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CHAPTER I

Introduction

Integer points in polyhedra show up regularly in combinatorial representation

theory. Many combinatorial rules for computing multiplicities in representations can

be expressed as counting the number of integer points in a polytope, and the weights

of many representations end up corresponding to integer points in a polytope. In this

thesis we will study three such polytopes which occur in the representation theory

related to Kronecker coefficients and plethysms.

We will begin by looking at Kronecker coefficients. For λ a partition of size n,

let Iλ denote the irreducible representation of Sn indexed by λ. Given a triple of

partitions α, β, and γ of size n, the Kronecker coefficient is

g(λ, µ, ν) = multiplicity of Iν in Iλ ⊗ Iµ.

In 1938, Murnaghan [11] published his well known result about a stability property

of the Kronecker coefficients. If you grow the first row of the triple of partitions,

then the Kronecker coefficient eventually stabilizes to a fixed value; i.e.

g(λ+ (m), µ+ (m), ν + (m))

is eventually constant for m large enough. More recently, Stembridge [14] generalized

this result to show that a similar stability occurs for other triples of partitions. A

1
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triple of partitions α, β, γ is stable if

g(λ+m · α, µ+m · β, ν +m · γ)

is eventually constant for any partitions λ, µ, ν. During the study of this generalized

stability, Stembridge produced some sufficient conditions for a triple of partitions to

be stable. He does this by finding a pair of polytopes whose integer points count

the multiplicities of irreducible representations for representations related to Iα⊗ Iβ.

He showed that a triple of partitions α, β, γ is stable if their Kronecker coefficient is

nonzero and either of these related polytopes is 0-dimensional. In chapters II and

III we investigate these polytopes. In both cases, we show how to find all triples for

which this polytope is 0-dimensional. This is done by looking at the cone formed

of all triples for which the polytope is nonempty, and then using the fact that the

dimension of this polytope is constant on the interior of the faces of this cone.

Chapter II is dedicated to studying the simpler of these two polytopes for Kro-

necker coefficients. This polytope is related to the well known class of transportation

polytopes. Vallejo [15] used this relation to transportation polytopes to show how

to produce stable triples using ‘additive matrices’. Manivel [9], [10] takes a more

geometric approach to produce the triples for which this polytope is 0-dimensional.

Using an approach based on Schur-Weyl duality, he finds these stable triples by

studying certain faces of the moment polytope for the Kronecker coefficients. We

take a more combinatorial approach to finding these triples by looking at a cone

formed from the polytopes.

In chapter III we study the ‘stronger’ of the two polytopes (this polytope can be

used to produce any stable triple the other polytope can and more). This polytope

is based on a sum of Littlewood-Richardson coefficients. We show how this polytope

can be produced from a modification of the hives and honeycombs of Knutson and
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Tao. Hives and honeycombs were first used by Knutson and Tao to prove the satu-

ration conjecture for Littlewood-Richardson coefficients [5],[7]. They later used the

honeycombs to show how to use certain puzzles to find the defining inequalities for

the cone of triples for which the Littlewood-Richardson coefficients are nonzero [6].

We use a modification of their puzzles to produce the inequalities for the analogous

cone for our polytope, and then show how to use these puzzles to find the dimension

of our polytope for the points in the corresponding face of the cone.

In chapter IV we depart from Kronecker coefficients and instead look at plethysms.

We will be interested in the plethystic representations of GLn formed by composing

Schur functors. While combinatorial rules are known for finding the decomposition

into irreducibles for a few special cases, there is no general positive combinatorial

formula for finding these multiplicities. In fact, there is no general rule for knowing

when the multiplicities are nonzero. For any representation of GLn, the weights of

the representation which are maximal in the dominance order correspond to irre-

ducible representations which have nonzero multiplicity. We investigate these max-

imal weights and find an algorithm for computing them. This is done by looking

at the weight polytope for the representation. One surprising discovery made using

this algorithm is that there are plethysms whose weight polytope is not saturated

(i.e. there are integer points in the polytope which are not weights of the represen-

tations).

1.1 Symmetric Functions

1.1.1 Partitions

Definition I.1. A composition is a sequence (finite or infinite) of non-negative in-

tegers α = (α1, α2, · · · ) where only finitely many of the entries αi are nonzero. We

will consider two compositions to be equivalent if they only differ in the number of
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0’s at the end of the sequences.

Definition I.2. A partition is a composition λ whose entries are weakly decreasing,

i.e. λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0.

Remark I.3. Every composition has an associated partition formed by listing the

entries of the composition in decreasing order.

Notation I.4. We call λi the i-th part of λ.

Definition I.5. The length of λ, denoted l(λ), is the number of nonzero parts of λ.

Definition I.6. A partition λ is strict if its parts are strictly decreasing, i.e. λ1 >

λ2 > · · · > λl.

Definition I.7. The l-staircase partition δl is the strict partition (l−1, l−2, · · · , 0).

Definition I.8. The size of λ, denoted |λ|, is the sum of the parts of λ.

Definition I.9. The dominance order on the set of partitions of size n is the partial

order defined by λ ≥ µ if λ1 + · · · + λi ≥ µ1 + · · · + µi for each i ≥ 1, where we

append 0’s to the ends of λ and µ so that they are the same length.

Notation I.10. We will sometimes use 1n12n23n3 · · · to denote the partition with ni

parts equal to i for i = 1, 2, 3, · · · .

1.1.2 Diagrams and Tableaux

Definition I.11. The diagram, D(λ), of a partition λ is the set {(i, j) ∈ Z2 : 1 ≤

j ≤ λi, 1 ≤ i}. We will use matrix notation for the diagrams, so the (i, j) position of

the diagram is the cell i rows from the top and j columns from the left.

Notation I.12. We use µ ⊂ λ to denote that D(µ) ⊂ D(λ), i.e. λi ≥ µi for all i.
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Definition I.13. For any two partitions λ and µ with µ ⊂ λ, we define the skew

diagram to be D(λ/µ) = {(i, j) ∈ Z2 : µi < j ≤ λi, 1 ≤ i}. This diagram D(λ/µ) is

equal to D(λ)\D(µ) as sets.

Definition I.14. For any partitions λ and µ with µ ⊂ λ, a tableau of shape λ/µ is

an assignment of the cells of D(λ/µ) using entries in an ordered alphabet (usually

the positive integers).

Definition I.15. We say that a tableau is a semistandard Young tableau if in the

assignment the entries are weakly increasing from left to right across each row and

strictly increasing from top to bottom along each column.

Remark I.16. Any ordered alphabet can be used and this definition will still be valid.

Definition I.17. The content of a tableau T is the composition (α1, α2, · · · ) where

αi is the number of times that i occurs as an entry in T .

1.1.3 Symmetric functions

Let C[x1, x2, · · · ] be the ring of polynomials in a countable set of indeterminates

x1, x2, · · · .

Definition I.18. A symmetric function is a formal power series in C[x1, x2, · · · ] that

has bounded degree and is invariant under permutations of the variables.

Definition I.19. The set of symmetric functions forms a ring denoted Λ = ΛC.

Definition I.20. Let Λn denote the set of all homogeneous symmetric functions of

degree n.

Definition I.21. For any integer n ≥ 1, the n-th power sum symetric fuction is

pn =
∑
i

xni . In addition, for any partition λ we set pλ := pλ1pλ2 · · · .
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Definition I.22. For any integer n ≥ 1, the n-th complete homogeneous symmetric

function is

hn =
∑

a1≤a2≤···≤an

xa1xa2 · · · xan .

In addition, for any partition λ we set hλ := hλ1hλ2 · · · .

Definition I.23. For any integer n ≥ 1, the n-th elementary symmetric function is

en =
∑

a1<a2<···<an

xa1xa2 · · ·xan .

In addition, for any partition λ we set eλ := eλ1eλ2 · · · .

Definition I.24. For any partition λ, the monomial symmetric function mλ is de-

fined by

mλ =
∑
α

xλ1α1
xλ2α2
· · ·

where the sum is over all compositions α whose associated partitions is λ.

Theorem I.25 (Theorem 7.4.4, Corollaries 7.6.2 and 7.7.2 of [13]). Λ is freely gen-

erated as a C-algebra by the pk, the hk, or the ek. i.e.

Λ = C[h1, h2, · · · ] = C[e1, e2, · · · ] = C[p1, p2, · · · ]

Equivalently, for any n, the pλ, the hλ, and the eλ over λ of size n, all form bases

for Λn as a vector space.

Definition I.26. The Hall inner product is the inner product on Λ defined by

〈hλ,mµ〉 = δλ,µ.

Notation I.27. To each composition α we associate the monomial xα = xα1
1 x

α2
2 · · · ,

and to each semistandard Young tableau T we associate the monomial xT = xα

where α is the content of T .

Definition I.28. For any partitions µ ⊂ λ
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• The schur function sλ is

sλ(x1, x2, · · · ) =
∑
T

xT

where the sum is over all semistandard Young tableaux T of shape λ.

• The skew-schur function sλ/µ is

sλ/µ(x1, x2, · · · ) =
∑
T

xT

where the sum is over all semistandard Young tableaux T of shape λ/µ.

Theorem I.29 (Corollary 7.10.6 of [13]). The sλ form an othornormal basis for Λ

as a vector space.

Definition I.30. For any partitions λ and µ, the Kostka number Kλ,µ is the coeffi-

cient of mµ when sλ is decomposed into the basis of monomial symmetric functions.

Kλ,µ = 〈sλ, hµ〉 = #{semistandard Young tableaux of size λ and content µ}.

Definition I.31. A Gelfand-Tsetlin pattern is a triangular array (xi,j)1≤i≤j≤n satis-

fying the inequalities:

xi,j ≥ 0, for 1 ≤ i ≤ j ≤ n and

xi,j+1 ≥ xi,j ≥ xi+1,j+1, for 1 ≤ i ≤ j ≤ n− 1.

Definition I.32. The Gelfand-Tsetlin polytope GT(λ, µ), n ≥ l(λ), l(µ), is the poly-

tope formed by Gelfand Tsetlin patterns satisfying the equalities:

xin = λi, for 1 ≤ i ≤ n and
j∑
i=1

xij = µ1 + µ2 + · · ·+ µj.

Proposition I.33. The Kostka number Kλ,µ is equal to the number of integer points

in the Gelfand-Tsetlin polytope GT(λ, µ).
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1.1.4 Plethysm

Definition I.34. Let f, g ∈ Λ be symmetric functions, and suppose that f is ex-

pressible as a countable sum of monomials, say

f = xα + xβ + xγ + · · · .

The plethysm g[f ] is the symmetric function

g[f ] = g(xα, xβ, xγ, · · · ).

Remark I.35. The plethysms of the form sλ[sµ] will be of particular interest to us.

In this symmetric function, we take sλ and specialize the xi to be the monomials we

obtain from semistandard Young tableaux of shape µ. In essence, this means we are

taking the sum of the monomials which occur from semistandard Young tableaux

of shape λ where each of the entries in the tableau is itself a semistandard Young

tableau of shape µ.

Theorem I.36 (Appendix A (7.4) of [8]). For any two partitions λ and µ, the

plethysm sλ[sµ] is a N-linear combination of Schur functions.

1.1.5 Kronecker product

Notation I.37. Given a partition λ = 1n12n23n3 · · · , let zλ denote the product

zλ := 1n11!2n22!3n33! · · ·

Definition I.38. Define the internal product, ∗, on Λ by setting

pλ ∗ pµ = zλδλ,µpµ

for any partitions λ, µ, and extending this to all of Λ using linearity.
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Proposition I.39 (Exercise 7.78 of [13]). There are nonnegative integers g(λµν)

such that

sλ ∗ sµ =
∑
ν

g(λµν)sν .

These g(λµν) are called Kronecker coefficients.

Proposition I.40 (Exercise 7.78 of [13]). The Kronecker coefficients are symmetric

in λ, µ, and ν.

Definition I.41. A contingency table of type (α, β) is a nonnegative integer matrix

T whose row sum vector is α and column sum vector is β. The content co(T ) of the

table is the partition formed by ordering all the entries in the matrix T .

Notation I.42. For any two partitions α and β, let C(α, β) denote the set of all

contingency tables of type (α, β).

Proposition I.43 (Exercise 7.84 of [13]). Let λ and µ be partitions of size n with

l(λ) = l.

•

hλ ∗ sµ =
∑∏

i≥1

sµi/µi−1 ,

where the sum is over all sequences (µ0, µ1, · · · , µl) of partitions such that

∅ = µ0 ⊂ µ1 ⊂ · · · ⊂ µl(λ) = µ and |µi/µi−1| = λi for all i.

•

hλ ∗ hµ =
∑
T

hco(T ),

where T ranges over all contingency tables of type (λ, µ).
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1.1.6 Littlewood-Richardson Rule

Definition I.44. Define the Littlewood-Richardson coefficients cλµ,ν by letting them

be the coefficients in the expansion:

sλ/µ =
∑

cλµνsν

Definition I.45. The reverse row reading word for a tableau T is the sequence

w(T ) = w1w2 · · · formed by reading the rows of T from right to left, starting at the

top row.

Definition I.46. A positive integer sequence w = w1w2 · · · is said to be a lattice

word if for any i, j ≥ 1, the number of occurrences of i in the subword w1w2 · · ·wj is

greater than or equal to the number of occurrences of i+ 1.

Theorem I.47 (The Littlewood-Richardson Rule, Theorem A1.3.3 of [13]). The

coefficient cλµν is equal to the number of semistandard Young tableaux of shape λ/µ

with content ν whose reverse row reading word is a lattice word.

1.2 Representation Theory

Notation I.48. For a finite dimensional vector space V , let GL(V ) be the group of

linear automorphisms of V . We use the notation GLn = GL(V ) if V = Cn.

Notation I.49. For any integer n, let Sn denote the symmetric group on n letters.

Definition I.50. A representation of a group G on a finite dimenstional complex

vector space V is a homomorphism ρV : G→ GL(V ). Throughout this dissertation,

there will be no ambiguity about the map ρV used for any V , so we will call V itself

a representation of G and we will write g · v for ρV (g)(v).
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Remark I.51. For any two representations V and W of a group G, V ⊕ W and

V ⊗W are both also representations of G given by g · (v⊕w) = (g · v)⊕ (g ·w) and

g · (v ⊗ w) = (g · v)⊗ (g · w).

Definition I.52. A subrepresentation of a representation V is a subspace W of V

which is preserved under the action of G.

Definition I.53. A representation is called irreducible if it has no proper nonzero

subrepresentation.

1.2.1 Representations of Sn

Definition I.54. Let CSn be the vector space of formal C-linear sums of permuta-

tions in Sn; i.e. CSn = {c1w1 + c2w2 + · · · + ckwk : ci ∈ C, wi ∈ Sn}. We can define

a product on CSn by setting (c1w1) · (c2w2) = (c1c2)(w1w2) and extending this to all

of CSn by imposing the distributive property. This CSn is a C-algebra under this

product which is called the group algebra of Sn.

Remark I.55. Any representation of Sn can be made into a CSn-module by extending

the action of Sn to the group ring using linearity. Similarly, any CSn-module can

be made into a representation of Sn by setting ρ(w) to be the linear isomorphism

v 7→ w · v. Hence, working with representations of Sn is equivalent to working with

CSn-modules.

Definition I.56. Fix a partition λ of size n and a tableau T of shape λ such that

1, · · · , n each occur once. We say that an element of Sn fixes a row (resp. column)

of T if it preserves the set of values of T occurring in the row (resp. column). Set

P ={w ∈ Sn : w preserves each row of T}

Q ={w ∈ Sn : w preserves each column of T}.
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We define two elements of CSn as follows:

aT =
∑
w∈P

w

cT =aT
∑
w∈Q

sgn(w)w.

We call this cT a Young symmetrizer.

Theorem I.57 (§ 7.2 of [2]). Given a partition λ of size n and tableau T such that

1, · · · , n each occur once, the following hold:

• The CSn-module IT = CSncT is an irreducible module.

• If T ′ is any other tableau of λ then IT and IT ′ are isomorphic. We will use Iλ

to denote the irreducible representation of Sn given by these IT .

• The irreducible representations of Sn are precisely the Iµ for µ of size n.

• The irreducible Iλ is a subrepresentation of the CSn-module Aλ = CSnaT .

Theorem I.58 (Proposition 1.8 of [3]). Every representation of Sn is a direct sum

of irreducible representations of Sn. In addition, this decomposition is unique in the

following sense: if V1⊕V2⊕· · ·⊕Vk and W1⊕W2⊕· · ·⊕Wl are two decompositions

of a representation into irreducibles, then k = l and by reordering the Wi we have

Vi ∼= Wi for i = 1, 2, · · · .

Definition I.59. The character of a representation V is the complex valued map

χV : Sn → C defined by χV (w) = Tr(ρV (w)), the trace of the linear endomorphism

of V given by w.

Remark I.60. For any two representations V and W of Sn, χV⊕W = χV + χW and

χV⊗W = χV χW .
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Theorem I.61 (Corollary 2.14 of [3]). A representation of Sn is uniquely determined

up to isomorphism by its character.

Definition I.62. The cycle type of a permutation w ∈ Sn is the partition ρ(w) =

(ρ1, ρ2, · · · ) such that ρ1, ρ2, · · · are the lengths of the cycles of w.

Definition I.63. A class function of Sn is a map f : Sn → C that is constant on

conjugacy classes of Sn (i.e. f(ν−1wν) = f(w) ∀w, ν ∈ Sn). The set of class functions

of Sn, denoted CF n, is a vector space over C.

Definition I.64. We can define a hermitian inner product on CF n by setting

〈f, g〉 =
1

n!

∑
w∈Sn

f(w)g(w)

Proposition I.65 (Proposition 2.30 of [3]). The characters of Sn are class functions,

and the irreducible characters form an orthonormal basis.

Definition I.66. The Frobenius characteristic map chn is the map CF n → Λn

defined by

chn(f) =
1

n!

∑
w∈Sn

f(w)pρ(w).

Proposition I.67 (§ 7.18 and Exercise 7.78 of [13]). The characteristic map has the

following properties:

• It is a ring homomorphism; i.e. it is C-linear and chn(fg) = chn(f) ∗ chn(g)

where ∗ is the internal product.

• It preserves the scalar product, i.e. 〈f, g〉 = 〈chn(f), chn(g)〉 where the we use

the Hall inner product on Λ.

• For λ a partition of size n, chn(χIλ) = sλ.

• For λ a partition of size n, chn(χAλ) = hλ where Aλ = CSnaT for any T of

shape λ.
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Remark I.68. For any partition λ of size n and representation V , the multiplicity of

Wλ in any decomposition of V into irreducibles is equal to 〈χV , χIλ〉 = 〈chn(χV ), sλ〉.

Hence, the Kronecker coefficient

g(λµν) = 〈sλ ∗ sµ, sν〉 = 〈χIλ⊗Iµ , χIν 〉

is the multiplicity of Iν in the tensor product Iλ ⊗ Iµ.

1.2.2 Representations of GLn

Definition I.69. A representation V of GLn is called polynomial if each of the

coordinate functions in the map GLn → GL(V ) is a polynomial in the coordinates

of GLn. We will restrict ourselves to only working with polynomial representations

of GLn, and will omit the word polynomial from now on.

Notation I.70. Given a vector space V and partition λ, we define a GL(V ) repre-

sentation SλV = V ⊗d ⊗CSd Iλ where Iλ is the irreducible representation of Sd and

GL(V ) acts on this space by acting on the first factor. This construction is functorial

and we call Sλ a Schur functor. The representation SλV is nonzero if and only if

l(λ) ≤ n.

Theorem I.71 (Theorem 6.4(4) of [3]). The irreducible representations of GLn are

the representations Sλ(Cn) for λ of length at most n.

Theorem I.72 (§9.3 of [3]). Every representation of GLn is a direct sum of irre-

ducible representations and the decomposition is unique in the same sense as for Sn

(see Theorem I.58).

Notation I.73. Let Dn denote the set of diagonal matrices in GLn, and let

diag(x1, · · · , xn) denote the diagonal matrix with values x1, · · · , xn going southeast

along the diagonal.
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Definition I.74. A vector v in a representation is said to be a weight vector with

weight (a1, · · · , an) if for any D = diag(x1, · · · , xn) ∈ Dn,

D · v = xa11 · · ·xann v.

Definition I.75. Given a representation V and (a1, · · · , an) ∈ Zn+, the (a1, · · · , an)

weight space of V is V (λ) = the span of all weight vectors with weight a = (a1, · · · , an).

Proposition I.76 ((14.4) of [3]). Every representation V is a direct sum of its weight

spaces, i.e. V =
⊕

a V (a).

Definition I.77. The character of a GLn representation V is the complex valued

map χV : (C∗)n → C defined by χV (x1, · · · , xn) = Tr(ρV (diag(x1, · · · , xn)).

Remark I.78. For a GLn representation V , the character χv is a symmetric polyno-

mial. Moreover, by Proposition I.76, χV is equal to the sum
∑
a

dim(Va)x
a where the

sum is over all weights a of V .

Remark I.79. For any two representations V and W of GLn, χV⊕W = χV + χW and

χV⊗W = χV χW .

Proposition I.80 (pg. 78 of [3]). A representation of GLn is uniquely determined

up to isomorphism by its character.

Theorem I.81 (Theorem 6.4(3) of [3]). The character for the irreducible represen-

tation Sλ(Cn) is the schur function sλ(x1, · · · , xn) (where we set all the coordinates

xn+1, xn+2, · · · to be 0).

Remark I.82. This theorem gives us that for any GLn representation V , the multi-

plicity of Sλ(Cn) in any decomposition of V into irreducibles is equal to 〈χV , sλ〉.

Remark I.83. We can apply a Schur functor to any representation of GLn to get

another representation of GLn. For example, given any two partitions λ and µ we
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can construct the GLn representation Sλ(Sµ(Cn)). This representation has character

equal to the plethysm sλ[sµ].

Theorem I.84 (§8.3 Corollary 2(c) of [2]). The Littlewood-Richardson coefficient

cλµν is the multiplicity of Sλ(Cn) in Sµ(Cn)⊗ Sν(Cn).



CHAPTER II

Kronecker Stability and the H̄abc Polytope

2.1 Stability in the Kronecker Coefficients

One interesting property of the Kronecker coefficients is that they display a sta-

bility property. Namely, there are triples of partitions αβγ such that for any triple

λµν the sequence

g(λ+ nα, µ+ nβ, ν + nγ) = g(λµν + n · αβγ)

converges to a fixed positive value as n → ∞ (Note: In order for this limit to be

nonzero we need αβγ to be of the same size and similarly for λµν).

Definition II.1. We say that a triple αβγ is stable if g(αβγ) > 0 and it satisfies

this condition.

Stembridge studied this generalized notion of stability in [14]. In his paper, Stem-

bridge showed that g(n · αβγ) has to equal 1 for all n in order for the triple to be

stable and conjectured that this necessary condition for stability was also sufficient.

Sam and Snowden later proved that this is in fact sufficient [12].

Theorem II.2 (Sam-Snowden). A triple αβγ is stable if and only if

(2.1) g(n · αβγ) = 1 ∀n ≥ 1.

17
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This provides us with a means of not only testing if a triple is stable but of

also producing stable triples. The difficulty is that there currently is no positive

combinatorial formula known for computing Kronecker coefficients, so it is not easy

to directly produce triples which satisfy (2.1). Stembridge suggests a method of

getting around this by working with coefficients which are in some cases larger than

the Kronecker coefficients, but which have a nice combinatorial description that can

be used to show that (2.1) is satisfied.

Definition II.3. For any triple αβγ of partitions, define coefficients f(αβγ) and

h(αβγ) as follows:

f(αβγ) = 〈hα ∗ sβ, sγ〉(2.2)

h(αβγ) = 〈hα ∗ hβ, sγ〉(2.3)

Recall that hα =
∑
Kλ,αsλ. Plugging this into the definitions for f(αβγ) and

h(αβγ) we obtain following expression for these new coefficients in terms of the

Kronecker coefficients:

f(αβγ) =
∑
λ

Kλ,α g(λβγ)(2.4)

h(αβγ) =
∑
λ,µ

Kλ,αKµ,β g(λµγ)(2.5)

These coefficients are therefore positive sums of Kronecker coefficients, and the

coefficient of g(αβγ) in both sums is 1. Stembridge uses this to show that if an

analogous notion of stability occurs for these coefficients, then there must be a related

triple which is stable for the Kronecker coefficients.

Theorem II.4 (Theorem 6.1 of [14]). If αβγ is a triple of partitions such that

h(n ∗ αβγ) = 1 ∀n ≥ 1
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then there exists a unique Kronecker stable triple α+β+γ with α+ ≥ α and β+ ≥ β

in the dominance order.

Theorem II.5 (Theorem 7.1 of [14]). If αβγ is a triple of partitions such that

f(n ∗ αβγ) = 1 ∀n ≥ 1

then there exists a unique Kronecker stable triple α+βγ with α+ ≥ α in the dominance

order.

For any partition λ, the symmetric function hλ is a positive sum of schur functions

in which sλ occurs with coefficient 1. Applying this to our definitions for the f and

h coefficients, we obtain the following inequalities:

g(αβγ) ≤ f(αβγ) ≤ h(αβγ).

This means that any stable triple we can detect using Theorem II.5 can also be

found using Theorem II.4. Despite this, looking into producing h-stable triples will

still be fruitful since finding them will be computationally less intensive than finding

f -stable triples.

We introduced these coefficients since, unlike the Kronecker coefficients, we do

have nice combinatorial equations for computing them. Namely, both the f and h

coefficients are equal to the number of integer points inside certain rational polytopes.

In both cases, the polytope (call it P (αβγ) for now) will have the following 2 key

properties:

• P (n · αβγ) = nP (αβγ) ∀n ≥ 0.

• The vertices of P (αβγ) are rational points.

These two properties are useful since they allow us to use P (αβγ) to narrow down

when the f or h coefficients will be stable.
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Proposition II.6. If a triple of partitions αβγ is f or h stable, then P (αβγ) is

0-dimensional.

Proof. Suppose P (αβγ) is not 0-dimensional. Then P (αβγ) must have at least 2

vertices. Let n be the least common multiple of all the denominators of two of the

vertices of P (αβγ). Then nP (αβγ) must contain at least 2 integer points, and hence

the coefficient at n · αβγ is not equal to 1.

The converse of this theorem doesn’t necessarily hold. The polytope being 0-

dimensional does not guarantee that the triple is stable since the polytope could be

a rational point that is not integer causing the coefficient to be 0. However, the

polytope being 0-dimensional does guarantee that some multiple of the triple will

be stable; namely if k is the least common multiple of all the denominators of the

vertex of P (αβγ), then P (k ·αβγ) is an integer point and so is P (n ·k ·αβγ) ∀n ≥ 1,

and so k · αβγ is stable. Finding the triples where the polytope is 0-dimensional

asymptotically solves the problem of finding f or h stable triples. We can therefore

reduce our search for f and h stable triples to searching for when the corresponding

polytope P (αβγ) is 0-dimensional.

The rest of this chapter will be devoted to showing how to find the triples for

which the polytope for h is 0-dimensional, while Chapter III will be devoted to doing

the same thing for the polytope for the f coefficients. In both cases, we will see that

the set of such triples correspond to certain faces of a cone. By finding points in

these faces of the cones, it is possible to produce all stable triples whose stability can

be shown using Theorems II.4 and II.5.
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2.2 The H(αβγ) polytope

Recall from Proposition I.43 that we have the following expression for the internal

product:

hα ∗ hβ =
∑

T∈C(α,β)

hco(T )

where the sum is over all contingency tables of content (α, β). Applying this to our

definition of h(αβγ) we find the following formula for the h coefficients:

(2.6) h(αβγ) =
∑

T∈C(α,β)

Kγ,co(T ).

Our goal now is to find a polytope H(αβγ) such that h(αβγ) is equal to the

number of integer points in H(αβγ). We will do this using the same polytope and

reasoning of Stembridge (Lemma 7.2 and Remark 7.3 of [14]).

Fix α and β, and let a and b be integers such that l(α) ≤ a and l(β) ≤ b. Given

a contingency table T , let co′(T ) be the sequence formed by reading the entries

of the rows of T from left to right, going from the top row to the bottom row.

We have Kγ,co(T ) = Kγ,co′(T ) since co(T ) and co′(T ) have the same entries but in a

different order and the Kostka numbers are constant under permuting the entries of

the composition of the second index. Hence, h(αβγ) =
∑

T∈C(α,β)Kγ,co′(T ). Similarly,

when working with semistandard Young tableaux , the alphabet used does not change

the values of the Kostka number.

Notation II.7. Let ≤L denote lexicographical order on Z2:

(i, j) <L (k, l) if either i < k or i = k and j < l.

Instead of using N as the alphabet, consider tableaux using entries in {1, · · · , a}×

{1, · · · , b} ordered using ≤L. The Kostka number Kγ,co′(T ) is then equal to the num-

ber of semistandard Young tableau of shape γ such that (i, j) occurs with multiplicity
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T (i, j) for 1 ≤ i ≤ a, 1 ≤ j ≤ b. Define the bicontent of a tableau S to be the pair of

compositions (λ, µ) where λi (resp. µi) is the number of times that i occurs in the

first (resp. second) coordinate of an entry in S. A tableau of shape γ contributes to

the sum in (2.6) if and only if it has bicontent (α, β). We therefore have that (2.6)

is equivalent to the formula

(2.7) h(αβγ) = #{semistandard Young tableau of shape γ with bicontent (α, β)}.

If we set c := ab, then the partition γ must have length less than or equal to c

in order for the right hand side of (2.7) to be nonzero. Suppose S is a semistandard

Young tableau of shape γ. Since the rows of a semistandard Young tableau must

be weakly increasing, a semistandard Young tableau is uniquely determined by how

many of each letter of the alphabet there are in each row. Let x(i, j, k) be the number

of times (i, j) occurs as an entry in row k of S. Since S has bicontent (α, β) and

shape γ, for any i, j, k we must have that

(2.8)
∑
j∗,k∗

x(i, j∗, k∗) = αi,
∑
i∗,k∗

x(i∗, j, k∗) = βj,
∑
i∗,j∗

x(i∗, j∗, k) = γk.

Given a set of coordinates x(i, j, k) satisfying (2.8), we can use them to produce

a semistandard Young tableau of shape γ and bicontent (α, β) if and only if when

we fill in the rows in weakly increasing order, we never have an entry whose value

above it is less than or equal to it, i.e. for any row k and entry (i, j), we never have

the boxes in row k + 1 with entries ≤L (i, j) extend further than the boxes in row

k with entries <L (i, j). Expressing this criterion in terms of the x(i, j, k) we obtain

the following inequality:

(2.9)
∑

(i∗,j∗)<L(i,j)

x(i∗, j∗, k) ≥
∑

(i∗,j∗)≤L(i,j)

x(i∗, j∗, k + 1).
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We therefore have that a set of nonnegative integers x(i, j, k) for 1 ≤ i ≤ a, 1 ≤ j ≤

b, 1 ≤ k ≤ c produces a semistandard Young tableau of shape γ and bicontent (α, β)

if and only if they satisfy (2.8) and (2.9).

Definition II.8. Fix positive integers a, b and set c := ab. For any triple of partitions

αβγ of lengths at most a, b, c respectively, let H(αβγ) be the polytope defined by

the following set of inequalities:

x(i, j, k) ≥ 0 (1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c),∑
j∗,k∗

x(i, j∗, k∗) = αi,
∑
i∗,k∗

x(i∗, j, k∗) = βj,
∑
i∗,j∗

x(i∗, j∗, k) = γk,

∑
(i∗,j∗)<L(i,j)

x(i∗, j∗, k) ≥
∑

(i∗,j∗)≤L(i,j)

x(i∗, j∗, k + 1).

Note: In these equations, i∗, j∗, k∗ are summation variables whereas i, j, k param-

eterize the inequalities.

Proposition II.9. h(αβγ) is equal to the number of integer points in the polytope

H(αβγ).

Proof. By what we have shown, any set of coordinates x(i, j, k) corresponding to a

semistandard Young tableau of (2.8) must occur as an integer point in H(αβγ). In

addition, every integer point inside of H(αβγ) has a unique tableau producing that

point. We therefore have a bijection between the integer points of H(αβγ) and the

set on the right hand side of (2.8), hence H(αβγ) is a polytope with the claimed

features.

Remark II.10. The definition of H(αβγ) did not require any of α, β, or γ to be

partitions, they simply have to be points in Ra, Rb, and Rc respectively. We will

therefore relax our restrictions so that H(αβγ) is defined in this more general setting.

When we do this, the inequalities of (2.9) force the entries of γ to be nonincreasing
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in order for H(αβγ) to be nonempty, but there are no such constraints on α and β.

This is related to the fact that the definition of hα does not depend on the ordering

of the parts of α where as sγ requires γ to be a partition.

2.3 When is H(αβγ) nonempty?

Before finding when H(αβγ) is 0-dimensional, we will need to get a grasp of when

the polytope is nonempty.

Definition II.11. Fix positive integers a, b, c where c = ab. Let H̄abc be the poly-

hedron consisting of all triples (α, β, γ), α ∈ Ra, β ∈ Rb, γ ∈ Rc such that H(αβγ)

is nonempty.

In order to study this cone, we will need to use some intermediary polyhedra

between H̄abc and the H(αβγ).

Definition II.12. Let Habc be the rational cone given by the inequalities

x(i, j, k) ≥ 0 (1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c),∑
(i∗,j∗)<L(i,j)

x(i∗, j∗, k) ≥
∑

(i∗,j∗)≤L(i,j)

x(i∗, j∗, k + 1).

These are the same inequalities as those for H(αβγ), except we have now removed

the restriction that the points correspond to tableau of shape γ and bicontent (α, β).

The integer points in Habc correspond to all semistandard Young tableaux using the

alphabet {1, · · · , a} × {1, · · · , b}.

Notation II.13. Set

S1(x) :=

(∑
j∗,k∗

x(1, j∗, k∗),
∑
j∗,k∗

x(2, j∗, k∗), · · · ,
∑
j∗,k∗

x(a, j∗, k∗)

)
,

the vector whose n-th component is the sum of the entries of x whose first coordinate

is n. Define S2(x) and S3(x) similarly by letting them be the vectors whose entires
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are these sums when the second and third components respectively are the fixed

coordinate.

Then H̄abc is the image of Habc under the linear map

(2.10) x 7→ (S1(x), S2(x), S3(x)) .

Note: H̄abc is the image of a rational cone under a rational linear map so it is also a

rational cone.

Definition II.14. Let Iabc be the image of Habc under the linear map

(2.11) x 7→ (S12(x), S3(x))

where S12(x) is the matrix whose (i, j) entry is
∑

k∗ x(i, j, k∗).

The points in Iabc are of the form (T, γ) where T is a ‘generalized’ contingency

table of content (α, β) where the entries in the matrix only have to be nonnegative

and don’t have to be integers (see Definition I.41).

Remark II.15. The preimage of an integer point (T, γ) under this map is a polytope

which is isomorphic to the Gelfand-Tsetlin polytope for Kγ,co′(T ) (Definition I.32).

This implies that the preimage of (T, γ) is nonempty precisely when γ is larger than

co(T ) (= co′(T ) with the entries reordered to be nonnincreasing) in the dominance

order.

Our first linear map (2.10) : Habc → H̄abc factors through Iabc using (2.11): it is

Habc → Iabc composed with the linear map

(2.12) (T, γ) 7→ (S1(T ), S2(T ), γ) ,

where S1(T ) and S2(T ) are similarly defined for T . Hence, H̄abc is also the image of

Iabc under a linear map.
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From here, we will continue by finding the inequalities defining the cone H̄abc. We

will compute the inequalities by first finding the extreme rays for the cone H̄abc and

then finding the inequalities these rays all satisfy. To do this, we will find the rays

of Habc, which gives us the rays of Iabc and H̄abc by taking the image of these rays

under maps (2.10) and (2.12). We will then use the properties of the rays for Iabc to

put constraints on the inequalities.

Definition II.16. Let s = (s1, · · · , sn) be a sequence of pairs of integers sl = (il, jl)

such that s1, s2, · · · , sn are strictly increasing in <L. For any such sequence, let xs

be the point in Habc defined by

xs(i, j, k) =


1 if (i, j, k) = (il, jl, l) for some l

0 otherwise

Lemma II.17. For any x ∈ Habc,

x = t1xs1 + t2xs2 + · · ·+ tmxsm

for some ti ∈ R>0 and sequences s1, · · · , sm.

Proof. Let x be a point in Habc. We will prove this using induction on the number

of nonzero entries of x(i, j, k). Let (i′, j′, k′) be such that x(i′, j′, k′) is the smallest

nonzero x(i, j, k). Set sk′ := (i′, j′). The inequality of (2.9) indexed by (i′, j′, k′)

implies that there is an entry (i′′, j′′, k′ − 1) such that x(i′′, j′′, k′ − 1) > 0 and

(i′′, j′′) <L (i′, j′) (in terms of tableaux, this corresponds to the columns being strictly

increasing, so if row k′ has a box with (i′, j′) then the box above it in row k′ − 1

must have a smaller value). Set sk′−1 := (i′′, j′′). Repeatedly applying the inequality

of (2.9) in this way we get a sequence s = (s1, s2, · · · , sk′) such that sl <L sl+1 and

x(il, jl, l) > 0. Consider the point x − x(i′, j′, k′) · xs. All of its coordinates are
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nonnegative since we have subtracted the value of the the smallest positive entry

from coordinates with positive values. It still satisfies (2.9) since x(i, j, k) is only

subtracted from one of the terms on the left hand side if it is also subtracted from

one of the terms on the right hand side. Therefore, the point x− x(i′, j′, k′) · xs is in

Habc, and it has at least one more zero entry than x. By induction,

x− x(i′, j′, k′) · xs = t1xs′1 + t2xs′2 + · · ·+ tm−1xs′m−1

for some ti, s
′
i. Setting tm = x(i′, j′, k′) and s′m = s we therefore have that

x = t1xs′1 + t2xs′2 + · · ·+ tmxs′m .

Corollary II.18. The extreme rays of Habc are a subset of the rays given by the xs.

Definition II.19. For any sequence s of pairs of integers, let Ts be the contingency

table defined by

Ts(i, j) =


1 if (i, j) = (il, jl) for some l

0 otherwise

Proposition II.20. The cone Iabc is the convex hull of the rays in the directions

given by (T, 1n) for T any {0, 1}-matrix consisting of n entries equal to 1.

Proof. Consider the image of one of these xs in Iabc under the map (2.11). Under

this map, xs 7→ (Ts, γ) where γ is the partition 1n, n =length(s). We know that

(2.11) maps Habc onto Iabc, so the rays of Iabc must be a subset of the images of the

rays of Habc, which are in turn a subset of the rays given by pairs (Ts, 1
n).

Applying the map (2.12) to Proposition II.20, we find that H̄abc is the convex hull

of the rays of the images of these (T, 1n). Now that we know the rays of H̄abc, we
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can plug them into a generic linear inequality to find what restrictions there are on

the inequalities defining H̄abc.

Definition II.21. An additive inequality for the partition triple αβγ is an inequality

of the form

ρ1α1 + ρ2α2 + · · ·+ ρaαa + σ1β1 + σ2β2 + · · ·+ σbβb ≥ µ1γ1 + µ2γ2 + · · ·+ µcγc

where the ρi and σj are nonnegative integers and µ1 ≤ µ2 ≤ µ3 ≤ · · · ≤ µc are the

values ρi + σj, 1 ≤ i ≤ a, 1 ≤ j ≤ b, ordered from smallest to largest.

Definition II.22. The chamber inequalities are the inequalities

γi+1 ≤ γi

for i = 1, · · · , c, where we set γc+1 = 0.

Theorem II.23. H̄abc is the cone defined by the set of all additive inequalities and

the chamber inequalities.

To prove this theorem we will need the following lemma:

Lemma II.24. Suppose H̄abc satisfies a linear inequality

ρ1α1 + ρ2α2 + · · ·+ ρaαa + σ1β1 + σ2β2 + · · ·+ σbβb ≥ τ1γ1 + τ2γ2 + · · ·+ τcγc.

Let µ1 ≤ µ2 ≤ · · · ≤ µc be the ordering of the values ρi + σj, 1 ≤ i ≤ a, 1 ≤ j ≤ b.

Then µ1 + · · ·+ µl ≥ τ1 + · · ·+ τl for l = 1, 2, · · · , c.

Proof. Fix 1 ≤ l ≤ c and let i1, j1, · · · , il, jl be the indices such that µk = ρik +σjk for

k = 1, · · · , l. Then the image under (2.12) of the point (T, γ) defined by T (ik, jk) = 1

for 1 ≤ k ≤ l with every other entry zero and γ = 1l is in H̄abc (it is itself the image

of xs where s = ((i1, j1), · · · , (il, jl))). Plugging this point into the inequality for

H̄abc gives the desired result.
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Proof of Theorem II.23. We will begin by showing that H̄abc satisfies any additive

inequality. From Proposition II.20, we know that any extreme ray of H̄abc is the

image of some pair (T, 1n) where T is a {0, 1}-matrix with n entries equal to 1. Let

(T, 1n) be such a pair and consider plugging in its image into an additive inequality.

If the (i, j)-entry of T is 1, then it will contribute a value of ρi + σj to the left hand

side of the additive inequality. Hence, the left hand side of the additive inequality

will have a value greater than or equal to the sum of the n smallest values of the

ρi + σj, i.e. µ1 + · · ·+ µn. This is the value of the right hand side of the inequality,

so the image of (T, 1n) satisfies the inequality. We therefore have that H̄abc satisfies

the additive inequality since each of its extreme rays does.

Next, we will show that any linear inequality which H̄abc satisfies is a sum of an

additive inequality with some chamber inequalities. Suppose H̄abc satisfies a linear

inequality as in the setup of the lemma. We know that H̄abc is a rational cone, so

we may assume that all the coefficients in the inequality are integers. By adding

multiples of the equalities

∑
i

αi =
∑
j

βj =
∑
k

γk

we may assume that the ρi and σj are nonnegative.

The lemma tells us that µ1 + · · ·+ µl ≥ τ1 + · · ·+ τl for l = 1, · · · , c. Set δl to be

the difference between the two sums in the inequality indexed by l:

δl := (µ1 + · · ·+ µl)− (τ1 + · · ·+ τl).

Then δ1, · · · , δc are nonnegative integers such that

(τ1, τ2, · · · , τc) = (µ1, µ2, · · · , µc) + δ1(−1, 1, 0, · · · , 0) + δ2(0,−1, 1, 0, · · · , 0) + · · ·+

+δc−1(0, · · · , 0,−1, 1) + δc(0, · · · , 0,−1).
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This in turn tells us that our inequality is the sum of some of the chamber inequalities

along with the additive inequality:

ρ1α1 + · · ·+ ρaαa + σ1β1 + · · ·+ σbβb ≥ µ1γ1 + · · ·+ µcγc

We therefore have that every inequality H̄abc satisfies is implied by a collection of

inequalities of our two types, so H̄abc is precisely the cone defined by these inequali-

ties.

As a direct consequence of the decomposition of the inequality at the end of the

proof, we get the following corollary.

Corollary II.25. Every face of H̄abc is an intersection of a single face given by an

additive inequality with a collection of faces given by chamber inequalities.

2.4 Faces of H̄abc

Now that we have a set of defining inequalities for H̄abc, we can use them to study

the faces of H̄abc along with the properties of the integer triples contained in a face.

We will start by looking at those faces which are given by an additive inequality.

Definition II.26. An additive face of H̄abc is a face given by an additive inequality.

Suppose that

(2.13) ρ1α1 +ρ2α2 + · · ·+ρaαa +σ1β1 +σ2β2 + · · ·+σbβb ≥ µ1γ1 +µ2γ2 + · · ·+µcγc

is an additive inequality, and let F be the preimage in Iabc of the face this defines.

Proposition II.27. A point (T, γ) ∈ Rab+c
≥0 is in F if and only if it satisfies the

following conditions:

(c1) For any m ∈ {µ1, · · · , µc},∑
k:µk=m

γk =
∑

(i,j): ρi+σj=m

T (i, j).
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(c2) The coordinates have γ greater than or equal to co(T ) in the dominance order.

Proof. One direction is straight forward. If (T, γ) is a point satisfying these two

conditions then (c2) guarantees that this point is in Iabc, while (c1) implies that the

image of (T, γ) in H̄abc has equality in (2.13).

For the other direction, first consider the case when (T, γ) = (Ts, 1
n) is a pair

defining a ray of Iabc. Let s consist of the pairs (i1, j1), · · · , (in, jn), ordered so that

ρi1 +σj1 ≤ ρi2 +σi2 ≤ · · · ≤ ρin +σjn . Consider plugging in the image of (Ts, 1
n) into

the additive inequality (2.13). Each pair (il, jl) will contribute ρil +σjl to the sum on

the left hand side. The right hand side will be equal to µ1 +µ2 + · · ·+µn, but by how

the µi are defined these are the smallest n values occurring amongst the ρi + σj. In

order for the left hand side to not be strictly larger than the right hand side, we need

ρi1 + σj1 , · · · , ρin + σjn to also be the smallest n terms amongst the ρi + σj. By how

we ordered the pairs, we must then have that ρil + σjl = µl for l = 1, · · · , n. This

is precisely what is required for (Ts, 1
n) to satisfy (c1). The second condition (c2) is

trivially satisfied since co(T ) = 1n = γ. Hence, any of the points (Ts, 1
n) giving the

rays of Iabc which are in F must satisfy the two conditions.

Both of these conditions are preserved under taking R≥0-linear combinations of

points satisfying the two conditions. We know that on each ray bounding F there

is a point satisfying these two conditions, so by taking R≥0 combinations of these

points on the rays we have that every point in F satisfy the conditions.

Remark II.28. As stated, Proposition II.27 only applies to preimages of additive

faces. Corollary II.25 tells us a general face of H̄abc is the intersection of one of these

additive faces with some of the faces given by the chamber inequalities. For these

general faces only a slight addition needs to be made for Proposition II.27 to hold;

one just needs add the extra condition
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(c3) The entries of γ satisfy the equalities forced by the chamber inequalities for the

face.

Condition (c2) in Proposition II.27 only depends on the point and does not depend

on the additive face chosen. Condition (c1) only depends on triples (i, j, k) which

have ρi + σj = µk. This means that two additive inequalities correspond to the

same face if and only if they have the same set of such triples. This leads us to the

following natural definitions and corollaries.

Definition II.29. Let F be a face of H̄abc given by an additive inequality

ρ1α1 + ρ2α2 + · · ·+ ρaαa + σ1β1 + σ2β2 + · · ·+ σbβb ≥ µ1γ1 + µ2γ2 + · · ·+ µcγc

• Define R(F ) = R(ρ, σ) be the set of ordered quadruples (i, j, i′, j′), (i, j) <L

(i′, j′), such that ρi + σj = ρi′ + σj′ . We call R(F ) the set of equalities for F .

• Define Q(F ) = Q(ρ, σ) to be the set of ordered quadruples (i, j, i′, j′) such that

ρi + σj < ρi′ + σj′ .

Corollary II.30. An additive face F is uniquely determined by the pair of sets

(Q(F ), R(F )).

Proof. Using R(F ), we can define an equivalence relation∼ on {1, · · · , a}×{1, · · · , b}

by saying (i, j) ∼ (i′, j′) if (i, j, i′, j′) or (i′, j′, i, j) is in R(F ). Let E1, · · · , Ek be

the equivalence classes of ∼. We can use Q(F ) to produce a linear order on these

equivalence classes by saying Er < Et if (i, j, i′, j′) ∈ Q(F ) for any (i, j) ∈ Er

and (i′, j′) ∈ Et. We may assume that the equivalence classes are labeled so that

E1 < E2 < · · · < Ek. Set e1 := 0, and for r = 2, · · · , k, let er = |E1| + |E2| + · · · +

|Er−1| = number of points in equivalence classes smaller than |Er|. Condition (c1)
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in Proposition II.27 is equivalent to the equalities:

er+1∑
k=er+1

γk =
∑

(i,j)∈Er

T (i, j)

for r = 1, · · · , k. Hence the first condition only depends on Q(F ) and R(F ). Con-

dition (c2) does not depend on the face chosen and so it can be checked even if we

only know Q(F ) and R(F ).

Corollary II.31. If F and F ′ are two additive faces, then F ′ is a subface of F if

and only if R(F ′) ⊂ R(F ) and Q(F ) ⊂ Q(F ′).

Proof. First, suppose that F ′ is a subface of F . By Proposition II.27, each of the

sets {(i, j) : ρ′i + σ′j = m}, m ∈ {µ1, · · · , µc}, for F ′ will be a subset of one of these

sets for F . The entries of R(F ) and R(F ′) are formed by taking pairs of (i, j) which

are elements of the same one of these sets. Hence, every pair occurring in R(F ′)

must also be in R(F ), and so R(F ′) ⊂ R(F ). The sets Q(F ) and Q(F ′) correspond

to the pairs in the complements of R(F ) or R(F ′) respectively. The only extra

information is that the pairs are ordered by their values of ρi + σj. In order for the

points in F ′ to satisfy the conditions of Proposition II.27 for F , this ordering has to

be preserved between F and F ′, so we also get that Q(F ) ⊂ Q(F ′) (the complement

of the containment for the R).

Next, suppose that R(F ′) ⊂ R(F ) and Q(F ) ⊂ Q(F ′). Let ∼F and ∼F ′ be the

equivalence relations defined by R(F ) and R(F ′) as in the proof of Corollary II.30.

Let E1, · · · , Er and E ′1, · · · , E ′t be the equivalence classes for ∼F and ∼F ′ and let

e1, · · · , er, e′1, · · · , e′t be as in the proof of Corollary II.30. If (i, j) ∼F ′ (i∗, j∗) then

(i, j) ∼F (i∗, j∗) since R(F ′) ⊂ R(F ). Hence, any Ei is a disjoint union of the E ′j.

In addition, Q(F ) ⊂ Q(F ′) gives us that if Ei < Ej then E ′i′ < E ′j′ for any i′, j′ with

E ′i′ ⊂ Ei and E ′j′ ⊂ Ej. The first condition of Proposition II.27 for F is equivalent
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to
er+1∑

k=er+1

γk =
∑

(i,j)∈Er

T (i, j)

By what was just shown,

er+1∑
k=er+1

γk =
∑

t:E′t⊂Er

e′t+1∑
k=e′t+1

γk,∑
(i,j)∈Er

T (i, j) =
∑
E′t⊂Er

∑
(i,j)∈E′t

T (i, j),

hence ∑
t:E′t⊂Er

e′t+1∑
k=e′t+1

γk =
∑

t:E′t⊂Er

∑
(i,j)∈E′t

T (i, j).

This is a sum of the equations we get from (c1) for F ′, so if a point is in F ′ then it

must also be in F .

Since (Q(F ), R(F )) is enough to specify an additive face, a natural question then

is if we are given an ordered pair (Q,R), can we find an inequality for the additive

face producing this pair. Let F be an additive face of H̄abc. We want to find the

collection of coefficients ρ1, · · · , ρa, σ1, · · · , σb (ρ1 = σ1 = 0) which give rise to an

additive inequality corresponding to this face. By Corollary II.30, the coefficients

will give rise to this face if and only if they satisfy:

ρi + σj = ρi′ + σj′ if (i, j, i′, j′) ∈ R(F ).(2.14)

ρi + σj < ρi′ + σj′ if (i, j, i′, j′) ∈ Q(F ).(2.15)

Definition II.32. Let P (F ) be the cone defined by (2.14), ρ1 = σ1 = 0, and

(2.16) ρi + σj ≤ ρi′ + σj′ if (i, j, i′, j′) ∈ Q(F ).

Note: A point (ρ, σ) will produce the coefficients for an additive inequality corre-

sponding to F if and only if it is in the interior of this cone.
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This cone is able to tell us more, namely it can also be used to find additive

inequalities for any face containing F .

Proposition II.33. There is a one-to-one correspondence between the faces of P (F )

and the additive faces F ′ of H̄abc which contain F .

Proof. Consider the boundary of this cone. If F ′ is face given by (ρ, σ) on the

boundary of P (F ), then (Q(F ′), R(F ′)) will differ from (Q(F ), R(F )) by having some

of the inequalities for F become equalities for F ′, so we will have that R(F ) ⊂ R(F ′)

and Q(F ′) ⊂ Q(F ). By Corollary II.31, this means that F is a subface of F ′.

Similarly, if (ρ, σ) produce a face F ′ of H̄abc which contains F , then R(F ) ⊂ R(F ′)

and Q(F ′) ⊂ Q(F ) guarantee that (ρ, σ) satisfies (2.14) and (2.16) respectively, so

(ρ, σ) ∈ P (F ). Hence the cone P (F ) consists of all points (ρ, σ) such that (ρ, σ)

produces an additive face which contains F .

If two points (ρ, σ) and (ρ′, σ′) are in the same face of P (F ) then they will produce

faces with the same (Q,R) pair, so they will both produce the same face. We therefore

have that each face of P (F ) corresponds to a single face of H̄abc. If F ′ is a face of

H̄abc corresponding to a face G of P (F ), then

R(F ′) = R(F ) ∪ {(i, j, i′, j′) ∈ Q(F ): the points in G have equality in (2.16)},

so R(F ′) is enough to determine which face of P (F ) this G is. Hence, the correspon-

dence between faces of P (F ) and faces of H̄abc which contain F is one-to-one.

Remark II.34. Suppose G1 and G2 are faces of P (F ) with G1 ⊂ G2. If F1 and F2

are the faces of H̄abc which G1 and G2 correspond to respectively, then G1 ⊂ G2

means that every (i, j, i′, j′) ∈ Q(F ) for which (2.16) is an equality for points in G1

must also have equality for points in G2, so R(F2) ⊂ R(F1). In addition, this forces

every (2.16) which is strict for G2 to be strict for G1 also, so Q(F1) ⊂ Q(F2). Hence,
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F2 ⊂ F1. The correspondence therefore reverses the partial order on the faces given

by inclusion.

This provides us with a template for finding the additive facets of H̄abc. The origin

in P (F ) corresponds to the face which is the entire cone H̄abc, so the rays of P (F )

correspond to faces of H̄abc which are not strictly contained in any proper face of

H̄abc, i.e. the rays correspond to facets of H̄abc. Each ray is half of a 1-dimensional

interesection of planes of the form ρi + σj − ρi′ − σj′ = 0. Each 1-dimensional

intersection of such planes gives rise to two facets; if the intersection is spanned by

(ρ, σ) then both it and −(ρ, σ) give rise to R(F ) consisting of a single ray, but the

facets they correspond to have different Q(F ) (the inequalities are flipped between

the two).

Theorem II.35. Let x2, · · · , xa, y2, · · · , yb be indeterminates where we also set x1 =

y1 = 0. Let W be the vector space spanned by x2, · · · , xa, y2, · · · , yb. There is a 2-to-1

correspondence

{facets of H̄abc} ↔ {codimension 1 subspaces of W spanned by elements

of the form xi + yj − xi′ − yj′ for 1 ≤ i, i′ ≤ a, 1 ≤ j, j′ ≤ b}.

Proof. Let F be a facet of H̄abc. By Proposition II.33, we know that the intersection

of the planes of the form ρi + σj − ρi′ − σj′ = 0 for (i, j, i′, j′) ∈ R(F ) has to be 1-

dimensional, so the subspace of W spanned by xi+yj−xi′−yj′ for (i, j, i′, j′) ∈ R(F )

must have codimension 1. This means that the map

F 7→ Span(xi + yj − xi − yj|(i, j, i′, j′) ∈ R(F ))

is between the two claimed sets. For each codimension 1 subspace W ′, we can solve

for the facets F mapping to it by finding solutions (x, y) to the system of equations

w(x, y) = 0, w ∈ W ′
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and setting ρ = x and σ = y. The space of solutions is 1-dimensional so there are

precisely 2 choices for Q(R) which can arise from these solutions, one for either ray

of the line.

Remark II.36. This proof tells us that for facets we do not need to remember all of

Q(F ). All we need is R(F ) and a single element of Q(F ) to tell us which of the two

options it corresponds to.

2.5 When is H(αβγ) 0-Dimensional?

We are almost ready to show how we can produce all of the triples of partitions

αβγ where H(αβγ) is 0-dimensional. Once we have this, we will have asymptotically

solved the question of how to produce all h-stable triples. We will determine when

H(αβγ) is 0-dimensional by using our results on the faces of H̄abc along with the

following crucial proposition.

Proposition II.37. If F is a face of H̄abc, then dim(H(αβγ)) is constant on the

interior of F .

Proof. For any (α, β, γ) ∈ H̄abc, the polytope H(αβγ) is the preimage of this point

in Habc. Let F be a face of H̄abc and let G be the preimage of F in Habc. For any

point (α, β, γ) ∈ F , H(αβγ) is the intersection of G with the affine planes

(2.17)
∑
j′,k′

x(i, j′, k′) = αi,
∑
i′,k′

x(i′, j, k′) = βj,
∑
i′,j′

x(i′, j′, k) = γk.

Let H1, · · · , Ht be the hyperplanes corresponding to the inequalities of Habc which

G has equality for. If (α, β, γ) is a point in the interior of F , then the dimension of

H(αβγ) is equal to the dimension of

H1 ∩ · · · ∩Ht ∩ {Affine planes of (2.17)}.
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Since H1, · · · , Ht are hyperplanes, each of these intersections is a translation of the

intersection for α, β, γ = 0 (the origin is not in the interior of F but we can still

form this intersection). Hence, the dimension of this intersection does not depend on

(α, β, γ), and so the dimension of H(αβγ) is independent of (α, β, γ) in the interior

of F .

This provides us with a blue print for producing all 0-dimensional H(αβγ). Every

face of H̄abc is the intersection of an additive face with some chamber faces, so we

will begin by working with an additive face and then we will show how to choose a

collection of chamber faces whose intersection with the additive face will produce a

face where H(αβγ) 0-dimensional.

In order for H(αβγ) to be 0-dimensional, we need the preimage of (α, β, γ) in Iabc

to be a single point (T, γ), and then we need the preimage of this point in Habc to be

zero dimensional. The preimage of the point (T, γ) is a polytope which up to per-

muting the coordinates is the Gelfand-Testlin polytope GT (γ, co(T )). We therefore

have that H(αβγ) is 0-dimensional if and only if the following two conditions hold:

(H1) There is a unique matrix T occurring in the preimage of (α, β, γ) in Iabc.

(H2) For this matrix T , the polytope GT (γ, co(T )) contains a single point.

For (H2), we need to know conditions for when the polytope GT (γ, co(T )) is

zero dimensional. We will make use of the following result of Stembridge which is a

particular case of a result of Berenstein and Zelevinsky [1].

Lemma II.38 (Corollary 5.4 of [14]). Let α and β be partitions. The polytope

GT (α, β) is 0-dimensional if and only if α ≥ β and every primitive factor of (α, β)

has a shape with at most two distinct part sizes, one of which only occurs once.
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Definition II.39. A primitive factor of (α, β) is a pair (α∗, β∗) such that α∗ =

(αi, αi+1, · · · , αj) and β∗ = (βi, βi+1, · · · , βj) for some i, j, and

α1 + α2 + · · ·+ αi−1 = β1 + · · ·+ βi−1,

αi + αi+1 + · · ·+ αk 6= βi + βi+1 + · · ·+ βk for k = i, · · · , j − 1,

αi + αi+1 + · · ·+ αj = βi + βi+1 + · · ·+ βj.

If α ≥ β, then the primitive pairs are the maximal sequential subsequences of α and

β where the inequalities

α1 + · · ·+ αk ≥ β1 + · · ·+ βk

are strict (Note: these are the inequalities for checking if α ≥ β in the dominance

order). We call α∗ the shape of the primitive factor.

Remark II.40. In order to check if α ≥ β in the dominance order, we only need to

check that α∗ ≥ β∗ for each of the primitive factors.

Let F be an additive face of H̄abc and suppose that (T, γ) is a point in Iabc whose

image is in the interior of F . Let ν1 < ν2 < · · · < νk be an ordering of the elements

in {µ1, · · · , µc} and set ni := #{j : µj ≤ νi} (where n0 = 0 by convention).

Proposition II.41. Let G be a face of H̄abc. Points (T, γ) in the preimage of G will

have GT (γ, co(T )) be 0-dimensional if and only if G is a subface of the intersection

of an additive face F with the chamber faces

γnd−1+1 = γnd−1+2, · · · , γnd−2 = γnd−1, or

γnd−1+2 = γnd−1+3, · · · , γnd−1 = γnd ,

for d = 1, · · · , k.
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Proof. By Proposition II.27 we have both that γ ≥ co(T ) and for d = 1, · · · , k,
nd∑

i=nd−1+1

γi =
∑

(i,j): ρi+σj=νd

T (i, j)

where the right hand side is a sum of nd−nd+1 terms in T . The inequality γ ≥ co(T )

tells us that
∑n1

i=1 γi is greater than or equal to the sum of any n1 terms of T , so

in order for there to be equality for d = 1 we must have that the T (i, j) with

ρi + σj = ν1 are the largest n1 terms of T . Hence
∑n1

i=1 γi =
∑n1

i=1 co(T )i. Repeating

this argument for ν2, then ν3, and so on we get that for d = 1, · · · , k
nd∑

i=nd−1+1

γi =

nd∑
i=nd−1+1

co(T )i.

The point (T, γ) is in the interior of the preimage of F so by Proposition II.27 it

cannot have any other equalities amongst the partial sums of this form, so we have

that the (
(γnd−1+1, · · · , γnd), (co(T )nd−1+1, · · · , co(T )nd)

)
for d = 1, · · · , k, are the primitive factors of (γ, co(T )).

By Lemma II.38, GT (γ, co(T )) will be 0-dimensional if and only if we force there

to be at most two lengths for γ amongst each of these primitive factors, where one

of the lengths occurs at most once. The points in the interior of G will have this

property on their primitive factors if and only if for d = 1, · · · , k one of the two

chains of chamber equalities from the statement of the proposition holds.

Remark II.42. A corollary of the proof of Proposition II.41 is that (T, γ) will be the

preimage of a point in the interior of an additive face if and only if γ dominates

co(T ) and the primitive factors of (γ, co(T )) are precisely the pairs

(
(γnd−1+1, · · · , γnd), (co(T )nd−1+1, · · · , co(T )nd)

)
for d = 1, · · · , k.
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Next, we want to find a way of determining when there is a unique matrix in the

preimage of a face so that (H1) is satisfied. Suppose (α, β, γ) is in the interior of an

additive face F of H̄abc, and let T be a generic matrix occurring in the preimage of

(α, β, γ).

Lemma II.43. For small ε, T + εS will also occur as a matrix in H(αβγ) if and

only if S has 0 row and column sums and satisfies

(2.18)
∑

k:µk=m

γk =
∑

(i,j):ρi+σj=m

S(i, j), ∀m ∈ {µ1, · · · , µc}.

Proof. From Remark II.42, we know that the image of (T, γ) will be a point in the

interior of F if and only if γ dominates co(T ) and the primitive factors of (γ, co(T ))

are be precisely the pairs

(
(γk)µk=m , co (T (i, j))ρi+σj=m

)
for m ∈ {µ1, · · · , µc}.

Since these are the primitive factors, the only equalities amongst the partial sums

of γ and co(T ) used to compare γ and co(T ) in the dominance order are the ones

that show that the size of both parts of these primitive factors are the same. Hence

for ε small enough, γ will dominate co(T + εS) as long as the primitive factors of

(γ, co(T )) and (γ, co(T + εS)) are the same subsequences.

For any matrix S and ε small enough, (γ, co(T + εS)) will still have these as the

primitive factors if and only if the (2.18) equalities hold. Hence, T + εS will be a

matrix in H(αβγ) if and only if the (2.18) equalities hold for S.

There will be a unique matrix in the preimage of (α, β, γ) if and only if there

is no matrix S with 0 row and column sums satisfying (2.18). As before, we will

enforce this by taking an additive face and showing which chamber faces we must
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intersect it with in order for there to be no such S. Let F be an additive face given

by the coefficients ρ1, · · · , ρa, σ1, · · · , σb with equalities R = R(ρ, σ). We will proceed

by constructing a weighted graph which can be used to produce S with 0 row and

column sums that satisfy (2.18), and then use this graph to determine which chamber

equalities are necessary to eliminate these S.

Construct a graph Ḡ(R) by letting it have a vertex for each pair (i, j) and an

edge between (i, j) and (i′, j′) if (i, j, i′, j′) or (i′, j′, i, j) ∈ R. Each edge in Ḡ(R)

corresponds to an equality ρi + σj = ρi′ + σj′ , so by the transitive property every

connected component of Ḡ(R) will be a complete graph. We do not need all of the

equalities in order to determine R; we only need a spanning tree of each connected

component in order to determine R. Pick a maximal subforest, L, of Ḡ(R).

Definition II.44. Given a set of equalities R for a face and a maximal subforest L

of Ḡ(R), let G(R) be the graph with b vertices v1, · · · , vb such that there is an edge

between vj and vj′ if there is an edge between (i, j) and (i′, j′) in L for some i, i′ (we

allow edges to be loops from a vertex to itself and pairs of vertices to have multiple

edges between them).

This graph will just serve as a convenient way of keeping track of the equalities R,

and so in practice the computations the graph is used for will not depend on which

choice of L is used. For this reason, we refer to this graph as G(R) and not G(R,L).

This graph G(R) is formed by taking L and merging all the vertices with the same

second coordinate.

Example II.45. Consider the additive face given by ρ = (10, 0, 7, 4) and σ =

(6, 10, 3, 0).

As we can see in Figure 2.1, this choice of ρ and σ produces
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Figure 2.1: An example of values for ρ and σ along with the µ they produce.

µ = (0, 3, 4, 6, 7, 7, 10, 10, 10, 10, 13, 13, 14, 16, 17, 20), with equalities

R = ((1, 3, 3, 1), (1, 4, 2, 2), (1, 4, 3, 3), (1, 4, 4, 1), (2, 2, 3, 3), (2, 2, 4, 1), (3, 3, 4, 1),

(3, 4, 4, 3)). By introducing an edge for each entry of R, we obtain the Ḡ(R) of Figure

2.2. This graph Ḡ(R) is a union of complete graphs (a K4, two K1’s, and the rest

Figure 2.2: An example of the Ḡ(R) graph (left) and a choice of L (right).

are single vertices). To construct a maximal subforest L we need to remove edges

from the K4 to get a spanning tree. In Figure 2.2, the (3, 3, 4, 1) and (2, 4, 3, 3) edges

were removed to produce L. Now, in order to construct G(R) from L, we merge each

vertical column of vertices (i.e. ones with the same second coordinate), producing

the graph of Figure 2.3. The edges of Figure 2.3 have been assigned weights based

on the first coordinates of the vertices incident to the corresponding edge in L (we

will see how this is done in Notation II.49).

Our main focus will be the cycles of G(R). We will assign weights to the edges
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Figure 2.3: An example of the G(R) graph.

of G(R) and then use the weights of the cycles to find a necessary and sufficient

condition for a face producing G(R) to satisfy (H1).

Definition II.46. Recall from Definition II.29 that if (i, j, i′, j′) ∈ R, then (i, j) <L

(i′, j′). Our choice of ordering on the pairs in the equality is equivalent to choos-

ing how to orient the edge formed by the equality in Ḡ(R), and so it descends to

an orientation on the edge in G(R): if an edge of G(R) is given by the equality

(i, j, i′, j′) ∈ R then the edge is oriented from vj to vj′ . We will say that a directed

path traverses an edge in the positive direction if it follows this orientation, and that

it traverses the edge in the negative direction if goes against the orientation.

In Figure 2.2, the positive direction for all of the edges in Ḡ(R) is the downwards

direction. This descends to the positive direction of all the edges of G(R) in Figure

2.3 being from right to left except for the edge between the two middle vertices is

from left to right.

Notation II.47. To any cycle C of G(R), assign a formal sum of edges

E(C) :=
∑
e∈C

εee

where εe = 1 if the cycle traverses e in the positive direction and εe = −1 if it

traverses e in the negative direction.

Definition II.48. Call a collection of cycles C1, · · · , Cn a cycle basis if E(C1), · · · ,

E(Cn) form a basis for the space Span{E(C) : C a cycle in G(R)}.
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Notation II.49. Assign weights to the edges of G(R) as follows: for each edge

((i, j), (i′, j′)) in L, assign the corresponding edge in G(R) the weight w(e) = δi− δi′ ,

where δ1, · · · , δa are indeterminates. To any cycle C in G(R), assign it the weight

w(C) :=
∑
e∈C

εew(e)

where εe is the same as for E(C).

Theorem II.50. Let F be an additive face, let R = R(F ) be the set of equalities

for F , and let C1, · · · , Cn be a cycle basis for G(R). The points in F have a unique

matrix in their preimage if and only if w(C1), · · · , w(Cn) are linearly independent.

Theorem II.50 is our desired necessary and sufficient condition for (H1) to hold,

and so our goal now is to prove this theorem. We will do this by showing how to

construct a matrix S with 0 row and column sums which satisfies (2.18) if the weights

of the cycles are not linearly independent.

Notation II.51. For any quadruple (i, j, i′, j′), let S(i, j, i′, j′) be the matrix whose

entries are all 0, except at (i, j) it is 1 and (i′, j′) it is -1. Additionally, for any

edge e in G(R), set S(e) := S(i, j, i′, j′) where (i, j, i′, j′) is the equality in R that e

corresponds to.

Remark II.52. For every (i, j, i′, j′) ∈ R, since we chose L maximal, there is a unique

path P between vj and v′j. For this path

∑
e∈P

εeS(e) = S(i, j, i′, j′).

Notation II.53. For any oriented cycle C in G(R), set

S(C) :=
∑
e∈C

εeS(e)

where εe is as in Notation II.47.
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Each S(e) satisfies (2.18), so S(C) does too. Every vertex in C has indegree =

outdegree, so the column sums of S(C) will also be 0. Therefore each S(C) is a

matrix satisfying (2.18) with 0 column sums.

Lemma II.54. The space of all matrices which have column sums 0 and satisfy

(2.18) is precisely the set Span{S(C) : C is a cycle in G(R)}.

Proof. Taking linear combinations of matrices with 0 column sums and satisfying

(2.18) preserves both of these properties, so we already have that this span is con-

tained in the set. We now just have to show the opposite containment.

Let S be a matrix with column sums 0 that also satisfies (2.18). Let (i0, j0) be

an entry of S with smallest nonzero absolute value, say ε = S(i0, j0). By taking the

negative of S if necessary, we may assume that ε = S(i0, j0) > 0. Our matrix S

satisfies (2.18), so there must be some (k1, j1) with S(k1, j1) < 0 and (i0, j0, k1, j1)

or (k1, j1, i0, j0) ∈ R. Let S ′ = S − εS(i0, j0, k1, j1) if (i0, j0) <L (k1, j1) and S ′ =

S + εS(i0, j0, k1, j1) if (i0, j0) >L (k1, j1). This matrix S ′ still satisfies (2.18) but no

longer has 0 column sums; its j0 and j1 columns now have a negative and positive

sum respectively. By our choice of (i0, j0) and (k1, j1) we also have that

∑
i,j

|S(i, j)| <
∑
i,j

|S ′(i, j)|.

Replace S by S ′. The matrix S now has a positive j1 column sum, so there is

(i1, j1) with S(i1, j1) > 0. Then again by (2.18) we get (k2, j2) with S(k2, j2) < 0

and (i1, j1, k2, j2) ∈ R. Again replace S by S ± εS(i1, j1, k2, j2). Repeat this process

until we reach an l with jl = j0. This must occur since
∑
|S(i, j)| is decreasing

by a fixed amount each time so it will eventually reach 0. If the sum gets to 0

then we must have reached column j0 again since it has negative column sum after

the first step. For t = 0, · · · , l − 1, let Pt be the path in G(R) corresponding to
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(it, jt, kt+1, jt+1) or (kt+1, jt+1, it, jt) ∈ R (see Remark II.52), oriented to go from vjt

to vjt+1 . Paths Pt and Pt+1 have an end vertex vjt+1 in common and Pl−1, P0 have end

vertices vj0 = vjl in common. Concatenating these paths together therefore forms

a cycle in G(R). Let S be the starting matrix and Sfinal be the matrix we obtain

after this process. Our method of replacing S was chosen so that S = Sfinal + εS(C)

where
∑
|Sfinal(i, j)| <

∑
|S(i, j)|. Repeating this process of producing cycles by

now using Sfinal as our initial matrix, we will eventually end up with the zero matrix.

Once we have this, then S was just the sum of the εS(C) which we’ve found.

Next, consider the linear map W : Span{S(C)} → Span{δ1, · · · , δa} given by

S(C) 7→ w(C). The S(e) matrices have row sums all 0 except the sum for rows i and

i′ are 1 and -1 respectively. Comparing this to our definition of w(e), we find that the

ith row sum of S(C) is equal to the coefficient of δi in w(C). The map therefore only

depends on the matrix in Span(S(C)) and not which linear combination of S(C) it

is equal to, and so is well defined.

Lemma II.55. A matrix S satisfies (2.18) and has 0 row and column sums if and

only if S ∈ ker(W ).

Proof. We know that the coefficient of δi in the image of a matrix under this map is

equal to the ith row sum of the matrix. Hence, S will be in this kernel if and only if

it has 0 row sums. Applying this to Lemma II.54 gives us that this kernel is precisely

the set of S we are interested in.

Proof of Theorem II.50. Suppose C1, · · · , Cn is a cycle basis. We will show that

S(C1), · · · , S(Cn) forms a basis for Span{S(C)}. Given this fact, W will have trivial

kernel if and only if w(C1), · · · , w(Cn) are linearly independent, and so the theorem

will follow from Lemma II.55.
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Consider the map Span{E(C)} → Span{S(C)} given by e 7→ S(e) for the edges

e of G(R). This map sends E(C) to S(C) for any cycle C in G(R), so the map

is surjective. Suppose that the map is not injective. That means that there is a

nontrivial formal sum
∑
e

τee such that its image,
∑

e edge of G

τeS(e), is the zero matrix.

Restricting this sum to the (i, j) entry of the matrices, we get that
∑
e

τe = 0 where

this new sum is over edges e of G(R) whose corresponding edge in L (the maximal

forest used to construct G(R)) is incident to the vertex (i, j). If (i, j) is a leaf in L,

then the sum for (i, j) consists of a single edge, so we must have that τe = 0 for any

edge incident to a leaf. Consider the graph formed by removing all the edges of L for

which τe is zero for the corresponding edge in G(R). This subgraph of L must have

no leaves, but L is a forest so its only subgraph with no leaves is the edgeless graph.

Hence, τe = 0 for every edge e of G(R). We therefore have that no such nontrivial

linear combination exists, so the map is injective.

We therefore have that the map Span{E(C)} → Span{S(C)} is a linear isomor-

phism. The formal sums E(C1), · · · , E(Cn) form a basis for Span{E(C)}, so their

images S(C1), · · · , S(Cn) form a basis for Span{S(C)}.

Remark II.56. If τ1w(C1) + · · · + τnw(Cn) = 0 is a nontrivial dependence relation,

then τ1S(C1) + · · · + τnS(Cn) will be a nonzero matrix satisfying (2.18) with 0 row

and column sums, so it is a witness to the additive face not satisfying (H1).

Now that we have a nice method for checking for matrices S with 0 row and

column sums which satisfy (2.18), the question is which chamber facets do we need

to intersect our additive face with so that these S can no longer occur. Suppose

we have such an S for an additive face F . Let (T, γ) ∈ Iabc be in the preimage of

a point in the interior of F . We need to intersect F with chamber facets so that

(T +εS, γ) is not in the preimage of the new face. Since S satisfies (2.18), T +εS will



49

always satisfy (c1) of Proposition II.27 for the intersection of F with some chamber

facets, so by the proposition in order for (T + εS, γ) to not be in the preimage of

the intersection it must fail to satisfy (c2). Hence, we need to introduce chamber

equalities so that γ no longer dominates co(T + εS).

From Remark II.42, we know that the primitive factors of (γ, co(T )) are the pairs

(2.19)
(

(γk)µk=m , co (T (i, j))ρi+σj=m

)
for m ∈ {µ1, · · · , µc}. Since S satisfies (2.18), we have that for any m,∑
(i,j):ρi+σj=m

T (i, j) =
∑

(i,j):ρi+σj=m

(T + εS)(i, j), so the primitive factors for (γ, co(T +

εS)) will be subsequences of those in (2.19). Provided ε is small enough, any of the

inequalities used to check if γ dominates co(T ) which are strict inequalities will still

be strict inequalities when checking if γ dominates co(T + εS). Hence, the primitive

factors of (γ, co(T + εS)) will be the same subsequences as those of (2.19) and γ will

dominate co(T + εS). As long as the pairs of (2.19) are the primitive factors for

points in the interior of our face, γ will dominate T + εS for small ε and there will

not be a unique matrix in the preimage of the face. We therefore need to intersect

F with chamber facets so that the pairs of (2.19) are no longer the primitive factors

for points in the interior of the face.

The only way for the (2.19) pair indexed by m to not be a primitive factor is to

intersect our face with chamber equalities so that (γk)µk=m is the minimum partition

of its size in the dominance order (i.e. all of its parts are the same length). For this

new face, in order for (γk)µk=m to dominate co(T (i, j))ρi+σj=m they must be the same

partition which has a single part length. Now, (γk, co(T )k) is a primitive factor for

any k with µk = m and so the primitive factor indexed by m has been broken up

into smaller ones. Therefore, to prevent γ from dominating T + εS, for one of the
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primitive factors where
(
co(T )(i,j)

)
ρi+σj=m

6=
(
co(T + εS)(i,j)

)
ρi+σj=m

we must force

(γk)µk=m to be the minimum partition of its size.

We therefore have that for some m where the T and T+εS portions differ, we must

intersect F with the chamber facets given by the chamber equalities γi = γi+1 where

µi = µi+1 = m. Suppose τ1w(C1) + · · ·+ τnw(Cn) is a nontrivial dependence relation

amongst a cycle basis for G(R) and e is an edge which has a nonzero coefficient in

τ1E(C1) + · · · + τnE(Cn). If S is the matrix produced by this dependence relation

(Remark II.56), then S(i, j) will be nonzero for some entry in {(i, j) : ρi + σj = m}.

By what was shown in the previous paragraph, if we intersect F with the chamber

facets γi = γi+1 for µi = µi+1 = m, then T + εS will not be a matrix in the preimage

of this intersection. In order for the intersection to have a unique matrix in its

preimage, we must do this for every nontrivial independence relation.

There will be overlap amongst the dependence relations for which edges occur with

nonzero coefficient, so it will be useful to reconstruct G(R) after we have intersected

the face with some chamber equalities to see which dependence relations remain. To

do this, once we have intersected F with chamber facets so that γi = γi+1 for all i

with µi = µi+1 = m for some fixed m, we must remove all of the edges from G(R)

which are produced by equalities of the form ρi +σj = ρi′ +σj′ = m (or alternatively

remove all the equalities from R and use the new R to form G(R)). Once we’ve done

this, any S produced by a dependence relation in the new G(R) will have all of its

entries (i, j) with ρi + σj = m be 0, so it will not have nonzero terms amongst the

primitive factors where we have forced the γ part to be minimal. This means γ will

dominate co(T + εS) and the dependence relation will still produce a witness to the

face not satisfying (H1).

Remark II.57. This provides us with a recipe for finding faces where H(αβγ) is 0-
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dimensional. Begin with an additive face F given by coefficients ρ, σ with equalities

R = R(ρ, σ).

1. Form the graph G(R) and find a cycle basis C1, · · · , Cn for the graph.

2. Check if the weights of the cycles in the basis are linearly independent. If

they are not, then there is a nontrivial dependence relation τ1w(C1) + · · · +

τkw(Cn) = 0. Pick an edge e with nonzero coefficient in the sum τ1E(C1) +

· · · + τnE(Cn); it will correspond to some value m ∈ {µ1, · · · , µc}. Intersect F

with the chamber faces γi = γi+1 for all i with µi = µi+1 = m. Remove all the

equalities (i, j, i′, j′) ∈ R with ρi + σj = ρi′ + σj′ = m. The edge, and hence the

cycle, will no longer appear in G(R).

3. Repeat Steps 1 and 2 until the weights are linearly independent.

4. Take all the elements of {µ1, · · · , µc} which have not been used yet and set all

but the first or last of the corresponding γi to be equal by intersecting the face

with the appropriate chamber facets.

Once you have completed these steps the constraints describe a face where the poly-

tope H(αβγ) is 0-dimensional.

Finally, we are interested in the case when α, β and γ are partitions. So far though,

everything we have done has been for α and β which not have to be nonincreasing.

What we are truly interested in then is H̄′abc = the intersection of H̄abc with the

additional chamber equalities for α and β:

αi ≥ αi+1, βj ≥ βj+1.

The faces of H̄′abc which do not involve these new chamber inequalities correspond

to a subset of the faces of H̄abc. Using the same reasoning as in Theorem II.23
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we can express every inequality as sum of these new chamber inequalities with an

additive inequality where ρ1 ≤ ρ2 ≤ · · · ≤ ρa and σ1 ≤ σ2 ≤ · · · ≤ σb (we can

again use the fact α and β are partitions of the same number to make ρ1 = σ1 = 0).

The inequalities for H̄′abc are then these ordered additive inequalities along with our

expanded chamber inequalities.

What this means for the equalities, R(F ), of the additive faces of H̄′abc is that we

only need to be concerned with equalities of the form (i, j, i′, j′) with i′ ≤ i, j ≤ j′.

An equality not of this type can only arise if we have ρi = ρi′ and σj = σj′ , in which

case it is implied by equalities of this form. In addition, for Theorem II.35, the map

is now injective since only one ray can have increasing ρ and σ.

2.6 Examples of 0-dimensional H(αβγ)

We close this discussion on the H(αβγ) polytopes with three examples of using

the procedure from Remark II.57 to find triples where H(αβγ) is 0-dimensional.

Example II.58. Consider the additive face F1 of H̄4,4,16 given by the choice of

ρ = (0, 1, 3, 4) and σ = (0, 1, 2, 6) for coefficients in the additive inequality (2.13).

This produces the inequality

α2 + 3α3 + 4α4 + β2 + 2β3 + 6β4 ≥ γ2 + γ3 + 2γ4 + 2γ5 + 3γ6 + 3γ7 + 4γ8 +

+4γ9 + 5γ10 + 5γ11 + 6γ12 + 6γ13 + 7γ14 + 9γ15 + 10γ16

For Step 1 of Remark II.57, Ḡ(R) is the top graph of Figure 2.5. This graph

Ḡ(R) is already a forest so L is just Ḡ(R). Merging all of the vertices with the same

second coordinate results in G(R), the bottom graph of Figure 2.5. Since the entires

of ρ and σ are weakly increasing, the positive direction (Definition II.46) for all of

the edges of Ḡ(R) is down and to the left so the positive direction for each of the

edges in G(R) is right to left.
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Figure 2.4: The entries of ρ and σ of F1 along with the entries of µ they produce.

There are two linearly dependent cycles in G(R): going from v1 (the leftmost

vertex) to v2 along the top edge and then back to v1 using the bottom edge produces

a cycle with weight −δ1 + δ2 + δ4 − δ3 and the analogous cycle between v2 and v3

produces a loop with the same weight. For Step 2, we therefore need to introduce

chamber equalities so that we can remove one of the edges of these two cycles. We will

introduce equalities to remove the top edge of the first cycle. This edge corresponds

to the pair of entries equal to 1 in Figure 2.4, so we need to set the corresponding

γ values to be equal to each other. Hence we need to intersect our face with the

chamber equality

γ2 = γ3.

Doing this will remove the top edge between v1 and v2 from G(R), and the result-

ing graph will have linearly independent cycle weights. This means that the points

in the intersection of F1 with γ2 = γ3 have a unique matrix in their preimage in

Iabc. Finally, we must introduce chamber equalities from Step 4 in order to make the

Gelfand-Tsetlin polytope for the point in Iabc be 0-dimensional. All of the primitive

factors are of length 1 or 2, so we do not need to intersect F1 with any more chamber

faces.
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Figure 2.5: The graph Ḡ(R) obtained using R(F1) and the resulting graph G(R) obtained by
collapsing all the points with the same second coordinate to a single point.

We therefore have that the points in the face

F1 ∩ {γ2 = γ3}

will have 0-dimensional H(αβγ).

Figure 2.6 consists of the T matrices from Proposition II.20 which correspond to

the extreme rays of the preimage of this face in Iabc with l(γ) ≤ 5. Next to each

matrix is the extreme ray of our face of H̄abc that is the image of the ray of Iabc. The

first two entries of the H̄abc rays are the row and column sums of the matrix while

the third entry is co(T ). These matrices are formed by filling in the matrix with 1’s,

starting with the entries with the smallest ρi + σj (its value in Figure 2.4) and then

filling in the entries with the next largest value and so on. Whenever there are two

entries with the same ρi + σj value, they can be filled in either order unless we have

introduced chamber equalities for this ρi + σj value. If we have introduced chamber
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Figure 2.6: Extreme rays of F1 ∩ {γ2 = γ3} with l(γ) ≤ 5

equalities from Step 2, then all of the values of γ corresponding to that ρi + σj must

be equal, so we have to fill in all of the entries with this value of ρi + σj at the same

time. This is why there is no ray with γ = 12, the ρi + σj = 1 entries must have

the same value since γ2 = γ3. If we have introduced chamber inequalities for Step 4,

then one of the entries with the ρi + σj value can be different from the others. In

this case, depending on which chain of chamber equalities were chosen, either one

entry is filled first then the rest must all be at filled it at the same time, or all but

one are filled in at once and then the final is filled in (see Figure 2.10 for an example

of this).

Any nonnegative linear combination of these five extreme rays ((1, 1, 1), (21, 21, 13),

(31, 211, 14), (22, 22, 14), and (32, 221, 15)) will produce a triple αβγ with 0-dimensional

H(αβγ).

Example II.59. Consider the additive face F2 of H̄4,4,16 given by the choice of

ρ = (0, 2, 3, 5) and σ = (0, 1, 3, 3) for coefficients in the additive inequality (2.13).
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This produces the inequality

2α2 + 3α3 + 5α4 + β2 + 3β3 + 3β4 ≥ γ2 + 2γ3 + 3γ4 + 3γ5 + 3γ6 + 3γ7 + 4γ8 +

+5γ9 + 5γ10 + 5γ11 + 6γ12 + 6γ13 + 6γ14 + 8γ15 + 8γ16

Figure 2.7: The entries of ρ and σ for F2 along with the entries of µ they produce.

For Step 1 of Remark II.57, Ḡ(R) is the top graph of Figure 2.8. Here, L is chosen

to be the subgraph formed by the solid edges and the resulting G(R) is shown at the

bottom of Figure 2.8. Same as Example II.58, the positive direction for each of the

edges of G(R) is right to left.

Figure 2.8: The Ḡ(R) and G(R) graphs for F2.

There are four edges between the last two edges with 0 weight. As long as at least
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two of these edges remain there will be a cycle of weight 0, so we need to introduce

chamber equalities to remove three of these edges. These edges are in the complete

subgraphs corresponding to ρi + σj =3, 5, 6, and 8 (the value of the (i, j) box in

Figure 2.7). We will introduce chamber equalities to remove the ρi + σj =5, 6, and

8 edges. This corresponds to intersecting F2 with the chamber equalities

5 : γ9 = γ10 = γ11

6 : γ12 = γ13 = γ14

8 : γ15 = γ16.

We now must remove the edges from Ḡ(R) corresponding to the equalities of the

form ρi+σj = ρi′+σj′ = 5, 6, 8. This removes all of the edges from Figure 2.8 except

for those in the K4 subgraph (the complete subgraph corresponding to ρi + σj = 3).

Using the remaining three solid edges for L, we obtain the G(R) of Figure 2.9.

Figure 2.9: The G(R) after edges have been removed for Step 2 of Remark II.57.

This new G(R) has no cycles; performing Step 2 to remove the cycles for the

weight 0 edges also removed the weight 0 cycle formed by going from v1 (the leftmost

vertex) to v2 to v3 using the bottom edge and then back to v1. We are just left with

introducing the chamber equalities for Step 4. There is one ρi + σj value remaining

(i.e. not 5,6, or 8) which has more than two entries, namely 3. Hence we need to

introduce one of the following two collections of chamber equalities:

γ4 = γ5 = γ6 or γ5 = γ6 = γ7.

We will introduce the first collection of chamber equalities, γ4 = γ5 = γ6. We
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therefore have that points in the face

F2 ∩ {γ4 = γ5 = γ6} ∩ {γ9 = γ10 = γ11} ∩ {γ12 = γ13 = γ14} ∩ {γ15 = γ16}

have 0-dimensional H(αβγ).

Figure 2.10 consists of the T matrices of Proposition II.20 which produce the

extreme rays of the preimage of the face in Iabc with l(γ) ≤ 8, along with the point

in H̄abc each of these rays is mapped to. In the rays for this face, since we chose the

chamber equalities γ4 = γ5 = γ6 for Step 5, when filling the entries with ρi + σj = 3

three of them must be done at the same time, then the final one can be filled in (if

we had chosen γ5 = γ6 = γ7 then one would have to be filled first followed by the

rest being filled in at the same time).

Figure 2.10: Extreme rays of our face with l(γ) ≤ 8

One of the tables is crossed out since it produces a β which is not weakly decreas-

ing, so we don’t include it when taking nonnegative linear combinations to find triples

of partitions. Taking nonnegative linear combinations of the eight remaining points

in Figure 2.10 will produce triples of partitions αβγ where H(αβγ) is 0-dimensional.
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Example II.60. For the final example, consider the additive face F3 of H̄4,4,8 given

by the choice of ρ = (0, 1, 3, 3) and σ = (0, 2, 3, 5) for the coefficients in the additive

equality (2.13). These are the coefficients of F2 from Example II.59 where ρ and

σ have been swapped. Since H̄abc is symmetric in α and β, F3 intersected with

the same chamber equalities as Example II.59 will produce a face where H(αβγ)

is 0-dimensional, and so applying the steps of Remark II.57 should produce these

chamber equalities.

The table of ρi + σj values will be the transpose of the table of Figure 2.7. The

µi values for F3 are the same as those for F2. Computing Ḡ(R) for F3, we get the

‘transpose’ of the Ḡ(R) graph of Figure 2.8. Letting L again be the solid edges of

Figure 2.8, we obtain the G(R) of Figure 2.11.

Figure 2.11: The G(R) graph for F3.

There are four loops with the weight δ3 − δ4. As long as two of the loops remain,

then by taking the difference of the weights of the two loops we obtain a nontrivial

dependence relation. For Step 2, we must intersect F3 with chamber equalities to

remove three of these edges. Same as the previous example, we will remove the edges

corresponding to ρi + σj =5, 6, and 8. This corresponds to intersecting F3 with the

chamber equalities

5 : γ9 = γ10 = γ11

6 : γ12 = γ13 = γ14

8 : γ15 = γ16.
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Removing the edges from Ḡ(R) given by equalities of the form ρi+σj = ρi′+σj′ =

5, 6, 8 again removes all of the edges but those in the K4 connected component. Using

the three remaining solid edges for L we obtain the G(R) of Figure 2.12.

Figure 2.12: The G(R) graph after edges have been removed for Step 2 of Remark II.57.

There are no cycles remaining in this G(R); removing the loops also removed the

cycle with 0 weight formed by going from v4 (the rightmost vertex) to v3 to v2 and

then back to v4 using the bottom edge (this cycle produces the same S as the weight

0 (v1, v2, v3, v1) cycle from the previous example). All that remains is to perform

Step 4. There is only one ρi + σj value with more than two entries which hasn’t

already had chamber equalities introduced for it, namely 3. For Step 4, we introduce

the chamber equalities γ4 = γ5 = γ6. We therefore have that points in the face

F3 ∩ {γ4 = γ5 = γ6} ∩ {γ9 = γ10 = γ11} ∩ {γ12 = γ13 = γ14} ∩ {γ15 = γ16}

have 0-dimensional H(αβγ), which is the same set of chamber equalities as in Ex-

ample II.59.

The extreme rays for this face will be the same as rays from Figure 2.10, except

that the matrices are now transposed and the α and β entries of the rays are swapped.



CHAPTER III

Kronecker Stability and the F̄a,l Polytope

3.1 The F (αβγ) polytope

Our goal for this chapter is to study the f -coefficients of Definition II.3. Similar

to Chapter II, we want to find which triples are stable, and it again will correspond

to a related polytope being 0 dimensional. We will determine when this polytope is 0

dimensional in a similar manner to Chapter II. We will first find a polytope F (αβγ)

such that f(αβγ) is equal to the number of integer points in the polytope. We will

then use F (αβγ) to produce the polytope of all triples αβγ of specified lengths for

which f(αβγ) is nonzero, and by studying this cone we will be able to say for which

triples the F (αβγ) polytope is 0 dimensional.

Lets begin by finding F (αβγ). To do this we will use the polytope of Stem-

bridge (Lemma 7.2 of [14]) and will now replicate his argument here. Recall from

Proposition I.43 that

(3.1) hα ∗ sβ =
∑ a∏

i=1

sµi/µi−1 ,

where a = l(α) and the sum is over all sequences (µ0, µ1, · · · , µa) of partitions such

that ∅ = µ0 ⊂ µ1 ⊂ · · · ⊂ µa = β and |µi/µi−1| = αi for all i. If αβγ is a triple of

partitions of size n, then

f(αβγ) = 〈hα ∗ sβ, sγ〉 = multiplicity of Iγ in Aα ⊗ Iβ = dim(Aβ ⊗ Iβ ⊗ Iγ)Sn

61



62

where Iλ denotes the irreducible representation of Sn indexed by the partition λ and

Aα is the permutation representation induced by the Young subgroup of type α.

Notice that the right hand side is symmetric in β and γ, so we have that

f(αβγ) = 〈hα ∗ sγ, sβ〉 = f(αγβ)

Applying (3.1) to this equation we find that if l(α) = a then

(3.2) f(αβγ) = 〈
∑

sµ1sµ2/µ1 · · · sγ/µa−1 , sβ〉

where the sum is over the all sequences of partitions ∅ = µ0 ⊂ µ1 ⊂ µ2 ⊂ · · · ⊂ µa = γ

and |µi/µi−1| = αi for i = 1, · · · , a.

Let <L be the lexicographical order on Z2 (Notation II.7). Similar to when we

defined H(αβγ) (Definition II.8), we will work with tableaux with entries in (Z>0)2.

As before, the bicontent of a tableau S is the pair of compositions (λ, µ) where λi

and µi are the numbers of times that i occurs in the first and second coordinates

respectively of the entries of S. Use the ordering from <L to define when these

tableaux are semistandard. Given a tableau S, for any i, the boxes of S assigned

entries of the form (i, ∗) will form a skew shape. We can think of S as a gluing

together of semistandard Young tableaux (one for each value of i) where we fill the

boxes in this case with the second coordinate of the normal Z2 entry. We will use

this model for the S interchangeably with the model where the tableaux are filled

with entries in Z2. Using this new model, let the reading word of a tableau S be the

word formed by starting with the reverse row reading word (Definition I.45) for the

skew shape for i = 1, followed by the reading word for the skew shape for i = 2, and

so on. We say that the tableau satisfies the Yamanouchi condition if its reading word

is a lattice word (Definition I.46) with respect to the second coordinate. Applying
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the Littlewood-Richardson Rule (Theorem I.47) to (3.2) we find that

(3.3) f(αβγ) = {semistandard Young tableau of shape γ with bicontent (α, β)

whose reading word satisfies the Yamanouchi condition}

Let S be a semistandard Young tableau of shape γ and bicontent (α, β) whose

reading word satisfies the Yamanouchi condition. Let x(i, j, k) be the number times

(i, j) occurs as an entry in row k of S.

Definition III.1. Fix positive integers a, b, c. For any triple of partitions αβγ of

lengths at most a, b, c respectively, let F (αβγ) be the polytope defined by the fol-

lowing set of inequalities:

x(i, j, k) ≥ 0 (1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c),(3.4) ∑
j∗,k∗

x(i, j∗, k∗) = αi,
∑
i∗,k∗

x(i∗, j, k∗) = βj,
∑
i∗,j∗

x(i∗, j∗, k) = γk,(3.5)

∑
(i∗,j∗)<L(i,j)

x(i∗, j∗, k) ≥
∑

(i∗,j∗)≤L(i,j)

x(i∗, j∗, k + 1),(3.6)

∑
(i∗,k∗)<L(i,k)

x(i∗, j, k∗) ≥
∑

(i∗,k∗)≤L(i,k)

x(i∗, j + 1, k∗).(3.7)

Note: In these equations, i∗, j∗, k∗ are summation variables whereas i, j, k param-

eterize the inequalities.

Proposition III.2 (Lemma 7.2 of [14]). The number of integer points in the polytope

F (αβγ) is f(αβγ).

Proof. As before, S is uniquely determined by the x(i, j, k). From before, we have

that S being of shape γ with bicontent (α, β) and S being semistandard are equivalent

to the x(i, j, k) satisfying (3.5) and (3.6) respectively. All that is left is to find

a condition on the x(i, j, k) for the reading word for S to satisfy the Yamanouchi
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condition. For any j, consider the subword formed by entries of the form (∗, j) and

(∗, j + 1). It will be a word consisting of x(1, j + 1, 1) j + 1’s, followed by x(1, j, 1)

j’s, followed by x(2, j+1, 1) j+1’s, followed by x(2, j, 1) j’s, and so on. Namely, the

j and j + 1 for x(i, j, k) and x(i, j + 1, k) will occur before those for x(i∗, j, k∗) and

x(i∗, j+1, k∗) if and only if (i, k) <L (i∗, k∗). In order for the word to be Yamanouchi

we need the number of j’s to be more than the number of j + 1’s at any position in

the word. In terms of the x(i, j, k) and x(i, j + 1, k), this says that we must have

∑
(i∗,k∗)<L(i,k)

x(i∗, j, k∗) ≥
∑

(i∗,k∗)≤L(i,k)

x(i∗, j + 1, k∗),

which is (3.7).

Remark III.3. The inequalities (3.6) and (3.7) which are due to the semistandardness

and Yamanouchi conditions force β and γ to be non increasing in order for F (αβγ)

to be nonempty. There is, however, no such restriction on the components of α.

We do not require α, β, γ to be partitions for F (αβγ) to be well defined; they can

instead be any points in Ra,Rb,Rc respectively. We therefore relax our definition of

F (αβγ) to cover this more general case. Similar to our study of the h-coefficients,

we will again focus on the cone of all triples for which F (αβγ) is nonempty. It will

turn out that the inequalities will be simplest in the case when b = c = l for some l

and there is no loss of generality regarding Kronecker coefficients, so we will assume

this is the case. In our study of this cone we will need to make use of the hives and

honeycombs of Knutson and Tao to study the faces of this cone. In order to do this,

we will need to introduce a change of coordinates so that the integer points of in the

F (αβγ) will correspond to hives.
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Definition III.4. For any i and x ∈ F (αβγ), let ρiβ = ρiβ(x) be the l-tuple

ρiβ =

 ∑
(i′,k′)≤L(i,l)

x(i′, 1, k′),
∑

(i′,k′)≤L(i,l)

x(i′, 2, k′), · · · ,
∑

(i′,k′)≤L(i,l)

x(i′, l, k′)

 .

Let ρiγ be the analogously defined l-tuple where the role of the second and third

coordinates of the x(i, j, k) are swapped.

Remark III.5. The ρβ and ργ have a nice description in terms of the tableau S

corresponding to x. Think of the S as being a gluing together of semistandard Young

tableaux, and let S≤i be the portion of S formed by boxes in the first i tableaux.

Then ρiβ is co(S≤i), and ρiγ is the partition whose jth part is the length of the jth

row of S≤i. Looking at the i = a case, we find that ρaβ = β and ρaγ = γ.

These partitions will show up when working with our hives and honeycombs, their

main use being their relation to α: for i = 1, · · · , a,∑
i′≤i

αi′ = |ρiβ| = |ρiγ|.

Remark III.6. In order for the tableau formed by the (1, ∗) entries to be semistandard

and satisfy the Yamanouchi condition, it must be the tableau where each row j only

consists of the entry j. Hence x(1, i, j) = 0 if i 6= j, so we will drop these entries from

x. In addition, this also implies that ρ1
β = ρ1

γ = (x(1, 1, 1), x(1, 2, 2), · · · , x(1, l, l)).

Notice that we get these are partitions only using x(1, l, l) ≥ 0 and inequalities of

type (3.6) or (3.7). The inequalities x(1, t, t) ≥ 0 for t < l are implied by these

inequalities and are therefore not essential.

Consider the following change of coordinates: for 1 ≤ i ≤ a, 0 ≤ j, k ≤ l,

y(i, j, k) =
∑
i′<i

(i− 1− i′)αi′ +
∑

j′≤j,k′≤k

x(i, j′, k′) +
∑
j′≤j

(
ρi−1
β

)
j′

+
∑
k′≤k

(
ρi−1
γ

)
k′

where for i = 1 we set ρ0
β = ρ0

γ = 0. From the previous remark, we know that

most of the entries x(1, ∗, ∗) are 0. We only need y(1, 1, l), y(1, 2, l), · · · , y(1, l, l) and
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Figure 3.1: How to arrange the x coordinates when computing the y coordinates. The value of
y(i, 2, 3) is the sum of the terms in the rectangle.

y(1, l, 1), y(1, l, 2), · · · , y(1, l, l− 1) to reconstruct all of the x(1, ∗, ∗) terms. For this

reason, we will discard the rest of the y(1, ∗, ∗) terms.

Pictorially, to find the y(i, ∗, ∗) from the x(i, ∗, ∗), arrange the terms for x(i, ∗, ∗)

in a square with the entries of ρi−1
β and ρi−1

γ along the bottom and left respectively

along with Σ :=
∑

i′<i−1(i − 2 − i′)αi′ in the bottom left, like in Figure 3.1. Then

y(i, j, k) is the sum of all the terms in this arrangement which are below and to the

left of x(i, j, k), including x(i, j, k) (y(i, j, 0) and y(i, 0, k) are the sums of the terms

below and to the left of (ρi−1
β )j and (ρi−1

γ )k respectively).

Notation III.7. For i = 1, · · · , a, we will use πiβ and πiγ to denote the l-tuples (y(i+

1, 0, 0), y(i + 1, 1, 0), · · · , y(i + 1, l, 0)) and (y(i + 1, 0, 0), y(i + 1, 0, 1), · · · , y(i, 0, l))

respectively. These tuples can be expressed in terms of α and the ρ values as:

(πiβ)j =
i∑

i′=1

(i− i′)αi′ +
j∑

j′=1

(ρiβ)j′ , (πiγ)k =
i∑

i′=1

(i− i′)αi′ +
k∑

k′=1

(ρiγ)k′

By how the y coordinates are defined, πiβ and πiγ are also equal to the sequences

(y(i, 0, l), y(i, 1, l), · · · , y(i, l, l)) and (y(i, l, 0), y(i, l, 1), · · · , y(i, l, l)) respectively; i.e.

if we arrange the y(i, j, k) values like the x(i, j, k) values in Figure 3.1, then the top

and right sides of the ith square are equal to the bottom and left sides of the i+ 1st

square respectively.

Let Fy(αβγ) be the image of F (αβγ) under this linear transformation (where we
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are enforcing b = c = l). Dropping the non-essential inequalities from Remark III.6,

Fy(αβγ) is given by the points y(i, j, k), 2 ≤ i ≤ a, 0 ≤ j, k ≤ l, satisfying

y(i, 0, 0) = (i− 2) · α1 + (i− 3) · α2 + · · ·+ 1 · αi−2,(3.8)

y(i, j, l) = y(i+ 1, j, 0)
(
= (πiβ)j

)
, j = 0, · · · , l,(3.9)

y(i, l, k) = y(i+ 1, 0, k)
(
= (πiγ)k

)
, k = 0, · · · , l,(3.10)

y(a, j, l) =
∑
i′<a

(a− i′)αi′ +
∑
j′≤j

βj′ , y(a, l, k) =
∑
i′<a

(a− i′)αi′ +
∑
k′≤k

γk′ ,(3.11)

y(2, 0, t) = y(2, t, 0), t = 1, · · · , l,(3.12)

y(2, 0, l)− y(2, 0, l − 1) ≥ 0,(3.13)

y(i, j, k) + y(i, j − 1, k − 1)− y(i, j − 1, k)− y(i, j, k − 1) ≥ 0,(3.14)

y(i, j, k) + y(i, j − 1, k − 2)− y(i, j, k − 1)− y(i, j − 1, k − 1) ≥ 0,(3.15)

y(i, j, k) + y(i, j − 2, k − 1)− y(i, j − 1, k)− y(i, j − 1, k − 1) ≥ 0.(3.16)

Where (3.14),(3.15),(3.16) are only for when all the entries are defined.

Remark III.8. The equalities (3.9) and (3.10) are due to some redundancy in how

we defined the y coordinates. The (3.11) equalities correspond to (3.5) while the

(3.12) equalities are due to the fact that ρ1
β = ρ1

γ. The inequalities (3.14), (3.15),

(3.16) are the results of applying the transformation to (3.4),(3.6),(3.7) respectively.

The only inequality which doesn’t get transformed in this manner is x(1, l, l) ≥ 0,

which is what (3.13) corresponds to. This inequality will be very important in what

follows since it is the only inequality which is not originally included in the hive and

honeycomb models.

Definition III.9. • Let Fa,l be the cone given by the inequalities for Fy(αβγ),

except for the (3.8) and (3.11) equalities.
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• Let Fa,l be the image of Fa,l under the linear map

y 7→ (ρ1, ρ2
β, · · · , ρlβ, ρ2

γ, · · · , ρlγ).

where ρ1 = ρ1
β = ρ1

γ.

• Let F̄a,l be the cone consisting of all triples (α, β, γ), α ∈ Ra and β, γ,∈ Rl,

such that F (αβγ) is nonempty.

The cone Fa,l corresponds to removing the condition that our tableaux have bi-

content (α, β) and shape γ, so it is formed by taking the union of all the Fy(αβγ).

Each Fy(αβγ) is the intersection of this cone with some hyperplanes. The cone F̄a,l

is the image of Fa,l and Fa,l under the maps

y 7→ (α, β, γ) and

(ρ1, ρ2
β, · · · , ρlβ, ρ2

γ, · · · , ρlγ) 7→ ( (|ρ1|, |ρ2
β| − |ρ1|, · · · , |ρlβ| − |ρl−1

β |) , ρ
l
β, ρ

l
γ)

respectively.

Remark III.10. Our definition of f(αβγ) is symmetric in the entries of α since hα

is. This is maintained by the polytope F̄a,l; if (α, β, γ) is a point in F̄a,l, then so is

(α′, β, γ) for any permutation α′ of the entries of α. We are only interested in the

case when α is weakly increasing, but when studying F̄a,l we do not require this and

so will not assume it. When we ultimately look for stable triples, we will reinstate

this condition.

3.2 Hives and Honeycombs

As with the h-stable triples, we will need to find inequalities corresponding to

faces of F̄a,l. In order to do this, we will make use of the hive and honeycomb models

of Knutson and Tao. Knutson and Tao first introduced hives and honeycombs in
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order to study the polytope of all triples αβγ such that the Littlewood-Richardson

coefficient cαβγ is nonempty ([5], [6], [7]). Unsurprisingly, since our f coefficients can

be expressed in terms of Littlewood-Richardson coefficients, the honeycomb and hive

models are also applicable to our coefficients.

Our change of coordinates x(i, j, k) 7→ y(i, j, k) will allow us to produce a bijection

between the integer points of out polytopes and a slight modification of the hives.

Once we have our hives we will be able to reduce to working with honeycombs. This

in turn enables us to use the techniques of [6] which Knutson, Tao, and Woodward

employed in order to study the Littlewood-Richardson coefficients.

Let Wl be the set of points

Wl := {(i, j, k) ∈ Z3 : i+ j + k = 2l, l ≥ i ≥ 0, l ≥ j ≥ 0}.

Define a graph Gl by letting the points in Wl be the vertices, and adding in an edge

between each pair of vertices a (Euclidean) distance of 1 apart. The graph Gl is a

union of unit equilateral triangles. Each interior edge of Gl gives rise to a rhombus

by joining the two equilateral triangles sharing that edge. For each interior edge e,

let v1(e) and v2(e) be the two vertices of e and let w1(e) and w2(e) be the other two

vertices of the rhombus given by e; i.e. the edge between v1(e) and v2(e) is the short

diagonal of the rhombus and the edge between w1(e) and w2(e) is the long diagonal

of the rhombus.

Definition III.11. A hive (or l-hive) is a pair (Gl, f) where f is an integer valued

function on the vertices of Gl satisfying

(3.17) f(v1(e)) + f(v2(e))− f(w1(e))− f(w2(e)) ≥ 0, e an internal edge.

We will call the inequalities of (3.17) the rhombus inequalities, and for any internal
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edge e we will set f(e) to be the value on the left hand side of the corresponding

rhombus inequality.

Remark III.12. These are very similar to the hives of Knutson and Tao [7], the

difference being that instead of triangles our hives are rhombuses formed by joining

two of theirs together.

For i = 1, · · · , k−1 and y ∈ Fa,l, we can map the points y(i+1, ∗, ∗) to a function

fi on the vertices of Gl by setting fi(s, t, 2l− s− t) := y(i+ 1, s, t). When we depict

Gl, we will draw it so that (0, 0, 2l) is the bottom vertex with the (1, 1,−2) direction

pointing upwards and the (1, 0,−1) and (0, 1,−1) directions pointing 60◦ to the

clockwise and counterclockwise of vertical respectively (see Figure 3.2). Pictorially,

this map from y(i + 1, ∗, ∗) to fl corresponds to laying out the y(i, ∗, ∗) in a similar

fashion to the x(i, ∗, ∗) in Figure 3.1, rotating the square counterclockwise 45◦ and

then matching the points up with the triangular grid of Gl in Figure 3.2. Once this

is done, the entries on the southeast, southwest, northeast, and northwest sides of

the ith hive will be the entries of πiβ, πiγ, π
i+1
γ , andπi+1

β respectively (see Figure 3.2).

Proposition III.13. For i = 1, · · · , a − 1, let fi be the integer valued function on

the vertices of Gl defined by fi(s, t, 2l − s− t) = y(i+ 1, s, t). Then the map

y 7→ (Gl, f1), · · · , (Gl, fa−1)

is a bijection between the integer points of Fa,l and collections of hives (H1, · · · , Ha−1)

satisfying

• The entries of Hi on the northeast (resp. northwest) side of the hive are the same

as the entries of Hi+1 on the southwest (resp. southeast) side; i.e. fi(s, l, l−s) =

fi+1(s, 0, 2l − s) and fi(l, t, l − t) = fi+1(0, t, 2l − t).
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Figure 3.2: Example of the pair of hives obtained from a tableau.

• In H1, the entries on the southeast side of the hive are equal to the entries on

the southwest side, i.e. f1(r, 0, 2l − r) = f1(0, r, 2l − r).

• f1(l, 0, l)−f1(l−1, 0, l+1) ≥ 0 (or equivalently f1(0, l, l)−f1(0, l−1, l+1) ≥ 0).

• f1(0, 0, 2l) = 0.

Proof. The inequalities (3.14),(3.15),and (3.16) are precisely the rhombus inequal-

ities, so the fi are hives. The first condition corresponds to the (3.9) and (3.10)

equalities, the second and third conditions correspond to (3.12) and (3.13) respec-

tively, while the fourth corresponds to (3.8) for i = 1.

To each of these hives we will associate a honeycomb, and it will be properties

of these honeycombs which we will use to study the faces of F̄a,l. In order to define

honeycombs, we will need to introduce tinkertoys. Tinkertoys will require a nonstan-

dard type of directed graph. Here we will think of a directed graph Γ as a quadruple

(VΓ, EΓ, head, tail) where head and tail are maps from the edges EΓ to the vertices

VΓ and may only be partially defined, i.e. some the edges can have just a head, just

a tail, or neither. When an edge is missing a head or a tail we will regard it as an

infinite edge. When taking a subgraph of Γ, we restrict the tail and head maps to

the remaining edges whose head or tail are in the subgraph (Note: some finite edges
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can become infinite edges in a subgraph).

Definition III.14. A tinkertoy τ is a triple (B,Γ, d) consisting of a vector space B, a

directed graph Γ (possibly with some one-ended edges), and a map d : Edges(Γ)→ B

assigning every edge of Γ a ‘direction’.

All of our tinkertoys will be in the space B = {(x, y, z) ∈ R3 : x+ y + z = 0}, so

we will assume B is fixed from now on. Each of the directions d(e) will be one of

(0,−1, 1), (1, 0,−1), (−1, 1, 0).

A subtinkertoy of (B,Γ, d) is a tinkertoy (B,∆, d′) where ∆ is a subgraph of Γ

and the direction map d′ is the restriction of the direction map d to the subgraph.

Definition III.15. A configuration of a tinkertoy τ is a function h : VΓ → B such

that for any finite edge e, h(head(e)) − h(tail(e)) ∈ R · d(e). A configuration can

be thought of as an embedding of the graph Γ of the tinkertoy into the plane B

such that each edge e is sent to a (possibly infinite) line segment in the direction

d(e) (here infinite edges are sent to rays starting at h(head(e))/h(tail(e)) and going

in the +/− d(e) direction). When traversing an edge in a configuration, one of the

coordinates will remain constant; we will call this the constant coordinate of the edge

in the configuration.

We will be interested in configurations of a specific type of tinkertoys (the GLn-

tinkertoys of [5]). Let V be the set of points

V := {(i, j, k) ∈ Z3 : i+ j + k = 0 and 3 doesn’t divide 2i+ j}.

Construct a directed graph Γ0 by letting the points in V be its vertices, and for

each vertex (i, j, k) ∈ V with 2i + j ≡ 2mod 3, add three outwardly directed edges

from (i, j, k) to the points (i− 1, j + 1, k), (i, j − 1, k + 1), (i + 1, j, k − 1). For each
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Figure 3.3: The τ3,3 tinkertoy

edge e ∈ Γ0 set its direction d(e) to be (head(e) − tail(e)). The infinite honeycomb

tinkertoy is the triple (B,Γ0, d).

Definition III.16. The τp,q tinkertoy is the subtinkertoy of the infinite honeycomb

tinkertoy whose underlying graph Γp,q consists of the vertices of Γ0 contained in the

rhombus i ≤ k ≤ i+ 3q, j ≤ i ≤ j + 3p.

Of particular interest will be the tinkertoy τl := τl,l (see Figure 3.3). This tinkertoy

has 4l infinite edges; each side of the rhombus will have l edges passing through it.

We will call these edges the boundary edges of τl.

Definition III.17. A honeycomb (or τl-honeycomb) is a configuration of the τl tin-

kertoy.

Remark III.18. We can associate a honeycomb to any hive (Gl, f) as follows:

Embed the graph Gl into the plane x+y+z = 0 by mapping each vertex (i, j, k) ∈ Gl

to the point (i + j − l, i − 2j − l,−2i + j + 2l), and superimpose it on the trivial
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embedding of Γl (the subgraph of Γ0 for the tinkertoy τl) in this plane. The Gl

graph and this trivial embedding of Γl are dual graphs (see the left hand diagram of

Figure 3.6). The vertices of Gl are precisely the integer points inside the rhombus

bounding Γl which are not vertices of Γl; i.e. around each interior vertex of Gl there

is a hexagon in Γl. Each edge of Γl intersects an edge of Gl at a right angle. We build

up the honeycomb by starting with choosing v0 = h(0,−1, 1), then specifying the

lengths of all of the finite edges in the honeycomb. Once we know the edge lengths,

we know the direction, d(e), of each edge so given the coordinates for one of the

vertices an edge is incident to we can find the coordinates for the other vertex the

edge is incident to, and so we can progressively build up the honeycomb from this

starting vertex v0.

Send the vertex (0,−1, 1) of Γl to the point

v0 = (f(0, l−1, l+1)−f(1, l, l−1), f(1, l, l−1)−f(0, l, l), f(0, l, l)−f(0, l−1, l+1)).

Building up from this vertex, for each finite edge e ∈ Γl, let e′ be the associated

interior edge of Gl. Send e to an edge of length f(e′)
√

2 (see Definition III.11) in the

direction d(e) (so the points for the two vertices will have two of their entries differ by

f(e′) while the constant coordinate for the edges is the same for both vertices). See

Figures 3.5 and 3.6 for an example of this construction (v0 = h(0,−1, 1) = (−12, 9, 3)

is the leftmost vertex in the honeycomb).

In order for this to be well defined, we need that traversing any of the fundamental

hexagons of the Γl results in us returning to the original point.

It is easy to check that the edge lengths will close up and produce a hexagon if

and only if the following three equalities hold in Figure 3.4:

(3.18) a+ b = d+ e, b+ c = e+ f, and c+ d = f + a.
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Figure 3.4: A generic hexagon in a honeycomb. The labels are the lengths of the edges.

Each of the edge lengths in one of the hexagons is given by the left hand side

of a rhombus inequality. By plugging in the rhombus inequalities into these three

conditions it is straight forward to see that they are satisfied for our edge lengths.

We therefore have that this does in fact produce a honeycomb.

If we do this construction for the Hi hive obtained from a point x(i, j, k), then

our initial point v0 ((−12, 9, 3) for the example in Figure 3.6) was chosen so that the

constant coordinates of the two infinite edges incident to the vertex were (ρiβ)l and

(ρi+1
γ )1. Building up from this vertex and keeping track of the coordinates of the

vertices in terms of the y(i, j, k), one will find that the constant coordinates of the

infinite edges is a difference of two y(i, j, k) which is equal to an entry of ρiβ, ρi+1
β ,

ρiγ, or ρi+1
γ . The entries of ρiβ form the constant coordinates for the infinite edges

in the direction (1, 0,−1) (the southeast infinite edges in Figure 3.6), the entries of

ρi+1
β form the constant coordinates for the infinite edges in the direction (1, 0,−1)

(the northwest infinite edges), the entries of ρiγ form the constant coordinates for the

infinite edges in the direction (−1, 1, 0) (the southwest infinite edges), and the entries

of ρi+1
γ form the constant coordinates of the infinite edges in the direction (1,−1, 0)

(the northeast infinite edges).

Remark III.19. When depicting honeycombs, we will always draw them as in Figure

3.6: the (0,−1, 1) direction will be to the right, the (1, 0,−1) direction will be 120◦

counterclockwise and the (−1, 1, 0) direction will be 120◦ clockwise. The honeycomb
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Figure 3.5: A hive and the f(e) values (the left hand side of the rhombus inequality associated to
e) for each interior edge of the hive.

Figure 3.6: The bijection between the edges of the honeycomb and the edges of the hive, along with
the honeycomb obtained from the hive in 3.5. The interior edges are labeled with the f(e) value
of the corresponding edge in the hive and the boundary values are the constant coordinates of the
boundary edges.
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associated to the hive Hi for a point x will have the constant coordinates of its

southwest, southeast, northwest, and northeast boundary edges be the entries of ρiγ,

ρiβ, ρi+1
β , and ρi+1

γ respectively (see Figure 3.6).

Proposition III.20. The cone Fa,l is precisely the set of points

(ρ1
β, ρ

2
β, · · · , ρlβ, ρ1

γ, ρ
2
γ, · · · , ρlγ) which occur as the constant coordinates of the bound-

ary edges of a collection of honeycombs (h1, · · · , ha−1) satisfying the conditions:

• The southern boundary edges in h1 will have nonnegative constant coordinates

(equivalently the northern most amongst the southeastern boundary edges will

have a nonnegative constant coordinate).

• In h1, the set of constant coordinates for the southeastern boundary edges will

be the same as the set of constant coordinates for the southwestern boundary

edges.

• The northwestern (resp. northeastern) boundary edges of hi−1 will have the same

set of constant coordinates as the southeastern (resp. southwestern) boundary

edges of hi.

Moreover, F̄a,l is the set of points ( (|ρ1
β|, |ρ2

β| − |ρ1
β|, · · · , |ρlβ| − |ρl−1

β |) , ρlβ, ρlγ) given

by these collections of honeycombs.

Proof. This construction is reversible: given a honeycomb we can reconstruct the hive

by first assigning the boundary points of the hive the appropriate sum of constant

coordinates of the boundary edges of the honeycomb. We can then fill in the values

of the hive using the fact that the edge lengths of the honeycomb are equal to the

values of the left hand side of rhombus inequalities. We therefore have a bijection

between our hives and certain honeycombs.
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Converting the conditions of Proposition III.13 to the honeycombs produces pre-

cisely these three conditions.

3.3 Working with honeycombs

Honeycombs will be our main tool for studying the points in F̄a,l. They provide

a natural way to determine the degrees of freedom of the polytopes F (αβγ) using

only the shape of the graph which does not depend on the actual configuration. As

we shall see, we can also easily determine the underlying graph (i.e tinkertoy) for the

honeycomb just by knowing which face of F̄a,l the point the honeycomb corresponds

to is in. To do this, we will make use of some useful constructions on honeycombs.

This section will be devoted to a brief introduction to the constructions of [5] and

[6] which we will need for our analysis.

Boundary points of F̄a,l will have equality in some of the rhombus inequalities.

Their corresponding honeycombs will therefore have some edges of length 0. Hence,

when studying the faces of F̄a,l we will be interested in honeycombs where some of

the edges are length 0. It will therefore be useful to get a better understanding of

these types of honeycombs.

Definition III.21. We say an edge e of Γl is degenerate in a honeycomb h if

h(head(e)) = h(tail(e)) (i.e. the edge is mapped to an edge of length 0). We

say this degeneracy is simple if the edge does not share any vertices with another

degenerate edge.

Suppose h is a τl-honeycomb which has a simple degenerate edge e. Consider

the embedding in the plane for h. The two endpoints of e are mapped to the same

point which is incident to four edges, two incoming edges and two outgoing edges.

By our choice of directions for our tinkertoys, each of the incoming edges has an
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outgoing edge in the same direction. We can therefore remove the vertex and merge

the edges to form two intersecting edges. We can also do this to the corresponding

edges and vertices in our tinkertoy τ to produce a new tinkertoy τ̄ . The directions

of the two new edges are well defined in τ̄ since the two edges it is replacing have

the same direction. This new honeycomb is a configuration for τ̄ and it produces the

same constant coordinates in its boundary edges. Every honeycomb in which e is

degenerate is equivalent to a configuration of this new tinkertoy τ̄ . This modification

of the tinkertoy is called eliding the edge e, and the resulting tinkertoy τ̄ is called

the post-elision tinkertoy.

Eliding simple degeneracies is useful since working with the post elision tinkertoy

enables us to better find degrees of freedom in the honeycomb construction. Consider

a τl honeycomb and let τ̄ be a post-elision tinkertoy for this honeycomb. Let γ be

a non self-intersecting undirected loop in the underlying graph of τ̄ containing only

non degenerate vertices of τ̄ . Each of the vertices γ passes through must be trivalent

since they are non degenerate. Choose an orientation for traversing γ. At every

vertex, γ either turns left or right. For any ε > 0, replace every vertex v in the

loop by the vertex v ± ε d(ev) where e is the edge incident to v which is not part of

the loop, and the ± is chosen so that we are decreasing the length of ev if the loop

turns left and increasing its length if the loop turns right. For ε small enough, this

will result in another valid configuration of τl where the constant coordinates of the

infinite edges of the honeycomb are left unchanged and so it will correspond to the

same point in F̄a,l.

Definition III.22. This is construction is called breathing the loop γ (see Figure

3.7).
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Figure 3.7: Example of breathing a loop.

Definition III.23. We can perform a similar construction on any non self-intersecting

path between two boundary edges of the honeycomb and still produce a valid hon-

eycomb. This is called the trading construction.

The trading construction is so named since when we do it we are trading ε be-

tween the constant coordinates of two of the boundary edges while keeping the rest

unchanged. Doing this will result in a honeycomb for a different point in F̄a,l, but

crucially it will still have the same degeneracies as the original honeycomb.

Next consider a honeycomb with a non simple degeneracy. More than two ver-

tices of Γl will be mapped to the same point in the configuration, so we may now

have multiple edges of Γl mapped to the same edge. The underlying graph of the

honeycomb will now consist of vertices with a valence of up to 6 as in Figure 3.8.

The multiplicities of the edges incident to any vertex have to satisfy the relations:

a + b = d + e, b + c = e + f, c + d = f + a. This honeycomb can be considered

as a configuration of the tinkertoy formed using this underlying graph. This pro-

vides us with a more general notion of tinkertoy where we now allow edges to have

multiplicities as long as they satisfy these relations. This new tinkertoy is called the

degeneracy tinkertoy of the honeycomb.

Definition III.24. A gentle path in a honeycomb or tinkertoy is a path which only

goes straight or turns 60◦ at any vertex, and must go straight at any cross vertex
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Figure 3.8: Generic vertex in a honeycomb
where the edges are labeled by their multiplici-
ties.

Figure 3.9: Degree 4 vertex which can be elided.

Figure 3.10: The two shifts needed to perform the trade constructions on a path of multiplicity > 1

(see Figure 3.9). Every path in a degeneracy free honeycomb or tinkertoy is a gentle

path.

Remark III.25. In [5], Knutson and Tao only used these constructions when there

are only simple degeneracies, but they can be performed in the more general case.

We can still elide degeneracies at any vertex which is a degree 4 crossing as in Figure

3.9. We can still breathe any loop as long as the loop is a gentle loop and we can still

perform the trade construction on any gentle path using the shifts of Figure 3.10.

Given a tinkertoy τ with multiplicity > 1 edges, it will be useful to produce

a ‘minimal’ tinkertoy with only simple degeneracies which does not contain any

degeneracies not in τ . To do this we will make use of molting in honeycombs.

Definition III.26. Given a maximal gentle path of edges with the same multiplicity

m > 1, then we can molt the path to reduce the multiplicity of the path while

producing a new gentle cycle/path of multiplicity 1 surrounding the path. This is

done using the constructions of Figure 3.11.
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Figure 3.11: Constructions needed to molt a path

Remark III.27. In the construction for producing a honeycomb from a hive (Remark

III.18), we associated to each edge e of a honeycomb an edge e′ of the hive (namely the

edge it intersected in the overlay of Γl and Gl, see Figure 3.6). The length of the edge

e is equal to f(e′)
√

2, the left hand side of the rhombus inequality associated to e′.

That edge in the honeycomb is degenerate if and only if the hive has equality for the

corresponding rhombus inequality. Hence, any edge of the honeycomb is degenerate

if and only if the corresponding point in Fa,l is in a specific face of the polytope.

Faces of Fa,l, and by extension F̄a,l, therefore correspond to honeycombs with a

predetermined set of degenerate edges. For any face F of Fa,l, consider the degeneracy

tinkertoy formed by introducing degeneracies for the rhombus inequalities where F

has equality and then eliding any remaining simple degeneracies. This produces

a sequence of tinkertoys τ 1
F , · · · , τa−1

F such that every point in F corresponds to

configurations of these tinkertoys (possibly with the additional requirement that the

configuration has (ρ1
β)l = (ρ1

γ)l = 0), and a generic point in this face corresponds to

a configuration with no degenerate edges. In addition, any sequence of honeycombs

resulting as a configuration of this sequence of tinkertoys must have a corresponding

hive with equality in all the rhombus inequalities defining F , so it must be a point

in F . Hence, the points of F are precisely those points which can be produced by
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Figure 3.12: The possible intersections of a transverse overlay of two honeycombs. On the left h1
turns clockwise to h2 while on the right h2 turns clockwise to h1.

configurations of τ 1
F , · · · , τa−1

F .

There is one final construction enabled by eliding which we will need. An overlay

of two honeycombs or tinkertoys is the honeycomb or tinkertoy formed by placing one

on top of the other. Suppose we have an overlay of two non degenerate honeycombs

h1 and h2. Suppose the honeycombs do not intersect at any of their vertices and that

any intersection of their edges is transverse. Let p be a point where they intersect.

Up to rotation, there two possibilities for the intersection (see Figure 3.12).

Definition III.28. We say that h1 turns clockwise to h2 if at the intersection the

edges of h2 are 60◦ clockwise from the edges of h1.

Remark III.29. Suppose h1 turns clockwise to h2, and let P1 and P2 be non self-

intersecting paths from p to a boundary edge of h1 and h2 respectively. We can

perform the trade construction on the path formed by traversing P1 in reverse and

then following P2 in order to change the constant coordinates of these two boundary

edges while leaving the rest unchanged (Figure 3.13).

Note: With the original trade construction we can traverse the path backwards

to shift the opposite direction, but that is not possible with this construction.

Proposition III.30. Suppose that τ̄ is obtained from τl be eliding simple degenera-



84

Figure 3.13: An example of the trade construction on the intersection of two honeycombs. The
solid and dashed honeycombs intersect transversely with P2 turning clockwise to P1.

Figure 3.14: Performing the trade construction on a self intersecting path to remove a degeneracy
(the southeast dotted edge).
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cies (so τ̄ has no multiplicity > 1 edges). Then there is a tinkertoy τ̄ ′ which is an

overlay of subtinkertoys isomorphic to some τp,q such that the constant coordinates

obtainable by τ̄ -honeycombs are the same as those obtainable by τ̄ ′.

Proof. Consider the connected components of τ̄ . Each connected component is a

subtinkertoy. These subtinkertoys cannot intersect at vertices, and their edges must

intersect transversely.

Let τ ′ be one of these connected subtinkertoys. In τl, each vertex v of the tinkertoy

is incident to three edges, say e1, e2, e3, and the sum of the directions d(e1) + d(e2) +

d(e3) is (0, 0, 0). The sum of the directions of the edges incident to a vertex being 0 is

maintained both when we elide degeneracies and also is maintained in the degeneracy

tinkertoy. Hence, if we chose a configuration of τ ′ such that all its interior edges are

degenerate, we will obtain a honeycomb which is a degree 4 cross as in Figure 3.9.

This means that the number of infinite edges of τ ′ through any of the sides of the

rhombus cutting out τl has to equal the number of infinite edges passing through

the parallel side. This tinkertoy τ ′ is therefore a τp,q, possibly with some elided

degeneracies.

Suppose τ ′ has an elided degeneracy. Take any gentle path between the two edges

containing the elided vertex. By performing the trade construction on this transverse

intersection we can remove the degeneracy while keeping the constant coordinates

of the infinite edges unchanged (Figure 3.14). We can therefore replace τ ′ by the

honeycomb without the degeneracy and this does not change the possible values

for the constant coordinates of the infinite edges of τ̄ . Un-eliding all the simple

degeneracies in τ ′ will result in a tinkertoy isomorphic to τp,q for some p, q ≤ l.

Notation III.31. We call these subtinkertoys isomorphic to τp,q of Proposition III.30

the irreducible tinkertoys of τ̄ .
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Proposition III.32. If h is a configuration of τp,q, then

(3.19)
∑

e boundary edge of τp,q

εeCe = 0

where Ce is the value of the constant coordinate of e and εe is 1 if d(e) = (1, 0,−1)

or (−1, 1, 0) and −1 otherwise. Thus, εe = 1 if the edge is an eastern boundary edge

(in hi these are the boundary edges whose constant coordinates are the entries of ρi+1
β

and ρiγ) and εe = −1 if the edge is a western boundary edge (in hi these are the

boundary edges whose constant coordinates are the entries of ρi+1
γ and ρiβ).

Proof. This clearly holds for a honeycomb in which every finite edge is degenerate (it

will be a degree 4 vertex as in Figure 3.9). Up to a shift in the plane, we can produce

h from this maximally degenerate honeycomb using molting, un-eliding simple degen-

eracies, and using the trade construction on intersections to undo degeneracies. All

of these procedures maintain this property, so h must also satisfy the condition.

3.4 Regular faces of F̄2,l are given by puzzles

Our goal for the next two sections will be to produce an analogue of the puzzles

of [6] for our cones. Each puzzle will correspond to an inequality which F̄a,l must

satisfy. For simplicity, we will focus on the case a = 2 for now and will generalize to

larger a later. For a = 2, we have ρ1
β = ρ1

γ, ρ
2
β = β, and ρ2

γ = γ, so ρ1
β = ρ1

γ is the

only additional partition occurring as the constant coordinates of boundary edges.

Notation III.33. For the rest of this section, we will use ρ to denote the partition

ρ := ρ1
β = ρ1

γ.

Definition III.34. A puzzle is an edge-labeled subgraph of Gl (the hive graph)

obtained by removing some interior edges of Gl such that each of the bounded faces

in the graph is one of the following ‘pieces’:
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• A unit equilateral triangle with all edges labeled with the same value.

• A unit rhombus with outer edges labeled j if clockwise from an obtuse angle

and labeled i if clockwise from an acute angle for some i < j.

Figure 3.15: The two pieces allowed in a puzzle.

We will say that the puzzle is {0, 1} if 0 and 1 are the only labels used in the puzzle.

Remark III.35. When constructing the hive for a point x ∈ F2,l, the values for the

points on the southwest, southeast, northwest, and northeast sides of Gl are the

entries of π1
γ, π

1
β, π2

β, and π2
γ respectively (see Figure 3.2). The difference between

two consecutive terms in these πiβ/π
i
γ is an entry in the corresponding ρiβ/ρ

i
γ, e.g.

(π2
β)k+1 − (π2

β)k = (ρ2
β)k. This produces a correspondence between the boundary

edges of Gl and the entries of ρ1
β, ρ1

γ, β = ρ2
β and γ = ρ2

γ: each edge corresponds to the

ρiβ/ρ
i
γ entry which is equal to the difference of the two πiβ/π

i
γ entries for its vertices.

When working with these puzzles, the label assigned to these boundary edges will be

the coefficient of the corresponding ρiβ/ρ
i
γ entry in a inequality (Proposition III.39).

Notation III.36. Given a puzzle, we will denote its boundary edges as follows:

• Let e(ρ1
β, 1), e(ρ1

β, 2), · · · , e(ρ1
β, l) denote the boundary edges on the southeastern

side of the puzzle from left to right.

• Let e(β, 1), e(β, 2), · · · , e(β, l) denote the boundary edges on the northwestern

side of the puzzle from the left to right.
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• Let e(ρ1
γ, 1), e(ρ1

γ, 2), · · · , e(ρ1
γ, l) denote the boundary edges on the southwestern

side of the puzzle from right to the left.

• Let e(γ, 1), e(γ, 2), · · · , e(γ, l) denote the boundary edges on the northeastern

side of the puzzle from right to left.

Note: The southeastern and northwestern boundary edges are ordered from left

to right while the southwestern and northeastern edges are ordered from right to

left. This is done so that each boundary edge is indexed by the ρ entry the edge

corresponds to in the previous remark, e.g. e(ρ1
β, j) corresponds to (ρ1

β)j.

Notation III.37. For any edge e in a puzzle P , we will use Lab(e) to denote the

label assigned to e in the puzzle and Lab(P ) = {Lab(e) : e edge in P} to denote the

set of all labels used in the puzzle.

Definition III.38. A puzzle is a F̄2,l-puzzle of degree d and type n if:

• For j ≤ n, Lab(e(ρ1
β, j)) = Lab(e(ρ1

γ, j))− d.

• For j > n, Lab(e(ρ1
β, j)) < Lab(e(ρ1

γ, j))− d.

We will say that the puzzle is proper if n = l. Figure 3.16 is an example of a

F̄2,l-puzzle.

Proposition III.39. Let P be a F̄2,l-puzzle of degree d. Then F̄2,l must satisfy the

following inequality:

(3.20) dα1 +
∑
j

Lab(e(β, j)) βj −
∑
j

Lab(e(γ, j)) γj ≤ 0

Proof. We say that the edges of a triangular piece are positively oriented if the

triangle is oriented like the (+) triangles in Figure 3.17, and they are negatively

oriented if the triangle is oriented like the (−) triangles. We say that an edge of a
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Figure 3.16: Example of a F̄2,l-puzzle of degree 1 and type 3 which produces the inequality α1 +
β1 + β3 + 2β4 − 2γ1 − γ2 − 3γ3 − 3γ4 ≤ 0 in Proposition III.39.

Figure 3.17: The orientation of the triangles in a puzzle.

rhombus piece is positively (resp. negatively) oriented if its outward normal is in

the same direction as one of the outward normals of a positively (resp. negatively)

oriented triangular piece. Let sgn(e) equal +1 if the edge is positively oriented and

−1 if it is negatively oriented.

Let h be a honeycomb for a point in F̄a,l. Recall that every edge of Gl corresponds

to a (possible degenerate) edge of h. For any edge e of Gl, let c(e) be the constant

coordinate of the edge in h corresponding to e. Consider the sum

S(h) =
∑

p piece in P

∑
e edge of p

sgn(e) Lab(e)c(e)
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where in the outer sum is over the triangular and rhombic pieces forming the interior

faces of the puzzle.

Every interior edge of P contributes twice to this sum, once positively oriented

and once negatively oriented, so its net contribution is 0. Removing the interior

edges from the sum we find that S(h) is equal to

S(h) =
∑
j

Lab(e(β, j)) βj −
∑
j

Lab(e(γ, j)) γj−

−
∑
j

Lab(e(ρ1
β, j)) (ρ1

β)j +
∑
j

Lab(e(ργ, j)) (ρ1
γ)j.

Alternatively, each triangular piece of P corresponds to a vertex of h. The sum

of the constant coordinates of the edges incident to a vertex is 0, so we have that∑
e edge of p

sgn(e) Lab(e)c(e) = 0 if p is a triangle. It is easy to check that if u < v are the

labels assigned to a rhombus piece p, then
∑

e edge of p

sgn(e) Lab(e)c(e) = (u−v) ·f(ep)

where ep is the edge of Gl which is the short diagonal of the rhombus and f(ep) is

the left hand side of the rhombus inequality (3.17) associated to ep (recall that the

length of the edge in h corresponding to ep is f(ep)
√

2). We therefore have that S(h)

is a sum of non positive entries, i.e. S(h) ≤ 0.

If P is a proper puzzle, then using the fact that ρ1
γ = ρ1

β = ρ, α1 = |ρ|, and

Lab(e(ρ1
β, j)) = Lab(e(ρ1

γ, j)) − d for j = 1, · · · , l, we obtain that S(h) is equal to

the right hand side of the inequality. If P is not proper, the same reasoning gives us

that

(3.21) 0 ≥ S(h) = qlρl + ql−1ρl−1 + · · ·+ qn+1ρn+1+

+
∑
j

Lab(e(β, j)) βj −
∑
j

Lab(e(γ, j)) γj

for some qn+1, · · · , ql ≥ 0. Adding the inequalities 0 ≤ ρl ≤ · · · ≤ ρn+1 as necessary,

we obtain the desired inequality.
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Our goal now is to show that the inequalities we obtain from these puzzles along

with the chamber inequalities (defined below) form a defining set of inequalities for

F̄2,l. In doing so, we will show that these puzzles actually tell us what the tinkertoys

are for the points in the face (Remark III.27), which will prove useful later when we

try to determine when F (αβγ) is 0-dimensional. To do this, we will prove something

analogous to Theorem 3 of [6] for faces of F̄a,l, and so we will draw heavily on the

techniques and ideas used in the proof of this theorem.

We already know the defining inequalities for some of the faces of F̄2,l: β and

γ have to be weakly decreasing. We will again call these inequalities the chamber

inequalities:

βj ≥ βj+1, γk ≥ γk+1

Definition III.40. A face of F̄a,l is regular if it is not contained in a chamber facet.

Let F be a regular face of F̄2,l. From Remark III.27, we have that there is a

tinkertoy τF such that every point in the interior of F corresponds to a configuration

of τF with no additional degenerate edges and whose southeastern and southwestern

infinite edges have the same sets of constant coordinates (recall that the constant

coordinates of the southwestern and southeastern infinite edges will be the entries

of ρ1
γ and ρ1

β respectively). The β and γ chamber inequalities will be strict for the

points in F , but ρ = ρ1
β = ρ1

γ is not necessarily a strictly decreasing sequence for

the points in F . It will prove useful to work with honeycombs for which ρ is strictly

decreasing, so let G be the minimum regular face of F2,l containing the preimage of

F , and let τG be the tinkertoy for G. In terms of tinkertoys, τF is obtained from τG

by forcing some of the southern infinite edges to degenerate to the same edge. This

τF does not encode whether ρl = 0 (i.e. whether F has equality for the non rhombus

inequality (3.13)), so we will have to keep track of this separately.
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Notation III.41. When working with honeycombs, the only coordinates which are

always uniquely determined by which point in F it corresponds to are the constant

coordinates for the northern infinite boundary edges since these must be the entries

of β and γ. For this reason, for the rest of this section we will use boundary edges to

reference just the northern infinite edges and not the southern infinite edges (whose

constant coordinates are the entries of ρ1
β = ρ1

γ and contribute to the point (α, β, γ)

for the honeycomb via |ρ1
β| = |ρ1

γ| = α1).

The set of constant coordinates for the southeastern infinite edges must be the

same as the set of constant coordinates for the southwestern infinite edges (both

must be the entries of ρ). Hence, for each southwestern infinite edge there must be a

southeastern infinite edge with the same constant coordinate. We will say that these

edges are corresponding edges.

Lemma III.42. The tinkertoy τG has no edges of multiplicity greater than 1.

Proof. A boundary edge of τG will have multiplicity greater than 1 if and only if G is

contained in one of the β or γ chamber faces, which does not occur by assumption.

Hence all the boundary edges must have multiplicity 1.

Consider the corresponding southern infinite edges as being connected. Suppose

one of the interior edges has multiplicity larger than 1. Let h be any honeycomb

of a point in the interior of G. Molt a maximal path containing the multiplicity

greater than 1 edge (since we consider the corresponding southern edges as being

connected, if the path has one it must have the corresponding one too). This will

result in a honeycomb with none of the boundary edges moved and leaves the value

of α1 = |ρ| unchanged, so it will also be honeycomb for a point in G. Since ρl > 0

for the interior of G by how it was defined, as long as the molting is small enough we

will maintain this property, hence the resulting honeycomb will still be a valid one
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for F2,l. We therefore have a honeycomb for a point in G with fewer degeneracies

than τG, contradicting how the tinkertoy τG is defined.

Corollary III.43. There is an n such that for any point x in the interior of F

0 = ρl = ρl−1 = · · · = ρn+1 < ρn < ρn−1 < · · · < ρ1.

Proof. We can use the same molting procedure on τF as in the proof of the Lemma.

It will produce a valid honeycomb for a point in F̄2,l unless we molt a southern

infinite edge whose constant coordinate is forced to be 0, since this would mean that

ρl < 0. We therefore can molt away any instance of ρj = ρj+1, unless they are forced

to be 0.

Definition III.44. We call the southern infinite edges whose constant coordinates

are equal to ρ1, · · · , ρn the proper edges of F and ρn+1, · · · , ρl the improper edges of

F .

By the proposition, the honeycombs for the points in the interior of G only have

simple degeneracies and τG is obtained by eliding the degeneracies. Proposition III.30

tells us that τG is a transverse overlay of irreducible tinkertoys isomorphic to τp,q for

some p, q < l. The τF tinkertoy is then an overlay (not necessarily transverse) of

irreducible tinkertoys nearly isomorphic τp,q: it will contain the degeneracies neces-

sary to force some initial chain of the southeastern and southwestern infinite edges

to all be equal. The τG tinkertoy contains similar information to τF (it is obtained

by molting the improper edges of τf ), its only advantage being that by using it we

can distinguish which of the degenerate edges corresponds to each of ρl, · · · , ρn+1.

For this reason, they will be used fairly interchangeably, except when dealing with

the improper edges.
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Lemma III.45. Every irreducible tinkertoy of τG must contain a proper infinite

edge.

Proof. If one of the irreducible tinkertoys contains only improper southern infinite

edges, then it must be completely degenerate in τF (i.e. it will consist of just two

edges which intersect at an elided vertex). The boundary edges of this irreducible

tinkertoy will all have 0 constant coordinate, but this would mean β = γ = 0, so F

is not regular.

Remark III.46. From Proposition III.32, we know that each of these irreducible tin-

kertoys produces an equality that the constant coordinates of its boundary edges

must satisfy. It turns out that the inequalities obtained from puzzles are just sums

of the inequalities for these irreducible tinkertoys. The rest of this section is essen-

tially devoted showing how this is true (though this is not done explicitly) and what

the consequences of this are for the puzzles.

Consider an inequality producing F . Using the equalities α1 +α2 = β1 + · · ·+βl =

γ1 + · · ·+ γl we can assume that the inequality is of the form

(3.22) r1α1 + s1β1 + · · ·+ slβl − t1γ1 − · · · − tlγl ≤ 0

for s1, · · · , sl, t1, · · · , tl ≥ 0. In addition, since F̄2,l is symmetric in α1 and α2, by

swapping the coefficients of α1 and α2 as necessary and then applying the equalities,

we can reduce to the case when r1 ≥ 0.

For the next lemma, we will associate the boundary edges of τG with the value of

the s/t coefficient in (3.22) of the entry of β/γ that equals the constant coordinate

of the boundary edge.

Lemma III.47. For any irreducible tinkertoy µ of τG, there is a k such that the set

of boundary edges of µ is the set of boundary edges whose s/t coefficient equals k.
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Proof. Let e1 and e2 be two boundary edges both contained in µ. Suppose their

s/t coefficients are not equal. There must be a path between e1 and e2 in this

irreducible tinkertoy. Given a honeycomb for a generic point in G, we can perform

the trade construction on this path to obtain another honeycomb of τG. This trade

construction will either increase some βi (resp. γi) while decreasing another βj (resp.

γj) by the same amount and leaving the other boundary edges and ρ unchanged,

or it will increase (or decrease) some βi and γj by the same amount while leaving

the rest unchanged. The βi/γj changed are the constant coordinates of e1 and e2,

so their coefficients in (3.22) are distinct and this will move the honeycomb out of

the hyperplane given by equality in (3.22). The path can be shifted either direction

using the trade construction so we can shift our honeycomb to either side of the

hyperplane. This would mean that G contains a point which does not satisfy (3.22),

so we therefore have that the s/t coefficients of the boundary edges of µ must be

equal.

Next, suppose there is another irreducible tinkertoy whose boundary edges have

the same value for their s/t coefficients as µ. If it intersects µ, then we can perform

the trade construction on a point of intersection between them to trade values be-

tween a boundary edge of each. The s/t coefficients for these boundary edges will

be equal, so this will result in a honeycomb whose left hand side of (3.22) will be

unchanged, and hence it will still be in G. Performing the trading construction will

introduce a new edge to the honeycomb which used to be degenerate. This would

mean that we have an extra degeneracy in τG which does not occur for all the points

in G, which contradicts how τG was defined. This means that the s/t coefficients of

the boundary edges of irreducible tinkertoys must be distinct if they intersect. Two

of the irreducible tinkertoys will fail to intersect only when they are parallel lines. In
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this case, consider the set of parallel lines with the same s/t coefficients as forming

a single tinkertoy. We therefore have that boundary edges for µ must be precisely

the set of edges with the same s/t coefficient in (3.22).

Definition III.48. We call the value of k from Lemma III.47 the st-value of the

irreducible tinkertoy.

Lemma III.49. Suppose µ and ν are two of the irreducible tinkertoys of τG, and

that at one of their intersections µ turns clockwise to ν. Then the st-value of µ must

be smaller than the st-value of ν.

Proof. Let kµ and kν be the st-values of µ and ν respectively. Pick a boundary edge

of each tinkertoy and consider a honeycomb for a generic point in F . Using the trade

construction on a path between these boundary edges and their intersection, we can

produce a new honeycomb whose constant coordinates for the boundary edges of µ

and ν are changed by some ε > 0. The values are traded so that the leftt hand side

of (3.22) for this new honeycomb will equal ε(kµ − kν). This must be negative since

the new honeycomb will still be in the polytope, so we must have that kµ < kν .

We obtain the following two useful results about the overlays of these irreducible

tinkertoys as direct corollaries of Lemma III.49.

Corollary III.50. Suppose µ and ν are two irreducible tinkertoys of τG such that

at one of their intersections µ turns clockwise to ν. Then at every point in their

intersection µ will turn clockwise to ν.

Corollary III.51. Suppose µ,ν, and σ are 3 irreducible tinkertoys of τG. If µ turns

clockwise to ν and ν turns clockwise to σ, then µ must turn clockwise to σ.
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Definition III.52. Corollary III.51 tells us how to construct a partial order on the

irreducible tinkertoys of τG:

µ <c ν if µ turns clockwise to ν.

We will call this order the clockwise ordering on the irreducible tinkertoys.

By Lemma III.49, ordering the irreducible tinkertoys by their st-value is a linear

extension of the clockwise ordering.

Remark III.53. We can use our decomposition of τG into a clockwise overlay of irre-

ducible tinkertoys to produce a puzzle. Recall that τG only has simple degeneracies,

so we can retrieve the tinkertoy τl from τG by de-eliding and removing the degener-

acy at all the points of intersections of the irreducible tinkertoys. By overlaying τl

on Gl (the hive graph) we get a correspondence between every edge of τl and every

edge of Gl (see Figure 3.18). Assign each irreducible tinkertoy a value such that

the ordering of the values is compatible with the clockwise ordering. Construct a

puzzle P by removing every edge in G which corresponds to a degenerate edge in τG,

and assigning the remaining edges the value of the irreducible tinkertoy containing

the corresponding τG edge (see Figure 3.19). The triangular faces of P correspond

to the vertices of τG and all its edges are assigned the same value as a result. The

rhombus faces of P correspond to intersections between the irreducible tinkertoys.

Lemma III.49 and Corollary III.50 tell us that the edges labels of the rhombus sat-

isfy the condition of Definition III.34. If we can choose our values so that they

satisfy the conditions to be a F̄2,l-puzzle (Definition III.38) where the type of the

puzzle is equal to the n-value from Corollary III.43, then the inequality for P from

Proposition 3.20 will be obtained as a positive linear combination of the rhombus

inequalities corresponding to the degenerate edges of τG along with the ρ chamber
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Figure 3.18: An example of a transverse overlay and the bijection between the edges of the honey-
comb and the graph for the hives. The dotted edges are the degenerate edges of the honeycomb.

Figure 3.19: An assignment of values to the irreducible tinkertoys of Figure 3.18 which is compatible
with the clockwise order and the puzzle this produces.

inequalities 0 ≤ ρl ≤ ρl−1 ≤ · · · ≤ ρn+1. The points of F are precisely the points

whose honeycombs have equality for these inequalities, so F is therefore the face of

F̄2,l given by the puzzle inequality for P .

Building off of the above remark, our goal now is to show that we can appropriately

assign values to the irreducible tinkertoys in a way that is compatible with the

clockwise order. To do this we need to show that we can choose the values so

that the puzzle is a F̄2,l-puzzle, which means we need an understanding of how the

tinkertoys containing corresponding southern infinite edges are related.

Lemma III.54. Suppose µ and ν are two distinct irreducible tinkertoys of τG such
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that µ contains a proper southeastern infinite edge and ν contains the corresponding

southwestern infinite edge. Then µ <c ν.

Proof. The tinkertoys ν and µ must intersect since they cannot both be of the form

τ0,q or τp,0, so suppose ν <c µ. We can perform the trade construction on the

intersection of µ and ν to decrease the constant coordinates of the southeastern

infinite edge of µ and its corresponding southwestern infinite edge in ν while leaving

the other infinite edges unchanged. This will result in a honeycomb with the same β

and γ but a smaller α1. If r1 > 0 in (3.22) then this will result in a point on the wrong

side of the inequality, while if r1 = 0 then this will result in a honeycomb for a point

still in F but with fewer degeneracies. In either case, we have a contradiction.

Lemma III.55. If µ is an irreducible tinkertoy of τG, then there is a unique irre-

ducible tinkertoy ν containing the southwestern (resp. southeastern) infinite edges

corresponding to the proper southeastern (resp. southwestern) infinite edges of µ.

Proof. Suppose there are two distinct irreducible tinkertoys ν and σ containing south-

western edges corresponding to proper southeastern edges of µ. Denote the south-

western edges of ν and σ by eγν and eγσ respectively and denote their corresponding

southeastern edges in µ by eβν and eβσ respectively. Let P1 be a path in τF from a

boundary edge of ν to eγν , let P2 be a path from eβν to eβσ, and let P3 be a path from eγσ

to a boundary edge of σ (see Figure 3.20). By performing the trading construction

simultaneously on these three paths, we can produce honeycombs where we have kept

the value of α1 unchanged while changing the constant coordinates of the boundary

edges. We can do the trading constructions in either direction, so we can produce a

honeycomb on the wrong side of the inequality of (3.22).

The same construction can also be used when the southeastern and southwestern
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Figure 3.20: Trade construction used in the
proof of Lemma III.55.

Figure 3.21: Trade construction used in the
proof of Lemma III.62.

infinite edges are swapped.

Lemma III.56. An irreducible tinkertoy of τG cannot contain both improper south-

western and southeastern infinite edges.

Proof. Suppose µ is an irreducible tinkertoy containing both an improper south-

western infinite edge and an improper southeastern infinite edge. Taking any path

between these two edges, we can shift the path to increase the constant coordinate

of both of these edges. This will increase α1 while leaving β and γ unchanged. If

r1 > 0, then this will result in a point on the incorrect side of (3.22). If r1 = 0, then

this will result in a point which still has equality in (3.22), so it is still in F but it

has fewer degeneracies than τF . In either case, we reach a contradiction.

Lemma III.57. If µ and ν are two irreducible tinkertoys of τG containing improper

southeastern infinite edges and southwestern infinite edges respectively, then µ <c ν.

Proof. We can perform the same trade construction as in the proof of Lemma III.54.
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Lemma III.58. Either every irreducible tinkertoy of τG contains the southwestern

infinite edges corresponding to its proper southeastern infinite edges, or none of the

irreducible tinkertoys have this property.

Proof. Suppose µ is an irreducible tinkertoy which has this property. Let P be

path between one of its proper southeastern infinite edges and the corresponding

southwestern infinite edge. We can shift this path to increase α1 while leaving β and

γ unchanged. If r1 > 0, then this would result in a honeycomb on the incorrect side

of (3.22). We therefore have that r1 = 0 if any of the irreducible tinkertoys have this

property.

Next, suppose r1 = 0, but that there is a tinkertoy that does not have this

property; i.e. there are distinct irreducible tinkertoys ν and σ such that ν contains the

southwestern infinite edges corresponding to the proper southeastern infinite edges

of σ. Let P be any path from a proper southeastern infinite edge of σ to a point

of intersection of ν and σ and then back to the corresponding southwestern infinite

edge. We can use the trade construction on this intersection in any honeycomb for

a point in F to produce a honeycomb with the same β and γ values but a different

α. This new honeycomb will still correspond to a point in F since r1 = 0, but it

will not have one of the degeneracies of τF , contradicting the definition of τF . This

means that if r1 = 0 then every tinkertoy must have this property.

We therefore must have that either every tinkertoy has this property (in which

case r1 = 0) or none of them have this property (in which chase r1 > 0).

Definition III.59. We say that F is r-free if every irreducible tinkertoy contains

the southwestern edges corresponding to its proper southeastern edges.
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We are now ready to prove that F is given by a puzzle inequality. There are two

possibilities for F with slightly different puzzles depending on whether or not F is

r-free.

Theorem III.60. If F is r-free then there is a F̄2,l-puzzle P of degree 0, type n

(=number of pairs of corresponding proper southern edges), and with Lab(P ) =

{0, · · · ,m} for some m, such that F is the face of F̄2,l given by the inequality of P .

Moreover, if F is a facet then P is {0, 1} (i.e. m = 1).

Proof. Let µ0 < µ1 < · · · < µk be any linear extension of the clockwise ordering on

the irreducible tinkertoys of τG. Let P be the puzzle from Remark III.53 obtained

by assigning µi a value of i. This assignment satisfies the conditions to be a F̄2,l-

puzzle of degree 0 since for any j, e(ρ1
β, j) and e(ρ1

γ, j) will have the same label if the

southern infinite edges with constant coordinate equal to ρj are proper, and Lemma

III.57 guarantees that e(ρ1
γ, j) will have a large label than e(ρ1

β, j) if the southern

improper edges with constant coordinate equal to ρj are improper. The number of

proper edges is equal to the value of n from Corollary III.43, so F will exactly be

the face given by the inequality for P .

Now, suppose that F is a facet. Let µ be one of the irreducible tinkertoys. We

know that µ is isomorphic to τp,q for some p, q, so by Proposition III.32 the constant

coordinates of the infinite edges of any configuration of µ satisfy an equality. Using

the fact that ρ1
β = ρ1

γ and that the constant coordinate of the improper southern

edges must be 0, we get that any τF honeycomb must satisfy the equality

βi1 + · · ·+ βip = γj1 + · · ·+ γjq

where βi1 , · · · , βip , γj1 , · · · , γjq are the constant coordinates of the boundary edges of

µ.
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The only equalities which all of the F̄2,l satisfy are

∑
i

αi =
∑
i

βi =
∑
i

γi.

If F has more than two irreducible tinkertoys, then we obtain at least two equalities

which the honeycombs of τF must satisfy which are linearly independent from the

equalities for all of F̄2,l. This would mean that F has codimension at least 2 and

hence not a facet. There being one irreducible tinkertoy corresponds to the trivial

face which is the entire polytope, so there must be exactly two irreducible tinkertoys.

Hence, the P obtained will be a {0, 1} puzzle.

We are now left with the case when F is not r-free. As in the r-free case, the

labeling will be determined by the connected components of τG, but the connected

components are not as simple in this case. We will begin by getting a grasp on these

connected components.

Consider τG where we have connected the corresponding proper southern infinite

edges. Given an oriented loop on the underlying graph of τG, define a winding number

of the oriented loop by assigning it +1 every time it goes from a southeastern edge to

the corresponding southwestern edge and giving it −1 each time it does the reverse.

Lemma III.54 guarantees that there are no nonzero winding number loops.

The connected components of τG are unions of the irreducible tinkertoys. Since

there are no nonzero winding number loops, each connected component contains pre-

cisely one tinkertoy with no proper southeastern (alternatively southwestern) edges.

This means that it cannot contain two tinkertoys consisting of parallel lines in the

same direction, so all of the irreducible tinkertoys inside one of the connected compo-

nents must intersect. Hence, the clockwise order is a linear order on the irreducible

tinkertoys of a connected component.
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Notation III.61. For any connected component C of τG, let µ1
C <c µ

2
C <c · · · be

the ordering of the irreducible tinkertoys in C

Lemma III.62. Suppose µ1 is an irreducible tinkertoy containing a (not necessarily

proper) southeastern infinite edge and µ2 is an irreducible tinkertoy containing the

corresponding southwestern infinite edge. If ν1 and ν2 are a similar pair where the

southern infinite edges are proper, then at most one of µ1 >c ν1 and ν2 >c µ2 can be

true.

Proof. By performing a series of trade constructions as in Figure 3.21, we can produce

a honeycomb corresponding to the same point but with fewer degeneracies than

τF .

Remark III.63. Let C be one of the connected component of τG and let µ1 and µ2 be

two of the irreducible tinkertoys in C such that µ2 contains the southwestern infinite

edges corresponding to the proper southeastern infinite edges of µ1. By Lemma

III.62 there cannot be consecutive irreducible tinkertoys ν1 <c ν2 in a connected

component other than C such that µ1 >c ν1 and ν2 >c µ2. This means that for any

two connected components C and D there is an i such that

µ1
C <c µ

2
C <c · · · <c µ

i
C <c µ

1
D <c µ

i+1
C <c µ

2
D <c · · ·

where the irreducible tinkertoys keep alternating in the clockwise order until one of

the connected components runs out.

Lemma III.64. For any connected component C of τG,

r1 = (st-value of µi+1
C )− (st-value of µiC).

Proof. Shift the union of any two paths from boundary edges of µi+1
C and µiC to a pair

of corresponding southwestern and southeastern infinite edges respectively. This will
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result in a valid τF honeycomb, so the point will still be in F . This shifts the left

hand side of (3.22) by r1 − (st-value of µi+1
C ) + (st-value of µiC), which must equal 0

since the point is still in F .

Lemma III.65. If µ contains an improper southeastern infinite edge and ν contains

the corresponding southwestern infinite edge then

r1 < (st-value of µ)− (st-value of ν)

Proof. Perform the same shift as in the previous lemma, making sure to increase the

constant coordinate of the improper edges. This will result in a valid honeycomb for

F̄2,l but not F since it removed an improper edge. This again shifts the left hand

side of (3.22) by r1− (st-value of µ) + (st-value of ν), so this value must be negative

since the point must satisfy (3.22) with strict inequality.

Let s0 be the minimal st-value of the irreducible tinkertoys. Lemma III.64 tells

us that the value of

(3.23) (st-value of µiC)− s0 mod r1

is constant along any of the connected components. Order the connected components

based on their smallest nonnegative residue in (3.23) (i.e. the actual remainder when

(st-value of µiC)− s0 is divided by r1), breaking any ties based using their st-values.

We are now ready to assign values to the irreducible tinkertoys as in Remark III.53

to produce a puzzle for F .

Theorem III.66. If F is not r-free, then there is a F̄2,l puzzle P of nonzero degree

such that F is the face of F̄2,l given by the inequality of P . Moreover, if F is a facet,

then P is proper and can be chosen to both have degree 1 and Lab(P ) = {0, · · · ,m}

for some m.
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Proof. Let C1 < C2 < · · · < Cd be the ordering of the connected components. For

any i, assign µ1
Ci

a value of k · d+ i− 1 where k is the nonnegative integer such that

k · r1 ≤ (st-value of µ1
Ci

) < (k + 1) · r1. Assign µ2
Ci

a value d larger than this, µ3
Ci

a value d larger than µ2
Ci

, and so on until all of the irreducible tinkertoys in Ci are

labeled. This assignment is compatible with the clockwise order since it is compatible

with the order given by the st-values. Using Remark III.53, we can create a puzzle

using this assignment. This puzzle will be a F̄2,l puzzle by Lemmas III.64 and III.65,

and it has degree equal to the number of connected components of τG.

Next, suppose that F is a facet. F must be the intersection of F̄2,l with the equality

given by P . This equality will have r1 > 0 since P has nonzero degree. Suppose

there is a connected component of τG which contains both improper southwestern

and improper southeastern infinite edges. Then by taking a path/loop between these

two edges in τF , we can shift the path to increase the constant coordinates of the

improper edges while producing a honeycomb for F̄2,l. This loop will have nonzero

winding number by Lemma III.57, so doing this construction will increase α1 while

leaving β and γ unchanged. This will result in a honeycomb which does not satisfy

(3.22), so we therefore have that an improper southwestern infinite edge cannot be

in the same connected component as an improper southeastern infinite edge.

Using the same reasoning as in Theorem III.60, we get that every connected

component will produce an equality

βi1 + · · ·+ βip = γj1 + · · ·+ γjq

that the points in F will satisfy, where βi1 , · · · , βip , γj1 , · · · , γjq are the constant

coordinates of the boundary edges of the connected component. The inequality for

P will have r1 > 0, so the equality obtained from P will be distinct from this equality.

If there are two connected components then P along with one of these equalities will
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be a pair of equalities which are linearly independent from the equalities for all of F̄2,l.

This would mean that F has codimension at least two and is not a facet. We therefore

have that τG has a single connected component. By what was just shown, this is only

possible if τG has no improper edges, i.e. P is proper. Since τG has a single connected

component, say C, when we do this assignment, each of the irreducible tinkertoys

µiC is assigned value of i− 1, which produces a puzzle where the set of labels used is

precisely {0, · · · ,m} where m = (the number of irreducible tinkertoys)-1.

Remark III.67. The proof of Theorem III.66 actually proves something stronger

about the puzzle. It shows that the degree of the puzzle is the number of connected

components of the tinkertoy for the face, provided the face is not r-free. We can

determine the number of connected components from just the labels on the southern

sides of the puzzle. Construct a graph by letting it have a vertex for every southern

infinite edge of τG. Add an edge between the vertices for each corresponding pair of

infinite edges. Then introduce an edge between any two vertices whose infinite edges

are in the same irreducible tinkertoy. Two vertices in this graph are in the same

connected component if and only if their infinite edges are in the same connected

component of τG.

3.5 Puzzle chains and regular faces of F̄a,l.

Now that we have an understanding of the a = 2 case, our goal is to generalize

the previous section to F̄a,l for any a ≥ 2. The points in F̄a,l correspond to se-

quences of hives/honeycombs which are related by some conditions on the boundary

edges/constant coordinates of the infinite edges (Proposition III.13 and Proposition

III.20). We can again use the clockwise overlays to produce puzzles (Remark III.53)

for each of the honeycombs, but these puzzles will need to be related by certain
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boundary edges being assigned the same labels.

Notation III.68. Let P1, · · · , Pa−1 be a sequence of puzzles, where Pi will be the

puzzle associated with the ith hive for points in F̄a,l. For any i:

• Let Lab(Pi, ρ
+
β , j) be the label assigned to the jth boundary edge on the north-

west side of Pi, where the edges on the side are ordered from left to right.

• Let Lab(Pi, ρ
−
β , j) be the label assigned to the jth boundary edge on the south-

east side of Pi, where the edges on the side are ordered from left to right.

• Let Lab(Pi, ρ
+
γ , j) be the label assigned to the jth boundary edge on the north-

east side of Pi, where the edges on the side are ordered from right to left.

• Let Lab(Pi, ρ
−
γ , j) be the label assigned to the jth boundary edge on the south-

west side of Pi, where the edges on the side are ordered from right to left.

In the ith hive, the difference between the values assigned to the two vertices incident

to the boundary edge labeled with Lab(Pi, ρ
+
β , j), Lab(Pi, ρ

−
β , j), Lab(Pi, ρ

+
γ , j), or

Lab(Pi, ρ
−
γ , j) is equal to (ρi+1

β )j, (ρiβ)j, (ρi+1
γ )j, or (ρiγ)j respectively (this is the

analogue of Remark III.35 for the general case).

Definition III.69. Let δ be a partition of length a− 1 and n a nonnegative integer.

We say that the sequence P1, · · · , Pa−1 is a chain of degree δ and type n if it satisfies

the following conditions:

• For i = 2, · · · , a− 1 and j = 1, · · · , l,

Lab(Pi, ρ
−
β , j) = Lab(Pi−1, ρ

+
β , j),

Lab(Pi, ρ
−
γ , j) = Lab(Pi−1, ρ

+
γ , j) + (δi − δi+1).

• For j = 1, · · · , n,

Lab(P1, ρ
−
γ , j) = Lab(P1, ρ

−
β , j) + (δ1 − δ2).
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Figure 3.22: A F̄3,3 puzzle chain with n = 2 for the inequality α1 + α2 + β3 − γ1 − 2γ2 − 2γ3 ≤ 0.

Figure 3.23: A proper (i.e. n = 3) F̄3,3 puzzle chain for the inequality 2α1 +α2 + β2 + 2β3 − 3γ1 −
2γ2 − 4γ3 ≤ 0

• For j = n+ 1, · · · , l,

Lab(P1, ρ
−
γ , j) > Lab(P1, ρ

−
β , j) + (δ1 − δ2).

We again say that the puzzle chain is {0, 1} if this is the set of labels used, and that

it is proper if n = l. Figures 3.22 and 3.23 are examples of puzzle chains for F̄3,3.

Proposition III.70. Let P be a puzzle chain if degree δ. Then F̄a,l will satisfy the

inequality:

a−1∑
i=1

(δi − δi+1)αi +
l∑

j=1

Lab(Pa−1, ρ
+
β , j) · βj −

l∑
j=1

Lab(Pa−1, γ, j) · γj ≤ 0

Proof. This follows by the same reasoning as the a = 2 case (Proposition III.39).

Similar to the previous section, we want show that the regular faces of F̄a,l have

inequalities which are given by these puzzle chains. Our approach this time will be
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less constructive. In the previous section, we showed how we could use the clock-

wise order on the irreducible tinkertoys to produce the labels for the puzzle. That

approach can be done for the general case, but ends up being fairly tedious and not

very enlightening. Instead, for this section we will show that any inequality for a

regular face can be produced from a puzzle chain as long as the coefficient of αa is 0

in the inequality (using
∑

i αi =
∑

i βi any inequality can be expressed in this form).

This result is useful since in the next section we will see that in order for the puzzles

to correspond to a regular face it must be uniquely determined by its coefficients.

This means that as long as we know an inequality for the face, we can construct a

puzzle chain for the face, which in turn can be used to construct the sequence of

tinkertoys for the face.

Let F be a regular face of F̄a,l. Using the equalities
∑

i αi =
∑

i βi =
∑

i γi, we

can reduce any defining inequality for F to be of the form

(3.24) r1α1 + · · ·+ ra−1αa−1 + s1β1 + · · ·+ slβl − t1γ1 − · · · − tlγl ≤ 0

where r1, · · · , ra−1 ≥ 0 (no restrictions on the sj and tk). Using the fact that F̄a,l is

symmetric in the parts of α, we will reduce to looking at the case when r1 ≥ r2 ≥

· · · ≥ ra−1 ≥ 0.

Remark III.71. The results for this section will still hold for the inequality as long

as the coefficient of αa is 0. This order for the coefficients of the αi is chosen since it

produce faces with fewer improper edges than any other ordering.

Let τ 1
F , · · · , τa−1

F be the sequence of tinkertoys associated to F . We want to show

that we can assign the coefficients in the inequality to irreducible tinkertoys to pro-

duce puzzles forming a chain using the construction of Remark III.53. In order to do

this we need tinkertoys where we have removed all the non simple degeneracies of the
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τ iF . As before, let G be a face of Fa,l which is minimal amongst the faces containing

the preimage of F and is not contained in any chamber faces. Let τ 1
G, · · · , τa−1

G be

the sequence of tinkertoys for G. Molting away the multiplicity > 1 edges like in

Lemma III.42 and Corollary III.43, we again find that the τ iG have only simple de-

generacies and that the τ iF are obtained from the τ iG by introducing the degeneracies

forced by 0 = ρ1
l = · · · = ρ1

n+1 for some n. Hence we again have a notion of proper

and improper edges of the τ iF/τ
i
G. Since the τ iG have only simple degeneracies, by

Proposition III.30 they are transverse overlays of irreducible tinkertoys isomorphic

to various τp,q. We can then apply the same reasoning as Lemma III.49 to show that

we have a clockwise order on the irreducible tinkertoys of each τ iG.

Recall that α1 + α2 + · · · + αi = |ρiγ| = |ρiβ|. The constant coordinates of the

northern infinite edges of τa−1
G are the only infinite edges whose entries are uniquely

determined by the point (α, β, γ) ∈ F̄a,l the honeycomb is for (they are equal to

the entries of β and γ). For the rest of the infinite edges, they are only related to

the point (α, β, γ) by the fact that the sum of all of the constant coordinates of the

infinite edges in one of the honeycombs which point in the same direction will be

equal to |ρiγ| or |ρiβ| for some i.

Notation III.72. For every infinite edge in a sequence of honeycombs for τ 1
G, · · · ,

τa−1
G , except the northern ones in the honeycomb for τa−1

G , there is another infinite

edge whose constant coordinate is equal to the same entry of ρiβ/ρ
i
γ. We will say that

two such edges are corresponding edges.

Notation III.73. For an irreducible tinkertoy µ, let B+
µ , B

−
µ ,Γ

+
µ , and Γ−µ denote the

set of northwestern, southeastern, northeastern, and southwestern infinite edges of

µ respectively.
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Lemma III.74. If µ is an irreducible tinkertoy of τ iG containing a northwestern

(resp. northeastern) infinite edge, then there is an irreducible tinkertoy ν of τ i+1
G

such that B+
µ = B−ν (resp. Γ+

µ = Γ−ν ).

Proof. Suppose that there are two tinkertoys ν and σ containing southeastern infinite

edges, say eβν and eβσ , whose corresponding infinite edges are in B+
µ (the Γ+

µ case will

follow by the exact same argument).

Case 1: µ is not a set of parallel lines and ν, σ intersect.

Without loss of generality, ν <c σ. Take a proper path in µ between the correspond-

ing infinite edges for eβν and eβσ and proper paths in ν and σ from the intersection of

ν and σ to eβν and eβσ respectively. Use the trade construction on the paths in ν and

σ to increase the constant coordinate of eβν while decreasing the constant coordinate

of eβµ, and shift the path in µ to perform the same trade on its edges corresponding

to eβµ and eβν . This will maintain (α, β, γ), so it will still be a valid honeycomb for

F and hence G. This will remove the degeneracy at the intersection of ν and σ,

contradicting how the τ iG are defined.

Case 2: µ is not a set of parallel lines and ν, σ do not intersect.

Since they do not intersect, ν and σ are both sets of parallel lines. Consider the pairs

of corresponding proper edges of τ 1
G, · · · , τa−1

G as being connected. Let τ iG be the first

irreducible tinkertoy where either ν or σ is connected to an irreducible tinkertoy

which isn’t a set of parallel lines with constant second coordinate. We can perform

the analogue of the construction from case 1 to again show this is not possible.

We therefore have that ν and σ are only connected to straight lines with constant

second coordinate. Let βi and βj be entries of β corresponding to the boundary

edges ν and σ are connected to respectively. By taking a path from the boundary

edge for βi to µ and from µ back to the boundary edge for βj, we can shift this path
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to increase/decrease βi and decrease/increase βj while keeping the other coordinates

of (α, β, γ) unchanged. This will create a point on the incorrect side of (3.24) unless

si = sj, in which case we can consider ν and σ as being a single irreducible tinkertoy.

Case 3: µ is a set of parallel lines.

We can perform the same constructions as in case 2, we just have to go to earlier τ iG

to find an intersection to perform the trade construction on. By the previous lemma,

the connected components of ν and σ must extend to τ 1
G where after passing from

southeastern edges to southwestern edges of τ 1
G, they must intersect. Do the analogue

of the trade construction from the previous case by taking paths from boundary edges

connected to σ and ν to this intersection. This case therefore follows by the same

reasoning as the previous case.

We therefore have that there is a tinkertoy ν of τ i+1
G such that B+

µ ⊂ B−ν . The

same reasoning also gives us that B−ν ⊂ B+
µ .

Notation III.75. If µ and ν are irreducible tinkertoys of τ iG and τ i+1
G respectively

with B+
µ = B−ν , then we say that ν precedes µ in the β direction. If Γ+

µ = Γ−ν then

we say that ν precedes µ in the γ direction

Our goal now is to show that we can assign values to the irreducible tinkertoys in

a way that is consistent with the clockwise ordering on the irreducible tinkertoys and

can then be used to produce a chain of puzzles using Remark III.53. We can apply

the same reasoning as Lemma III.47 to get that each of the irreducible tinkertoys of

τa−1
G corresponds to a unique st-value of (3.24). Since we are trying to produce the

inequality (3.24), a natural choice is to assign the irreducible tinkertoys of τa−1
G their

st-value. Continue this by assigning every irreducible tinkertoy a value equal to the

tinkertoy preceding it in the β direction. If an irreducible tinkertoy in τ iG does not

have a tinkertoy preceding it in the β direction, then assign it a value equal to the
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value of the tinkertoy preceding it in the γ direction minus (ri+1−ri+2). It is just left

to check that this labeling produces a chain of puzzles of degree δ = (r1, · · · , ra−1).

Lemma III.76. If µ is an irreducible tinkertoy in τ iG, then it is assigned a value

(ri+1 − ri+2) smaller than the tinkertoy preceding it in the γ direction.

Proof. We will show this using induction, starting with τa−1
G where it is vacuously

true and working back to τ 1
G. Consider corresponding pairs of infinite edges as

being connected. If µ does not have an irreducible tinkertoy preceding it in the

β direction then this holds trivially, so we may assume that this is not the case.

Let ν and σ be the irreducible tinkertoys preceding µ in the β and γ directions

respectively. There then must be path from µ to a northwestern edge of τa−1
G which

only uses corresponding pairs of northwestern and southeastern infinite edges and no

northeastern or southwestern edges between tinkertoys, and an analogous path using

only corresponding pairs of northeastern and southwestern infinite edges. We know

that µ and ν are assigned a value of sp where βp is this constant coordinate for the

boundary edge the first path is connected to, and σ is assigned a value of tq − ri+2

where γq is constant coordinate of the boundary edge for the second path. By shifting

these paths (see Figure 3.24) along with a path through µ in between them, we can

increase/decrease the values of βp, γq, and αi+1. The resulting honeycombs are still

configurations of the τ iG so there must be equality in (3.24). This shifts the left hand

side of (3.24) by ri+1 +sp− tq, so this must be 0, which implies the desired result.

Lemma III.77. Let µ be an irreducible tinkertoy in τ 1
G.

• There is a unique irreducible tinkertoy ν containing the southwestern infinite

edges corresponding to the proper southeastern edges of µ.

• This ν is assigned a value that is r1 − r2 larger than the value assigned to µ.
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Figure 3.24: Trade construction used in the proof of Lemma III.76.

Figure 3.25: Trade construction used in the proof of Lemma III.78.
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• If σ is an irreducible tinkertoy containing the southwestern infinite edge corre-

sponding to an improper southeastern infinite edge of µ, then it is assigned a

value more than r1 − r2 larger than µ.

Proof. These all follow by extending the constructions from the proofs of Lemmas

III.54, III.55, III.64, and III.65 to a sequence of honeycombs in a similar manner to

the proof of Lemma III.76.

Lemma III.78. The chosen assignment is compatible with the clockwise ordering.

Proof. Suppose µ <c ν. Take any two paths from their intersection to northern

boundary edges of τa−1
G where each path uses only corresponding pairs of northwest-

ern and southeastern infinite edges or only corresponding pairs of northeastern and

southwestern infinite edges between the tinkertoys. Perform the trade construction

on their intersection and then propagate the shift through the paths to the boundary.

If the paths lead to two northwestern infinite edges of τa−1
G , say ones whose constant

coordinates are βiµ and βiν , then this shift decreases βiµ and increases βiν while leav-

ing all of the α unchanged (see Figure 3.25). This will be a valid honeycomb for F̄a,l,

so we must have that siµ ≤ siν since it satisfies (3.24). If there is equality then the

resulting chain of honeycombs is still in F , but with one fewer degeneracies which

contradicts the definition of the τ iF . We therefore have that siµ < siν , which are the

values assigned to these two tinkertoys, so the assignment is compatible in this case.

The other possibilities for the boundary edges follow by the same reasoning.

Theorem III.79. There is a puzzle chain whose inequality is (3.24).

Proof. Use the chosen assignment to produce a sequence of puzzles using the method

from Remark III.53. This sequence of puzzles satisfies the relations in Definition

III.69 by Lemmas III.76 and III.77, hence it is a puzzle chain. This puzzle chain
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has degree δ = (r1, · · · , ra−1) by these two lemmas, so the inequality obtained from

Proposition III.70 will be exactly (3.24).

Similar to the a = 2 case, there is more we can say more about the puzzle chains

corresponding to facets. Again there are different possibilities depending on whether

or not δ = 0.

Proposition III.80. If F is a facet with degree 0 (i.e. the ri are all 0), then F is

given by a {0, 1} puzzle chain.

Proof. Consider corresponding pairs of infinite edges as being connected. For each

connected component, by summing the equalities we obtain from Proposition III.32

we obtain that the points in F must be in the hyperplane

βi1 + · · ·+ βip = γj1 + · · ·+ γjq

where βi1 , · · · , βip , γj1 , · · · , γjq are the constant coordinates of the boundary edges

of the connected component. Since r1 = · · · = ra−1 = 0 in (3.24), every irreducible

tinkertoy is assigned the st-value in (3.24) corresponding to the boundary edges of the

connected component it is in. The equality for (3.24) is therefore a nonnegative linear

combination of the equalities obtained from the connected components. The only

equalities which all of F̄a,l satisfies are those generated by
∑

i αi =
∑

i βi =
∑

i γi.

The sum of the equalities for the connected components is the equality
∑

i βi =
∑

i γi,

but they are linearly independent from the other 2 equalities for F̄a,l. Hence, in order

for F to have codimension 1 it must have precisely 2 connected components, in which

case the si and tj can only take two values. We can use the equalities for F̄a,l to

reduce (3.24) so that 1 is the only nonzero coefficient. The puzzle chain obtained is

then {0, 1}.
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Lemma III.81. If F is a facet with δ 6= 0 then the chain of tinkertoys τ iF has a

single connected component.

Proof. Consider corresponding pairs of infinite edges of the τ iF as being connected as

in the previous proof. We again find that each connected component produces an

equality which the points in F satisfy; namely

βi1 + · · ·+ βip + γj1 + · · ·+ γjq = 0

where βi1 , · · · , βip , γj1 , · · · , γjq are the constant coordinates of the boundary edges of

the connected component. Since r1 > 0, the equality for (3.24) is linearly independent

from the equalities for the connected components and the equalities
∑

i αi =
∑

i βi =∑
i γi for all of F̄a,l. Therefore, in order for F to be codimension 1 it must have 1

connected component.

In the a = 2 case, there being a single connected component in the graph of

Remark III.67 for a puzzle is enough to guarantee that if the puzzle corresponds to

a regular face, then that face is a facet. This does not hold for the general case;

a condition stronger than connectivity is required. This condition can be stated in

terms of a related labeled graph associated with the puzzle and only depends on the

coefficients of the puzzle inequality.

Definition III.82. Let F be a face of F̄a,l given by an inequality of the form (3.24)

with r1 > 0. Construct a weighted graph G(F ) as follows. The vertices of G(F ) are

the sets of si and tj which are equal to the same value; i.e. each vertex is a maximal

set of the form {si1 , si2 , · · · , tj1 , tj2 , · · · } such that si1 = si2 = · · · = tj1 = tj2 = · · · .

Let ∆2, · · · ,∆a be indeterminates which we will use for the edge weights of the graph.

For i > 2, there is an edge between a vertex v and a vertex w of weight ∆i whenever
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kv − kw = r1 − ri, where kv and kw are the values of the s/t coefficients associated

with v and w respectively.

Remark III.83. For any face, knowing the labels on the infinite edges of any τ iG is

enough to determine how many infinite edges each irreducible tinkertoy has, which

in turn determines which τp,q the irreducible tinkertoys are isomorphic to. This is

precisely the information encoded by G(F ). The labels for the southwestern edges in

τ iF are sj + r1− ri+1, so for each edge labeled with a ∆i between v and w there is an

irreducible tinkertoy in τ i−1
F isomorphic to τ{#s in v},{#t in w}. Every other irreducible

tinkertoy not represented by an edge in G(F ) consists of parallel lines. We can

also determine the labels of the improper edges since if there is a mismatch in the

number of edges for corresponding irreducible tinkertoys in τ 1
G, then by Lemma

III.56 the number of improper edges in the irreducible tinkertoy with more edges is

the difference.

Let C be any cycle in G(F ). Assign the cycle a weight of w(C) =
∑

e edge in C

εew(e)

where εe = 1 if the cycle traverses e from the vertex with the smaller s/t value to

the vertex with the larger s/t value and −1 otherwise. If we set ∆i = r1− ri+1, then

any cycle in G(F ) produces an equality w(C) = 0 which these ∆i must satisfy.

Let C(F ) ∈ Ra+l−2 be the cone of points (∆2, · · · ,∆a, σ2, · · · , σl) defined by the

constraints

σi = 0 if si = s1,

σi = σj if si = sj,

σi + ∆j = σk if si + r1 − rj = sk,

σi + ∆j > σk if si + r1 − rj > sk,

σi + ∆j < σk if si + r1 − rj < sk.
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Lemma III.84. A face F is a facet if and only if C(F ) is 1-dimensional.

Proof. A sequence s1, · · · , sk will produce a valid labeling for the τ iF with degree

δ = (r1 − r2, r2 − r3, · · · , ra−1) if and only if the point σi = s1 − si, ∆i = r1 − ri is

contained in C(F ). Each point in C(F ) along with a choice for s1 and r1 produces

a hyperplane that the points in F must satisfy. Our face F is a facet if and only

if all of these hyperplanes produce the same hyperplane when intersected with the

hyperplanes
∑

i αi =
∑

i βi =
∑

i γi. Two of these hyperplanes will produce the

same intersection if and only if their C(F ) points are multiples of each other. We

therefore have that F is a facet if and only if C(F ) is 1-dimensional.

Proposition III.85. A face F is a facet if and only if Span{w(C) : C cycle in G(F )}

has codimension 1.

Proof. Let (∆, σ) be a point in C(F ). By choosing values for r1 and s1, we can

construct a labeling for the puzzle chain for F by letting ri = r1−∆i and si = s1−σi.

We know that these ∆ must satisfy w(C) = 0 for any cycle in G(F ), hence it must

be in the kernel of the map ∆ 7→ (w(C))C . We therefore have that the dimension of

C(F ) is less than or equal to the dimension of the kernel of this map.

Next, let (∆2, · · · ,∆k) be any point satisfying w(C) = 0 for every cycle C in

G(F ). Assign values to the σi by setting σi = ∆j + σk whenever there is an edge

in G(F ) of weight ∆j between the vertices containing si and sk. By Lemma III.81,

G(F ) is a connected graph so every σi will be assigned a value. Any path between

the vertices for s1 and si will produce the same value since w(C) = 0 for any cycle in

G(F ). This produces a point (∆, σ) satisfying the equalities for C(F ). We therefore

have that the dimension of the kernel of ∆ 7→ (w(C))C is less than or equal to the

dimension of C(F ).
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Putting these together, we find that the dimension of C(F ) is the dimension of

the kernel of ∆ 7→ (w(C))C . By the previous lemma, this means that F is a facet if

and only if this kernel has dimension 1. This kernel has dimension 1 if and only if

Span{w(C) : C cycle in G(F )} has codimension 1.

3.6 Rigid puzzles

Now that we know that all of the faces of F̄a,l which are not contained in a chamber

face are given by a chain of puzzles, the natural follow up question is for which chains

of partitions is there a corresponding regular face of F̄a,l. For the puzzles in [4] and

[6], the obstructions to puzzles corresponding to a regular face are caused by gentle

loops in the puzzles. We will see that with one extra condition, this is again the

case. The arguments of [4] for rigid puzzles will all apply to our puzzles, the only

additional information which is needed is how to handle gentle loops passing from

one puzzle to another and the improper edges of P1.

Definition III.86. Two puzzle pieces in a puzzle of the same type (including the

same labels) are said to be in the same region if they share an edge. Decompose the

puzzles into regions which are the transitive closure of this. Each region is either a

union of triangles with the same label i, which we will call an i-region, or a union of

rhombi with the same labels i, j, which we will call an (i, j)-region.

The (i, j)-regions are parallelograms, while the generic i-region is a hexagon. Each

i-region can only border (i, j)-regions, and not other regions of triangles. Consider

the graph formed by taking the graph for a puzzle and deleting the edges in the

interior of each of the regions. Orient the remaining edges (the boundary edges of

the regions) as follows:

• If the edge is between a i-triangle and a (i, j)-rhombus, i < j, then orient the
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Figure 3.26: Puzzle regions for the puzzles in the chain from Figure 3.22.

Figure 3.27: Puzzle regions for the puzzles in the chain from Figure 3.23.

edge so that the rhombus is to its right.

• If the edge is between a i-triangle and a (i, j)-rhombus, i > j, then orient the

edge so that the triangle is to its right.

• If the edge is between a (i, j)-rhombus and a (i, k)-rhombus, i > j > k, then

orient the edge so that the (i, k) rhombus is to its right.

Recall that a gentle loop (Definition III.24) is a path which either goes straight or

turns 60◦ at any vertex, with the additional requirement that at the intersection of

two straight lines it must go straight. We will be interested in the gentle loops on this

oriented region graph. By looking at the various possibilities for the configuration

of honeycombs which produce a vertex in this graph, it is possible to show that as a
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gentle loop is traversed in this graph, the corresponding edges in the honeycomb are

shrinking in length.

Lemma III.87 (Proposition 5 of [4]). Let P be a puzzle occurring in a puzzle chain

for a regular face of F̄a,l, let γ be a gentle loop in the region graph for P , and let γ̃ be

the corresponding sequence of edges for a generic honeycomb of P . Then the lengths

of the edges γ̃i are weakly decreasing.

We can extend this to a puzzle chain by introducing edges between the puzzles as

follows (see Figure 3.28):

• Add an edge between corresponding vertices along the northwestern and south-

eastern sides of the region graphs for Pi and Pi+1. Orient these edges so that of

the two boundary edges of the puzzles incident to the vertex, the larger label is

to the right.

• Add an edge between corresponding vertices along the southwestern and south-

eastern sides of the region graph for P1, where the two boundary edges of P1

adjacent to the vertices are both proper. Again orient these edges so that the

boundary edge with the larger label is to the right.

Corollary III.88. Let P1, · · · , Pa−1 be a puzzle chain corresponding to a regular face

of F̄a,l, let γ be a gentle loop in this modified region graph for the chain, and let γ̃

be the corresponding sequence of edges for a generic sequence of honeycombs for the

chain. Then the lengths of the edges γ̃i are weakly decreasing.

Proof. We prove this by showing how to concatenate two puzzles to form a new

puzzle where we can apply the previous lemma. We will start by looking into how

to concatenate honeycombs corresponding to the puzzles.
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Figure 3.28: Region graphs for the two puzzle chains from Figures 3.26 and 3.27.
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We know that for a sequence of honeycombs given by a puzzle chain, the constant

coordinates of some of the infinite edges of consecutive honeycombs in the sequence

have to be the same. This means that by shifting the honeycombs, we can con-

catenate them along either the corresponding northwestern and southeastern or the

corresponding northeastern and southwestern infinite edges between the two hon-

eycombs (see Figure 3.29). Introduce a straight edge traversing this concatenation;

this edge allows us to keep track of how far apart the infinite edges of the puzzles

are. In terms of puzzles, this concatenation using northwestern and southeastern

edges corresponds to taking two puzzles Pi and Pi+1 in the chain, lining them up

along their northwestern and southeastern sides and introducing a line of rhombi

joining them where the new edges of these rhombi are labeled using a value larger

than any label occurring in the two puzzles (see Figure 3.30). Concatenating along

the northeastern and southwestern edges corresponds to lining up Pi and Pi+1 along

their northeastern and southwestern sides, adding (ri+2− ri+1) to the labels of Pi so

that the corresponding edges along the concatenated sides of both puzzles have the

same labels, and the introducing a line of rhombi joining them where the new edges

of these rhombi are labeled using a value smaller than any label occurring in either

puzzle. Taking the region graph of these concatenations produces the first set of new

edges.

For the second set of new edges, concatenate a honeycomb for P1 with itself by

rotating one copy of itself so that the corresponding southeastern and southwestern

infinite edges line up, then concatenate only using the proper infinite edges. Trans-

lating this to the region graph on the puzzles results in the desired new edges.

Corollary III.89. A puzzle chain corresponding to a face of F̄a,l has no gentle loops.
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Figure 3.29: The concatenation of honeycombs along the northwestern and southeastern edges for
the face given by the chain from Figure 3.23.

Figure 3.30: The concatenation of puzzles along the northwestern and southeastern sides for the
puzzle chain from Figure 3.23. The constant v can be any value larger than 4.
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Figure 3.31: Dual tinkertoy to the first puzzle in the chain of Figure 3.22. The labels are the
multiplicities of the edges.

Proof. Tracing through the honeycomb configurations corresponding to vertices of

the region graph, it is possible to show that for a gentle path there must be a pair

of consecutive edges whose lengths are strictly decreasing. Hence, if there is a gentle

loop, then in any honeycomb for a point in the interior of the face all the edges

corresponding to this loop must be length 0. This would mean that the honeycombs

for the face have more degeneracies than the tinkertoy for the face.

Definition III.90. Given a region graph for a puzzle chain, let its dual tinkertoy

chain be the sequence of tinkertoys whose underlying graphs are the dual graphs

of the region puzzles, and whose edge multiplicities are the number of edges in the

original puzzle which are joined together to form the corresponding edge in the region

graph (Figure 3.31).

Remark III.91. The second use of this region graph is that it can be used to a produce

a honeycomb whose degeneracy tinkertoy is dual to the graph. Assign to each edge

of the region graph the number of gentle paths from the edge to a dead end of the

puzzle chain (the dead ends will be the vertices on the northern sides of Pa−1 and the

vertices in P1 which are between improper southern boundary edges). Since there

are no gentle loops, this value is well defined. By looking at all the possibilities for

the vertices in this graph, it is easy to see that the number of gentle paths at a vertex
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Figure 3.32: Generic vertex in the region graph of a puzzle chain.

as in Figure 3.32 satisfies the equalities

a+ b = d+ e, b+ c = e+ f, and c+ d = a+ f.

Construct a honeycomb by taking the tinkertoy whose dual graph is the region

graph restricted to one of the puzzles, and assigning each edge to have a length equal

to the value assigned to the corresponding edge in the region graph. For each vertex

in the region graph, we obtain a degeneration of a hexagon. The above relations on

the number of gentle paths is precisely the condition necessary for the hexagon to

close up (see (3.18)), so this will produce a valid honeycomb.

Note: We still need to specify the coordinates of one of the vertices in the hon-

eycomb if we want to actually produce a honeycomb. Any choice of coordinates for

any of the vertices will produce a honeycomb with the desired degeneracy tinkertoy.

In Figure 3.33, the coordinates are chosen for the points p1 and p2. The point p1 is

chosen so that the two infinite edges incident to it have the same constant coordi-

nate, while p2 is chosen so that the first entries of ρ2
β and ρ2

γ match between the two

honeycombs.

This means that we can produce honeycombs for each puzzle in the tinkertoy, but

in order for the constant coordinates to satisfy the conditions to be a honeycomb

for a point in F̄a,l (see Prop III.20) the initial points for the honeycomb must be

properly chosen.

Corollary III.89 tells us that these gentle loops are obstructions to the puzzle chain
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Figure 3.33: The region graph on the right of Figure 3.28 with its edges labeled by the number of
gentle loops along with a honeycomb chain produced from it.

Figure 3.34: The improper portion of a tinkertoy in τ1G. The edges are labeled by their multiplicities.
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producing a regular face. There is one final obstruction to a chain of puzzles giving a

regular face. It is possible that in the honeycombs for the τ iG from before, forcing the

improper edges of τ 1
G to have 0 constant coordinate will force one of the boundary

edges corresponding to a βi or γj to have a 0 constant coordinate. Suppose we have a

chain of tinkertoys τ 1
G, · · · , τa−1

G which are the moltings of the tinkertoys for a regular

face. Let σ be an irreducible tinkertoy in τ 1
G and let im(σ, β) and im(σ, γ) denote the

number of improper southeastern and southwestern edges of σ respectively. After

introducing into σ the degeneracies forced by the improper edges degenerating to the

same edge, σ will be of the form of Figure 3.34. If the number of southwestern edges

of σ is less than im(σ, β), then there will be a northwestern infinite edge which is

forced to have constant coordinate 0. Continuing this, suppose the tinkertoys in τ iG

succeeding σ in the β and γ directions are isomorphic to τpβi ,q
β
i

and τpγi ,q
γ
i

respectively.

There will be a βi or γj forced to be 0 precisely when one of the following inequality

holds:

im(σ, β) > pβ1 + pβ2 + · · ·+ pβa−1

im(σ, γ) > qγ1 + qγ2 + · · ·+ qγa−1.

Consider what this corresponds to in the puzzle chain. For any label n of an im-

proper edge in P1, let Im(n, β) and Im(n, γ) be the number of improper southeastern

and southwestern edges respectively with this label. Let P (n, i) be the number of

southeastern edges with label n in Pi and let Q(n, i) be the number of southwestern

edges with label n in Pi. One of the βi or γj will be forced to be 0 if and only if one
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of the following inequality holds for some n:

Im(n, β) > P (n, 1) + P (n, 2) + · · ·+ P (n, k − 1)

Im(n, γ) > Q(n, 1) +Q(n+ (r2 − r3), 2) +Q(n+ (r2 − r4), 3) + · · ·+

+Q(n+ r2, a− 1))

Definition III.92. We say that a puzzle chain has proper boundary edges if neither

of the above inequalities holds for any n.

Proposition III.93. A puzzle chain produces the inequality for a regular face of F̄a,l

if and only if it has no gentle loops and has proper boundary edges.

Proof. We just need to show that we can produce a honeycomb for a point in F̄a,l

which is a configuration of the tinkertoys obtained from the puzzle chain. Consider

the honeycombs obtained from the region graph as in Remark III.91. First, suppose

that our puzzle chain has no improper edges. Choose an initial point for the first

honeycomb so that the constant coordinates of the infinite edges for (ρ1
β)l and (ρ1

γ)l

are equal. When concatenating the puzzles, we introduced a new edge transverse

to the infinite edges which were being concatenated. This edge is dual to the edges

between the boundaries of the puzzles, and so its length in the resulting honeycomb

is equal to the number of gentle paths through its dual edge. This means that the

distance between two infinite edges in the honeycomb is given by the number of gentle

paths through an edge between puzzles in the region graph. For the southeastern and

southwestern infinite edges, the distance between corresponding adjacent pairs both

are equal to the number of gentle paths through the same edge, hence the constant

coordinates for the infinite edges for (ρ1
β)i and (ρ1

γ)i will be the same for all i since it

holds for i = l.

For the later puzzles, choose the honeycomb so that it has the appropriate (ρiβ)1
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and (ρiγ)1 constant coordinates. By the same reasoning, the rest of the constant

coordinates will match those of the previous honeycomb. This will produce a se-

quence of honeycombs satisfying the last two conditions of Proposition III.20. If it

does not satisfy the first condition (i.e. (ρ1
β)l = (ρ1

γ)l must be positive), then simply

scale all of the edge lengths down or choose a starting point with larger constant

coordinates until the constant coordinates on the first honeycomb are all positive.

This will produce a sequence of honeycombs corresponding to a point in F̄a,l. By

molting this sequence of honeycombs to produce honeycombs with only multiplicity

one edges and then performing trade constructions to de-elide edges as necessary,

we can obtain a honeycomb for a point in F̄a,l which has precisely the degeneracies

given by the puzzle chain. Hence, the puzzle chain does produce a regular face of

F̄a,l.

Next, suppose that our puzzle chain has improper edges. Produce a sequence

of honeycombs as in the proper case (see Figure 3.35 for the honeycomb obtained

from the left hand region graph of Figure 3.28). This sequence of honeycombs will

satisfy the first and third conditions of Proposition III.20, but it will not satisfy the

second condition for the improper edges in the first honeycomb. Shift the improper

edges so that they have 0 constant coordinate and do a ‘one sided molt’ as in Figure

3.36 on any edges which contain both improper and proper edges (i.e. use the shifts

of Figure 3.10). We can do these shifts while maintaining the underlying shape of

the graph since all of the proper finite edges are to one side of the improper edges

and these shifts are only on the opposite side. Molting away the multiplicity > 1

edges which are proper edges, we can again obtain a honeycomb with the desired

degeneracies.

Definition III.94. A puzzle chain is called rigid if it is uniquely determined by the
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Figure 3.35: The honeycomb obtained from
the left hand region graph in Figure 3.28.

Figure 3.36: The ‘one sided molting’ done on
this chain of honeycombs.
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values of the coefficients of its inequality.

Every regular face must be given by a rigid puzzle chain, since the puzzle chain is

uniquely determined by which of the inequalities of Fa,l the points in the face have

equality for. Our final use for the gentle loops will be to show that the converse of

this also holds.

Theorem III.95. A puzzle chain produces the inequality for a regular face of F̄a,l if

and only if it is rigid and has proper boundary edges.

Proof. In Lemma 6 of [6], the authors show how to swap puzzle pieces along a gentle

loop to form another puzzle. These same swaps work for our puzzle chains, so we

get that any puzzle with a gentle loops will not be rigid. If there are no gentle loops,

then by Proposition III.93, the puzzle chain will produce an inequality for a regular

face and so it will be rigid. We therefore have that a puzzle chain is rigid if and only

if it has no gentle loops. The theorem then follows by Proposition III.93.

Remark III.96. A puzzle chain with a gentle loop will still produce an inequality for

a face of F̄a,l, but that face will not be regular.

Remark III.97. Theorem III.95 tells us that if we somehow already know the in-

equality for a regular face, then by starting with the boundary we are able to fill in

a puzzle chain in order to produce the one for the face. In the next section, we will

see how to use the tinkertoy chain corresponding to this puzzle chain to determine

the dimension of the F (αβγ) polytope for points in the face. This therefore provides

us with a way of finding the dimension of F (αβγ) for points in a regular face from

just knowing the inequality for the face.

In addition, this also provides us with a means to test if an inequality corresponds

to a regular face by checking if filling in the puzzles starting at the northern sides of
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Pa−1 produces multiple possible puzzle chains.

3.7 0-Dimensional F (αβγ)

We are finally equipped to answer our original question: how do you produce

triples where F (αβγ) 0-dimensional? Our procedure will largely follow the same

blueprint as the H(αβγ) case. We start by noting that the argument for Proposition

II.37 is directly applicable to F̄a,l, so we have the analogous result.

Proposition III.98. If F is a face of F̄a,l, then dim(F (αβγ)) is constant on the

interior of F .

The first step is to find a checkable condition on a face that forces F (αβγ) to be

0-dimensional. We know that every face has an associated sequence of tinkertoys,

τ iF , so we will search for such a condition in terms of the tinkertoys.

Consider the sequence of tinkertoys τ iF for a face F of F̄a,l. Identify the ends of

corresponding infinite edges of the tinkertoys whose constant coordinates are forced

to be equal. Given a gentle loop in this chain of tinkertoys, we say that the loop

traverses an edge between tinkertoys in the positive direction if it traverses the edge

going from τ i−1
F to τ iF , and say it traverses in the negative direction for the reverse.

For a corresponding pair of southern infinite edges of τ 1
F , the positive direction is

from the southwestern infinite edge to the southeastern infinite edge.

Definition III.99. Given a gentle loop, the 1st winding number is the number of

times the loop traverses an edge between between corresponding southern infinite

edges of τ 1
F in the positive direction minus the number of times the loop traverses

such an edge in the negative direction. Similarly, for i > 1 the ith winding number

of the loop is the number of times the loop traverses an edge between a northeastern

infinite edge of τ iG and a southwestern infinite edge of τ i+1
G in the positive direction
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minus the number of times the loop traverses the edge in the negative direction. The

winding-tuple is the a− 1-tuple consisting of all the winding numbers.

Choose an orientation of the edges in a sequence of tinkertoys for a face. To

any gentle loop, associate the formal sum
∑

e edge in the loop

εe e where εe = 1 if the loop

traverses the edge in the direction it is oriented, and is −1 otherwise.

Definition III.100. We say that a gentle loop is proper if it does not traverse any

edges whose constant coordinate is uniquely determined by the βi, γj, or the improper

edges whose constant coordinate is one of the (ρ1
β)i = (ρ1

γ)i = 0. A nontrivial sum of

loops is a a formal sum of proper gentle loops such that replacing each loop by its

formal sum of edges produces a nonzero sum. The winding-tuple of a proper sum of

loops is the weighted sum of the winding-tuples for the individual loops.

Theorem III.101. The polytope F (αβγ) is 0-dimensional for points in the interior

of a face F if and only if the τ iF do not have a nontrivial sum of loops with zero

winding-tuple.

Proof. First, notice that if the sequence does contain a nontrivial sum of loops with

zero winding-tuple, then breathing all of the loops produces a new honeycomb corre-

sponding to the same point. We therefore have that if dim(F (αβγ)) is 0-dimensional

then τ iF does not contain such a sum.

Next, suppose that there is no nontrivial sum of loops with zero winding-tuple.

Assign weights to the edges of the τ iF as follows. First, assign the infinite edges whose

constant coordinates are the βi and γi a weight of 0, and the improper southern

infinite edges of τ 1
F a weight of 0. Progressively go through and assign weights to the

edges using the following rules:

• If three edges with distinct constant coordinates meet at a vertex and two of
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them are weighted, then assign the unweighted edge a weight equal to minus

the sum of the other two edges.

• If an edge shares a vertex with a weighted edge which has the same constant

coordinate, then assign it the weight of this weighted edge.

This labeling was done so that every edge which has been assigned a weight of 0

has its constant coordinate uniquely determined by β, γ, and the improper edges.

Next, pick any unweighted infinite edge and assign it a value of p1. Continue to

assign weights using the same rule until every edge that can be labeled has been.

Again pick any unweighted infinite edge, assign it a weight of p2, and then assign all

possible weights. Continue this until all of the infinite edges have been assigned a

weight.

Suppose that there is an edge which has not been assigned a weight. If it shares a

vertex with an edge with the same constant coordinate, then that edge must also be

unweighted. Otherwise, it must share a vertex with edges which have the other two

coordinate constants. These two edges cannot both be weighted. This means that

we can find a gentle loop only using unweighted edges since we can always leave a

vertex a path has entered. This gentle loop cannot use any infinite edges so it will

have 0 winding-tuple, contradicting our assumption. We therefore have that every

edge has been assigned a weight.

Any honeycomb for the τ iF tinkertoys is uniquely determined by the values of β, γ

and the constant coordinates of the infinite edges which were the first to be assigned

each of the pi. To see this, notice that if we set each pi to be equal to a number and

make the constant coordinate of the infinite edge first assigned pi to be this number,

then the value of the constant coordinate of any edge will have to equal to its weight

plus a linear function in the entries of β and γ. If we can show that each of the
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pi is uniquely determined by the αi, then we will have that there can be only one

honeycomb corresponding to the triple αβγ (i.e. F (αβγ) will be 0-dimensional for

any point in F ).

To do this, construct gentle loops in the tinkertoys as follows. Pick any edge and

choose one of the pi occurring with nonzero coefficient in its weight. Construct a

path by orienting this edge and at the endpoint of the edge either going straight

or turning 60◦ to an edge whose pi coefficient has the opposite sign of the current

edge. Repeat this at each vertex until the path repeats an edge, producing a loop C.

Modify the edge weights by subtracting ±pi for each of the edges in the loop, where

the sign is determined by the sign of pi on the edge. Continue to do this until every

edge has weight 0. Consider the vector

(3.25)
∑
C

pC · winding-tuple(C)

where pC = pi if pi is the value used to produce C. This vector can be expressed

as a matrix, say M , times the vector (p1, p2, · · · ). This matrix M must have trivial

kernel by our assumption, and hence is invertible. Choose values for the pi and for

each i set the constant coordinate of the first edge assigned pi to be equal to this

value for pi. The ith entry in the sum (3.25) is equal to the total contribution to αi

of the southwestern edges of τ iG which are in the loops. Hence αi is equal to the ith

entry of this sum plus a constant depending on the entries of β and γ. This produces

a linear system that can be used to solve for the values of p1, p2, · · · in order for the

sequence of honeycombs to be for the point (α, β, γ). Since M is invertible, we have

that the values of the pi are uniquely determined by the point (α, β, γ), so the entire

chain of honeycombs is uniquely determined by (α, β, γ).

Remark III.102. The proof of Theorem III.101 also tells us how to determine the
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dimension of F (αβγ) for the points in the interior of a face. It is the number of

‘independent’ loops in the interior of each puzzle plus the dimension of the kernel

of the matrix M obtained from (3.25). Both of these depend only on the structure

of the irreducible tinkertoys and how they are connected, which is entirely encoded

in the graph G(F ) (Definition III.82), which in turn can be constructed only using

the inequality for the face. Hence, it is possible to determine the dimension of a

regular face just from the inequality for the face (the formula is fairly messy due to

the impact of the improper edges), though G(F ) does not directly translate over to

non regular faces.

We can produce the sequence of tinkertoys for a regular face using the chain of

puzzles for the face. Every face of F (αβγ) is the intersection of a regular face with

some chamber faces. We can therefore produce the sequence tinkertoys for any face

by taking the sequence for the regular face and then introducing the degeneracies

forced by the chamber inequalities for which it has equality.

Remark III.103. This provides us with a recipe for producing faces of F̄a,l for which

F (αβγ) is 0-dimensional:

• Find a puzzle chain for a regular face.

• Produce the sequence of tinkertoys using the puzzle chain.

• Introduce chamber equalities until there is no nontrivial sum of loops with 0

winding-tuple.

We therefore know how to produce all of the triples for which F (αβγ) is 0-

dimensional.

We will finish this chapter by doing an example of this procedure.



140

Figure 3.37: Puzzle and tinkertoy for a face of F̄2,5.

Example III.104. Consider the puzzle of Figure 3.37 for the face of F̄2,5 given by

the inequality β1 + β2 − γ1 − γ4 − γ5 ≤ 0.

The tinkertoy for this face (the bottom diagram in Figure 3.37) has two irreducible

tinkertoys, one isomorphic to τ3,2 (the dotted irreducible tinkertoy which corresponds

to the 0 labels of the puzzle) and the other isomorphic to τ2,3 (the solid irreducible

tinkertoy which corresponds to the 1 labels of the puzzle). The tinkertoy has one

pair of improper infinite edge, namely the edges whose constant coordinates are
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(ρ1
β)5 = (ρ1

γ)5 = 0. There are 8 ‘independent’ proper loops in the tinkertoy, 2 in each

irreducible tinkertoy only using interior edges and 2 in each irreducible tinkertoy

with winding number 1, hence the dimension of F (αβγ) for the points in the interior

of this face is 7 (there are 4 interior loops and the kernel of the matrix M obtained

from (3.25) has dimension 3 since all the winding numbers are the same).

Consider the subface given by enforcing the chamber equalities β1 = β2 = β3. It

is easiest to see how this effects the tinkertoy by working with the dual graph. Start

with the puzzle (the dual graph to the tinkertoy for the face) and merge the edges

corresponding to β1 and β2 into one. Propagate this through the graph using the

following rules:

• Once two edges have been merged, remove any remaining edges incident to the

vertex where the two merged edges meet.

• Whenever a vertex has a 180◦ angle between consecutive incident edges, merge

the two edges forming this angle.

• Remove any vertex and its incident edges if the vertex has 3 or more consecutive

incident edges removed.

While doing this, two edges being merged means that the corresponding edges in the

tinkertoy have merged to the same edge. Whenever this happens, the other edges of

the hexagon corresponding to the point must become degenerate and length 0. Any

removed edges will correspond to edges in the honeycomb which are degenerate.

The result of doing this for our example are the dual graph and tinkertoy of Figure

3.38.

There are now 2 proper interior gentle loops and 3 proper gentle loops with wind-

ing number 0 (there are no longer 4 since (ρ1
β)1 = (ρ1

γ)1 is now forced to be equal to
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Figure 3.38: Dual graph and tinkertoy for the puzzle from Figure 3.37 after the chamber equalities
β1 = β2 = β3 have been enforced.

β1). Hence the dimension of F (αβγ) for this subface is 4. We can remove the top

interior gentle loop by forcing γ5 = 0. In terms of the dual graph to the tinkertoy,

enforcing this chamber equality behaves differently than the other. Take the north-

west most path between the boundary edge with constant coordinate (ρ1
γ)5 and the

boundary edge with constant coordinate γ5. For each edge along this path which is

not in the same direction as the two end edges, remove the corresponding edge in

the dual graph (see Figure 3.39). This corresponds to forcing all of the edges to have

0 length, so the resulting honeycomb will have a straight line between the two edges

(see Figure 3.40).

Finally, enforce γ2 = γ3 and γ4 = γ5 (see Figure 3.41). The bold loop in the

figure is the only proper gentle loop, and it has winding number 1. Hence, the

points produced as configurations of this tinkertoy will have F (αβγ) which are 0-

dimensional. We therefore have that points in the face

F̄2,5 ∩ {β1 + β2 − γ1 − γ4 − γ5 = 0} ∩ {β1 = β2 = β3} ∩ {γ2 = γ3} ∩ {γ4 = γ5 = 0}

will all have 0-dimensional F (αβγ).
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Figure 3.39: Dual graph for the puzzle from Fig-
ure 3.37 after the chamber equalities β1 = β2 =
β3 and γ5 = 0 have been enforced.

Figure 3.40: The effect forcing γ5 = 0 has on
the northwest portion of the tinkertoy.

Figure 3.41: Dual graph and tinkertoy for the puzzle from Figure 3.37 after the chamber equalities
β1 = β2 = β3, γ2 = γ3, and γ4 = γ5 = 0 have been enforced.



CHAPTER IV

Weights of Plethysms

For the final chapter, we will be stepping away from Kronecker coefficients and

will instead look into plethysms. Our primary goal will be to find an algorithm which

can be used to find weights which are maximal in the dominance order. We will do

this by studying the weight polytope for these representations. As we shall see, in

general the weight polytope is not as well behaved as it is for other representations;

there can be integer points in the polytope which do not correspond to weights of

the representation. A side effect of this will be that the algorithm produced may not

find all of the maximal weights, though in the computations done so far this issue

has not arisen.

One particularly nice feature of the algorithm is that once it has been done for

one plethysm, that knowledge can be easily be translated to other plethysms. In this

way we will see that there is a generic shape for the weight polytope of plethysms,

and many of the weights which are maximal in the dominance order are determined

by this shape.

4.1 The weight polytope Wλ,µ

Consider a plethysm of schur functions (Definition I.34), say sλ[sµ]. We want to

construct a polytope by taking the convex hull of the weights of sλ[sµ]. To take this

144
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convex hull, we first need to restrict which weights are allowed so that we can embed

the weights into a finite dimensional space. To do this, fix a positive integer d and

restrict sλ[sµ] to just the weights whose lengths are at most d (i.e. we regard these

as weight vectors for representations of GLd). Throughout this chapter, d will be a

fixed positive integer and whenever we talk about weights we will mean only those

of length at most d. Embed the weights in Rd by appending 0’s to the end of them

as necessary.

Definition IV.1. Let Wλ,µ be the polytope formed by taking the convex hull of the

weights of the GLd representation whose character is the plethysm sλ[sµ]. We will

call this polytope the (d-dimensional) weight polytope of sλ[sµ].

Consider the faces of Wλ,µ. Every face is an intersection of the form

Wλ,µ ∩ {x : f(x) = max f(Wλ,µ)}

for some linear functional f : Rd → R.

Notation IV.2. For any f , we use Hf to denote the hyperplane

Hf := {x : f(x) = max f(Wλ,µ)},

and use Ff to denote the face Ff := Wλ,µ∩Hf . We will call Ff the face corresponding

to f .

To study the weights which are maximal in the dominance order, we can reduce to

looking at the intersection of Wλ,µ with the dominant chamber (x1 ≥ x2 ≥ · · · ≥ xd).

For any face Ff intersecting the dominant part of the polytope, the linear functional

f(x) = a1x1 + · · ·+ adxd corresponding to the face can be chosen so that

(4.1) a1 ≥ a2 ≥ · · · ≥ ad.
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Moreover, for faces which are entirely contained in the dominant chamber, f can be

chosen so that

(4.2) a1 > a2 > · · · > ad,

and it is these faces which we will be most interested in.

Definition IV.3. We say that a linear functional

f(x) = a1x1 + · · ·+ adxd

is dominant if its coefficients satisfy (4.2), and we say that the face Ff is a dominant

face.

Lemma IV.4. Every weight in a dominant face is maximal in the dominance order.

Proof. Suppose that f satisfies (4.2). Any weight w which is larger in the dominance

order than a point in Ff will have f(w) > f(Ff ) = max f(Wλ,µ) by (4.2). This is not

possible, so the weights inside the face must be maximal in the dominance order.

In order for a dominant weight to be maximal in the dominance order, adding

any of the vectors

(1,−1, 0, · · · , 0), (0, 1,−1, 0, · · · , 0), · · · , (0, · · · , 0, 1,−1)

to the weight must result in a point which is not a weight for the plethysm. The

dominant faces are precisely the faces for which all of these vectors point outside of

the polytope. This means that in order for a weight to be maximal in the dominance

order, it should be close to a dominant face to limit the possibility that there is a

weight in one of these directions. It is therefore natural to look for maximal points

‘near’ to the dominant faces. If we know that moving in any of these directions from

a weight produces a point on the other side of a dominant face, then that weight
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will be maximal. This property can be easily expressed in terms of dominant linear

functionals.

Definition IV.5. Let f(x) = a1x1 + · · ·+adxd be a dominant linear functional with

m = max (f(x) : x ∈ Wλ,µ). Define the index of f to be

Ind(f) = min(ai − ai+1).

We say that an integer point x is near to Ff if it satisfies f(x) > m− Ind(f).

Lemma IV.6. If x is a weight of sλ[sµ] that is near to a dominant face, then w is

maximal.

Proof. Any integer point larger than x in the dominance order will have f -value

larger than max(f(Wλ,µ)).

Remark IV.7. The notion of being near to a face depends on the linear functional

which was chosen to represent the face. A direct corollary of Theorem IV.9 will

be that if a point is near to a dominant face, then it is near to a dominant facet.

Facets are given by a unique linear functional (up to scaling), so in practice this

inconsistency will not be an issue.

Both Lemmas IV.4 and IV.6 are for maximal points whose maximality can be

detected just by knowing the weight polytope, and not knowing which integer points

in the polytope are actually weights. In general, the weight polytope will have

holes (integer points which are not weights) which can potentially result in maximal

weights which are not covered by these two cases. Empirically, however, Wλ,µ seems

to have no holes when λ is not too long (regardless of choice of d), and even when

there are holes it can still be the case that these are all the maximal weights (this is

covered in more detail in Section 4.5).
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Definition IV.8. The polytope Wλ,µ is saturated if all of the integer points in Wλ,µ

are weights of sλ[sµ].

When Wλ,µ is saturated, finding the maximal weights is equivalent to finding the

integer points in Wλ,µ which are maximal in the dominance order. The following

result tells us that the maximal integer points for Wλ,µ are precisely the points in or

near a dominant face, so when our polytope is saturated we now have conditions we

can use to determine all of the maximal weights.

Theorem IV.9. If an integer point is maximal in the dominance order among the

integer points of Wλ,µ, then it is near to a dominant facet.

The proof of this theorem will rely on the use of weight schemes and as such will

be postponed to the end of section 4.2.

4.2 Weight Schemes

We now have necessary (and sometimes sufficient) conditions for a weight of sλ[sµ]

to be maximal. Our next goal is then to find a way to construct the weights of sλ[sµ]

which are near to a dominant face. To do this, we will modify a typical combinatorial

model for producing weights of a plethysm. This modified scheme will more naturally

work with the dominant linear functionals.

Consider the tableau of tableaux model for the weights of sλ[sµ] (Remark I.35).

Let T1 < · · · < Tk be a linear ordering of the semistandard Young tableau of shape µ

using entries in {1. · · · , d}, and let ωi ∈ Zd be the content of Ti. For any semistandard

Young tableau S of shape λ whose entries are the Ti, let n(S, i) denote the number

of times Ti occurs as an entry in S.

Definition IV.10. For σ ∈ Rl, the permutohedron in Rl given by the point σ is the
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convex hull of all of the points formed by permuting the entries of σ. We will use Pσ

to denote this permutohedron.

Lemma IV.11. The weight polytope Wλ,µ is the image of Pλ under the linear map

n→
∑
i

niωi

(here λ is considered as a point in Rk, where k is the number of semistandard Young

tableau of shape µ). Moreover, this map sends integer points in Pλ to integer points

in Wλ,µ.

Proof. Summing up the contribution of each tableau of shape µ to the total weight,

we find that every weight of Wλ,µ occurs as a sum
∑

i n(S, i)ωi for some tableau S of

shape λ. A point n ∈ Zk will occur as the content of a semistandard Young tableau

S of shape λ if and only if it is contained in Pλ. This means that as long as an integer

point n ∈ Rk is inside of Pλ, there will be a semistandard Young tableau of shape λ

with content n(S, i) = ni. We therefore have that any weight of sλ[sµ] can be found

as a sum
∑

i niωi for some ni ∈ Pλ. Hence the map sends the integer points of Pλ to

the weights of Wλ,µ. Extending this to the entire polytopes, we obtain the desired

result.

When finding the image of a point in Pλ, we do not need to know which semis-

tandard Young tableau of µ each coordinate corresponds to, we only need to know

the content of the tableau. Each integer point in Pµ corresponds to an achievable

content for a semistandard Young tableau of shape µ using entries 1, · · · , d. At each

integer point α ∈ Pµ choose an ordering for the Kµ,α semistandard Young tableau of

µ of content α. We can represent a point x ∈ Pλ by assigning to each integer point

α ∈ Pµ a Kµ,α-tuple consisting of the coordinates of x corresponding to the tableaux

of µ with content α.
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Given such an assignment to the integer points of Pµ, the weight of sλ[sµ] of the

corresponding point in Pλ is just the sum

(4.3)
∑
α∈Pµ

|nα|α,

where nα is the tuple assigned to α and |nα| is the sum of the entries of nα. The

exact ordering of the tableaux at each integer point of Pµ has no effect on the sum

in (4.3), so we will not need to keep track of these orderings. This leads us to the

following construction for producing the weights of sλ[sµ].

Definition IV.12. Assign to each integer point α ∈ Pµ a Kµ,α-tuple of nonnegative

integers, subject to the condition that the point n = (nα) formed by taking the

concatenation of the tuples and then ordering the entries is dominated by λ. We call

such a construction a (sλ[sµ]) weight scheme and will denote it by (nα).

A (sλ[sµ]) permutahedron scheme is a weight scheme where we relax the assign-

ments so that the Kµ,α-tuples can consist of nonnegative real numbers.

The content of one of these schemes, (nα), is the sum (4.3).

Proposition IV.13. The weights of sλ[sµ] are the contents of the sλ[sµ] weight

schemes, and Wλ,µ is the set of contents of sλ[sµ] permutahedron schemes.

Proof. This follows from Lemma IV.11 since the weight schemes correspond to points

in Pλ, and the content of a weight scheme is precisely the image of the point under

the linear map.

Remark IV.14. These schemes allow us to reduce our study of Wλ,µ to working with

permutohedrons, which are a well studied class of polytopes.

The rest of this section will be devoted to looking at weight schemes for various

interesting types of points in Wλ,µ, followed by the proof of Theorem IV.9. The
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‘simplest’ weight schemes are those for the vertices of Wλ,µ, so we will begin with

them. The vertices of Wλ,µ are all weights by the definition of the polytope, so any

vertex will be given by a weight (and not permutohedron) scheme. The vertices are

the faces of the polytope which are given by a generic linear functional f ; i.e. the

set of vertices is the set of intersections Wλ,µ ∩ Hf for a sufficiently generic f . We

will choose our f so that it takes a distinct value on each of the integer points of Pµ.

This restriction enables us to use f to produce a linear order α1 >f · · · >f αk on the

integer points of Pµ.

Lemma IV.15. Let f be a generic linear functional with associated linear order

α1 >f · · · >f αk on the points of Pµ. Set ri :=
i−1∑
j=1

Kµ,αj to be the number of

semistandard Young tableaux of shape µ with content preceding αi in the linear or-

der given by f , and let (nα) be the weight scheme produced by assigning the tuple

(λri+1, · · · , λri+1
) to αi. Then the content of (nα) is the vertex of Wλ,µ corresponding

to f .

Proof. The vertex ofWλ,µ corresponding to f is the point ofWλ,µ which has maximum

f -value, and this (nα) is the permutahedron scheme with maximum possible f value

of its content.

Remark IV.16. Lemma IV.15 provides us with a simple recipe for producing vertices

of Wλ,µ. Obtain a linear ordering of the integer points of Pµ associated with a generic

linear functional. Assign the entries of λ, starting with λ1, to the integer points of

Pµ by first filling up the tuple for the maximum point of Pµ, then filling up the tuple

of the second largest point and so on until all the tuples have been filled with entries

of λ.

Note: Every vertex of Wλ,µ is a permutation of the coordinates of a vertex that
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is maximal in the dominance order, so we only need to find the weight schemes for

vertices given by dominant generic linear functionals in order to find all the vertices

of Wλ,µ.

These vertex weight schemes are simple enough that we can use them to pro-

duce a nice combinatorial rule for the multiplicity of the weight of the scheme. Let

M(a1, a2, · · · , al) be the multinomial coefficient which is equal to the number of

distinct ordered l-tuples that can be formed using each of a1, a2, · · · , al once.

Proposition IV.17. Let f be a generic linear functional, and let αi and ri be as in

Lemma IV.15. The multiplicity of the vertex corresponding to f is

(4.4)
k∏
i=1

M(λri+1, · · · , λri+1
).

Proof. The multiplicity of the weight is the number of tableaux of tableaux which

produce that weight. By Lemma IV.11, we know that the tableaux of tableaux

correspond to integer points in Pλ. There is only one weight scheme whose content

is the vertex weight, so we just need to count the number of points in Pλ which

produce this weight scheme.

Given an ordering S1, S2, · · · , Sk of the tableaux of shape µ, we obtain a point

in Pλ from a weight scheme by associating each Si with an entry in the tuple for

the point content(Si) in Pµ and then setting the ith coordinate of the point of Pλ

to be equal to this entry. Any choice of associating the Si with an entry in the

content(Si) tuple produces a point. Given such an assignment, we can produce

another assignment corresponding to the same point in Pλ by taking two tableaux Si

and Sj with the same content which are also associated with tuple entries with the

same value, and swapping which entry they correspond to. Any two assignments will

produce the same point in Pλ if and only if they are linked by a chain of such swaps.
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Hence, for the point αi in Pµ which is assigned the tuple (λli+1, · · · , λli+1
), there are

M(λli+1, · · · , λli+1
) ways to associate the entries of this tuple to tableaux of µ and

obtain a different point in Pλ. The number of points of Pµ which can be produced

using these assignments is then the product of these multinomial coefficients.

Next, we can use similar reasoning to find a description for the weight schemes

producing points on the boundary of Wλ,µ. Let f be any linear functional. We can

no longer choose f so that it gives a linear order on the points of Pµ. Instead, we

produce a partial order on the points of Pµ by saying two points are incomparable

if the have the same f -value and ordering them by f -value otherwise. The maximal

antichains of this partial order are the hyperplane sections f−1(m) ∩Wλ,µ, where m

can be any integer, and therefore can be viewed as level sets of f . For any two of

these level sets, all the points in one of the level sets will be larger than all of the

points the other level set, so f gives a linear ordering on these level sets.

Lemma IV.18. Let f be any linear functional, and let I1 >f I2 >f · · · >f Il be

the total ordering of the level sets. For i = 1, · · · , l, set si :=
∑
j<i

∑
α∈Ij

Kµ,α to be the

number of tableaux whose content occur in level sets larger than Ii. A permutahedron

scheme (nα) will correspond to a point in Ff if and only if

(4.5)
∑
α∈Ii

|nα| =
si+1∑

j=si+1

λj.

Proof. A point will be in Ff if and only if it has the maximum f value amongst

points in Wλ,µ. The points in I1 have the largest associated f -value, so for a point to

be in Ff it must have the largest possible sum of the tuple for points in I1. Subject

to maximizing I1, we next want to maximize the sum of the values in the tuples

for I1 ∪ I2, and so on. These sums are maximized precisely when (4.5) holds for

i = 1, 2, · · · .
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Definition IV.19. By equation (4.5), in order to check if the entire assignment is

dominated by λ (so that it is a permutahedron scheme), it is sufficient to check if

on each level set Ii the collection of order tuples is dominated by (λsi+1, · · · , λsi+1
)

since these are the primitive factors (see Definition II.39) of the pair ((nα), λ). For

this reason, we will call λsi+1, · · · , λsi+1
the entries of λ corresponding to Ii.

Remark IV.20. For i = 1, 2, · · · , let Fi be the polytope which is the set of all possible

contents for Ii:

Fi =

{∑
α∈Ii

|nα|α : n = (nα) is dominated by (λsi+1, · · · , λsi+1
)

}
.

A direct consequence of only having to check the dominance order using each level

set and the entries of λ corresponding to it is that the face Ff is the Minkowski sum

of these polytopes: i.e. Ff = F1 + F2 + · · · .

When working with these permutahedron schemes for boundary points of Wλ,µ,

there are two types of level sets.

Definition IV.21. A level set is inactive if the associated entries of λ are all equal

(λsi+1 = · · · = λsi+1
). A level set is active if the associated entries of λ are not all

equal.

The inactive level sets are so called since there is only one choice for how to fill

their tuples in a permutahedron scheme: every entry of the tuples must be the value

that the entries of λ are all equal to (hence Fi is a single point). The shape and

dimension of a face Ff is therefore entirely determined by the active level sets. If

one of the active level sets has codimension 1, then Ff will be a facet of Wλ,µ.

Note: If Ii consists of a single point then Fi will be a single point, so active level

sets have to have at least 2 points in order to contribute to the shape of Ff .
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Next, we want to take a look at weight schemes for our final type of maximal

weights: those near to a dominant face. From Lemma IV.6, we have that a weight

is maximal if there is a dominant linear functional f such that the f value of the

weight is within Ind(f) of max(f(Wλ,µ)). Fixing f , we are interested in the weight

schemes whose f values are within Ind(f) of the weight schemes of the face Ff .

Definition IV.22. The depth of a weight scheme (nα) with respect to f is how far

below the maximum the f value of the content of the scheme is: i.e.

Depf ((nα)) := max(f(Wλ,µ))− f(content(nα)).

Definition IV.23. Let I1 >f I2 >f · · · be the ordering of the level sets. A trade on

a weight scheme is when an entry in a tuple for a point in Ii is reduced by 1 while a

tuple for a point in Ii+1 is increased by 1. Performing a trade will increase the depth

of the weight scheme by f(Ii)− f(Ii+1).

Lemma IV.24. A weight scheme will be near to Ff if and only if it can be obtained

from a weight scheme for Ff using a sequence of trades whose total depth is at most

Ind(f),

Proof. A weight will be near to Ff if and only if its depth is less than Ind(f), so

a weight scheme will be near to Ff if it can be obtained from such a sequence of

trades.

Next, suppose that a weight scheme corresponds to a point near to Ff . We will

show that it can be produced in this manner using induction on the depth of the

scheme. If the depth is 0, then the weight this corresponds to is in Ff then we are

done. Assume that it the weight is not in Ff . There must be a level set Ii such that

the total amount assigned to the tuples for points in this set is less than the sum of

its associated λ terms. Choose i so that Ii is the first level set with this property.
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We can perform the reverse of the trade construction to add 1 to the smallest entry

occurring in a tuple for a point in Ii while removing 1 from any tuple of a point in

Ii+1. The resulting assignment will still be dominated by λ and so it will still be a

weight scheme. Doing this reduces the depth, so by induction the resulting weight

scheme can be obtained using a sequence of trades, and hence so can the original

weight scheme.

We will conclude our study of weight schemes by looking at the weight schemes

for λ = (1n). We will do this since the weight schemes for these λ are in a sense the

most basic weight schemes and, as we shall see, maximal weight schemes in this case

can be used as a foundation to find maximal weight schemes for any general λ. If

λ = 1n, then in any weight scheme all of the entries in the tuples are either 0 or 1,

so we can reconstruct the tuple just using the number of nonzero entries it has. This

enables us to not have to keep track of the tuples at all; at each point of Pµ we only

need to keep track of the number of 1’s assigned to it.

Definition IV.25. A reduced weight scheme (for en[sµ]) is an assignment (mα),

where each point α ∈ Pµ is assigned a nonnegative integer mα less than or equal to

Kµ,α. Similarly, a reduced permutahedron scheme (for en[sµ]) is an assignment (mα)

where each point α ∈ Pµ is assigned a nonnegative number less than or equal to

Kµ,α. For reduced schemes, the content of the scheme is

∑
α

mαα.

Lemma IV.26. The weights of en[sµ] are the contents of the en[sµ] weight schemes,

and W1n,µ is the set of contents of en[sµ] permutahedron schemes.

Remark IV.27. Several of our results about weight schemes have simpler descriptions

in the λ = 1n case.
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• Reduced weight schemes for vertices consist of every point being assigned either

Kµ,α or 0, except possibly one point. Using the notation of Lemma IV.15, if

ri < n < ri+1 then αi will be assigned both λn = 1 and λn+1 = 0, so it will

be assigned a value less than Kµ,α, while every point after αi will be assigned 0

and every point before αi will be assigned the Kostka number.

• In equation (4.4), the multinomial coefficient for every point but αi will be equal

to 1 while the multinomial coefficient for αi is the binomial coefficient
(
Kµ,αi
mαi

)
.

We therefore have that the multiplicity of a vertex is
(
Kµ,αi
mαi

)
, where i is such

that ri ≤ n < ri+1.

• There is at most one active level set for weight schemes for points in a face of

W1n,µ, namely the one containing αi may be active. This means that Ff is a

translation of Fi, and so the dimension of Ff is the dimension of Ii.

Note: If we replace (1n) by any rectangle (mn), then these results all still hold

true except that now integers assigned in the reduced weight schemes have to be less

than or equal to m ·Kµ,α.

We will conclude this section by using weight schemes to prove Theorem IV.9

Proof of Theorem IV.9. Consider the image of Wλ,µ under the linear map Rd → Rd−1

defined by

x 7→ (x1, x1 + x2, x1 + x2 + x3, · · · , x1 + · · ·+ xd−1).

This maps the integer points of Wλ,µ injectively to Zd−1. An integer point of Wλ,µ is

maximal in the dominance order if and only if its image is maximal under compo-

nentwise comparison (i.e. x ≤ y if xi ≤ yi for i = 1, · · · , d− 1). If y is in the image

of Wλ,µ under the map, then y is maximal under component wise comparison if and

only if y + e1, · · · , y + ed−1 are not in the image of Wλ,µ where e1, · · · , ed−1 is the
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standard basis. In the image, a linear functional f(y) = a1y1 + · · ·+ ad−1yd−1 is now

dominant when the ai are all positive. For now on in this proof we will work in the

image of this map, so whenever we talk about Wλ,µ or an integer point we will mean

the image of it under this map.

Let x be an integer point of Wλ,µ which is maximal in the dominance order. Then

the points x+e1, · · · , x+ed−1 must all be outside of Wλ,µ. Consider the simplex with

vertices x, x+ e1, x+ e2, · · · , x+ ed−1. Let F1, F2, · · · , Fl be the facets of Wλ,µ which

intersect this simplex and let f1, · · · , fl be their respective linear functionals. These

facets must have common face which intersects ∆. For each of x+ e1, · · · , x+ ed−1,

there must be an Fi such that the hyperplane containing Fi separates the point from

Wλ,µ. The theorem is a corollary of the following lemma about the behavior of these

facets:

Lemma IV.28. If there are i 6= j and a 6= b such that fa(ei−ej) > 0 and fb(ei−ej) <

0 then x is in the boundary of Wλ,µ.

Before proving the lemma, let us show why it is sufficient. Suppose the lemma

holds. Let Fa be the facet whose hyperplane separates the largest number of x +

e1, · · · , x + ed−1 from x. If the hyperplane separates all of these points from x then

x is near to this facet. So suppose that there is an i such that x + ei is on the

same side of the hyperplane as x. There must be a facet Fb which separates x + ei

from x. Fb cannot separate more points from x than Fa, so there must be a j

such that Fa separates x + ej from x while Fb does not. Going in the direction

(x+ ei)− (x+ ej) = ei − ej from Fa will cause you to leave Wλ,µ, so fa(ei − ej) > 0.

Similarly, we have that fb(ei− ej) < 0, but then by the lemma this is only possible if

x is in the boundary of Wλ,µ. We therefore have that every dominant point is either
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in the boundary of Wλ,µ or is near to a facet, and only the dominant facets can have

dominant weights near to them and not be in the facet.

All that is left to do now is to prove the lemma.

Proof of Lemma IV.28. Without loss of generality, i = 1, j = 2, a = 1, and b = 2.

Let F be a face in the intersection F1 ∩ F2 and consider the weight schemes for F .

The level sets from F1 and F2 are unions of the level sets of F , and the λ entries

assigned to the level sets for F must be compatible with both of the orderings given

by the fi on the level sets. This face F cannot be a vertex since it is inside the

simplex which has no interior points, so F must have an active level set. Let I be

an active level set for F .

Suppose there is a level set J such that (e1 − e2) ∈ I − J (i.e. there is a point in

J which differs from a point in I by (e1 − e2)). Then f1(J) > f1(I), so J must be

assigned entries of λ which are at least as large as the entries for I, but f2(J) < f2(I)

so it must be assigned entries of λ which are no larger than the entries for I. Since

I is active, it is assigned at least 2 distinct values in λ, so this is not possible. Hence

there can be no points in the direction (e1 − e2) from I. The same reasoning also

gives us that there can be no point in the (e2−e1) direction for I. We therefore have

that I can have no points in Pµ that are in either of the ±(e1− e2) directions, which

is only possible if I is in one of the two faces of Pµ which is the intersection of facets

given by g1(y) = y1 and g2(y) = y2 (= x1 + x2 before the transformation done at the

beginning).

The same reasoning also gives us that if I is any inactive level set containing a

nonzero entry, then any inactive level set in either of the ±(e1 − e2) directions must

have its tuples assigned the same value as those of I. This means that the assignment
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Figure 4.1: The possibilities for the image of Wλ,µ under the map.

of λ values is consistent with the order given by the linear functional g(y) = y1 + y2.

We therefore have that F1∩F2 must be contained in the face of Wλ,µ given by g. This

g does not depend on y3, y4, · · · , so we can project Wλ,µ onto its first two coordinates

and F1 ∩ F2 will map to a face in the image. Since the face given by g intersects the

simplex, x + e1 and x + e2 are in the polytope if and only if they are in its image

under this projection.

The image of Wλ,µ is 2-dimensional so the image of g is either 1-dimensional or a

vertex. If it is one dimensional (the left diagram of Figure 4.1), then either x is in

the face or one of x + e1 or x + e2 must be in the face. If the face is a vertex (the

right diagram in Figure 4.1), then the cone at this vertex has to be larger than the

cone made by the linear functionals g1(y) = y1 and g2(y) = y2 since these are faces

of Wλ,µ. In which case, either x is the vertex or both x + e1 and x + e2 must be in

Wλ,µ. In either case, we must have that x is in the face since x+e1 and x+e2 cannot

be in the polytope.

4.3 Finding dominant vertices of Wλ,µ

Our goal for this section will be to produce an algorithm that can be used to find

the vertices of Wλ,µ. In doing so we will also see how to find the inequalities for faces

containing any given vertex, so we can also use the algorithm to find the defining

inequalities for Wλ,µ. We will do this by showing how to systematically build up



161

the weight schemes for the vertices. We will first do this for the case when λ is a

rectangle (mn) to take advantage of the reduced weight schemes, and we will then

proceed to show how to modify the algorithm to find the vertices for any λ.

Suppose λ = (mn) is a rectangle. Fix a dominant vertex v of Wmn,µ, and let f be

a linear functional producing v. Consider the weight scheme producing v given by

this f . In order to specify the weight scheme we only need to keep track of which

integer points of Pµ have been assigned nonzero values along with which point λn is

assigned to.

Notation IV.29. Let X(v) be the set of integer points of Pµ which are assigned

nonzero integers in the weight scheme for v.

The integer point with λn will necessarily be the smallest point in X(v) under the

ordering given by f . This set X(v) is separated from the rest of the points in Pµ by a

hyperplane, namely a hyperplane of the form f(x) = c. Since v is a dominant vertex,

X(v) must also be an order filter for the dominance order on Pµ (i.e. X is closed

under increasing in the dominance order). In fact, these conditions are sufficient for

a set X to arise from a vertex.

Lemma IV.30. If X is an order filter of the integer points of Pµ (using the domi-

nance order) such that X and its complement can be separated by a hyperplane, then

there exists an n such that X = X(v) for a vertex v of Wmn,µ.

Proof. Suppose X is such a order filter. Let f be any generic linear functional such

that {f(x) = c} is a hyperplane separating X from X c for some c. Let α̃ be the

minimum of X under the linear ordering <f . Then as long as n satisfies∑
α∈X−{α̃}

Kµ,α < n ≤
∑
α∈X

Kµ,α

we will have X = X(v) where v is the vertex of Wmn,µ corresponding to f .
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Given an order filter, we can reduce the question of whether there is a hyperplane

separating it from its complement to a question of whether or not a polyhedral cone

is full dimensional.

Notation IV.31. To any order filter X of the points in Pµ, we associate a cone

C(X) ∈ Rd+1 given by the inequalities:

x1a1 + · · ·+ xdad − c ≥ 0, x ∈ V,

x1a1 + · · ·+ x1ad − c ≤ 0, x ∈ V c.

Note: For these inequalities a1, · · · , ad and c are the indeterminates.

Lemma IV.32. Given an order filter X, there is a hyperplane separating X and its

complement if and only C(X) is full dimensional.

Proof. Any hyperplane a1x1+· · ·+adxd = c will separate X and its complement with

X on its ‘positive’ side if and only if a1x1+· · · adxd > c for all points (x1, · · · , xd) ∈ X

and a1x1 + · · · + adxd < c for all points (x1, · · · , xd) ∈ X c. Any (a1, · · · , ad, c) will

satisfy these inequalities if and only if it is in the interior of C(X).

Remark IV.33. We can reduce the number of inequalities by using the fact that X

is an order filter and v is dominant. Since v is dominant, we can choose the linear

functional producing v to be dominant, i.e. ai > ai+1. We can obtain any of the

inequalities for x ∈ V by adding positive multiples of ai ≥ ai+1 to the inequality for

a point in min(V ) = {minimal points of V under the dominance order}. Similarly,

we can obtain any of the inequalities for x ∈ V c from the inequalities for points in
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max(V c). We can therefore reduce our set of inequalities to

x1a1 + · · ·+ xdad − c ≥ 0, x ∈ min(X)

x1a1 + · · ·+ x1ad − c ≤ 0, x ∈ max(X c)

ai − ai+1 ≥ 0, i = 1..d

Remark IV.34. Observe that these order filters can be built up one vertex at a time.

Suppose X = X(v) is the order filter for a vertex given by the linear functional f .

Let x1 >f x2 >f · · · >f xn be the ordering of the points of X, and for i = 1 · · ·n,

let Xi = {x1, · · · , xi}. Then Xi is the order filter for the vertex given by f for λ of

length
i−1∑
j=1

Kµ,xj < l(λ) ≤
i∑

j=1

Kµ,xj . This means that we have a sequence of order

filters X1 ⊂ X2 ⊂ Xn = X such that each of the order filters is the filter for a vertex

of Wλ,µ for some λ. We therefore can build up these order filters recursively and be

certain that we have reached all of them.

Putting these observations together provides us with a natural algorithm for find-

ing these vertex order filters for Pµ. We will do this by building up all the order filters

from the unique filter containing a single point, keeping track of the sets min(X) and

max(X c) as we do this. The algorithm is then:

• Start out with X = {µ}, the order filter consisting of the maximal point of Pµ.

• Given a vertex filter X, produce all the vertex filters of size one larger which

contain X:

– Look at the filter X ′ = X ∪ {x} for each point x ∈ max(Cc).

– Produce min(X ′) by adding x to min(X) and then removing any points

which are larger than x.
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– Produce max(X ′c) by removing x from max(X c) and then adding the points

of Pµ covered by x which are not below any of the points in max(X c).

– Use min(X ′) and max(X ′c) to check if C(X ′) is full dimensional. If it is

then X ′ is an order filter containing one more point than X, otherwise X ′

is not an order filter and can be discarded.

Remark IV.35. By being a little bit more careful, we can reduce the number of

points in max(X c) for which we need to check C(X ′). Suppose x1, · · · , xk is an

arithmetic sequence in max(X c) with difference ∆x. If x1 −∆x ∈ X then we must

have f(∆x) < 0 for any linear functional separating X and X c. This in turn means

that f(x1) > f(x2) > · · · > f(xk), so x1 will be added to the filter before any of

x2, · · · , xk. Similarly, if x1 −∆x is in X c −max(X c) then we must have f(∆x) > 0,

so xk will be added to the filter before any of x1, · · · , xk−1. Even if we have neither

of these conditions on x1 − ∆x, we still know that f(∆x) has to be nonzero, and

depending on its sign that means that either x1 or xk has to be added next to filter

and not x2, · · · , xk−1. Therefore, if we keep track of the lines in max(X c), we can

eliminate the need to check C(X ′) for any point in the interior of a line or at an

endpoint which is guaranteed to have smaller f value.

Note: In order to use these order filters to find the vertices for λ a rectangle, we

also need to keep track of what the smallest point in the filter was with respect to

the linear functional. This smallest point is simply the last point that was added to

the filter, so the algorithm can be used to exactly produce the vertices of Wmn,µ.

Next, we’ll take a closer look at these cones C(X) we used to determine if a filter

corresponds to a vertex. These cones contain more information about the vertex

with that filter; they can be used to determine the inequalities for the faces of Wmn,µ

which contain the vertex. Suppose v is a vertex of Wmn,µ. There are two possibilities
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depending on the level sets of the reduced weight scheme for v. From Remark

IV.27, we know that there is at most one point of X(v) which is not assigned the

maximum possible value in the reduced weight scheme for v. Let α(v) denote this

point provided it exists. Recall that each ray R · (a1, · · · , ad, c) ∈ C(X) corresponds

to a hyperplane a1x1 + · · · + adx + d = x. Let H1, H2, · · · be the hyperplanes

corresponding to the extremal rays of the cone C(X(v)).

Lemma IV.36. Suppose v is a dominant vertex of Wmn,µ. If α(v) exists, then

the facets of Wmn,µ containing v are precisely the intersections Hi ∩Wmn,µ for Hi

containing α(v). If α(v) does not exist, then the facets of Wmn,µ containing v are

precisely the intersections Hi ∩Wmn,µ for Hi containing at least one point from each

of min(X) and max(X c).

Proof. First, consider the case when α(v) exists. Suppose that Hi contains α(v). Let

f be a linear functional producing Hi. Then Hi ∩ Pµ will be a level set for f . Since

this level set contains α(v), it is the unique active level set from Remark IV.27. This

level set has codimension 1, so the face corresponding to f (i.e. Hi ∩Wmn,µ) is a

facet.

Now let f be a linear functional corresponding to a facet of Wmn,µ containing v.

From Remark IV.27, there is a single active level set for the reduced weight scheme

producing v, and it must contain α(v) and have codimension 1. This means that the

active level set is the intersection of Wmn,µ with a hyperplane of the form f(x) = c.

Let H be this hyperplane. This hyperplane must weakly separate X and X c (i.e. it

separates X\H and X c\H) so it will correspond to a ray in C(X). The extremal

rays of C(X) are precisely the hyperplanes which have codimension 1, so the ray

corresponding to H will be an extremal ray.

We therefore have that if α(v) exists, then H ∩ Wλ,µ will be a facet of Wmn,µ
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containing v if and only H = Hi for some i.

Finally, when there is no α(v), the only difference is that now, the active inde-

pendent will be the set containing points in both X and X c. Applying the same

reasoning provides the desired result.

We will finish off this section by showing how to generalize this algorithm to any

λ, not just rectangles. We can still work with these order filters for any λ. Now the

order filters are for all the points in Pµ that are assigned a nonzero entry in their

tuples. We still get the same conditions (Lemma IV.32) for an order filter to occur

as X(v) for some vertex v of Wλ,µ. Hence, the set of vertex order filters for any λ

of length n is the same as the set of vertex order filters for the rectangle case. The

difference is that we need to know more information to reconstruct the vertex this

is the order filter for. We need the additional information of the full ordering on

the points of X in order to reproduce the vertex from X. It is possible modify our

algorithm so that it keeps track of the full ordering while it is building up the order

filter. To do this, we now need to keep track of the order in which the points of X

were added to X. Now, when we are checking for which points in max(X c) we can

add to X, we also need to make sure that the point is compatible with the ordering

we have on X. This means that before adding x′ ∈ max(X c) we need to check that

there is a linear functional producing our ordering on the points of X ∪ {x′}. As

before, checking for this can be reduced to checking if a cone has a nonempty interior.

Notation IV.37. Suppose x1 � x2 � · · · � xl is a linear extension of the dominance

order on the points of an order filter X. Define a cone C(X,�) by letting it be the
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cone defined by the inequalities:

(xi,1 − xi+1,1)a1 + · · ·+ (xi,d − xi+1,d)ad ≥ 0, i = 1 · · · , l − 1

y1a1 + · · ·+ ydad − c ≥ 0, y ∈ min(X)

y1a1 + · · ·+ y1ad − c ≤ 0, y ∈ max(X c)

ai − ai+1 ≥ 0, i = 1..d

Lemma IV.38. Let x1 � x2 � · · · � xl be a linear extension of the dominance order

on the points of an order filter X. There is a linear functional f corresponding to

a vertex v of Wλ,µ with X(v) = X and >f coinciding with � on X if and only if

C(X,�) is full dimensional.

Proof. A linear functional f(y) = a1y1 + · · · + adyd will be compatible with this

ordering if and only if f(xi−xi+1) > 0 for i = 1, · · · , l−1. Putting these inequalities

together with the inequalities for C(X), we obtain C(X,�).

Remark IV.39. The new algorithm is nearly the same as the original. The only

differences being that we need to keep track of the order the points were added in,

and then use this information to test if C(X ′,�) is full dimensional instead of C(X).

Now that we have modified the algorithm to work for any λ, our next question is

if we can find the facets containing a given vertex as in the rectangle case. We will

again be able to obtain these facets as rays of a cone, but the cone will be a modified

version of C(X,�).

Notation IV.40. Let x1 � x2 � · · · � xl be a linear extension of the dominance

order on the points of an order filter X. We let C(X,�, λ) denote the cone given by
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the set of inequalities:

(xi,1 − xi+1,1)a1 + · · ·+ (xi,d − xi+1,d)ad ≥ 0, whenever λi > λi+1

y1a1 + · · ·+ ydad − c ≥ 0, y ∈ min(X)

y1a1 + · · ·+ y1ad − c ≤ 0; y ∈ max(X c)

ai − ai+1 ≥ 0, i = 1..d

We again have that the rays of C(X,�, λ) correspond to hyperplanes. Let

H1, H2, · · · be the hyperplanes corresponding to the extremal rays of the cone

C(X,�, λ).

Lemma IV.41. Let v be a dominant vertex of of Wλ,µ, and let � be the linear order

on the points of X(v) obtained from a linear functional f corresponding to v (i.e. let

� be >f). The facets of Wλ,µ containing v are precisely the intersections Hi ∩Wλ,µ.

Proof. Notice that a linear functional will correspond to v if the full order on the

points of X is a linear extension of the order on the points obtained by ordering

them by the λ value assigned to each point. The lemma then follows using the same

reasoning as the proof of Lemma IV.36.

4.4 Relating Different Wλ,µ

One particularly pleasing property of the algorithm from section 4.3 is that λ

played only a minor role; the algorithm mostly depended on Pµ. The exact shape of

the Wλ,µ is mostly determined by the hyperplane sections of Pµ with λ only serving

to ‘scale’ the various faces of the polytope. This section will be devoted to the

implications of this property: we will start by looking at how the Wλ,µ are related

for different λ when µ is fixed and finish by looking at how they are related between

different µ.
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To start out with, fix a partition µ. From Lemma IV.41, the only information

we need from λ in order to produce the hyperplanes for the facets of Wλ,µ are the

positions with equal parts.

Definition IV.42. The descent set for a partition λ is the set des(λ) := {i : λi >

λi+1}.

Proposition IV.43. Let f1, · · · , fk be the complete list of linear functionals produc-

ing facets of Wλ,µ. If λ′ is a partition with des(λ′) ⊂ des(λ) then the facets of Wλ′,µ

will be given by a sublist of the f1, · · · , fk.

Proof. Let f be a linear functional producing a facet of Wλ′,µ. The permutohedron

schemes for the faces of Wλ,µ and Wλ′,µ have the same level sets. Every active level

set for Wλ′,µ will be an active set for Wλ,µ. By Remark IV.20, since the active level

sets for Wλ′,µ produce a face of codimension 1, the active level sets for Wλ,µ must

also produce a face of codimension 1.

Recall that the l-staircase partition is the partition δl = (l − 1, l − 2, · · · , 1)

(Definition I.7).

Corollary IV.44. Let f1, · · · , fk be the complete list of linear functionals producing

the facets of Wδl,µ. For any λ of length less than l the complete set of facets of Wλ,µ

will be given by a subset of f1, · · · , fk.

Corollary IV.45. Let f be a linear functional giving a facet of Wel,µ. If λ is a

partition of length l then f will also produce a facet of Wλ,µ.

We can apply the same reasoning to the vertices of Wλ,µ. From Lemma IV.38,

we know that in order to produce a vertex of Wλ,µ we need both an order filter X

and a linear extension � of the dominance order on the points in X. Both X and �



170

only depend on µ and not λ, so we can essentially find the vertices of Wλ,µ without

knowing λ.

Proposition IV.46. Let f1, · · · , fk be linear functionals producing all of the vertices

of Wλ,µ. If λ′ is a partition of the same length as λ with des(λ′) ⊂ des(λ) then each

vertex of Wλ′,µ will be given by one of the fi.

Proof. From Lemma IV.38 we get a vertex from each valid choice of order filter X

and linear extension �. Two distinct pairs (X,�) and (X ′,�′) will produce distinct

vertices of Wλ,µ unless X = X ′ and the points x1, x2 ∈ X with x1 � x2 and x2 �′ x1

are assigned the same value of λ. Since des(λ′) ⊂ des(λ), any two pairs (X,�) and

(X ′,�′) which produce the same vertex of Wλ′,µ will also produce the same vertex

in Wλ,µ.

Corollary IV.47. Let f1, · · · , fk be linear functionals producing all the vertices of

Wδl,µ. If λ is a partition of length at most l − 1, then each vertex of Wλ,µ will by

given by one of the fi.

Corollary IV.48. Let f be a linear functional giving a vertex of W1l,µ. If λ is

a partition of length l, then f will also produce a vertex of Wλ,µ. Moreover, if g

is another linear functional producing a different vertex of W1l,µ then f and g will

produce distinct vertices of Wλ,µ.

Remark IV.49. These propositions and corollaries tell us that for any µ there is a

fixed set of possible hyperplanes producing facets of the weight polytope Wλ,µ. The

only effect that λ has is that it will translate these hyperplanes forming the facets.

This means that for fixed µ, the various weight polytopes Wλ,µ are all related to each

other by ‘shifting’ their facets. In this sense, Wδl,µ has the ‘full’ polytope while W1l,µ

has the most ‘degenerate’ shape.
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Next, suppose that we no longer fix µ. Whether or not a linear functional cor-

responds to a facet is entirely determined by the level sets in its permutahedron

schemes. As long as we know that there are active level sets producing d − 2 de-

grees of freedom, then we can guarantee that the linear functional produces a facet,

regardless of the exact value µ. Given a linear functional f , as long as Pµ is ‘large

enough’ the active level sets will be codimension 1 and will produce a facet. This

means that as long as we know µ′ is larger than µ in some sense, then we can know

that all of the linear functionals corresponding to facets of Wδl,µ will also correspond

to facets of Wδl,µ′ .

Proposition IV.50. If f is a linear functional producing a facet in Wδl,µ, then for

any µ′ with |µ| = |µ′| and µ′ larger than µ in the dominance order there exists l′ such

that f produces of facet of Wδk,µ′ for any k ≥ l′.

Proof. Since f corresponds to a facet, the Minkowski sum of the level sets of Pµ

which are assigned nonzero tuples must have codimension 1. We know that Pµ ⊂ Pµ′

since µ′ dominates µ. This means that the level sets of Pµ will be subsets of the level

sets of µ′, so their Minkowski sum will also have codimension 1. The only obstacle

to f producing a facet of Wλ,µ′ is that we need λ long enough so that the points in

Pµ′ which are assigned nonzero tuples contains the set of points which are assigned

nonzero tuples for Pµ.

Proposition IV.51. If f is a linear functional producing a facet in Wδl,µ, then for

any µ′ with µi − µi+1 ≤ µ′i − µ′i+1 for i = 1, · · · , d − 1 there exists a l′ such that f

produces a facet of Wδk,µ′ for any l′ ≤ k ≤ number of integer points in Pµ.

Proof. In this case we can translate Pµ by µ′ − µ to have their dominant vertices

match up and Pµ + (µ′ − µ) ⊂ Pµ′ . The result now follows by the same reasoning as
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Proposition IV.50.

Remark IV.52. We can continue this reasoning even further. The polytope containing

Pµ does not have to itself be a permutohedron in order for this reasoning to apply.

Given a linear functional f , as long as we can guarantee that the intersection of one

of its hyperplane slices of Pµ has codimension 1, then f will produce a facet of Pµ

for λ of the proper length.

For any choice of µ, consider the following map fµ. Let p : Rd → Rd−1 be the

map

x 7→ (x1, x1 + x2, · · · , x1 + · · ·+ xd−1)

sending a point to its partial sums, let dµ : Rd−1 → Rd−1 be the translation x 7→

x− p(µ), and let fµ be the composition fµ = dµ ◦ p. The restriction of this map fµ

to Pµ is injective, maps Zd ∩ Pµ to Zd−1, maps µ to the origin, and maps Pµ to the

negative orthant Rd−1
− .

Under this map, a linear functional g(y) = b1y1 + · · · + bd−1yd−1 will produce

a dominant linear functional fµ ◦ g if and only if bi > 0 for i = 1, · · · , d − 1. If

g is such a dominant linear functional where {y : g(y) = c} ∩ Rd−1
− is (d − 2)-

dimensional, then as long as c/bi ≤ µi − µi+1 for i = 1, · · · , d − 1 this intersection

{y : g(y) = c} ∩ Rd−1
− will be contained in fµ(Pµ). This guarantees that fµ ◦ g will

produce a facet of Wλ,µ if the last nonzero entry of λ is assigned to a point in this

intersection {y : g(y) = c} ∩ Rd−1
− . We can therefore produce facets of various Wλ,µ

by using knowledge of hyerplane slices of the negative orthant Rd−1.

4.5 When is Wλ,µ saturated?

The algorithm from Section 4.3 produces all of the dominant vertices and facets

of Wλ,µ. Using the weight schemes for faces, once we know the facets of Wλ,µ we
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can produce all of the weights that are in or near to a dominant facet. If Wλ,µ is

saturated, then Theorem IV.9 tells us that we now have all of the weights of sλ[sµ]

that are maximal in the dominance order. The natural follow up question then is

when is Wλ,µ saturated? As a general guideline, holes (integer points that are not

weights) start occurring when the level sets in the boundary weight schemes stop

looking like generalized permutahedra and start forming less ‘nice’ shapes.

Example IV.53. One of the smallest examples of a non saturated weight polytope

that was found is W125,51 for d = 4. Let f be the linear functional

f(x1, x2, x3, x4) = 15x1 + 6x2 + 3x3.

Consider the reduced weight schemes for the face Ff of W125,51 corresponding to f .

Since µ = (5) is a single row, the Kostka number Kµ,α is 1 for each point α ∈ Pµ.

Hence in the reduced weight schemes for W125,51 , every point in P(5,0,0,0) will be

assigned a value of either 0 or 1. There are 23 points in P(5,0,0,0) with an f -value

larger than 30, so these points will all be assigned a value of 1 in the weight schemes

for Ff . This contributes (57, 27, 18, 13) to the contents of the weight schemes. The

active level set for this face is

I = P(5,0,0,0) ∩ {x : f(x) = 30} = {(0, 5, 0, 0), (1, 1, 3, 0), (1, 2, 1, 1), (2, 0, 0, 3)}.

To produce a weight scheme for Ff , we assign a value of 1 to the 23 points with

f -values larger than 30 and a value of 0 to the points with f -values smaller than 30,

and then assign two points in I a value of 1 and the other two points a value of 0.

The three weight schemes which have a value of 0 assigned to (1, 2, 1, 1) have contents

(60, 28, 21, 16), (59, 32, 18, 16), and (58, 33, 21, 13), so these three vectors are weights

of the plethysm e25[h5]. The point (59, 31, 20, 15) is in the convex hull of these three
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points (it is obtained by averaging the three points), so it is in the face Ff . There

are not two points in I which sum to (59, 31, 20, 15)− (57, 27, 18, 13) = (2, 4, 2, 2), so

there is no weight scheme of Ff with content equal to (59, 31, 20, 15). We therefore

have an integer point, (59, 31, 20, 15), which is in the polytope W125,51 but is not a

weight of e25[h5], so the weight polytope is not saturated in this case.

Remark IV.54. Even though W125,(5) is not saturated, all the maximal weights still

end up being near boundary dominant weights and are found by the algorithm. This

has been the case in all the non saturated Wλ,µ found so far.

When there are fewer dimensions or λ has a small length, then there aren’t as

many options for the hyperplane sections making up the level sets and Wλ,µ ends up

being saturated. Doing a case by case analysis of the possibilities for the level sets,

one can show that Wλ,µ is always saturated if d = 3 or l(λ) ≤ 4. The holes that

we have found for d = 4 all require that the points in the level sets have the same

multiplicity, so we conjecture that Wλ,µ is still saturated for d = 4 if λ is a strict

partition. The shortest λ where we found a hole is W123,51 for d ≥ 5, so it seems likely

that the actual upper bound on the length of λ for the weight polytope to always be

saturated is larger than 4.

From Section 4.4, we know that the shape of Wλ,µ is essentially determined by

µ. One can hope then that if we fix µ, then Wλ,µ being saturated for certain λ can

tell us about whether the polytope is saturated for more general λ. The ‘simplest’

weight polytopes are those with λ = 1l, and as we saw this is the easiest case to

describe the polytope. It would therefore be convenient if we could check saturation

just for the rectangle case and deduce it for more general λ.

Proposition IV.55. For fixed µ and m, there exists a k such that if W1l,µ is saturated

for all l < k then Wλ,µ is saturated for all λ with l(λ) ≤ m.
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Proof. Suppose f is a linear functional corresponding to a facet of Wλ,µ. Let h(f) be

the largest number of nonzero assignments which occur in a permutahedron scheme

for f . This h(f) is equal to

h(f) =

j∑
i=1

∑
α∈Ii

Kµ,α

where I1, I2, · · · is the ordered list of level sets for f and j is such that

j−1∑
i=1

∑
α∈Ii

Kµ,α < l(λ) ≤
j∑
i=1

∑
α∈Ii

Kµ,α.

We will show that the k in the statement of the proposition is k = h(f) + Ind(f).

Let λ be any partition with l(λ) ≤ m. To check that Wλ,µ is saturated, it suffices

to check that all its maximal near boundary integer points are weights. Let x be a

maximal near boundary integer point of Wλ,µ. Let (nα) be a permutahedron scheme

corresponding to x and let f be the linear functional corresponding to the facet x is

near to. Let (n′α) be the permutahedron scheme formed by replacing every value in

the tuples by its fractional part if it is non integer and by 1 if it is a positive integer.

Let l′ = |(n′α)| be the sum of all the entries of the assignment, and let y ∈ Rd be the

content of (n′α). Then l′ is an integer smaller than h(f) + Ind(f) by the definition

of h(f), and y is an integer point since it differs from x by subtracting away integer

values. Thus (n′α) is a permutahedron scheme for W1l′ ,µ, so y is an integer point in

W1l′ ,µ. Therefore y is a weight by our assumption, so it has a corresponding weight

scheme (p′α). If we let (pα) be the weight scheme formed by adding back everything

that was removed from nα to obtain n′α, i.e. pα = p′α +nα−n′α, then (pα) is a weight

scheme for Wλ,µ corresponding to a near boundary point x. We therefore have that

x is a weight for every near boundary point x of Wλ,µ, hence Wλ,µ is saturated. We

therefore have that the proposition holds for k = h(f) + Ind(f).
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