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ABSTRACT 
 

Men who have sex with men (MSM) are heavily affected by HIV infections. However, 

controlling HIV transmission among MSM population remains a challenging task due to the 

complexity of the transmission dynamics of HIV. Mathematical models can facilitate 

understanding such dynamics. They also provide a basis for estimating important 

epidemiological parameters that can guide public health decision.  This thesis advances methods 

to achieve both of these objectives and makes a substantive advance in the first area. In this 

dissertation, we relaxed the constancy of individual risk behavior assumption, by allowing 

individual risk behavior to fluctuate among different levels over time, namely individual risk 

behavior volatility (risk volatility).  

We found that increasing risk volatility considerably increases fraction of transmission 

from acute HIV infection and prevalence at endemic equilibrium. In addition, we found that 

increasing risk volatility considerably reduces the minimum required individual effectiveness to 

eliminate HIV infections of Universal Test and Treat or universally applied pre-exposure 

prophylaxis (PrEP).  Furthermore, our results suggest that increasing risk volatility reduces the 

extent that a case’s risk level at HIV acquisition determines this case’s capacity to cause onward 

transmission later during infection.  Consequently, assuming no risk volatility may cause one to 

overestimate the benefit of prioritizing PrEP efforts to susceptible individuals experiencing high 

risk as a strategy to eliminate HIV infections. Finally, we explored the possibility of using HIV 

phylogeny to indicate when risk volatility affects HIV transmission dynamics. Our results 

suggest that risk volatility has unique and strong impact on phylogeny imbalance and clustering 

pattern. This implies that risk volatility is potentially identifiable from HIV sequence data.  

Research in this thesis contributions to the field of study that uses mathematical models 

to estimate epidemiological parameters of HIV transmission from two perspectives.  Firstly, 

research in this thesis reveals the importance of evaluating individual risk behavior volatility to 

enhance robustness of model inference of epidemiological parameters and quantities. Secondly, 
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research in this thesis suggests HIV sequence data is potentially valuable to improve the 

identifiability of risk volatility parameter. Therefore, research in this thesis takes significant steps 

forward to improve mathematical model inference of HIV transmission parameters.  
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CHAPTER I 

Introduction 

 

 

HIV Epidemic among Men Who have Sex with Men. In the decades from its 

emergence, great strides have been made in controlling HIV. Antiretroviral treatment has greatly 

improved and has saved millions of lives. Neonatal transmission and transmission via needles 

among injecting drug users have been markedly reduced.1 On the other hand, HIV incidence 

among men who have sex with men (MSM) continues to rise with increasing rates of treatment 

having little effect on controlling transmission in this group.1,2 There are diverse speculations as 

to why this might be the case including rapid evolution of the virus itself, safe-sex exhaustion, or 

emergence of versatility in terms of insertive or receptive sex roles among MSM. 3–6 Nonetheless, 

convincing evidence and arguments as to how different factors contribute to our failure to control 

HIV transmission among MSM are lacking. The formulations we present here constitute a theory 

expressing one mechanism through which biological and social factors interact to maintain high 

infection levels in MSM populations. 

Two challenges are recognized in controlling HIV transmission among MSM. First, 

transmission from acute stage of HIV infection, a brief but highly infectious period, is potentially 

efficient but hard to estimate.7 Our ability to understand HIV transmission from early stage of 

infection is hindered by the fact that we cannot observe HIV transmission patterns directly. In 

part, this is due to most infections not being detected until long after transmission. That makes it 

impossible to trace all sexual partners and count directly how many transmissions are occurring 

during the highly infectious but brief acute HIV infection stage (AHI). It also makes it rare that 

AHI outbreaks are detected and investigated at the time they are occurring.  

Another challenge is to estimate the relationship of individual effectiveness of an 

intervention strategy and its population effect. Accurate estimation of such relationship requires 

fully understanding of the HIV transmission dynamics among the target population. This is 
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particularly important when elimination of HIV infection becomes the ultimate prevention goal. 

Two biomedical strategies that use antiretroviral medications have been recognized as promising 

intervention tools to eliminate HIV infections. One is treatment as prevention, where treatment 

of HIV with antiretroviral medications prevents onward transmission. Among treatment as 

prevention strategies the most promising and debated strategy is universal test and treat (UT&T), 

which is to get every individual tested and quickly treated if he or she is tested HIV positive. 

Previous study has suggested that testing every individual annually and initiating treatment 

immediately once that individual is tested HIV positive can possibly eliminate HIV infections.8 

Later studies further explore and discuss the promise of UT&T in eliminating HIV infections in 

various epidemiological context. 10–19  These studies indicate that effect of this optimal strategy 

might be hindered by many factors such as insufficient testing, failed linkage to care and 

decreased retention in care (frequent dropout). 10–19  

Another promising biomedical intervention strategy to prevent HIV transmission is Pre-

exposure prophylaxis (PrEP). It is a prevention strategy that HIV negative people use 

antiretroviral drugs before exposure to HIV. 19 Animal studies suggest that PrEP can 

considerably reduce risk of HIV acquisition.20,21 This is because PrEP drugs can maintain a high 

rectal and genital level and act at early life cycle of HIV virus.19–21 Phase 3 clinical trial show 

that PrEP can reduce the risk of HIV acquisition among MSM population by 44% if it is orally 

taken on a daily base.22 However, in reality, PrEP shows great variation in its effectiveness: low 

adherence and reduction in other ways of protection can reduce the effectiveness of PrEP.23,24  

The great variation in the individual effectiveness of these two biomedical intervention 

strategies implies a great uncertainty in the population effect that either strategy could achieve. 

This issue has been recognized in earlier studies, in which sensitive analysis is done to explore 

the range of population effects that UT&T, PrEP or their combination could reach with various 

levels of individual effectiveness.13,25–28 However, when eliminating HIV infections is the 

desired population effect, one would want to know the minimum required individual 

effectiveness of an intervention strategy to eliminate HIV infections. If most plausible levels of 

individual effectiveness of a strategy fall below this threshold, it would be hard to reach 

elimination with that strategy. One of the relevant research question is the how effective the 

UT&T strategy needs to be in testing and treating individuals to eliminate HIV infections. 
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Granich et al suggest that testing every individual once a year and immediately initiating 

treatment once the individual is diagnosed HIV positive can eliminate HIV infections.8 UNAIDS 

proposed that HIV will be eliminated if 90% of infected individuals are tested, 90% of people 

who are tested HIV positive are linked to care and 90% of infected people who are linked to care 

are successfully treated, a so called 90-90-90 strategy.29 However, there are speculations that the 

potential of both strategies to eliminate HIV infections may vary given the diverse 

epidemiological contexts of HIV transmission.11,13,16,27,30–34 Therefore, how effective UT&T 

needs to be at individual level to eliminate HIV infections should be estimated based on the 

specific epidemiological context.    

Given the complexity of HIV epidemics, eliminating HIV infections may require 

combined efforts of multiple HIV interventions rather than relying on a single strategy. 

Mathematical studies suggest that UT&T can be combined with PrEP to reach the maximum 

prevention effects because two strategies can reach two distinct population: infected people and 

uninfected people.35–37 However, the population effect that could be achieved with the 

combination of the two strategies vary greatly among different studies.25,36,38–40 Therefore, when 

one desire to eliminate HIV infections in the foreseeable future, it becomes imperative to 

understand the minimum required individual effectiveness of both strategies to eliminate HIV 

infections for the target population and plan the allocation of control efforts correspondingly.  

Importance of Studying Individual Risk Behavior Volatility. To successfully eliminate HIV 

infections, one would want to make inference of these two important quantities: transmission 

from acute HIV infection and minimum required individual effectiveness to eliminate HIV 

infections of HIV intervention strategies. However, it is difficult to make such inference because 

HIV transmission dynamics among MSM population is complex and cannot be directly observed 

in the real world. Therefore, we usually construct mathematical models to test our hypothesis of 

what is shaping HIV transmission dynamics. A well built model is simple but does not lack 

important details. These imply two important features of a well built model: robustness of 

inference and identifiability of model parameters.41 A model makes robust inference if model’s 

prediction/estimation of a quantity is robust to realistic relaxation of the model’s assumptions. 

This requires that the model formulation does not miss important determinant of the quantity of 

interest. The first step to examine this issue is to realistically relax each model assumption and 
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observe how model prediction/estimation of quantity of interest changes. On the other hand, a 

well built model should have identifiable model parameters. That is, there is a unique 

correspondence between a set of values of a model parameter and a set of values of model’s 

output.42 If model output as result of changing one model parameter can be completely 

reproduced by varying another parameter, this indicates poor model parameter identifiability. 

Both are necessary steps to determine whether a model is qualified for making inference of 

epidemiological parameters and variables.  

Studies have examined several important behavioral characteristics of MSM population 

incorporating which can improve the model’s ability to predict important epidemiological 

quantities.43,44 However, one behavioral characteristic of MSM population is understudied, 

which is that individual risk behavior fluctuates over time, namely individual risk behavior 

volatility. Empirical data suggest that this phenomenon exists among MSM population.45,46 

However, for mathematical models of HIV transmission, it is a common assumption that 

individuals have constant risk behavior over time. Although some studies assume that individual 

risk behavior can monotonically change as response to public health intervention or prevalence 

of HIV infection, this does not reflect the same pattern of variation of risk behavior as individual 

risk behavior volatility.  

It is not clear that how relaxing the assumption of constant individual risk behavior over 

time would affect a deterministic model’s inference of the two epidemiological quantities: 

fraction of transmission from acute HIV infection and required individual effectiveness of an 

intervention strategy to eliminate HIV infections. Romero-Severson et al (2013) demonstrates 

that individual risk behavior volatility can increase the fraction of transmission from acute 

infection and prevalence of HIV infections.47 Another study by Romero-Severson et al (2014) 

suggest that individual risk behavior volatility can reduce R0.
48 However, both studies assume 

continuous risk behavior distribution and use individual-based models. Therefore, how 

incorporating individual risk behavior volatility would change the inference of deterministic 

compartmental model of these important quantities remain unexplored.  

Potential Value of HIV Phylogenies in Estimating Individual Risk Behavior Volatility. 

Nonetheless, if a model’s inference of epidemiological quantities is not robust to relaxation of a 

model assumption, one would want to improve the model structure by accommodating the 
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relaxed assumption. However, relaxing model assumptions often requires adding model 

parameters. This leads to decreased identifiability given available data.42 Therefore, if adding 

individual risk behavior volatility can considerably alter model inference of quantities of interest, 

one would need to find data to improve the identifiability of the parameter that quantifies 

individual risk behavior volatility. One type of data that has such potential value is HIV sequence 

data. As HIV sequence data become increasingly abundant, studies start to use HIV sequence 

data to estimate important epidemiological parameters that is otherwise hard to infer with 

traditional surveillance data.49–53 This is because that evolution of HIV virus happens at the same 

time scale of HIV transmission, making it possible to infer the HIV transmission dynamics from 

the pattern of branching of HIV phylogenetic tree.54,49,55 Study by Alam et al (2012) suggest that 

episodic risk, a simplified version of individual risk behavior volatility for people with 

dichotomous risk behavior, can increase the extent that acute HIV infections cluster in the 

transmission tree.56 This implies the potential value of HIV phylogenies in informing the 

individual risk behavior volatility. However, such value has not been explored. 

Motivated by these unanswered research questions, this thesis is designed with the 

following research aims. First, we aim to explore whether relaxing the assumption that individual 

risk behavior remains constant over time changes model’s inference of transmission from acute 

infection and prevalence of HIV infections. Second, we aim to explore whether relaxing the 

assumption that individual risk behavior remains constant over time changes model’s inference 

of the minimum individual effectiveness of UT&T and PrEP strategy to eliminate HIV infections. 

We divide research under this study aim into two parts. Firstly, in order to explore how risk 

volatility affects PrEP strategy that is targeted at a specific risk group, we derive the measure of 

required efforts of targeted controls to eliminate transmissions, type reproduction number, for 

model with risk volatility. In the second part, we use this measure and R0 and calculate minimum 

individual effectiveness of PrEP strategy to eliminate HIV infections. Third, we aim to explore 

whether signal of individual risk behavior volatility can be detected from HIV phylogenetic tree 

and whether such signal can be distinguished from other biological or behavior characteristics of 

MSM population.  

As the first step to model individual risk behavior volatility deterministically, we focus 

on population with dichotomous risk behavior. Specifically, we model individual risk behavior 
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volatility as that individual risk alternates between high and low level over time. In the following 

chapters, we call such behavior characteristics as episodic individual risk behavior, abbreviated 

as episodic risk. 
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CHAPTER II 

Effect of Episodic Risk on HIV Prevalence and the Fraction of Transmission from Acute 

HIV Infection 

 

 

Introduction 

In the decades from its emergence, great strides have been made in controlling HIV. 

Antiretroviral treatment has greatly improved and has saved millions of lives. Neonatal 

transmission and transmission via needles among injecting drug users have been markedly 

reduced.1 On the other hand, HIV incidence among men who have sex with men (MSM) 

continues to rise with increasing rates of treatment having little effect on controlling transmission 

in this group.1,2 There are diverse speculations as to why this might be the case including rapid 

evolution of the virus itself, safe-sex exhaustion, or emergence of versatility in terms of insertive 

or receptive sex roles among MSM. 3–6 Nonetheless, convincing evidence and arguments as to 

how different factors contribute to our failure to control HIV transmission among MSM are 

lacking. The formulations we present here constitute a theory expressing one mechanism through 

which biological and social factors interact to maintain high infection levels in MSM populations. 

Our ability to understand HIV transmission dynamics is hindered by the fact that we 

cannot observe HIV transmission patterns directly. In part, this is due to most infections not 

being detected until long after transmission. That makes it impossible to trace all sexual partners 

and count directly how many transmissions are occurring during the highly infectious but brief 

acute HIV infection stage (AHI). It also makes it rare that AHI outbreaks are detected and 

investigated at the time they are occurring. Currently the existence of such outbreaks is detected 

through genetic clustering 52,57 and phylogenetic relationships.53,58 As many as 64% of infections 

detected in the first 6-24 months after infection can be identified as part of genetic clusters.52,57,59 

Quite possibly most clustering involves transmission during AHI but inferring AHI transmission 

fractions from genetic data require better theory.  
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This chapter takes a step in that direction by developing a model that elucidates an 

important mechanism by which acute infections are linked into outbreaks. The ability to use 

genetic data to test transmission theory has recently been advanced by new methods for 

incorporating transmission models into coalescent models.51,60,61 Being able to fit different 

models to genetic data creates the potential to assess the robustness of inferences about the 

fraction of transmissions from AHI by realistically relaxing diverse aspects of transmission 

models.62 These include partnership formation and duration patterns63, specific behaviors such as 

anal or oral sex with or without protection, insertive and receptive behavior patterns64, different 

sexual mixing sites65, and heterogeneous sexual behavior in the population.66,67 In this chapter, 

we focus on elaboration of a particular model aspect that has especially strong effects: episodic 

risk behavior. Another chapter in this symposium illustrated short-term temporal heterogeneity in 

sexual contact rates in a prospective risk behavior study designed to estimate transmission risks 

for different types of sexual contacts between MSM (Romero-Severson et al. from this edition). 

Episodic risk is defined by brief periods of higher risk behavior possibly precipitated by random 

events such as a change in relationship status, drug use, or as an endogenous aspect of sexual 

behavior in general.  

We modeled episodic risk with flows back and forth between high and low contact rate 

states. The first paper to do this was Koopman et al. (1997).68 However, the predominant feeling 

has been that previous demonstration of high AHI transmission68,69 was only applicable during 

the early stages of the epidemic.70 That is, once infection levels reach an endemic equilibrium, 

the fraction of transmissions is a simple function of the times one spends in different stages and 

the transmission probabilities during those stages. 71,72 

In this chapter, we show how episodic risk can amplify AHI transmissions even after 

endemic equilibrium has been reached. Specifically, we show how behavioral changes in 

individuals over time can amplify transmission at the population level by amplifying 

transmission from acute HIV infection. The mechanisms include both increasing the contact 

rates of recently infected individuals and increasing the number of high risk susceptible 

individuals with whom high risk infected individuals can make contact. 
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Model Formulation 

In this thesis, we developed a deterministic compartmental model of HIV transmission in 

men who have sex with men that integrates episodic risk behavior, non-random mixing, and 

multiple stages of infection. The model has only two risk phases with different contact rates 

(high and low), two infection stages (acute and chronic), and two sexual mixing sites. Contacts 

are modeled as instantaneous and symmetrical partnerships with an undefined number of sex acts 

having no specified direction or pattern (such as insertive or receptive, anal or oral). 

The deterministic compartmental model is specified as a system of six differential 

equations for a MSM population, one for each compartment in the model. A schematic of the 

model is shown in Figure 1. The characters S, A and C for each compartment refer to the 

susceptible, acute HIV and chronic HIV stages respectively. The subscripts H and L refer to the 

high and low contact rate for each subpopulation respectively. The grey area in Figure 1 depicts 

the high-risk mixing site where individuals with high contact rate make a proportion of their 

contacts (υ) exclusively with each other. The dotted area designated as the common mixing site 

represents the site where individuals with high contact rate make the remaining fraction of their 

contacts, 1-m, with individuals with low contact rate proportionally. The parameters that govern 

the rate of each flow are shown in Figure II-1 near the arrow depicting that flow. The values of fH 

and fL are given in Table II-1.  

Arrows between subpopulations with identical infection status represent the flow of 

individuals between these subpopulations due to the movement between high and low-risk 

phases. ϕH represents the rate of turnover from high to low contact rate while ϕL refers to the flow 

in the opposite direction. We assume a constant birth rate indicated by the arrows in Figure II-1 

pointing into SL and SH. Individuals leave the system either by a process of 'natural removal' that 

accounts for cessation for sexual activity for any reason (horizontal arrows pointing out of each 

compartment in Figure II-1) or by death of chronically infected individuals due to AIDS (vertical 

arrows pointing out of the CL and CH compartments). Table II-1 presents a complete list of the 

model’s parameters.  

We model episodic risk as movement between phases of high and low sexual activity. 

The magnitude of difference between the high and low risk phases is parameterized by the ratio 

of contact rates in the high and low risk phases. Average contact rates in the whole system are 
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held constant such that an increase in this ratio or the proportion of individuals in the high-risk 

phase implies a decrease in the low risk contact rate to maintain a constant average contact rate. 

The default value for the average contact rate (χ) was selected so the system is just above the 

epidemic threshold under the homogenous risk setting without episodic dynamics. 

The natural history of HIV infection is modeled with acute and chronic stages of infection. 

Contagiousness is abstracted as a higher transmissibility per act during a relatively short acute 

stage and a lower transmissibility during a much longer chronic stage with first order flows 

between stages and out of the last stage. As a simplifying assumption, we ignore the rise of 

contagiousness that has been demonstrated in late infection. This assumption is reasonable in a 

population with widespread access to antiretroviral treatments that have greatly reduced the 

prevalence of AIDS and the concomitant rise in viral titer associated with end stage HIV 

infection. Simulations also suggested that assuming three rather than two infections stages does 

not fundamentally alter the phenomenon that we illustrate. In our model, we assume the average 

duration of the acute stage to be 2 months and that of the chronic stage to be 10 years (Pilcher et 

al. 2004).73 On average, uninfected individuals will remain sexually active for 40 years. 

 The contagiousness parameters were adapted from an analysis of the Rakai data by 

Pinkerton (2008).74 In our model, we set the baseline transmission probability (β) across the 

entire course of infection to be 0.003, which is consistent with overall average transmission 

probabilities across all homosexual sex acts.6 The possible underestimate of the baseline 

transmission probability per partnership is compensated for by the fact that we adjusted the 

average contact rate to be near threshold for the given baseline transmission probability. 
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The increased contagiousness in the acute stage is governed in the model by the fraction of 

transmission potential from the acute stage (X), which is the expected fraction of transmissions 

from acute HIV occurring in a homogeneous population at equilibrium. The following presents 

how we derived the formulation of transmission probability per contact during acute HIV 

infection, β1, and during chronic HIV infection, β2, on the basis of baseline transmission 

probability, β and X.   

The average time an infected individual spends in acute infection, denoted as T1，is 

calculated as 1

1

1
T

 



  (1). Given that the probability for an acutely infected individual to 

progress to the chronic stage rather than being removed due to other reasons is 1

1



 
, the 

average time an infected individual spends in the chronic stage, denoted as T2, can be expressed 

as   1
2

1 2

1
( )( )T



   


 
 (2).  

If the rate of sexual contact in the homogeneous population is denoted as , the average 

number of secondary cases generated by an infected individual during acute infection is 
1 1T  , 

Figure II- 1 Conceptual episodic risk model with contact structure and population composition for model in Chapter II. 
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and the average number of secondary cases generated by an infector during chronic infection is 

2 2T  , while the average number of secondary cases generated by an infector during the entire 

period of infection is 1 2( )T T   . As a result, the fraction of transmission potential from acute 

infection is 1 1 1 1

1 2 1 2( ) ( )

T T
X

T T T T

  

 
 

 
 (3), and the fraction of transmission potential from 

chronic infection is  2 2 2 2

1 2 1 2

1
( ) ( )

T T
X

T T T T

  

 
  

 
 (4). After substituting equations (1) and (2) 

into (3), 1
1

2

(1 )X


 
 

 


. Using the same logic, we find that 2
2

1

(1 )(1 )X
 

 



   . 

Parameterizing the system in this way, we can easily determine the effect of episodic risk on 

acute stage transmission rates compared to a homogeneous null model. Transmissibility per 

contact is assumed to be constant during each infection stage. This is determined by the above-

mentioned model parameters (see Table II-1). 

Table II- 1 List of the episodic risk model parameters and their default values used in 

Chapter II  

Parameter Value Unit Definition 

μ 1/(40*12) /month 

Rate of flow of new individuals 

into sexually active population 

and also Rate of leaving the 

sexually active population 

γ1 6 /month 
Rate of transitioning from acute to 

chronic infection 

γ2 1/120 /month 
Rate of death from AIDS during 

chronic infection 

β 0.003 /contact 
Average transmission probability 

across stages 

X variable - 

expected fraction of transmissions 

from acute HIV occurring in a 

homogeneous population at 

equilibrium 

β1 
1

2

1X



 

 
 

 
 /contact 

Transmission probability during 

acute stage 

β2   2

1

1 1X
 




 
  

 
 /contact 

Transmission probability during 

chronic stage 

fH variable - 

Average fraction of population 

with high contact rate in the 

absence of HIV 

χ 3.4114 /month 
Average contact rate in the entire 

population 

rHL variable - Ratio of high contact rate over 
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low contact rate 

χH rHLχL /month 
Contact rate for the high-risk 

population 

χL 

 
/month 

Contact rate for the low risk 

population 

ν 0.3 - 

Fraction of contacts of individuals 

with high contact rate at the high-

risk site 

ϕH variable /month 

Rate of transitioning from high 

contact rate state to low contact 

rate state 

ϕL 

 

/month 

Rate of transitioning from low 

contact rate state to high contact 

rate state 

λHsite 
1 2H H

H H H

A C

S A C

 

   
- 

Force of infection per contact at 

the high-risk mixing site 

λGsite 
 

- 
Force of infection per contact at 

the general mixing site 

 

 

Table II- 2 Differential equations for the deterministic episodic risk compartmental model 

for Chapter II 

 

 

To better clarify what flows from what stages of infection and what contact rates were 

sustaining transmission, we divided each of the four compartments of the infected population 

(AH, AL, CH, CL) from the episodic risk model (Table II-2) into six compartments. By doing this, 
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we track the information of location of transmission, contact rate phase and stage of HIV 

infection of the source infectors. Thus, in this elaborated model, infected individuals now have a 

3-letter superscript that refer to the state of the individual who infected them and where they 

went on to transmit. The first character in the superscripts refers to the site where they became 

infected, with R being the high-risk mixing site and G being the common mixing site. The 

middle letter refers to the contact rate phase of the source infector, with H being the high contact 

rate phase and L being the low contact rate phase. The last character represents the stage of HIV 

infection of the source infector, with A being the acute stage and C being the chronic stage. The 

set of differential equations for the dynamic system analysis of the elaborated model is provided 

in Table II-3. 
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Model elaboration for dynamic system analysis 

Table II- 3 Equations for the elaborated deterministic compartmental model focusing on the source 

and site of infection in Chapter II 
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Results 

Exploring joint effects of high-risk turnover rate and between-risk-group contact rate ratio 

at the population-level. We numerically solved equations out to equilibrium.  The rate of 

turnover in the high-risk group had strong effects on both the endemic prevalence and fraction of 

transmission during acute stage.   
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As the turnover rate of the high-risk group slows from 10 times per month (once every 

0.008 years) to once per 1000 months (once every 83.3 years), both the endemic prevalence and 

the acute transmission rate show an inverted U shape, peaking between turnover rates of 1 per 

month and 1 per year (Figure II-2).  At the extremes of fast or slow turnover, the fraction of acute 

transmissions is the same as in a homogeneous population.  As the ratios of contact rates between 

high and low risk groups increase, the peak effects of turnover rates increase as well and occur at 

faster turnover rates. 

Increasing the fraction of transmission potential during acute stage while keeping the 

total transmission potential constant increases both the endemic fraction of transmissions during 

acute stage and the endemic prevalence (compare panels A and B). Furthermore, the endemic 

prevalence peaks at a faster turnover rate because given an increased transmission rate during the 

acute stage, individuals need to spend shorter time at high-risk phase to lift the endemic 

prevalence to peak. These observed effects hold at all values of the contact rate ratio as shown in 

Figure II-2. 

As the fraction of time that each individual spends at high risk (fH) increases, both the 

endemic fraction of transmission during the acute stage and the endemic prevalence decrease at 

each value of the contact rate ratio (compare panels C and D in Figure II-2). Given our 

assumption of constant average contact rate, for any given contact rate ratio greater than 1, 

increasing fH causes a decrease in contact rates for both risk levels and hence decreases the 

overall force of infection. When the turnover rate is low enough and the contact rate ratio is high 

enough, the endemic prevalence starts to decrease as the contact rate ratio increases. Given a 

slow turnover, high-risk susceptible individuals are infected much faster as compared to the low 

risk susceptible individuals due to their elevated contact rates causing infection saturation in the 

high-risk phase. Higher turnover rates supplement the pool of high-risk susceptible individuals 

with new high-risk susceptible individuals. As fH increases, each individual spends more time in 

the high-risk phase. This increases the proportion of contacts between infected individuals 

causing saturation of infection in the high-risk phase. 
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Figure II- 2 Endemic prevalence and fraction of transmission during acute stage of infection as function of log scale of 

duration of stay at high risk level as the contact rate ratio increases from 1 to 41 by increments of 2 and showed in 

different colors. The left y axis is for the endemic prevalence and the right y axis is for the fraction of transmission during 

the acute stage of infection. Parameter values not specified in this figure are consistent with those in Table II-1.  

Effect of separate mixing on the endemic prevalence and fraction of transmission by acute 

stage of infection 

Overall, the fraction of contacts made by high-risk infectors at the high-risk site (fH) 

showed little impact either on the endemic prevalence or on fraction of transmission during acute 

stage or on the dynamics of these two outcomes (data not shown). This is unlike the observations 

in Koopman et al. (2005).65 Only at lower overall contact rates and very slow turnover between 

contact rate groups do we see the effects of fH as noted in Koopman et al (2005).65 At any other 

contact rates, a higher fraction of high contact rate group's contacts made at a high-risk mixing 

site increases the rate of exponential growth in the early epidemic. 

 

Exploration of dynamics underlying high contact rate group turnover effects 

We now look into the dynamics of prevalence and the fraction of transmissions from 

acute HIV (AHI) over a period of 150 years. In Figure II-3 (A and B), we explore these dynamics 

for the duration of time spent in the high-risk state for ranges from 0.01 to 80 years. In Figure II-
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3 (C and D), we explore the dynamics by varying the ratio of contact rates from 1 to 41.  

Figure II-3 (A and B) shows that episodic risk increases the contribution of acute HIV 

early in the epidemic and later at the endemic equilibrium. Faster risk turnover results in the 

faster replenishment of the susceptible population in the high-risk phase. At the same time, it 

increases the risk of a low-risk susceptible contacting an infected individual who is still in the 

highly contagious acute stage. Note that while varying the average duration of high risk phase, 

we keep the fraction of time that population spend in high risk phase, fH, constant. Therefore, the 

increase in replenishment of high risk susceptibles is simply result of increase in turnover rate. 

For slower turnover rates, the fraction of the transmissions from AHI decreases. This is because 

of the decrease in the inflow of susceptibles in the high-risk phase. It also increases the duration 

of the time spent in the high-risk phase by high-risk individuals. Thus, high-risk individuals are 

likely to progress to the chronic stage by the time they switch to the low-risk phase. 

Overall, the prevalence and the fraction of transmissions during the acute stage increase 

with the ratio of contact rates (see Figure II-3; panels C and D). Increasing contact rate ratios 

result in increasing high-risk contact rates that in turn increase transmission from high-risk 

infectors. For high contact rate ratios, the fraction of transmission from acute stage reaches a 

higher peak level, indicating a greater effect when the high-risk contact rate increases.  

Higher peak levels of acute stage transmissions reflect the potential of the acute HIV 

population to build the epidemic together with the replenishment of the susceptible population. 

This explains why the fraction of transmissions during acute stage with a higher peak level also 

has a larger rebound as shown in Figure II-3 (B and D). 
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Years since the epidemic began
FIGURE 3. Model runs showing the endemic prevalence (Panels A and C) and 
the fraction of transmissions from the acute stage (Panels B and D) for 150 years.
Above: average time spent at high contact rate phase is raised from 0.1 to 80 years.
Below: the ratio of high over low contact rate from 1 to 41.
Parameter values not specified in this figure are the same as given in Table 1.

 

Figure II- 3 Model runs showing the endemic prevalence (Panels A and C) and the fraction of transmissions from the 

acute stage (Panels B and D) for 150 years. Above: average time spent at high contact rate phase is raised from 0.1 to 80 

years. Below: the ratio of high over low contact rate is raised from 1 to 41. In these simulations, the average fraction of 

time population spends at high risk phase, fH, is kept at 0.05. Other parameter values not specified in this figure are the 

same as given in Table II-1.  

Effect of risk turnover and contact rate ratios on the contact rate of population with acute 

stage of HIV 

In Figure II-4, we examine the effects of high-risk group turnover rate on the endemic 

prevalence, the average contact rates of the acute stage population and that of the susceptibles at 

equilibrium. We explore for a range of the duration of time spent in the high-risk phase from 

0.008 years to 83 years and the ratio of contact rates from 1 to 41. As Figure II-4B shows, the 

turnover rate of the high-risk population has a clear effect on the average contact rates of acute 

stage infected individuals at equilibrium. Higher turnover rate brings more susceptibles into the 

high contact rate phase. At higher contact rate ratios, the new susceptible at high contact rate are 

more likely to be infected and thus faster turnover in the high contact rate phase has even greater 

effects.   
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Figure II- 4 Endemic prevalence (A) and average contact rate of acutely infected individuals (solid lines in B) or average 

contact rate of susceptibles (dashed lines in B) at equilibrium as average time spent at high contact rate phase is varied 

from 0.01 to 100 years. Parameter values not specified in this figure are the same as given in Table II-1.  

The endemic prevalence reaches its peak at a faster turnover rate than the average contact rate of 

acutely infected individuals (Figure II-4A). This is due to the combined effect of the overall 

force of infection and average contact rate among the susceptibles (Figure II-4B). Given the high 

contagiousness of the acute stage infectors, the interaction of high transmissibility and increased 

contact rates during acute stage drives the overall force of infection. 

Tracking sources of infections 

By breaking the compartments of infections in our original model into different subgroups, 

we were able to track the source of infection and mixing site where the transmissions occurred. 

Figure II-5A and II-5C illustrate the fraction of transmissions during acute stage and chronic 

stage HIV infection. Figures II-5B and II-5D focus on the contributions of high-risk infectors 

and low risk infectors. From B and D, although the high contact rate group only comprises of 5% 

of the total population, they account for 50% or more of all transmissions at contact rate ratios as 

low as 7. Although there is an effect of the turnover rate on the fraction of infections by 

individuals in the high-risk phase, the effect is small. The role of the high versus low-risk 
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infectors is controlled primarily by the contact rate ratio.  

From panels A and C in Figure II-5, we see a different role for the contact rate ratio and the 

turnover rate in determining the fraction of transmission from acute stage infectors. The contact 

rate ratio has little effect on the fraction of infections from acute infectors at extreme values of 

the turnover rate. However, at intermediate values of the turnover rate, the contact rates ratio can 

nearly double the contribution of acute stage infectors. This interaction is caused by the increased 

prevalence of high-risk, acutely infected individuals. The flow of new susceptibles into the high 

risk phase generates an increased incidence and therefore an increased prevalence of acute stage, 

high risk infectors. Because the dynamics are assumed to be mass action, the increased 

prevalence of acute high-risk infectors means increased contact between susceptibles and acutely 

infected individuals. The effect diminishes at extremely short average durations of the high risk 

phase because the system becomes essentially homogeneous. In that case, the system is 

controlled by the average contact rate rather than the contact rate ratio. At extremely long 

average durations, on the other hand, the system becomes essentially two non-interacting sub-

systems, each of which is homogeneous. In this limit, the contact rate ratio still matters for 

determining the total incidence, but does not affect the fraction of that incidence that comes from 

transmissions by acutely or chronically infected individuals. 
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FIGURE 5. Proportion of transmissions at endemic equilibrium generated by acutely infected individuals(A), 
infected individuals in high contact rate phase (B), chronically infected individuals (C) or infected individuals 
in low contact rate phase (D). In each panel, the ratio of high over low contact rate is raised from 1 to 41 by 
increments of 2. Parameter values not specified in this figure are the same as given in Table 1. 
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Figure II- 5 Proportion of transmissions at endemic equilibrium generated by acutely infected individuals (A), infected 

individuals with high contact rate (B), chronically infected individuals (C) or infected individuals with low contact rate 

(D). In each panel, the ratio of high over low contact rate is raised from 1 to 41 by increments of 2. Parameter values not 

specified in this figure are the same as given in Table II-1. 

In Figure II-6, we further divide the source of infection based on their contact rate phase, stage of 

infection and location. When the turnover rate is low, neither acute nor chronic individuals are 

generating many new infections at the high-risk site (panels A and D). This is due to the fact that 

without turnover to replenish susceptibles in the high risk phase, the high-risk individuals rapidly 

become infected. Therefore, at the high-risk site almost all contacts are among already infected 

individuals. However, at the low-risk site, susceptibles with low contact rates are much more 

likely to contact either an acute (panel B) or a chronic (panel E) high risk infected individual 

resulting in elevated incidence rates from those classes in the absence of turnover. Also, by 

assumption, most individuals entering the model are susceptibles with low contact rates, which 

provides a greater supply of susceptibles to the low risk mixing site.  
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FIGURE 6. Proportion of transmissions at endemic equilibrium generated by different types of infected 
individuals. In each panel, the ratio of high over low contact rate is raised from 1 to 41 by increments of 2. 
Parameter values not specified in this figure are the same as given in Table 1. 
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Figure II- 6 Proportion of transmissions at endemic equilibrium generated by different types of infected individuals. In 

each panel, the high-to-low contact rate ratio is raised from 1 to 41 by increments of 2. Parameter values not specified in 

this figure are the same as given in Table II-1. 
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Discussion of Results in Chapter II 

Explaining the major effects observed in this Chapter 

We have shown that episodic periods of high-risk behavior interspersed with longer periods 

of lower risk have large effects on the endemic level of HIV infection and the fraction of 

transmissions from acute HIV infection. We see that prevalence can vary from near zero to very 

high levels and the fraction of transmissions from acute infection can nearly double as the 

turnover rate from low-to-high contact rate phases increase and as the time spent with high rates 

varies. This is despite the fact that the total contacts in the population and the transmission 

potential for each individual are kept constant during each stage of infection. 

Two important elements explain the strong effects mentioned above. The first has to do with 

the average total contagiousness of individuals during acute and chronic infection. That 

contagiousness is determined jointly by the number of contacts made and transmission 

probabilities per contact. Episodic risk increases the association between high contact rates and 

the high transmissibility of acute infection because an individual is more likely to get infected 

during a high contact rate period and is more likely to still be in that high contact rate period 

during their acute HIV infection (AHI). Then, as they progress to the less contagious chronic 

infection stage, they also pass into a lower contact rate phase. The more strongly that the high 

transmission stage of infection is correlated with the high contact rate state, the higher will be the 

average contagiousness across the course of infection. This is reflected in the part of Fig.II-4 that 

presents the average contact rates during the acute infection stage. 

The second part of the explanation for these big effects has to do with the average contact 

rates of susceptible individuals. When individuals spend a long time in the high contact rate state, 

they become infected and a sexual contact by them with other infected individuals no longer 

presents an opportunity to transmit infection. If individuals stay in a low contact rate state, they 

are more likely to avoid infection. Then when they transit to a high contact rate state, they 

provide a new source of high contact rate susceptible individuals that the individuals with high 

contact rates in the acute infection stage can infect. This is seen in the contact rates of susceptible 

individuals in Fig.II-4. The average contact rate of susceptible individuals is seen to increase 

considerably as the turnover increases. When the turnover rate is slow, high contact rate 

individuals are infected and are not replaced by new susceptible individuals. This lowers the 
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average contact rate of susceptible individuals. 

Our previous work on when to focus control on high risk groups led us to believe that a third 

element would also act to generate episodic risk effects on prevalence and AHI transmissions.65 

That previous work modeled SIR infections. For SIR infections, we saw that when high-risk 

individuals mixed separately from low risk individuals, it allowed them to build up higher levels 

of infection so that they then disseminated more infection when they made contact with lower 

risk individuals. However, that was not the case for the HIV infections modeled here. Whether 

high contact individuals mixed at a high-risk or a common mixing site, the prevalence and the 

fraction of transmissions from acute infection were barely changed at all. The difference was not 

that in the previous work we allowed transmission probabilities rather than contact rates to define 

high risk. In fact, we saw the same effects of separate high risk mixing in that previous work 

when we defined high risks by contact. In further support of the cause of high risk (contact rates 

vs. transmission probabilities), we have observed that mixing makes little difference when high 

risk is caused by higher transmission probabilities (data not presented). The reasons for this are 

complex: under some conditions, separate mixing at a high-risk site can lead to a greater 

dissemination of infection. However, discussion of this effect is beyond the scope of this chapter. 

The real-world importance of the described theoretical effects  

If the episodic risk effects that we have described occur in the real world to the extent that 

we suspect they do, then previous model analyses using fixed behaviors for subgroups have 

underestimated the fraction of transmissions from acute HIV. 7,70  Nevertheless, a key question is 

how we can assess the extent to which these episodic risk effects are occurring in any particular 

population. Fluctuation of contact rates was observed in the CDC cohort studied to assess HIV 

transmission risks from different acts.75 That study included diverse geographic areas. The 

existence of episodic risk behavior is less formally supported by experiences of HIV counselors 

where most people with high-risk behaviors report that they have had longer periods of low risk 

behaviors.   

Our results may be compared to recent modeling studies that have focused on the role of 

acute infection.76,77 Eaton et al. (2011) analyze an important phenomenon that, like episodic risk, 

augments the importance of acute infection.76 In some sense, entering a high contact rate phase 

may be akin to entering a concurrent partnership phase, although in our model, we assume 

instantaneous contacts. On the other hand, the study by Powers et al. (2011) assume fixed risk, 
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which corresponds to our results when the duration of stay in high risk is very long such that 

there is virtually no risk turnover.77 The Bayesian melding approach to model fitting used by 

Powers et al. (2011) means that the effects of the phenomenon of episodic risk could be absorbed 

partially into the transmission by stage parameter estimates. It seems that their results would 

have estimated a larger fraction of transmissions from acute infection if they had included 

episodic risk in their model. However, this is hard to assess. 

Broader evidence should be sought regarding whether there are real world effects of episodic 

risk corresponding to the theoretical effects we have demonstrated. One approach could be to do 

more behavioral studies that ask the needed questions. So far, few studies have documented 

episodic risk behavior. Another approach is to find signatures of episodic risk in both HIV 

surveillance data and in HIV genetic sequences.52 When the model in this chapter is simulated as 

a stochastic discrete individual-based model, we observe that infection trees of acute HIV 

transmissions are interspersed among more isolated chronic infection transmissions and have 

size distributions that are roughly comparable to those observed in Montreal.57 Our initial results 

show that episodic risk dynamics influence both the size and duration of acute HIV outbreaks 

providing a possible link between genetic cluster size distributions and episodic risk dynamics. 

More sophisticated methods that are currently being developed can be used to calculate the 

likelihood of the genetic data given a transmission model allowing for direct evaluation of the 

evidence for episodic risk in the genetic data.51,60,61 Parameter ranges should be further 

constricted by fitting models to observed patterns of HIV infection over time using surveillance 

data. 

More thorough model explorations may be needed to assess the real world importance of 

episodic risk effects. More surprises regarding dynamic effects may arise as we analyze the 

interactions of episodic risk effects with contact pattern effects, partnership duration, insertive-

receptive behavior effects, and oral, anal, protected, and unprotected risk pattern effects. To 

strengthen our inferences that episodic risk behavior greatly increases HIV prevalence and acute 

HIV transmissions, a thorough exploration of the effects of relaxing the simplifying assumptions 

in the model presented is called for. For example, realistic distributions for the duration of acute 

stage and the distribution of virus levels across that time should be explored. In reality, there is a 

high narrow peak of virus levels a few weeks into infection and then a long period of falling 

levels before the set point of chronic infection is reached.73 We hypothesize that the effects we 
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have observed will be just as strong or stronger under more realistically detailed acute infection 

timing and contagiousness. Likewise, our initial explorations indicate that a more realistic 

description of episodic risk behavior in a population will not significantly diminish the effects we 

have illustrated in this chapter. 

The infection control implications of our findings suggest that some HIV transmission 

control activities may be misdirected. For example, the test and treat strategy by default detects 

mostly cases after acute infection.  Our results indicate that greater focusing on acute infection 

transmission clusters will be needed to detect more acute infections.52  Second, behavior 

modification messages may be similarly misdirected. In our model, we did not incorporate 

change in sexual behavior over an individual’s lifetime because of, e.g. HIV awareness 

programs. This is because our aim in this chapter is to understand the dynamics of episodic risk 

behavior under theoretical settings. Nevertheless, if suggestions to decrease risk only work for a 

period but are overwhelmed by situational pressures, then our model indicates that such 

suggestions could not only fail to decrease transmission, but might in fact increase transmission.  

The broader context of this work and future directions 

The analyses presented in this chapter are a needed step toward improving our understanding 

of HIV transmission dynamics. All perception comes from a combination of data and theory.  We 

do not see patterns when our minds are not prepared to see them. To an extent our ignorance of 

HIV transmission patterns in MSM is attributable to a dearth of well-structured theory about how 

different hypothetical transmission system conformations lead to specific transmission patterns 

and what mechanisms underlie these effects. A body of HIV transmission system theory is 

growing and thousands of modeling studies of HIV transmission have been published.78 Still, 

theory and data are barely beginning to come together in a way that allows us to see clearly how 

and why acute HIV transmissions cluster, and how this could explain the failure to control the 

spread of HIV infection in the MSM population.   

By relaxing some of the unrealistic assumptions in our model and incorporating realistic 

details such as oral and anal acts, insertive and receptive behavior, partnership duration, and 

mixing patterns, we will begin to identify characteristics of both surveillance data and genetic 

sequence data that indicate what is affecting transmission dynamics. This, we believe, will 

clarify the role acute infection transmissions plays in the MSM HIV transmission system. 

 



29 

 

CHAPTER III 

Formulating and Interpreting Type Reproduction Numbers for Population with Individual 

Risk Behavior Volatility 

 

 

Introduction 

One of the most important concerned questions in controlling transmissions of infectious 

diseases is how much control efforts is required to eliminate infections. The most commonly 

used measure for the elimination condition is basic reproduction number, R0. R0 calculates the 

expected number of secondary cases a case would cause during the entire infection time if this 

case was introduced into a fully susceptible population.79 It is found that for homogeneous 

population the minimum coverage of vaccination to reach elimination is 1-1/R0.
79 However, 

when the population has heterogeneous risk states and intervention is specifically targeted at a 

risk group, R0 is less relevant. In this case, the appropriate threshold measure is the type 

reproduction number, T. The concept of T is introduced by Roberts and Heesterbeek (2003). It is 

defined as the expected number of new infections of a specific type that a case of this type would 

cause during the entire infection time through all transmission paths without intermediate new 

infections of this type.80 It is found that T also has the threshold property as R0: R0>1 and T>1, 

R0=1 and T=1, and R0<1 and T<1.80 In addition, Heesterbeek and Roberts (2007) found that the 

minimum required control efforts of a targeted intervention to eliminate infections can be 

expressed as a simple function of T.81 Specifically, as suggested by Heesterbeek and Roberts 

(2007), the minimum coverage of vaccination of type i susceptible group to reach elimination is 

a simple function of corresponding type reproduction number Ti, i.e. 1-1/Ti.81  

In study by Henry and Koopman (2015), R0 for model with episodic risk has been clearly 

formulated and thoroughly discussed.82 In study by Romero-Severson et al (2012), R0 as function 

of risk volatility that incorporates continuously distributed individual risk behavior is also 
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derived and examined.48 However, there has not been any study that examines the type 

reproduction numbers for model with individual risk behavior volatility. As targeting people 

experiencing higher risk of HIV acquisition has been one of the most common intervention 

strategy to control HIV transmissions, understanding how risk volatility affects type reproduction 

number will help clarify how critical control efforts to eliminate HIV transmissions would be 

different given risk volatility.  

Therefore, in this chapter, we formulate type reproduction number, T, for a transmission 

system of HIV infection among MSM population where individuals have risk volatility. As the 

first attempt to do so, we focus on a system where individuals alternate risk behavior between a 

higher level and a lower level, i.e. episodic risk. The aim of this chapter is to understand how 

individual risk behavior volatility (episodic risk) affects type reproduction numbers and critical 

control efforts of relevant targeted intervention strategies. In Section 1, we describe the structure 

of the deterministic model and model differential equations. In Section 2, we use the next 

generation matrix approach as outlined in Roberts and Heesterbeek (2003) to derive T. In 

Section 3, we formulate the type reproduction number for model with risk volatility based on its 

epidemiological meaning. In Section 4, we show that the expression of type reproduction 

numbers derived using next generation matrix approach is equivalent to that derived using the 

approach presented in Section 3. In Section 5, we explore that what type of intervention can be 

informed by type reproduction numbers formulated in Section 3, and discuss how risk volatility 

affects type reproduction numbers and relevant critical control efforts.  

Methods and Results 

1.Model Population and Model Structure 

In Chapter II, we build an episodic risk model with stages of HIV infection and dichotomous risk 

states. In this chapter, we focus on this model. However, we make several changes on the basis 

of model in Chapter II.  
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Figure III- 1 Conceptual model with contact structure and population composition for analysis in Chapter III.  

Firstly, in Chapter II we used the risk transition rate, ΦH and ΦL, to quantify the rate of flows 

from high risk phase to low risk phase and vice versa. The problem with this is that two 

parameters are used to specify rate of changing risk levels. Although each can be expressed as a 

function of the other, using two parameters makes model analysis less tractable. Therefore, in 

this chapter we use a single risk change parameter instead of these two risk transition parameters 

to simplify derivation of model variables. Specifically, we adopt the way that Henry and 

Koopman (2015) modeled episodic risk.82 They used a single parameter that determines the rate 

of fluctuation of individual risk between higher level and lower level. This parameter, as 

introduced by Henry and Koopman (2015), is the rate at which individuals re-select contact rate 

from the population distribution, namely risk re-selection rate (denoted ω). The probability 

distribution of population contact rates is determined by the fraction of average time people 

spend in each risk phase at disease free equilibrium (  for high risk phase and  for low risk 

phase).82 Therefore, the rate of flow from the high-risk to the low-risk subpopulation is   and 

 as the rate of flow in the opposite direction. It is also important to note that re-selecting 

contact rate periodically is not a behavior pattern among MSM population. However, modeling 

risk volatility this way enables us to use a single parameter to control the rate of risk fluctuation 

in both directions. In following sections, we name the condition that an individual has high 

contact rate (or low contact rate) as that this individual is in high risk phase (or low risk phase). 

In this chapter, we model assortative mixing by contact rate by allowing individuals to make 

certain fraction (m) of contact with people at the same risk level, for both people who are 

experiencing high risk or and people with low risk.83 Same as described in Chapter II, 
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individuals proportionately mix with each other and make (1-m) fraction of their contacts at a 

general mixing site. Compartments’ symbols, names and definitions are listed in Table III-1. 

Model parameters’ symbols, default values and meanings are listed in Table III-2. 

Table III- 1 Variable symbols, values, units and definitions for Episodic Risk model with 

Test and Treat in Chapter III 

Compartment Meaning 

 Susceptible subpopulation with high contact rate 

 Susceptible subpopulation with low contact rate 

 Subpopulation at acute stage of HIV infection with high contact rate 

 Subpopulation at acute stage of HIV infection with low contact rate 

 Subpopulation at chronic stage of HIV infection with high contact rate 

 Subpopulation at chronic stage of HIV infection with low contact rate 

 

Table III- 2 Symbols, default values, and definition of model parameters 

Parameter 
Default 

values 
Unit Definition 

 1/40 /year 

Rate of removal from the sexually-active population unrelated to HIV due 

to death or other competing causes. Because we set the equilibrium 

population in the absence of disease to 1, this is also the (absolute) rate of 

entry of new individuals into the sexually active population 

 4 /year Rate of transitioning from acute to chronic infection 

 1/10 /year Rate of death from AIDS during chronic infection 

 variable Per contact Per-contact transmissibility during acute stage 

 variable Per contact Per-contact transmissibility during chronic stage 

 0.05 -- Fraction of population that is at high-risk phase at disease-free equilibrium 

  -- Fraction of population that is at low-risk phase at disease-free equilibrium 

 variable /year Average contact rate of high risk phase 

 variable -- Ratio of contact rate in high risk phase over contact rate in low risk phase 

 
 

/year Average contact rate of low risk phase 

  /year Expected population average contact rate at disease free equilibrium 

 variable -- Fraction of contacts reserved for people experiencing the same level of risk 

 variable -- Rate of reselecting contact rate  

 

The differential equations of this episodic risk model are, 
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Where  and  are force of infections that cause new infections among subpopulation in high 

risk phase and subpopulation in low risk phase, respectively. Specifically,  

 

 

In equation (1.1),  has two components. The first is , which is the force of 

infection that causes new infections among people in high risk phase due to assortative mixing 

within population in high risk phase. The second is , 

which is the force of infection that causes new infections among people in high risk phase due to 

proportionate mixing at the general mixing site. Similarly,  also has two components: force of 

infection attributed to assortative mixing,  , and force of infection attributed to 

proportionate mixing at the general mixing site, . 

2. Type Reproduction Numbers as Function of Episodic Risk using Next Generation 

Matrix 

As defined in Roberts and Heesterbeek (2003), type reproduction number for host of type i, , 

calculates the number of new infections among type i host generated through all possible 

transmission pathways: direction transmission from type i case or transmission from type i case 

to other types of hosts which end up in a transmission back to type i subpopulation.80 In Roberts 

and Heesterbeek (2003), type reproduction numbers are calculated based on next generation 

matrix (NGM), which we denote K in following sections. Construction of K requires two 

elements: matrix of new infections, F, and matrix of migration or other transitions, Σ.  
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Matrix  is the matrix of rates of new infections caused by transmission and it can be 

written as, 

         

Each entry  represents rate of transmission from state specified by jth column to state 

specified by ith row. States from first to forth rows (columns) of matrix F are, acutely infected 

with high contact rate (AH), acutely infected with low contact rate (AL), chronically infected with 

high contact rate (CH) and chronically infected with low contact rate (CL). Note that entries of F 

in last two rows are zero. This is because these two rows correspond to chronic infections and 

that new chronic infection cannot be caused through transmission.  

In each entry of F, gH and gL denote the expected fraction of contacts made by susceptible 

individuals with high contact rate or by susceptible individuals with low contact rate at disease-

free equilibrium, respectively. Specifically, gH is a function of contact rate ratio rHL, average time 

population spends in high contact rate phase at disease-free equilibrium, fH, . 

We can also get that . We use entry F12 as an example to show how 

we get matrix . Entry F12 is the rate of new infections among subpopulation with high contact 

rate (AH) caused by an acutely infected individual with low contact rate (AL). Given that an 

individual with low contact rate makes (1-m) fraction of his contacts with individuals 

experiencing high risk, we can get F12=χLβ1(1-m) gH.  

Matrix  is the matrix of rates migration among different groups,  
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Where ν1 denote the total rate of leaving acute HIV infection due to death, disease progression or 

other competing causes of leaving sexually active life, i.e. ν1=γ1+μ, and ν2 denote the rate of 

leaving chronic HIV infection due to death or other competing causes of leaving sexually active 

life, i.e. ν2=γ2+μ. Also, note that in matrix Σ, there are two types of migrations: progression from 

acute infection to chronic infection (rate of which is γ1), and risk transitions (rate of which is fLω 

from high risk to low risk and fHω from low risk to high risk). Formulations of variables used for 

matrix manipulation are listed in Table III-3.  

Table III- 3 Symbols, function as model parameters and meanings of variables for 

calculation of next generation matrix 

symbols Function as model 

parameters 

meaning 

  Total rate of leaving acute HIV infection due to death, disease progression or 

other competing causes of leaving sexually active life 

  rate of leaving chronic HIV infection due to death from AIDS or other 

competing causes of leaving sexually active life 

 

 

expected fraction of contacts made by susceptible individuals with high 

contact rate at disease-free equilibrium 

 

 

expected fraction of contacts made by susceptible individuals with low 

contact rate at disease-free equilibrium 

 

The next generation matrix (NGM) with large domain, , is calculated as 

. Where matrix  is, 

 

The states of rows and columns of matrix  are arranged in the same way as those for 

matrix  and . States from first to last row (column) of  are acutely infected with high 

contact rate (AH), acutely infected with low contact rate (AL), chronically infected with high 
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contact rate (CH) and chronically infected with low contact rate (CL), respectively. Each entry of 

 is the average time that a case who entered state of corresponding column spends in state 

of corresponding row. For example, entry ( )11 is . It calculates the expected time 

that a case who was in high risk phase at infection (state ) spends in high risk phase during 

acute infection (state ). In addition, ( )33 is . It calculates the expected time that a 

case who progresses to chronic infection while in high risk phase (state ) spends in high risk 

phase during chronic infection (state ). Also note that the four entries in the upper right block 

of  are zeros. This is because that when a case has progressed to chronic infection, this case 

cannot go back to acute infection.  

Given the matrix  and matrix , we can obtain the next generation matrix with large 

domain, ,  

 

The states of rows and columns of  are again arranged in the same way as those of matrix  

and . Entry  is the expected number of new infections at state i caused by transmission 

from a case since this case enters state j till end of infection time. Entries in two bottom rows of  

 are zeros because new chronic infections cannot be caused through infection.  has the same 

dimensionality as that of matrix F and . Its entries include the expected number of secondary 

cases generated since a case just begins infection time, i.e. at state-at-infection, till end of 
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infection time (entries , ,  and ). Its entries also include the expected 

number of secondary cases a case generates during later stage of infection (entries , 

,  and ), which cannot be entered through infection, i.e. non-state-at-

infection. However, the next generation matrix used for reproduction numbers (basic 

reproduction number and type reproduction number) is a square matrix that only involves the 

state that cases can enter by infection, i.e. state-at-infection. This is because reproduction 

numbers are only concerned with generation of new infections through transmission. Therefore, 

next generation matrix (NGM) K for reproduction numbers is part of   where rows and 

columns are state-at-infection (entries , ,  and ). As shown by 

Diekmann et al (2010),  can be transformed into next generation matrix  through following 

matrix manipulation,84 

 

Where  is an auxiliary matrix consisting of unit column vectors ei, for all i where ith row 

of matrix F (or ) does not have all zero entries,  

 

The purpose of this matrix manipulation is to single out all rows and columns that correspond to 

the states-at-infection (acutely infected in high risk phase and acutely infected in low risk phase). 

By solving , we obtain, 

 

After the matrix manipulation, the dimensionality of NGM K is reduced to 2 by 2, where 

only rows and columns that correspond to states at infection are reserved. This is the major 
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difference between NGM K and NGM with large domain, . Specifically, entry Kij is the 

expected number of new infections with risk level i caused by a case who was at risk level j at 

time of infection. For example, if a case had high contact rate at time of infection, then 

transmissions from this case to susceptibles with high contact rates contribute to entry K11 even 

after this case re-selects a low contact rate later during infection time. According to Roberts and 

Heesterbeek (2003), type reproduction number of subpopulation at ith risk level, , can be 

calculated as,80  

 

Where e denotes the unit vector for which ei =1 and ej =0 for . Matrix  is identity 

matrix and matrix P is projection matrix where Pii =1 and Pkj =0 when  or . As defined 

by Roberts and Heesterbeek (2003), the “type” in the definition of type reproduction number, T, 

is “type” at infection, or state-at-infection.80 This is also reasonable since T is calculated on the 

basis of NGM K, which describes the generation of cases specified by cases’ state-at-infection.  

The rationale of calculation of  as shown in equation (2.1) has been introduced in 

Roberts and Heesterbeek (2003).80 Briefly speaking, vector  calculates the expected number 

of new infections of type i as result of direct transmission from a case of type i. Vector 

 calculates the extent to which other types of hosts contribute to generation of new 

infection of type i during the process that infection is passed to other hosts and back to type i 

subpopulation. Vector  takes into account all the possibilities: infection is 

not passed to other types of hosts, infection is passed to other types of hosts and back to type i 

subpopulation, and infection is passed to other types of hosts and passed among them for one to 

endless rounds before ending up in transmission back to type i subpopulations. Using equation 

(2.1), we get the type reproduction numbers for subpopulation defined by the state-at-infection, 
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Subscripts ‘ ’ and ‘ ’ indicate that it is the type reproduction number for cases 

who are in higher risk phase at time of infection or lower risk phase at time of infection, 

respectively. 

It is important to note that type reproduction number for cases of a particular type is only 

epidemiologically meaningful when the other types of groups alone cannot sustain ongoing 

transmission. That says,  is only epidemiologically meaningful when low-risk-at-infection 

subpopulation (susceptible population who currently have lower contact rate and infected people 

who had lower contact rate at infection) alone cannot sustain ongoing transmission. The 

threshold value for the ability of low-risk-at-infection subpopulation to sustain ongoing 

transmission alone is the largest dominant eigenvalue of NGM K (R0) where all entries of K that 

involve high-risk-at-infection subpopulation are zero (K11, K12, K21). A little algebra shows that 

this threshold is K22. That says,  is epidemiologically meaningful only when K22<1. 

Similarly, the threshold value that quantifies the ability of high-risk-at-infection subpopulation to 

sustain ongoing transmission alone is the largest dominant eigenvalue of K where entries that 

involve low-risk-at-infection states (K12, K21, K22) are zero, which is K11. That says,  is 

epidemiologically meaningful only when K11<1.  

3. Derive Type Reproduction Numbers as Function of Episodic Risk Based on Their 

Epidemiological Meanings 

As shown in last section, each entry of NGM K is a complicated function of the risk re-selection 

rate, ω. Since each type reproduction number is a function of entries of NGM K, they are also a 

complicated function of ω. This prevents us from better interpreting the effect of episodic risk on 

type reproduction numbers. Therefore, in this section we derive type reproduction numbers 

without matrix manipulation, but only based on epidemiological meaning of type reproduction 

numbers given by Roberts and Heesterbeek (2003).80 In order to keep our argument clear, we 

divide this section into four subsections, so that each subsection describes a key step towards 

successful derivation of type reproduction numbers.  

The complexity of episodic risk model arises from the fact that a model case can transmit HIV 

infection in both risk phases. This makes it hard to understand how many new infections at a 

specific state-at-infection a case with the same state-at-infection would cause if this case 
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fluctuates between two risk phases during the entire infection time. The measure that would help 

to clarify this is the average time that a case spends in a risk phase at a stage of infection. As we 

fix the length of each stage of infection, this measure is determined by the probability that a case 

acts in a risk phase at a stage of infection. We name such probability as state probability. In the 

first subsection (3.1.), we derive the probability a model case is in a risk phase during a stage of 

infection. In the second subsection (3.2.), we further discuss the properties of state probabilities 

derived in subsection (3.1.), and rewrite them in a way that has clearer epidemiological meaning 

and also more easily adapted to arbitrary number of stages of infection. The third subsection (3.3.) 

describes the expected number of new infections a model case cause during entire infection time 

based on the case’s states probability as given in subsection 3.1 and subsection 3.2. The forth 

subsection (3.4.) describes how elements depicted in first three subsections contribute to 

construction of type reproduction numbers, and relationship of formulation of type reproduction 

numbers with the next generation approach in Section 2. 

3.1. Probability that a Model Case is in a Risk Phase during Infection Time Given 

Episodic Risk. Our model population has dichotomous risk states (contact rates) and two stages 

of infection (acute HIV infection and chronic HIV infection). Therefore, there are four possible 

states at which a case can transmit HIV infection: acutely infected in high risk phase (AH), 

acutely infected in low risk phase (AL), chronically infected in high risk phase (CH), and 

chronically infected in low risk phase (CL). Given episodic risk, a model case can be in any of 

these four states, no matter which state this case was in at HIV acquisition. Since each state has a 

unique transmission potential, one needs to know the probability that a case is in each state to 

calculate total expected new infections a model case would cause.  
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Figure III- 2 Diagram to show all routes through which a model case can transit among states: acutely infected in high 

risk phase (AH), acutely infected in low risk phase (AL), chronically infected in high risk phase (CH) and chronically 

infected in high risk phase (CL). 

As shown in Fig.III-2, there are six paths that a case can transit among these states. 

Among them, four paths are due to risk transitions: from high risk phase to low risk phase while 

acutely infected (path ‘1’ from AH to AL) or while chronically infected (path ‘5’ from CH to CL), 

and risk transition in the opposite direction while acutely infected (path ‘2’) or chronically 

infected (path ‘6’). The remaining two paths are due to disease progression: progression from 

acute infection to chronic infection while in high risk phase, i.e. AH to CH (path ‘3’), and 

progression from acute infection to chronic infection while in low risk phase, i.e. AL to CL (path 

‘4’).  

By specifying the rate of transitioning through each path, we can get the probability that a 

case changes state through each path. In earlier sections, we denote the rate that an acutely 

infected case leaves acute infection as , then , where  is the rate of progressing 

from acute infection to chronic infection and  is the rate of leaving sexually active life due to 

other competing causes. Similarly, the rate that a chronically infected case leaves chronic 

infection  is, , where  is the rate of leaving chronic infection due to death from 

AIDS. As described earlier, the rate of transition from high risk phase to low risk phase is , 

and risk transition in opposite direction is , where  is the rate at which a case re-selects 

contact rate from the population distribution at disease free equilibrium (probability fH to select 

high contact rate and probability fL =1- fH to selection low risk phase). After specifying these 
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rates, we can calculate the probability that a case transit from one state to another state through 

one of the six paths as shown in Fig.III-2.  

Let  be the probability that a model case transits from risk level p at i stage of 

infection to risk level q at j stage of infection, then the probability that a case transits from high 

risk phase to low risk phase during acute infection (path ‘1’ in Fig.III-2), , is 

 

Similarly, we can also get the probability that a case transits from low risk phase to high 

risk phase during acute infection (path ‘2’ in Fig.III-2),  

 

In addition, the probability that a case transits from high to low risk phase during chronic 

infection (path ‘5’ in Fig.III-2) is, 

 

While the probability that a case transits from low to high risk phase during chronic 

infection (path ‘6’ in Fig.III-2) is, 

 

In addition, the probability that a case progresses from acute infection to chronic 

infection while in high risk phase (path ‘3’ in Fig.III-2), , is the probability that this case 

progresses to chronic infection (at rate ) instead of transitioning to low risk phase (at rate ) 

or leaving sexually active life (at rate ). Therefore, the formulation of  is, 

 

Similarly, the probability that a case progresses from acute infection to chronic infection 

while in low risk phase (path ‘4’ in Fig.III-2), , is  

 

The probability that a case is in each state (AH, AL, CH and CL) during the entire infection 

time can be calculated based on these transition probabilities. Firstly, let  be the 
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probability that a case who enters ith stage of infection while in risk phase p is in risk phase 

q during jth stage of infection. Suppose a model case was in high risk phase at HIV acquisition. 

This case first enters compartment AH through HIV acquisition. The probability that this case is 

in high risk phase during acute infection AH, , is the combination of probabilities of 

following situations: first, this case stays at state AH without any risk transition; second, this case 

transits to low risk phase during acute infection and transits back to high risk phase later during 

acute infection. Calculation of probability of first situation is straightforward, which is 1 minus 

the probability of risk transition to low risk phase, . Calculation of probability in the 

second situation is more complicated. This is because that this case can end up in high risk phase 

after multiple rounds of back and forth risk transitions. As described earlier, we suppose that this 

case enters state AH at HIV acquisition. Therefore, in order to transition back to high risk phase 

during acute infection, this case can either transit to low risk phase and back to high risk phase, 

probability of which is , or transition back to high risk phase after two rounds of risk 

transitions, probability of which is . Theoretically, this case can go through risk 

transitions for endless rounds before ending up in high risk phase during acute infection. 

Therefore, the probability that case who enters AH state at HIV acquisition and is in AH state 

after at least one round of risk transition is 

. If we combine this 

probability with the probability that this case has not had any risk transition , we get, 

. 

Given that  and , .  can be further written as,  

 

Based on equation (3.1.1) and (3.1.2), we can substitute  with  and  with , 

and obtain, 
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Although expression of as shown in (3.1.8) is derived using the transition 

probabilities, one may also interpret it as follows. The denominator ( ) is the total rate that 

a case who was in high risk phase at HIV acquisition takes an action during acute infection: 

either leaving acute infection at rate  or re-selecting contact rate at rate . Numerator 

 is the total rate of events that result in being in high risk phase during acute infection: 

not re-selecting contact rate at all during acute infection (at rate ), or re-selecting high contact 

rate again (re-selecting contact rate at rate  and selecting high contact rate with probability ). 

Their ratio gives the probability .  

The probability that a case who was in high risk phase at HIV acquisition is in low risk 

phase during acute infection, , can also be calculated with same reasoning, except that this 

case needs to first transit to low risk phase, probability of which is . After transitioning to 

low risk phase, this case may just stay in low risk phase probability of which is , or 

transit back to low risk phase after one to endless rounds of back and forth risk transitions, 

probability of which is . By summing up all these possibilities, we 

obtain, 

           ( 1.9) 

Based on equation (3.1.1) and (3.1.2), we can substitute  with  and  with , 

and obtain, 

 

Based on equation (3.1.8) and (3.1.10) we can obtain, 
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     ( 1.11) 

This relationship is reasonable since a case can only either be in high risk phase or low 

risk phase during acute infection.  

With same reasoning, we also obtain the probability that a model case who entered state 

AL at HIV acquisition is in high risk phase during acute infection, ,  

 

and the probability that a model case who entered state AL at HIV acquisition is in low risk phase 

during acute infection, , 

 

Based on formulation of 
 
and , we also obtain,  

     (3.1.14) 

Situations become more complicated when we calculate the probability that a model case 

is in a risk phase during chronic HIV infection. This is because as a case progresses through 

more stages of infection, the number of possible states a case can be in before ending up in the 

state of interest also increases. For example, a model case who was in high risk phase at HIV 

acquisition can be in high risk phase during chronic infection as result of progressing to chronic 

infection while in high risk phase (AH->CH), or as result of transitioning to low risk phase, 

progressing to chronic infection and transitioning back to high risk phase (AH-> AL ->CL-> CH). 

Therefore, to calculate the probability that a model case who was in high risk phase at HIV 

acquisition is in high risk phase during chronic infection, , we need to examine every 

possible pathway that leads a case from state AH to state CH. The major difference between the 

two paths in above example is the risk phase in which a case progresses to chronic infection. To 

take this step into account during probability calculation, we define a probability , 

which is the probability that a case who was in risk phase p at HIV acquisition, progresses 
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to chronic infection while in risk phase k and is in risk phase q during chronic infection. 

Brackets are added to the middle subscript to indicate that this is an intermediate state.  

We start from , which is the probability that a case who was in high risk phase 

at HIV acquisition, progresses to chronic infection while in high risk phase and is in high risk 

phase during chronic infection. This probability has two components. First is the probability that 

this case progresses to chronic infection while in high risk phase. We denote such probability as 

, where subscript in brackets again represents the intermediate state this case goes through. 

Calculation of  is similar as calculation of , except that this time the case progresses 

to chronic infection instead of staying in acute infection.  is the product of probability that 

an acutely infected case in high risk phase progress to chronic infection, , and probability 

that this case is in high risk phase during acute infection after zero to endless rounds of risk 

transitions, , 

 

After a little algebra, one can also find out the relationship between  and , 

 

Where 

 

which is probability that a case progresses from acute infection to chronic infection regardless of 

risk phase this case was in during acute infection. This is because  can also be interpreted 

as the probability that a case progresses to chronic infection, , given that this case is in high 

risk phase during acute infection, probability of which is .   

Since we have found the first component of , , we move forward to the 

second component of . It is the probability that given a case progressed to chronic 

infection while in high risk phase, this case is in high risk phase during chronic infection, . 
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The rationale of calculating  is the same as that of . The only difference is that  

is for chronic infection, so risk transition probabilities are those that occur during chronic 

infection,  and . Using the reasoning of calculating (equation (3.1.7)), we obtain, 

 

Based on equation (3.1.3) and (3.1.4), we substitute  with  and  with , 

and obtain, 

 

As indicated by earlier argument,  is the combination of  and , so we 

obtain, 

     

According to equation (3.1.16) one can substitute  with , so, 

               (3.1.20) 

Another pathway that leads a case from state AH (at HIV acquisition) to state CH is that 

this case progresses to chronic infection while in low risk phase and transition to high risk phase 

during chronic infection. We denote the probability for this pathway to occur as . 

Similar as ,   contains two components. The first is the probability that this 

case progresses to chronic infection while in low risk phase, .  Calculation of  

follows the same reasoning of , which gives rise to,  
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In equation (3.1.21), risk transition probability  is included because this case was in 

high risk phase at HIV acquisition and can only be in low risk phase through risk transition. 

Same as the relationship  (equation (3.1.16)),  can also be expressed as, 

 

The second component of  is the probability that a case is in high risk phase 

during chronic infection given this case entered chronic infection while in low risk phase . 

 is the product of the probability that this case transits to high risk phase during chronic 

infection and does not transit back, , and probability that this case is in high risk 

phase after zero to endless rounds of risk transitions, ,  

 

Based on equation (3.1.3) and (3.1.4), we substitute  with  and  with , 

and obtain, 

 

As indicated by earlier argument, probability  is the production of  and ,  

       

Based on equation (3.1.22), we substitute  with , which gives rise to, 

      (3.1.25) 

As discussed earlier, the probability that a case was in high risk phase at HIV acquisition 

is in high risk phase during chronic infection, . If we incorporate 

equations (3.1.20) and (3.1.25), we obtain, 

 

After a little algebra, we obtain, 
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Similar as reasoning presented above, the probability that a case who was in high risk 

phase at HIV acquisition is in low risk phase during chronic infection, , can also be divided 

into two components based on the risk phase in which this case progresses to chronic infection. 

One is this probability given that the case progresses to chronic infection while in high risk phase, 

. Another is this probability given that this case progresses to chronic infection while in 

low risk phase, .  and  are calculated with the same reasoning as 

 and , with which we obtain, 

      (3.1.27) 

       (3.1.28) 

where  is the probability that a case who enters chronic infection while in high risk phase is 

in low risk phase during chronic infection, which can be calculated as, 

 

and  is the probability that a case who enters chronic infection while in low risk phase is in 

low risk phase during chronic infection, which can be calculated as, 

 

Based on equation (3.1.3) and (3.1.4), we substitute  with  and  with , 

and obtain, 
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Given that  (equation (3.1.19)) and  (3.1.29) we can get that, 

 

This is reasonable because given that a case enters chronic infection while in high risk 

phase, this case can only be either in high risk phase or low risk phase during chronic infection.  

Similarly, we also obtain,  

 

Based on equation (3.1.27) and (3.1.28), we obtain the probability that a case who was in 

high risk phase at HIV acquisition is in low risk phase during chronic infection, , 

 

Substituting , ,  and  with their formulations given by equations 

(3.1.8), (3.1.29), (3.1.10) and (3.1.30), respectively, we obtain, 

 

Based on formulation of  and  given by equation and ( ), we can get 

their sum as,  

 

This is reasonable since that a case can only be in high risk phase or low risk phase 

during chronic infection, as long as this case progresses to chronic infection instead of leaving 

acute infection due to other reasons, probability of which is .  

Furthermore, with the same rationale, we can also get the probability that given a case is 

in low risk phase at HIV acquisition, this case is in high risk phase during chronic infection, 

, 
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and the probability that given a case was in low risk phase at HIV acquisition, this case is 

in low risk phase during chronic infection, ,  

 

with a little algebra we obtain, 

 

 

Based on formulation given by equation (3.1.36) and (3.1.37), we obtain 

 

Which is also reasonable because a case can only be in high risk phase or low risk phase 

during chronic infection, as long as this case progresses to chronic infection instead of leaving 

acute infection due to other reasons, probability of which is .  

The state probabilities that we have derived in this subsection are summarized in Table III-4.  

Table III- 4 Variables used in calculation of probability a model case in a risk phase during 

a stage of infection 

Symbols Function as other 

variables 

Function as model parameters Definition 

 --  Total rate of leaving acute 

infection 

 --  Total rate of leaving chronic 

infection 

 
-- 

 

Probability of transition from 

high risk phase to low risk 

phase during acute infection 

 -- 

 

Probability of transition from 

low risk phase to high risk 

phase during acute infection 

 -- 

 

Probability of progressing 

from acute infection to 

chronic infection while in 

high risk phase 

 -- 

 

Probability of progressing 

from acute infection to 
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chronic infection while in low 

risk phase 

 -- 

 

Probability of transition from 

high risk phase to low risk 

phase during chronic 

infection 

 -- 

 

Probability of transition from 

low risk phase to high risk 

phase during chronic 

infection 

 -- 

 

Probability of progressing 

from acute infection to 

chronic infection 

 

  

Probability that a case who is 

infected while in high risk 

phase is in high risk phase 

during acute infection 

 

  

Probability that a case who is 

infected while in high risk 

phase is in low risk phase 

during acute infection 

 

  

Probability that a case who is 

infected while in low risk 

phase is in high risk phase 

during acute infection 

 

  

Probability that a case who is 

infected while in high risk 

phase is in low risk phase 

during acute infection 

 

  

Probability that a case who is 

infected while in high risk 

phase is in high risk phase 

during chronic infection 

 

  

Probability that a case who is 

infected while in high risk 

phase is in low risk phase 

during chronic infection 

 

  

Probability that a case who is 

infected while in low risk 

phase is in high risk phase 

during chronic infection 

 

  

Probability that a case who is 

infected while in high risk 

phase is in low risk phase 

during chronic infection 

  

 

Probability that a case who is 

infected in high risk phase 

progresses to chronic 

infection in high risk phase 

and is in high risk phase 

during chronic infection 

  

 

Probability that a case who is 

infected in high risk phase 

progresses to chronic 

infection in low risk phase 
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and is in high risk phase 

during chronic infection  

  

 

Probability that a case who is 

infected in high risk phase 

progresses to chronic 

infection in high risk phase 

and is in low risk phase 

during chronic infection 

  

 

Probability that a case who is 

infected in high risk phase 

progresses to chronic 

infection in low risk phase 

and is in low risk phase 

during chronic infection  

  

 

Probability that a case who is 

infected in low risk phase 

progresses to chronic 

infection in high risk phase 

and is in high risk phase 

during chronic infection 

  

 

Probability that a case who is 

infected in low risk phase 

progresses to chronic 

infection in low risk phase 

and is in high risk phase 

during chronic infection  

  

 

Probability that a case who is 

infected in low risk phase 

progresses to chronic 

infection in high risk phase 

and is in low risk phase 

during chronic infection 

  

 

Probability that a case who is 

infected in low risk phase 

progresses to chronic 

infection in low risk phase 

and is in low risk phase 

during chronic infection  

  

 

Probability that a case who is 

infected in high risk phase is 

in high risk phase during 

chronic infection 

  

 

Probability that a case who is 

infected in high risk phase is 

in low risk phase during 

chronic infection 

  

 

Probability that a case who is 

infected in low risk phase is 

in high risk phase during 

chronic infection 

  

 

Probability that a case who is 

infected in low risk phase is 

in low risk phase during 

chronic infection 

 



 

54 

 

3.2. Understanding State Probabilities. One thing worth noting is the rule by which the 

probability that a case is in a specific risk phase during a stage of infection is formulated. These 

probabilities include , , ,  for a case who was infected in high risk phase 

and , , ,  for a case who was infected in low risk phase. To better illustrate 

such rule, we start with the first group, , , , . According to section 3.1., 

their formulations are,  

,  and  

where  can be further transformed as, 

 

Equation (3.2.1) can be interpreted as follows. Term  calculates the probability that a 

case does not re-select contact rate by end of acute infection, so   calculates the 

probability that a case has re-selected contact rate at least once before leaving acute infection. 

Each time a case re-selects contact rate, he always selects low contact rate with probability , so 

 calculates the probability that this case (who was in high risk phase at HIV 

acquisition) selected lower contact rate during acute infection, i.e. .  

One can also do similar transformation for  , 

 

In equation (3.2.2), term  is the product of  and . As discussed 

earlier,  calculates the probability that a case does not re-select contact rate by the end of 

acute infection. Term  calculates such probability during chronic infection. Therefore, 

 is the probability that a case has not re-selected contact rate since HIV acquisition 
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and till the end of chronic infection, so  is the probability that this case has at 

least re-selected contact rate once by the time this case leaves chronic infection. Parameter  is 

added to adjust for the probability of selecting low contact phase, while  is included to adjust 

for the probability of progressing from acute infection to chronic infection.  

Formulations of  and  share a common feature: a case who was in high risk 

phase at HIV acquisition has to re-select contact rate to be in low risk phase. Each time a case 

selects a contact rate, he has a probability  to select low contact rate. Given these two common 

features, one may infer the rule of formulating , the probability that a case who is infected 

in high risk phase is in low risk phase at ith stage of infection,  

 

Where  is the probability that a case progresses from first stage of infection to ith stage 

of infection. For the two stages of infection as modeled in this chapter,  and . 

Term  is the probability that a case has not re-selected contact rate by the time this 

case leaves ith stage of infection. This term has been discussed in Henry and Koopman (2015), 

which is calculated as the expected fraction of time a case spends before first risk re-selection 

during ith stage of infection given that this case has progressed to ith stage of infection.82 

Although here we describe it as a probability, they are essentially the same. Same as Henry and 

Koopman (2015), we denote it as ,  

 

When there are two stages of infection, the probability that a case has not re-selected 

contact rate by the end of acute infection, , is 
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Also, the probability that a case has not re-selected contact rate by the end of chronic 

infection, , is 

 

Furthermore, since we defined , we can rewrite formulation of  as, 

 

In subsection (3.1.), we identified the relationship that , 

. That says, the sum of probabilities that a case is in a risk phase during ith 

stage of infection is the probability that this case progresses to ith stage of infection, i.e. 

. Based on this relationship, we obtain the rule by which  is formulated,  

 

With the same rationale, we obtain the probability that a case who was in low risk phase 

at HIV acquisition is in high risk phase during ith stage of infection, ,  

 

and the probability that a case who was in low risk phase at HIV acquisition is in low risk 

phase during ith stage of infection, ,  

 

Based on the rules by which that state probabilities are formulated, effect of episodic risk 

on each probability can be more clearly observed. Firstly, ,  have negative linear 

relationships with   (equation (3.2.7) and equation (3.2.9)) while ,  have positively 

linear relationships with  (equation (3.3.8) and equation (3.3.10)). When  increases,  

decreases, the probabilities that a case is in the same risk phase as that at HIV acquisition , 

 decrease, while the probabilities that a case is in a risk phase different from the one he was 

in at HIV acquisition, , , increase. When   is extremely high,  approaches zero. In 
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this condition,  and  both approach  (panel (A) and (C) of Fig.III-3), while  

and  both approach  (panel (B) and (D) of Fig.III-3). This means that the probability 

that a case is in a risk phase at ith stage of infection mainly depends on probability of people 

being in this risk phase from population distribution (  for high risk phase and  for high risk 

phase), and probability of disease progression , but barely on the risk phase that this case was 

in at HIV acquisition.  

 

Figure III- 3 Effect of increasing risk re-selection rate, ω, on state probabilities. 

Another important feature of state probabilities is that the probability that a case does not 

re-select contact rate by the time this case leaves ith stage of infection,  , 

decreases as the number of stages of infection, i, increases. This is because the probability that 

this case does not re-select contact rate at ith stage of infection is conditional on this case not re-

selecting contact rate at earlier stage, , i.e. . This phenomenon agrees with 

the observation in Henry and Koopman (2015), which suggest that the expected fraction of time 

a case spend before first risk re-selection is smaller for later stages of infection.82 
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3.3. Expected Number of New Infections along Each Transmission Route that 

Contributes to Type Reproduction Number. In subsections 3.1. and 3.2., we obtain the 

probabilities that a model case is in a risk phase during acute infection or during chronic 

infection given the risk phase this case was in at HIV acquisition. In this subsection, based on the 

state probabilities we calculate expected number of new infections in a risk phase a case would 

cause given the risk phase this case was in at HIV acquisition, which will be the elements to 

formulate type reproduction numbers in later sections.  

First, let  be the total expected number of new infections in p risk phase caused 

by a case who was infected in q risk phase during entire infection time given episodic risk 

(indicated by subscript ‘e’), and  be the expected number of new infections in p risk 

phase caused by a case who was infected in q risk phase during ith stage of infection given 

episodic risk. In order to illustrate how we calculate , we use  as an example. For a 

disease with two stages of infection, . We start with calculation of . 

Suppose a case is infected while in high risk phase. During acute infection, this case has  

probability to be in high risk phase and  probability to be in low risk phase. 

Given average duration of acute infection is , this case on average spends  time in 

high risk phase and  time in low risk phase during acute infection. Therefore, 

during acute infection, this case’s expected transmission potential in high risk phase is 

, and  in low risk phase.  

As we discussed in section 1., while in high risk phase this case makes fraction m fraction 

of contacts with susceptibles in high risk phase due to assortative mixing and (1-m)gH fraction of 

contacts with susceptibles in high risk phase due to proportionate mixing (gp is the expected 

fraction of contacts contributed by susceptible individuals in p risk phase at disease-free 

equilibrium). Therefore, when this case is introduced to a completely susceptible population, he 

is expected to cause   high-

risk new infections while in high risk phase during acute infection. When this case is in low risk 

phase, he makes (1-m) fraction of his contacts at general mixing site and  fraction of these 
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contacts is made with susceptibles in high risk phase. Hence, this case is expected to cause  

 high-risk new infections while in low risk phase during acute 

infection. Combining the number of new infections, we can obtain the total expected number of 

new infections in high risk phase a case who is infected in high risk phase cause during acute 

infection, 

 

In order to make expression of  more concise, we introduce two variables: expected 

number of new infections in high risk phase a case would cause during acute infection if this 

case spends whole acute infection time in high risk phase (no episodic risk), , and expected 

number of new infections in high risk phase a case would cause during acute infection if this 

case spends whole acute infection in low risk phase (no episodic risk), . 

Based on the definitions of  and , we obtain, 

 

 

After we substituting  with  and  with 

 on right side of equation (3.3.1), we obtain  as,  

 

Similarly, we can also get the expected number of new infections in high risk phase this 

case causes during chronic infection,  as.  

 

In order to simplify expression of , we introduce two additional variables: expected 

number of new infections in high risk phase a case would cause during chronic infection if this 
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case spends whole chronic infection time in high risk phase (no episodic risk), , and 

expected number of new infections in high risk phase a case would cause during chronic 

infection if this case spends whole period of chronic infection in low risk phase (no episodic 

risk), . 

Based on their definitions, we obtain, 

 

 

where  is added to take into account the probability that a case progresses from acute 

infection to chronic infection.  

Incorporating equation (3.3.6) and (3.3.7) into equation (3.3.5), one can get, 

 

Given  and , we can obtain that given episodic risk, the total expected 

number of new infections in high risk phase a model case who is in high risk phase at HIV 

acquisition causes, , 

 

Given equation (3.3.4) and (3.3.8), we obtain, 

 

we can further rewrite formulation of  as, 
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After further arranging this formulation, we can more clearly see the rule by which  

is formulated, 

 

Formulation of  in this way help us to more easily interpret  in epidemiological 

context. Specifically, the first term  calculates the part of  attributed to 

transmissions that occur when the case is in high risk phase. The second term  

calculates the part of  attributed to transmissions that occur when the case is in low risk 

phase.  

However, we are not instantly clear about the effect of episodic risk on  by checking 

the above formulation. This is because both  and  are complicated functions of model 

parameters. Therefore, we further transform above formulation of 
. 
In section 3.2., we have 

obtained that  and , where  

which is the probability that a case has not re-selected contact rate by the time this case leaves ith 

stage of infection. Hence, replacing  with  and  with , we 

obtain,  

 

After rearranging this equation, we obtain, 

 

In above equations,  calculates the probability that a case has not re-selected contact 

rate at ith stage of infection. Given this condition of not re-selecting contact rate, if case was in 

high risk phase at HIV acquisition, he will have 100% possibility of being in high risk phase. 
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Therefore, at ith stage of infection, this case causes  new infections if he 

stays in high risk phase. When this case has at least re-selected a contact rate at ith stage of 

infection, probability of which is , this case has  probability of selecting high contact 

rate and  probability of selecting low contact rate. Therefore, at ith stage of infection this case 

causes  new infections if he re-selects a risk phase.  

Based on formulations of  and , we can obtain the rules of formulating ,  

 

Where  is the probability that a case progresses from first stage of infection to ith stage 

of infection: , .  

Similarly, we can also obtain the rules of formulating ,  

 

Based on formulations of  and , and based on relationship , 

and  (where  is average contact rate at disease-free equilibrium), we can do the 

following transformation of term  ,  

 

Hence, expression of   can be further transformed as, 

 

Note that second term  only contains average contact rate, . In 

addition, parameter for assortative mixing, m, does not show up either. Earlier in discussion, we 
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have mentioned that this term calculates the contribution to  after the case re-selected 

contact rates. We have discussed that if a case re-selects contact rate, he would re-select from 

population distribution, regardless of the risk phase this case was in at HIV acquisition. This 

explains why overall average contact rate of this case during the period of risk fluctuation equals 

population average contact rate (at disease-free equilibrium), . The reason that assortative 

mixing does not affect this term is that a case randomly re-selects contact rate. The increase in 

contacts due to assortative mixing in one risk phase is counterbalanced by decrease in contacts 

due to disassortative mixing in the other risk phase.  This term indicates that risk re-selection 

eliminates the impact of risk heterogeneity and assortative mixing on the transmission system.  

Given that we can further transform expression of  as 

follow, 

 

Term  is the total expected number of new infections a case would cause during 

the entire infection time if this case has population average contact rate at disease-free 

equilibrium, . It is also R0 for population with homogeneous contact rate, , we denote this term 

as H, 
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To understand term , it is helpful to consider the meaning of  and . As 

discussed earlier,  is the probability that a case has not re-selected contact rate at ith stage of 

infection. If all stages of infection have equal contribution to overall transmission potential, then 

the total probability that a case transmits HIV when he has not re-selected contact rate is . 

However, different stages of infection may have different contribution to overall transmission 

potential. Therefore, probability  needs to be weighted by the contribution of ith stage of 

infection to transmission potential. Hence, ratio  is the probability that a case has not re-

selected contact rates and transmits HIV through a contact at ith stage of infection. Sum of  

  over all stages of infection, , is the probability that a case transmits HIV 

when this case has not re-selected contact rate during the entire infection time. We denote this 

term as ψ, so 

 

This term has been derived and discussed in Henry and Koopman (2015).82 However, in 

study by Henry and Koopman (2015), this term is described as remaining heterogeneity effect, 

which is the expected fraction of transmission potential attributed before first risk re-selection.82 

Here, we mainly described it as probability. However, given we discussed in a mean field 

framework, they are essentially the same.  

Therefore, given equation (3.3.10) and (3.3.11), we can further simplify expression of 

 as, 
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The first term  can be further simplified by appreciating the 

fact that , 

. 

Let  be the total expected number of secondary high-risk infections a case would 

cause if this case spends the whole infection time in high risk phase (no episodic risk), so 

 

Substituting  with , we obtain, 

 

With the same rationale, we can obtain expected number of new infections in high risk phase 

caused by a case who was in low risk phase at HIV acquisition, , 

 

expected number of new infections in low risk phase caused by a case who was in high risk 

phase at HIV acquisition, , 
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and expected number of new infections in low risk phase caused by a case who was in low risk 

phase at HIV acquisition, , 

 

Where in equation (3.3.14) and , variable  is the expected number of new infections 

in low risk phase a case would cause during ith stage of infection if this case spends the whole 

period of ith stage of infection in low risk phase (no episodic risk), and  is the expected 

number of new infections in low risk phase a case would cause during ith stage of infection if 

this case spends the whole period of ith stage of infection in high risk phase (no episodic risk). 

Based on their definitions, we obtain,  

 

 

and  

 

 

Formulation of , ,  and  are listed in Table III-5.  

Table III- 5 Formulations of variables used in calculation of expected number of new 

infections a model case generates during infection time 

Symbol formulation meaning 

 

 

Expected number of new infections in high risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

high risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during chronic infection if this case spends the whole chronic infection 



 

67 

 

in high risk phase (no episodic risk) 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in high risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

low risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during chronic infection if this case spends the whole acute infection in 

low risk phase (no episodic risk) 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in low risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

high risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during chronic infection if this case spends the whole chronic infection 

in high risk phase (no episodic risk) 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in high risk phase (no episodic risk) 

 

 

Expected number of new infections in low risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

low risk phase (no episodic risk) 

 

 

Expected number of new infections in low risk phase caused by a case 

during chronic infection if this case spends the whole chronic infection 

in low risk phase (no episodic risk) 

  Expected number of new infections in low risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in low risk phase (no episodic risk) 

 
 

Probability that a case does not re-select contact rate during acute 

infection 

 

 

Probability that a case has not re-selected contact rate at chronic 

infection 

 

 

Probability that a case transmits HIV infection when this case has not 

re-selected contact rate 

 

 

expected number of new infections a case would cause during entire 

infection period if the expected contact rate of this case equals 

population average contact rate, χ 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case was in high risk phase at HIV 

acquisition, given episodic risk 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case was in low risk phase at HIV 

acquisition, given episodic risk 

  Expected number of new infections in low risk phase caused by a case 

during entire infection time if this case was in high risk phase at HIV 

acquisition, given episodic risk 

  Expected number of new infections in low risk phase caused by a case 

during entire infection time if this case was in low risk phase at HIV 

acquisition, given episodic risk 
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3.4. Formulating Type Reproduction Number Based on Its Epidemiological Meaning. 

In the above we have derived the , which is the expected number of new infections in risk 

phase p caused by a case who is infected in risk phase q if this case is introduced into a fully 

susceptible population. With formulations of , we are able to derive the type reproduction 

number T based on its epidemiological meaning. In Section 2, we use next generation matrix 

approach to derive T. We also discussed that in the definition of type reproduction number, 

“type” refers to the state of cases at time of their infection, or “epidemiological birth”. In our 

model, we define types of cases as the risk phase at “epidemiological birth”, i.e. time of HIV 

acquisition. Based on the definition, type reproduction number, Ti, describe the number of new 

infections in i risk phase caused by a case who was in i risk phase at HIV acquisition. This 

implies that there are two subpopulations that intervention targeted at whom may be informed by 

type reproduction numbers defined this way. First is susceptible population who is in the risk 

phase of interest. The other is infected population who were in the risk phase of interest at HIV 

acquisition. This is because reducing transmission to susceptible population currently in risk 

phase i always reduce new infections in risk phase i. Such population is a reasonable to target 

since intervention such as pre-exposure prophylaxis (PrEP) usually allocate efforts based on 

susceptible people’s current risk states. The second subpopulation is hard to identify since one 

needs to trace back to the time of HIV acquisition of infected individuals, a strategy which is less 

likely to implement so far. Therefore, the goal of defining type reproduction number this way is 

to explore the potential value of the type reproduction number in informing controls that are 

targeted at susceptible populations who are experiencing the risk phase of interest, e.g. higher 

rate of unprotected sexual contact compared to other susceptible individuals.  

As defined in Roberts and Heesterbeek (2003), type reproduction number, Ti, calculates 

the expected number of new infections of type i caused by a case of type i through all 

transmission routes without intermediate type i new infections.80 In section 2, we used next 

generation matrix approach to calculate,  and , which are type reproduction numbers 

for populations who were in high risk phase at HIV acquisition or in low risk phase at HIV 

acquisition, respectively. However,  and  are both functions of entries of NGM K, 

while each entry of K is complicated a function of risk re-selection rate, ω. Therefore, in this 
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section, we calculate these two type reproduction numbers based on our interpretation of their 

epidemiological meanings given by Roberts and Heesterbeek (2003). 80 

We start with . Based on its definition, it has two components: expected number of 

new infections in high risk phase caused by a case who was in high risk phase at HIV acquisition 

during this case’s entire infection time, and expected number of new infections in high risk phase 

caused by a case who was in high risk phase at HIV acquisition through transmission routes that 

involve cases who was in low risk phase at HIV acquisition during this case’s entire infection 

time. We name the first component as contribution from direct transmission path and the second 

component as contribution from indirect transmission path. In section 3.3., we have obtained the 

contribution from direct path, which is . Therefore, we mainly explain how we calculate 

contribution from indirect path. We start from the simplest condition, which is that a case who 

was in high risk phase at HIV acquisition transmits HIV infection to a case who was infected in 

low risk phase, and result in transmission to new infections in high risk phase.  

 

Figure III- 4. Schematic of paths that generate new infections among two compartments: infected people who 

were in high risk phase at time of infection, , and infected people who were in low risk phase at time of 

infection, . 

 

Fig III-4 illustrates the pathways that generate new infections of each type: high risk phase at 

HIV acquisition, , and low risk phase at HIV acquisition, , where subscript ‘Inf’ 

indicates they refer to the risk phase at time of infection. As shown in Fig.III-4, if a case was in 

high risk phase at HIV acquisition, he entered compartment ‘ ’ through HIV acquisition. We 

refer to this case as case ‘0’, which indicates that he is the zero generation. Case ‘0’ can cause 

new infections among  through pathway ‘1’. In subsection (3.3.), we obtained that expected 

number of new infections generated through this pathway is . In addition, case ‘0’ can also 

first pass infection to compartment  through pathway ‘2’, by transmitting HIV to susceptible 

individuals experiencing low risk. In section 3.3., we have obtained that expected number of new 

infections generated through this pathway ‘2’ is . After infection is passed to compartment 
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, cases in compartment  can immediately passed infections back to compartment ‘ ’ 

through pathway ‘4’, while each case in  causes  new infections in compartment ‘ ’. 

Therefore, the total expected number of new infections in  resulting from case ‘0’ through 

pathway ‘2’->’4’ is . In addition, infection can also be passed within compartment  

for a round i.e. through pathway ‘3’, before ending up in transmission back to . The 

expected number of new infections generated by a case through pathway ‘3’ is . In this 

situation, the transmission route that leads from case ‘0’ to new infections in compartment  

is ‘2’->’3’->’4’. As result, the expected number of new infections in  generated by case ‘0’ 

is . With the same reasoning, we can infer that the expected number of new 

infections in   caused by case ‘0’ through transmission route that involve n rounds of 

transmission within compartment  is . Theoretically, infection can be 

passed on within compartment  for endless rounds. After including all the possibilities, the 

expected number of new infections in compartment  caused by case ‘0’ (who is also infected 

while in high risk phase) through indirect pathway is 

. When 

, we can rewrite this equation as 

.  

 is the sum of contribution from direct path, , and contribution from indirect 

path, , 

 

With the same rationale, we can also obtain the contribution from direct path to , 

, and contribution from indirect path to , , so  is, 
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One may desire to compare formulations of  and  given by equation (3.4.1) and 

(3.4.2) with their formulations given in Section 2, 

 

 

In above expressions, , , , , are the four entries of NGM K. Therefore, it is 

helpful to first understand how , ,  and  are related each entry of NGM K. We 

present NGM K again to better illustrate its relationship with these four variables,  

 

As discussed in Section 2, entry Kij is defined as the expected number of cases who is in i risk 

phase at infection caused by a case who was in j risk phase. We also defined that, the first 

row(column) of K corresponds to being in high risk phase at HIV acquisition, while the second 

row(column) corresponds to being in low risk phase at infection. In section 3.3., we also defined 

 as expected number of cases who were in risk phase p at infection caused by a case who 

was in risk phase q at infection. Such definitions imply that , , 

, . In order to confirm whether these relationships are true, we list 

formulations of , ,  and  and transform them one by one.  

As shown in K, 

. we can 

transform  as follows,  
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According to our calculation in section 3.3., the three terms on right side of equation can be 

transformed as, 

 

 

 

We can obtain, 

 

Similarly, 
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In summary, after some algebra, we found that each entry of NGM K is equivalent to the 

expected number of new infections in risk phase of corresponding row generated by a case who 

was in risk phase of corresponding column:  , , , .  
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If we substitute K entries with each  that they are equivalent to, we can transform the two 

type reproduction numbers as, 

 

 

which match the formulation that we obtain in this section (equation (3.4.1) and equation (3.4.2)). 

This confirms that our derivation of  and based on their epidemiological meanings are 

correct.   

4. Using Type Reproduction Number for Targeted Controls that Reduces Acquisition Risk 

In this section, we explore how type reproduction numbers can be used to inform targeted 

controls to reduce acquisition risk. In subsection (3.4.), we obtain the formulation of the two type 

reproduction numbers,  

 

 

Where subscript ‘ ’ is added behind the risk phase ‘H’ or ‘L’ because that risk phases 

at time of infection are used to category people’s types. As discussed earlier, this is because 

reproduction number describes the expected number of new infections a case generates of his/her 

own type, which is the type at the time of infection, or “epidemiological birth”. We also 

discussed that a population in risk phase p at “epidemiological birth” includes two 

subpopulations: susceptible people who are currently in the risk phase p and can potentially enter 

infection while in risk phase p, and infected people who were infected while in risk phase p. The 

former subpopulation can be potential target population for intervention that reduces 

susceptibility, given that interventions usually assess people’s risk status based on recent or 

current risk behavior rather than risk behavior in the past. However, the later subpopulation can 

be hard to identify because it is hard to assess people’s risk status in the past, especially exactly 

at the time of HIV acquisition. Therefore, in this section, we focus on the former subpopulation 
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and examine how type reproduction numbers may inform control strategies that are targeted at 

them.  

Based on potential risk phase at HIV acquisition, susceptible populations can be 

categorized as those experiencing high risk phase (who will also enter infection while in high 

risk phase), or experiencing low risk phase (who will also enter infection in low risk phase). In 

section 1., we name the first susceptible population as ‘SH’ and the second as ‘SL’. Suppose a 

control strategy is targeted at all ‘SH’ people, and this control strategy can reduce each ‘SH’ 

individual acquisition risk by fraction . Then all transmissions to ‘SH’ individuals will be 

reduced by fraction . Variables that quantify such transmissions include,  and . After 

this control strategy is implemented,  is reduced to  while  is reduced to  

. Then  after this control strategy is implemented,  is, 

 

The critical  to eliminate HIV transmissions is one at which  equals 1. By 

setting , we can solve critical  to eliminate HIV transmissions as, 

 

If this control strategy is targeted at susceptible population who are in low risk phase. 

‘SL’, and suppose that this strategy reduces each ‘SL’ individual acquisition risk by fraction . 

In this case, all transmissions to ‘SL’ individuals will be reduced by fraction . Variables that 

quantify such transmissions include,  and . After this control strategy is implemented, 

 is reduced to  while  is reduced to  . Therefore,  after 

this control strategy is implemented,  is, 
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By setting , we can solve critical  to eliminate HIV transmissions 

as, 

 

As shown by equation (4.1) and (4.2),  is positively associated with  while  is 

positively associated with . One can interpret such relationship in epidemiological context: 

type reproduction number  describes the number of new infections of type i in each generation 

that is necessary to sustain ongoing transmissions. If  is large, there are many new infections of 

type i subpopulation per generation to sustain ongoing transmission, which indicates each type i 

new infection plays a small role in sustaining ongoing transmission. An extreme case would be 

other types of subpopulation alone can sustain ongoing transmission. In this case  becomes 

infinity, each type i new infection has almost zero importance in sustaining ongoing transmission, 

i.e. 1/infinity. In this case, blocking transmissions to type i new infection cannot eliminate 

transmissions. This also implies that in the same transmission system, if  of type i is smaller 

than  of type j, each type i new infection plays a more important role in sustaining ongoing 

transmission than each type j new infection. This sounds counterintuitive, but it is important to 

address that type reproduction number does not quantify the ability of corresponding type of 

population alone to cause onward transmission of. Rather, it is the combination of contribution 

from all types of subpopulation to generating new infections of corresponding type. 

5. Effect of Episodic Risk on Type Reproduction Numbers and Critical Control Efforts of 

Relevant Targeted Controls 

In subsection (3.4.), we derived the formulations of type reproduction numbers as function of 

episodic risk. In this section, we examine how type reproduction numbers change as risk re-

selection rate, ω, varies.  

In subsection (3.4.), we have obtained the formulations of type reproduction numbers as 

function of episodic risk, which are, 
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We also obtained  in subsection (3.3.), which are, 

 

 

 

 

In above four equations,  denote the expected number of new infections in p risk 

phase caused by a case who was in q risk phase at HIV acquisition, while  denotes the 

expected number of new infections in p risk phase caused by a case who stays in q risk phase 

during the entire infection time. That says,  is calculated assuming no episodic risk. Each 

 can be expressed in term, , where  is the probability that a case 

transmits HIV infection when this case has not re-selected contact rate since HIV acquisition. 

Therefore, term  calculates the contribution of transmissions that occur during period 

before first re-selection while  calculates contribution of transmissions that occur 

during period after first re-selection. If s are substituted with their expressions 

,  and  can also be written as, 

 

 

As shown in equation (5.1) and (5.2), both numbers are complicated function of , so are 

also complicated functions of risk re-selection rate, ω, since . 
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However, we can obtain values of  and  under two extreme conditions, ω=0 

and ω->  and gain insight of how increase of ω alters  and  from one level to the 

other level. 

When ω=0, , so type reproduction numbers become their counterparts for 

population without episodic risk, 

 

 

When ω-> ,  approaches zero, so type reproduction numbers under this extreme 

condition are, 

 

 

We denote and as the and  under this extreme condition, respectively, 

 

 

As shown in above equations, heterogeneity of model cases’ contact rates is not reflected 

in and  at all. Instead, a model case’s transmission potential is that expected for 

corresponding population with homogeneous contact rate, H. The only variables that reflect 

heterogeneity of contact rates are  and , which are expected fraction of contacts contributed 

by susceptible individuals in high risk phase or susceptible individuals in low risk phase at 

disease-free equilibrium. Episodic risk does not affect them for two reasons: firstly, calculation 

of type reproduction numbers assumes a case is introduced into a fully susceptible population at 

disease-free equilibrium; secondly, no matter what is the risk re-selection rate, susceptible 
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individuals always re-select contact rate from population distribution at disease-free equilibrium. 

In addition, assortative mixing (quantified by parameter m) is not reflected in   and either. 

As discussed in section 3., this is because as a model case periodically re-selects contact rate 

from population distribution, so the increase in contacts with group of susceptible people due to 

assortative mixing when this case is in one risk phase will be compensated by the decrease in 

contacts with the same group of susceptibles after this case transits to the other risk phase.   

As shown Fig.III-5, as ω increases from zero towards very high level,  gradually 

change from to while  gradually change to  (panel (B) of Fig.III-5, is not plotted 

because when ω=0, high risk subpopulation can sustain ongoing transmission alone, so is not 

epidemiological meaningful).  

 

Figure III- 5. Effect of increasing risk re-selection rate, ω, on type reproduction numbers. In this simulation, 

 ,   , m=0.5,  and . Other 

parameter are set at default values as shown in Table III-2. 

 

In Section 4, we discussed that the critical fractional reduction in acquisition risk of susceptible 

individuals experiencing high risk to eliminate HIV infections, , is a simple function of , 

       (equation (4.1)) 

While the critical fractional reduction in acquisition risk of susceptible individuals experiencing 

low risk to eliminate HIV infections, , is a simple function of , 
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       (equation (4.2)) 

 

Figure III- 6 Effect of increasing risk re-selection rate, ω, on critical fractional reduction in acquisition risk 

of susceptible individuals experiencing high risk, , to reach elimination and critical fractional reduction in 

acquisition risk of susceptible individuals experiencing low risk, , to reach elimination. In this simulation, 

 ,   ,  and , m=0.5. Other 

parameters are set at their default values as shown in Table III-2. 

 

Figure III-6 illustrates how increasing risk re-selection rate, ω, changes the critical 

fractional reduction in acquisition risk of susceptible individuals experiencing high risk to 

eliminate HIV infections, , and its counterpart for susceptible individuals 

experiencing low risk, . As shown in Figure III-6, when ω is zero or relatively 

low  does not show up. This is because when there is slow risk fluctuation, cases who were 

infected in high risk phase at HIV acquisition has high probability of staying in high risk phase 

to transmit HIV infections and have adequate potency to sustain ongoing transmission alone. 

When ω reaches a moderate level (right above 1/year),  becomes epidemiologically 

meaningful. This is because cases who were in high risk phase at HIV acquisition have relatively 

small probability of staying in high risk phase, and cannot sustain ongoing transmission alone. 

When ω is relatively high,  and  are close to each other (Fig.III-6). This is because when 

there is fast risk fluctuation, cases change risk levels shortly after HIV acquisition. During period 

of risk fluctuation model cases periodically select contact rate from population distribution, 
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regardless of risk phase this was case in at HIV acquisition. Therefore, the risk phase that a case 

was in at HIV acquisition has limited impact on cases’ potency of causing onward transmissions.  

In this condition, the fraction of transmission to susceptibles experiencing high risk that needs to 

be blocked to reach elimination, , is more similar as the fraction of transmission to 

susceptibles experiencing low risk that needs to be blocked to reach elimination, .  
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Discussion of Results in Chapter III 

In this chapter, we derived type reproduction numbers for a model with individual risk behavior 

volatility, i.e. episodic risk. We derived their formulations with both next generation matrix 

approach introduced by Roberts and Heesterbeek (2003) and based on their epidemiological 

meanings.80 We showed that the formulations derived with two approaches match each other.  

We demonstrated that increasing individual risk behavior volatility greatly changes type 

reproduction numbers and the critical control efforts of targeted controls that reduces acquisition 

risk to eliminate HIV transmissions. When there is zero or low level of risk volatility, 

elimination may not be achieved by targeting susceptible individuals experiencing low risk. By 

contrast, when there is high level of risk volatility, it requires similar fractional reduction in 

acquisition risk of susceptible individuals experiencing high risk and that of susceptible 

individuals experiencing low risk to reach elimination (Fig.III-6). The mechanism is that as risk 

volatility increases, a case’s potency of causing onward transmissions less depends on the risk 

phase a model case was in at HIV acquisition. When risk volatility is large, model cases have 

large probability of changing risk levels shortly after their HIV acquisition, and periodically 

select contact rate from the population distribution at disease free equilibrium. During period of 

risk fluctuation, a model case’s expected contact rate becomes population average contact rate at 

disease free equilibrium, which is irrelevant of his contact rate at HIV acquisition.  

This is the first time that type reproduction number is formulated for model with 

individual risk behavior volatility. In Henry and Koopman (2015), R0 for model with episodic 

risk is formulated and discussed. A concept “remaining risk heterogeneity effect” is introduced 

in their study, which is defined as the expected fraction of transmission potential attributed to the 
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period before a case’s first risk transition since HIV acquisition. In this chapter, we derived a 

quantity which is formulated in same way as the “remaining risk heterogeneity effect”. We 

define it as the probability that a case transmit HIV infections before changing risk level for the 

first time since HIV acquisition. We found that the two quantifies are essentially the same. In 

another paper by Romero-Severson et al (2014), R0 is formulated for a model with risk volatility 

assuming continuously distributed individual risk states.48 Both study suggest that risk volatility 

can reduce the impact of risk heterogenetiy on the transmission system, which agree with what 

we observe in this chapter.  

In order to illustrate calculation of state probabilities and type reproduction numbers, we 

used two diagrams: transmission diagram and transition diagram. These two diagrams are 

seemingly similar as the life cycle graph that earlier studies use based on graph theory to derive 

R0.
85,86 However, they are fundamentally different. Life cycle graph is an intermediate step 

towards calculating R0. Each node of life cycle graph is treated as one trivial node. During the 

process of calculating R0, each node is eliminated by joining arcs in and out of it, a process 

called graph reduction. The process of graph reduction is visualizing the matrix manipulation 

process that would be less understandable without the graph. By contrast, transmission diagram 

presented in this chapter is used to visualize the transmission routes that contribute to 

formulation of type reproduction numbers. No graph reduction is applied and it is not directly 

related to matrix manipulations either.  

We demonstrated that type reproduction numbers derived based on their epidemiological 

meanings are equivalent to their formulations derived using next generation matrix approach. 

This is not a surprising finding. This is because each entry of next generation matrix calculates 

the expected number of new infections in next generation through each transmission route, which 
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are also the elements that we calculated based on state probabilities. However, formulating type 

reproduction numbers based on state probabilities is more advantageous than using next 

generation matrix approach from two perspectives. Firstly, state probabilities are formulated in 

the way that they can be adapted to model with more stages of infection. By contrast, calculation 

using next generation matrix will be less efficient as number of stage of infection increases. This 

is because that dimensionality of transmission matrix  and transition matrix  are determined 

by the number of stages of infection and risk levels. Secondly, the properties of state 

probabilities and the rules by which they are formulated (section (3.1.) and section (3.2.) in this 

chapter) help clarify the effect of risk volatility on type reproduction numbers which would not 

be revealed by next generation matrix.  
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CHAPTER IV 

Effect of Episodic Risk on the Minimum Effectiveness of Universal Test and Treat and Pre-

exposure Prophylaxis to Eliminate HIV Infections 

 

 

 

Introduction 

Despite increasing efforts to control transmission of HIV, the incidence of HIV infection 

remains stable in the U.S.2,87 Men who have sex with men (MSM) are the risk group in which 

most annual new infections have occurred.  This is the only risk group where incidence is still 

increasing.87–89  

Two biomedical strategies that use antiretrovirals have been recognized as promising 

intervention tools to prevent HIV transmission. One is Pre-exposure prophylaxis (PrEP), where 

HIV negative people use chemoprophylaxis before exposure to HIV. 19 PrEP can efficaciously 

protect individuals from acquisition of HIV infection.22 However, PrEP shows great variation in 

effectiveness: low adherence and reduction in other ways of protection can reduce the 

effectiveness of PrEP.23,24  

Another is treatment as prevention, where treatment of HIV with antiretrovirals prevents 

onward transmission. Among treatment as prevention strategies the most promising and debated 

strategy is universal test and treat (UT&T), which is to get every individual tested and quickly 

treated if he or she is tested HIV positive. Previous study has suggested that testing every 

individual annually and initiating treatment immediately once that individual is tested HIV 

positive can possibly eliminate HIV infections.8 Later studies further explore and discuss the 

promise of UT&T in eliminating HIV infections in various epidemiological context. 10–19  These 

studies indicate that effect of this optimal strategy might be hindered by many factors such as 

insufficient testing, failed linkage to care and decreased retention in care (frequent dropout). 10–19  
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Simulation studies show that episodic risk, a simplified individual risk behavior volatility 

where individuals alternate between high and low risks, can dramatically change level of 

endemic prevalence of HIV and fraction of transmission from acute infection.90 Furthermore, a 

mathematical model analysis shows that the effective treatment rate needed to reach elimination 

can considerably differ when individuals change their risk behavior at different rates.82 However, 

the effect of episodic risk behavior on individual effectiveness of HIV intervention required to 

reach elimination remains understudied.  

Wise allocation of control efforts is an essential step towards elimination of HIV. It is 

believed that prioritizing PrEP efforts to people with high behavior risk is an optimal strategy 

compared to randomly distributing efforts among the whole population. For example, studies 

have shown that concentrating PrEP efforts more on people with the highest risk can result in 

greater averted HIV new infections than randomly distributing similar amount of effort to the 

whole population.38,91 In addition, studies suggested that focusing PrEP efforts on high-risk 

susceptible people would be more cost-effective than general PrEP strategy.38,92 However, these 

analyses assume that a susceptible individual experiencing high risk would remain at the same 

risk level. That entails the assumption that the amount of downstream transmission a susceptible 

individual could cause once infected depends only on current risk behavior and not on future risk 

changes. Our analysis shows why and how this assumption leads to erroneous inferences.  

Motivated by these unanswered research questions, we pursue three study aims in this 

chapter. First, we seek to understand how and why individual risk behavior volatility changes the 

required individual effectiveness of PrEP or UT&T to reach elimination. Second, we seek to 

understand how and why individual risk behavior volatility differentially changes the required 

individual effectiveness to reach elimination when PrEP is focused on susceptible individuals 

who are experiencing high risk and when PrEP is allocated to the general population. Third, we 

analyze how the behavioral or biological characteristics of HIV transmission cause differences in 

how public health agencies should implement PrEP or UT&T. 

Methods 

Formulation of the Episodic-Risk Model with Universal Test and Treat 

We build the model with process of universal test and treat on the basis of model described 

in Chapter III. This is a model that explores effect of episodic risk on required effectiveness of 
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UT&T to eliminate HIV infection, and was introduced by Henry and Koopman (2015).82 In this 

model, the operation of test and treat strategy is abstracted as the process that all infected people 

are tested, recruited and effectively treated at certain rate. We assume that people who are 

effectively treated have their infectiousness permanently reduced to zero.  

 

Figure IV- 1. Conceptual model with contact structure and population composition for analysis in Chapter IV 

A schematic of the model is shown in Fig.IV-1. The letters S, A, and C in the compartment 

labels denote compartments containing subpopulations that are susceptible, at the acute stage of 

infection, and at the chronic stage of infection, respectively. The subscripts H and L denote 

subpopulations with a high or low contact rate, respectively. We assume that all contacts are 

instantaneous and have no partnership duration. Compartments with subscript ‘t’ are added to 

model the process of UT&T treatment. These compartments denote people who are tested and 

effectively treated. We adopt the way of modeling UT&T in Henry and Koopman (2015), which 

is to abstract the entire treatment cascade by a single parameter, τ.82 The parameter τ is defined 

as the rate that people get effectively treated and have their contagiousness permanently reduced 

to zero.  Therefore, infected people can be categorized as either effectively treated or not 

effectively treated. The second group includes people who were not tested, tested HIV positive 

but not linked to care, or linked to care without suppression of virus levels. We assume that 

people who are not effectively treated have the same contagiousness per contact no matter if they 

have been tested or not. We also assume that the series of steps from testing to treatment does 

not induce change in contact rate.  The meaning of each compartment is listed in Table IV-1.  
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Same as in Chapter III, we model assortative mixing by contact rate by allowing individuals 

to make certain fraction (m) of contact with people in the same risk phase, for both people who 

are experiencing high risk or and people with low risk.83 In addition, individuals proportionately 

mix with each other and make (1-m) fraction of their contacts at a general mixing site. If not 

specified, m is set to zero and random mixing is assumed in default setting.  

In Fig.IV-1, arrows between the two patches with grey shade represent the flow of 

individuals between the two risk groups when they change their contact rates. Same as Chapter 

III, we use a single risk change parameter instead of these two risk transition parameters to 

simplify derivation of model variables. Specifically, we adopt the way that Henry and Koopman 

(2015) models episodic risk. It is to specify a single parameter, varying which can change the 

extent to which individual risk is episodic. Such parameter, as introduced by Hendy and 

Koopman (2015), is the rate at which individuals re-select level of risk from the population 

distribution, namely risk re-selection rate (denoted ω). People re-select risk group at certain rate 

(denoted ω), with probability of choosing risk group proportional to the fraction of average time 

people spend in corresponding risk group (  for high-risk subpopulation and  for low-risk 

subpopulation).82 Therefore, the rate of flow from the high-risk to the low-risk subpopulation is 

  and  as the rate of flow in the opposite direction.  

In Fig.IV-1, arrows from a compartment without subscript ‘t’ to one with a subscript ‘t’ 

represent flows due to effective treatment. There is a constant rate of initiating sex, which is also 

the (per capita) rate of leaving the sexually active population due to competing risk, as indicated 

by the two arrows on the top and six arrows going out from the sides, respectively. Arrows 

between compartments with the same risk status indicate infection (from S to A) or progression 

from acute infection to chronic (from A to C). The arrows at the bottom indicate removal from 

the sexually active population due to AIDS. The definitions and defaults for parameters are given 

in Table IV-1.  

Equations of this model are listed in Table AI-1 in section I-i of Appendix I. 

Table IV- 1 Variable symbols, values, units and definitions for Episodic Risk model with 

Test and Treat in Chapter IV 

Compartment Meaning 

 Susceptible subpopulation with high contact rate 

 Susceptible subpopulation with low contact rate 
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 Subpopulation at acute stage of HIV infection with high contact rate 

 Subpopulation at acute stage of HIV infection with low contact rate 

 * Subpopulation at acute stage of HIV infection with high contact rate who are effectively 

treated (continuousness permanently reduced to zero) 

 * Subpopulation at acute stage of HIV infection with low contact rate who are effectively 

treated (continuousness permanently reduced to zero) 

 Subpopulation at chronic stage of HIV infection with high contact rate 

 Subpopulation at chronic stage of HIV infection with low contact rate 

 * Subpopulation at chronic stage of HIV infection with high contact rate who are 

effectively treated (continuousness permanently reduced to zero) 

 * Subpopulation at chronic stage of HIV infection with low contact rate who are effectively 

treated (continuousness permanently reduced to zero) 

*compartments not shown in previous chapters 

Table IV- 2 Parameter symbols, values, units and definitions for model in Chapter IV 

Parameter Value Unit Definition 

 1/40 /year 

Rate of removal from the sexually-active population 

unrelated to HIV. Because we set the equilibrium 

population in the absence of disease to 1, this is also 

the (absolute) rate of entry of new individuals into the 

sexually active population 

 4 /year Rate of transitioning from acute to chronic infection 

 1/10 /year Rate of death from AIDS during chronic infection 

 variable /contact 
Average per-contact transmissibility across both stages 

of infection 

* variable - 

Relative transmissibility of acute stage of infection 

(ratio of per contact transmissibility during acute 

infection over per contact transmissibility during 

chronic infection) 

 
 

/contact 
Per-contact transmissibility during acute stage of HIV 

infection 

 
 

/contact 
Per-contact transmissibility during chronic stage of 

HIV infection 

 variable - 
Fraction of population that is at high-risk phase at 

disease-free equilibrium 

  - 
Fraction of population that is at low-risk phase at 

disease-free equilibrium 

χ variable /year 
Population average contact rate at disease free 

equilibrium 

 variable - 
Ratio of average contact rate at high-risk phase over 

average contact rate at low-risk phase 
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/year Average contact rate in high risk phase 

 
 

/year Average contact rate in low risk phase 

 variable - 
Fraction of contacts reserved for people experiencing 

the same level of risk 

* variable /year Effective treatment rate of universal test and treat 

 variable /year Rate of reselecting risk group  

*parameters not shown in previous chapters 

Model Analysis. The goal of our study is to examine the effect of episodic risk on the minimum 

effectiveness of pre-exposure prophylaxis (PrEP) or Universal test and treat (UT&T) required to 

eliminate HIV infections. We specifically examine the scenarios when UT&T is operated alone, 

when PrEP is operated alone and when UT&T is combined with PrEP.  

To maximize conceptual clarity, we first constrained ourselves to a PrEP strategy that 

either affects the entire susceptible population equally or exclusively affects susceptible 

population who have high contact rate. We name the former strategy as universal PrEP and the 

latter as focused PrEP. At this step of analysis, we assume the whole susceptible population is 

affected by the intervention uniformly. For universal PrEP, we define the individual 

effectiveness as the fractional reduction in average risk of HIV acquisition per contact. Focused 

PrEP reduces the risk of HIV acquisition per contact of every individual experiencing high risk 

equally. We define the individual effectiveness of focused PrEP as a fractional reduction in the 

risk of HIV acquisition per contact of people who are experiencing high risk. For both PrEP 

strategies, we assume equal proportionate effects, so that we can derive model relationships that 

clarify the dynamics behind intervention effects.  

To further relate our analysis with public health control in the real world, we relax the 

above assumptions and allow that PrEP may not cover 100% of the target population. We also 

assume that given a specific coverage, PrEP can be either randomly distributed among the whole 

susceptible population, or prioritized to all susceptible individuals experiencing high risk while 

the remaining efforts are distributed evenly among the rest of population, i.e. susceptible 

individuals experiencing low risk in our model. We name the former as general PrEP strategy 

and latter as high-risk-prioritized PrEP. In addition, we assume that prioritization only happens 
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in terms of coverage. Therefore, we assume either strategy evenly affect the covered individuals. 

Again, we define the individual effectiveness of PrEP (general or high-risk-prioritized) as the 

fractional reduction in risk acquisition per covered susceptible individual. 

Measure of Minimum Required Individual Effectiveness of PrEP to Reach Elimination 

To calculate the minimum required individual effectiveness to reach elimination for universal 

PrEP strategy, we first calculate the threshold measures which quantify the control efforts of 

elimination. For population-targeted PrEP, this measure is R0. It is the expected number of 

secondary cases generated by a case among a completely susceptible population during his entire 

period of infection.66 When R0<1, ongoing transmission cannot be sustained, and elimination is 

thus achieved.  Therefore, for a population with homogeneous contact rate, the minimum 

required individual effectiveness of population-targeted PrEP is the fractional reduction in the 

risk of HIV acquisition per partnership of every susceptible individual, , that reduces R0 to 1. 

By setting that δR0=1, We get that, 

  

We use the formulation of R0 for episodic risk model which is introduced by Henry and 

Koopman (2015). For population with random mixing, R0 for episodic risk model can be 

expressed as, 

 

where H is the R0 expected for corresponding population with homogeneous contact rate, 

χ.  is the variance of population contact rates. Variable ψ is named “remaining risk 

heterogeneity effect” in Henry and Koopman (2015). It calculates the expected fraction of 

transmission potential attributed to the period before a case’s first risk re-selection. The 

formulation of R0 that incorporates assortative mixing has also been derived in Henry and 

Koopman (2015), and that formulation is more complicated. However, after incorporating 

assortative mixing, the basic structure that “remaining risk heterogeneity effect” ψ controls the 

extent to which ratio  boosts value of R0 still holds. In Chapter III, we have also derived 

variable ψ as the probability that a case transmits HIV when this case has not re-selected contact 

rate yet. Although we derive and discuss this variable as probability, it is essentially the same as 
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the “remaining risk heterogeneity effect”. This is because we both did the formulation and 

interpretation in the mean field framework.  

For PrEP strategy targeted at susceptible people at a specific risk level, we calculate the 

measure of control efforts to eliminate diseases for interventions targeted at a subset of 

population. Such measure is introduced by Roberts and Heesterbeek (2003) and is named the 

type reproduction number.80 As suggested by Roberts and Heesterbeek (2003), type reproduction 

number for host of type i, , calculates the expected number of new infections of type i that a 

type i case generates through all possible transmission chains with no intermediate type i new 

infection when that case is introduced into a susceptible population. In Chapter III, we have 

formulated type reproduction numbers for the episodic risk model. In Chapter III, we also found 

that the minimum required individual effectiveness of an intervention strategy that is targeted at 

every suscepetible individuals experiencing high risk, δH is,  

 

Where  is the type reproduction number of population who are in high risk phase at HIV 

acquisition. Such population include susceptible individuals experiencing high risk (who will 

enter infection while in high risk phase). Therefore,  can be used to calculate the minimum 

required individual effectiveness of PrEP targeted at susceptible individuals experiencing high 

risk. We include formulation of  in the section I-ii of Appendix I.  

 

Measure of Minimum Required Individual Effectiveness of PrEP to Reach Elimination 

Given a Fixed PrEP Coverage 

As before, we assume that general PrEP and high-risk-prioritized PrEP may not cover the whole 

susceptible population. Therefore, we first need to specify the coverage of both strategies, which 

we denote κ. When general PrEP can reach fraction κ of the susceptible population, the 

acquisition risk of the susceptible population decreases by fraction κδg, where δg is the fractional 

reduction in acquisition risk per covered individual. Therefore, the minimum required individual 

effectiveness of general PrEP to reach elimination, is the level of δu at which R0 equals 1. By 

setting R0(1- κδg)=1, we get that δg=(1-1/ R0)/ κ.  
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Furthermore, as before, we assume that high-risk-prioritized PrEP will first cover all 

susceptible individuals experiencing high risk, and then allocate the remaining efforts randomly 

among the susceptible individuals experiencing low risk. Therefore, to calculate its minimum 

required individual effectiveness to eliminate HIV infections, we need to know how many low-

risk susceptible individuals can be covered by the remaining PrEP efforts. This requires 

knowledge of prevalence of susceptible individuals experiencing each level of risk. To simplify 

the analysis, we assume that epidemic has reached endemic equilibrium before implementation 

of PrEP. Therefore, we simulate the model until endemic equilibrium and record the fraction of 

susceptible individuals experiencing high risk or low risk, denoted as psh and psl, respectively. 

Thus, after high-risk-prioritized PrEP allocates effort to all susceptible individuals experiencing 

high risk, the remaining PrEP efforts can cover κ- psh, of the susceptible population. This results 

in (κ- psh)/ psl fraction of susceptible individuals experiencing low risk who are covered. With 

coverage of each susceptible subpopulation specified, we find the fractional reduction in risk 

acquisition per covered susceptible individual that reduces R0 to 1, δhp. Given that two 

subpopulations are unevenly affected, δhp cannot be expressed as a concise function of 

reproduction numbers. Therefore, we resort to numerical simulation to solve it.  

Note that general PrEP and high-risk-prioritized PrEP become less different as the 

coverage of PrEP increases. This is because with high coverage, high-risk-prioritized PrEP can 

also cover most susceptible individuals who are experiencing low risk. These two strategies are 

same when PrEP can cover all susceptible individuals. 

The target population and minimum required individual effectiveness of the four PrEP 

strategies (universal, focused, general and high-risk-prioritized) are summarized in Table IV-3.  

Table IV- 3 Type of PrEP Strategies, corresponding target population and minimum 

individual effectiveness to eliminate HIV infections examined in Chapter IV 

Type of PrEP 

strategies 

Target population Minimum individual effectiveness 

to eliminate HIV infections 

Universal PrEP The whole susceptible population 1-1/R0 

Focused PrEP Susceptible people who are 

experiencing high risk   

General PrEP Randomly selected susceptible 

individuals with given coverage of 

(1-1/R0)/κ* 
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PrEP 

High-risk-prioritized 

PrEP 

All susceptible individuals who are 

experiencing high risk and 

randomly selected susceptible 

individuals who are experiencing 

low risk with given coverage of 

PrEP 

Numerical simulation 

*coverage of PrEP strategy 

 

Results 

Results are divided into five sections. The first section presents the results when UT&T is 

implemented alone. The second section presents results when universal PrEP is implemented 

alone. The third section presents that how episodic risk differently affect universal PrEP and 

focused PrEP when they are implemented alone or combined with UT&T. The fourth section 

presents the results for the scenario that general PrEP or high-risk-prioritized PrEP are combined 

with UT&T. The fifth section presents how some model parameters changes effects of episodic 

risk on the individual effectiveness required to reach elimination of PrEP and UT&T. 

 Effect of Episodic Risk on Minimum Required Effective Treatment Rate of Universal Test 

and Treat to Reach Elimination 
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Figure IV- 2 Effect of risk re-selection rate, , on minimum required effective treatment rate of universal test 

and treat to eliminate HIV, τe. 

As shown in Fig.IV-2, episodic risk has different effects on endemic prevalence (green curve) 

and the minimum effective treatment rate to reach elimination, τe, (blue curve). As the rate at 

which individuals re-select their risk behavior category, , increases, endemic prevalence first 

increases and then decreases while τe decreases greatly. To understand the different effect of 

episodic risk on τe and endemic prevalence, first consider how episodic risk changes R0. As 

suggested by Anderson and May, for a homogeneous population, the effective contact rate is the 

average contact rate.66 As contact rate becomes heterogeneous, the effective contact rate that 

contributes to  becomes the sum of average contact rate and ratio of variance in contact rate 

over average contact rate.66 Therefore, risk heterogeneity increases  from its expected value 

for a homogeneous population. However, the Anderson and May analysis assumes that cases do 

not change their risk levels. When individuals change risk status, there is a decreased correlation 

between the current risk level of cases and their risk level at time of HIV acquisition. Hence, the 

effect of  risk heterogeneity that increases  decreases.82  The faster individuals change risk 

level, the less likely cases are to stay at the risk level where they acquired HIV, and the less risk 

heterogeneity boosts value of . Consequently, at higher value of ,  is lower and a lower 

effective treatment rate is needed to reduce  to 1.  

Although the effects of this reduction on the endemic prevalence are somewhat more 

complicated, they are broadly similar, with the result that a sufficiently high risk re-selection rate 

can reduce the endemic prevalence as well. The second aspect of episodic risk on the 

transmission system is that when an individual’s risk alternates between high and low levels over 

time, high-risk susceptible people who have become infected can be replaced by new susceptible 

people transitioning into the high-risk group from the low-risk group. In contrast to a population 

with static contact heterogeneity, this acts as an additional source of new high-risk susceptible 

people and alleviates the saturation of infection among high-risk subpopulation. The more 

volatile risk behavior is, the more the infection saturation is alleviated, and the less endemic 

prevalence is suppressed due to contact heterogeneity.  Therefore, when ω is relatively low, 

increase in ω results in reduced infection saturation which boosts level of endemic prevalence. 

As ω becomes sufficiently high, it causes noticeable reduction in overall transmission potential 
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and reduces the endemic prevalence. As result, endemic prevalence first increases and then 

decreases when ω increases from zero to 10/year.  

Effect of Episodic Risk on Minimum Required Individual Effectiveness of Universal PrEP 

to Reach Elimination 

 

 

Figure IV- 3 Effect of risk re-selection rate, , on minimum required individual effectiveness of universal 

PrEP strategy to eliminate HIV, , and level of prevalence at endemic equilibrium. 

Fig.IV-3 illustrates how episodic risk differently changes the minimum individual 

effectiveness of universal PrEP to reach elimination, 1-1/R0 (dashed curve) and prevalence at 

endemic equilibrium (solid curve). As shown in Fig.IV-3, when ω is low, 1-1/R0 is relatively 

high but endemic prevalence is relatively low. When ω reaches about 10/year, these two 

quantities become almost equal. To understand such phenomena, consider how episodic risk 

affects the transmission system. As mentioned, episodic risk reduces the extent to which risk 

heterogeneity boosts R0. On the other hand, episodic risk changes endemic prevalence from two 

perspectives: it alleviates infection saturation within the high-risk subpopulation and reduces the 

extent to which risk heterogeneity increases overall transmission potential. Therefore, essentially 

episodic risk reduces the impact of risk heterogeneity on the transmission system. Consequently, 

as ω increases endemic prevalence and 1-1/R0 both converge to their expected levels for a 

homogeneous population. In a homogeneous population, the level of endemic prevalence, p, 
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equals the minimum coverage of vaccination to reach elimination i.e. p=1-1/R0. 
45 Consequently, 

p and 1-1/R0 gradually approach each other when ω increases.  

Effect of Episodic Risk on Minimum Required Individual Effectiveness of Focused PrEP 

Strategy to Reach Elimination.  

  

Figure IV- 4 Effect of risk re-selection rate, , on minimum required individual effectiveness to eliminate 

HIV of high-risk-focused PrEP strategy (dashed curve) and universal PrEP strategy (solid curve). 

 

Fig.IV-4 illustrates how change in risk re-selection rate, ω, differently alters the minimum 

individual effectiveness to reach elimination of focused PrEP and universal PrEP. As shown in 

Fig.IV-4, as  increases the minimum individual effectiveness of high-risk focused PrEP needed 

to eliminate HIV infection, , increases while the minimum individual effectiveness of low-risk 

universal PrEP needed to eliminate HIV infection, 1-1/R0, decreases. When there is no episodic 

risk, i.e. ω=0, 1-1/R0 is about 0.64 while  is about 0.9. This indicates that when ω=0, HIV 

infections can be eliminated by 64% reduction in acquisition risk of every susceptible individual 

or by 90% reduction in acquisition risk of susceptible individuals who are experiencing high risk. 

In other words, 90% of susceptible individual experiencing high risk contributes 64% of overall 

transmission potential. As ω increases,  becomes increasingly higher than 1-1/R0. This 

indicates that a higher percentage of susceptible people experiencing high risk contributes a 
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lower percentage of overall transmission potential. That says, as ω increases each susceptible 

individual who is experiencing high risk has decreased contribution to overall transmission 

potential. The mechanisms behind these effects can be appreciated by realizing that when there is 

episodic risk, i.e. nonzero ω, cases only stay at the risk level at their HIV acquisition until they 

re-select a new risk level and cycle between risk states (as illustrated in Fig. IV-1). During this 

period, all cases re-select contact rates from the population distribution (high contact rate at 

probability fH and low contact rate at probability fL) at the rate ω, regardless of their contact rates 

at HIV acquisition. Therefore, cases who were at high risk at HIV acquisition only have elevated 

transmission potential during the period before first risk re-selection. As ω increases, cases spend 

less time before first risk re-selection. As result, the potential contribution of susceptible 

individuals experiencing high risk to ongoing transmission less surpass that of susceptible 

individuals experiencing low risk. As result, increase in ω reduces the potential contribution of 

high risk susceptible individuals to ongoing transmission.   

 

Effect of Episodic Risk on Minimum Required Individual Effectiveness of PrEP to Reach 

Elimination-Combined With Universal Test and Treat 

 

Figure IV- 5 Effect of risk re-selection rate, , on minimum required individual effectiveness of universal 

PrEP to eliminate HIV,   , and effect of  on minimum required individual effectiveness of high-risk-

focused PrEP, 1-1/TH, at different effective rates universal test and treat, . 
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Fig.IV-5 shows that as the effective treatment rate, , increases from 0 to 0.5/year, it 

considerably lowers the minimum individual effectiveness needed to reach elimination of the 

universal PrEP, , and the minimum individual effectiveness needed to reach elimination of 

the focused PrEP, δH. That is because UT&T strategy shortens the duration of infectious period 

and reduces overall transmission potential. Therefore, increase in τ causes both quantities to drop 

to zero at a lower value of , beyond which elimination can be achieved by UT&T alone.   

In addition, Fig.IV-5 shows that the effect of episodic risk ( ) on the minimum 

individual effectiveness needed to reach elimination of both PrEP strategies (  and δH) is 

strong at all levels of τ. However, as  increases, the gap between  and δH decreases. As 

discussed for Fig.IV-5, this gap is determined by the contribution of high risk susceptible 

individuals to ongoing transmission: a higher contribution leads to a smaller gap. Therefore, this 

indicates at higher τ episodic risk less reduces the contribution of high risk susceptible 

individuals to overall transmission potential. This is because UT&T acts as a competing cause 

for cases to leave infection period. As the effective treatment rate, τ, increases, cases are more 

likely to be treated before their first risk re-selection.  This causes episodic risk to have smaller 

impact on the transmission system.  

 

Effect of Episodic Risk on Minimum Required Individual Effectiveness of PrEP to Reach 

Elimination When Combined with Universal Test and Treat Given Fixed PrEP Efforts  

In previous sections, our analysis has been focused on the scenarios when PrEP universally 

affects everyone or only affects susceptible individuals experiencing high risk. However, they 

are not comparable because they require very different amount of efforts.   In the real world, 

choosing an optimal strategy is constrained by amount of available control efforts. Therefore, to 

incorporate the control efforts, we define two additional PrEP strategies: general PrEP and high-

risk-prioritized PrEP. As mentioned, the former is PrEP strategy that randomly reach and affect 

susceptible individuals, and the latter is PrEP strategy that first cover all susceptible individuals 

experiencing high risk and randomly distribute the rest of efforts among the rest of susceptible 

population (who are experiencing low risk in our model).  When comparing these two strategies, 
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we fix the coverage of PrEP strategy and compare the required individual effectiveness of either 

strategy to reach elimination. As mentioned in the method section, we assume that either PrEP 

strategy has equal proportionate effect on the acquisition risk of covered individuals. For this 

part of analysis, we resort to numerical simulation to find the required individual effectiveness of 

either PrEP strategy to reach elimination. As an exemplifying analysis, we first set the coverage 

at a moderate level: 50% of susceptible population. Then we vary this coverage and see how 

changing coverage modifies our observation.  

 

Figure IV- 6 Effect of risk re-selection rate, , on minimum required individual effectiveness to eliminate HIV given 

general PrEP (solid lines) or high-risk-prioritized PrEP (dashed lines), at different effective rates universal test and treat, 

, given that PrEP can cover 50% of the susceptible population.  

Fig.IV-6 illustrates that at all levels of UT&T operation, change in risk re-selection rate, 

ω, can greatly change the minimum individual effectiveness to reach elimination of general PrEP 

and high-risk-prioritized PrEP, respectively, when PrEP can cover 50% of susceptible 

popoualtion. In addition, at every level of τ, increase in ω reduces the difference in the minimum 

required individual effectiveness to reach elimination between the two PrEP strategies (compare 

solid line with dashed line with the same color in each panel of Fig.IV-6). This indicates that for 

epidemics with higher ω prioritizing PrEP efforts to susceptible individuals experiencing high 

risk makes smaller difference in the minimum individual effectiveness to reach elimination. The 

reason was discussed for results shown in Fig.IV-5: when there is episodic risk, cases only stay 

at the risk level at their HIV acquisition before their first risk re-selection. Therefore, the reduces 
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the potential of susceptible individuals experiencing high risk to cause onward transmission. As 

ω increases, cases spend less time before first risk re-selection, the amount of downstream 

transmission susceptible individuals experiencing high risk can cause less surpass that of the rest 

of susceptible population. Therefore, given a fixed amount of PrEP efforts, prioritizing PrEP 

efforts to high-risk susceptible people or not would make a smaller difference in the required 

individual effectiveness to reach elimination.  

Fig.IV-6 indicates that public health decisions of planning combination of UT&T and 

PrEP can greatly differ among population with different risk re-selection rate, ω. When ω is 

relatively low, it is more necessary to combine UT&T with PrEP to eliminate HIV infections 

(nonzero required individual effectiveness of PrEP to reach elimination). Furthermore, PrEP 

efforts should be prioritized to susceptible people experiencing high risk since it will 

considerably lower the required individual effectiveness to reach elimination (compare dashed 

curves with solid curves at left side of Fig.IV-6). By contrast, when ω is relatively high it is more 

likely that UT&T alone can eliminate HIV infections (red curves or magenta curves disappear at 

right side of Fig.IV-6 because at this range of ω UT&T alone can reach elimination when 

effective treatment rate is or above 0.3/year). In addition, when UT&T is not sufficient to 

eliminate HIV infections, i.e. τ=0.1/year, it can be combined with either high-risk-prioritized 

PrEP or general PrEP since two strategies require similar level of individual effectiveness to 

reach elimination (such as part of blue lines on the right side of Fig.IV-6). Choosing the best 

combination strategy in the real world also involve evaluation of cost and other types of input. 

However, the results in Fig.IV-6 indicate that impact of episodic risk should not be ignored in the 

early stage of planning public health intervention.  

In section II-i of Appendix I, we vary the PrEP coverage from 5% to 90% and repeat the 

above analysis. Our results indicate that the fact that increase in ω reduces the difference in the 

minimum individual effectiveness to reach elimination of the two PrEP strategies does not 

change as we vary the coverage of PrEP (Fig.AI-1).  However, such effect is less pronounced 

when the PrEP coverage is low or high (Fig.AI-1). This is because when PrEP can only cover a 

small fraction of susceptible people i.e. 5%, general PrEP miss most susceptible individuals 

experiencing high risk and has limited impact on overall transmission potential. Therefore, at 

most values of ω it is impossible to use general PrEP to reach elimination (Fig.AI-1). On the 
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other hand, when coverage of PrEP is high, i.e. 90%, general PrEP can also affect large portion 

of susceptible individuals experiencing high risk (Fig.AI-1). Therefore, the minimum individual 

effectiveness to reach elimination will be similar between the two PrEP strategies, regardless of 

individual risk behavior volatility.  

Sensitivity Analysis. In section II-ii and section II-iii of Appendix I, we examine how changing 

behavioral or biological characteristics of HIV transmission modify our observations. Our results 

indicate that generally our conclusion holds as we vary the model parameter settings. However, 

there are several interesting phenomena worth noting.  

Firstly, level of risk heterogeneity and assortative mixing may affect our observations 

from two perspectives. On one hand, increase in level of risk heterogeneity or degree of 

assortative mixing causes a stronger mixing within high-risk subpopulations.  Therefore, 

prioritizing PrEP efforts to susceptible individuals experiencing high risk can more efficiently 

reduce the transmission potential and require a more lowered individual effectiveness to reach 

elimination than general PrEP. Such advantage is also less affected by individual risk behavior 

volatility (Fig.AI-8 and Fig.AI-9 in section II-iii of Appendix I). On the other hand, increase of 

high-to-low contact rate ratio and higher degree of assortative mixing causes risk heterogeneity 

to play a more important role in determining R0. Thus, for population with higher contact rate 

ratio of greater degree of assortative mixing, episodic risk has greater impact on the minimum 

required individual effectiveness to reach elimination of universal PrEP, 1-1/R0, and the 

minimum required effective treatment rate of UT&T to reach elimination, τe (Fig.AI-2, Fig.AI-3, 

Fig.AI-4 and Fig.AI-5 in section II-ii of Appendix I).  

Secondly, if a higher fraction of transmission potential is attributed to acute stage of 

infection episodic risk will less affect 1-1/R0 (Fig.AI-6 in section II-ii of Appendix I). In addition, 

the benefit that prioritizing PrEP efforts to susceptible individuals experiencing high risk can 

considerably lower individual effectiveness to eliminate HIV infections is also more robust to 

individual risk behavior volatility (Fig.AI-10). This is because cases are less likely to re-select 

risk groups at earlier stage of infection than later stage of infection. Therefore, if more 

transmission potential concentrate at acute HIV infection episodic risk will have smaller impact 

on the transmission system.  
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Discussion of Results in Chapter IV 

 

Summary of Findings 

This chapter takes the first step to examine how and why individual risk behavior volatility 

changes the level of individual effectiveness of PrEP or UT&T to eliminate HIV transmissions.  

We have shown that individual risk behavior volatility reduces the effect of risk 

heterogeneity on a transmission system. As result, increase in individual risk behavior volatility 

causes R0 and prevalence at endemic equilibrium to both converge to their values expected for a 

homogeneous population. Specifically, at low individual risk behavior volatility, R0 is high while 

endemic prevalence is low, and this reverses at high individual risk behavior volatility. As result, 

for system with higher individual risk behavior volatility, it is more likely that elimination can be 

reached with UT&T alone. By contrast, for system with lower individual risk behavior volatility, 

elimination may require combination of UT&T and PrEP. We have shown that such impact is 

stronger when the population has higher level of risk heterogeneity or higher degree of 

assortative mixing.  

We also demonstrated that individual risk behavior volatility can reduce the importance 

of susceptible individuals experiencing high risk in sustaining ongoing transmission. As result, 

for system with low individual behavior risk volatility, efforts of PrEP should be prioritized to 

susceptible individuals experiencing high risk to reduce the required individual effectiveness to 

reach elimination. However, for system with higher individual risk behavior volatility, 

prioritizing PrEP efforts to high risk susceptible individuals or not make little difference in 

required individual effectiveness to reach elimination. We found that such effect gets weaker for 

population with higher level of risk heterogeneity or higher degree of assortative mixing.  

Our study demonstrates that when a greater fraction of transmission potential is attributed 

to acute HIV infection, individual risk behavior volatility less impacts the transmission system. 

This is because transmission from earlier stage of infection are less likely to be affected by 

individual risk behavior volatility. On the other hand, increase in intensity of UT&T operation 

may also reduce such impact since more cases will be treated before they change risk levels.  
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Rationale for the Model Simplification and How Greater Realism Might Affect the Major 

Findings 

In order to illustrate the underlying mechanism of effect of individual risk behavior volatility on 

the transmission system, we use highly simplifying assumptions. First, we assume that individual 

risk behavior is dichotomous, which makes it possible to examine PrEP strategy focused on a 

single risk group. In the real world, distribution of individual risk behavior is continuous. 

Romero-Severson et al (2014) uses a model with continuously distributed risk behavior and 

found that increase in individual risk behavior volatility can decrease R0 .
48 This agrees with the 

observation in our model. However, there has not been studies on effect of individual risk 

behavior volatility on focused strategies for population with more continuously distributed 

individual risks. We infer that incorporating continuously distributed individual risks may 

quantitively change our results regarding effect of individual risk behavior volatility on focused 

PrEP strategies, but would not change our mechanic conclusions.  

Secondly, we assume that partnerships are instantaneous events that are randomly formed 

between individuals instead of ongoing relationships. Such assumption enables us to 

algebraically analyze effect of individual risk behavior volatility on the reproduction numbers. 

However, it is unrealistic in two aspects. Firstly, by assuming instantaneous partnerships we 

exclude the possibility of concurrent partnership. However, partnership concurrency has been 

observed among MSM population and is found to be a major cause of high HIV prevalence in 

certain MSM subgroups.43,93–96 Therefore, allowing partnership to be enduring and concurrent 

can modify our conclusion. For example, spread of infection may less depend on people with 

high partner change rate but more on people with high number of concurrent partners. Secondly, 

partnerships may not form randomly. Studies suggest that factors such as age, race and sero-

status can also affect the probability that two individuals form a partnership.97–99 Therefore, if 

people have high tendency to choose partner who share a specific characteristic, transmission 

will be largely confined within such subgroups. Therefore, relaxing the assumption in either 

aspect may cause risk heterogeneity to have less impact on the transmission system. Thus, 

individual risk behavior volatility may also have less impact on the transmission system. This 

needs to be explored in the future study.  

Related Research on UT&T and PrEP Effects 
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Our study differs from previous studies which explore the advantage of focused PrEP from two 

perspectives. Firstly, previous studies suggest that targeting susceptible individuals experiencing 

high risk is optimal compared to allocating PrEP to the general population.25,26,38,91,92,100 The 

underlying assumption is that all individuals remain at the same level of risk throughout their 

sexually active life. Therefore, our study shows that this is not true given individual risk behavior 

volatility. The population impact of high-risk focused PrEP could be overestimated if individual 

risk behavior volatility exits but is not considered. Secondly, the outcome of PrEP strategies is 

usually measured by cost-effectiveness or amount of downstream infection prevented per target 

individual while no single prevention goal is specified. In contrast, we set the prevention goal as 

elimination and examine the minimum required effectiveness to reach this goal. We argue that 

the minimum required effectiveness to reach elimination is important to evaluate in addition to 

the total control efforts because it helps single out the strategies that need a reasonable level of 

individual effectiveness to eliminate HIV infections.    

Studies have been exploring the benefit of combining ART treatment and PrEP in 

preventing HIV infection.25,36,37,101–104 Our study provides two new perspectives for this field of 

research. Firstly, we show that risk volatility reduces R0. Therefore, how necessary it is to 

implement PrEP in addition to UT&T needs to be assessed with knowledge of individual risk 

behavior volatility. Secondly, studies using mathematical models indicate that combining PrEP 

and test and treat strategy is better than using either alone.35,36,105 This is because they can reach 

two distinct subpopulations: infected people and susceptible people. However, our study 

indicates that the synergy between these two could be more complicated given individual risk 

behavior volatility. Such synergy is that increase in intensity of UT&T operation can cause more 

cases to be treated before they change risk levels. Therefore, scale-up of UT&T makes the 

population effect of PrEP strategies to be less affected by individual risk behavior volatility. Such 

phenomenon has not been discussed in earlier studies. It also implies that evaluation of 

individual risk behavior volatility may be necessary not only before UT&T implementation, but 

also during the operation or scale-up of UT&T.  

 

Related Research on Individual Risk Behavior Volatility  
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Effect of individual risk behavior volatility on transmission of HIV has been explored in several 

earlier studies. In our earlier work, we used the simulation from a deterministic model to show 

that episodic risk can greatly change the fraction of transmission from acute infection.23  A study 

by Henry and Koopman (2015) use the same model as one used in this chapter and identified that 

individual risk behavior volatility can considerably alter the required effort of universal test and 

treat to eliminate HIV infections.24  Romero-Severson et al (2013) used a stochastic model and 

found that individual risk behavior volatility can increase the level of endemic prevalence and 

proportion of acute infectors.106 Although each study analyzes effect of individual risk behavior 

volatility on HIV transmission from a unique perspective, they all support the importance of 

understanding the individual risk behavior volatility on guiding the HIV intervention.  

The phenomena that individuals risk behavior fluctuates over time has been observed 

from empirical data collected among MSM population.45,46 Factors that possibly induce change 

in individual risk behavior can be found in real world. For example, episodes of unprotected 

sexual activity induced by substance use, transition in between periods within partnership and 

periods without partners, or change in social context of partnerships.107–109 Any factor or 

combination of them would cause variation in individual risk behavior over time. Therefore, the 

assumption that individuals keep their risk behavior constant over the entire sexually active life 

is unlikely given these factors.  

Implications For Public Health Practice 

Our study indicates that the ease of test and treat strategy to eliminate HIV infection among 

MSM population cannot be accurately estimated without investigating individual risk behavior 

volatility. For example, Granich et al suggested that HIV would be eliminated when everyone is 

tested annually and immediately treated once diagnosed HIV positive. 8 Another strategy 

proposed to eliminate HIV infections is 90-90-90 strategy, which suggests that 90% of infected 

population get tested, 90% of those confirmed HIV positive get treated and 90% of those treated 

have their infectiousness successfully reduced to zero.29 This strategy indicates that HIV will be 

eliminated when about 73% infected people gets successfully treated. However, our study 

indicates that whether either strategy will work for MSM population cannot be determined unless 

the level of individual risk behavior volatility is well understood.  
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Furthermore, our study demonstrates that before planning allocation of PrEP efforts, it is 

crucial to understand the risk composition of the target population. If individual risk behavior 

volatility is neglected, heterogeneity due to individual risk behavior volatility will be erroneously 

attributed to risk heterogeneity at population level. This will lead to overestimation of the 

population-level effect of targeting susceptible people experiencing high risk. In reality, 

prioritizing PrEP resource to susceptible people who are experiencing high risk requires 

additional efforts than randomly assigning PrEP resource. For example, before prioritization it 

might be necessary to screen HIV negative individuals who are at high risk through risk 

assessment.110,111 In addition, promoting use of PrEP during high risk period require adherence 

monitoring specifically around the high risk episode.112–115 Therefore, when individual risk 

behavior volatility exists, the population effect of focused PrEP decreases but demands for other 

efforts persists. In this case, it becomes more important to evaluate the actual benefits of 

prioritizing PrEP efforts to people who are experiencing high risk.  

It is important to note that our study focuses on population effect of PrEP strategy instead 

of individual level effect. Therefore, we acknowledge that using PrEP at period of high risk is 

always an important strategy to reduce one’s risk of HIV acquisition.  

Potential Effects of Our Simplifying Assumptions 

In our model, we assume that if PrEP is targeted at a specific risk phase, it would not affect that 

individual’s acquisition risk after he transits to the other risk phase. How well such assumption 

applies to PrEP in the real world depends on how PrEP is delivered. There are two types of PrEP 

based on the time frame of delivery. One is event-driven PrEP, a strategy that HIV negative 

people use antiretroviral medicine before and after unprotected sexual contact.116 Another is 

time-driven PrEP, a strategy that HIV negative people continuously use antiretroviral medicine 

to maintain risk of HIV acquisition at a low level.117 Our study can naturally apply to the event-

driven PrEP. For our analysis to apply to time-driven PrEP, we need to assume that prevention 

effect of time-driven PrEP is limited within the period of risk behavior that PrEP is targeted at. 

This appears to be a valid assumption because effectiveness of PrEP is highly correlated with 

adherence.118 Therefore, promoting adherence to PrEP while an individual has a specific level of 

risk has little impact on that individual’s acquisition risk after that individual transits to another 

risk level. However, several conditions may make this assumption less valid. For example, 
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individuals may reduce their risk behavior due to increased awareness.119 That says, once people 

get PrEP intervention, they may reduce risk behavior as adjustment regardless of whether they 

have changed risk levels or not. This would increase the population effect of focused PrEP but 

reduce the extent to which individual risk behavior volatility modifies population effect of PrEP.  

Directions for Future Studies 

There are several directions in which future research could explore impact of individual risk 

behavior volatility on HIV transmission in addition to our study. One possible direction would be 

to explore effect of individual risk behavior volatility on focused controls for population with 

continuously distributed behavior risk. which could be done with stochastic models. Future 

research could also explore effect of individual risk behavior volatility on HIV transmission by 

allowing partnerships to be ongoing and concurrent. In addition, future study may also integrate 

individual risk behavior volatility into more specific network of MSM population and explore its 

impact on HIV transmission.  

Conclusions 

The major message that we want to convey through our study is that individual risk behavior 

volatility, an understudied phenomenon that has been observed among MSM population, can 

have dramatic impact on HIV transmission. On one hand, it can alter the required individual 

effectiveness of UT&T or PrEP strategies to eliminate HIV infections. On the other hand, it can 

reduce the population effect of prioritizing PrEP efforts to susceptible individuals experiencing 

high risk. Therefore, it is necessary to evaluate the level of individual risk behavior volatility 

before planning the allocation of efforts of the two biomedical prevention strategies among the 

MSM population.  
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CHAPTER V 

Detecting Signal of Individual Risk Behavior Volatility from HIV Phylogenetic Trees 

 

 

 

Introduction 

Despite increasing efforts to control transmission of HIV, the incidence of HIV infection 

remains stable in the U.S.2,87 Men who have sex with men (MSM) are the risk group in which 

most annual new infections have occurred.  This is the only risk group where incidence is still 

increasing.87–89  

Making the correct inference of what drives the transmission of HIV among MSM 

population is the key step before planning intervention strategies. Accurate inference not only 

relies on sufficient data but also a good understanding of the how each characteristic revealed by 

the data affects HIV transmission. Given the complexity of HIV transmission, this can only be 

done with help of mathematical models. Studies using mathematical models have well explored 

many behavioral characteristics of MSM population that are potential determinant of the intense 

transmission and high prevalence of HIV among MSM population43,95,113,120,121. However, 

individual risk behavior volatility, a phenomenon that individuals risk fluctuates over time, has 

been observed among MSM population but is understudied. Studies using mathematical models 

indicate that individual risk behavior volatility can considerably change R0, prevalence at 

endemic equilibrium and contribution of acute infection to ongoing transmission.48,82,90,106 

Furthermore, studies also suggest that individual risk behavior volatility can have strong impact 

on population effectiveness of HIV intervention.  The analysis by Henry and Koopman (2015) 

indicate that episodic risk, a simplified version of individual risk behavior volatility, can reduce 

the required effort of universal test and treat strategy to eliminate HIV infection.82 In our earlier 

study, we found that individual risk behavior volatility can reduce the population effect of PrEP 

that is targeted at susceptible individuals experiencing high risk (Chapter IV). 
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Furthermore, these studies show that risk volatility can still strongly affect HIV 

transmission when population has fixed heterogeneity of contact rate, same level of stage-

specific transmissibility and same degree of assortative mixing.82,90,106 This indicates that data 

about biological and behavior characteristic of HIV transmission cannot inform the level of 

individual risk behavior volatility and its population impact. Consequently, it is imperative to 

explore what type of data can improve the identifiability of risk volatility. As the amount of HIV 

sequence data grows, HIV sequence becomes an increasingly important data source for public 

health interventions. The advantage of HIV sequence data is that evolution of HIV virus occurs 

on the same timescale of HIV transmission. This makes it possible to infer the transmission 

dynamics of HIV from HIV sequence data.122 Mathematical studies suggest that phylogenetic 

tree can reveal the contact structure of the population.59,123,124 Phylodynamic studies, a field of 

study that combine behavioral data, surveillance data and phylogeny to estimate important 

epidemiological parameters, suggest that phylogeny of HIV sequence can inform the intensity of 

transmission, and tendency that the transmission occurs in a certain cluster.50,52,53,59,125  

Motivated by these early findings, we hypothesize that the population impact of 

individual risk behavior volatility can be detected from HIV phylogeny. In this Chapter, we take 

the first step to test this hypothesis. Specifically, we aim to answer two research questions in this 

study: 1) what are the likely mechanisms that individual risk behavior volatility affects HIV 

phylogeny? 2) how likely that impact of risk volatility on HIV phylogeny can be distinguished 

from those of some other factors? To keep our analysis focused, we examine factors that are 

parameterized in our model. Answering the second research question can be seen as the first 

attempt of exploring the identifiability of parameter of risk volatility given HIV phylogeny. In 

addition, to illustrate the underlying mechanisms that risk volatility affects HIV phylogeny, we 

focus on stochastically simulated epidemics and simulated phylogenetic trees. Stochastic 

simulation enables us to track the history of transmission and the correspondence between the 

transmission events and process of branching of the phylogenetic trees. This enables us to relate 

the effect of risk volatility on HIV phylogeny to its impact on the HIV transmissions.  

We use two groups of statistics to summarize a phylogenetic tree: tree imbalance 

statistics and the statistics that quantify the tendency that tree leaves are clustered with each other. 

Tree imbalance statistics measure the degree to which a phylogenetic tree is asymmetric. Studies 
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found that the extent to which a phylogenetic tree is imbalanced can be affected by heterogeneity 

in infectiousness and assortative mixing  of the population.123 On the other hand, pattern that 

external nodes of phylogenetic tree cluster can also be affected by the transmission dynamics. 

For example, Volz et al (2009) suggests that distribution of cluster size by different cluster 

threshold value can also reflect the transmission dynamics that shape a phylogenetic tree.125 

Robinson et al (2013) suggest that phylogenetic tree of agents from population with higher 

heterogeneity of degree distribution can have greater variation in cluster size and numbers.124 

Both types of statistics are gaining more interest, for that they can provide valuable information 

of the contact pattern of population.  

Methods 

In this section, we first present the structure of deterministic model that our simulation is based 

on. Then we give an outline of how we used its stochastic, individual-based counterpart to 

simulate epidemics and construct the simulated phylogenetic trees. Lastly, we describe the 

statistics of phylogenetic tree imbalance and clustering that will be examined in later sections.  

 

Model Structure 

This deterministic version of model in this study is firstly introduced in Zhang et al (2012). It is a 

model to study the impact of risk volatility on HIV transmission dynamics for population with 

dichotomous risk states. Individuals risk behavior is either at relatively high level or relatively 

low level. Risk volatility is modeled as that individuals periodically change their risk behavior 

between the higher level and the lower level, namely episodic risk.  
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Figure V- 1. Schematic of deterministic episodic risk model 

A schematic of the model is shown in Fig.V-1. The letters S, A, and C in the compartment 

labels denote compartments containing subpopulations that are susceptible, at the acute stage of 

infection, and at the chronic stage of infection, respectively. The subscripts H and L denote 

subpopulations with a high or low contact rate, respectively. We model assortative mixing by 

contact rate by allowing individuals to make certain fraction (m) of contact with people in the 

same risk phase, for both people who are experiencing high risk or and people with low risk.83 In 

addition, individuals proportionately mix with each other and make (1-m) fraction of their 

contacts at a general mixing site. If not specified, m is set to zero and random mixing is assumed 

in default setting.  

In Fig.V-1, arrows between the two patches with grey shade represent the flow of 

individuals between the two risk groups when they change their contact rates. We use a single 

risk change parameter instead of these two risk transition parameters to simplify derivation of 

model variables. Specifically, we adopt the way that Henry and Koopman (2015) models 

episodic risk.82 It is to specify a single parameter, varying which can change the extent to which 

individual risk is episodic. Such parameter, as introduced by Hendy and Koopman (2015), is the 

rate at which individuals re-select level of risk from the population distribution, namely risk re-

selection rate (denoted ω). People re-select risk group at certain rate (denoted ω), with 

probability of choosing risk group proportional to the fraction of average time people spend in 

corresponding risk group (  for high-risk subpopulation and  for low-risk subpopulation).82 

Therefore, the rate of flow from the high-risk to the low-risk subpopulation is   and  as 

the rate of flow in the opposite direction.  
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Definitions, meanings and units of model parameters are listed in Table AII-2.  

Simulation and Construction of Phylogenetic Trees 

We used Gillespie algorithm to simulate the stochastic, individual-based counterpart of the 

episodic risk model (Fig.V-1).126 At the beginning of each simulated epidemic a single index 

case who was acutely infected and had high contact rate is introduced into a completely 

susceptible population who were assumed to be at disease-free equilibrium right before 

introduction of the index case.  

Each round of simulation starts at year zero ends at 10th year of simulation time. 

Transmission trees were constructed based on the history of who transmit to whom. As the first 

step of exploring impact of episodic risk on HIV phylogenies, we treated the pruned binary 

transmission tree as the phylogenetic tree, by assuming that the evolution history perfectly 

coincides with the transmission history.  

 

 

Figure V- 2. Illustration of how a simulated phylogenetic tree is constructed from a simulated transmission 

tree 
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Fig.V-2 illustrates how a simulated phylogenetic tree is constructed from a binary transmission 

tree. Upper part of Fig.V-2 shows an outbreak consisted of nine cases. Lower part of Fig.V-2 

shows that the binary transmission tree of the nine cases where each branch corresponds to a new 

infection, e.g. transmission from case 1 to case 2 generates a new branch. Grey dashed vertical 

line on the right side of Fig.V-2 marks the time of sampling. Cases who are removed (leave 

sexually active life) before the sample time or not sampled due to other reasons (cases 1, 2, 3 and 

9) do not consist of phylogenetic tree leaves. Therefore, when constructing the phylogenetic tree 

of the sampled cases, we pruned the branches corresponding to the unsampled cases (marked in 

color grey) from the transmission tree. The transmission events that result in a branching event in 

the (simulated) phylogenetic tree are those where the downstream infections (or self) of infector 

and the downstream infections (or self) of infectee are both sampled. For example, case 6 and 

case 7 are sampled, so transmission from case 6 to case 7 results in a branching event in the 

phylogenetic tree. In addition, the downstream infection of case 1, i.e. case 8, and the 

downstream infection of case 2, i.e. case 5, are both sampled. Therefore, transmission from case 

1 from case 2 results in a branching event in the phylogenetic tree.  

It is important to note that two necessary conditions are required for us to assume that 

each new branch of the phylogenetic tree is generated as result of a transmission event. Firstly, 

evolution of HIV virus occurs at the same time scale of HIV transmission or at a faster speed. 

Secondly, each host contributes only one unique HIV virus sequence. When these two conditions 

are met one can infer that when HIV virus is passed onto a new host, it ends up as a unique viral 

population in the new host, and generates a new branch in the phylogenetic tree. The first 

condition is met given the fast mutation of HIV virus,127 while the second condition is satisfied 

when one consensus sequence is usually collected from each case.  

Sampling 

The structure of a phylogenetic tree can greatly depend on the sample time. To take this effect 

into account, we examined two sampling scenarios. One is that cases are collected at the same 

time, namely homochromous sample. Another is that cases are sampled at different time points, 

namely heterochronous sample. In the scenario of homochromous sample, cases were randomly 

sampled at the 10th year of simulation time, while all cases who were sexually active at 10th year 

of simulation time has equal probability of being sampled, regardless of their risk phases or 
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stages of infection. In the scenario of heterochronous sample, cases are randomly sampled from 

6th to 10th year of simulation time. In addition, sample time points are evenly distributed within 

this four-year window. At each time point, one case who is sexually active is randomly sampled, 

regardless of the case’s risk phase or stage of infection.   We set the sample size to be 500. 

Therefore, in the scenario of heterchronous sample the sample rate is about one case per three 

days (sample rate=500/(4*365)=0.342/day).  

Tree Imbalance 

A binary phylogenetic tree is considered perfectly balanced if each branching results in two 

branches that lead to clades with equal size. In this study, we focus on two statistics of tree 

imbalance. One is Sackin index, which is calculated as the sum of number of internal nodes that 

each tip of a tree needs to traverse back to the tree’s root.128 Specifically, if Ni is the number of 

internal nodes that ith tip needs to traverse back to the tree root and n is the number of tree leaves, 

Sackin Index, Is, is calculated as, .128 The formulation reflects two important features 

of Is: first, it is not affected by the length of tree branches and is a measure of topology of a 

phylogenetic tree; Secondly, it is highly dependent on the number of tree leaves. Earlier studies 

suggest that given a fixed number of tree leaves, a phylogenetic tree with higher  is more 

imbalanced than a tree with a smaller .129 

In order to control the effect of number of tree leaves on , we normalized  by its value 

expected for a tree randomly generated with a Yule model who has the same number of tree 

leaves, E(Is). Such way of normalization has been introduced by Leventhal et al.130 As suggested 

by Leventhal et al, the normalized Sakin’s Index, Ins, is calculated as, 

 

Formulation of E(Is) is given in Kirkpatrick and Slatkin (1993),129  

 

Where n is the number of tree leaves. Yule model is a model of  a simple birth-and-death process 

in which every individual reproduces randomly and has equal probability to give birth to a new 

individual within a time internal.131 It is equivalent to an Susceptible-Infected (SI) model where 
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population has infinite size, while all infectives have equal transmissibility and all susceptible 

individuals have equal susceptibility.130 Therefore,  measures the extent to which a 

phylogenetic tree imbalance deviates from its level expected for a SI model for a homogeneous 

population.  

The other statistic of tree imbalance we examined is the number of cherries. A cherry is a 

cluster consisted of two tree leaves. It reflects the degree of imbalance near the tree leaves: a tree 

with fewer cherries has more internal nodes with a terminal node as one descendent and a clade 

as the other group of descendants. This results in greater difference in the size of clade 

descending from two sibling branches, indicating an increased degree of imbalance. In this study, 

we adjusted the number of cherries by its maximum given the number of tree leaves. Specifically, 

if we denote the number of cherries as Nc, the normalized number of cherries as Nnc, and the 

number of tree leaves as n, then, when n is even and  when n 

is odd.   

 

Clustering 

Cluster is a group of terminal nodes whose pairwise distances are all below a cutoff value. 

Pairwise distance is calculated as the sum of branch lengths from each terminal node to the most 

common ancestor of two terminal nodes. Since we constructed phylogenetic trees from the 

transmission trees, the length of tree branch was measured in calendar time and so are the 

pairwise distances. For homochromous sample, each pair of terminal nodes have equal distance 

to their most recent common ancestor, i.e. the first common ancestor that two terminals nodes 

find along their paths back to root. Therefore, for homochromous sample the pairwise distance of 

two external nodes is twice the distance from either terminal node to their most recent common 

ancestor. In this case, clusters can be identified by drawing a vertical line across a tree where the 

cutoff distance is set, and the group of terminal nodes whose most recent common ancestors all 

fall on the right side of the line form a cluster (Fig.V-3).  
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Figure V- 3. Illustration of how clusters are defined for a phylogenetic tree of homochromous sample 

The process of finding clusters for heterochromous sample is more complex. For a 

heterochronous sample, a cluster is defined as the group of terminal nodes among whom the 

maximum pairwise distance is below a given cutoff distance. When analyzing heterochronous 

sample, we use hierarchical clustering algorithm to identify clusters at a given cutoff distance.132  
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Results 

The results section is divided into four parts, and each part contributes to answering a 

particular research question as proposed in the introduction section. The first two sections are 

presented to illustrate the effect of episodic risk on the imbalance and clustering of simulated 

phylogenetic trees and to interpret the underlying mechanisms. The third section compare the 

effect of episodic risk on the simulated phylogenetic trees consisted of homochromous sample 

that its effect on simulated phylogenetic trees consisted of heterochronous sample. The last 

section presents the comparison between effect of episodic risk and effect of other model 

parameters on simulated phylogenetic trees. If not specified, the phylogenetic trees for analysis 

are constructed in the default sampling scenario, which is that 500 cases are randomly selected at 

10th year of simulation time.  

 

Effect of Episodic Risk on Tree Imbalance 

 

Figure V- 4. Effect of episodic risk on normalized Sackin Index when population has random mixing (panel A) and when 

population has assortative mixing, i.e. individuals reserve 50% of contacts for people in the same risk phase. When 

simulating epidemics in random mixing scenario, average transmissibility per contact β=0.008. When simulating 

epidemics in assortative mixing scenario, average transmissibility per contact β=0.005. Other parameters (except ω) are 

set at their default values as shown in Table AII-2. 

Fig.V-4 shows that episodic risk affects normalized Sackin Index differently for 

population with random mixing and population with assortative mixing. When population has 

random mixing, increase in risk re-selection rate, ω, causes normalized Sackin Index to first 

considerably decrease and then slightly increase (panel (A) of Fig.V-4). In contrary, when 
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population has assortative mixing, increase in risk re-selection rate, ω, causes normalized Sackin 

Index to first slightly decrease and then considerably increase (panel (B) of Fig.V-4) 

To understand such phenomenon, one can first consider what causes phylogenetic tree 

imbalance. A perfect balanced binary phylogenetic tree is one in which each internal branch 

divides into two branches that lead to equally-sized group of tree leaves. In other words, two 

branches have the same number of descendant tree leaves. Therefore, a phylogenetic tree is 

imbalanced when there are internal branches that split into branches who have different potency 

to have descendant leaves. Every time HIV virus is passed from one host to a new host, a unique 

virus population is built up in the new host. The transmission event would result in a new branch 

in the phylogenetic tree. That says, the branch that already exists corresponds to the infector 

while the new branch corresponds to the infectee. If the infector and the infectee cause different 

amount of onward transmissions after this transmission event, they would also have different 

downstream infections (descendants). This results in imbalanced HIV phylogenetic tree. In other 

words, an HIV phylogenetic tree tends to be imbalanced when HIV virus is passed among hosts 

with different potency to cause onward transmissions.  

To understand how episodic risk affects phylogenetic tree imbalance, it is important to 

understand how episodic risk affects the transmission system. Our earlier mathematical studies 

suggest that episodic risk increases the transmission from acutely infective in high-risk phase to 

susceptible individuals in high-risk phase.90 This is the consequence of the risk fluctuation of 

both the susceptible population and the infected population. Firstly, given episodic risk, 

susceptible individuals experiencing low risk can transit to high risk which increases the 

replenishment of susceptible individuals in high-risk phase. Thus, more high-risk susceptible 

individuals become infected and increases the pool of high-risk acute infections. By the time that 

high-risk acutely infected people progress to the less contagious chronic HIV infection, they also 

pass into low-risk phase. This further increases the contribution from high-risk acutely infected 

people to the overall transmission potential. The consequence is that there is a greater amount of 

transmission from high-risk acutely infected people to susceptible individuals experiencing high-

risk who also become high-risk acutely infected right after infection. In other words, episodic 

risk increases tendency that high-risk acute infections are linked with each other in the 

transmission tree. Consequently, HIV virus are more likely to be passed in between high-risk 
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acutely infected hosts who on average have same potency of causing onward transmission. From 

this perspective, episodic risk tends to reduce tree imbalance. We name such effect as the 

transmission-aspect effect, since it changes the risk levels of hosts that HIV virus is mostly 

passed in between. In the supplementary materials, we show that phylogenetic trees constructed 

from epidemics with greater risk re-selection rate, ω, have more branches generated by the 

transmissions from high-risk acutely infected people to susceptible individuals experiencing high 

risk (Fig.AII-1).  This further confirms our inference of the transmission-aspect effect.  

Another perspective in which episodic risk affects phylogenetic tree imbalance relates to 

risk transition itself. We name such effect as the transition-aspect effect. It is that a case who 

changes risk phases have a changed potency to cause onward transmissions. If this case’s 

descendants are sampled, this case’s risk transition would change a branch’s potency to split to 

new branches. When both infector and infectee are in the same risk phase at the time of 

transmission, their corresponding branches (sibling branches) have similar potency to split. 

Under this condition, risk transition of one of the them would make one branch’s tendency of 

splitting into new branches to be different from the other. Thus, risk transition tends to increase 

the tree imbalance. The transition-aspect effect is more pronounced for population with greater 

degree of assortative mixing because infector and infectee are more likely to be in the same risk 

phase at the time of transmission. By contrast, when population has random mixing, there are 

relatively frequent inter-risk-group transmissions, which limits the transition-aspect effect.  

Impact of episodic risk on the Sackin Index is the consequence of the synergy of the 

transmission-aspect effect and the transition-aspect effect. When risk re-selection rate, ω, is 

relatively small, risk transition is slow.  Cases do not change risk phases until they progress to 

the less contagious chronic infection, so risk transition has limited impact on a case’s potency of 

transmitting HIV infection. Thus, transition-aspect effect is limited and the transmission-aspect 

effect dominates, which reduces normalized Sackin Index (left side of panel A and left side of 

panel B). When ω is relatively large, risk transition is frequent enough to occur within the short 

period of the highly contagious acute HIV infection. Therefore, transition-aspect effect becomes 

stronger and increases the normalized Sackin Index (right side of panel A and right side of panel 

B). As discussed earlier, transition-aspect effect increases as the degree of assortative mixing 

increases, due to the reduced frequency of inter-risk-group transmissions. Therefore, episodic 
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risk increases Sackin Index more for population with assortative mixing than for population with 

random mixing (compare right side of panel B with right side of panel A of Fig.V-4).  

 
Figure V- 5. Effect of episodic risk on normalized number of cherries when population has random mixing 

(panel A) and when population has assortative mixing, i.e. individuals reserve 50% of contacts for people in 

the same risk phase (panel B). For the random mixing scenario, average transmissibility per contact β=0.008. 

For the assortative mixing scenario, average transmissibility per contact β=0.005. Other parameters (except 

ω) are set at their default values as shown in Table AII-2. 

Fig.V-5 shows that episodic risk affects the normalized number of cherries differently for 

phylogenetic trees simulated assuming random mixing and phylogenetic trees simulated 

assuming assortative mixing. When population is randomly mixed, increase in risk re-selection 

rate, ω, causes normalized number of cherries to first increase and then decrease (panel A of 

Fig.V-5). By contrast, when population has assortative mixing, increase in ω causes normalized 

number of cherries to monotonically decrease (panel B of Fig.V-5). As discussed in the method 

section, trees with larger normalized number of cherries are less imbalanced near tree leaves. 

Therefore, this suggests that when population has random mixing increase in ω first reduces and 

then increases the phylogenetic trees imbalance near tree leaves (panel A of Fig.V-5). In contrary, 

when population has assortative mixing increase in ω monotonically increases tree imbalance 

near leaves (panel B of Fig.V-5). Effect of episodic risk on the normalized number of cherries 

can be largely explained by the mechanism through which episodic risk affects the Sackin Index, 

which measures the overall tree imbalance  

However, the comparison between the Fig.V-5 and Fig.V-4 suggests that effect of 

episodic risk on the two statistics are not totally the same. For example, when population has 

random mixing, increase in ω considerably reduces normalized Sackin Index (panel A of Fig.V-

4), but only slightly increases normalized number of cherries (panel A of Fig.V-5). This suggests 
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that the effect of episodic risk in reducing tree imbalance, i.e. transmission-aspect effect, is 

weaker near the tree leaves than on the whole tree. On the other hand, for population with 

assortative mixing, increase in ω does not increase Sackin Index until it reaches above 0.33/year 

(panel B of Fig.V-4), but monotonically reduces number of cherries (panel B of Fig.V-5). This 

suggests that the effect of episodic risk in increasing tree imbalance, i.e. transition-aspect effect, 

is stronger near tree leaves than on the whole tree. Both indicate that the strength of transition-

aspect effect relative to that of transmission-aspect effect increases near tree leaves. This is due 

to the difference in the nature of the two effects. As discussed earlier, transmission-aspect effect 

is that episodic risk increases the amount of transmissions linking high-risk acutely infected 

cases. Thus, such effect can be cumulated over the simulated phylogenetic tree. By contrast, 

transition-aspect effect is that cases change risk phases. Such effect does not accumulate over the 

tree. Rather, a case’s risk transition can be counterbalanced if this case later transits back. 

Therefore, transition-aspect effect is stronger near tree leaves than throughout the entire tree.  

Effect of Episodic Risk on Clustering 

Unlike imbalance statistics, clustering can be considerably affected by the temporal 

distribution of tree internal nodes. This is because the number of internal nodes increases when 

branches or clades merge into clusters. The more internal nodes a tree has under a given cutoff 

distance the more likely tree leaves are clustered within this cutoff distance. Therefore, to control 

for such confounding effect, we matched phylogenetic trees simulated under each value of risk 

re-selection rate, ω, by their cumulative number of internal nodes at different cutoff distances. 

The criteria of matching is the sum of squared distance between the cumulative number of 

internal nodes of each simulated tree and the average cumulative number of branches at a given 

cutoff distance of all the simulated trees. We set the threshold of sum of square distance 

arbitrarily to select trees that meet two requirements: 1) the cumulative number of branches of 

selected trees are matched as close as possible (sum of square distance as small as possible); 2) 

there is large enough sample of simulated trees per scenario (for each value of ω). The details of 

matching simulated phylogenetic trees by their cumulative number of branches at a given cutoff 

distance are described in section I-ii of Appendix II.  

Same as the section “effect of episodic risk on tree imbalance”, we examine effect of 

episodic risk on clustering assuming that population either has random mixing or assortative 
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mixing. In each contact mixing scenario, we simulated epidemics assuming zero to high values 

of risk re-selection rate, ω. Phylogenetic trees (simulated) were constructed from each set of 

epidemics. Within each contact mixing scenario, we selected simulated phylogenetic trees whose 

cumulative number of internal nodes are matched as close as possible for clustering analysis 

(Fig.V-6).  

.  

Figure V- 6. Cumulative number of internal nodes of the phylogenetic trees simulated with different risk re-

selection rate, ω, that are matched as close as possible. Each shaded area represents the collection of 

cumulative number of internal nodes of the phylogenetic trees simulated assuming a specific value of ω. Solid 

line represents the average cumulative number of internal nodes of selected phylogenetic trees simulated 

assuming a specific value of ω. Panel A: when population has random mixing, simulations are done by 

assuming that average transmissibility per contact, β=0.008. Panel B: when population has assortative mixing, 

and average transmissibility per contact, β=0.005. Other parameters are set at their default values as shown 

in Table AII-2. 

The first row of Fig.V-7 illustrates that when population has random mixing episodic risk 

has slight but observable impact on clustering (panel A and B of Fig.V-7). At cutoff distances 

greater than 4 years in past, increase in ω increases the average cluster size (left side of panel B 

of Fig.V-7). At cutoff distances smaller than 4 years in past, increase in ω reduces the average 

cluster number (right side of panel B of Fig.V-7). Since trees have been matched by the 

cumulative number of branching within each cutoff distance (panel A of Fig.V-6), both cluster 

size and number of clusters reflect the tendency that tree leaves are clustered with each other. 

This is because that when the number of branches under a cutoff distance is fixed, smaller cluster 

number and large cluster size indicate that branches more occur within the same cluster. 

Therefore, the phenomenon as shown in upper rows of Fig.V-7 suggests that when population 



 

124 

 

has random mixing, episodic risk slightly increases the average tendency of clustering and such 

effect is observable at both small and large cutoff distances.  

 

 

 

Figure V- 7. Effect of episodic risk on average size of cluster (panel A) and average number of cluster (panel 

B) when population has random mixing, and effect of episodic risk on average size of cluster (panel C) and 

average number of cluster (panel D) when population has assortative mixing, i.e. individuals reserve 50% of 

contacts for people at the same level of risk behavior. For epidemics that are simulated assuming random 

mixing of population, average transmissibility per contact, β=0.008. For epidemics that are simulated 

assuming assortative mixing, average transmissibility per contact, β=0.005. Other parameters are set at their 

default values as shown in Table AII-2. Single branches are not counted as clusters in this analysis. 

By contrast, lower row of Fig.V-7 shows that when population has assortative mixing, 

episodic risk considerably reduces the average clustering number and increases the average 

cluster size at the cutoff distances smaller than 5 years since sample time. As trees are matched 

by the cumulative number of branches at each cutoff distance (panel B of Fig.V-6), this indicates 

that episodic risk considerably increases the tendency that tree leaves are clustered together at 

relatively small cutoff distances, i.e. near tree leaves. In addition, comparison between upper row 
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of Fig.V-7 and lower row of Fig.V-7 suggest that episodic risk more greatly affects clustering 

tendency when population has assortative mixing than when there is random mixing.  

To understand these observations, it is again helpful to consider the mechanism through 

which episodic risk affects the phylogenetic tree. As discussed in section “effect of episodic risk 

on tree imbalance”, the effect of episodic risk on the simulated phylogenetic trees can be 

categorized into two aspects: transmission-aspect effect and transition-aspect effect. 

Transmission-aspect effect is attributed to that episodic risk increases the amount of 

transmissions linking high-risk acute infected individuals. Consequently, high-risk acutely 

infected individuals more likely form large clusters on the transmission tree. Such effect would 

be observable on the simulate phylogenetic trees, since they are the pruned transmission trees. 

That says, tree leaves are more likely to be members or descendants of the members of the high-

risk acute infection cluster.  

As discussed in earlier sections, the transition-aspect effect of episodic risk on the 

phylogenetic trees is that as a case change risk levels, the corresponding branch would also have 

changed potency to split into new branches. If a case transit from high risk to low risk, 

corresponding branch would have lowered potency to split into new branches. This limits the 

chance that a branch with a high potency to have descendants maintain this high potency and 

generate large clusters. Therefore, it reduces the chance that a cluster grows over time on a 

phylogenetic tree. Rather, clusters are more likely to be initiated locally by branches whose 

corresponding case transits from low risk to high risk. Briefly speaking, the transition-aspect 

effect of episodic risk on clustering is to reduce the extent to which large clusters grow over time 

but increases the tendency that small clusters grow locally. We found the transition-aspect effect 

is more pronounced for population with assortative mixing than for population with random 

mixing. This is because that for population with random mixing inter-risk-group transmissions 

are frequent, which also change branches’ state. This limits the impact of transition-aspect effect. 

This has also been observed in section “effect of episodic risk on tree imbalance”, where we 

showed that transition-aspect effect mainly affects phylogenetic tree imbalance when population 

has assortative mixing.  

The impact of episodic risk on the clustering is the consequence of synergy of the 

transmission-aspect effect and transition-aspect effect. When population has random mixing, the 
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frequent inter-risk-group transmissions limit the impact of transition-aspect effects. Therefore, 

the transmission-aspect effect dominates, which increases the clustering tendency (upper row of 

Fig.V-7). When population has assortative mixing, both effects play important roles. At large 

cutoff distances, i.e. near the tree root, episodic risk increases clustering tendency through the 

transmission-aspect effect. Meanwhile episodic risk limits the extent that large clusters grow 

over the entire tree, which we refer as the transition-aspect effect. The two effects counterbalance 

each other, so at large cutoff distances we hardly observe impact of episodic risk on clustering 

(left side of panel C and panel D of Fig.V-7). At smaller cutoff distances, i.e. cutoff distance 

smaller than 5 years, both effects increase the tendency that clusters grow near tree leaves. In 

addition, transmission-aspect effect increases due to assortative mixing: high-risk acute HIV 

infection are more likely to be clustered due to assortative mixing. Therefore, episodic risk 

considerably increases the clustering tendency at relatively small cutoff distances (right side of 

panel C and panel D of Fig.V-7).  

In addition to the average cluster size and average cluster number, we also examined the cluster 

size distribution (CSD) and skewness of CSD for each simulated phylogenetic tree. The relevant 

results are included in section II of Appendix II. The results largely agree with the results as 

shown in Fig.V-7. Firstly, when population has random mixing, episodic risk considerably 

increases the probability of large cluster size at large cutoff distance, i.e. near the tree root 

(Fig.AII-2). In addition, episodic risk reduces the skewness of cluster size distribution, which 

suggest that cluster size distribution is less skewed towards right, or in other words, increase in 

the mass probability of large clusters (Fig.AII-3). Such change of skewness is observed from the 

cutoff distances of 6 year in past to 1 year in past, which covers a large part of the tree (Fig.AII-

3), indicating that episodic risk affects the clustering of the entire phylogenetic tree. When 

population has assortative mixing, episodic risk reduces the probability of large cluster at 

relatively large cutoff distance, but increases the probability of large cluster near tree leaves 

(Fig.AII-4). This agrees with earlier inference: when population has assortative mixing, episodic 

risk causes cluster to more likely grow near the tree leaves but less likely near the tree root.  

Effect of Episodic Risk on Phylogenetic Tree of Heterochronous Sample 

In this section, we further investigate how effect of episodic risk on a phylogenetic tree differs 

between a homochromous sample and a heterochronous sample. For the illustrative purpose, we 

constrain our analysis to the assortative mixing scenario, where individuals reserve 50% of their 

contacts for people experiencing the same risk phase. In addition, we observe the effect of 

episodic risk on simulated phylogenetic trees by comparing trees simulated assuming no episodic 

risk, i.e. risk re-selection rate ω=0, and trees simulated assuming a moderate level of episodic 

risk, ω=1/year. 
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Figure V- 8. Effect of episodic risk on normalized Sackin Index (upper rows) and normalized number of cherries (lower 

rows) when sample is collected homochromously (left column) or heterochronously (right column). Sample size is 500 for 

both sample scenarios. For both samping scenarios, we assume that population has assortative mixing, i.e. 50% of 

contacts reserved for people at the same level of risk. Average transmissibility per contact, β=0.005. Parameters (not 

including risk re-selection rate, ω, or β) are set at their default values as shown in Table AII-2. 

Fig.V-8 shows that effect of episodic risk on the phylogenetic tree imbalance are 

consistent between the homochromous sample and heterochronous sample. Firstly, episodic risk 

has minor impact on the normalized Sackin’s Index in both sample scenarios (panel A and panel 

B of Fig.V-8). Secondly, episodic risk reduces the number of normalized cherries in both sample 

scenarios (panel C and panel D of Fig.V-8). However, episodic risk less reduces number of 

cherries for heterochronous sample than homochromous sample. This is because that cases 

sampled at different time are less likely to be clustered and also less likely to form cherries. This 

reduces the impact of episodic risk on cherry. An extreme example is that if cases are 

sequentially collected with a large time gap in between each case then cases are most likely to 

form ladders. Such effect will drive the pattern of clustering regardless of episodic risk. 

We further explore whether and how episodic risk differently affects clustering of the 

phylogenetic tree for homochromous sample and heterochronous sample. As mentioned in the 

method section, tree leaves that belong to the same cluster is the group of leaves whose 

maximum pairwise distance is below the cutoff value. For homochromous sample, the pairwise 
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distance of two leaves is simply twice the distance from either leaf to the most common ancestor 

of the two leaves.  For heterochronous sample, clusters at a cutoff pairwise distance are 

identified using hierarchical clustering function in R.132   

 
Figure V- 9 Effect of episodic risk on the average number of clusters (upper rows) and average cluster size 

(lower rows) at a given cutoff pairwise distance when sample is collected homochromously (left column) or 

heterochronously (right column). Sample size is 500 for both sample scenarios. For both sample scenarios, we 

assume that population has assortative mixing, i.e. 50% of contacts reserved for people at the same level of 

risk. Average transmissibility per contact, β=0.005. Parameters (not including risk re-selection rate, ω, or β) 

are set at their default values as shown in Table AII-2. 

Fig.V-9 shows that effect of episodic risk on clustering at a given cutoff pairwise distance 

is still noticeable for heterochronous sample (panel B and panel D of Fig.V-9). However, such 

effect is smaller than when sample is collected at different time than when sample is collected at 

the same time (compare right column with left column). As before, this is because the tree leaves 

tend to be less clustered if they are collected at different times. This also reduces the impact of 

episodic risk on clustering.  
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Comparing Effect of Episodic Risk and Other Model Parameters on Simulated 

Phylogenetic Trees 

As indicated by earlier results, episodic risk can considerably affect imbalance and 

clustering of the simulated phylogenetic trees. In this section, we further explore that whether 

such impact can be distinguished from those of some other model parameters. The purpose of 

this section is not to systematically examine the identifiability of risk volatility parameter from 

HIV phylogeny. Rather, it is to explore the uniqueness of effect of risk volatility on the HIV 

phylogeny within the scope of our model. In earlier sections, we have demonstrated that effect of 

episodic risk on the dynamics of HIV transmission can be summarized into two aspects. One is 

transmission-aspect effect, which is that episodic risk increases the amount of transmissions 

linking high-risk acute infections. The other is transition-aspect effect, which is that episodic risk 

changes the state of a branch by inducing cases’ risk transition. Therefore, we choose two model 

parameters whose change may affect HIV transmissions in a similar way. The first is the relative 

transmissibility of acute infection, ζ, increase in which can also increase the contribution of acute 

infection to ongoing transmissions. The second is fraction of contacts reserved for people with 

the same risk level, m, reducing which can increase the possibility of inter-risk-group 

transmissions and change the state of a branch.  

When examining the uniqueness of one aspect of effect of episodic risk, we set the model 

parameters at the level that largely eliminate the other aspect of effect. That says, when we 

compare the transmission-aspect effect of episodic risk and the effect of increasing ζ on 

phylogenetic trees, we restrict this comparison under the condition that population has random 

mixing, i.e. m=0, so that the transition-aspect effect is largely controlled. Likewise, when 

comparing the transition-aspect effect of episodic risk and the effect of reducing m on the 

simulated phylogenetic trees, we set equal transmissibility between acute infection and chronic 

infection, i.e. ζ=1, so that episodic risk’s transmission-aspect effect is eliminated.  

Comparing Transmission-Aspect Effect of Episodic Risk and Effect of Heterogeneity of 

Infectiousness on Simulated Phylogenetic Trees. Fig.V-10 shows that although increasing risk 

re-selection rate, ω, changes tree imbalance statistics and clustering in a way similar as 

increasing relative transmissibility of acute infection, ζ, does, they change these statistics to 

different extents. Firstly, compared to increasing ζ, increasing ω causes a greater reduction in the 
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normalized Sackin’s Index (panel A of Fig.V-10) and a slightly greater increase in the 

normalized number of cherries (panel B of Fig.V-10). Both indicate that increasing ω can alter 

tree imbalance more than increasing ζ does. This is because that increasing ω and increasing ζ 

affect HIV transmissions and HIV phylogeny in different ways. In section “Effect of Episodic 

Risk on Tree Imbalance”, we discussed that episodic risk can affect transmission from acute 

infection in two ways: firstly, because chronic infection comes after acute infection, people who 

were at high risk phase at HIV acquisition more likely transit to low risk during chronic infection 

than during acute infection. This increases the contribution of acute infection to ongoing 

transmissions. Secondly, episodic risk increases replenishment of susceptible individuals 

experiencing high risk. The synergy of these two results in greater amount of transmissions 

linking high-risk acute infections. Consequently, phylogenetic trees have higher fraction of 

branching events which generates two sibling branches that both correspond to high-risk acute 

infections. Such effect reduces both the Sackin Index and number of cherries. By contrast, 

increasing ζ only increases the contribution from acute infection but does not increase 

replenishment of high risk susceptible individuals. As result, increasing ζ does not considerably 

increase the fraction of tree branching caused by transmissions linking high-risk acute cases 

(Fig.AII-8). Consequently, increasing ζ change the tree imbalance statistics less than increasing 

ω does.  
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Figure V- 10. Effect of increasing relative transmissibility of acute infection, ζ, and effect of increasing risk re-selection 

rate, ω, on normalized Sackin’s Index (panel A), normalized number of cherries (panel B) and pattern of clustering at 

different cutoff distance (panel C and panel D). For the three sets of simulations, population has random mixing. For all 

three sets of epidemics, average transmissibility per contact, β=0.008. 

However, panel C and D of Fig.V-10 shows that increasing ω changes clustering less 

than increasing ζ does (compare the difference between blue curve and green curve with the 

difference between blue curve with red curve). This is also because these two parameters affect 

HIV transmission differently. Increasing ω results in increased amount of transmission linking 

high-risk acute infections. The consequence is that prevalence of high-risk acute infections 

increases. On the phylogenetic tree, there are more branches which correspond to high-risk acute 

HIV infections. These branches have equally high potency to have descendants. Given the fixed 

number of tree leaves, this limits the extent that a single branch has large group of descendants。 

By contrast, increasing ζ increases the transmission potential from acute HIV infection, 

regardless of the risk phases of acutely infected people. In addition, increasing ζ does not 

increase the replenishment of susceptible individuals experiencing high risk. Therefore, 

increasing ζ does not considerably increase the prevalence of high-risk acute HIV infections. 

Consequently, there are fewer branches that correspond to the high-risk acute HIV infection. In 

other words, fewer branches compete with each other to have descendants . Therefore, it is more 

likely that few branches lead to large group of descendants, resulting in a greater clustering 

tendency. This is further confirmed by Fig.AII-9 in Appendix II, which shows that the average 

number of branching caused by a single infector is considerably greater among phylogenetic 

trees with high ζ than among phylogeny trees simulated with nonzero ω.  

Comparing Transition-aspect Effect of Episodic Risk and Effect of Reduced Degree of 

Assortative Mixing on Phylogenetic Trees.  
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Figure V- 11. Effect of increasing risk re-selection rate, ω, and reducing fraction of transmission reserved for 

individuals with same level of risk, m, on normalized Sackin Index (panel A), normalized number of cherries 

(panel B) and average cluster size (panel C) or average number of cluster at different cutoff distances (panel 

D). For the three sets of simulated epidemics, transmissibility is set equal between acute infection and chronic 

infection, i.e. relative transmissibility of acute HIV infection, ζ=1. Average transmissibility per contact, β=0.01. 

Other model parameters are set at their default values as shown in Table AII-2. 

Fig.V-11 shows that compared to reducing the degree of assortative mixing, m, 

increasing risk re-selection rate, ω, changes normalized Sackin Index (panel A of Fig.V-11) and 

clustering (panel C, D of Fig.V-11) to a greater extent but have similar impact on the normalized 

number of cherries (panel B of Fig.V-11).   This indicates that compared to reducing m, 

increasing ω can more impact the overall tree imbalance and the pattern of cluster than the tree 

imbalance near tree leaves (cherry). To understand this, it is helpful to again consider how 

changing either parameter affects the phylogeny. As discussed in section “Effect of Episodic 

Risk on Tree Imbalance”, increasing ω increases the frequency of risk transitions. If a case 

whose descendants (infections on the downstream of the transmission pathway) are in the sample, 

risk transition of this case results in change in state of a branch of the phylogenetic tree. 

Similarly, reducing degree of assortative mixing, i.e. m, increases inter-risk group transmission. 

This increases the chance that an inter risk group transmission occurs along a branch and can 

also change the branch’s state. From this perspective, increasing ω and reducing m have similar 

impacts on the phylogeny. However, the difference between them is that risk transition only 

requires a single case but inter-risk group transmission requires interaction of two persons. This 

makes risk transition to be less dependent on the transmission dynamics of HIV, especially the 

prevalence of HIV infection. As result, increasing ω tends to affect a phylogeny tree more than 
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reducing m. In addition, such difference needs to cumulate at multiple branches for it to be seen. 

Therefore, effect of increasing ω and effect of reducing m on the phylogeny tree can be 

distinguished by examining the overall tree imbalance statistics and clustering throughout the 

entire tree.  
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Discussion of Results in Chapter V 

Summary of findings. Our study used stochastic simulations to understand that how individual 

risk behavior volatility, a phenomenon that individual risk behavior fluctuates over time, affect 

HIV phylogeny. This study is also the first step of exploring the possibility of detecting 

population impact of risk volatility from HIV phylogeny. Individual risk behavior volatility is an 

important but understudied behavior characteristic among men who have sex with men (MSM) 

population. As the first attempt at this topic, we simplify the risk volatility as individuals risk 

altering between high and low level over time.  

Our results demonstrate that individual risk behavior volatility considerably affects the 

simulated phylogenetic trees. Specifically, the effect of individual risk behavior on HIV 

phylogeny can be summarized in two aspects: transmission-aspect effect and transition-aspect 

effect. The transmission-aspect effect is that risk volatility increases the amount of branches that 

are generated by transmissions linking high-risk acute HIV infections. It tends to reduce tree 

imbalance and increase the tendency that tree leaves are clustered together. The transition-aspect 

effect is that as cases change risk phases their corresponding branches have changed potency to 

have descendants. It tends to increase tree imbalance, and causes clusters to more likely to grow 

further from tree root. The synergy of the two effects change both the tree imbalance and 

tendency that tree leaves are clustered together.  

We illustrated that how risk volatility affects the imbalance and clustering of the simulated 

phylogenetic trees depends on the degree of assortative mixing. This is because that as degree of 

assortative mixing increases, within-risk-group transmissions become more frequent, so that HIV 

virus are more likely to be passed among cases experiencing the same risk phase. This makes 

phylogenetic trees more sensitive to cases’ risk transitions. That says, the transition-aspect effect 

of risk volatility increases as the degree of assortative mixing increases.  

In addition, our results demonstrate that the effect of risk volatility on the simulated HIV 

phylogeny cannot be reproduced by varying two other model parameters: the relative 

transmissibility of acute HIV infection or the fraction of contacts reserved for people 

experiencing the same risk phase. This is because that mechanism through which risk volatility 

affects HIV transmissions is unique and cannot be reproduced by varying either model parameter.  
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Lastly, our results suggest that given a fixed sample size, heterochromous sample is less 

sensitive to risk volatility than homochromous sample. This is because as the gap between 

sampling time increases, tree leaves are less likely to be clustered. This particularly limits the 

extent to which risk volatility affects clustering.  

Related Research on Effect of Population Contact Pattern on Phylogenies 

Our study takes the first step to explore the effect of an understudied behavior characteristic of 

MSM population, individual risk behavior volatility, on HIV phylogeny. It can be related to 

earlier studies that examine how population contact structure affects phylogenies. For example, 

Leventhal et al (2012) suggest that contact structure greatly impact the phylogenetic tree 

imbalance.130 However, our results suggest that Sackin Index is not be a good indicator of the 

contact structure if the population has individual risk behavior volatility. The strong interaction 

among the risk volatility, high infectiousness of acute HIV infection and assortative mixing 

makes it less likely to rely on one single imbalance statistic to infer the population contact 

structure. Rather, our study indicates that Sackin Index needs to be combined with number of 

cherry, which measures the imbalance near tree leaves to better reveal the effect of individual 

risk behavior volatility. This agrees with conclusion of several earlier studies. For example, 

Dearlove and Frost (2013) suggest how tree asymmetry distribute along the phylogeny is 

important to assess in addition to the overall tree imbalance.133 Our study agrees with their 

conclusion and suggest it is more likely to detect signal of risk volatility by looking at the 

clustering pattern and tree imbalance at different parts of a phylogenetic tree.  Colijn et al (2014) 

suggest that the local tree imbalance and overall tree imbalance can be combined to inform the 

type of population where an outbreak occurs.134 Our study agrees with such conclusion: the 

effect of individual risk behavior volatility on the combination of tree imbalance and clustering is 

more unique than its effect on any single statistic.  

Similar topics have been explored by previous studies. For example, Robinson et al (2013) 

suggest that when contact network of hosts becomes dynamic, phylogenies can less reflect the 

network structure.124 To some extent our study agrees with this finding: individual risk behavior 

volatility, a specific type of dynamic individual risk behavior, can reduce the extent to which 

assortative mixing affects a phylogenetic tree and cause a tree to show a clustering pattern that 

resemble one from population with random mixing. However, we found effect of risk volatility 
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on the simulated phylogenies is not exactly as reducing the degree of assortative mixing because 

they affect HIV transmissions through different mechanisms.  

Implication for public Health Interventions 

The motivation behind our study is that empirical data suggest the existence of individual risk 

behavior volatility45,46, and that studies indicate that risk volatility may considerably change the 

population impact of HIV interventions.  Henry and Koopman (2015) found that individual 

behavior volatility can reduce R0 and the minimum effort that universal test and treat needs to 

eliminate HIV infections. 82 The mechanism is that risk volatility reduces the correlation between 

a case’s risk level at HIV acquisition and that case’s risk level when he transmits HIV infection. 

As result, risk volatility reduces the effect of contact heterogeneity on the transmission system.82 

The consequence is that cases who were at high risk at HIV acquisition cause smaller amount of 

onward transmission than when there is no risk volatility. Therefore, as our earlier study 

indicated, individual risk behavior volatility reduces the population impact of PrEP that is 

targeted at susceptible individuals experiencing high risk. In addition, study by Alam et al (2012), 

suggest that acute HIV infection are more likely to form large cluster for epidemics with higher 

individual risk behavior volatility.56 Our study again confirms this conclusion. All these studies 

support the importance of understanding risk volatility in guiding public health prevention of 

HIV transmission.  

Furthermore, our study demonstrates that investigating individual risk behavior volatility 

may help understand what is driving acute HIV infections to cluster in a phylogenetic tree. 

Earlier studies use real HIV sequence data to understand what generates clusters of acute 

infection. For example, Volz et al (2011) suggested that acute infections form large clusters, and 

this is largely attributed to the short duration of acute HIV infection.50 Brenner et al (2007) finds 

out that the pattern that primary HIV infection (within one year since HIV infection) reflect the 

underlying contact structure.52 Lewis et al (2014) finds clusters of acute infection from 

phylogenetic tree of HIV virus that suggest episodic sexual transmission.53 These studies suggest 

that acute infection cluster is a result of intense transmission during early stage of HIV infection 

and the short period of acute infection. However, our study found that individual risk behavior 

volatility can further alter the tendency of acute infection to cluster despite the transmissibility 
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from acute infection, level of contact heterogeneity and degree of assortative mixing all remains 

the same.  

Model Assumption and Realistic Relaxing Assumptions 

Our study uses individual based model. The advantage is that we can track the transmission 

history and find the clear correspondence between the transmission events and generation of new 

branches on the phylogenetic tree. In addition, we are able track the history of risk transition and 

disease progression of each case. These information facilitate our understanding of impact of 

individual risk behavior volatility on transmission dynamics of HIV and how it relates to HIV 

phylogeny.  

To make our analysis more tractable we make several assumptions. Firstly, we assume 

dichotomous individual risk behavior. This ensures the efficiency of stochastic simulation risk 

transitions. However, this is not realistic. In reality, individual risk behavior follows a continuous 

distribution. Romero-Severson et al (2014) explored effect of individual risk behavior volatility 

on R0 by assuming continuous distribution of individual risk.48 Henry and Koopman (2015) 

research same topic by assuming dichotomous risks.82 The two studies reach the same conclusion: 

increase in individual risk volatility reduces R0.
48,82 This indicates that change in distribution of 

individual risk from continuous to dichotomous does not change the mechanism that risk 

volatility affects transmission dynamics of HIV. As result, we expect that incorporating more 

continuously distributed individua risk will not fundamentally change our observations. However, 

it may change scale of the effect that we observed with dichotomous risk states. Secondly, we 

assume that individuals randomly pick partners and each partnership dissolves instantly. This 

excludes the possibility of concurrent partnership. However, partnership concurrency is common 

among MSM population.96 We expect that high degree of concurrency will increase the tendency 

that cases cluster even without individual risk behavior volatility. This may reduce the extent to 

which phylogenetic tree clustering pattern is affected by individual risk behavior volatility.  

Furthermore, our analysis is based on stochastically simulated phylogenetic trees. Our 

understanding of effect of risk volatility on simulated HIV phylogeny is based on our 

understanding of impact of risk volatility on transmission dynamics of HIV. For this to be valid, 

there are two underlying assumptions. First is that each new branch of the phylogenetic tree is 

generated due to a transmission event. The second is that the position of internal nodes of the 
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phylogenetic tree is highly correlated with the time that corresponding transmission event occurs. 

These assumptions help simplify our analysis. However, phylogenetic trees built from HIV 

sequences could considerably differ from the transmission tree.135 Within host evolution, 

stochasticity of evolution all makes phylogenetic tree to less resemble transmission tree.136,137 

Therefore, for real phylogenetic trees, uncertainty due to stochastic evolution and bias introduced 

during reconstruction need to be both considered when inferring the parameters related with 

individual risk behavior volatility. This suggest that although our observations apply to the 

simulated transmission trees, whether they apply to HIV phylogeny in the real world remains 

explored.  

In addition, an important research question that we explored is whether population impact 

of risk volatility can be distinguished from those of other model parameters. Our analysis is 

based on the episodic risk model. Therefore, the model parameters do not include all the possible 

factors that may affect HIV phylogenies in a similar way as risk volatility does. This implies that 

it remains unknown that whether effect of risk volatility on HIV phylogeny can be distinguished 

from other behavioral or biological factors of HIV transmission or their combination.  

In our results, we found that if cases are sampled at different times rather being collected 

at the same time, they are less likely to form cluster. This limits our ability to observe impact of 

individual risk behavior volatility on clustering pattern of HIV phylogenetic tree. However, such 

issue can be potentially handled by using method such as one used in Gray et al (2011), which 

analyzes temporal clustering pattern by taking into account the sequence sample time.  

Future Directions 

There are several directions that may be valuable to explore in future. One direction is to further 

test the observations in our paper with simulated sequence or real sequence data. Another is to 

better understand how different factors alone and in combination affect tree shapes in a manner 

that might improve our understanding about what information we can get out of tree shapes with 

regard to different factors. Ultimately, future studies can also develop the algorithm that estimate 

different factors such as individual risk behavior volatility from the HIV sequence data, using 

information such as HIV phylogenetic tree imbalance, clustering pattern and branching times. 

For example, using Sequential Monte Carlo methods suggested by Smith et al or the new 
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artificial intelligence analytic methods to discover and detect tree shape patterns emerging as a 

result of different factors.138  

 

Conclusions 

Our findings indicate that the population impact of individual risk behavior volatility can be 

potentially detected from HIV phylogenetic tree data. However, it requires good knowledge of 

the biological and behavioral characteristics of HIV transmissions because effect of risk 

volatility on HIV phylogeny may highly depend on these factors. Given HIV phylogeny the 

population impact of risk volatility is likely to be distinguished from that of some other model 

parameters. HIV phylogenetic tree should be examined from multiple perspectives not to miss 

any valuable information. 
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CHAPTER VI 

Discussion 

 

 

Summary of findings 

This thesis takes the first step to explore two important issues people usually face when using 

mathematical model to guide public health decision-making to control HIV transmission: 

robustness inference and identifiability of model parameters. Specifically, this thesis focused on 

one commonly adopted assumptions for model of HIV transmission among men who have sex 

with men (MSM): individual risk behavior remains constant over time. Research presented in 

this thesis can be summarized in three sections. 

Firstly, we examined the robustness of inference of a simple model of HIV transmission 

among MSM by relaxing one commonly adopted model assumption: individual risk behavior 

remains constant throughout sexually active life (Chapter II and Chapter IV). To do so, we build 

a simple deterministic model with two stages of HIV infection, and incorporate individual risk 

behavior volatility in the model. We define a parameter that takes the rate of changing individual 

risk between low and high levels through time. This relaxes the assumption of constant 

individual risk behavior over time. Increasing this parameter considerably alters several 

epidemiological quantities that are essential to guide the public health decision of HIV 

intervention. These quantities include transmission from acute stage of HIV infection, prevalence 

at endemic equilibrium and minimum required individual effectiveness of HIV intervention 

strategy to eliminate HIV transmission. Therefore, a model assuming constant individual risk 

behavior would make erroneous inference of these important quantities.  

Secondly, we derived type reproduction numbers for model with risk volatility both with 

next generation matrix approach and an approach based on their epidemiological meanings 

(Chapter III). The second approach derives the probabilities that a model case is in a risk phase 

during a stage of infection. With the help of state probabilities, we get clear understanding of 
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how risk volatility changes the type reproduction numbers, which cannot be revealed by next 

generation matrix approach.  

Thirdly, we explore whether signal of individual risk behavior volatility can be detected 

from HIV phylogenies and whether such signal can be distinguished from that of two other 

model parameters (Chapter V). This is also the first step of exploring the identifiability of 

parameter that quantifies individual risk behavior volatility from HIV genetic data. To do so, we 

simulate the stochastic, individual-based version of the risk volatility deterministic model, and 

observe how imbalance and clustering pattern of the simulated phylogenetic tree (pruned 

transmission tree) changes as we vary the parameter that quantifies the individual risk behavior 

volatility. We found that varying this parameter can change tree imbalance and considerably alter 

the tendency that tree leaves cluster at a given cutoff distance. In addition, the findings also 

suggest that individual risk behavior volatility has a unique impact on the combination of 

phylogenetic tree imbalance and clustering pattern, which cannot be reproduced by varying two 

other model parameters.  

Implication for Public Health Intervention 

Findings in Chapter II and Chapter IV suggest that it is important to assess individual risk 

behavior volatility among the target population before making the decision of how to allocate 

control efforts of HIV prevention. Such decisions include but may not be limited to: how much 

effort needs to be invested into detecting and treating early HIV infections, how effectiveness a 

HIV intervention needs to be at individual level to eliminate HIV infections and whether control 

efforts should be prioritized to people who are experiencing high risk. Earlier studies show that 

individual risk behavior volatility cannot be detected unless individual risk behavior is evaluated 

through multiple periods and long term.45 However, most risk behavior assessment collect risk 

behavior in past several months or one year and only record the average level of risk behavior. 

This makes it impossible to detect the variation of individual risk behavior over time. Therefore, 

it is imperative to improve the behavior data collection so that individual risk behavior can be 

more thoroughly assessed.  

Individual risk volatility may be assessed from multiple perspectives, such as number of 

unprotected sex within a partnership, number of partners, possible risk factors that induce change 

in individual risk behavior. Studies indicate that episodes of unprotected sexual activity can 
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induced by substance use, transition in between periods within partnership and periods without 

partners, or change in social context of partnerships.107–109  Any factor or combination of them 

would cause variation in individual risk behavior over time. Therefore, collecting individual 

behavior data through longer period and relevant context in which sexual contact happens may 

help better detect risk volatility. The ultimate goal of assessing individual risk behavior volatility 

is to distinguish risk heterogeneity attributed to individual risk behavior volatility and risk 

heterogeneity at population level. To make such inference one may not only need to collect 

relevant behavior data but also utilize statistical models to estimate how much individual risk 

behavior volatility contributes to the overall risk heterogeneity.  

Findings in Chapter V indicate that HIV genetic data is potentially valuable to assess the 

individual risk behavior volatility. This chapter focused on two features of phylogenetic trees: 

tree imbalance and tendency that tree leaves cluster at a given cutoff distance.  They are less 

commonly examined than measures such as distribution of branching time and branch lengths in 

phylodynamic study of HIV epidemic.  This is because compared to the commonly assessed 

measures, these two features can less inform the demographic history of the population. 

However, findings in Chapter V suggest that individual risk behavior volatility has a unique 

effect on the contact structure of population and such effect can be reflected from tree imbalance 

and tendency that tree leaves cluster. This implies that phylodynamic studies of HIV epidemic 

may combine every characteristic of a phylogenetic tree to improve the identifiability of 

individual risk behavior volatility. A recent study by Smith et al (2017) proposed a Sequential 

Monte Carlo (SMC) method to estimate epidemiological parameters directly from genetic 

sequence data.138 This suggests the possibility of estimating individual risk behavior volatility 

from HIV sequence data. Results in Chapter V imply that phylogenetic tree imbalance and 

clustering pattern can be potentially integrated into a framework such as SMC methods to 

improve identifiability of parameter that quantify risk volatility.  

Future directions 

In order to illustrate the mechanism through which individual risk behavior volatility shapes HIV 

transmission dynamics, we build a simple model with several unrealistic assumptions. Future 

studies may make realistic variation of the model structure and study that how effect of 

individual risk behavior volatility on HIV transmission change accordingly. For example, one 
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may incorporate directional sex role, concurrent partnership or continuous distribution of 

individual risk behaviors into the model and examine individual risk behavior volatility interacts 

with either behavior characteristics to affect HIV transmission. In addition, in Chapter III, we 

found the rules by which state probabilities are formulated for each risk phase and each stage of 

infection. Such rule does not change as more risk levels or stages of infections are added. 

Therefore, future study may use the framework of this method for parameter estimation using 

models with more risk states or more stages of infections. Furthermore, to more directly observe 

the mechanism that individual risk behavior volatility affects phylogenetic tree through changing 

the HIV transmission dynamics, we treat part of the transmission tree as phylogenetic tree. 

Future studies can relax this assumption by stochastically simulating HIV sequences and 

examine that how the randomness of virus evaluation and bias introduced during phylogenetic 

tree reconstruction affect the observations made in this thesis. Lastly, future studies can also 

develop the algorithm that estimate different factors such as individual risk behavior volatility 

from the HIV sequence data, using information such as HIV phylogenetic tree imbalance, 

clustering pattern and branching times. For example, using SMC methods suggested by Smith et 

al (2017) or the new artificial intelligence analytic methods to discover and detect tree shape 

patterns emerging as a result of different factors.133 

Conclusion 

There are two major messages that we want to convey in this thesis. Firstly, individual risk 

behavior volatility among MSM population greatly change fraction of transmission from acute 

infection, endemic prevalence and individual-effectiveness-population-effect relationship. This 

suggests that when there is risk volatility, model assuming constant individual risk over time 

may make erroneous inference of these quantities. Secondly, population impact of individual risk 

behavior volatility can be potentially detected from HIV phylogenetic tree. Therefore, study in 

this thesis address the importance of collecting behavior data that can reveal individual risk 

behavior volatility and the value of HIV sequence data from a new perspective.  
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APPENDICES 

Appendix  I-Supplementary Materials for Chapter IV 

 

 

This document is divided into two parts: supplementary methods for Chapter IV and 

supplementary results for Chapter IV. In the supplementary methods section, we list the model 

equations of episodic risk model with universal test and treat, default values of model parameters 

used for simulation in Chapter IV. In the supplementary results section, we present the sensitivity 

analysis of the results we present in Chapter IV.  

 

Supplementary Methods for Chapter IV 

Section-I-i Model Equations. Structure of the model has been introduced in the main text. Here 

we present the equations of the deterministic compartment model.  

 

Table AI- 1 Equations of Episodic Risk Model With Universal Test and Treat Simulated in 

Chapter IV 
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Meaning, value, unit and definition of the parameters or derived variables used in model 

equations are listed in Table AI-2 and Table AI-3.   

Table AI- 2 Model parameter symbols, default values, units and definitions 

Parameter Default Value Unit Definition 

 1/40 /year 

Rate of removal from the sexually-active population unrelated to 

HIV. Because we set the equilibrium population in the absence of 

disease to 1, this is also the (absolute) rate of entry of new 

individuals into the sexually active population 

 4 /year Rate of progressing from acute to chronic infection 

 1/10 /year Rate of death from AIDS during chronic infection 

 0.0047 /contact 
Average per-contact transmission probability across both stages 

of infection 

 17.5 - 
Ratio of per-contact transmissibility during acute infection over 

per-contact transmissibility during chronic infection 

 0.05 - Fraction of average time spent at high-risk phase 

 36 /year 
Average contact rate in the entire population at disease free 

equilibrium 
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 7 - Ratio of high contact rate over low contact rate 

m 0 - 
Fraction of contacts reserved for people experiencing the same 

level of risk 

 

Table AI- 3 Derived variables symbols, default values, units and definitions for calculation 

of derivatives of ODE model simulated in Chapter IV. 

Variable  Formulation Meaning 

Χh  Total contacts made at the site 

where only high-risk subpopulation 

make fraction m of contacts with 

each other 

Χg  Total contacts made at the general 

mixing site where high-risk 

subpopulation make contacts with 

low-risk subpopulation 

proportionately 

Χl  Total contacts made at the site 

where only low-risk subpopulation 

make fraction m of contacts with 

each other 

λHh 

 

Force of infection that causes new 

high-risk infections at the site 

where only high-risk subpopulation 

make fraction m of contacts with 

each other 

λHgh    
Force of infection from infected 

people in high risk phase that 

causes new infections in high risk 

phase at the general mixing site 

where subpopulation in high risk 

phase make contacts with 

subpopulation in low risk phase 

proportionately 

λHgl  

 

Force of infection from infected 

people in high risk phase that 

causes new infections in high risk 

phase at the general mixing site  

λLl 

 

Force of infection that causes new 

low-risk infections at the site 

where only high-risk subpopulation 

make fraction m of contacts with 

each other 

λH  
λHh+ λHgh+ λHgl Total force of infection that causes 

new infections among susceptible 

people experiencing high risk 
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λL  
λLl+ λHgh+ λHgl Total force of infection that causes 

new infections among susceptible 

people experiencing low risk 

 

Section I-ii Formulation of Reproduction Numbers given Episodic Risk and Assortative 

Mixing 

Formulation of Type Reproduction Numbers given Episodic Risk. In Chapter III, we 

have formulated type reproduction numbers for episodic risk model. We found that the type 

reproduction number for cases who were in high risk phase at HIV acquisition,  and type 

reproduction number for cases who were in low risk phase at HIV acquisition, , can be 

expressed as, 

 

 

Where Rpq denotes the expected number of new infections in risk phase p a model case would 

cause if this model case spends the whole infection time in q risk phase. Formulations of Rpqs are 

given in Table AI-4. Variable ψ denotes the probability that a model case transmits HIV 

infection given that this case has not changed risk level since HIV acquisition. In Chapter III, we 

found, 

 

 

In Chapter III, we denote υ1 as the total rate of leaving acute HIV infection and υ2 as the total rate 

of leaving chronic HIV infection. In the scenario with UT&T treatment,  
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In expressions of both type reproduction numbers, H denotes the expected number of new 

infections a case would cause during entire infection period if the expected contact rate of this 

case equals population average contact rate, χ.  

 

Table AI- 4 Formulations of variables used in calculation of type reproduction numbers  

Symbol formulation meaning 

  Total rate of leaving acute HIV infection 

  Total rate of leaving chronic HIV infection 

 

 

Expected number of new infections in high risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

high risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during chronic infection if this case spends the whole chronic infection 

in high risk phase (no episodic risk) 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in high risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

low risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during chronic infection if this case spends the whole acute infection in 

low risk phase (no episodic risk) 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in low risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

high risk phase (no episodic risk) 

 

 

Expected number of new infections in high risk phase caused by a case 

during chronic infection if this case spends the whole chronic infection 

in high risk phase (no episodic risk) 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in high risk phase (no episodic risk) 

 

 

Expected number of new infections in low risk phase caused by a case 

during acute infection if this case spends the whole acute infection in 

low risk phase (no episodic risk) 

 

 

Expected number of new infections in low risk phase caused by a case 

during chronic infection if this case spends the whole chronic infection 

in low risk phase (no episodic risk) 

  Expected number of new infections in low risk phase caused by a case 

during entire infection time if this case spends the whole infection time 

in low risk phase (no episodic risk) 

 
 

Probability that a case does not re-select contact rate during acute 

infection 

 

 

Probability that a case has not re-selected contact rate at chronic 

infection 
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Probability that a case transmits HIV infection when this case has not 

re-selected contact rate 

 

 

expected number of new infections a case would cause during entire 

infection period if the expected contact rate of this case equals 

population average contact rate, χ 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case was in high risk phase at HIV 

acquisition, given episodic risk 

  Expected number of new infections in high risk phase caused by a case 

during entire infection time if this case was in low risk phase at HIV 

acquisition, given episodic risk 

  Expected number of new infections in low risk phase caused by a case 

during entire infection time if this case was in high risk phase at HIV 

acquisition, given episodic risk 

  Expected number of new infections in low risk phase caused by a case 

during entire infection time if this case was in low risk phase at HIV 

acquisition, given episodic risk 
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Supplementary Results for Chapter IV 

Section II-i. Minimum Required Individual Effectiveness to Eliminate HIV Infections of 

PrEP Given Fixed Control Efforts At Different Levels of Coverage and Effective 

Treatment Rate of UT&T.  

 

Figure AI- 1 Effect of risk re-selection rate, , on the minimum required individual effectiveness of general PrEP (solid) 

and high-risk-prioritized PrEP to reach elimination when coverage of PrEP efforts. Columns from left to right: effective 

treatment rate of UT&T, τ, is 0, 0.1/year, 0.3/year, or 0.5/year. Rows from top to bottom: coverage of PrEP efforts, κ, is 

5%, 25%, 50%, 75% or 90%.  

In Fig.AI-1 the solid curve and dashed curve represent the minimum required individual 

effectiveness of general PrEP or high-risk-prioritized PrEP to reach elimination, respectively. As 

shown in Fig.AI-1, in most panels the gap between these two curves decreases as risk re-

selection rate, ω, increases. This indicates that for epidemics with greater individual risk 

behavior volatility, prioritizing PrEP efforts to susceptible individuals experiencing high risk 

makes smaller difference in the required individual effectiveness to eliminate HIV infections. In 

addition, such effect is most prominent when there is moderate coverage of PrEP, κ, and UT&T 
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is operated with moderate level of effective treatment rate, τ, as shown by panels in the middle of 

Fig.AI-1 (panels bounded by red frame). This is because when PrEP can only cover a small part 

of population, i.e. 5%, general PrEP can reach very few susceptible individuals experiencing 

high risk, which limits its ability to reduce transmission potential. In this case, at most values of 

ω general PrEP cannot eliminate HIV infections (first row of Fig.AI-1). Similarly, when 

effective treatment rate of UT&T is low general PrEP cannot eliminate HIV infections with 

small coverage (first panel in second row of Fig.AI-1). On the other hand, when coverage of 

PrEP is high, general PrEP can also cover most susceptible people who are experiencing high 

risk. Therefore, the minimum required individual effectiveness of two PrEP strategies remain 

similar regardless of the risk re-selection rate, ω (two lower rows of Fig.AI-1).  

Section II-ii. Impact of Model Parameter Setting on Effect of Episodic Risk on Minimum 

Individual Effectiveness of Universal PrEP and Minimum Effective Treatment Rate to 

Eliminate HIV Infections.   

Our results indicate that episodic risk tends to reduce 1-1/R0 and τe more for system with higher 

level of risk heterogeneity or higher degree of assortativity (Fig.AI-2, Fig.AI-3, Fig.AI-4 and 

Fig.AI-5). This is because increase in either parameter results in greater contribution of risk 

heterogeneity to R0, which makes R0 more sensitive to change in ω, and so does 1-1/R0 and τe. 

However, note that increase in  reduces 1-1/  most when system has a moderately high  

instead of highest examined value of  (green curve in lower panel of Fig.AI-2). This is 

because how much 1-1/R0 decreases per unit increase of ω depends on level of R0. Generally, 1-

1/R0 tends to be more robust to change in ω when R0 is relatively high. For example, R0 

decreases from 10 to 5 results in 10% reduction of the minimum individual effectiveness of PrEP 

to reach elimination, 1-1/R0, i.e. 1-1/10-(1-1/5)=0.1, R0 decreases from 8 to 4 results in 0.125 

reduction of 1-1/R0. However, such counteracting effect is not prominent since overall R0 for the 

examined values of rHL is at low to moderate level (within the range of 1.4 to 7).  
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Figure AI- 2 Effect of risk re-selection rate, , on the minimum individual effectiveness of universal PrEP to reach 

elimination, 1-1/  (upper panel) and the difference between 1-1/  and its level when ω=0 1-1/R0_ω=0(lower panel) when 

ratio of high contact rate over low contact rate,  increases from 2 to 20. 

 

 

 

Figure AI- 3 Effect of risk re-selection rate, , on the minimum effective treatment rate of UT&T to reach elimination, τe 

as high-to-low contact rate ratio,  increases from 2 to 20. 
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Figure AI- 4 Effect of increasing risk re-selection rate, , on minimum individual effectiveness of universal PrEP to reach 

elimination, 1-1/  (upper panel) and the difference between 1-1/  and its level when ω=0 1-1/R0_ω=0(lower panel) when 

fraction of contacts reserved for people with the same level of risk, m, increases from 0 to 1. 
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Figure AI- 5 Effect of risk re-selection rate, , on minimum individual effectiveness of universal PrEP to reach 

elimination, τe, when fraction of contacts reserved for people with the same level of risk, m, increases from 0 to 1. 

Fig.AI-6 shows that when system has a greater relative transmissibility of acute HIV infection, ζ 

increase in ω less reduces the minimum required individual effectiveness of universal PrEP to 

reach elimination, 1-1/ . This is because that the longer a case stays in infection time, the more 

likely that this case changes risk level. Therefore, episodic risk has greater impact on later stage 

of infection than on early stage of infection. If a greater fraction of transmission potential is 

attributed to acute HIV infection, R0 will be less sensitive to episodic risk. Consequently, 

increase in ω less reduces 1-1/  when there is a greater relative transmissibility of acute HIV 

infection, ζ.  
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Figure AI- 6 Effect of risk re-selection rate, , on minimum individual effectiveness of universal PrEP to reach 

elimination, 1-1/  (upper panel) and the difference between 1-1/  and its level when ω=0 1-1/R0_ω=0(lower panel) when 

relative transmissibility of acute infection, ζ, increases from 1 to 40. 

Fig.AI-7 shows that increase in risk re-selection rate, ω, more considerably reduces the minimum 

required effective treatment rate of UT&T, τe, when acute infection has a higher relative 

transmissibility, ζ. This seems to disagree with the observation for universal PrEP (Fig.AI-6). 

The reason is that the mechanism through which UT&T reduces R0 is different from that of PrEP: 

UT&T is targeted at infected population and is operated at certain rate instead of taking effects 

instantly. Therefore, effect of UT&T on R0 is sensitive to the heterogeneity in infectiousness by 

stage. Specifically, cases are more likely to be treated as they spend more time at infectious 

period. That says, UT&T tends to miss more acutely infected cases than chronically infected 

cases. Increase in relative transmissibility of acute infection will thus reduce impact of UT&T on 

R0 and increase τe. Furthermore, the elevated infectiousness during acute infection also interacts 

with high contact rate of high risk individuals. Due to such synergy risk heterogeneity can more 

greatly increase τe: a greater fraction of transmission potential is attributed to high risk acutely 
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infected people. Therefore, as episodic risk reduces effect of risk heterogeneity on τe, it will 

reduce τe more when there is a greater heterogeneity of infectiousness by stage.  

 

 

Figure AI- 7 Effect of risk re-selection rate, , on minimum effective treatment rate of UT&T to reach elimination, τe 

when relative transmissibility of acute infection, ζ, increases from 1 to 40.  

 

Section II-iii. Effect of Episodic Risk on Difference Between Minimum Required Individual 

Effectiveness Given General PrEP or High-Risk-Prioritized PrEP to Reach Elimination 

Under Different Model Parameter Settings. In this section, we aim to find the conditions 

where episodic risk can considerably reduce the advantage of prioritizing PrEP efforts to high 

risk susceptible individuals in terms of minimum required individual effectiveness to reach 

elimination and the conditions where high-risk-prioritized PrEP needs considerably lower 

individual effectiveness to reach elimination than general PrEP despite of episodic risk. In 

section II-i of this document, we demonstrated that effect of episodic risk on the required 

individual effectiveness of general PrEP and high-risk-prioritized PrEP to reach elimination is 

most pronounced when there is moderate coverage of PrEP and moderate level of UT&T. 

Therefore, our analysis will focus on these two situations. We examine the situation when PrEP 

can cover 25% or 50% of the susceptible population while the effective treatment rate of UT&T, 

τ, is 0.1/year, 0.3/year, or 0.5/year. We focus on three model parameters that each determines a 

behavioral or biological characteristic of HIV transmission. They are high-to-low contact rate 
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ratio, rHL, fraction of contacts reserved for people with the same level of risk, m, and relative 

transmissibility of acute HIV infection, ζ.  

To show the extent to which prioritizing PrEP efforts to high risk susceptible individuals 

is more optimal than general PrEP, we examine the difference in the minimum required 

individual effectiveness of general PrEP to reach elimination, δg, and minimum required 

individual effectiveness of high-risk-prioritized PrEP to reach elimination, δhp, i.e. δg- δhp. A 

large δg- δhp indicates that prioritizing PrEP to susceptible individuals experiencing high risk can 

cause a large reduction in the minimum required individual effectiveness to eliminate HIV 

infections, and vice versa.  

 

 

Figure AI- 8 Difference in minimum individual effectiveness to reach elimination of general PrEP and that of 

high-risk prioritized PrEP when risk re-selection rates, , increases from zero to 10/year at different levels of 

rHL. Coverage of PrEP, κ, is set at either 25% (upper row) or 50% (lower row) and effective treatment rate, τ, 

is set at 0.1/year (left column), 0.3/year (middle column) or 0.5/year (right column). 
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Figure AI- 9 Difference in minimum individual effectiveness to reach elimination of general PrEP and that of high-risk 

prioritized PrEP, δg- δhp, when risk re-selection rates, , increases from zero to 10/year at different levels of m (fraction 

of contacts reserved for people with same level of risk). Coverage of PrEP, κ, is set at either 25% (upper row) or 50% 

(lower row) and effective treatment rate, τ, is set at 0.1/year (left column), 0.3/year (middle column) or 0.5/year (right 

column). 

Fig.AI-8 and Fig.AI-9 show that as risk re-selection rate, ω, increases δg- δhp is more likely to 

remain high when there is a higher level of risk heterogeneity, i.e. high-to-low contact rate ratio 

rHL, or a higher degree of assortativity, i.e. fraction of contacts reserved for people with same 

level of risk, m. This is largely because that given a higher rHL or m, there is a wider range of ω 

where general PrEP cannot eliminate HIV infections (curves start at a higher value of ω, below 

which δg- δhp is undefined). As mentioned, the difference δg- δhp is the reduction of the required 

individual effectiveness to reach elimination due to prioritizing PrEP to high risk susceptible 

individuals. A high δg- δhp means that high-risk-prioritized PrEP has a large advantage as 

compared to general PrEP.  Therefore, the trend shown in Fig.AI-8 and Fig.AI-9 indicates that 

individual risk behavior volatility less reduces the advantage of high-risk-prioritized PrEP when 

there is a greater level of risk heterogeneity or higher degree of assortativity. The reason is that 

increase in either parameter causes stronger transmission within high risk subpopulation. 

Therefore, the potential contribution of susceptible individuals experiencing high risk to ongoing 
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transmission increases. As result, high-risk-prioritized PrEP can more efficiently prevent HIV 

transmission and such advantage would also more be robust to individual risk behavior volatility.  

 

Figure AI- 10 Difference in minimum individual effectiveness to reach elimination of general PrEP, δg, and that of high-

risk-prioritized PrEP, δhp, i.e. δg-δhp, when risk re-selection rates, , increases from zero to 10/year at different levels of 

relative transmissibility of acute infection, ζ. 

Fig.AI-10 shows that increase in ω less reduces difference δg- δhp when there is a higher relative 

transmissibility of acute HIV infection, ζ. The reason has been discussed in section II-ii of this 

document: cases are more likely to change risk levels at later stage of infection than at earlier 

stage of infection. Therefore when a higher fraction of transmission potential concentrates at 

acute stage of infection, individual risk behavior volatility will less affect the transmission 

system.  
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Appendix  II-Supplementary Materials for Chapter V 

 

Section I. Supplementary Methods 

 

Section I-i. Model equations and parameters 

Table AII- 1. Equations of deterministic version of model 

 

Table AII- 2. Parameter symbols, default values, units and definitions 

Parameter Default Value Unit Definition 

 1/40 /year 

Rate of removal from the sexually-active population unrelated to HIV. 

Because we set the equilibrium population in the absence of disease to 1, 

this is also the (absolute) rate of entry of new individuals into the sexually 

active population 

 4 /year Rate of transitioning from acute to chronic infection 

 1/10 /year Rate of death from AIDS during chronic infection 

 variable /contact Average per-contact transmissibility across both stages of infection 

 26 - 
Relative transmissibility of acute stage of infection, ratio of transmissibility 

during acute infection over transmissibility during   
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/contact Per-contact transmissibility during acute stage 

 
 

/contact Per-contact transmissibility during chronic stage 

 0.1 - Fraction of population that is at high-risk phase at disease-free equilibrium 

  - Fraction of population that is at low-risk phase at disease-free equilibrium 

 8 - 
Ratio of average contact rate at high-risk phase over average contact rate at 

low-risk phase 

χ 36 /year 
Average contact rate of the overall population expected for population at 

disease-free equilibrium 

 
 

/year  Average contact rate of the high-risk population 

 
 

/year Average contact rate of the low-risk population 

 0 - Fraction of contacts reserved for people experiencing the same level of risk 

 variable /year Rate of reselecting risk group  

 

Section I-ii. Selecting Phylogenetic Trees for Analysis on Clustering 

In order to control for the effect of number of internal nodes within a given cutoff distance on 

clustering, we select phylogenetic trees with similar cumulative number of internal nodes at a 

given cutoff distance (time in past since sample time). In order to select trees which have similar 

cumulative number of internal nodes, we calculated the sum of square of distance between the 

cumulative number of internal nodes of a simulated phylogenetic tree and the average of the 

cumulative number of internal nodes of all simulated phylogenetic trees to be matched. Trees 

with sum of squared distance under a certain threshold value are selected.  

For example, suppose that there are N sets of simulated trees, with each set simulated under a 

specific parameter setting, i.e. a specific risk re-selection rate ω. Suppose there are R sets of trees 

per set. We name rth tree in the nth set of trees as Tree(n_r) (order of trees are arbitrarily 

assigned for the purpose of illustration) (0<n<=N, 0<r<=R). Suppose there are in total M 

sampled cases for each tree, and we denote the time since sample time in past that mth branching 

occurs on Tree(n_r) as tn_r_m (0<m<=M-1). In order to obtain a reference cumulative number of 

internal nodes for each simulated tree to be compared to, we get average of tn_r_m across all trees 
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in all sets. That says, for this reference curve, the time for mth branching to occur is to occur, tm, 

is, 

. 

For rth tree in nth set, Tree(n_r), we calculate the square of distance between the time of mth 

internal node since sample time on Tree(n_r) and tm for m from 1 to total number of branching, 

M-1, 

 

We calculated the sum of squared distance as above for each simulated phylogenetic tree. We 

choose trees which have relatively small distance from the average. We set the threshold sum of 

square distance arbitrarily so that trees have visually close enough cumulate number of 

branching by cutoff distance and there are enough trees per set for analysis.  
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Section II. Supplementary Results 

 

 

Figure AII- 1. Effect of episodic risk on fraction of branching events caused by transmission linking high-risk acute 

infections. Simulation is done assuming random mixing. Average transmissibility per contact, β=0.008. Other parameters 

(other than ω) are set at their default values as shown in Table AII-2. 
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Figure AII- 2. Cumulative probability of cluster size at different cutoff distance (time in past since sample time) of 

phylogenetic trees simulated with different values of risk re-selection rate, ω. The phylogenetic trees have been matched 

by their cumulative number of internal nodes by cutoff distances. Simulations are done assuming random mixing. 

Average transmissibility per contact, β=0.008. Other parameters (except ω) are set at their default values as shown in 

Table AII-2.   
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Figure AII- 3. Skewness of cluster size distribution at each cutoff distance (time in past since sample time) for 

phylogenetic trees simulated assuming different values of risk re-selection rate, ω. Simulations are done assuming random 

mixing. Average transmissibility per contact, β=0.008. Other parameters (except ω) are set at their default values as 

shown in Table AII-2.   
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Figure AII- 4. Cumulative probability of cluster size at different cutoff distance (time in past since sample time) of 

phylogenetic trees simulated with different values of risk re-selection rate, ω. The phylogenetic trees have been matched 

by their cumulative number of internal nodes by cutoff distances. Simulations are done assuming assortative mixing, i.e. 

individuals reserve 50% of their contacts for people experiencing the same risk phase. Average transmissibility per 

contact, β=0.005. Other parameters (except ω) are set at their default values as shown in Table AII-2.   
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Figure AII- 5. Skewness of cluster size distribution at each cutoff distance (time in past since sample time) for 

phylogenetic trees simulated assuming different values of risk re-selection rate, ω. Simulations are done assuming 

assortative mixing. Average transmissibility per contact, β=0.005. Other parameters (except ω) are set at their default 

values as shown in Table AII-2.   
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Figure AII- 6. Effect of episodic risk on normalized Sackin Index (panel A) and normalized number of cherries (panel B) 

for population with random mixing and homogeneous stage- specific transmissibility, i.e. relative transmissibility of acute 

infection ζ=1. 
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Figure AII- 7. Effect of episodic risk on normalized Sackin Index (panel A) and normalized number of cherries (panel B) 

for population with assortative mixing and homogeneous stage- specific transmissibility, i.e. relative transmissibility of 

acute infection ζ=1. 
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Figure AII- 8. Boxplots of fraction of branching events caused by transmission linking high risk acute infections of 

phylogenetic trees for population where risk re-selection rate, ω=0, relative transmissibility of acute infection, ζ=26, and 

for population where ω=1/year and ζ=26, and for population where ω=0 and ζ=50. 

 

 

Figure AII- 9. Boxplots of average number of branching events caused by transmission from each infector for population 

where risk re-selection rate, ω=0, relative transmissibility of acute infection, ζ=26, and for population where ω=1/year 

and ζ=26, and for population where ω=0 and ζ=50. 
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