growth history. This is due to an artificial implemen-

tation of the threshold. Another reason for the existence of long accretion gaps is due

to the motion of clusters.

In high-density regions, such as the inner part of the galaxy, gravitational forces ac-

celerate particles to high velocities. For a velocity dispersion on the order of 20 km s−1,

during the active formation period, τmax = 15 Myr, clusters can travel up to 300 pc,

which is much larger than the cell size or the GMC size. This means that active

clusters can travel through and accrete gas from multiple GMCs, different from the

one in which they had originally formed. This is not physically correct because a

cluster should accrete gas only from one GMC, and each GMC should host a distinct

cluster. Moreover, when a cluster travels through low-density regions between dense

clouds, the accretion stops because the gas density falls below the threshold density

for star formation, thus creating artificial gaps in the mass growth history.

To eliminate accretion of a given cluster particle from multiple GMCs, in the

simulations presented in this paper we monitor the accretion process for each active

cluster. We deactivate a cluster even before it reaches the maximum time τmax if

we find that it completely stopped growing mass for more than 1 Myr. By design,

this procedure eliminates all gaps longer than 1 Myr, and systematically reduces the

cluster formation times even for most massive clusters, as we show in Section 3.3.7.

3.2.2.7 Mass loss rate due to stellar evolution

In Paper I, stellar particle with initial mass Mi lost mass due to stellar winds and

stellar evolution at the rate given by:

dM

dt
=

η

t+ τloss

Mi, (3.5)
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where η is the typical fraction of mass loss and τloss is the characteristic timescale,

both of which depend on the initial mass function of stars. For a Kroupa (2001) IMF,

we used η = 0.046 and τloss = 2.76 × 105 yr. The time-evolution of the cumulative

fraction of stellar mass loss is then obtained by integrating Equation (3.5) over time:

floss(t) =
Mloss

Mi

=

∫ t

0

η

t+ τloss

dt = η ln

(
t

τloss

+ 1

)
. (3.6)

Figure 3.2 shows this mass loss history, together with the results from a detailed

stellar population synthesis model FSPS1 for the same IMF (Conroy et al., 2009;

Conroy & Gunn, 2010). We find that the previous implementation overestimates the

mass loss rate over the whole stellar lifetime. The overestimation is more prominent

for younger stellar populations. For example, after 3 Myr, ∼ 10% of the stellar mass

is lost in Paper I, but less than 1% in FSPS modeling.

Here we introduce a new mass loss model that fits the time-evolution of the cu-

mulative fraction of mass loss in FSPS with a second-order polynomial. We write

floss(t) = ax2 + bx + c where x = log10(t/yr), and obtain the best-fit parameters:

a = −0.010, b = 0.288, and c = −1.42. The mass loss rate at a given age t is obtained

by differentiating floss(t) with respect to t:

dM

dt
=

(
b

ln 10
+

2a

ln2(10)
ln(t)

)
Mi

t
. (3.7)

Note that this expression works for stars in the age range from 2.75 Myr to 13.7 Gyr.

For ages younger than 2.75 Myr, we assume no appreciable mass loss.

3.2.2.8 Changes to stellar feedback

As in Paper I, the feedback sub-grid model consists of mass, momentum, and

energy injections from stellar winds, radiation pressure, and supernova explosions.

1Flexible Stellar Population Synthesis, https://github.com/cconroy20/fsps
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The main update in this paper is in the implementation of supernova remnant (SNR)

feedback. In the new SNR model, we estimate the partition of the thermal, ki-

netic, and turbulence energies of SNR using a parameterization model calibrated by

high-resolution hydrodynamic simulations in inhomogeneous turbulent medium by

Martizzi et al. (2015). The energy and momentum input from SNRs depend on the

ambient density and spatial resolution of the simulations, as described in detail in

Semenov et al. (2016).

One caveat of the SNR model is that it is calibrated by simulations of SN explosion

in isolation, rather than in a more complex star formation region. In reality, stars

are formed mainly in clusters and massive cluster-forming regions usually produce

a large number of massive stars that undergo supernova explosion over several Myr.

Gentry et al. (2017) found that such clustering of supernovae can enhance momentum

feedback by an order of magnitude relative to that delivered by an isolated supernova.

Therefore, in some of our simulations, we boost the strength of momentum feedback

of the SNR model in Martizzi et al. (2015) by a factor fboost =3, 5, or 10, as listed in

Table 3.1.

3.2.2.9 Initial bound fraction

In Paper I, we assumed that the whole accreted mass of cluster particles during

their active growth is gravitationally self-bound when the particles emerge from their

natal clouds. That is, the particle mass is the bound cluster mass. This assumption

does not take into account the complex dynamical evolution of star clusters in the

early phase, when the boundedness is affected by the hierarchical structure of the

ISM and gas expulsion due to stellar feedback. Recent observations and numerical

simulations of turbulent clouds suggest that the fraction of mass in a given star-

forming complex that remains bound after a few Myr depends strongly on the integral

star formation efficiency on the scale of GMCs (Goodwin, 1997; Geyer & Burkert,
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2001; Goodwin & Bastian, 2006; Smith et al., 2011; Kruijssen et al., 2012).

In this paper we introduce the initial bound fraction, fi, and assign it to each stellar

particle. We adopt a linear dependence of fi on the local star formation efficiency:

fi ≡ min

(
εint

εcore

, 1

)
(3.8)

where εcore = 0.5 is the correction factor for mass loss due to protostellar outflows,

suggested by Kruijssen (2012). The integral star formation efficiency, εint, is defined

as the ratio between the final mass of the stellar particle (Mf) and the maximum

baryon mass of the GMC throughout the whole course of cluster accretion:

εint ≡
Mf

maxt(M∗ +Mgas)
. (3.9)

It is important to emphasize that the GMC mass in our simulations varies on the

timescale of less than a Myr, as the central part is converted into stars and outside gas

flows in, in essentially free fall. The sum of stellar and gas mass usually increases over

several Myr, before declining as the feedback of young stars disperses the remaining

gas. This situation is very different from simulations of star formation in isolated

clouds, where the total baryon mass is fixed as the initial cloud mass. The initial

cluster mass in this paper then refers to the bound cluster mass that takes into

account the initial bound fraction: fiMf .

The fraction of stars remaining bound to the cluster continues to evolve due to the

dynamical evaporation and tidal stripping. We calculate this process with a subgrid

model and will discuss the evolution of the cluster mass function in a follow-up paper.
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3.2.2.10 Alternative definition of cluster formation timescale

In Paper I, the average duration of cluster formation was calculated as the mass-

weighted star formation timescale:

τave ≡
∫ τmax

0
t Ṁ(t) dt∫ τmax

0
Ṁ(t) dt

, (3.10)

where Ṁ(t) is the cluster SFR at time t. This definition best describes steady mass

accretion. For example, in the case of constant SFR, τave = τmax/2.

Although the actual star formation history of individual star clusters is difficult to

determine in observations, recent theoretical models and hydrodynamic simulations

suggest a dynamic, time-variable process. Self-gravitating collapse of the dense parts

of GMCs is thought to accelerate star formation until stellar feedback, such as stellar

winds and radiative pressure/heating, pushes the accreting gas out. The whole process

happens quickly, as indicated by the observed age spread of stars in embedded clusters

within 3-4 Myr, only a couple free-fall times of their natal clouds; see Section 3.2.4.1.

One caveat of the original definition of cluster formation time described in Equa-

tion (3.10) is that, in the case of increasing and then decreasing SFR, τave actually

records the epoch when Ṁ reaches its peak, rather than the duration of the process.

Here we define a new quantity that better describes the width of the star formation

history. The age spread is defined as the ratio between the final particle mass Mf and

the mass-weighted SFR over the whole growth history 〈Ṁ〉:

τspread ≡
Mf

〈Ṁ〉
=

Mf∫ τmax

0
Ṁ2dt/Mf

. (3.11)

For a power-law mass accretion history, Ṁ ∝ tα, both τave and τspread can be

explicitly evaluated as τave = α+1
α+2

τmax and τspread = 2α+1
(α+1)2

τmax, respectively, for α 6=

−1. However, in the case when Ṁ exhibits a peak, e.g. a Gaussian function Ṁ ∝
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exp (−(t− t0)/2σ2), τave is

τave = t0 +

√
2

π
σ

exp (−t20/2σ2)− exp (−(t0 − τmax)2/2σ2)

erf (t0/
√

2σ) + erf ((τmax − t0)/
√

2σ)
, (3.12)

while the new definition of τspread is

τspread =
√
πσ

[erf (t0/
√

2σ) + erf ((τmax − t0)/
√

2σ)]2

erf (t0/σ) + erf ((τmax − t0)/σ)
. (3.13)

The relationship between the intrinsic width of the mass accretion history σ and the

derived average ages τave and τspread is shown in Figure 3.3.

When σ → 0, the SFH reduces to a δ-function located at t = t0. In this case,

τave → t0, while τspread → 2
√
πσ. This extreme case illustrates the problem with our

previous definition of the formation timescale. Rather than recording the age spread

of stars, τave actually reflects the epoch of the peak of star formation. Instead, the

new definition follows the true width of the age distribution.

As σ increases, the SFH becomes flatter. At the other extreme, if σ > τmax, the

SFR can be considered constant. The above equations then reduce to τave → t0/2

and τspread → t0.

3.2.3 New runs

In this paper we present new runs with the above improvements. All start with

the same initial conditions. Their key physical parameters are listed in Table 3.1.

The number after ”SFE” in their name corresponds to the local εff in percent. The

standard value of SNR momentum boost factor is fboost = 5. In run SFE50-SNR3,

we adopt fboost = 3 to test the dependence of global SFR on this factor. In addition

to these new runs with full updates, we include also for comparison the fiducial run

”old-fid” from Paper I, and ”SNR10-old” run with fboost = 10 and some intermediate

degree of update. These latter runs illustrate progression in the development of our
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Table 3.1: Model runs

Name zf εff Feedback Lcom
cell (pc) at z = 2

SFE10 1.7 0.1 earlya+5*SNRb 15
SFE50 1.5 0.5 early+5*SNR 15
SFE50-SNR3 2.0 0.5 early+3*SNR 15
SFE100 1.5 1.0 early+5*SNR 15
SFE200 1.5 2.0 early+5*SNR 15
SFEturb 2.7 variable early+5*SNR 15
fid-PaperI 3.2 0.1 early+old SNc 60
SNR10-old 2.0 0.1 early+10*SNR 15

Notes: a. ”early”: early feedback schemes including stellar wind and radiative
pressure. b. ”SNR”: resolution-dependent SNR feedback scheme in Martizzi et al.
2015; the number above ”SNR” is the boosting factor. c. ”old SN”: previous SN
thermal and momentum feedback with the amount that is calibrated by Agertz &

Kravtsov (2015).

algorithm.

• fid-PaperI: The fiducial run in Paper I with εff = 10%. As shown in Figure 3.5,

this run overestimates the expected SFR of the main galaxy by more than one

order of magnitude at z = 4− 8. Due to the high SFR, a large number of clus-

ters more massive than 105M� are formed at high z. The inability to suppress

SFR at high-z is caused by the weak feedback that is used in this run. Another

sign of the ineffectiveness of the feedback comes from the mass-weighted cluster

formation timescale τave. In Paper I, we showed that the median value of τave for

all clusters in this run is about 3 Myr, consistent with observational constraint

that is described in Section 3.2.4.1. Detailed analysis suggests that this me-

dian value is dominated by a large number of less massive cluster particles. For

clusters more massive than 105M�, however, τave is much longer, sometimes

even longer than τmax/2 = 7.5 Myr, suggesting that the stellar feedback can-

not terminate the gas accretion process for massive clusters within the allowed

accretion timescale that is assigned in the simulation.
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• highr: The same as “old-fid”, except (1) a refinement strategy that keeps the

ratio of DGMC/Lcell roughly constant, but one level coarser than that described

in Section 3.2.2.1; and (2) a new SNR feedback prescription described in Sec-

tion 3.2.2.8 with momentum boosting factor fboost = 5. We found that the SFH

of this run follows the abundance matching results until z ≈ 2.5, when a major

merger happened in the main galaxy. This merger brings so much cold gas into

the inner regions of the galaxy that stellar feedback is unable to disperse. An

intense starburst occurs and a prominent stellar spheroid forms at the galactic

center. As we discuss in the next section, adding one additional refinement level

prevents this star burst and leads to a reasonable SFH. Another result is that,

although the SFR of this run is much smaller than “fid-PaperI” due to the adop-

tion of the new feedback model, there are still many clusters, especially massive

ones, that have very long cluster formation timescale. This finding inspires the

detail investigation of the origin of the long timescale and the implementation

of the gap elimination algorithms as we described in Section 3.2.2.5 and 3.2.2.6.

• SNR10-old: The same as “highr”, but with a larger boosting factor fboost = 10.

The goal of this run is to probe the upper limit of fboost. As shown in Figure 3.5,

the SFH is always under the abundance matching result. This underestimate

of SFR sets an upper limit on the reasonable choice of fboost.

For comparison, we have also run a simulations with the standard fboost = 5

but boosted the momentum feedback from radiative pressure by a factor of 10.

This boost produced no apparent effect on SFH, unlike the SN boost.
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Table 3.2: Properties of nearby young star clusters

Name Age (Myr) Age Spread (Myr) Mass (M�) Reference

Orion Nebula Cluster 4-5 1-3 2000 Jeffries et al. 2011
R136 4-5 3 4.5e5 Massey & Hunter 1998
LH95 4 2.8-4.4 ? Da Rio et al. 2010
NGC 1569A < 5 free of dust extinction 1e6 Maoz et al. 2001
Westerlund 1 5 0.4 or < 1 6.3e4 Negueruela et al. 2010
NGC 4103 ? 2-4 ? Forbes 1996
NGC 3603 YC 2 0.1 ? Kudryavtseva et al. 2012
NGC 3603 HII 1 < 1 1.9e4 Pang et al. 2013
W3 Main ? 2-3 ? Bik et al. 2012
Antennae clusters ? < 6, AV = 1 mag ? Whitmore & Zhang 2002
NGC 4449 clusters ? < 5, AV = 0.5− 1.5 mag 0.5-5e4 Reines et al. 2008
M83 clusters ? < 4 ? Hollyhead et al. 2015

3.2.4 New observational constraints

3.2.4.1 Observed age spread of young clusters

To use the predicted formation duration as an additional test of the models, in

Table 3.2 we compile recent measurements of the spread of relative ages of stars in

several young star clusters. Although obtaining accurate age measurements is still

challenging, current observations suggest that the age spread should be less than

6 Myr for various star-forming regions in different galaxies. This upper limit also

agrees with small-scale hydrodynamic simulations of cluster formation, which suggest

star formation process should proceed on the timescale comparable to the free-fall

time (e.g. Hartmann et al., 2012; Grudić et al., 2017). This relatively short timescale

provides a strong constraint on the implementation of star formation and stellar

feedback.

3.2.4.2 SFR vs. maximum cluster mass in nearby galaxies

The observed data of star formation rate surface density and V-band absolute

magnitudes of the brightest young clusters in different galaxies is compiled in Adamo
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et al. (2015). Note that this compilation contains observations of galaxy-wide mea-

surements as well as spatially resolved samples. To convert the magnitudes of the

brightest clusters to the corresponding stellar masses, we used the V-band mass-to-

light ratio for young star clusters from Lieberz & Kroupa (2017).

3.3 Results

Most of the simulations presented here were performed at high-performance com-

puting center Flux at the University of Michigan. We highlight here that, although

our simulations incorporate many state-of-the-art physical processes, such as non-

equilibrium chemical networks and radiative transfer, with very high spatial resolu-

tion, the total computing time is not huge. For reference, runs with εff > 0.5 take

about 30, 000− 50, 000 CPU hours to reach z ≈ 1.5.

Figure 3.4 shows the gas surface density of the inner 4 kpc of the main galaxy

at z ≈ 2 for six different runs. The projection is taken along the X-axis of the

simulation box, which is close to the intrinsic rotation axis of the disk. Compared

to the fiducial run in Paper I, most of the density maps here do not exhibit well-

defined gaseous disks. Instead, due to the stronger feedback implementation, the

most prominent structures are the kpc-scale low-density cavities surrounded by rings

of higher-density beads and filaments. These cavities are created by multiple SNe

from young star clusters. Shock waves of the “superbubbles” can travel several kpc

through these low-density regions, compress the gas located around the edge of the

bubble, and possibly trigger subsequent star formation. They also generate large-

scale outflows from the inner regions. The densest regions of the galaxies, therefore,

are not centrally concentrated, but are distributed as many kpc-scale clumps, which

is consistent with recent Hubble Ultra Deep Field observations of z ≈ 2 star-forming

galaxies (Guo et al., 2012).

On the other hand, the SFE50-SNR3 run with weaker feedback (upper right panel)
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shows a more regular disk with centrally-peaked gas distribution and prominent spiral

arms. This contrast illustrates that the large-scale gas distribution is very sensitive

to variation of the momentum feedback parameters, even by a factor of two.

3.3.1 Star formation history of the main galaxy

In Figure 3.5, we show the star formation history of the main halo for several

runs with different values of the star formation and feedback parameters. The SFH

is calculated from all cluster particles within 0.5Rvir of the main galaxy from the last

available snapshot of each run, where Rvir is the virial radius of the dark matter halo.

The rate of star formation is averaged over 100 Myr around a given epoch in order

to smooth out stochasticity.

In general, simulations with fboost = 5 agree well with the abundance matching

results, in the sense of both SFR and the cumulative stellar mass growth. This

suggests that the strength of stellar feedback used in these runs is appropriate to

reproduce the inefficient star formation at high redshift. Changing the intensity of

feedback has a measurable effect on the SFH. The run with fboost = 3 systematically

overestimates SFR at all times, while the run with fboost = 10 underestimates SFR

by an order of magnitude. The resulting SFHs of the two runs are well beyond the

1σ confidence intervals of the abundance matching result. Therefore, the choice of

fboost in our simulations is tightly bracketed.

On the other hand, varying εff from ∼ 0.01 to 2.0 has almost no systematic effect

on SFH. This insensitivity to the value of εff has already been found in several recent

cosmological simulations with the implementation of strong stellar feedback and high

spatial resolution (Agertz et al., 2013; Agertz & Kravtsov, 2015; Hopkins et al., 2013).

The feedback-controlled low-efficiency star formation activity can be interpreted as

the short lifetime of star-forming regions, which then requires a large number of star-

forming cycles to convert all the gas into stars (Semenov et al., 2017).
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However, the lack of sensitivity of SFH to the local star formation efficiency does

not mean that one can assign an arbitrary value to εff in galaxy formation simulations.

As we show in the rest of this section, εff has dramatic effects on the properties of

individual star-forming regions, and in turn, the properties of young star clusters

formed within.

3.3.2 Kennicutt-Schmidt relation

Above we showed that with fboost = 5 our simulations can reproduce the SFH

of Milky Way-sized galaxies, suggesting that the galaxy-wide star formation activity

is well suppressed with our feedback implementation. Another commonly-used rep-

resentation of inefficient star formation is the ”Kennicutt-Schmidt relation” (KSR),

which is a relationship between the gas surface density and the surface density of star

formation rate.

To derive the KSR for molecular gas in our simulations, we split the main galaxy

disk into several 1 × 1 kpc square areas and calculate ΣH2 and ΣSFR within each

area. ΣSFR is estimated by using clusters younger than 20 Myr. We test the effect

of different spatial smoothing scales on the KSR. We find that using smaller spatial

smoothing scales between 100 to 500 pc gives larger scatters on the KSR, but with

similar median value as the 1 kpc case. We collect measurements from z ≈ 9 to the

last available snapshot in each run and calculate the median value of ΣSFR for a given

range of ΣH2 . Figure 3.6 shows the KSR in six simulations with different εff .

The observed KSR does not vary significantly with metallicity or galaxy type,

when expressed through molecular H2 gas (Bigiel et al., 2008, 2011). The observed

relation in nearby spiral galaxies at z = 0 is consistent with linear, and we can

expect it to hold for higher redshift and smaller galaxies. Our simulations produce

an approximately linear relation but with systematically higher ΣSFR than observed,

by about a factor of two to one order of magnitude. We also find that the simulations
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with higher εff tend to have somewhat higher ΣSFR for a given ΣH2 .

3.3.3 Initial bound fraction

Figure 3.7 shows the initial bound fraction predicted for our model clusters. We

find a strong positive correlation between fi and particle mass for all runs with a wide

range of model parameters. This trend is not sensitive to either the formation epoch

or host galaxy mass, suggesting that fi is mostly independent of the global galactic

environment and reflects only local properties of individual star-forming regions.

Instead, we find that the initial bound fraction varies strongly with εff . At M =

105M�, fi can reach above 50% for εff ≥ 0.5, but is limited to only 1 − 10% for

runs with εff < 0.5. This difference in normalization is due to the corresponding

scaling of the integral star formation efficiency, because of our assumption fi ∝ εint

(Equation 3.8).

The dependence of εint on particle mass has also been noticed in recent GMC-

scale simulations. For example, Grudić et al. (2017, hereafter, G17) ran a series of

MHD simulations of isolated turbulent clouds with different initial gas surface density.

They found a tight relation between εint and Σgas and parametrized it by the following

relation:

εint =

(
1

εmax

+
Σcrit

Σgas

)−1

, (3.14)

with best-fit parameters εmax = 0.77 and Σcrit = 2800M� pc−2. The critical surface

density Σcrit above which the efficiency rises significantly corresponds to the cloud

mass Mcrit ≈ 2.2×105M� (R/5 pc)2. Using our definition of the initial bound fraction,

the above equation can be re-written as a relationship between fi and scaled particle

mass y ≡M/Mcrit:

fi = min

(√
y2 + 4yεmax − y

εmax

, 1

)
. (3.15)

We emphasize that the radius R used in G17 is not the same as the radius of our
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GMC sphere, RGMC. In their simulations of isolated clouds, both the mass and size

of the cloud are fixed by the initial condition, while our star-forming GMC has an

open boundary through which gas flows in and out, controlled by gravity and stellar

feedback. Our RGMC is a lower limit to R since the cluster can accrete more distant

gas, e.g. from all 27 neighbor cells. We can estimate a radius of the corresponding

accretion region by taking it to be a sphere of the same volume as the 27 gas cells.

Since the physical size of our cells at the finest refinement level varies between 3 and

6 pc (see Section 3.2.2.1), we take the average length to be with 4.5 pc. This gives

the effective radius R ≈ 8.4 pc. We use this value to compare the G17 scaling with

ours.

The right panel of Figure 3.7 shows a good agreement between the relation given

by Equation (3.15) and our runs with εff ≥ 1. The lower efficiency runs cannot reach

the relatively high values of fi predicted by G17. We fit the relation between particle

mass and initial bound fraction as fi ∝ Ma, and find the power-law slope for our

clusters in the range a = 0.43 − 0.51. This is also consistent with the G17 result

a ≈ 0.5 for clusters in the mass range M < 105M�.

The initial bound fraction in our models depends somewhat on the SNR boosting

factor fboost. The run with fboost = 3 shows systematically higher fi than the corre-

sponding fboost = 5 run, although the difference in the bound fraction is only ∼ 20%.

The dependence of fi on fboost can be understood as the balance between gravity

and feedback: with lower fboost, a cluster in one GMC of a given mass requires more

stellar mass to reach the same amount of momentum of SNe to fully disperse the gas.

Therefore a cluster in SFE50-SNR3 run reaches higher final mass for the same GMC

mass, which implies higher values of εint and fi.

There are several consequences of introducing the initial bound fraction to deter-

mine the initial cluster mass. First, due to the mass-dependence of fi, the shape and

normalization of the CIMF is different from the particle mass function. Second, the
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sensitivity of fi to the choice of εff leads to a different integrated cluster formation

efficiency and maximum cluster mass for runs with different εff . These observables

can be used to constrain εff , as we discuss below.

3.3.4 Cluster initial mass function

CIMF is one of the key properties of young star clusters. Here we examine the

CIMF of model clusters in the main halo, summed over the central galaxy and satellite

galaxies. In Paper I we showed that the Schechter function provides a good description

of the shape of the cluster mass function. Here we also fit all CIMFs with a Schechter

function using the maximum likelihood method. Because the shape of the CIMF for

small clusters now deviates more from a single power law, we restrict the fit only to

clusters more massive than a certain minimum mass, above which the CIMF is best

described by the Schechter form. The best-fit slopes, the cutoff masses, as well as the

choice of the minimum mass at different epochs for all runs are listed in Table 3.3.

In Figure 3.8, we show the combined CIMF of all clusters formed at all times up

to the last available snapshot of each run. Here we distinguish between the stellar

particle mass (M) and the cluster mass (fiM) that takes into account the initial

bound fraction. Because fi itself depends positively on particle mass, the power-law

slope of the CIMF is in general shallower than that of the particle mass function.

Among different runs, we find that the high-mass end of the CIMF is also strongly

affected by the initial bound fraction. Simulations with lower εff tend to have lower

fi for a given cluster mass, thus modifying the mass function more strongly at all

masses. We notice that the CIMFs here extend only to ∼ 106M� for εff ≥ 0.5 runs

rather than ∼ 107M� in Paper I. This is mainly due to the lower star formation

rates caused by stronger feedback implementation in the current simulations. The

maximum mass is even as small as ∼ 105M� for SFEturb and SFE10 runs because

of the small value of fi.
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Table 3.3: CIMF best-fit parameters

Runs Mmin/M� α Mcut/M�
full-particle

SFE10 6× 104 3.44 1.28× 105

SFE50 6× 104 3.27 1.63× 105

SFE50-SNR3 4× 104 3.67 4.50× 105

SFE100 4× 104 3.06 4.52× 105

SFE200 4× 104 3.55 NAa

full-cluster

SFE10 5× 103 2.58 3.61× 104

SFE50 2× 104 2.47 3.08× 105

SFE50-SNR3 1× 104 2.86 1.31× 105

SFE100 2× 104 2.54 2.25× 105

SFE200 4× 104 3.27 NAa

z ≈ 2.0-cluster

SFE10 3× 103 2.64 2.44× 104

SFE50 8× 103 2.18 3.99× 104

SFE50-SNR3 1× 104 1.99 1.25× 104

SFE100 1× 104 1.68 3.52× 104

SFE200 6× 103 1.15 2.54× 104

z ≈ 5.3-cluster

SFE10 2.5× 103 1.13 1.61× 104

SFE50 6× 103 1.28 1.30× 105

SFE50-SNR3 6× 103 1.81 1.73× 105

SFE100 5× 103 1.44 2.49× 105

SFE200 3× 104 1.51 8.45× 105

a. the cutoff mass of the mass function of all clusters in SFE200 run cannot be
obtained since it can be described by a pure power-law with no apparent

exponential cutoff at high mass end.
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To compare more directly with observations of young star clusters formed in the

same star formation episode, in Figures 3.9 and 3.10 we show the CIMF of clusters

younger than 100 Myr at z ≈ 2 and z ≈ 5.3. We choose an epoch around z ≈ 2, when

the main galaxy has not experienced any major mergers for more than 500 Myr. The

CIMF of young clusters reflects the properties of the ISM that gradually grows its

mass. We find a wide range of the power-law slopes for different runs, from α ≈ 2.6

for SFE10 run to α ≈ 1.2 for SFE200 run. There exists a systematic trend that higher

εff leads to a shallower CIMF slope. Shallower slope means that, for a given galactic

SFR, clusters with higher mass are more likely to be created. That is the reason why

the runs with higher εff tend to have higher mass tails in the CIMF.

Figure 3.10 shows the CIMF of young clusters around z ≈ 5.3, when the main

galaxy experiences a major merger. The overall normalization of the mass function

is lower than that at z ≈ 2, because the galaxy at z ≈ 5.3 is much smaller and

contains less gas. However, the maximum cluster mass at this epoch is roughly one-

order-of-magnitude higher than in the corresponding runs at z ≈ 2. This is because

the power-law slopes of the CIMF at this epoch, 1.1-1.8, is much shallower than the

non-merger case at z ≈ 2. The cutoff masses of these CIMF are all above 105M�,

which is several times larger than these at z ≈ 2. We already saw such enhancement

of the formation of massive clusters in gas-rich galaxy mergers in the previous runs

presented in Paper I. This result is even more pronounced in the new runs with

stronger feedback.

3.3.5 Fraction of clustered star formation

In Paper I, we concluded that cluster formation is an environmentally-dependent

process where the high-mass end of the CIMF depends strongly on the star formation

activity of the host galaxy. Both recent observations (Adamo et al., 2015; Johnson

et al., 2016, 2017a) and theoretical work (Kruijssen, 2015) suggest that the SFR
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surface density (ΣSFR), rather than SFR itself, better represents the intensity of star

formation and physical conditions of the galactic ISM. Therefore, here we explore the

effects of ΣSFR on such cluster properties as the fraction of clustered star formation,

Γ, and maximum cluster mass, Mmax.

Analogously to constructing the KSR in Section 3.3.2, we split the disk of the

main galaxy into the 1 × 1 kpc square grid. For each square area, we calculate the

surface density of star formation rate averaged over 20 Myr. The fraction of clustered

star formation is defined as the ratio between the mass in bound clusters and total

stellar mass formed within the same time interval, 20 Myr:

Γ ≡
∑
fiM∑
M

. (3.16)

We also test larger averaging timescale from 20 Myr to 50 Myr and find that the

results are not sensitive to the choice of the timescale.

This Γ is different from the quantity we used in Paper I in two ways. First, to

estimate Γ we split the galactic disk into concentric circular bins in Paper I. However,

due to the stronger feedback implemented in this paper, no well-defined gas disk

presents in the main galaxy. Instead, the disks are clumpy and asymmetric, often

showing features of strong outflows. Therefore, it is not possible to find a definitive

center and cylindrical-symmetric axis to construct circular bins. Second, in Paper I,

we defined Γ simply as the fraction of clusters more massive than 104M�, not all of

which are necessarily gravitationally bound. In this paper, with the introduction of

the initial bound fraction, we have a more physical way of estimating the clustered

fraction as it is defined in observations.

Figure 3.11 shows a positive correlation between ΣSFR and Γ for all the runs.

We find that Γ changes by about one order of magnitude over the range ΣSFR =

10−3 − 1M� yr−1 kpc−2. At ΣSFR > 1M� yr−1, the values of Γ stop increasing and
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saturate to the value that is set by the maximum value of initial bound fraction and

the mass fraction of the most massive clusters. This saturation of Γ at high ΣSFR is

also found in the analytical model of cluster formation efficiency in Kruijssen et al.

(2012). It should be noted that, the physical origin of this saturation for our and their

models is different. In Kruijssen et al. (2012), the saturation is caused by the “cruel

cradle effect”, in which young clusters formed within less dense regions are destroyed

by the tidal interaction with other star forming regions during their embedded phase,

while, in our model, the saturation is caused by the mass-dependent initial bound

fraction.

It is clear that Γ also depends strongly on εff . Run SFE200 with εff = 2.0 shows

a very high Γ from 0.05 to 0.6, while runs SFE10 and SFEturb do not have any

star-forming regions with Γ > 0.1. This sensitivity to the choice of εff makes Γ an

excellent observable to constrain this parameter.

3.3.6 Maximum cluster mass

Figure 3.12 shows the relationship between ΣSFR and the maximum mass of clus-

ters formed within a 100 Myr interval. We find a clear positive correlation, going

roughly as

Mmax ∝ Σ
2/3
SFR.

The power-law slope is similar to the best-fit value, ≈ 0.7, for the observations of max-

imum cluster mass described in Section 3.2.4.2. The similarity of the slope among all

runs reveals a robust result that the high-mass end of the mass function of model clus-

ters depends uniquely on the intensity of the star formation activity. The normaliza-

tion of this relation also scales monotonically with εff , because of the εff−dependence

of the initial bound fraction.

Note that the runs with εff ≤ 0.1 cannot produce clusters more massive than

105M� at all considered epochs for z > 1.5. This indicates that no clusters in these
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Table 3.4: Cluster formation timescale, τave, in Myr

Runs low mass high mass
10%-50%-90% 10%-50%-90%

SFEturb 0.25-1.07-3.13 0.43-2.07-8.62
SFE10 0.14-0.57-1.83 0.96-2.12-3,85
SFE50 0.07-0.26-0.84 0.52-1.44-2.53
SFE50-SFR3 0.09-0.26-0.80 0.45-1.26-2.35
SFE100 0.06-0.19-0.60 0.32-1.43-2.42
SFE200 0.04-0.15-0.46 0.55-1.59-2.29

runs would survive to the present time to become globular clusters. It is another

evidence against such low values of εff .

3.3.7 Cluster formation timescale

The upper panel of Figure 3.13 shows the cumulative distributions of cluster for-

mation timescales of τave. we find a clear trend that the higher εff , the shorter the

timescale, especially for low mass clusters (< 105M�). This means that the growth

history of these clusters is dominated by the gas accretion, which is in turn controlled

by εff . This result, obtained after many algorithmic updates described in Section 3.2,

is still consistent with that in Paper I.

More quantitatively, we split the whole cluster sample into low (< 105M�) and

high mass clusters (> 105M�) and calculate the 10%, 50%, and 90% percentiles of

the distribution of τave. The results for both low and high mass clusters are listed in

Table 3.4.

In general, the timescales for low mass clusters is very short. The median values of

τave are all smaller than ∼ 1 Myr. To better understand the changes across different

runs, instead of just comparing the median values we quantitatively evaluate the

differences of the probability density distributions. For instance, for samples s1 and s2,

we find the factor fbest iteratively to maximize the p-value of the Kolmogorov-Smirnov
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test between s1 and fbest s2. This method can obtain fbest so that the cumulative

distribution of s1 and fbest s2 are most similar to each other. We find that τave in

SFE200, SFE100, and SFE50 runs are shifted a factor of 0.27, 0.34, and 0.45 times

relative to the values in SFE10 run. This suggests a strong anti-correlation between

εff and τave, with a scaling relation that can be best described as τave ∝ ε−0.45
ff . This

is interesting because, although the instantaneous gas accretion rate of clusters is

linearly correlated with εff in Equation (3.1), the correlation between εff and τave is

nonlinear.

On the other hand, the comparison of the distributions of τave for SFE50 and

SFE50-SNR3 runs shows that the boosting factor of SNe feedback fboost has a negli-

gible effect. This is expected since fboost only controls the intensity of the momentum

feedback from SNe that explode after 3 Myr, which is longer than the typical forma-

tion timescale of clusters in this mass range.

For massive clusters (M > 105M�), however, the distributions of cluster formation

timescale are very similar for runs with εff ≥ 0.5. They all have a median timescale

around 1.5 Myr and truncate at τave ≈ 3 Myr, the time when the first SNe explode.

This suggests that the growth history of massive clusters is determined by both gas

accretion and stellar feedback. However, an immediate termination of gas accretion

by SNe only happens with high εff . Slower star formation cannot accumulate enough

massive stars, and therefore enough SNe within the first 3 Myr to disperse the natal

GMCs. This can be seen from the long tail of τave in SFE10 and SFEturb runs.

Although the median value is only ≈ 2− 3 Myr, there are many clusters with τave >

3 Myr in SFE10 run and τave > 5 Myr in SFEturb run. Such long formation timescales

are inconsistent with the observed age spread of young star clusters in nearby star-

forming regions, as discussed in Section 3.2.4.1.

The same as τave, another definition of the formation timescale, τspread, shows a

similar positive correlation to εff . However, the median values of τspread for different
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runs are even smaller than that of τave. The median values range from 0.1 to 0.3 Myr

for low mass clusters and from 0.5 to 2.5 Myr for high mass ones.

3.4 Discussion

Now we discuss the constraints on εff and fboost resulting from the tests described

above.

3.4.1 Global properties: Star Formation Rate and Kennicutt-Schmidt

relation

In Section 3.3.1 we found that the SFH of the main galaxy in runs with fboost = 5

is consistent with the abundance matching results. This SFH is very sensitive to the

choice of fboost, which gives a tight constraint on its value: 3 < fboost < 10. On the

other hand, the SFH depends little on the value of εff over the whole two orders of

magnitude range.

As long as the feedback energy is strong enough to trigger these star formation–

feedback cycles, the global properties of galaxies and the inefficient star formation

activity can be reproduced, and the result is not sensitive to the detailed imple-

mentation. This phenomenon was also found in recent high-resolution cosmological

simulations by Hopkins et al. (2014).

In contrast to good match of the SFH, the normalization of the KS relation in

all of our simulations is overestimated by a factor of 2 to 20. In the analysis, we

used 20 Myr averaging timescale to calculate ΣSFR. We chose this short timescale

because we found that the structure of the ISM in our simulations is vulnerable to the

feedback from young clusters, such that even the kpc-scale gas distribution changes

very rapidly. Also, since we used the high density threshold for cluster formation,

nth = 103 cm−3, the star formation regions are concentrated into the densest regions.

Therefore, the 1 × 1 kpc grid used to derive the KS relation sometimes contains
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only a couple of star-forming complexes. This situation is very different from the

observations of low-redshift galaxies, where comparable areas contain many small

star-forming regions and both ΣH2 and ΣSFR are averaged over different regions in

different phases of star formation.

Analogously to the instantaneous star formation rate in Equation (3.1), higher εff

runs tend to have higher ΣSFR for a given ΣH2 . However, the slope of the molecular

KS relation is nearly linear and consistent with the observed linear relation, despite

the non-linear scaling ρ̇∗ ∝ ρ
3/2
gas used in Equation (3.1).

3.4.2 Slope of the star cluster mass function

In Section 3.3.4, we showed that the power-law slope of the CIMF is sensitive to

the choice of εff . Observations of CIMF in nearby galaxies reveal a Schechter-like

function with a power-law slope close to −2 (Portegies Zwart et al., 2010). SFE10

run shows a power-law slope as steep as ≈ 2.5, while SFE200 run has a very shallow

slope smaller than 1.5. Therefore, under the current simulation setup, we find that

the range εff = 0.5− 1.0 matches the observations best.

The normalization of the CIMF also depends strongly on εff . Because of the

positive correlation between εff and the initial bound fraction, runs with lower εff

create clusters that have lower fi for a given particle mass. Therefore, applying this

initial bound fraction shifts the particle mass function to smaller masses and leads to

the apparent lower normalization of the CIMF for lower εff runs.

3.4.3 Effects of major mergers

In Section 3.3.4, we find that there is a significant difference of CIMFs produced

during major mergers and during quiescent periods. In a merger, the slope of the

CIMF becomes shallower while the truncation mass rises much higher. This promotes

the formation of most massive clusters, M > 3× 105M�. This is similar to the result
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we found in Paper I, despite the many updates to the algorithm in this paper.

The existence of more than 100 GCs at present gives additional constraint on the

creation of most massive clusters at high-z. As can be seen in Figure 3.8 and 3.12,

potential GC progenitors, clusters with mass larger than ∼ 3× 105M�, can only be

created by runs with εff ≥ 0.5.

3.4.4 Fraction of clustered star formation

In Paper I, we presented a positive correlation between ΣSFR and the fraction

of young clusters with mass above 104M�. Roughly speaking, this fraction is a

reasonable proxy to the fraction of clustered star formation that we estimated in

Section 3.3.3. This is because massive clusters tend to have higher fi, and therefore,

most of the bound cluster mass is contributed by the most massive clusters. Since the

shape of the cluster particle mass function is not affected strongly by the value of εff in

Paper I, the fraction of massive clusters is not sensitive to the choice of εff . However,

in this paper, the strong correlation between εff and the newly-implemented initial

bound fraction fi leads to a strong positive correlation between εff and the integrated

cluster fraction, Γ. Thus, Γ as a function of ΣSFR provides us a new diagnostic to

constrain εff .

The positive correlation between ΣSFR and Γ found in Section 3.3.5 is caused by

two effects. First, in high ΣSFR areas the CIMF is likely to extend to higher masses, as

demonstrated in Figure 3.12. Second, high-mass clusters typically have larger initial

bound fraction, which leads to higher efficiency Γ. Therefore, this correlation comes

about from a combination of the variation of CIMF in different environments and the

mass-dependent initial bound fraction.

We find that the simulations with εff = 0.5 − 1.0 reproduce the observed values

of Γ over a wide range of ΣSFR = 10−3 − 1M� yr−1 kpc−2. However, there are three

data points from Adamo et al. (2015) that show very high Γ ∼ 0.5 at ΣSFR ∼
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1M� yr−1 kpc−2, which cannot be reached by either SFE50 or SFE100 run. It is

important to keep in mind that these three data points are from galaxy-integrated

rather than spatially-resolved measurements, as we did in this paper. Note also that

the data compilation shown in Figure 3.11 combines measurements with different

SFR tracers, different cluster identification criteria, and different averaging spatial

and time scales. Future observations with consistent methodology and higher spatial

resolution are required to place better constrains on the star formation models.

3.4.5 Maximum cluster mass

In Section 3.3.6, we find a positive correlation between the SFR surface density

and maximum mass of young clusters. The normalization of this relation scales with

εff . We find that runs with εff ≥ 0.5 are consistent with the observations of clusters

in nearby galaxies over a large range of ΣSFR = 10−4 − 2M� yr−1 kpc−2. Due to the

small observation samples, it is hard to constrain εff into narrower range, but at least

εff ≤ 0.1 is safely ruled out.

3.4.6 Mass accretion history inferred from different definition of cluster

formation timescales

As we discussed in Section 3.2.2.10, different definitions of the cluster formation

timescale are sensitive to different mass accretion behavior of individual clusters.

The first experiment is to check whether the mass accretion history can be de-

scribed by a simple power-law, Ṁ ∝ tα, as suggested by Murray & Chang (2015).

Such power-law mass accretion gives τave = α+1
α+2

τmax and τspread = 2α+1
(α+1)2

τmax. There-

fore, if the mass accretion history of individual clusters can indeed be described by a

power-law, the indexes α derived from τave/τmax and τspread/τmax should be consistent

with each other. However, we find that majority of the clusters do not show consis-

tent α from these two definitions, suggesting that most clusters experience accretion
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histories that cannot be described by a simple power-law.

The same as Paper I, we explore the detail output of the mass accretion rate

at each local time steps for a fraction of massive clusters larger than 105M�. We

find a general pattern that the accretion rate at the beginning of cluster formation

is relatively small. As the density of the GMC becomes higher, the accretion rate

increases until it reaches its peak by either exhausting the star-forming gas or stellar

feedback. This pattern can definitely not be fitted by a single power-law, but it is

more suitable to be described by a peaked distribution, such as a Gaussian shape. In

this case, τave and τspread actually reflect different characteristics of the mass accretion

of individual clusters. τave indicates the timescale that a given cluster reaches the

peak of its mass accretion, while τspread quantifies the width of the peak.

3.4.7 Cluster formation timescale

The same as Paper I, the strong-dependence of cluster formation timescale on

εff appears in the new runs. This robust relationship that can be used to constrain

εff . Unfortunately, since clusters in most runs have cluster formation timescale that

is shorter than 3 Myr, they are all within the range of the observed age spread for

young star cluster. One exception is the SFEturb run, in which ∼ 30% of massive

clusters have a timescale larger than 6 Myr, which is not consistent with observations.

3.4.8 Combination of all constraints

Here we summarize the constraints of star formation and feedback parameters,

fboost and εff , from different observables:

• globular SFH: fboost = 3− 10.

• slope of CIMF: εff = 0.5− 1.0.

• cluster formation efficiency: εff = 0.5− 2.0.
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• maximum cluster mass: εff ≥ 0.1.

• cluster formation timescale: εff ≥ 0.1.

Based on the joint constraints, We find that fboost = 3 − 10 and εff = 0.5 − 1.0 is

favored in our model.

We emphasis again that εff used in this paper is different than that in other

cosmological simulations: (1) εff only applies within the star-forming spheres of a fixed

physical volume rather than time-varying cell volume. (2) although εff is a fixed value

for most of the runs, the mass growth rate of a given clusters changes significantly

during the active accretion period due to the changes of local gas density. This time-

resolved accretion leads to a broad scatter of integrated star formation efficiency of

individual clusters as is shown in Paper I.

3.5 Summary

We have described an improved implementation of star cluster formation in the

cosmological code, ART. We update the cluster formation algorithm to eliminate the

accretion gaps during the active period of clusters, which significantly reduce the

long cluster formation timescales found in Paper I. We adopt a new SNR feedback

model so that the SFH of the main galaxy follows the abundance matching result. We

also introduce a new prescription that takes into account the initial bound fraction of

clusters. We perform a series of cosmological simulations of a Milky Way-sized galaxy

with different star formation and feedback parameters. Various properties of model

clusters are used to constrain these parameters. The results from this new suite of

simulations are summarized here:

• The global properties of the galaxies, such as the galaxy morphology and SFH,

are strongly affected by the strength of feedback, but is not sensitive to star

formation efficiency εff .
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• To match the SFH from the abundance matching result of a Milky Way-sized

galaxy, the momentum boosting factor of SNR feedback is tightly constrained

to be in the range fboost = 3− 10.

• The initial bound fraction fi increases with the cluster particle mass, irrespective

to their formation epochs and host galaxy masses. fi also positively correlates

to the value of εff .

• CIMF of model clusters presents a Schechter-like shape with slope that depends

on εff . We find that runs with εff = 0.5− 1.0 have a CIMF with a slope similar

to -2, best matches the observed slopes.

• We find, during the major merger, the slope of the CIMF becomes shallower

and the CIMF itself extends to higher masses, thus create more massive clusters

that the epochs without merger.

• Integrated cluster formation efficiencies Γ are estimated based on the newly-

implemented fi within 1× 1 kpc grids across the main galaxy disks. We find a

positive correlation betewen ΣSFR and Γ. The normalization of this correlation

depends strongly on εff , with εff = 0.5 − 1.0 best matches the observational

measurements.

• The same as Paper I, the cluster formation timescale depends strongly on εff for

clusters less massive than 105M�. For massive clusters, the timescale truncates

to 3 Myr, the time when first SNe explode in runs with εff ≥ 0.5. Runs with

εff ≤ 0.1 show a long tail of longer timescales, therefore not favored by our

model.
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Figure 3.2: The cumulative fraction of mass loss due to stellar evolution for a single stellar
population with Kroupa (2001) IMF: old prescription used in Paper I (red), Prieto & Gnedin
(2008) (green), FSPS (cyan), and LG14 (blue). The line width for each source represents
the mass loss from stars of different metallicity, from zero to solar. The best-fit expression
to the average FSPS results (described by Equation 3.7) is overplotted by the thick dashed
line.
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Figure 3.3: An example of the old (τave, black) and new (τspread, red) definitions of cluster
formation timescale as a function of Gaussian width of the SFR, peaked at a relatively late
time t0 = 10 Myr. The new definition closely follows the width of the accretion rate when
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Figure 3.4: Gas density projection plots of the main galaxy at z ≈ 2 for different runs.
The adaptive refinement structure of the oct-tree code is shown in the upper left panel and
the length scale of 1 kpc is shown in the lower right panel.
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Figure 3.5: Left: Star formation history of the main galaxy for runs with different star
formation and feedback parameters. The SFR is derived from all stellar particles within the
main galaxy at the last snapshot, see Section 3.3.1 for details. Dark and light shaded areas
are 1-σ and 2-σ confidence intervals of the expected SFR for an average 1012M� halo from
abundance matching (Behroozi et al., 2013b). Right: Cumulative stellar mass history of the
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result.
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Figure 3.8: CIMF of all clusters (fiM , solid lines) within the main galaxy from the last
available snapshot of each run. Shaded areas show the binomial counting errors in mass
bins of 0.16 dex. In contrast, dotted lines show the distribution of stellar particle mass
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Figure 3.9: Same as Figure 3.8, but only for clusters younger than 100 Myr within the
main galaxy at a quiescent epoch around z ≈ 2.
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Figure 3.10: Same as Figure 3.9, but during a major merger epoch at z ≈ 5.3.
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Figure 3.11: Fraction of clustered star formation as a function of star formation rate
surface density. ΣSFR is estimated on a spatial scale of 1 kpc for stars younger than 20
Myr. Solid lines and shaded areas show the median and 25-75% interquartile range of
the distribution of Γ for a given ΣSFR bin. The observed values (symbols with errorbars)
are from a compilation of both galaxy-wide and spatially-resolved measurements of cluster
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2011; Johnson et al., 2016).
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Figure 3.12: Maximum bound cluster mass vs. star formation rate surface density. ΣSFR

is calculated on the 1 kpc scale for clusters younger than 100 Myr across the disk of the
main galaxy from z=10 to the last available snapshots for different runs. The compilation
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(2015) is shown in red stars. The best linear fit to the data is overplotted as red dashed
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Figure 3.13: Cumulative distribution of mass-weighted cluster formation timescale τave

(upper panels) and newly-defined age spread τspread (lower panels) for clusters with mass
smaller (left panels) or larger (right panels) than 105M�.
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CHAPTER IV

Dynamical and Chemical Evolution of Massive

Star Clusters

4.1 Introduction

For a long time, globular clusters (GCs) are thought to preserve fossil information

on the assembly history of their host galaxies at early times (Harris, 2001). However,

though GC systems have been known for almost four centuries, their formation and

evolution is still one of the most challenging unsolved problems in the interface of stel-

lar astrophysics, galaxy formation and cosmology (e.g. Brodie & Strader, 2006). One

major uncertainty that hinders our understanding of the origin of GCs is their dy-

namical evolution across cosmic time. The dynamical disruption of globular clusters

has been studied using various methods from orbit-averaged Fokker-Planck models to

Monte Carlo models to direct N−body simulations (references). It is general agreed

that the observed log-normal mass function of GCs at present is the relic of the power-

law initial mass function of young massive clusters formed at high redshift (Prieto

& Gnedin, 2008; Muratov & Gnedin, 2010; Li & Gnedin, 2014). The details of this

process, however, is larger unknown.

Previous work on calculating tidal disruption of GCs usually assumes a analytical

tidal field experienced by clusters along the orbit around the host galaxy. This method

126



cannot capture the grandness of the gravitational potential of the galaxy, therefore

are not able to predict the tidal interaction between the dense structures on the disk,

such as giant molecular clouds (GMCs), and star clusters, which is believed to be

an important mechanism of disrupting star clusters. Recently, Renaud et al. (2017)

post-processed the snapshots of cosmological hydrodynamical simulations and found

that the average strength of tidal field increases as the simulations approach lower

redshift, thus the dynamical disruption of GCs at z > 1 is negligible. The main issue

of their approach is that the simulations with a spatial resolution ∼ 200 pc, cannot

resolve the densest structure in the galactic disk so that the strength of the tidal field

is significantly underestimated. This issue is severe especially when clusters are still

around their natal GMCs.

In Li et al. (2017) and Li et. al. in prep., we have developed and updated a new

algorithm for modeling the formation of star clusters in cosmological simulations. The

mass of individual cluster particles is determined by both the gas accretion and their

own energy and momentum feedback. Thus, the final mass is set self-consistently and

can be considered as the mass of a single star cluster formed within its natal GMC.

We used a high spatial resolution, 3-6 pc, that are comparable or even smaller than

the size of the GMCs. This resolution allows us to accurately calculate the tidal field

around individual star clusters.

In this paper, we introduce a new algorithm for calculating the strength of the

tidal field along the orbit of each cluster particle and estimate the mass loss rate

at each global timestep of the simulations, see Section 4.2. This is the first time

that the tidal disruption process has been calculated in the runtime in cosmological

simulations. Some preliminary results are shown in Section 4.4.
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4.2 Dynamical disruption of star clusters

The description of the simulation setup and detail implementation of the cluster

formation algorithm is presented in Paper I and II. The simulations are performed

with the Eulerian gasdynamics and N-body Adaptive Refinement Tree code. The

cosmological simulations are run from the initial conditions that contains a main

dark matter halo of total mass M200 ≈ 1012M� at z = 0 with a periodic box of 4

comoving Mpc in size. The simulations start from a 1283 root grid with the mass

of dark matter particles mDM = 1.05 × 106M�. We use adaptive mesh refinement

technique to achieve high dynamical range of the spatial resolution. We add 9, 10,

11, and 12 additional refinement levels at z = ∞, 9, 4, and 1.5, so that the size of

cells at the finest refinement level is in the range between 3 and 6 pc, comparable to

the typical size of the star-forming regions in nearby galaxies. The descriptions of

simulations with different star formation and feedback parameters can be found in

Paper II.

We use CCF to create young star clusters in the simulations. After cluster particles

are created in the simulations, they start to lose mass via various physical processes,

such as evolution of individual stars and escape of stars due to the dynamical interac-

tion to other stars within the clusters and the external tidal field in the galaxy. The

fraction of the initial cluster mass that is gravitationally bound to the star clusters

is defined as the bound fraction, fbound(t) = finitialfse(t)fdyn(t), where finitial is the

initial bound fraction due to the gas expulsion during cluster formation (defined and

calculated in Paper II), fse accounts for the mass loss due to stellar evolution, and

fdyn accounts for tidal stripping and evaporation of stars (Li & Gnedin, 2014).

The stellar evolution included in the simulation assumes a time-dependent stellar

wind and stellar explosion model that is calibrated by stellar population synthesis,

e.g. FSPS. An integrated mass loss rate of a single stellar population with a Kroupa

(2001) initial mass function used in our simulations is described in Paper II.
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Independent of stellar evolution, the dynamical destruction of star clusters consists

of two parts, internal evaporation and external tidal disruption. In this paper, these

two processes are characterized by tidal disruption timescale (ttid) and evaporation

timescale (tiso). Following the calculation in Gnedin et al. (2014), the rate of the

dynamical destruction from the two processes can be expressed as:

dM

dt
= − M

min(ttid, tiso)
(4.1)

.

In the rest of this section, we will describe

• how are the tidal tensor and strength of the tidal field estimated in the run time

of the simulations?

• how are ttid and tiso calculated for each clusters?

• how is the bound fraction fbound updated at each global timestep?

4.2.1 Tidal field around cluster particles in realistic galactic environment

The strength and orientation of the tidal field in the galactic environment can

be fully characterized by tidal tensors. The general formalism of a tidal tensor at

position X0 under a given gravitational potential Φ(X), is defined as

Tij(X0, t) = −∂
2Φ(X)

∂xi∂xj

∣∣∣
X=X0

, (4.2)

where i and j are two orthogonal directions in the Cartesian coordinates.

In the simulations, tidal tensors of all inactive cluster particles (tage > tmax = 15

Myr) are estimated in the runtime of the simulations at each global time step 1.

1The duration of globular time steps varies during the course of the simulations. A good estimate
about it would be around 1-3 Myr.
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Algorithmically, the second-order differentiation of the gravitational potential are

estimated across the 3 × 3 × 3 cells centered on a given cluster particle. For the

diagonal terms, e.g.:

Txx = −∂
2Φ(x, y, z)

∂x2

≈ −Φ(x+ Lcell, y, z) + Φ(x− Lcell, y, z)− 2Φ(x, y, z)

L2
cell

,

where Lcell is the size of the central cell. For non-diagonal terms, e.g.:

Txy = −∂
2Φ(x, y, z)

∂x∂y

≈ − 1

4L2
cell

[Φ(x+ Lcell, y + Lcell, z) + Φ(x− Lcell, y − Lcell, z)

−Φ(x+ Lcell, y − Lcell, z)− Φ(x− Lcell, y + Lcell, z)] .

We then calculate all three eigenvalues of the tidal tensor, |λ1| ≥ |λ2| ≥ |λ3|,

which represents the intensity of the tidal field in the direction of the corresponding

eigenvectors. The tidal disruption timescale can then be referred from these eigen-

values.

4.2.2 Disruption timescales and cluster bound fraction

Following Eq. (4) in Gnedin et al. (2014), the tidal disruption timescale depends

strongly on the angular frequency of the cluster orbit around a point mass tidal field,

Ωtid:

ttid ≈ 10 Gyr

(
M(t)

2× 105M�

)2/3(
Ωtid

Ω�

)−1

, (4.3)

where Ω� ≈ 41.4 Gyr−1 is the angular frequency of the stellar orbits around the solar

neighborhood. Ωtid solely depends on the strength of the tidal field around a given

cluster. One option is to use the dynamical timescale within the Roche lobe of the
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cluster: Ωtid ≈
√
|λ1|/3.

Eq. (4.3) is obtained from N-body simulations of star clusters in strong tidal

fields. In the location where the tidal field is weak, e.g. when clusters are orbiting in

the outer halo, the internal evaporation dominates the overall mass loss rate. Again,

we follow Gnedin et al. (2014) to estimate the evaporation timescale:

tiso ≈ 17 Gyr

(
M(t)

2× 105M�

)
. (4.4)

Considering both the disruption in tidal fields and evaporation in isolation, the

time evolution of the bound mass is determined by Eq. (4.1). In the simulation, the

bound fraction is updated accordingly at each global timestep with timescale dt:

f i+1
dyn = exp

(
− dt

min(ttid, tiso)

)
f idyn, (4.5)

where i represent the i-th global timestep.

4.3 Metallicity of star clusters

In our simulations, cluster particles launch feedback after their formation in the

forms of depositing mass, momentum, energy, and metals to their ambient medium.

Instead of following the production of individual elements, to reduce the costs of

computing memory, we recorded the metal enrichment using two separate variables

that take into account the contributions from Type II and Type Ia supernovae, re-

spectively. The metallicity of specific elements is calculated by post-processing using

the preferred metal yield tables of Type II and Type Ia SNe (e.g. Woosley & Weaver,

1995; Nomoto et al., 1997, 2006). This simplified approach also gives us the flexibil-

ity to use different yield tables and compare the results without rerunning the whole

simulations.
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Comparing to Paper I and II, we change the maximum stellar mass that trigger

Type II SNe from 100M� to 40M�. This change has little effect on the strength

of energy and momentum feedback since the number of SNe is dominated by low

mass stars. However, because of the yield calculation in ART, this change leads to

a 0.3-0.5 dex difference on the total SNII metallicity for a single stellar populations

with a Kroupa IMF.

4.4 Preliminary results

4.4.1 Tidal field evolution over cosmic time

Figure 4.1 shows the time evolution of the tidal strength experienced by three star

clusters reside in the different locations of the simulation. The intensity of the tidal

field is represented by the absolute value of the maximum eigenvalue, |λ1|, of the tidal

tensor that is derived with the method described in Section 4.2.1.

We find that the strength of the tidal field is much higher than the typical value

around the solar neighborhood. There is also a clear trend that the tidal field becomes

weaker as the simulation runs toward lower redshift. The value of |λ1| decreases for

more than two orders of magnitude for all three particles located at different places

in the last snapshot. We emphasis that the weak tidal field at lower-z is not caused

by the decrease of the intrinsic tidal field of the galaxy itself, but is caused by the

evolution of galactocentric distance of these clusters. Due to the dynamical evolution,

star clusters formed from the dense GMCs in the galactic disk are gradually scattered

from the central part of the galaxy to its less dense outskirt. We also find a quasi-

periodical oscillation of |λ1| with a period of ∼ 100 Myr. This timescale is consistent

with the dynamical time of the galaxies and is caused by the orbital motion of clusters

around the galaxy.

Comparing the cluster in the outer part of the dark matter halo and on the disk,
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we find that the tidal field on the gaseous disk is stronger than that in the halo. We

also find that the tidal field in the satellite is smaller than that in the main disk.

These two differences are consistent with the gas density distribution in different part

of the simulations.

4.4.2 Evolution of the cluster mass function

The strong tidal field found in the above section, especially at early time after

clusters formed in the dense environments, suggests that the mass loss via tidal dis-

ruption is critical to the mass evolution and the survival probability of the model

clusters. Considering all processes of cluster mass losses mentioned in Section 4.2, we

examine the changes of the shape of cluster mass function in our simulations.

Figure 4.2 shows the time evolution of the mass function of the model clusters

in SFE200 run. We first clarify different cluster masses: cluster particle mass M ,

cluster initial mass Mi = finitialM , bound cluster mass at the last snapshot Mbound =

fboundM = finitialfsefdynM , and the projected cluster mass at z = 0 (Mz=0) that is

obtained from evolving Mbound from the last snapshot to z = 0 by considering only

the internal evaporation in Eq. (4.4). We find that the shape of the mass function

changes significantly from a power-law initial mass function to a log-normal mass

function at z = 0. We find that tidal disruption reduces the number of clusters larger

than 105M� dramatically and the evaporation remove all clusters with mass smaller

than ∼ 105M�. The log-normal shape of the projected mass function at z = 0

peaked at around 105M� is very similar to the shape of the mass function of GCs.

This similarity suggests that the young massive clusters formed at high redshift is a

promising candidate of the progenitor of GCs and dynamical disruption is the main

driver on transforming the shape of the mass function.
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4.4.3 Stellar mass-stellar metallicity relation

Before examining the metallicity distribution of star clusters in the simulations,

we first check the global metallicity evolution of the main galaxy across cosmic time.

In Figure 4.3, we show the stellar mass-stellar metallicity relation in different runs.

The stellar mass is obtained using all cluster particles within 0.5rvir of the main

galaxy, while the metallicity, [Z/H], is derived from the total metal mass from both

SNII and SNIa divided by the total stellar mass for clusters younger than 50 Myr.

Each line shows the evolution track of the main galaxy from z ∼ 10 − 1.5. We find

a strong positive trend that the higher the stellar mass, the higher the metallicity,

consistent with current observations of stellar metallicity in different types of galaxies

(e.g. Gallazzi et al., 2005; Kirby et al., 2013).

It should be noted that the trend presented here is a combination of the stellar

mass-stellar metallicity relation and its redshift evolution. However, due to the small

number of galaxies in our simulations, it is very hard to separate these two effects.

We also compare our results to that of the FIRE simulations. For example, the main

galaxy with stellar mass ∼ 1010M� at z ≈ 1.5 have total metallicity [Z/H] ∼ −0.45

for runs with εff > 0.5, similar to the value obtained in the FIRE simulations.

However, we find that run SFE50-SNR3 with weaker feedback shows a systematic

0.3 dex higher metallicity than runs with εff > 0.5 for stellar mass < 1010M�. For

stellar mass > 1010M�, its metallicity quickly rises to even super-solar. This is

caused by a strong star burst concentrated at the very center of the galaxy so that

the metallicity cannot be efficiently dispersed to larger radius due to the inefficient

stellar feedback. SFE10 also shows a slight metal-rich than runs with εff > 0.5, which

do not exhibit clear different among each other.

134



4.4.4 Metallicity distribution of survival clusters

Figure 4.4 shows the metallicity distribution of all clusters in the simulation box

at z = 1.5 for SFE200 run. The clusters more massive than 105M� shows a broad

range of metallicity from [Z/H] = -3.0 to -0.5. This range of metallicity is consistent

with the range of GCs in the Milky Way, although with some missing of most metal-

rich ones. Given that the simulations just reaches z = 1.5, we would expect more

metal-rich clusters can be created during the later epochs.

Interestingly, we find that dynamical evolution remove majority of the clusters

with metallicity between [Z/H] = −1.5 − −1.0 and generate a dip in the metallicity

distribution, which leads to a bimodal shape metallicity distribution.

4.5 Summary

We have developed an algorithm to calculate the strength of the tidal field ex-

perienced by star cluster particles formed in cosmological simulations. Based on the

tidal field of the realistic galactic environment in the simulations, the mass loss of

the model clusters by stellar evolution, internal evaporation, and tidal disruption is

estimated accurately in the simulation runtime. With high spatial resolution of the

simulations, the tidal interaction between clusters and dense structures on the gaseous

disk can be captured. We study the dynamical evolution of the massive star clusters

across cosmic time and characterize the evolution of its metallicity distribution. Our

main results are summarized here:

• The strength of the tidal field decreases as cluster particles orbiting away from

the central, dense part of the galaxy. In contrast to the result in Renaud et al.

(2017), tidal disruption in our simulations is crucial to the mass loss of clusters

during the first Gyr.

• With the combination of tidal disruption and internal evaporation, the shape of
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the bound cluster mass function changes from power-law to log-normal across

cosmic time. The obtained log-normal mass function is similar to the observed

mass function of GCs, suggesting that young massive clusters formed at high

redshifts are promising candidates of the progenitor of GCs.

• We find a scaling relation between the stellar mass of the main galaxy and

the average metallicity of young clusters at different epochs. This stellar mass-

stellar metallicity relation is consistent with observations of high-z galaxies and

other high resolution cosmological simulations.

• We find that the metallicity of massive clusters presents a wide range from

[Z/H] = −3.0−−0.5. Interestingly, dynamical evolution preferentially removes

clusters with median metallicity and generates a dip at [Z/H] = −1.5 − −1.0.

Thus a bimodal shape metallicity distribution is emerged for survival clusters,

very similar to the metallicity distribution of the Milky Way GC populations.
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Figure 4.1: Evolution of the absolute value of the maximum of the three eigenvalues, |λ1|,
defined in Section 4.2.1 for three representative cluster particles from z = 8− 1. The three
clusters are selected so that they locate in different regions of simulations at z ∼ 1: in the
outer part of the main halo (black), in the disk of the main galaxy (red), in the satellite
(blue). For reference, the intensity of the tidal field at the position of the Sun at present is
shown as the horizontal dashed line.
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Figure 4.2: Evolution of mass functions of all clusters in the whole simulation box from
the cluster initial mass function (Mi, black solid) to the bound mass function at z ≈ 1.5
(Mbound, red) and the mass function of clusters that evolve to z = 0 (Mz=0, blue). The
initial mass function of cluster particle is shown in black dashed line. The definition of the
different masses is described in Section 4.4.2.
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Figure 4.3: Stellar mass-metallicity relation of the main galaxy for runs with different
star formation and feedback parameters. The stellar mass of the main galaxy is the total
mass of cluster particles within 0.5rvir and the stellar metallicity is the mean metallicity of
cluster particles younger than 50 Myr for a given epoch. For reference, the stellar mass-
stellar metallicity relation at z = 0, 1.5, 6 from the FIRE simulations (Ma et al., 2015) is
overplotted in the same figure.
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z ≈ 1.5 (red), clusters that survive at z = 0 considering only internal evaporation in Eq. (4.4)
from z = 1.5− 0.
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CHAPTER V

Modeling the Formation of Globular Cluster

Systems in the Virgo Cluster

The mass distribution and chemical composition of globular cluster (GC) systems

preserve fossil record of the early stages of galaxy formation. The observed distribu-

tion of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey

(ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal

metallicity distribution. We present a simple model for the formation and disruption

of GCs that aims to match the ACSVCS data. This model tests the hypothesis that

GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity

of their hosts. To trace merger events, we use halo merger trees extracted from a large

cosmological N-body simulation. We select 20 halos in the mass range of 2× 1012 to

7 × 1013M� and match them to 19 Virgo galaxies with K-band luminosity between

3× 1010 and 3× 1011 L�. To set the [Fe/H] abundances, we use an empirical galaxy

mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches

the observed cluster metallicity distribution. A characteristic bimodal shape appears

because metal-rich GCs are produced by late mergers between massive halos, while

metal-poor GCs are produced by collective merger activities of less massive hosts at

early times. The model outcome is robust to alternative prescriptions for cluster for-

mation rate throughout cosmic time, but a gradual evolution of the mass-metallicity
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relation with redshift appears to be necessary to match the observed cluster metal-

licities. We also affirm the age-metallicity relation, predicted by an earlier model, in

which metal-rich clusters are systematically several billion years younger than their

metal-poor counterparts.

5.1 Introduction

Globular cluster (GC) systems have been found in various types of galaxies. Be-

cause of their old age and compact structure, GCs are believed to carry information

on galaxy assembly history at early times (e.g., Brodie & Strader, 2006). In partic-

ular, the colors and metallicities of GC systems provide a unique record of the early

star formation and chemical enrichment in their host galaxies. One of the remaining

puzzles is the origin of the commonly seen bimodal distribution of GC colors, within

galaxies ranging from spirals to giant ellipticals. The bimodality in color is indicative

of bimodality in metallicity, which has been used to separate GCs into two subpop-

ulations: metal-poor and metal-rich (Harris, 2001; Peng et al., 2006; Harris et al.,

2006).

In general, GCs have systematically lower metallicity than the field stars of their

host galaxy. Therefore, they must have formed earlier than the bulk of stars, at least

from the chemical evolution point of view. Early galaxies were smaller and less metal-

enriched than those of today. Motivated by this fact, we test a hypothesis that major

mergers of gas-rich galaxies (which happened more frequently at high redshift, in the

hierarchical galaxy formation framework) are predominantly responsible for the for-

mation of GCs. Ashman & Zepf (1992) predicted the metallicity bimodality resulting

from galaxy mergers even before observations revealed it. In their model, the two

subpopulations can be produced by distinct star-forming events, which could natu-

rally occur in hierarchical structure formation. Based on this framework, Muratov &

Gnedin (2010, hereafter MG10) modeled the metallicity distribution of Galactic GCs
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using the mass assembly history from a cosmological N-body simulation, coupled with

observational scaling relations for galaxy stellar mass and metallicity. This model in-

corporates both the formation and disruption of GCs in the progenitor galaxies of

a host halo with the mass similar to the Milky Way. The model has successfully

reproduced both the bimodal metallicity distribution and the log-normal distribution

of cluster mass.

During the past decade, observations of GC systems outside the Local Group have

advanced significantly with the Hubble Space Telescope (HST). A comprehensive

study of galaxies in the Virgo cluster, the ACS Virgo Cluster Survey (ACSVCS),

examined the photometric properties of 100 early-type galaxies, along with their GC

systems. Multi-modal GC distributions are present in all target galaxies with absolute

magnitude of −22 < MB < −15. The peak metallicities of the two main modes

follow a systematic (but weak) trend with galaxy luminosity, implying a possible

common origin of these subpopulations. This data set gives us a good opportunity

to investigate the formation of GC systems in massive elliptical galaxies.

The GC system in the Milky Way shows only weak bimodality: 30% of the clusters

are in the metal-rich group. In contrast, giant Virgo ellipticals have comparable

numbers of red and blue clusters, and therefore, they present better tests for the

origin of the metallicity distribution.

In this paper, we extend the model of MG10 to more massive early-type galax-

ies and adopt the mass assembly history from a large cosmological Millennium-II

(MM-II) simulation. The model is based on the calculation of the galaxy cold gas

mass, the mass-metallicity relation (MMR), the cluster fraction, and the initial mass

function (IMF), which we describe in Section 5.2. The final model is even simpler

than MG10 and has only four adjustable parameters. In Section 5.3, we add the

dynamical disruption of individual clusters, by considering two-body relaxation and

stellar evolution. We apply this updated model to 20 halos selected from MM-II, with
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total mass in the range of 1012 − 1014M�, appropriate for massive elliptical galaxies.

We also investigate variants of our model in Section 5.4. In Section 5.5 we compare

the model cluster populations with the ACSVCS observations of 19 corresponding

galaxies. We summarize and discuss the main results in Sections 5.6 and ??.

5.2 Model for Globular Cluster Formation

We update the framework of the MG10 model using several independent realiza-

tions of halo assembly history and recent observational relations for galaxy stellar

and gas masses. Halo merger trees are obtained from the Millennium Database1.

For merger events that meet the required formation criteria, clusters are created by

Monte Carlo sampling at the epoch of the merger and share the metallicity of their

host galaxies, with an additional scatter. Both central and satellite halos are followed

in the model, and clusters formed within both are collected into the final system. The

cluster formation efficiency is linearly proportional to the mass of available cold gas,

which in turn is set by the halo mass and redshift. Galaxy metallicity is set by the

observed stellar MMR. All the details of the model are described below.

5.2.1 Mass Assembly History

We construct the mass assembly history of dark matter halos using the MM-II

simulation (Boylan-Kolchin et al., 2009b). MM-II is a collisionless simulation within

a 100h−1 Mpc box, which contains halos up to ∼ 1015M�. The particle mass, 6.9 ×

106M�, makes it possible to trace the formation of halos as small as ∼ 109M�.

The cosmological parameters used in the simulation, and adopted in this paper, are

ΩΛ = 0.75, Ωm = 0.25, h = 0.73, and σ8 = 0.9.

At first we tried to use the halo catalog of the original Millennium simulation

(Springel et al., 2005) but found that its lower mass resolution (8.6 × 108M�) does

1http://gavo.mpa-garching.mpg.de/Millennium
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not allow us to track satellite halos less massive than 1010M�. Since 109M� halos

can still contribute to forming 105M� star clusters that would likely survive to the

present day (see Equation (5.5)), it is more accurate to use the MM-II catalogs to

capture all merger events capable of producing massive star clusters.

The masses of central and satellite progenitors are collected at all 67 outputs

from z = 127 to z = 0. Parent and child halos are connected with each other in

the database by the identifiers descendantId and lastProgenitorId. We apply

the tags firstProgenitorId and nextProgenitorId to find the most massive and

second most massive progenitors of a given halo, and use their masses to calculate

the merger ratio, Rm. This halo merger tree is the starting point of our model.

Although we do not require the halos specifically to be located in a Virgo-sized

cluster, it should not bias our comparison with the ACSVCS galaxies. Cho et al.

(2012) showed that the colors and luminosities of GC systems of early-type galaxies

in low-density regions are similar to those in the Virgo cluster. While the environment

has a small effect via the morphology-density relation, the properties of GC systems

are primarily dominated by the host galaxy mass.

5.2.2 Stellar and Gas Masses

To all progenitors in a given merger tree, we assign the mass of stars and cold gas

according to the following analytical prescriptions.

The stellar mass – halo mass relation, M∗(Mh, z), is based on the abundance-

matching technique, using a parameterization of Behroozi et al. (2013b, their Equa-

tion (3)) for the Sloan Digital Sky Survey (SDSS) measurements of the galaxy lumi-

nosity function.

Note that Kravtsov et al. (2014) have recently found that the total luminosity,

and stellar mass, of central galaxies in clusters (with Mh > 1014M�) has been un-

derestimated in the SDSS photometry pipeline, mainly due to over-subtraction of the
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background light in extended galactic envelopes. The correction is substantial and

can reach a factor of 2 − 4 at M∗ & 1012M�. The magnitude of the corresponding

correction at z > 0 is not yet known. We have decided not to include this correction,

because our sample contains only one central cluster galaxy, and more importantly,

we use the galaxy stellar mass only as a proxy for estimating the cold gas mass and

metallicity from the observed scaling relations, as we describe below. These relations

were derived for the stellar luminosities measured by the SDSS. In order to apply these

relations consistently, we use the Behroozi et al. (2013b) equations as published.

To derive the mass of cold gas, Mg, in a galaxy with stellar mass M∗, we combine

recent results from the ALFALFA survey (Papastergis et al., 2012) with additional

Arecibo observations of nearby starforming galaxies by J. Bradford & M. Geha (in

preparation). These observations measure the mass of neutral HI gas, to which we add

the corresponding HeI mass. We take the measured Mg as a proxy for the reservoir of

gas available for star formation. The data at z ≈ 0 show that the mean ratio Mg/M∗

at a given stellar mass exhibits a bend at M∗ ≈ 109M�, and cannot be described by

a single power law. A satisfactory fit is provided by a double power law:

η ≡ Mg

M∗
≈ 1.8

(
M∗

109M�

)−α(M∗)

, (5.1)

with a steeper slope α = 0.68 for M∗ > 109M�, and a shallower slope α = 0.19 for

the less massive galaxies with M∗ < 109M�. The high-mass slope is consistent with

the relation used by MG10 (α = 0.7), but for dwarf galaxies the gas mass is reduced

relative to the MG10 prescription.

The amount of cold gas in high-redshift galaxies is very uncertain. We can rewrite

the gas-to-stellar fraction as η(z) = sSFR(z)× tdep(z), where sSFR ≡ SFR/M∗ is the

specific star formation rate (SFR), and tdep ≡Mg/SFR is the gas depletion timescale.

The empirical evolution of the sSFR is consistent with sSFR(z) ∝ (1 + z)2.8 up to
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z ∼ 2 (Magdis et al., 2012; Tacconi et al., 2013), while tdep(z) is consistent with being

approximately constant for starforming galaxies at all redshifts (e.g., Bigiel et al.,

2011; Feldmann, 2013). Thus we obtain

η(z) = η0 (1 + z)n, (5.2)

with n = 2.8.

An alternative derivation by Tacconi et al. (2013), from a CO survey of molecular

gas of actively star-forming galaxies at z ≈ 1 − 3, suggests a variable gas depletion

timescale, decreasing roughly as tdep(z) ≈ 1.5 Gyr (1 + z)−1, which in turn implies

η(z) = η0 (1 + z)1.8. Given the current uncertainty in the gas evolution, when con-

structing our model we consider both possibilities, n = 2.8 and n = 1.8.

At even higher redshift (z & 2−3), there is evidence that the gas fraction saturates

at a maximum value (e.g., Magdis et al., 2012). Accordingly, we limit η for very high

redshifts: η(z > 3) = η(z = 3).

In addition to the mean relations given by Equations ((5.1) and (5.2)), we include

random scatter of 0.3 dex to account for the combined dispersion of the local MMR,

specific SFR, and gas depletion time.

The stellar and gas mass fractions in a given halo are then defined as:

f∗ ≡
M∗
fbMh

, fg ≡
Mg

fbMh

(5.3)

where fb ≈ 0.16 is the universal baryon fraction (e.g., Hinshaw et al., 2013).

A final constraint of the mass fractions is that the sum of the two cannot exceed

the total accreted baryon fraction, fin:

f∗(z) + fg(z) ≤ fin(z), (5.4)
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where fin ≤ 1 is limited by photoheating by the extragalactic UV background, as

described in MG10. In cases when the baryonic fraction (f∗ + fg) calculated from

Equations (5.1) and –(5.2) exceeds fin, we revise the gas fraction to be fg,revised ≡

fin − f∗. This constraint only affects halos less massive than Mh ∼ 1010M�.

Figure 5.1 shows our derived gas and stellar fractions of halos ranging from

109.5M� to 1014M� at redshifts z = 0 − 5. The new prescription is similar, but

not identical, to that in MG10. The stellar fraction reach its maximum for the Milky

Way-sized halos Mh ∼ 1012M�, and decreases at both higher and lower mass. The

new M∗ −Mh relation also depends much less strongly on redshift than that used in

MG10.

The evolution of the gas fraction with redshift for the case n = 2.8 is faster than

what is needed to account for the increase of stellar mass of galaxies at z . 3, resulting

from the abundance matching method (Figure 4 of Behroozi et al., 2013b). We will

test the sensitivity of our results to this prescription by considering an alternative

calculation of the cold gas mass in Section 5.4.2.

5.2.3 Cluster Formation

In our model, clusters are formed during epochs of enhanced star formation fol-

lowing halo mergers. We trace both mergers between a satellite and a central halo, as

well as mergers between two satellites. For a halo with mass Mh,i at the ith simula-

tion output, the mass of its main progenitor and (possible) second largest progenitor

at output i − 1 are Mh,i−1 and Mh2,i−1, respectively. The merger ratio is defined

as Rm = Mh2,i−1/Mh,i−1, if the second progenitor is found. Otherwise, we use the

differential increase in halo mass as a proxy: Rm = (Mh,i −Mh,i−1)/Mh,i−1.

A cluster formation event is triggered by a gas-rich major merger, when the merger

ratio exceeds a threshold value: Rm > p3. We expect the threshold to be in the range

of p3 = 0.1−0.5 to have sufficient influence on the structure of the interstellar medium
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Figure 5.1: Adopted relation for the fraction of galaxy gas mass (solid lines) and stellar
mass (dashed lines), in units of the universal baryon fraction (Equations (5.1)–(5.3), with
n = 2.8) vs. halo mass, at several redshifts: z = 0 (black), z = 1 (red), z = 3 (blue), z = 5
(green).

that could trigger condensation of giant molecular clouds, but the exact value of p3

is an adjustable parameter of the model.

The MG10 model used an additional parameter to set a minimum cold gas fraction

of the merging halos (at the level of 4%). We have experimented with including this

constraint, but found that it is automatically satisfied by the requirement to have

enough gas mass to form a cluster with M > 105M�, according to Equation (5.5).

Any value of the gas fraction threshold below 10% gave similar results, and therefore,

we set it to zero and eliminate it as a model parameter.

In another departure from the MG10 model, we do not include a “Case-2” for-

149



mation channel here, whereby clusters could form without a detected merger but in

extremely gas-rich galaxies with a cold gas fraction above ≈ 98%. Instead, in Sec-

tion 5.4.3 we will investigate an alternative scenario for continuous cluster formation.

The cluster formation rate scales approximately linearly with the mass of cold

gas available for star formation, as indicated by detailed hydrodynamic simulations

(Kravtsov & Gnedin, 2005):

MGC = 3× 10−5p2 f
−1
b Mg, (5.5)

where p2 ∼ 1, the normalization factor, is another adjustable parameter in our model.

This relation gives us the total mass of all GCs formed in a given galaxy at a given

epoch. The normalization factor p2 is necessary because the galaxy formation cannot

be smoothly captured by processing of discrete outputs of the MM-II simulation.

Note that the definition of p2 differs from MG10, where it was written as 1+p2. Here

we explore a wider range of this parameter, allowing for p2 < 1.

The total mass MGC is then distributed into individual GCs by using a Monte

Carlo method and adopting a power-law initial cluster mass function, dN/dM =

M0M
−2. The minimum mass of individual clusters is set to Mmin = 105M�, below

which a typical cluster is expected to be completely evaporated over the Hubble time.

After fixing MGC and Mmin, the maximum cluster mass Mmax (also equal to the nor-

malizationM0) is evaluated from the integral constraintMGC = Mmax ln(Mmax/Mmin).

5.2.4 Mass-Metallicity Relation of Host Galaxies

The metallicity of individual model GC is determined by the metallicity of the

host galaxy at the epoch when the GC is created. The stellar MMR of galaxies can

be used to estimate the iron abundance of the host. Based on the observations in the

Local Group, the MG10 model adopted a linear relation between the iron abundance
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Figure 5.2: Adopted mass-metallicity relation at redshift zero (solid line) and scatter
σmet = 0.2 dex (light shading). Points with errorbars represent the metallicity of the Virgo
cluster galaxies, derived from their (g − z) color (see details in Section 5.2.4).

and log stellar mass at zero redshift: [Fe/H] = 0.4 log(M∗/1010.5 M�), along with a

gradual evolution of this relation with redshift.

Recent observational evidence suggests that the MMR is better described as a

two-dimensional projection of a three-dimensional fundamental metallicity relation

(FMR) of stellar mass, metallicity, and SFR (e.g. Lara-López et al., 2010, 2013), or

alternatively, HI gas mass (Bothwell et al., 2013). No additional redshift evolution is

needed. By combining this FMR with the evolution of the gas-to-stellar mass ratio,

we can derive an explicit redshift-dependence of the projected MMR. As suggested

by Bothwell et al. (2013), a new variable (logM∗− 0.35 logMg) minimizes the scatter
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in the FMR. In the notation of our Equation (5.2) this variable can be rewritten as

(logM∗ − 0.54n log(1 + z)). Substituting it for logM∗ in the local MMR, we obtain

the evolving relation:

[Fe/H] = 0.4 log

(
M∗

1010.5 M�

)
− 0.216 n log(1 + z). (5.6)

The power-law slope, and amount of evolution to z ≈ 0.7, is consistent with the

recent measurements of Gallazzi et al. (2014). The redshift-dependence of our MMR

is also consistent with the observed evolution of the gas-phase (O/H) abundance in

the AGES survey (Moustakas et al., 2011) and 3D-HST survey (Cullen et al., 2014):

about 0.3 dex lower metallicity at z ≈ 2 relative to z = 0, at a fixed stellar mass. Zahid

et al. (2014) derived somewhat different slopes of the mass and redshift dependence

using the DEEP2 and COSMOS data, but the average amount of evolution to z ≈ 1.6

is the same as in our relation, 0.25 dex.

It should be noted that the linear scaling with log stellar mass is not valid for very

massive galaxies, whose metallicity tends to saturate at a supersolar value. Accord-

ingly, in our model we limit the galaxy metallicity to the maximum value [Fe/H] = 0.2

for M∗ > 1011M�.

Figure 5.2 shows our adopted MMR, along with derived metallicities of the Virgo

cluster galaxies. The latter are calculated from the luminosity-weighted (g− z) color

using an empirical color-metallicity relation obtained by Peng et al. (2006), Equa-

tion (5.7) below, from the Galactic GC data. Applying this relation to the Virgo

galaxies containing a mixture of stellar populations is justified because the resulting

metallicities are clustered around the observed galactic MMR, without systematic

bias. The stellar mass of these galaxies is converted from the K-band luminosity and

the color-dependent mass-to-light ratio from Bell et al. (2003).

Kirby et al. (2013) showed that nearby dIrr galaxies follow the same mean MMR
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Figure 5.3: Color-metallicity relation of Galactic (open circles) and extragalactic (squares)
GCs with spectroscopically measured [Fe/H]. Symbols show the (g − z) color corrected
for the evolutionary mass dependence, described by Equation (5.8) and corresponding text
in Section 5.2.5. Vertical lines leading to the symbols show the amount and direction of
this correction. Our new color-metallicity relation is overplotted (red line; Equation (5.9))
together with the other relations derived by Peng et al. (2006) (black solid line) and Usher
et al. (2012) (black dashed line).

as dSph galaxies, with the power-law slope ≈ 0.3. The normalization of their MMR

matches our MMR at M∗ ≈ 108M�, but falls a little lower for higher mass galaxies.

Given the considerable dispersion in the derived metallicities of the local and Virgo

cluster galaxies, the two relations are not necessarily inconsistent.
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5.2.5 Revisiting the GC Color-Metallicity Relation

The metallicity distribution of our model GCs should be compared with the ob-

served populations. Unfortunately, spectroscopic measurements of GC metallicity

outside the Local Group are rare. A common approach for Virgo cluster galaxies is

to convert the observed GC colors via an empirical color-metallicity relation. Peng

et al. (2006) derived such an empirical relation based on the calibration with the

Galactic GCs and the additional clusters in Virgo galaxies M49 and M87 with avail-

able spectroscopy. The relation is nonlinear, with a steeper slope for metal-poor

clusters ([Fe/H] < −0.8):

[Fe/H] = −6.21 + 5.14(g − z), if 0.70 < (g − z) < 1.05

[Fe/H] = −2.75 + 1.83(g − z), if 1.05 < (g − z) < 1.45 (5.7)

Usher et al. (2012) used calcium triplet-based spectroscopy to determine the metal-

licity of 903 GCs in 11 early-type galaxies. They found a similarly nonlinear color-

metallicity relation but with a different break point and slopes. Most recently, Van-

derbeke et al. (2014) obtained updated SDSS photometry of 96 Galactic GCs and

suggested a cubic polynomial fit for the relation.

However, based on the models for GC evolution, Goudfrooij & Kruijssen (2014)

point out that as clusters lose preferentially low-mass (red) stars by evaporation,

their color tends to get bluer. The process is driven by two-body relaxation, which is

faster in lower mass clusters. This introduces a possible mass-dependent bias in the

color-metallicity relation. To test for this bias, we took the data from Vanderbeke

et al. (2014) for 96 Galactic GCs with the metallicity from the updated Harris (1996)

catalog, and added the clusters in M49 and M87 from Peng et al. (2006). The mass of

an individual GC can be estimated by using the color-dependent mass-to-light ratio

from Bell et al. (2003): log(M/Lz) = 0.322 (g−z)−0.171. We fit a linear model of two
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variables, (g− z) = β0 +β1 [Fe/H] +β2 log M, and test whether the mass dependence

is significant based on the ANOVA variance method. The p-value of the test statistic

is . 10−5, which means the null hypothesis that the color is independent of mass

can be safely rejected. Thus the available data support the theoretical expectation

of Goudfrooij & Kruijssen (2014) that low-mass GCs develop a ”blue-shift” relative

to high-mass GCs. This evolutionary change of color is in addition to the gradual

reddening due to the passive stellar evolution, which is independent of cluster mass.

In order to use the color-metallicity relation to infer [Fe/H] of the observed clusters,

we need to ”undo” this evolutionary effect. We introduce a simple correction to the

color

(g − z)cor = (g − z)0 − 0.03 log

(
M

106M�

)
(5.8)

that minimizes the mass-dependence of the color-metallicity relation. Then we refit

the nonlinear relation and obtain

(g − z)cor = 0.21([Fe/H] + 0.82)− 1.07, if [Fe/H] < −0.82

(g − z)cor = 0.41([Fe/H] + 0.82)− 1.07, if [Fe/H] ≥ −0.82 (5.9)

shown in Figure 5.3. We use this relation to determine GC metallicities in the Virgo

galaxies and compare them to our model.

5.3 Dynamical Disruption

Although GCs are relatively stable and long-lived self-gravitating systems, they

still gradually lose stars and dissolve into the field. In this paper, we include two

sources of the mass loss: the evaporation of stars via two-body relaxation, which

reduces the number of stars N∗ within the cluster, and stellar winds and explosions,

which reduce the average stellar mass m̄. These two mechanisms can be quantified

155



by the mass continuity equation:

1

M

dM

dt
≡ 1

N∗

dN∗
dt

+
1

m̄

dm̄

dt
= −νev(M)− νse

m̄(0)

m̄
, (5.10)

where νev and νse are the evaporation rate and mass-loss rate due to stellar evolution,

respectively. The time-dependent mass-loss rate νse for a Kroupa (2001) IMF is

derived in Prieto & Gnedin (2008). The cluster evaporation rate is estimated via the

half-mass relaxation time:

νev =
ξe
trh

=
7.25 ξe m̄G1/2 ln Λ

M1/2R
3/2
h

, (5.11)

where ξe = 0.033 is the escape fraction of stars per relaxation time, Rh is the half-mass

radius, m̄ = 0.87M� is the average stellar mass for a Kroupa IMF, and ln Λ = 12

(e.g., Spitzer, 1987).

By assuming that the stellar evolution mass-loss timescale is much shorter than

the evaporation timescale, the decrease of the initial cluster mass with time can be

calculated as

M(t) = M(0)

[
1−

∫ t

0

νse(t
′)dt′

] [
1− 1 + 3δ

2
νev,0 t

]2/(1+3δ)

, (5.12)

where we take δ = 2/3, as in MG10. The above parameterization provides a good fit

to the results of direct N-body simulations of tidally limited clusters.

5.4 Alternative Models

Thus far, we have constructed a model for cluster formation during gas-rich merger

events. We will refer to the above prescription as Model 1. There are three major

uncertainties in this model: the evolution of the MMR with cosmic time (Equa-

tion (5.6)), the evolution of the cold gas fraction (Equation (5.2)), and the need for
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major mergers to trigger cluster formation.

5.4.1 Model 2: No Metallicity Evolution

Although there is a consensus that more massive galaxies have higher metallicity,

recent studies suggest that the MMR is more complex than was expected before.

As summarized in Section 5.2.4, there exists a fundamental plane for star-forming

galaxies in the three-dimensional parameter space: SFR, metallicity, and stellar mass.

On the other hand, scarcity of spectroscopic observations of high-redshift galaxies

leaves the evolution of the MMR with time very uncertain. In order to test the

sensitivity of our model to this relation, we consider an extreme case of no-evolution

and apply the local MMR, [Fe/H] = 0.4 log(M∗/1010.5 M�), at all redshifts. We keep

the rest of the prescriptions as in Model 1, and refer to this new case as Model 2.

5.4.2 Model 3: Gas Mass from SFR

In Model 1, the gas mass-stellar mass relation is used to derive the cold gas

fraction of the halos. An alternative way of determining the gas mass is to use the

gas depletion timescale, defined as the ratio between the cold gas mass and SFR,

tdep ≡ Mg/SFR. Bigiel et al. (2011) found a constant timescale τDep ≈ 2.35 Gyr,

with 1σ scatter of 0.24 dex. This depletion time, together with the SFR required

to match the growth of the stellar mass of galaxies (Behroozi et al., 2013a), can be

used to determine the amount of gas available for star formation. Note that such

an empirical derivation of the SFR is independent of the direct measurements in

Lyman-break galaxies, discussed in Section 5.2.2. In particular, it leads to much

lower gas fraction in halos with Mh < 1011M� at redshift z > 2, relative to that

in Model 1. These halos are crucial for cluster formation, as they are the typical

hosts of the metal-poor GC population. Observational surveys of low-mass high-

redshift galaxies are greatly incomplete and may be underestimating the stellar mass
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growth. To correct for the possible incompleteness, we set the gas fraction in halos

with Mh < 1011M� at z > 2 to be the same as in a 1011M� halo at z = 2. We keep

the rest of the prescriptions as in Model 1, and refer to this new case as Model 3.

5.4.3 Model 4: No Mergers

Since all of the models above are based on the assumption that GCs are formed in

gas-rich mergers, one may ask whether the merger scenario is a required channel for

cluster formation or just one of several possible ways to reproduce the GC bimodality.

Another plausible formation channel is during galactic starbursts, characterized by

enhanced SFR, regardless of whether they are caused by mergers or continuous gas

accretion. In this starburst case, the trigger for cluster formation can be either an

SFR or specific SFR exceeding a critical threshold, SFRcrit or sSFRcrit. We calculate

the sSFR (SFR) for the halos in the whole merger tree from the differential stellar

mass growth, as described in Behroozi et al. (2013a), and trigger cluster formation

when the sSFR (SFR) exceeds the threshold. The latter is a new parameter of this

alternative model, to which we refer as Model 4.

5.5 Results

5.5.1 Galaxy-Halo Matching

The above prescriptions allow us to create GCs within the MM-II halos with dif-

ferent mass assembly histories. We then compare the metallicity distribution of the

model GC population to the observed GC systems in the Virgo cluster galaxies. In

order to match the galaxies to the halos, we take the stellar mass of the Virgo galaxies,

obtained from their color and K-band magnitude (Section 5.2.4), and calculate the

expected mass of their halo using the stellar mass-halo mass relation (Behroozi et al.,

2013b). As discussed in Section 5.2.2, this relation may be based on an underesti-
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Figure 5.4: K-band apparent magnitude vs. derived halo mass for 19 Virgo galaxies, using
the abundance matching technique (see Section 5.5.1). Red horizontal lines show the masses
of the 20 halos selected from the MM-II simulation.

mated stellar mass of giant galaxies, which would lead to an overestimate of derived

halo mass. To correct for this, we set the maximum halo mass at ∼ 1014M�. The

photometry of the Virgo galaxies, such as K-band magnitude and color, are from the

2MASS catalog provided on the ACSVCS Website2. The effective radii Re are ob-

tained by fitting the Sersic profile (Ferrarese et al., 2006). These data are reproduced

in Table 5.1, along with the derived stellar and halo mass. The GC Virgo catalogs

with the SDSS g and z-band magnitudes are from Jordán et al. (2009).

Because of the uncertainty in both the mass-to-light ratio and M∗ −Mh relation,

2https://www.astrosci.ca/users/VCSFCS/Home.html
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we add random scatter (0.1 dex or 0.2 dex) for each conversion step. The number of

matching galaxy-halo pairs increases with increasing scatter, but the best-fit model

parameters are not sensitive to the exact value. The relation between the observed

K-band magnitude and calculated halo mass for the Virgo galaxies is plotted in Fig-

ure 5.4, together with the MM-II halos. We selected only halos with Mh > 1012M�

to model massive elliptical galaxies that contain largest samples of clusters.

The galaxy-halo matching procedure is straightforward. We match each galaxy

to all MM-II halos that fall within its calculated mass range, shown by the error

bars in Figure 5.4 and listed in Table 5.1. For each pair, we compare the model

and observed GC metallicity distributions using the Kolmogorov-Smirnov (KS) test.

Then we combine the p-values of the KS probability for all pairs into a joint set and

calculate the fraction of pairs with the p-value larger than 0.01. This fraction defines

the ”goodness” of our model, G0.01. The 1% level of the KS probability is generally

considered to indicate that the model is not inconsistent with the data. A ”goodness”

value of G0.01 = 50% means that half of the model realizations are consistent with

the observed GC metallicities. The best-fit model parameters are determined by

maximizing the ”goodness” value.

5.5.2 Exploration of the Parameter Space

The adjustable model parameters are summarized in Table 5.2. In order to explore

the space of parameters p2 and p3, we calculate G0.01 on a two-dimensional grid

spanning the range of 1 ≤ p2 ≤ 5, 0 < p3 ≤ 0.5. Smaller values of the formation rate

factor, p2 < 1, lead to an insufficient amount of gas to form enough clusters to match

the observations. At first, we fix the other two parameters, σmet = 0.2 and n = 2.8,

and investigate them in detail later.

Figure 5.5 shows the contours of G0.01, up to the maximum value of about 40%.

This is a significant enough fraction of galaxy-halo pairs with the model GC metal-
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Table 5.1: Host Galaxy Properties

VCC ID K mag (g − z) Re (kpc) M∗ (1010M�) Mh (1012M�)

1226 5.51 1.60 17.0 31.0 50− 198
1316 5.90 1.60 13.7 21.7 50− 198
1978 5.83 1.62 8.0 23.3 50− 198
881 6.28 1.57 35.3 15.3 37− 149
798 6.26 1.38 12.9 15.4 38− 150
763 6.35 1.56 12.7 14.6 30− 119
731 6.80 1.53 9.9 9.4 5.4− 21

1535 6.55 1.59 10.0 11.9 12.6− 50
1903 6.87 1.53 10.1 9.0 4.6− 18
1632 6.86 1.61 6.9 9.1 4.9− 19
1231 7.27 1.53 1.5 6.2 1.7− 6.7
2095 7.45 1.44 1.1 5.2 1.2− 4.8
1154 7.21 1.54 2.4 6.6 2.0− 8.0
1062 7.38 1.53 1.1 5.5 1.3− 5.3
2092 7.58 1.50 2.5 4.7 1.0− 4.1
369 7.94 1.57 0.6 3.4 0.64− 2.5
759 7.81 1.54 2.2 3.8 0.73− 2.9

1692 7.76 1.53 0.8 3.9 0.76− 3.0
1030 7.39 1.49 0.8 5.4 1.3− 5.2

Table 5.2: Fiducial Parameters of Model 1

Parameter Best Range Effect
value considered

σmet 0.2 0.1− 0.2 Scatter of MMR
p2 2.6 1− 5 Normalization of cluster formation rate
p3 0.33 0− 0.5 Minimum merger ratio
n 2.8 1.8− 2.8 Index of cold gas evolution
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Figure 5.5: ”Goodness” contours on the p2 − p3 parameter plane for Model 1, with fixed
σmet = 0.2 and n = 2.8. For example, a contour marked with ”0.3” encloses the range
of parameters with G0.01 > 30%. Shaded regions show the number of galaxies with the
size of their GC system sufficiently similar to the observed (see Section 5.5.2 for details).
The fiducial model with the best-fit parameters p2 = 2.6 and p3 = 0.33 is labeled by a red
star. This model has both the highest G0.01 value and the largest number of sufficient GC
systems.

licities matching the observations.

In addition to the metallicity distribution, an important statistic is the total num-

ber of clusters surviving dynamical disruption to redshift zero, that is, the size of the

current GC system. It would be very unlikely for any model to produce exactly the

observed number of clusters in a given galaxy. Therefore, we introduce a ”tolerance”

of 0.2 dex on the logarithm of the ratio of the number of model clusters to observed

clusters. If | log(NGC,model/NGC,obs)| < 0.2, we consider it a ”sufficient” GC system.
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Figure 5.6: Comparison between the observed and modeled GC metallicity distributions.
Different panels represent the halos of different mass, from largest to smallest, and their
matched Virgo cluster galaxies. In the upper left panel, we overplot the cumulative distri-
butions to show that the model is consistent with the data. The KS test probabilities for
the four panels are pKS ≈ 1%, 4%, 49%, 7%, in order of decreasing mass.

Shaded regions in Figure 5.5 show the number of galaxies with the sufficient GC

systems. The darkest shade indicates an almost complete match: 16, 17, 18, or 19

systems for our total sample of 19.

The region with the highest numbers of sufficient systems lies near the line pointing

from (p2, p3 = 1.0, 0.2) to (4.5, 0.35). This trend can be easily understood: the larger

the boosting factor p2, the more GCs are created in the model, which need to be

compensated by fewer merger events, and therefore, larger threshold ratio p3.

The number of sufficient systems Ns helps us select the parameters of the best-
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fit fiducial model. There are two sets of parameters with equally high goodness

G0.01 ≈ 40%: (p2, p3 = 2.6, 0.33) marked by a red star, and (1.0, 0.48). However, the

second set has significantly lower Ns, and consequently, we discard it.

We have also varied the scatter of the MMR σmet = 0.1 & 0.2, and found that

σmet = 0.2 gives a higher goodness value, simply because it can spread the metallicity

range to reach the low ([Fe/H] < −2) and high ([Fe/H] > 0) tails of the observed

distribution.

The index of the cold gas fraction n (Equation (5.2)) is suggested to have two

values: 1.8 and 2.8, as we discussed in Section 5.2.2. Intuitively, n = 1.8 will lead to

a slower increase of fg toward high redshift, which would suppress the formation of

GCs. It will also slow down the metallicity evolution, and in turn bring closer the

red and blue peaks of the [Fe/H] distribution. We have repeated the model-selection

procedure for the n = 1.8 case and explored the goodness contours in the p2−p3 plane,

for different σmet. The largest goodness value is only G0.01 = 0.16, much smaller than

that in the n = 2.8 case. Thus we conclude that n = 2.8 is favored in our model.

5.5.3 Removal of GCs of Satellite Galaxies

A caveat to our comparison is that the observed samples cover only inner parts

of the Virgo galaxies. The ACSVCS data were obtained from single pointings of

the HST/ACS camera with the field of view 202′′ × 202′′, which corresponds to

∼ 16 × 16 kpc at the distance of the Virgo cluster. For 8 of our 19 galaxies, this

scale lies within the effective diameter of the stellar distribution and therefore many

GCs may be located outside. Peng et al. (2008) extrapolated the GC number den-

sity profiles to larger distances to estimate total counts and found that blue clusters

extend further out than red clusters, as is typical of nearby GC systems. Unfortu-

nately, we cannot extrapolate the missing cluster metallicities. Instead, we can reduce

our model samples to match the observational setup as close as possible. Since we
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Figure 5.7: Peak metallicities of the blue and red cluster subpopulations within the Virgo
galaxies (symbols V) and the fiducial Model 1 (squares) and Model 3 (circles) halos. Solid
lines show linear fit to Model 1 points.

have no information on the spatial distribution of model clusters within individual

halos, all we can do is remove clusters brought in by satellite halos and presumably

deposited outside 8 kpc from the center. Most of them were already excluded by con-

struction: when extracting merger trees from the MM-II database, we did not include

any satellite halos within the virial radius of the central halo at z = 0.

In addition, there could be satellites in the central halo merger tree at high red-

shift that have not had sufficient time to migrate toward the center and deposit their

GCs within the ACS field. To identify such satellites, we estimate the dynamical

friction timescale of all halos in the tree based on their mass and position informa-

tion in the MM-II database. The expression for the inspiral time is derived from
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the Chandrasekhar (1943) formula, with numerical corrections based on cosmological

simulations, e.g., Equation (5) of Boylan-Kolchin et al. (2008):

τmerge

τdyn

= 0.216
(Mhost/Msat)

1.3

ln(1 +Mhost/Msat)
e1.9η

(
r

rvir

)
, (5.13)

where η = j/jc is the orbital circularity and r/rvir is the distance between host and

satellite halo in the unit of host virial radius. The most likely value of the circularity

is η ≈ 0.5, based on the orbital analysis in the simulations of Boylan-Kolchin et al.

(2008). We discard the GCs of each satellite halo at every epoch since z = 2 (at z > 2

all satellites have sufficiently short merging time) that had inspiral time longer than

the available time until z = 0. An alternative expression for τmerge is given by Jiang

et al. (2010), but the result of this satellite removal process is very similar in both

cases.

This procedure affects only 5%-10% of GCs, mainly in the metallicity range of

−2.3 < [Fe/H] < −1.0, and does not remove clusters with higher metallicity. Such

small changes can be understood intuitively. First, massive satellites have short

merger timescales so that they are almost guaranteed to merge. Small satellites

with longer inspiral times contain few GCs and cannot affect the overall metallicity

distribution. Second, the metallicity of these discarded GCs is roughly in the middle

of the distribution, not the poorest which come from the high redshift galaxies and not

the richest which come from the central halos on the main branch of the merger tree.

This dip in the middle of the metallicity distribution helps to sharpen the appearance

of bimodality, although the effect is small. After the exclusion of the satellite GCs,

the best fit parameters of Model 1 remain the same as those in Table 5.3, with a

similar goodness value G0.01 = 0.38.

In the remainder of this paper we present the results for our full model samples,

because the exclusion correction is small and involves additional steps (such as the
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dynamical friction time estimate) that unnecessarily complicate the model.

5.5.4 Metallicity Distribution

Figure 5.6 shows the calculated GC metallicities within four representative MM-

II halos for our fiducial Model 1, and the observed samples of the Virgo galaxies

matched to these halos. This figure illustrates that the model produces realistic GC

populations with the multi-modal metallicity distribution. Quantitatively, both the

height and location of the blue and red peaks match well with the corresponding

observations, in the full halo mass range from Mh ∼ 1012 to 1014M�.

Using the Gaussian Mixture Modeling code (Muratov & Gnedin, 2010), we deter-

mine the metallicities of the two modal peaks for all 20 halos, as well as for the Virgo

galaxies. We also fit the relation between the stellar mass and the peak metallicity

of the blue and red populations, Z ∝ Mγ
∗ . Figure 5.7 shows that the model matches

the observed locations of both peaks and follows the weak trend of increasing peak

metallicity with galaxy stellar mass. The best-fit slopes are γ = 0.24 ± 0.17 and

γ = 0.01± 0.21 for the metal-poor and metal-rich populations, respectively.

5.5.5 Mass Distribution

In this section we examine the mass distribution of model GCs. Figure 5.8 shows

the initial and final mass functions of the largest halo with Mh = 6.9× 1013M�. The

dynamical erosion of the GC system turns the initial power-law shape to a peaked

shape, which is consistent with the theoretical expectations and observations. We fit

the final mass distribution by a conventional log-normal function:

dN

d logM
=

1√
2πσM

exp

[
−(logM − logM)2

2σ2
M

]
, (5.14)
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with best-fit parameters logM = 5.10 and σM = 0.69. The GC mass function

within VCC 1226, obtained from the (g − z) color and the color-dependent mass-to-

light ratio, is overplotted in the same figure. The observed distribution is similar to

the modeled one for GCs more massive than 105M�. For lower mass clusters, the

observed distribution falls off sharply. It is most likely due to incompleteness of the

flux-limited sample. Deeper observations are needed to investigate whether the true

mass function in VCC 1226 is described by a similar log-normal.

5.5.6 Best-fit Parameter Sets for Other Models

In Section 5.4, we introduced alternative models by modifying particular assump-

tions of Model 1. We have repeated the model comparison procedure to explore the

parameter space for each of these models. Their best-fit parameters are listed in

Table 5.3.

In Model 2, the no-evolution of the MMR causes a systematic shift of model GCs

to higher metallicity, which cannot match the observed values of the red and blue

modal peaks. As we show in Section 5.6.1, the metal-poor population, in general,

is formed at high redshift around z ≈ 4 − 8, when the MMR evolution would lower

[Fe/H] by about 0.5 dex (see Equation (5.6)). On the other hand, the most metal-poor

GCs formed in the smallest halos with stellar mass M∗ ∼ 2× 106M� can only reach

[Fe/H] ≈ −1.7 without MMR evolution. Thus, the observed GCs with [Fe/H] = −2.5

cannot be recovered even after adding the scatter σmet = 0.2. The ”goodness” statistic

for Model 2 is quite low (2%) even when we vary all the parameters in a wide range.

Such a significant difference from the results of Model 1 may imply that the moderate

evolution of the MMR with cosmic time is favored by the GC systems of massive

early-type galaxies. However, at the current stage it is difficult to constrain the exact

amount of the evolution because of other intrinsic uncertainties in the model.

Is the metallicity scatter necessary? An alternative way of populating the metal-
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poor tail without the scatter is to apply stronger MMR evolution. To investigate

this possibility, we set σmet = 0 and vary the coefficient in the second term of Equa-

tion (5.6) from 0.216 to 0.5. However, for all of these values, the goodness of fit is

low (G0.01 < 5%), which indicates that boosting the MMR evolution alone cannot

substitute for the effect of scatter. Stronger MMR evolution creates several problems.

First, both blue and red GC populations are shifted to lower metallicity, which leads

to incorrect peak positions. At the same time, the metal-rich clusters with [Fe/H] > 0

are difficult to form without the scatter. Second, the scatter not only helps to fill both

tails of the distribution ([Fe/H] < −2 and [Fe/H] > 0) but it also regulates the width

of the two populations. Without the scatter, the metallicity distribution is more like

a sum of delta functions rather than a Gaussian shape, especially for the metal-rich

GCs formed by late discrete mergers.

For both Model 3 and Model 4, the contours of goodness G0.01 are shown in

Figure 5.9. Model 3 has two peaks with G0.01 > 40% (marked by red stars), which

are as good as Model 1. However, the peak at (p2, p3 = 2.0, 0.32) does not have as

high a number of sufficient GC systems. We have determined the red and blue peak

metallicities for this model and added them to Figure 5.7 for comparison with Model

1. The average peak metallicities are similar, but the dispersion in Model 3b is much

larger. The combination of these comparisons makes us prefer Model 1 as the fiducial

model.

The highest goodness of Model 4 is only G0.01 = 18%, which means that fewer

than one in five of the galaxy-halo pairs have acceptable metallicity distributions,

significantly lower than in both Model 1 and Model 3. The best-fit critical sSFR to

trigger cluster formation is sSFRcrit ≈ 1.3 Gyr−1. We also tried using the critical

SFR as the trigger parameter and found it to be even more difficult to reproduce the

observations. The low goodness of Model 4 indicates that the major merger scenario

may indeed be a dominate formation channel of GCs, at least in our model.
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It should be mentioned that since our GC formation model is based on the merger

tree extracted from the MM-II simulation with only 67 outputs along the whole cosmic

time, the SFR we derive here is the average between two adjacent outputs. This

averaging smoothes out short starburst events. Until we have simulations with high

enough time resolution, the short-duration effects cannot be incorporated correctly. It

is still interesting to investigate the differences between results of the merger (Model

1) and starburst (Model 4) scenarios. Figure 5.10 shows the formation redshifts of

GCs in the two models for a 2 × 1012M� halo. In Model 4, GC formation activity

increases continuously toward relatively low redshift, z ≈ 1− 2. In contrast, Model 1

shows two formation epochs, one at low redshift when the last major merger happened

between massive halos and another at higher redshift (z ≈ 5) when mergers among

small halos happened frequently. These differences in the formation history, together

with the halo mass growth and MMR evolution, translate into the final GC metallicity

distribution. Figure 5.11 illustrates how the metallicity bimodality is produced by

discreteness of the late mergers.

In contrast, continuous field star formation, during and between mergers, does

not lead to a bimodal metallicity distribution. In order to show it within our frame-

work, we modeled the field metallicity distribution as a mass-weighted sum of stellar

populations formed at each simulation output. We calculated the mass increments

of all halos (central and satellite) in the merger tree between successive outputs,

converted them to stellar mass using the stellar mass-halo mass relation (Behroozi

et al., 2013a), and evaluated the metallicity of such a stellar population using the

evolving MMR (Eq. (5.6)). The sum of these contributions roughly represents the

metallicity distribution of the field stars. This distribution is clearly unimodal, in

agreement with well-known observations (e.g. Harris & Harris, 2002). For example,

the peak metallicity of a 2 × 1012M� halo is at [Fe/H] ≈ −0.22 and the median is

around [Fe/H] ≈ −0.28. In contrast, as we can see in Figure 5.7, the two peaks of
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Table 5.3: Comparison of Best-fit Model Parameters

Model p2 p3 sSFR Goodness
( Gyr−1) G0.01

Model 1 2.6 0.33 – 0.40
Model 2 2.6 0.33 – 0.02
Model 3a 2.0 0.22 – 0.46
Model 3b 2.0 0.32 – 0.48
Model 4 1.6 – 1.3 0.18

the GC metallicity distribution are at [Fe/H] ≈ −1.54 & − 0.4 for the metal-poor

and metal-rich populations, respectively, with the median at [Fe/H] ≈ −1.30. This

comparison shows that, although GCs and field stars are forming concurrently, the

gas-rich merger-driven cluster formation filters a bimodal metallicity distribution from

an extended unimodal one.

To further investigate the quality of fit of different models, in Figure 5.12 we

present the full cumulative distribution of the KS test p-values for the best parameters

of each model (Table 5.3). Most of the p-values of Model 4 are below 10−3, so that the

cumulative probability at pKS & 1% is already far above that of Model 1 and Model

3. The performance of Model 1 and Model 3a is fairly similar, which indicates that

our major merger scenario is not too sensitive to the details of the cold gas modeling.

Model 3b appears a little better than the other two, but as we discussed above, it

cannot reproduce the number of GCs as well and has a larger scatter of the modal

peak metallicities (Figure 5.7).

5.6 Discussion

Ashman & Zepf (1992) proposed the idea that GCs can be formed in mergers

between gas-rich galaxies, since such mergers can perturb the gravitational poten-
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tial, shock and compress the ISM within the two galaxies, and trigger large-scale

starbursts. HST observations have already demonstrated many interacting galaxies

with young massive star clusters, whose formation was likely triggered by merging

(e.g., Holtzman et al., 1992; Whitmore, 2004; Larsen, 2009). Our best-fitting Model

1 suggests a minimum merger ratio of 1:3 for triggering cluster formation, consistent

with this major merger scenario.

Tonini (2013) proposed a model for metallicity bimodality based on the observed

number of clusters as a function of galaxy mass. She adopted the merger scenario

and used Monte Carlo sampling to build merger trees for the progenitor galaxies. She

suggested that the origin of GC bimodality is related mainly to the galactic MMR and

hierarchical mass assembly history. Using our model, we reach a similar conclusion

that the merger history plays a key role. However, to separate the red and blue peaks,

the Tonini (2013) model requires a very strong evolution of MMR, such that [Fe/H]

increases by 0.5 dex at high mass (M∗ ∼ 1011.5M�) and up to 1.5 dex at low mass

(M∗ ∼ 109M�), between z = 3.5 and z = 0. The available observations discussed in

Section 5.2.4 support much smaller changes of [Fe/H] at a given stellar mass.

Our model also relies on the evolution of MMR, but the evolution we need is

more moderate (≈ 0.3 dex). The key to separating the metal-poor and metal-rich

subpopulations in our model is mainly due to the differentiation of cluster hosts.

The metal-poor GCs come preferentially from the early mergers among small halos

with lower metallicity, while the metal-rich GCs come from the late mergers between

massive halos, which in turn have higher metallicity.

To demonstrate this effect, we select two halos with the highest and lowest mass

(6.9× 1013M� and 2× 1012M�, respectively) and separate their GC systems by the

merger epoch in which they were produced. Figure 5.13 shows the result for the best-

fit parameters of Model 1. Although the dynamical destruction significantly reduces

the number of surviving clusters, the shape of the metallicity distribution does not
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change much from that imprinted at birth. On the other hand, the merger events that

produced the clusters leave a clear mark. The metal-rich GCs are mainly produced by

the most recent merger between massive halos, while the collection of early mergers

among less massive halos contributes the bulk of the metal-poor clusters.

5.6.1 Age-metallicity Relation

Absolute ages of GCs can be determined using isochrone fitting of the H-R dia-

gram, which requires resolved observations of individual stars. Until recently, the age

measurements of Galactic GCs did not show a significant correlation between age and

metallicity (e.g. Forbes & Bridges, 2010). New deep HST/ACS data reveal some

intriguing trends of decreasing age with increasing metallicity (Dotter et al., 2011;

VandenBerg et al., 2013; Leaman et al., 2013). In our model we have the full for-

mation history of all GCs, which allows us to investigate any possible age-metallicity

trends. Figure 5.14 shows a stack of all model GCs within the 20 halos in the fidu-

cial Model 1. Although the majority of clusters are old, there is a significant tail of

metal-rich clusters that are younger by up to 5 Gyr. The bulk of metal-poor clusters

are formed as early as redshift z = 4− 6, but the metal-rich clusters are formed over

an extended epoch continuing to z ≈ 1. This shape of the age-metallicity distribution

is one of the robust predictions of our model.

Hints of the age-metallicity relation were already present in the MG10 model

(see their Figure 8). Here we quantify it with larger samples of clusters, multiple

independent realizations of the mass assembly history, and better galactic scaling re-

lations. Figure 5.15 compares the model relation with the existing age measurements

of the Galactic GCs, collected by Leaman et al. (2013). We also add clusters from

three nearby early-type galaxies with photometrically derived ages Georgiev et al.

(2012). Despite the large scatter and individual observational errors, the model trend

is supported by these data remarkably well.
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A thorough interpretation of this plot requires further study. It is likely that

the turnover of the age-metallicity relation from the old metal-poor clusters to the

younger metal-rich clusters occurs at different metallicity in galaxies of different mass.

For example, in the MG10 model tuned for the Galactic GCs, the turnover is around

[Fe/H] ≈ −0.8, whereas in our current model tuned for massive elliptical galaxies

it is around [Fe/H] ≈ −0.4. In addition, the ages of the extragalactic clusters are

determined with a different method and different fidelity than those of the Galactic

GCs. Nevertheless, the emerging age-metallicity relation of GCs is tantalizing and

invites further accurate measurements of cluster ages in extragalactic systems.

5.7 Summary

We have constructed a model of cluster formation, incorporating the halo merger

trees from the MM-II cosmological N-body simulation, to investigate the origin of

GC systems in massive early-type galaxies. We include the empirical galactic scaling

relations, such as the stellar mass-halo mass relation, stellar mass-gas mass relation,

and stellar MMR. These come either from direct observations or from the empirical

abundance matching technique. We test the scenario in which clusters are formed as

a result of major mergers of gas-rich galaxies. By matching the masses of our selected

halos with the galaxies in the Virgo cluster, we compare the metallicity distributions

of modeled and observed GCs and thus constrain the model parameters. We have

also tested alternative models in order to examine the sensitivity of our results to

various adopted prescriptions. Our main conclusions are listed below:

• Our fiducial model can successfully reproduce both the number and the metal-

licity distribution of GCs within a large range of halo masses from 2× 1012M�

to 6.9×1013M�. The metallicity distribution appears to have a bimodal shape,

and the metallicities of the blue and red peaks are consistent with those observed
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in the Virgo galaxies.

• The fiducial model requires a minimum merger ratio of 1:3 to trigger cluster

formation. This ratio is consistent with the theoretical expectation of a major

merger.

• A detailed analysis of the formation history of GCs reveals that the bimodality

arises from different merger epochs and host galaxy masses: the metal-rich

population is produced by late mergers between massive halos, while the metal-

poor population is produced by early mergers among less massive halos.

• The model predicts a robust age-metallicity relation of GCs, which can be

falsified by further observations. While the bulk of metal-poor clusters are

very old, the metal-rich clusters are progressively younger, by up to 5 Gyr.

• When the evolution of the galaxy MMR with cosmic time is turned off, the

model GC metallicity distribution shifts to higher [Fe/H] and the bimodal dis-

tribution disappears. This suggests that the evolution of MMR is necessary in

our model.

• The evolution of the cold gas fraction within galaxies at high redshift is largely

unconstrained by current observations. We use different methods to parameter-

ize this evolution and find that the best-fitting model results for the GC number

and metallicity distributions are insensitive to the details of the adopted pre-

scriptions, within the considered range.

• We also challenged our major merger scenario and tested an alternative star-

burst scenario, which required a minimum sSFR to trigger cluster formation.

Because of the smooth behavior of the average sSFR derived from the abundance

matching, the alternative model fails to reproduce the observed metallicity dis-

tribution as well as the merger model.
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Figure 5.8: Dynamical evolution of the GC mass function from an initial power law (light
blue histogram) to the current peaked distribution (blue histogram, with the overplotted
log-normal fit), in the fiducial Model 1 for a halo of 6.9×1013M�. The mass function of the
GC system in VCC 1226 is shown for comparison (red histogram). A sharp drop-off at low
mass is likely due to incompleteness of the observed sample. The KS test comparison of the
model and data shows that they are consistent; pKS ≈ 2% for clusters with M > 105M�.
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Figure 5.9: Same as Figure 5.5, but for the alternative Model 3 (top panel) and Model 4
(bottom panel). Best-fit parameters for these models are given in Table 5.3.

177



1 2 3 4 5 6 7 8 9 10

Redshift

0

10

20

30

40

50

60

N

Model 1

Model 4

Figure 5.10: Distribution of GC formation redshift in Model 1 and Model 4 within a
2× 1012M� halo.
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CHAPTER VI

Summary and Future Works

Let me first draw your attention back to the current issues on the sub-grid models

in cosmological simulations I mention in Chapter I: lack of a reliable prescription

for star formation and lack of methods to calibrate the subgrid models on scales of

star-forming regions. These two issues are responded at the same time with my new

cluster formation prescription.

In my thesis, I develop a new implementation of star formation in cosmological

simulations, continuous cluster formation (CCF), by considering star clusters as a

unit of star formation, inspired by observations that most stars form in clusters. In

CCF, a cluster particle grows its mass through gas accretion within a star-forming

sphere. The accretion is terminated by its own feedback, thus the final mass is

set self-consistently. I also introduce a prescription that describe the initial bound

fraction of individual star clusters, fi, to estimate the mass fraction that is remind

bound to the cluster when it emerges from the giant molecular clouds (GMCs). I

implement CCF in the Eulerian gasdynamics and N-body Adaptive Refinement Tree

code. I perform a series of high resolution cosmological simulations of a Milky-Way-

sized galaxy with 3D radiative transfer, non-equilibrium chemical network, and H2

formation and destruction.

I find that the global properties of the galaxies, such as the galaxy morphology
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and SFH, are strongly affected by the strength of feedback. To match the SFH

from the abundance matching result of a Milky Way-sized galaxy, the momentum

boosting factor of the SNR feedback is tightly constrained to be in the range fboost =

3− 10. On the other hand, these global properties are not sensitive to the choice of

star formation efficiency εff , thus cannot be used to constrain the parameters of star

formation prescription. Fortunately, the value of εff shows a dramatic effect on the

properties of modeled star clusters, which can be used to calibrate εff on a scale that

is compatible to the size of GMCs.

We show that our cluster formation model leads to a large variation of the integral

star formation efficiency even when εff is kept constant. The range of this variation

spans about two orders of magnitude, similar to recent observations of star formation

efficiency within GMCs. This indicates that the cluster formation prescription is

a realistic way of model star formation in the simulations and captures the detail

gas density evolution in star-forming regions with continuous gas infall and stellar

feedback. I find the initial bound fraction, fi, increases strongly with cluster masses,

and this trend is independent of the global galactic environment. However, fi shows a

strong positive correlation to εff . This correlation leads to another positive correlation

between the maximum cluster mass and εff . I find that the cluster initial mass function

is best described by a power-law with an exponential cutoff. The cutoff mass scales

with the star formation rate of the host galaxies, suggesting that cluster formation

depends strongly on galactic environment. The power-law slope of the CIMF depends

on the value of εff . I find runs with εff = 0.5− 1.0 have a CIMF with a slope similar

to -2, best matches the observed slopes. I measure the integrated cluster fraction and

find it correlates with star formation rate surface density. The normalization of this

correlation depends strongly on εff , with εff = 0.5−1.0 best matches the observational

measurements. Finally, I find a clear trend that cluster formation timescale is shorter

with higher εff : τave ∝ ε
−1/2
ff . Since clusters in most runs have cluster formation
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timescale that is shorter than 3 Myr, they are all within the range of the observed

age spread for young star cluster. One exception is the SFEturb run, in which ∼ 30%

of massive clusters have a timescale larger than 6 Myr, which is not consistent with

observations. Based on various diagnostics such as CIMF, integrated cluster fraction,

and cluster formation timescale, I conclude that εff = 0.5− 1.0 is preferred under the

current setup.

Beside the cluster formation prescription, I implement a new algorithm to calculate

the strength of the tidal field around each cluster particle along its orbits and model

its mass loss via stellar evolution, internal evaporation, and tidal disruption. This is

the first time that cluster disruption under realistic galactic environment is estimated

in the simulation runtime. With high spatial resolution of the simulations, the tidal

interaction between clusters and dense structures on the gaseous disk can be captured.

I study the dynamical evolution of the massive star clusters across cosmic time and

characterize the evolution of its metallicity distribution. I find the strength of the

tidal field decreases as cluster particles orbiting away from the central, dense part

of the galaxy. Tidal disruption in our simulations is crucial to the mass loss of

clusters during the first Gyr. With the combination of tidal disruption and internal

evaporation, the shape of the bound cluster mass function changes from power-law

to log-normal across cosmic time. The obtained log-normal mass function is similar

to the observed mass function of GCs, suggesting that young massive clusters formed

at high redshifts are promising candidates of the progenitor of GCs. Interestingly,

the dynamical evolution preferentially removes clusters with median metallicity and

generates a dip at [Z/H] = −1.5−−1.0. Thus a bimodal shape metallicity distribution

is emerged for survival clusters, very similar to the metallicity distribution of the Milky

Way GC populations.

The main issue of full cosmological simulations is that these simulations are ex-

tremely time consuming. One shortcut is to apply an phenomenological model of the
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formation and evolution of GCs to the hierarchical structure formation framework.

Following this philosophy, I construct a semi-analytical model of GC formation and

evolution onto the halo merger trees in Millennium-II simulations. We test the sce-

nario in which clusters are formed as a result of major mergers of gas-rich galaxies.

We compare the metallicity distributions of modeled and observed GCs and thus

constrain the model parameters. The fiducial model successfully reproduce both the

number and the metallicity distribution of GCs within a large range of halo masses

from 2×1012M� to 6.9×1013M�. The metallicity distribution appears to have a bi-

modal shape, and the metallicities of the blue and red peaks are consistent with those

observed in the Virgo galaxies. The bimodality arises from different merger epochs

and host galaxy masses: the metal-rich population is produced by late mergers be-

tween massive halos, while the metal-poor population is produced by early mergers

among less massive halos. The model predicts a robust age-metallicity relation of

GCs, which can be falsified by further observations. I find that, while the bulk of

metal-poor clusters are very old, the metal-rich clusters are progressively younger, by

up to 5 Gyr.

6.1 Future Works

There are many immediate extension to my current work on modeling star clus-

ter formation and evolution in cosmological simulations. The most obvious one is

to run simulations in a larger simulation volume that contains galaxies of different

masses and types. With the large volume, I can study various global properties of

galaxies with my realistic star formation prescription and compare the similarities

and differences to simulations that use old prescriptions, especially on the pc-scale

structures. More importantly, I will study the properties of model clusters in differ-

ent host galaxies with different environments, for example the changes of CIMF in

galaxies with different masses. Another interesting properties of star clusters is their
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spatial distribution. I will calculate the two-point correlation function of the young

star clusters across the galactic disks. I will explore how this correlation function

depends on the star formation and feedback parameters. I will also study whether

this correlation function varies for different host galaxy mass or merger status. This

is another potential observable that can be used to constrain subgrid models in the

simulations.

For the tidal disruption implementations, I only show some preliminary results

from one of my simulations. In the near future, I will compare the CIMF evolution for

different runs. I will study the unique physical conditions that lead to the formation

and survival of most massive clusters. As I show in Chapter 4, early disruption of star

clusters is crucial in our simulations. I will analyze the disruption rate of clusters at

early time when the clusters are still residing in the gaseous disk. I will examine how

disruption rate depends cluster masses, which is still hotly debated in observations

(Bastian et al., 2012). I will study the metallicity distribution of survival clusters in

the simulations, especially the origin of its apparent bimodal shape. This study is

attempt to solve to mystery of GC formation that is puzzling for a long time.

The disruption prescription used in my simulations is calibrated based on the sim-

ulations of dynamical evolution of individual star clusters with N-body code. These

simulations typically assume a cluster orbiting around a static, analytical galactic

potential. This simplification ignores either the fine structure of the ISM or the hier-

archical structure formation of the galaxy. With my current cosmological simulations

and numerical treatments on estimating the tidal intensity, I am now able to con-

struct the time evolution of the tidal field for a given clusters along its lifetime. I

will connect this time-dependent field to the N-body code and study the dynamical

evolution of star clusters in the real galactic environment. I will study the effects of

different types of tides to the mass loss and the radius of the cluster. I will calibrate

a new mass loss relation based on the N-body results that can be used in future
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cosmological simulations.
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Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 581

Hopkins, P. F., Narayanan, D., & Murray, N. 2013, MNRAS, 432, 2647

Hopkins, P. F., Quataert, E., & Murray, N. 2011, MNRAS, 417, 950

Hudson, M. J., Harris, G. L., & Harris, W. E. 2014, ApJ, 787, L5

Hummels, C. B., & Bryan, G. L. 2012, ApJ, 749, 140

Jeans, J. H. 1902, Philosophical Transactions of the Royal Society of London Series

A, 199, 1

Jiang, C. Y., Jing, Y. P., & Lin, W. P. 2010, A&A, 510, A60

Johnson, L. C., Seth, A. C., Dalcanton, J. J., et al. 2016, ApJ, 827, 33

—. 2017a, ApJ, 839, 78

Johnson, T. L., Rigby, J. R., Sharon, K., et al. 2017b, ApJ, 843, L21

Jordán, A., Peng, E. W., Blakeslee, J. P., et al. 2009, ApJS, 180, 54

Kainulainen, J., Federrath, C., & Henning, T. 2014, Science, 344, 183

Katz, N. 1992, ApJ, 391, 502

Katz, N., Weinberg, D. H., & Hernquist, L. 1996, ApJS, 105, 19

Keller, B. W., Wadsley, J., Benincasa, S. M., & Couchman, H. M. P. 2014, MNRAS,

442, 3013

197



Keller, B. W., Wadsley, J., & Couchman, H. M. P. 2015, MNRAS, 453, 3499

Kennicutt, Jr., R. C. 1998, ApJ, 498, 541
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Peng, E. W., Jordán, A., Côté, P., et al. 2006, ApJ, 639, 95

—. 2008, ApJ, 681, 197

Penzias, A. A., & Wilson, R. W. 1965, ApJ, 142, 419

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A15

—. 2016, A&A, 594, A13

Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425

Prieto, J. L., & Gnedin, O. Y. 2008, ApJ, 689, 919

Read, J. I., Agertz, O., & Collins, M. L. M. 2015, ArXiv e-prints, arXiv:1508.04143

Rees, M. J., & Ostriker, J. P. 1977, MNRAS, 179, 541

Renaud, F., Agertz, O., & Gieles, M. 2017, MNRAS, 465, 3622

Renaud, F., Bournaud, F., & Duc, P.-A. 2015, MNRAS, 446, 2038

Roberts, M. S., & Rots, A. H. 1973, A&A, 26, 483
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